TW463331B - Self-aligned drain contact PMOS flash memory and process for making same - Google Patents

Self-aligned drain contact PMOS flash memory and process for making same Download PDF

Info

Publication number
TW463331B
TW463331B TW087115074A TW87115074A TW463331B TW 463331 B TW463331 B TW 463331B TW 087115074 A TW087115074 A TW 087115074A TW 87115074 A TW87115074 A TW 87115074A TW 463331 B TW463331 B TW 463331B
Authority
TW
Taiwan
Prior art keywords
layer
silicon
memory
drain
oxide
Prior art date
Application number
TW087115074A
Other languages
Chinese (zh)
Inventor
Shang-De Ted Chang
Binh Thuy Ly
Chan Hiang Cheong
Original Assignee
Programmable Microelectronics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Programmable Microelectronics filed Critical Programmable Microelectronics
Application granted granted Critical
Publication of TW463331B publication Critical patent/TW463331B/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B69/00Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/30Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

A process and structure reduces the amount of dielectric, such as silicon dioxide, needed to separate polysilicon gates from drain contacts, thereby reducing the size of the individual memory cells and increasing the density of the associated memory array. Silicon nitride is formed on top and on the sides of the polysilicon gates prior to source and drain formation and self-aligned drain contact masking and etching. The presence of the silicon nitride spacers prevents the subsequent oxide etch, which forms the openings to the drain regions for the conducting drain contact, from removing polysilicon in the event of mask misalignment. Therefore, additional oxide, which was necessary to protect the polysilicon gates during the formation of the drain contact window when mask misalignment occurs, is no longer needed between the polysilicon gates and the drain contacts, resulting in higher density memory arrays.

Description

4 6 3 331 五'發明說明(1) f t 發明領域 、— ▲丨. _ . 、本發明有關於一種用來生成和連接在半導體裝置中的區 域的方法,更明禮地說是用來在P通道快閃記憶體單元中 連接汲極區而降低記憶體陣列裝置的尺寸。 相關文侔 一快閃記憶體陣列包含一快閃記憶體胞的陣列。先前技 藝用在此陣列中的P通道快閃可消除可處理唯讀吃憶體 (EPROM)胞1〇〇顯示於圖1至3中。在圖,記憶體胞1〇〇的 俯視圖顯示出一汲極接點π 0,一 P +汲極區丨2 〇,一浮.動閘 130 控制閘1 4 〇 ’ %氧化物區1 5 〇 a和1 5 0 b,及P +源極區 和160b,中源極區160a是記憶體胞1〇G的源極而源極 區160b是源極區16吨的延伸部份用來連接鄰近記憶體胞的 源極區。 圖2是記憶體胞1〇〇沿圖i中線AA,所顯示的剖面圖。在一 N#2 00中形成P+汲極丨2〇的源極16〇而一通道則在兩者之 間形成。浮動閘130藉一隧道氧化物21〇而和通道絕緣分 開。此處要注意的是隧道氧化物一詞原指"閘氧化物,,只是 因為在此類記憶體裝置中,亦即快閃記憶體胞,在閘之下 的氧化物必須容許電子穿隧效應而使電子於浮動閘和矽美 底間來回穿梭。使用"隧道氧化物"一詞用來反應這—類^ 憶體的閘氧化物的雙重功能(亦即絕緣和電子的穿隧效… 應)。在浮動閘130之上,一内多晶介電物質22〇提供與控 制閘1 4 0間之絕緣。一摻雜氧化物2 3 〇例如硼磷矽玻璃二4 6 3 331 Five 'Invention Description (1) ft Field of Invention, — ▲ 丨. _. The present invention relates to a method for generating and connecting regions in a semiconductor device, more specifically, it is used for The drain region is connected to the P-channel flash memory unit to reduce the size of the memory array device. Related Articles A flash memory array contains an array of flash memory cells. The P-channel flash of the prior art used in this array can eliminate processable read-only memory (EPROM) cells 100 shown in Figures 1-3. In the figure, the top view of the memory cell 100 shows a drain contact π 0, a P + drain region 丨 2 〇, a floating gate 130 control gate 1 4 0 ′% oxide region 1 5 〇 a and 15 0 b, and P + source region and 160b, the middle source region 160a is the source of the memory cell 10G and the source region 160b is a 16-ton extension of the source region to connect adjacent Source region of the memory cell. FIG. 2 is a cross-sectional view of the memory cell 100 taken along line AA in FIG. A source of P + drain, 20 is formed in an N # 2 00 and a channel is formed between the two. The floating gate 130 is separated from the channel insulation by a tunnel oxide 21O. It should be noted here that the term tunnel oxide originally meant " gate oxide, only because in such memory devices, that is, flash memory cells, the oxide under the gate must allow electrons to tunnel The effect causes electrons to shuttle back and forth between the floating gate and the silicon substrate. The use of the term "tunnel oxide" is used to reflect the dual function of this kind of gate oxide (ie, insulation and electron tunneling effects ...). Above the floating gate 130, an inner polycrystalline dielectric material 22 provides insulation from the control gate 140. One doped oxide 2 3 〇 such as borophosphosilicate glass two

C:\Program Files\Patent\54734. ptd 第5頁 463331 五、發明說明(2) (BPSG)或其他適當物質將其與其下層絕緣。汲極接點11〇 包括位於没極120和鎢栓塞2 60間一氬化鈦(TlN)層2 40和鈦 金屬(T 1 )層2 5 0。圖3是記憶體胞1 〇 〇沿圖}中線B _B,的剖面 圖’其顯示場氧化物150和隧道氧化物21〇將财2〇〇與浮動 閘1 3 0 ’内多晶介電物質2 2 〇和控制閘1 4 〇分開。 "在:快閃記憶體陣列的設計中,一個主要的目標就是要 增加岔度,因此,對一定數目的記憶體胞而言,減少陣列 的尺寸。一典型的增加陣列密度之方法是減少組成該記憶 ,列個別胞1 〇 〇的尺寸。胞丨〇 〇中彳艮難減少面積的區域之 是在 '及極接點11 〇。浮動閘〗3 0和控制閘1 4 〇間之區域。 如圖1和2所7F。很難減少的原因是因為必須保護閘丨3 〇和 1 4 0於及極接點1 1 〇形成期間不被蝕刻掉。在形成汲極接點 Y 〇中’ 一光罩定型操作首先定義出在汲極1 2 0之上一接點 區。未受保護的氧化物層230隨後被蝕刻掉而將想要的汲 ,接點區曝露出來s然後一鎢栓塞2 6 0在此區形成。而以 障礙層鈦金屬25 0和氮化鈦24 0分隔開以產生汲極接點 1 1 〇。若定型操作發生誤對準以致控制閘丨4〇和/或浮動閘 1 30未丈到保護,在隨後氧化物層23 〇的蝕刻會將這些閘的 部份除去,因此而損壞了胞1〇〇。由此結果’汲極區·;2〇和 用來分隔汲極接點11〇與閘13〇和丨4〇的氡化物區23〇必須比 理想中為大以確保若定型誤對準發生的話在汲極接點Η 〇 形成期間閘1 30和1 40部份不會被蝕刻除去。 因此,我們想要的快閃記憶體胞在其汲極接點和浮動及 &制閘之間有一減少的氧化物分隔距離,而導致較小的記C: \ Program Files \ Patent \ 54734. Ptd Page 5 463331 V. Description of Invention (2) (BPSG) or other appropriate substance to insulate it from the underlying layer. The drain contact 110 includes a titanium argon (TlN) layer 2 40 and a titanium metal (T 1) layer 250 located between the electrode 120 and the tungsten plug 2 60. FIG. 3 is a cross-sectional view of the memory cell 100 along the center line B_B, which shows the field oxide 150 and the tunnel oxide 21〇, and the polycrystalline dielectric within the floating gate 130 ′. Substance 2 2 0 is separated from control gate 1 4 0. " In the design of flash memory arrays, one of the main goals is to increase the degree of chaos. Therefore, for a certain number of memory cells, reduce the size of the array. A typical way to increase the density of an array is to reduce the size of the memory that makes up the individual cells by 1000. One of the areas where it is difficult to reduce the area of the cell is at the pole contact 11. The area between floating gate 30 and control gate 140. See Figures 1 and 2 for 7F. The reason why it is difficult to reduce is because the gates 300 and 140 must be protected from being etched out during the formation of the pole contacts 110. In the formation of the drain contact Y 0, a photomask shaping operation first defines a contact area above the drain 1 2 0. The unprotected oxide layer 230 is then etched away to expose the desired drain, the contact area is exposed, and then a tungsten plug 2 60 is formed in this area. A barrier layer of titanium metal 25 0 and titanium nitride 24 0 are separated to create a drain contact 11 1. If the alignment operation is misaligned such that the control gates 4 and / or floating gates 1 30 are not protected, the subsequent etching of the oxide layer 23 0 will remove parts of these gates, thereby damaging the cell 1 0. 〇. As a result, the 'drain region'; 20 and the halide region 23 which separates the drain contact 11 and the gates 13 and 4 must be larger than ideal to ensure that if a type misalignment occurs, During the formation of the drain contact 〇, the gates 130 and 140 are not etched away. Therefore, the flash memory cell we want has a reduced oxide separation distance between its drain contact and floating and & brake, resulting in a smaller memory

C:\Pr〇gram Files\Patent\54734. ptd 第6頁 行對準汲 間氧化物 石夕層和氮 蚀刻而沿 。沉積在 的介電物 触刻。汲 出來1而 屬沉積在 多晶矽閘 晶矽被蝕 和汲極接 此結果, 尺寸並.增 變得更令 463331 五、發明說明(3) 憶體胞和因此一較高 ^ 阿在度的記憶體胞。 根據本發明,提供了在 極接點的流裎其減少了、及。、* 11憶體胞中形成自 的分隔距離。在本發明内極接點和浮動及控制閘 化物層形成在疊層多晶矽:,例中’-二氧化 著疊層閘結構的側面形成氧::控制閘上,然後 氮化物間隔物,疊層閘結物和氮化物間隔物 質如BPSG或BPTEOS將复早+ 及極及源極區之上 極接點光罩將氮化物間:匕二用來光罩定型和 介電物質則被蝕刻掉“::的汲極部份曝露 這些區域並被㈣而形:=極接點區。鶴金 周圍的氮化物間隔物在氧化物二 點間也不需要額外的氧化物來保護多:矽;二’ 汲極接點可更靠近多晶矽閘,因此 ? 加記憶體陣列的密度。 減>、了胞的 2明在以下列詳細敘述並佐以 人清晰明瞭。 凡乃傻曰 圖形簡要敘述 圖1是傳統PMOS快閃記憶體胞俯視圏; 圖2是圖I中記憶體胞沿線段Η,所示的剖面圖· 圖3是圖1中記憶體胞沿線段β_Β’所示的剖面圖 圖4幻◦是根據本發明中自行對準沒極接點_挟閃C: \ Pr〇gram Files \ Patent \ 54734. Ptd p. 6 Line aligned with the interlayer oxide Shi Xi layer and nitrogen etched along. Dielectric deposited on the etch. Extraction 1 belongs to the polysilicon gate. The crystalline silicon is etched and the drain electrode is connected to this result. The size is increased to make it more 463331. V. Description of the invention (3) Recall the body cell and therefore a higher ^ A degree memory Body cell. According to the present invention, there is provided a reduction in flow at the pole contact, and. , * 11 recalls the separation distance formed in the somatic cell. In the present invention, the inner electrode contact and the floating and control gate compound layer are formed on the stacked polycrystalline silicon :, in the example, '-dioxide is formed on the side of the stacked gate structure to form oxygen :: on the control gate, then the nitride spacer, and the stack Gate junctions and nitride spacers such as BPSG or BPTEOS will return to the front and the top and source regions. The contact mask will be between the nitrides: the two are used to mask the mask and the dielectric material is etched away. :: The drain portion exposes these areas and is shaped like: = pole contact area. The nitride spacers around Crane Gold do not require additional oxides between the two oxide points to protect more: silicon; two The drain contact can be closer to the poly-silicon gate, so the density of the memory array is increased. The reduction of the cell's 2 is described in the following details and it will be clearly understood by the person. A conventional PMOS flash memory cell is viewed from the top; FIG. 2 is a cross-sectional view of the memory cell along the line in FIG. 1, and FIG. 3 is a cross-sectional view of the memory cell along the line β_B ′ in FIG. 1. ◦It is self-aligning non-polar contact according to the present invention.

C:\ProgramFiles\Patent\54734.ptd 第 7 頁 463331 五、發明說明(4) EPROM流程的剖面圖; 圖Π是根據本發明一PM0S快閃記憶體胞俯視圖; 圖1 2是囷Π中記憶體胞沿線段c-c,所示的剖面圖; 圖1 3是圖1 1中記憶體胞沿線段D_D,所示的剖面圖; 在不同圖形中使用相似的參考數字來表示相似或同樣的 物質。 詳細敘述 根據本發明提供了一方法和結構藉氮化物層的使用縮短 了汲極接點和多晶矽閘間氧化物分隔距離而減少了快閃記 憶體胞的尺寸。圖4至1 〇是侧面圖根據本發明的一實施例 而顯示出形成在EPROM胞中形成自行對準汲極接點的流 私。在圊4中’闬傳統方法首先將厚又的隧道氧化物層 生成在一矽基底或#4〇〇之上。稍後要用來形成記憶體陣列 浮動閘的第一多晶矽層(P 〇 1 y 1 ) 4 2 〇沉積在隧道氧化物4 J 〇 之上。然後,一内多晶介電物質層43〇形成在p〇lyl 420之 上。例如,介電物質層4 3 0可以是氧化物_氮化物_氧化物 (0N0)層而在p〇iyi 420上生成或沉積一二氧化矽層,接著 沉積一氮化矽或其他合適的絕緣氮化物層然後再生成或沉 積另一層二氧化矽層。第二層多晶矽層(p〇丨y2) 44〇或一 多晶層再沉積在介電物質層430之上,其中p〇ly2 44〇最後 要形成記憶體陣列所用的控制閘。另一二氧化矽層45〇形 成在Poly2 4 40之上,接著一氮化矽層(Nitridel) 46〇形 成在二氧化矽層450之上。二氧化矽成了p〇丨y2 44〇和 htri del 460間的填充物。這些層的較佳厚度和範圍則列C: \ ProgramFiles \ Patent \ 54734.ptd Page 7 463331 V. Description of the invention (4) A cross-sectional view of the EPROM process; Figure Π is a top view of a PMOS flash memory cell according to the present invention; Figure 1 2 is a memory in 囷 Π Sectional view of body cell along line segment cc; Figure 13 is a sectional view of memory cell along line segment D_D in Figure 11; Similar reference numerals are used in different figures to indicate similar or identical substances. DETAILED DESCRIPTION According to the present invention, a method and structure are provided to reduce the size of the flash memory cell by reducing the oxide separation distance between the drain contact and the polysilicon gate by using a nitride layer. Figures 4 to 10 are side views showing the flow formation of self-aligned drain contacts formed in EPROM cells according to an embodiment of the present invention. In "4", the traditional method first forms a thick and thick tunnel oxide layer on a silicon substrate or # 400. A first polycrystalline silicon layer (P 0 1 y 1) 4 2 0 to be used later to form a memory array floating gate is deposited on the tunnel oxide 4 J 0. Then, an inner polycrystalline dielectric substance layer 43 is formed on poll 420. For example, the dielectric material layer 4 3 0 may be an oxide_nitride_oxide (0N0) layer to form or deposit a silicon dioxide layer on poiyi 420, and then deposit a silicon nitride or other suitable insulation The nitride layer then generates or deposits another silicon dioxide layer. A second polycrystalline silicon layer (p0y2) 44 or a polycrystalline layer is then deposited on top of the dielectric substance layer 430, where p2ly2 44o finally forms a control gate for the memory array. Another silicon dioxide layer 45 is formed on Poly2 4 40, and then a silicon nitride layer (Nitridel) 46 is formed on silicon dioxide layer 450. Silicon dioxide became the filling material between p〇 丨 y2 44〇 and htri del 460. The preferred thickness and range of these layers are listed below.

C;\Program F iIes\Patent\54734. ptd 第8頁 463331 五、發明說明(5) 於下面表1中。 使用傳統疊層閘定型和蝕刻技術來蝕刻層4丨〇至4 6 〇,可 形成疊層閘結構500如圖5所示《在圖6中,一層二氧化石夕 (此處未顯示)先以熱成長方式形成在疊層閘結構多晶矽的 侧牆β接著沉積另一層二氧化矽6丨〇於結構的表面。由於 這沉積的一氡化石夕層將結構表面平坦化如圖5所示,一地 毯式钱刻’亦即沒使用光罩的氧化物蝕刻,將這平坦的二 氧化石夕層水平部份較薄的地方除去,但這平坦的二氧化矽 層垂直部份較厚的地方在疊層閘結構5〇〇的垂直側牆形成 氧化物間隔物610。第二層氮化矽(Nitride2)62〇接著被沉 積為一保形層且被等方向性地姓刻,因此形成如圖7中之 氮化物間隔物71 0,其於之後汲極接點蝕刻期間保護了疊 層閑的邊緣。 若想要的話’ 一傳統自行對準源極(SAS)蝕刻(此處為簡 化而未顯示)可以於此施行而減少將形成的源極區的尺 寸。根據圖1,在源極/汲極離子植入之前,先將場氧化物 1 50b敍刻掉而將於其下的矽基底曝露出來此處亦是源極區 摻雜物植入之處。SAS蝕刻將浮動閘1 3 〇和控制閘丨4 〇與源 極摻雜區對準’因此去除了將多晶矽閘1 3 〇和丨4 〇與源極區 分離之場氧化物區15〇b之需求。摻雜物因此可於下一步驗 植入而形成源極區800a和8〇〇1},如圖}丨所示。由此結果, 我們不再需要源極於1 6 0 b因為源極區8 0 0 b可以連接源極區 至鄰近的記憶體胞。 因此,SAS餘刻是一種方法可用來於—快閃epr〇m流程期C; \ Program F ies \ Patent \ 54734. Ptd page 8 463331 5. Description of the invention (5) is shown in Table 1 below. Using conventional stacked gate sizing and etching techniques to etch layers 4 丨 0 to 4 6 0, a stacked gate structure 500 can be formed as shown in FIG. 5. In FIG. 6, a layer of dioxide (not shown here) is first A thermal growth method is formed on the side wall β of the polycrystalline silicon of the stacked gate structure, and then another layer of silicon dioxide 6 is deposited on the surface of the structure. Because the deposited fossil layer flattened the structure surface as shown in FIG. 5, a carpet-type money engraving, that is, oxide etching without a photomask, made the horizontal part of the flat dioxide layer more Thin areas are removed, but where the vertical portion of the flat silicon dioxide layer is thicker, oxide spacers 610 are formed on the vertical side walls of the stacked gate structure 500. The second layer of silicon nitride (Nitride2) 62 is then deposited as a conformal layer and is engraved isotropically, thus forming a nitride spacer 71 0 as shown in FIG. 7, which is subsequently etched at the drain contact. The edge of the stack is protected during this period. If desired, a conventional self-aligned source (SAS) etch (simplified and not shown here) can be performed here to reduce the size of the source region to be formed. According to FIG. 1, before the source / drain ion implantation, the field oxide 150 b is etched away and the silicon substrate under it is exposed. This is also where the source region dopants are implanted. The SAS etch aligns the floating gates 130 and the control gates 4o with the source doped regions', thus removing the field oxide regions 15b that separate the polysilicon gates 130 and 4o from the source regions. demand. The dopant can therefore be implanted in the next step to form source regions 800a and 8001}, as shown in FIG. As a result, we no longer need the source at 16 0 b because the source region 8 0 0 b can connect the source region to adjacent memory cells. Therefore, SAS remainder is a method that can be used in-flash epr〇m process period

c^Program Files\Patent\54734. ptd 463331 五、發明說明(6) —- 間藉蝕刻掉多餘的場氧化物而縮小源極區並減少整個胞的 尺寸。源極區的自行對準可使多晶矽閘放置更緊^ ’因此 在一記憶體胞和次一記憶體胞之間需要較少的實際八 ^ 離(亦即可放置更緊密的記憶體胞)。 ’下刀两 士不管是否有執行SAS蝕刻,製造流程根據傳統步驟而繼 續下去。在圖8中,源極8 00和汲極810皆形成p+區,例 如,藉離子植入摻雜物以形成源極和汲極區然後在8〇〇 t 下將元成結構退火20至40分鐘。一層摻入姻碟的 TEOS(BPTEOS) 8 20或其他合適的介電物質例如BpSG沉積於 上並於8 5 0 C下1 5至2 0分鐘以回流方式使其平順化。然後 執行化學/機械式拋光(CMP)使其平坦並將bp%層820的厚 度降至3000至3500A ’下面表1列出各層較佳的厚度及範 圍。c ^ Program Files \ Patent \ 54734. ptd 463331 V. Description of the invention (6) —- By etching away excess field oxide, the source region is reduced and the size of the entire cell is reduced. The self-alignment of the source region allows the polysilicon gate to be placed more tightly ^ 'so less actual occlusion is required between one memory cell and the next memory cell (that is, a tighter memory cell can be placed) . ’The manufacturing process continues regardless of whether SAS etching is performed or not. In FIG. 8, the source 8000 and the drain 810 both form a p + region. For example, the dopant is implanted by ion implantation to form the source and drain regions and then the element structure is annealed at 800 to 20 to 40. minute. A layer of TEOS (BPTEOS) 8 20 or other suitable dielectric material, such as BpSG, is deposited on the disc and smoothed under reflux at 15 0 to 20 minutes. Then chemical / mechanical polishing (CMP) is performed to make it flat and reduce the thickness of the bp% layer 820 to 3000 to 3500A '. Table 1 below lists the preferred thickness and range of each layer.

Layer Range 一· . -Preferred 隨道氧化物410 95-105 埃 1 100埃 多晶矽1 420 1000-1500 埃 η 1200 埃 介電物質430 170-200 埃 180埃 多晶砂 2/Polycide 440 1500-2000 埃 1700 埃 二氧化砂450 250-400 埃 300埃 氧化物1 460 2500-3000 埃 1 2700 埃 測牆氧化物生長 150-200 埃 200埃 氧化物沉積 600-1000 埃 800¼ 氧化物2 620 1000-1200 埃 1000 埃 BPSG(已沉積)820 7000-10000 埃 _。埃 BPSG(在 CMP 之後)820 3000-3500 埃 3200 埃 ------ —1 表1Layer Range I. -Preferred oxide 410 95-105 angstroms 1 100 angstroms polycrystalline silicon 1 420 1000-1500 angstroms 1200 angstroms dielectric substance 430 170-200 angstroms 180 angstroms polycrystalline sand 2 / Polycide 440 1500-2000 angstroms 1700 angstroms of sand 450 250-400 angstroms 300 angstroms oxide 1 460 2500-3000 angstroms 1 2700 angstroms measuring wall oxide growth 150-200 angstroms 200 angstroms oxide deposition 600-1000 angstroms 800¼ oxide 2 620 1000-1200 angstroms 1000 Angstroms BPSG (deposited) 820 7000-10000 Angstroms_. Angstrom BPSG (after CMP) 820 3000-3500 Angstrom 3200 Angstrom ------ --1 Table 1

463331 五、發明說明(7) 然後以傳,统定型或直接寫入㈣來定義出沒極接點區。 =如在圖9中’在-層光阻劑(此處未顯示)沉積在娜層 820之上後,光阻劑接著被定型以定義出汲極接點區9丨〇。 -自行對準接點㈣或高選擇性氧化物對氣化物 選擇區域的BPSG除气以形成汲極接點區91〇。在鈦金屬沉 積以形成一厚度40 0A的1層920和氮化鈦沉積在鈦金屬層 920之上形成一厚度1 00 0 $的厚層93〇之後,鈦金屬和氮化 鈦層在氮氣t溫度585 °C下退火20分鐘以形成障礙層用來 沉積鎢栓塞。在圖10中,厚度6 0 0 〇ί的鎢金屬層以眾所週 知的方式沉積在沒極接點區’例如,使用化學氣相沉積法 (CVD)。在CMP或另一合適的蝕刻方法之後將鎢金屬層平坦 化放入鎢拴塞1 G 2 0中自行對準汲極接點丨〇丨〇就形成了。 圖11至1 3顯示根據本發明所形成的疊層閘記憶體胞5 〇 〇 其不同方向之解剖圖。圖11是胞5〇〇的俯視圖顯示出沒極 接點1 01 0 ’ Ρ +汲極8 1 0 ’ Ρ +源極8 0 0 a和8 0 0 b,場敦化物 11 0 0 1浮動閘4 2 0,和控制閘44 0。圖1 2和1 3是在圖11中分 別沿線段C - C ’和D + D ’所顯示的側面圖。如同圖1 1和1 2所 示’記體體胞500的尺寸與圖1和2中記憶體胞1〇〇來比較於 源極和;及極區都已縮小。藉傳統SAS钱刻把在圖1中位於源 極1 60b和多晶矽閘1 30和140間之場氧化物150b除去而縮小 了源極區。在本發明中,汲極區也縮小了因為汲極接點可 以作得更接近多晶矽閘,因此大量減了在多晶矽閘和〉及極 接點間氧化物的量。該結杲產生了較小的記憶體胞並導致463331 V. Description of the invention (7) Then define the non-polar contact area by pass, unify the shape, or write directly to ㈣. = As in FIG. 9, after the 'on-layer photoresist (not shown here) is deposited on the nano layer 820, the photoresist is then shaped to define the drain contact region 9o. -Self-aligned contact ㈣ or highly selective oxide degassing of BPSG in the gaseous selective area to form the drain contact area 91 °. After the titanium metal is deposited to form a layer 920 with a thickness of 400 A and the titanium nitride is deposited on the titanium metal layer 920 to form a thick layer with a thickness of 100 000 $, the titanium and titanium nitride layers are exposed to nitrogen at Annealed at 585 ° C for 20 minutes to form a barrier layer for depositing tungsten plugs. In FIG. 10, a tungsten metal layer having a thickness of 600 Å is deposited in a non-contact region in a known manner ', for example, using a chemical vapor deposition (CVD) method. After the CMP or another suitable etching method, the tungsten metal layer is planarized and placed in the tungsten plug 1 G 2 0 to self-align the drain contacts 丨 〇 丨 〇. 11 to 13 show anatomical diagrams of a stacked memory cell 500 formed in accordance with the present invention in different directions. FIG. 11 is a top view of a cell 500, showing a non-polar contact 1 01 0 'P + a drain 8 1 0' P + a source 8 0 0 a and 8 0 0 b, a field compound 11 0 0 1 floating gate 4 2 0, and control gate 44 0. 12 and 13 are side views shown in FIG. 11 along the line segments C-C 'and D + D', respectively. As shown in Figs. 11 and 12, the size of the soma cell 500 is compared with the memory cell 100 in Figs. 1 and 2 compared to the source and sum; and the polar regions have been reduced. The field oxide 150b between the source 160b and the polysilicon gate 130 and 140 shown in FIG. 1 was removed by using conventional SAS money to reduce the source region. In the present invention, the drain region is also reduced because the drain contacts can be made closer to the polysilicon gate, so the amount of oxide between the polysilicon gate and the poly contacts is greatly reduced. This scab produces smaller memory cells and causes

C:\Program Files\Patent\54734. ptd 第11頁 463331C: \ Program Files \ Patent \ 54734. Ptd Page 11 463331

五 '發明說明(8) 更密的記憶體陣列。為防止没極 對準而所需的額外氧化物也可以 4九罩所發生可能的誤 圍形成的氮化物間隔物防止了解,^ 了因為在多晶矽閘週 刻期間被除掉。由此結果,執〜=份多晶矽閘於氧化物蝕 結構5 0 0間間隔物的量減少订層閘蝕刻將每一疊層閘 成在基底4 0 0之上,如圖5所示。仔/本多的疊層閘結構5⑽形 點蝕刻而不用保留原用來 ,現在可實行汲極接 舉更大大降低連續記憶體= «&也3 u u間的間距,如圖9所示。 此,根據本發明使用自行對準汲極接點流程,彳得到較小 的記憶體胞尺寸和較高密度的記憶體陣列。 本發明上述實施例僅供說明並非偈限於此。在未偏離本 發明較廣泛的考量下對那些熟悉此技藝之人士可作不同的 改變及修正。因此,隨後申請專利範圍包括在本發明精神 和領域之内所有的改變和修正V. Description of the invention (8) A denser memory array. The additional oxide required to prevent non-polar alignment can also prevent the formation of nitride spacers that may be formed by the possible misalignment, because it is removed during the polysilicon gate cycle. As a result, the number of spacers between the polysilicon gate and the oxide structure is reduced by 500 parts. The gate etch is performed to form each stack gate over the substrate 400, as shown in FIG. The stacking gate structure of the Tsai / Bendo 5⑽-shaped dot etching without retaining the original use, can now implement the drain connection to greatly reduce the continuous memory = «& also the spacing between 3 u u, as shown in Figure 9. Therefore, according to the present invention, a self-aligned drain contact process is used to obtain a smaller memory cell size and a higher density memory array. The above embodiments of the present invention are for illustration only and are not limited thereto. Various changes and modifications can be made to those skilled in the art without departing from the broader considerations of the present invention. Therefore, the scope of subsequent patent applications includes all changes and modifications within the spirit and scope of the present invention.

C:\Program Files\Patent\54734. ptd 第 12 ΊC: \ Program Files \ Patent \ 54734. Ptd page 12

Claims (1)

463331 六、申請專利範圍 1. 一種自行對準汲極接點處理流程,包括下列步驟: 形成一氮化矽層在矽基底上即將成形的記憶體單元其 疊層閘部份至少上下兩面; 餘刻該氮化破層_而在鄰近即將成形的源極和汲極區之 該疊層閘結構週圍形成氮化物間隔物; 形成源極和沒極區在梦基底中每一疊層閘結構的相對 兩側面,處;及 形成自行對準及汲極接點於該矽基底中該氮化物間隔 物之間所選定區域。 2. 如申請專利範圍第1項之處理流程,其中該記憶體單 元是可抹去式可程式唯讀記憶體(EP ROM)單元。 3. 如申請專利範圍第1項之處理流程,其中該記憶體單 元是快閃EPROM元。 4. 如申請專利範圍第1項之處理流程,其中該記憶體單 元是PM0S快閃EPROM單元。 5. 如申請專利範圍第1項之處理流程,其中該即將成形 的記憶體單元的疊層閘部份包含下列步驟: 形成一第一氧化物層在該珍基底之上 形成一第一多晶妙層在該氧化物層之上; 形成一内多晶介電物質層在該第一多晶矽層之上; 形成一第二多晶矽層在該内多晶介電物質層之上; 形成一第二氧化物層在該第二多晶矽層之上; 形成一第二氮化石夕層在該第二氧化物層之上;及 蚀刻該第二氣化ΐ夕層,該第一和第二氧化物層,該第一463331 6. Scope of patent application 1. A self-aligned drain contact processing process, including the following steps: forming a silicon nitride layer on a silicon substrate, a memory cell to be formed, and a stack gate portion of at least two sides; Carrying the nitride breakdown layer and forming nitride spacers around the stacked gate structure adjacent to the source and drain regions to be formed; forming the source and non-electrode regions of each stacked gate structure in the dream substrate Opposite two sides, and places; and forming a self-aligned and drain contact between a selected region of the nitride spacer in the silicon substrate. 2. For the processing flow of the first patent application, the memory unit is an erasable programmable ROM (EP ROM) unit. 3. For the processing flow of the first scope of the patent application, the memory unit is a flash EPROM unit. 4. For the processing flow of item 1 of the scope of patent application, the memory unit is a PM0S flash EPROM unit. 5. For example, the processing flow of the first patent application range, wherein the stack gate portion of the memory cell to be formed includes the following steps: forming a first oxide layer and forming a first polycrystal on the rare earth substrate; A layer is formed on the oxide layer; an inner polycrystalline dielectric material layer is formed on the first polycrystalline silicon layer; a second polycrystalline silicon layer is formed on the inner polycrystalline dielectric material layer; Forming a second oxide layer on the second polycrystalline silicon layer; forming a second nitride stone layer on the second oxide layer; and etching the second gasification layer, the first And a second oxide layer, the first C:\Program Files\Patent\54734, ptd 第13頁 463331 六'申請專利範圍 和第二多晶 6.如申請 在形成該氣 成請步請點成該該傳請積一 一一該結一該一該 形申之申接形罩刻成申沉 成成成刻體成刻成刻 上如層如極在光蝕形如屬 形形形蝕憶形蝕形# 之7矽8汲 9金10記 面化準 鎮 成 石夕層,和該内多晶介電物質層。 專利範圍第1項之處理流程,更包含下述步驟 化矽層之前在至少該疊層閘記憶體胞的相對兩 一二氧化梦層α 專利章ιΐ圍第6項之處理流程^其中形成該二氧 驟包含生成和沉積二氧化矽的步驟。 專利範圍第1項之處理流程,其中形成自行對 的步驟包含下列步驟: 源極和汲極區步踢之後沉積一介電物質; 介電物質的特定部份以曝露出汲極接點區; 介電物質的部份而曝露出該汲極接點區;及 導栓塞在該汲極接點區内。 專利範圍第8項之處理流程,其中該栓塞是由 而成。 丨行對準汲極接點處理流程,包含下列步驟: 多晶矽層在一矽基底上一氧化物層之上; 二氧化矽層在該多晶矽層之上; 氮化矽層在該二氧化矽層之上; 氮化>5夕,二氧化ί夕,多晶石夕,和氧化物層以形 構; 弟—-—乳化硬層在該記憶體結構> 第二二氧化矽層以形成氧化物間隔物; 第二氮化矽層在該第二二氧化矽層; 第二氮化矽層以形成氮化物間隔物,及C: \ Program Files \ Patent \ 54734, ptd Page 13 463331 Six 'application for patent scope and second poly 6. If the application is in the process of forming this gas, please click the step, please click the pass, please accumulate one by one, one by one The shape of the cover of the application is engraved by Shen Shencheng, the engraving is engraved, and the engraving is as thick as the layer is in the photo-etched shape, which is the shape of the shape. Ten faces were formed into a quasi-balloon layer and the inner polycrystalline dielectric substance layer. The processing flow of item 1 of the patent scope further includes the following steps. Before the silicon layer is converted, at least the opposite two dream dioxide layers of the stacked gate memory cell. The dioxin step includes the steps of generating and depositing silicon dioxide. The process of item 1 of the patent scope, wherein the step of forming a self-pair includes the following steps: depositing a dielectric substance after the source and drain regions are kicked; a specific portion of the dielectric substance to expose the drain contact region; A portion of the dielectric substance exposes the drain contact region; and a conductive plug is in the drain contact region. The processing flow of item 8 of the patent scope, wherein the plug is made of. The process of aligning drain contacts includes the following steps: a polycrystalline silicon layer on a silicon substrate and an oxide layer; a silicon dioxide layer on the polycrystalline silicon layer; a silicon nitride layer on the silicon dioxide layer Above; Nitriding> 5th, 2nd, 2nd, polycrystalline, and oxide layers to form; Brother —- emulsified hard layer in the memory structure> 2nd silicon dioxide layer to form An oxide spacer; a second silicon nitride layer on the second silicon dioxide layer; a second silicon nitride layer to form a nitride spacer, and C:\Program Files\Patent\54734. ptd 第14頁 4 63 33 1 六、申請專利範圍 形成自行對準汲極區在該氮化矽間隔物之間該矽基底 中的選定部分。 11. 一種記憶體陣列,包含: 一梦基底; 多個交替的汲極和源極區形成在該矽基底中*其中位 於其間的該等定義通道區; 多個記憶體結構位於該通道區之上,該記憶體結構具 有至少一多晶矽閘; 多個介電物質間隔物位於該記憶體結構的側壁上;以 及 多個汲極接點位於該汲極區,且藉該介電物質間隔物 與該記憶體結構中的閘分開。 1 2.如申請專利範圍第11項之記憶體陣列,更包含一二 氧化矽層位於該記憶體結構的側牆和該介電物質間隔物之 1 3.如申請專利範圍第11項之記憶體陣列,其中該記憶 體結構包含: 一氧化物位於該通道區之上; —多晶石夕浮動閘位於該氧化物之上; 一内多晶介電物質位於該浮動閘之上; 一多晶矽控制閘位於該内多晶介電物質之上; 一二氧化矽層位於該控制閘之上;及 一 化發層位於該二氧化石夕層之上。 14.如申請專利範圍第11項之記憶體陣列,其中該記憶C: \ Program Files \ Patent \ 54734. Ptd Page 14 4 63 33 1 6. Scope of patent application Form a selected portion of the silicon substrate with self-aligned drain region between the silicon nitride spacer. 11. A memory array comprising: a dream substrate; a plurality of alternate drain and source regions formed in the silicon substrate * with the defined channel regions located therebetween; a plurality of memory structures located in the channel region The memory structure has at least one polycrystalline silicon gate; a plurality of dielectric substance spacers are located on a sidewall of the memory structure; and a plurality of drain contacts are positioned in the drain region, and the dielectric substance spacers and the The gates in the memory structure are separated. 1 2. The memory array according to item 11 of the patent application scope, further comprising a silicon dioxide layer located on the side wall of the memory structure and the dielectric substance spacer 1 3. The memory according to item 11 of the patent application scope A body array, wherein the memory structure comprises: an oxide is located on the channel region;-a polycrystalline silicon floating gate is located on the oxide; an internal polycrystalline dielectric substance is located on the floating gate; a polycrystalline silicon A control gate is located on the inner polycrystalline dielectric substance; a silicon dioxide layer is positioned on the control gate; and a chemical emission layer is positioned on the stone dioxide layer. 14. The memory array according to item 11 of the application, wherein the memory C:\Program Files\Patent\54734. ptd 第15頁 4 6 3 331 六、申請專利範圍 禮陣列是一 E P R Ο Μ陣列。 1 5.如申請專利範圍第11項之記憶體陣列,其中該記憶 體陣列是一快閃EPROM陣列。 1 6.如申請專利範圍第1 1項之記憶體陣列,其中該記憶 體陣列是一PM0S快閃EPROM陣列。C: \ Program Files \ Patent \ 54734. Ptd Page 15 4 6 3 331 6. Scope of Patent Application The Li array is an EPROM array. 1 5. The memory array according to item 11 of the application, wherein the memory array is a flash EPROM array. 16. The memory array according to item 11 of the patent application scope, wherein the memory array is a PMOS flash EPROM array. C:\Program Files\Patent\54734.ptd 第 16 頁C: \ Program Files \ Patent \ 54734.ptd page 16
TW087115074A 1997-09-26 1998-09-10 Self-aligned drain contact PMOS flash memory and process for making same TW463331B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US93798197A 1997-09-26 1997-09-26

Publications (1)

Publication Number Publication Date
TW463331B true TW463331B (en) 2001-11-11

Family

ID=25470666

Family Applications (1)

Application Number Title Priority Date Filing Date
TW087115074A TW463331B (en) 1997-09-26 1998-09-10 Self-aligned drain contact PMOS flash memory and process for making same

Country Status (4)

Country Link
CN (1) CN1212468A (en)
AU (1) AU9564898A (en)
TW (1) TW463331B (en)
WO (1) WO1999017360A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6348379B1 (en) * 2000-02-11 2002-02-19 Advanced Micro Devices, Inc. Method of forming self-aligned contacts using consumable spacers
DE10110150A1 (en) * 2001-03-02 2002-09-19 Infineon Technologies Ag Method for producing metallic bit lines for memory cell arrays, method for producing memory cell arrays and memory cell array
DE10256936B3 (en) 2002-12-05 2004-09-09 Infineon Technologies Ag Process for the production of self-aligned contacts on buried bit lines
CN1301547C (en) * 2003-12-10 2007-02-21 南亚科技股份有限公司 Method for forming contact window of bit line
KR100898440B1 (en) * 2007-06-27 2009-05-21 주식회사 동부하이텍 Method for fabricating flash memory device
CN101673714A (en) * 2009-08-21 2010-03-17 上海宏力半导体制造有限公司 Process for manufacturing flash memory unit
CN111739839B (en) * 2020-06-23 2021-07-02 武汉新芯集成电路制造有限公司 Method for manufacturing self-aligned contact hole and method for manufacturing semiconductor device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5270240A (en) * 1991-07-10 1993-12-14 Micron Semiconductor, Inc. Four poly EPROM process and structure comprising a conductive source line structure and self-aligned polycrystalline silicon digit lines
FR2711275B1 (en) * 1993-10-15 1996-10-31 Intel Corp Automatically aligned contact process in semiconductor and product device manufacturing.
US5661054A (en) * 1995-05-19 1997-08-26 Micron Technology, Inc. Method of forming a non-volatile memory array
US5631179A (en) * 1995-08-03 1997-05-20 Taiwan Semiconductor Manufacturing Company Method of manufacturing metallic source line, self-aligned contact for flash memory devices

Also Published As

Publication number Publication date
WO1999017360A1 (en) 1999-04-08
CN1212468A (en) 1999-03-31
AU9564898A (en) 1999-04-23

Similar Documents

Publication Publication Date Title
CN100499171C (en) Semiconductor memory device and method of manufacturing the same
EP1247299B1 (en) Encapsulated tungsten gate mos transistor and memory cell and method of making same
US7768061B2 (en) Self aligned 1 bit local SONOS memory cell
US20030143792A1 (en) Twin MONOS cell fabrication method and array organization
US20010026968A1 (en) Novel method for forming split-gate flash cell for salicide and self-align contact
JPH05259475A (en) Manufacture of electrically programmable read only memory including memory cell array on silicon substrate
JP2004281662A (en) Semiconductor memory device and its manufacturing method
JP2671217B2 (en) NONVOLATILE MEMORY CELL AND MANUFACTURING METHOD THEREOF
JPH05235366A (en) Self-aligned stacked gate eprom cell using tantalum oxide control gate insulation film
US6211012B1 (en) Method of fabricating an ETOX flash memory
TWI324812B (en) Method for forming self-aligned contacts and local interconnects simultaneously
JP2004146829A (en) Method for manufacturing of nonvolatile memory device
JPH07307339A (en) Even process
US6593187B1 (en) Method to fabricate a square poly spacer in flash
JP2005524994A (en) High coupling ratio floating gate memory cell
JP2000307086A (en) Semiconductor device and manufacture thereof
US6913972B2 (en) Method of fabrication on a gate pattern of a non-volatile memory device
US7952133B2 (en) Flash memory and method for manufacturing the same
US6740557B1 (en) Spacer like floating gate formation
US6214662B1 (en) Forming self-align source line for memory array
KR100369236B1 (en) Semiconductor device having desired gate profile and Method of making thereof
KR100396473B1 (en) Semiconductor memory device having floating gate and Method of manufacturing the same
TW463331B (en) Self-aligned drain contact PMOS flash memory and process for making same
US20040152264A1 (en) Methods of manufacturing and-type flash memory devices
US20040169246A1 (en) Structure and fabricating method to make a cell with multi-self-alignment in split gate flash

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MK4A Expiration of patent term of an invention patent