EP0931137B1 - Verfahren zur herstellung eines teilchenförmigen wasch- oder reinigungsmittels - Google Patents

Verfahren zur herstellung eines teilchenförmigen wasch- oder reinigungsmittels Download PDF

Info

Publication number
EP0931137B1
EP0931137B1 EP97942019A EP97942019A EP0931137B1 EP 0931137 B1 EP0931137 B1 EP 0931137B1 EP 97942019 A EP97942019 A EP 97942019A EP 97942019 A EP97942019 A EP 97942019A EP 0931137 B1 EP0931137 B1 EP 0931137B1
Authority
EP
European Patent Office
Prior art keywords
weight
premix
compounds
branched
raw materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97942019A
Other languages
English (en)
French (fr)
Other versions
EP0931137A1 (de
Inventor
Wilfried Rähse
Norbert Kühne
Dieter Jung
Peter Sandkühler
Bernd Larson
Kathleen Paatz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Publication of EP0931137A1 publication Critical patent/EP0931137A1/de
Application granted granted Critical
Publication of EP0931137B1 publication Critical patent/EP0931137B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/06Powder; Flakes; Free-flowing mixtures; Sheets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D11/00Special methods for preparing compositions containing mixtures of detergents ; Methods for using cleaning compositions
    • C11D11/0082Special methods for preparing compositions containing mixtures of detergents ; Methods for using cleaning compositions one or more of the detergent ingredients being in a liquefied state, e.g. slurry, paste or melt, and the process resulting in solid detergent particles such as granules, powders or beads
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/06Powder; Flakes; Free-flowing mixtures; Sheets
    • C11D17/065High-density particulate detergent compositions

Definitions

  • the invention relates to a process for the production of rapidly soluble, compacted particulate Detergents or cleaning agents or compounds or treated Raw materials for this as well as detergents or cleaning agents or Compounds or treated raw materials for this, which from the perspective of the consumer have a significantly better quality.
  • Gelling of this type can already be carried out at a surfactant content of 10% by weight, based on the entire agent, that is to say in the case of detergents or cleaning agents which are customary Amounts of surfactant occur.
  • a surfactant content of 10% by weight, based on the entire agent, that is to say in the case of detergents or cleaning agents which are customary Amounts of surfactant occur.
  • the tendency to form gels decreases also with the increasingly compact grain structure of the particles.
  • EP-B-0 486 592 describes granular or extruded washing or Detergent with bulk weights above 600 g / l, the anionic and / or nonionic surfactants in amounts of at least 15% by weight and up to about 35% by weight contain. They are manufactured using a process in which a solid, free-flowing Premix, which is a plasticizer and / or lubricant, preferably aqueous Contains surfactant pastes and / or aqueous polymer solutions at high pressures between 25 and 200 bar extruded and the extrudate after exiting the hole shape cut to the predetermined granule dimension by means of a cutting device and is rounded.
  • a solid, free-flowing Premix which is a plasticizer and / or lubricant, preferably aqueous Contains surfactant pastes and / or aqueous polymer solutions at high pressures between 25 and 200 bar extruded and the extrudate after exiting the hole shape cut to the predetermined gran
  • the premix consists at least partly of solid Ingredients that may contain liquid ingredients such as at room temperature liquid nonionic surfactants are added.
  • liquid nonionic surfactants are aqueous preparations used.
  • lubricants are aqueous preparations used.
  • the patent does not disclose any procedural conditions to be observed in the event of a anhydrous extrusion.
  • the extrudates produced can either be used as washing or Detergent used or later with other granules or Powder components are processed into finished washing or cleaning agents.
  • German patent application DE 195 19 139.0 proposes to solve the conflict between high degree of compaction of the individual grain, especially the extrudate on the one hand and the required rapid and in particular non-gelatinous redissolubility of the finished washing or cleaning agents in aqueous liquors before, particulate detergents or cleaning agents with a Bulk density above 600 g / l, which contains anionic and / or nonionic surfactants Contain amounts of at least 15 wt .-%, such that at least two various granular components are used, of which at least one extruded and at least one is not extruded, the surfactant content being extruded Component including soaps a maximum of 15 wt .-%, based on the respective extruded component.
  • surfactant components of the finished washing or Detergents are created by one or more non-extruded components introduced into the agent.
  • This method does solve the problem of gelling highly compressed and high-tenside detergent or cleaning agent at Use in an aqueous liquor, but it also includes a number of new ones Problems. Separation processes and corresponding fluctuations can occur the reproducibility of the desired washing or cleaning result.
  • the extruded portion of the media is not only of high density dried extrudates are also comparatively hard. Among the Conditions of transportation, storage and use can be the comparatively softer Granulate portion thus be exposed to mechanical forces that are proportional to its Reduction and thus lead to the formation of dust and fine particles through abrasion.
  • a method for the production of heavy granules with the help of a aqueous granulation aid is the two-stage granulation, wherein initially in plastic primary agglomerates are still produced in a conventional mixer / granulator, which are then used in devices such as a rounder, rotocoater, marumerizer etc. liquid binder and / or dust subsequently treated and usually then be dried.
  • the granulation and simultaneous rounding can for example in fluidized bed granulators that contain a rotating disk, be performed.
  • Solid starting materials are initially in the Fluidized bed fluidized and then with liquid binder that is tangential aligned nozzles are fed into the fluidized bed, agglomerated ("Size Enlargement by Agglomeration ", W.
  • Preferred liquid nonionic surfactants are ethoxylated linear or methyl-branched alcohols in the 2-position which have 8 to 20 carbon atoms in the carbon chain and an average of 1 to 15 moles of ethylene oxide per mole of alcohol.
  • water is also described as a structure breaker which is suitable in principle, but its use is less preferred since the agents can become poor in water during storage due to the internal drying of the agents and therefore no longer have the desired effect of the improved dissolution rate by using a structure breaker or would no longer be fully effective.
  • the mixtures of nonionic surfactants and structure breakers which are present either as a solution or as a dispersion, can be used in all known granulation processes in which separately produced compounds and / or raw materials are used.
  • Use in an extrusion process according to international patent application WO-A-91/02047 (or European patent EP-B-0 486 592) is also possible and even preferred.
  • the use of aqueous solutions, pastes or aqueous dispersions is also suggested, the water, as stated above, not being used as a structure breaker and usually being dried off after the extrusion.
  • European patent application EP-A-0 337 330 describes a method for increasing the bulk density of a spray-dried detergent by granulation in a mixer with the addition of nonionic compounds.
  • nonionic compounds include ethoxylated and / or propoxylated nonionic surfactants such as primary or secondary alcohols with 8 to 20 carbon atoms and 2 to 20 moles of alkylene oxide per mole of alcohol, in particular Non-ionic surfactants with 2 to 6 EO and HLB values of 11 or less added in the mixer become.
  • Ethylene glycols and propylene glycols can also be used as nonionic compounds be used.
  • German patent application DE-A-43 19 666 discloses a process for the production washable or cleaning active extrudates of high density, being a homogeneous and solid Premix containing certain alkoxinated alcohols, pressed under pressure and then on Granule dimension is cut. Extrusion without the addition of Waser will not In the example section, the mixture contains, for example, almost 5% free water.
  • European patent application EP-A-0 711 828 describes a method for the production described by tablets, wherein a coated particulate product is pressed.
  • the coating substance is a water-soluble binding or disintegrating agent Melting temperatures between 35 and 90 ° C.
  • Primary C 12 -C 15 alcohols with 3 to 7 EO are specified as nonionic surfactants.
  • Surfactant mixtures which contain up to 20% by weight of water are particularly advantageous in the context of the stated process, since this increases the viscosity of the mixture and makes the process more controllable.
  • the surfactant mixture can also contain polyethylene glycols.
  • builder agglomerates The production of builder agglomerates is described in US Pat. No. 5,108,646, 50 to 75 parts by weight of aluminosilicates or crystalline phyllosilicates being agglomerated with 20 to 35 parts by weight of a binder.
  • Suitable binders are, in particular, highly viscous anionic surfactant pastes, which can contain between 0 and 90% by weight of water.
  • polymers such as polyethylene glycols with molecular weights between 1000 and 20,000 are also suitable, as are mixtures of these and customary nonionic surfactants such as C 9 -C 16 alcohols with 4 to 8 EO, as long as the melting range is not below 35 ° C or below 45 ° C begins.
  • the agglomeration takes place in a so-called intensive mixer with a very specific, relatively high energy input. With energy inputs above the specified values, over-agglomeration up to a dough-like mass occurs, with lower energy inputs only finely divided powders or very light agglomerates with an undesirably broad grain spectrum are obtained.
  • the object of the invention was particulate washing or cleaning agents or to produce compounds or treated raw materials for this, which even with a reduced surface, especially with a spherical shape (pearl shape) an improved one Have disintegration in the dissolution in the aqueous liquor. Besides, should the process should be economical and avoid expensive drying steps can.
  • the content of liquid i.e. not in the form of water of hydration and / or constitutional water
  • the water present is less than 2% by weight, preferably less than 1% by weight and in particular even less than 0.5% by weight, based in each case on the premix. Accordingly, water can essentially only in chemically and / or physically bound form or as Part of the solid at temperatures below 45 ° C at a pressure of 1 bar existing raw materials or compounds, but not as a liquid, solution or dispersion be introduced into the process for producing the premix.
  • the premix has a total water content of not more than 15% by weight, this water So not in free liquid form, but chemically and / or physically bound is present, and it is particularly preferred that the content of not zeolite and / or Silicate-bound water in the solid premix not more than 10% by weight, preferably less than 7% by weight and with particular preference a maximum of 2 to 5% by weight is.
  • Particulate detergents or cleaning agents are used in the context of the invention preferably understood those that have no dust-like portions and in particular none Have particle sizes below 200 microns. Such particle size distributions are in particular preferred, which at least 90 wt .-% particles with a Have a diameter of at least 400 ⁇ m.
  • the laundry or cleaning agents and compounds produced consist of the invention or treated raw materials to at least 70 wt .-%, advantageously at least 80% by weight and, with particular preference, up to 100% by weight spherical (pear-shaped) particles with a particle size distribution which at least Has 80 wt .-% particles between 0.8 and 2.0 mm.
  • Detergents or cleaning agents are understood to mean such compositions which are used for Washing or cleaning can be used without usually other ingredients must be added.
  • a compound consists of at least 2 usually used in washing or cleaning agents components; Compounds are usually only mixed with others Ingredients, preferably used together with other compounds.
  • On treated raw material is a relatively finely divided raw material in the context of this invention, the was converted into a coarser particle by the process according to the invention. Strictly speaking, a treated raw material in the context of the invention is a compound if the treatment agent is usually in detergents or cleaning agents ingredient used.
  • the ingredients used in the process according to the invention can - with the exception the possibly existing at temperatures below 45 ° C and a pressure of 1 bar liquid nonionic surfactants - separately manufactured Compounds, but also raw materials, which are powdery or particulate (fine particles to rough), but in any case at room temperature and a pressure of 1 bar in solid form available. Particulate particles can be produced, for example, by spray drying Beads or (fluidized bed) granules can be used.
  • the Composition of the compounds per se is not essential for the invention with the Except for the water content, which must be such that the premix is like defined above is essentially anhydrous and preferably not more than 10% by weight contains water of hydration and / or constitutional water.
  • over-dried compounds are used in the premix.
  • Such compounds can be obtained, for example, by spray drying, the temperature control being regulated so that the tower outlet temperatures above 100 ° C, for example at 110 ° C or above.
  • solid compounds are used in the premix, which as a carrier of Liquids, for example liquid nonionic surfactants or silicone oil and / or Paraffins. These compounds can contain water in the above Frame included, the compounds are free-flowing and even at higher Temperatures of at least 45 ° C remain free-flowing or at least conveyable.
  • the premix compound with a maximum of 10 wt .-% and with particular preference with a maximum of 7% by weight of water, based on the Premix can be used.
  • Free water water that is not in any Form is bound to a solid and is therefore "in liquid form" preferably not at all in the premix, since very small amounts are already present, for example by 0.2 or 0.5% by weight, based on the premix, are sufficient to to dissolve the water-soluble binder. This would have the consequence that the Melting point or softening point lowered and the end product both Free flowing as well as bulk weight would lose.
  • the bound water content in the premix is not more than 10% by weight and / or the content of water not bound to zeolite and / or silicates is less than 7% by weight and in particular a maximum of 2 to 5% by weight. It is Particularly advantageous if the premix contains no water that does not adhere to the Builder substances is bound. However, this is difficult to achieve technically, because in usually at least always traces of water due to the raw materials and compounds be introduced.
  • the content of the solid compounds used in the premix at at temperatures below 45 ° C non-aqueous liquids is preferably also or additionally up to 10% by weight, advantageously up to 6% by weight, again based on the premix.
  • solid compounds are used in the premix, which is usually liquid at temperatures below 45 ° C and a pressure of 1 bar contain non-ionic surfactants, which according to all known production methods - for example by spray drying, granulating or spraying carrier beads - were made separately.
  • premixes can be made which for example up to about 10 wt .-%, preferably below, in particular up to a maximum of 8% by weight and, for example, between 1 and 5% by weight of nonionic Allow surfactants, based on the finished product.
  • At least 80% by weight, in particular at least 85% by weight and with particular preference at least 90 % By weight of the compounds and individual raw materials used in the premix much higher softening point or melting point than the temperatures can be achieved under the process conditions.
  • process temperatures do not exceed 150 ° C, preferably not above 120 ° C.
  • at least 80% by weight of the compounds and individual raw materials used a softening point or Have a melting point above 150 ° C.
  • the softening point lies or the melting point even far above this temperature.
  • ingredients which decompose under the influence of temperature
  • for example Peroxy bleaching agents such as perborate or percarbonate
  • the decomposition temperature of these is Ingredients at a pressure of 1 bar and especially at higher pressures, which in the extrusion processes according to the invention and preferred are also significant above 45 ° C.
  • the premix can add up to 10% by weight Temperatures below 45 ° C and a pressure of 1 bar liquid nonionic surfactants, especially the alkoxylated ones commonly used in washing or cleaning agents Alcohols, such as fatty alcohols or oxo alcohols with a C chain length between 8 and 20 and in particular an average of 3 to 7 ethylene oxide units per mole of alcohol (see below for a more detailed description).
  • liquid nonionic surfactants can be done in amounts that still ensure that the premix is pourable Form is present. If such liquid nonionic surfactants are introduced into the premix, it is preferred that liquid nonionic surfactants and the disintegrating binder be introduced separately into the process.
  • the liquid nonionic surfactants are used in a continuous Production process applied in particular to the powder stream by means of nozzles and sucked up by the latter.
  • the premix also contains at least one raw material or at least one compound, which or which serves as a binder is solid at room temperature, during the compression under the process conditions but liquid in the form of a Melt is present.
  • the binder itself can be melted onto the premix once be sprayed on or added dropwise to the premix, but on the other hand it has also proven to be advantageous, the binder in solid form as a powder in the premix contribute.
  • the melting point or softening point is at a pressure of 1 bar at at least 45 ° C and (especially for economic reasons) preferred below 200 ° C, in particular up to a maximum of 150 ° C.
  • the temperature in the Melting vessel also more than 45 ° C to a maximum of about 200 ° C, the temperature in the melting vessel, the melting temperature or the temperature of the Softening point of the binder or binder mixture is quite significant can exceed.
  • the type of suitable binder and the temperature in the compression step are interdependent. Since it has proven to be advantageous if the binder in the compression step as homogeneous as possible in the one to be compressed Temperature is well distributed in the compression process step are present in which the binder at least softens, but preferably completely and is not only partially in the molten form. So is a binder with high melting point or high softening point selected, so must Process step of the compression set a temperature that the Ensures melting of the binder.
  • temperature sensitive raw materials should be able to be processed. Here the upper temperature limit is determined by the Given the decomposition temperature of the sensitive raw material, it being preferred to work significantly below the decomposition temperature of this raw material.
  • the lower limit for the melting point or softening point is therefore of such a kind of great importance, as with melting points or softening points below 45 ° C
  • melting points or softening points below 45 ° C
  • an end product is obtained that is already at room temperature and light increased temperatures by 30 ° C, i.e. in summer temperatures and under storage or transport conditions tend to stick. It has proven to be particularly advantageous if a few degrees, e.g. 2 to 20 ° C, above the melting point or working above the softening point
  • the applicant is of the opinion that due to the homogeneous distribution of the binder within the premix Process conditions of compression of the solid compounds and, if necessary existing individual raw materials in this way enclosed by the binder and then are glued together that the finished end products almost exactly from these many small individual particles that are built up by the binder that the Takes on the role of a preferably thin partition between these individual particles, be held together.
  • the idealized form one can Honeycomb-like structure is assumed, these honeycombs with solids (Compounds or individual raw materials) are filled.
  • the binder or binders must therefore be of the type that the adhesive properties even at temperatures that are significantly above the melting point or the softening point lie, still remain. On the other hand, it is also essential for that Choice of the type and amount of the binder (s) used, that the binding Properties are not lost after re-cooling within the end product, the cohesion of the end product is thus assured, but the end product not glued even under normal storage and transport conditions.
  • a binder is used that at Temperatures up to a maximum of 130 ° C, preferably up to a maximum of 100 ° C and in particular up to 90 ° C is already completely in the form of a melt.
  • the binder must therefore depend on the process and process conditions are selected or the process conditions, in particular the process temperature - if a certain binder is required will - be adapted to the binder.
  • Binders that can be used alone or in a mixture with other binders are polyethylene glycols, 1,2-polypropylene glycols and modified polyethylene glycols and polypropylene glycols.
  • the modified polyalkylene glycols include in particular the sulfates and / or the disulfates of polyethylene glycols or polypropylene glycols with a relative molecular weight between 600 and 12000 and in particular between 1000 and 4000.
  • Another group consists of mono- and / or disuccinates of the polyalkylene glycols, which in turn have relative molecular weights have between 600 and 6000, preferably between 1000 and 4000.
  • polyethylene glycols include those polymers which, in addition to ethylene glycol, also use C 3 -C 5 glycols and glycerol and mixtures of these as starting molecules. Also included are ethoxylated derivatives such as trimethylol propane with 5 to 30 EO.
  • the preferably used polyethylene glycols can be linear or branched Have structure, with linear polyethylene glycols being preferred in particular.
  • the particularly preferred polyethylene glycols include those with relative molecular weights between 2000 and 12000, advantageously around 4000, with polyethylene glycols with relative molecular weights below 3500 and above 5000 especially in Combination with polyethylene glycols with a molecular weight around 4000 can be used and such combinations advantageously to more than 50 % By weight, based on the total amount of polyethylene glycols, with polyethylene glycols have a relative molecular mass between 3500 and 5000.
  • polyethylene glycols are also used, which in themselves at room temperature and a pressure of 1 bar in the liquid state; here is mostly from Polyethylene glycol with a relative molecular weight of 200, 400 and 600.
  • these per se liquid polyethylene glycols should only be mixed with at least one further binder can be used, this mixture again must meet the requirements of the invention, i.e. a melting point or Must have a softening point of at least above 45 ° C.
  • the modified polyethylene glycols also include polyethylene glycols which are end group-capped on one or more sides, the end groups preferably being C 1 -C 12 -alkyl chains which can be linear or branched.
  • the end groups have the alkyl chains between C 1 and C 6 , especially between C 1 and C 4 , isopropyl and isobutyl or tert-butyl also being possible alternatives.
  • Low molecular weight polyvinylpyrrolidones and derivatives are also suitable as binders of these with relative molecular weights up to a maximum of 30,000.
  • Preferred here relative molecular mass ranges between 3000 and 30,000, for example around 10,000.
  • Polyvinylpyrrolidones are preferably not used as the sole binder, but in Combination with others, especially in combination with polyethylene glycols, used.
  • binders have been found to be raw materials which, as raw materials, have washing or cleaning properties per se, for example nonionic surfactants with melting points of at least 45 ° C. or mixtures of nonionic surfactants and other binders.
  • the preferred nonionic surfactants include alkoxylated fatty or oxo alcohols, in particular C 12 -C 18 alcohols. Degrees of alkoxylation, in particular degrees of ethoxylation of on average 18 to 100 AO, in particular EO per mole of alcohol and mixtures thereof, have proven to be particularly advantageous.
  • fatty alcohols with an average of 18 to 35 EO, in particular with an average of 20 to 25 EO show advantageous binder properties in the sense of the present invention.
  • Binder mixtures may also contain ethoxylated alcohols with an average of fewer EO units per mole of alcohol, for example tallow fatty alcohol with 14 EO. However, it is preferred to use these relatively low ethoxylated alcohols only in a mixture with higher ethoxylated alcohols.
  • the binder content of these relatively low ethoxylated alcohols is advantageously less than 50% by weight, in particular less than 40% by weight, based on the total amount of binder used.
  • nonionic surfactants such as C 12 -C 18 alcohols with an average of 3 to 7 EO, which are usually used in washing or cleaning agents and which are liquid per se at room temperature, are preferably only present in the binder mixtures in such an amount that less than 10 % By weight, in particular less than 8% by weight and advantageously less than 2% by weight, of these nonionic surfactants, in each case based on the end product of the process. As already described above, however, it is less preferred to use nonionic surfactants which are liquid at room temperature in the binder mixtures.
  • nonionic surfactants are therefore not a constituent of the binder mixture, since they not only lower the softening point of the mixture, but can also contribute to the stickiness of the end product and, furthermore, also due to their tendency to cause gelling upon contact with water The requirement for rapid dissolution of the binder / partition in the end product often does not suffice to the desired extent.
  • conventional anionic surfactants or their precursors, the anionic surfactant acids, which are deposited in washing or cleaning agents, are contained in the binder mixture.
  • nonionic surfactants which are suitable as binders are the fatty acid methyl ester ethoxylates which do not tend to gel, in particular those with an average of 10 to 25 EO (for a more detailed description of this group of substances, see below).
  • Particularly preferred representatives of this group of substances are predominantly methyl esters based on C 16 -C 18 fatty acids, for example hardened beef tallow methyl esters with an average of 12 EO or with an average of 20 EO.
  • ethoxylated fatty acids with 2 to 100 EO, their "fatty acid” residues can be linear or branched within the scope of this invention.
  • preferred ethoxylates which have a narrowed homolog distribution (NRE) and / or have a melting point above 50 ° C.
  • NRE narrowed homolog distribution
  • Such fatty acid ethoxylates can used as the sole binder or in combination with other binders are less preferred, while the non-ethoxylated sodium and potassium soaps and are only used in combination with other binders.
  • hydroxy mixed ethers which are, according to the teaching of European, also are Patent application EP-A-0 754 667 (BASF) by ring opening of unsaturated epoxides
  • Fatty acid esters can be obtained as binders, especially in combination with Polyethylene glycols, the aforementioned fatty acid methyl ester ethoxylates or Fatty acid ethoxylates, suitable.
  • anhydrous swollen polymers have also been found, in particular Starch disphosphate / glycerin, polyvinylpyrrolidone / glycerin and modified Cellulose / glycerin, for example hydroxypropyl cellulose / glycerin, as excellent proven binders. 5 to 20% by weight “solutions” are the Polymers in glycerin, especially about 10% by weight “solutions”, especially advantageous.
  • a mixture is used as the binder which contains C 12 -C 18 fatty alcohol based on coconut or tallow with an average of 20 EO and polyethylene glycol with a relative molecular weight of 400 to 4000.
  • a mixture is used as the binder which is predominantly methyl ester-based C 16 -C 18 fatty acids with an average of 10 to 25 EO, in particular hardened beef tallow methyl ester with an average of 12 EO or an average of 20 EO, and a C 12 - Contains C 18 fatty alcohol based on coconut or tallow with an average of 20 EO and / or polyethylene glycol with a relative molecular weight of 400 to 4000.
  • binders which are based either solely on polyethylene glycols with a relative molecular weight of around 4000 or on a mixture of C 12 -C 18 fatty alcohol based on coconut or tallow with an average of 20 EO and one of the fatty acid methyl ester ethoxylates described above or based on a mixture of C 12 -C 18 fatty alcohol based on coconut or tallow with an average of 20 EO, one of the fatty acid methyl ester ethoxylates described above and a polyethylene glycol, in particular with a molecular weight of around 4000.
  • binder mixtures especially in Mixture with polyethylene glycols may be included; however, they cannot act alone Binders are used because they fulfill a binding / adhesive function, but have no disintegrating effect.
  • alkyl glycosides of the general formula RO (G) x can also be used as further binders, alone or in combination with other binders, in which R is a primary straight-chain or methyl-branched, especially in the 2-position methyl-branched aliphatic radical having 8 to 22, preferably 12 to 18 C atoms means and G is the symbol which stands for a glycose unit with 5 or 6 C atoms, preferably for glucose.
  • the degree of oligomerization x which indicates the distribution of monoglycosides and oligoglycosides, is any number between 1 and 10; x is preferably 1.2 to 1.4. Alkyl glycosides which have a degree of softening above 80 ° C.
  • alkyl glycosides can also be used as the sole binder, it is preferred to use mixtures of alkyl glycosides and other binders.
  • here are mixtures of polyethylene glycols and alkyl glycosides, advantageously in weight ratios from 25: 1 to 1: 5, with particular preference from 10: 1 to 2: 1.
  • binders in particular in combination with polyethylene glycols and / or alkyl glycosides, are polyhydroxy fatty acid amides of the formula (I) in which R 2 CO is an aliphatic acyl radical having 6 to 22 carbon atoms, R 3 is hydrogen, an alkyl or hydroxyalkyl radical having 1 up to 4 carbon atoms and [Z] represents a linear or branched polyhydroxyalkyl radical having 3 to 10 carbon atoms and 3 to 10 hydroxyl groups.
  • R 2 CO is an aliphatic acyl radical having 6 to 22 carbon atoms
  • R 3 is hydrogen, an alkyl or hydroxyalkyl radical having 1 up to 4 carbon atoms
  • [Z] represents a linear or branched polyhydroxyalkyl radical having 3 to 10 carbon atoms and 3 to 10 hydroxyl groups.
  • the polyhydroxy fatty acid amides are preferably derived from reducing sugars with 5 or 6 carbon atoms, especially from glucose.
  • the group of polyhydroxy fatty acid amides also includes compounds of the formula (II) in which R 3 is a linear or branched alkyl or alkenyl radical having 7 to 12 carbon atoms, R 4 is a linear, branched or cyclic alkyl radical or an aryl radical is 2 to 8 carbon atoms and R 5 is a linear, branched or cyclic alkyl radical or Aryl radical or an oxy-alkyl radical having 1 to 8 carbon atoms, C 1 -C 4 -alkyl or phenyl radicals being preferred, and [Z] for a linear polyhydroxyalkyl radical whose alkyl chain is substituted by at least two hydroxyl groups, or alkoxylated, preferably ethoxylated or propoxylated derivatives of this radical.
  • R 3 is a linear or branched alkyl or alkenyl radical having 7 to 12 carbon atoms
  • R 4 is a linear, branched or cyclic alkyl radical or an
  • [Z] is also preferably obtained here by reductive amination of a sugar such as glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • a sugar such as glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • the N-alkoxy- or N-arytoxy-substituted compounds can then, for example according to the teaching of international patent application WO-A-95/07331, be converted into the desired polyhydroxy fatty acid amides by reaction with fatty acid methyl esters in the presence of an alkoxide as catalyst.
  • Particularly preferred glucamides already melt at 95 to 105 ° C. But here too - as with the alkyl glycosides - working temperatures which are above the softening temperature but below the melting temperature are normally sufficient in the process according to the invention.
  • the content of binder or binders in the premix is preferably at least 2% by weight, but less than 15% by weight, in particular less than 10% by weight particular preference of 3 to 6 wt .-%, each based on the premix.
  • the water-swollen polymers are used in amounts below 10 % By weight, advantageously in amounts of 4 to 8% by weight, preferably 5 to 6 % By weight.
  • the Solids for the preparation of the solid and free-flowing premix initially at room temperature to slightly elevated temperatures, preferably below the Melting temperature or the softening point of the binder and especially at temperatures up to 35 ° C in a conventional mixing and / or Granulating device mixed together.
  • These solids also include those which according to the European patent EP-B-0 486 592 as plasticizing and / or Lubricants can serve.
  • anionic surfactants such as Alkylbenzenesulfonates and / or (fatty) alkylsulfates, but also polymers such as polymers Polycarboxylates. A more detailed description of the possible anionic surfactants and polymers occurs later in the list of possible ingredients.
  • the function of a lubricant can also from the binder or binders or the Binder mixtures are perceived.
  • the binders are preferably added as the last component.
  • Your offer can, as already explained above, as a solid, i.e. at a processing temperature, which is below its melting point or softening point, or as Melt.
  • the admixture among such is advantageous Conditions carried out that a uniform, homogeneous distribution of the Binder is achieved in the solid mixture. With very finely divided binders this at temperatures below 40 ° C, for example at temperatures of the binder between 15 and 30 ° C.
  • the binder advantageously has but temperatures at which it is already in the form of a melt, i.e. above the Softening point, in particular in the form of a complete melt. Preferred temperatures of the melt are below 60 to 150 ° C.
  • Preference for the temperature range from 80 to 120 ° C.
  • the at room temperature to slightly elevated temperature, but below the Softening point or melting point of the binder takes place, the solidifies Melt almost instantaneously, and according to the invention the premix is in a solid, pourable form.
  • the mixing process is advantageously as long in any case continued until the melt has solidified and the premix in solid, free-flowing form is present.
  • the actual granulation, compacting, tableting, pelleting or extrusion process takes place according to the invention at processing temperatures that at least in the compression step at least the temperature of the softening point, if not even correspond to the temperature of the melting point of the binder.
  • the process temperature is significant above the melting point or above the temperature at which the binder as Melt is present.
  • the process temperature in the Compression step not more than 20 ° C above the melting temperature or the upper one Limit of the melting range of the binder is.
  • Such a temperature control has the further advantage that thermally sensitive raw materials, for example peroxy bleaching agents such as perborate and / or percarbonate, but also enzymes, increasingly without serious Active substance losses can be processed.
  • thermally sensitive raw materials for example peroxy bleaching agents such as perborate and / or percarbonate, but also enzymes, increasingly without serious Active substance losses can be processed.
  • the possibility of accurate Temperature control of the binder, especially in the crucial step of compaction, that is between the mixing / homogenization of the premix and the shaping, allows an energetically very cheap and for the temperature sensitive components of the premix extremely gentle procedure because the premix is only exposed to the higher temperatures for a short time.
  • the duration is preferably the temperature effect between 10 seconds and a maximum of 5 minutes, in particular it is a maximum of 3 minutes.
  • the invention Process carried out by means of an extrusion, such as in the European patent EP-B-0 486 592 or international patent applications WO-A-93/02176 and WO-A-94/09111.
  • This creates a solid premix extruded under pressure and the strand after exiting from the hole shape by means of a cutting device tailored to the predeterminable granule dimension.
  • the homogeneous and solid premix contains a plasticizer and / or lubricant, which causes the premix under the pressure or under the entry of specific work plastically softened and becomes extrudable.
  • Preferred plasticizers and / or lubricants are Surfactants and / or polymers in the context of the present invention with Except for the non-ionic surfactants mentioned above, however, not in liquid and in particular not in an aqueous, but in solid form introduced into the premix become.
  • the premix is preferably continuous a planetary roller extruder or a 2-shaft extruder or 2-screw extruder fed with co-rotating or counter-rotating screw guide, its housing and its extruder pelletizing head is heated to the predetermined extrusion temperature could be.
  • the premix is made under the shear of the extruder screws under pressure, which is preferably at least 25 bar, at extremely high throughputs depending on the apparatus used, but can also be below it, compacted, plasticized, extruded in the form of fine strands through the perforated die plate in the extruder head and finally preferably the extrudate by means of a rotating knife about spherical to cylindrical granules.
  • the hole diameter the perforated nozzle plate and the strand cut length are selected Granule dimension matched.
  • the production of Granules of an essentially uniformly predeterminable particle size wherein in particular, the absolute particle sizes adapted to the intended application could be. In general, particle diameters up to at most 0.8 cm are preferred.
  • chipped primary granules lie in the Range from about 1: 1 to about 3: 1. It is also preferred to use the still plastic primary granulate to supply a further shaping processing step; be there edges present on the crude extrudate are rounded, so that ultimately spherical to approximately spherical extrudate grains can be obtained. If desired you can in this stage small amounts of dry powder, for example zeolite powder such as zeolite NaA powder can also be used. This shape can be found on the market Rondier devices take place.
  • extrusions / pressings can also be carried out in low-pressure extruders, in the Kahl press or be carried out in the extruder.
  • the invention now provides that the Temperature control in the transition area of the screw, the pre-distributor and the Nozzle plate is designed such that the melting temperature of the binder or upper limit of the melting range of the binder at least reached, preferably but is exceeded.
  • the duration of the temperature influence is Compression range of the extrusion preferably less than 2 minutes and especially in a range between 30 seconds and 1 minute.
  • the one used Binders have a melting temperature or melting range up to 75 ° C .; Process temperatures which are a maximum of 10 ° C and in particular a maximum of 5 ° C above the melting temperature or the upper temperature limit of the melting range of the Binder is then found to be particularly favorable.
  • the binder exercises in addition to those previously used mentioned modes of action also prevents and prevents the function of a lubricant or at least reduces the risk of sticking to apparatus walls and Compression tools. This applies not only to processing in the extruder, but also equally for processing, for example in continuously working Mixers / granulators or rollers.
  • the compressed material preferably points directly after it leaves the production apparatus Temperatures not above 80 ° C, with temperatures between 35 and 75 ° C are particularly preferred. It has been found that outlet temperatures - especially in the extrusion process - from 40 to 70 ° C, for example up to 60 ° C, especially are advantageous.
  • the resulting primary granules / compactates give another shape
  • To supply processing step, in particular to fillet, so that ultimately spherical to almost spherical (pearl-shaped) grains are obtained can.
  • the particle size distribution of the premix is much broader than that of the invention manufactured and end product according to the invention.
  • the premix can be essential Larger fractions of fine grain, even dust, possibly also contain coarse-grained fractions, but it is preferred that a premix with relatively broad particle size distribution and relatively high proportions of fine grain in one End product with a relatively narrow particle size distribution and relatively small proportions Fine grain is transferred.
  • the process of the invention is essentially anhydrous - i.e. with the exception water-free ("impurities") of the solid raw materials used - is carried out is not only the risk of gelling the surfactant raw materials already minimized to excluded in the manufacturing process, in addition also provided an ecologically valuable process because by not using one subsequent drying step not only saves energy but also emissions, as they occur predominantly with conventional types of drying can be avoided can.
  • Agents, compounds and raw materials treated in this way thus have a improved dissolving speed compared to such agents, compounds and treated raw materials, which have the same final composition, but were not produced by the method according to the invention, i.e. not by means of a melt were produced under anhydrous conditions.
  • another object of the invention is a particulate washing or Detergent, which was produced by the method according to the invention and its loosening behavior only depends on the loosening behavior of those used Individual raw materials and compounds. Without restricting yourself to this theory wanting, the applicant assumes that this special release behavior through a honeycomb-like structure of the particles is effected, these honeycombs with solid are filled.
  • Detergent provided that at least 80 wt .-% from the invention Compounds and / or treated raw materials. In particular consists of at least 80% by weight of a granular or extruded detergent a base granulate or base extrudate produced according to the invention.
  • the remaining Ingredients can be prepared and mixed by any known method his. However, it is preferred that these remaining constituents, which Compounds and / or treated raw materials can be, according to the invention Processes were made. In particular, this enables basic granules and remaining components with approximately the same pourability, bulk density, size and To produce particle size distribution.
  • the invention further relates to compounds produced according to the invention and treated raw materials, for example builder granules (extrudates), Bleach activator granules (extrudates) or enzyme granules (extrudates).
  • treated raw materials for example builder granules (extrudates), Bleach activator granules (extrudates) or enzyme granules (extrudates).
  • builder granules extrudates
  • Bleach activator granules extrudates
  • enzyme granules extrudates
  • Base granules, compounds and treated raw materials are particularly preferred provided which have spherical or pearl shape.
  • the end products of the process produced according to the invention a very high bulk density.
  • the bulk density is preferably above 700 g / l, in particular between 750 and 1000 g / l. Even if the extrudates contain other ingredients, which have lower bulk weights are processed, this drops Bulk weight of the final product not to the extent normally expected would. It is believed that approximately spherical agents, and particularly extrudates, which were produced by the method according to the invention, rather the Ideally, a sphere with a smooth, "smeared" surface resembles the one after Agents and extrudates produced by conventional and in particular aqueous processes. This achieves a better space filling, which leads to a higher bulk density leads, even if components are mixed in, which are neither spherical nor have such a high bulk density.
  • the particulate process end products obtained can either be used directly as Detergents or cleaning agents are used or previously using customary methods aftertreated and / or processed.
  • the usual post-treatments include for example powdering with finely divided ingredients of washing or Detergents, which generally further increases the bulk density.
  • a preferred aftertreatment is also the procedure according to German patent applications DE-A-195 24 287 and DE-A-195 47 457, wherein dusty or at least finely divided ingredients (the so-called fines) to the Particulate process end products produced according to the invention, which as the core serve, be glued and thus means arise which these so-called Have fine particles as the outer shell.
  • This is advantageously done by a melting agglomeration, the same binders as in the invention Procedures can be used.
  • For melting agglomeration of the fines on the Basic granules according to the invention and produced according to the invention are expressly stated to the disclosure in German patent applications DE-A-195 24 287 and DE-A-195 47 457
  • Processing is generally understood to mean that the invention produced particulate process end products serve as a compound to which other ingredients, possibly other compounds.
  • Salts such as silicates (crystalline or amorphous) including metasilicate, carbonate, bicarbonate, Sulfate, bisulfate, citrate or other polycarboxylates, but also organic acids such as Citric acid (see below) mixed in the preparation.
  • the admixture components in granular form and with a Particle size distribution are used, based on the particle size distribution Agents and compounds produced according to the invention is coordinated.
  • surfactants especially anionic surfactants, at least in amounts of 0.5% by weight in the agents according to the invention or according to the invention manufactured means should be included.
  • anionic surfactants include in particular Sulfonates and sulfates, but also soaps.
  • Preferred surfactants of the sulfonate type are C 9 -C 13 alkylbenzenesulfonates, olefin sulfonates, ie mixtures of alkene and hydroxyalkanesulfonates and disulfonates, such as are obtained, for example, from C 12 -C 18 monoolefins with an end or internal double bond by sulfonating with gaseous Sulfur trioxide and subsequent alkaline or acidic hydrolysis of the sulfonation products is considered.
  • alkanesulfonates obtained from C 12 -C 18 alkanes, for example by sulfochlorination or sulfoxidation with subsequent hydrolysis or neutralization.
  • esters of ⁇ -sulfo fatty acids e.g. the ⁇ -sulfonated Methyl esters of hydrogenated coconut, palm kernel or tallow fatty acids ⁇ -sulfonation of the methyl esters of fatty acids of plant and / or animal origin with 8 to 20 carbon atoms in the fatty acid molecule and subsequent neutralization water-soluble mono-salts are prepared. It is preferably are the ⁇ -sulfonated esters of hydrogenated coconut, palm, palm kernel or Tallow fatty acids, including sulfonation products of unsaturated fatty acids, for example oleic acid, in small amounts, preferably in amounts not above about 2 to 3% by weight may be present.
  • ⁇ -sulfofatty acid alkyl esters preferred, which is an alkyl chain with no more than 4 carbon atoms in have the ester group, for example methyl ester, ethyl ester, propyl ester and Butyl ester.
  • Suitable anionic surfactants are sulfonated fatty acid glycerol esters, which are mono-, di- and Triesters and their mixtures represent how they are made by Esterification by a monoglycerin with 1 to 3 moles of fatty acid or during the transesterification of triglycerides with 0.3 to 2 moles of glycerol can be obtained.
  • the alk (en) yl sulfates are the alkali and in particular the sodium salts of the sulfuric acid half esters of C 12 -C 18 fatty alcohols, for example from coconut fatty alcohol, tallow fatty alcohol, lauryl, myristyl, cetyl or stearyl alcohol or the C 10 -C 20 oxo alcohols and those half esters of secondary alcohols of this chain length are preferred. Also preferred are alk (en) yl sulfates of the chain length mentioned, which contain a synthetic, petrochemical-based straight-chain alkyl radical which have a degradation behavior analogous to that of the adequate compounds based on oleochemical raw materials.
  • C 12 -C 16 alkyl sulfates and C 12 -C 15 alkyl sulfates and C 14 -C 15 alkyl sulfates are particularly preferred from the point of view of washing technology.
  • 2,3-Alkyl sulfates which are produced, for example, according to US Pat. Nos. 3,234,258 or 5,075,041 and can be obtained as commercial products from the Shell Oil Company under the name DAN (R) , are also suitable anitone surfactants.
  • the sulfuric acid monoesters of the straight-chain or branched C 7 -C 21 alcohols ethoxylated with 1 to 6 mol of ethylene oxide such as 2-methyl branched C 9 -C 11 alcohols with an average of 3.5 mol of ethylene oxide (EO) or C 12 -C 18 -Fatty alcohols with 1 to 4 EO are suitable. Because of their high foaming behavior, they are used in detergents only in relatively small amounts, for example in amounts of 1 to 5% by weight.
  • Preferred anionic surfactants are also the salts of alkylsulfosuccinic acid, which are also referred to as sulfosuccinates or as sulfosuccinic acid esters and which are monoesters and / or diesters of sulfosuccinic acid with alcohols, preferably fatty alcohols and especially ethoxylated fatty alcohols.
  • Preferred sulfosuccinates contain C 8 to C 18 fatty alcohol residues or mixtures thereof.
  • Particularly preferred sulfosuccinates contain a fatty alcohol residue, which is derived from ethoxylated fatty alcohols, which in themselves are nonionic surfactants (description see below).
  • sulfosuccinates the fatty alcohol residues of which are derived from ethoxylated fatty alcohols with a narrow homolog distribution, are particularly preferred. It is also possible to use alk (en) ylsuccinic acid with preferably 8 to 18 carbon atoms in the alk (en) yl chain or salts thereof.
  • anionic surfactants are fatty acid derivatives of amino acids, for example of N-methyl taurine (tauride) and / or of N-methyl glycine (sarcoside).
  • the sarcosides or sarcosinates are particularly preferred, and above all Sarcosinates of higher and optionally mono- or polyunsaturated Fatty acids such as oleyl sarcosinate.
  • anionic surfactants include, in particular, soaps, preferably in quantities from 0.2 to 5% by weight.
  • Saturated fatty acid soaps are particularly suitable, such as the salts of lauric acid, myristic acid, palmitic acid, stearic acid, hydrogenated Erucic acid and behenic acid, and in particular from natural fatty acids, e.g. B. coconut, Palm kernel or tallow fatty acids, derived soap mixtures.
  • natural fatty acids e.g. B. coconut, Palm kernel or tallow fatty acids, derived soap mixtures.
  • these soaps or the known alkenyl succinic acid salts can also be used as a substitute for soaps be used.
  • the anionic surfactants can be in the form of their sodium, potassium or ammonium salts as well as soluble salts of organic bases, such as mono-, di- or triethanolamine, available.
  • the anionic surfactants are preferably in the form of their sodium or Potassium salts, especially in the form of the sodium salts.
  • the anionic surfactants are in the agents according to the invention or are in the Process according to the invention preferably in amounts of 1 to 30 wt .-% and Contained or used in particular in amounts of 5 to 25 wt .-%.
  • nonionic surfactants are preferred.
  • the nonionic surfactants used are preferably alkoxylated, advantageously ethoxylated, in particular primary alcohols having preferably 8 to 18 carbon atoms and an average of 1 to 12 moles of ethylene oxide (EO) per mole of alcohol, in which the alcohol residue can be linear or preferably methyl-branched in the 2-position or may contain linear and methyl-branched radicals in the mixture, as are usually present in oxo alcohol radicals.
  • EO ethylene oxide
  • alcohol ethoxylates with linear residues of alcohols of native origin with 12 to 18 carbon atoms, for example from coconut, palm, tallow fat or oleyl alcohol, and an average of 2 to 8 EO per mole of alcohol are particularly preferred.
  • the preferred ethoxylated alcohols include, for example, C 12 -C 14 alcohols with 3 EO or 4 EO, C 9 -C 11 alcohols with 7 EO, C 13 -C 15 alcohols with 3 EO, 5 EO, 7 EO or 8 EO, C 12 -C 18 alcohols with 3 EO, 5 EO or 7 EO and mixtures thereof, such as mixtures of C 12 -C 14 alcohol with 3 EO and C 12 -C 18 alcohol with 7 EO.
  • the degrees of ethoxylation given represent statistical averages, which can be an integer or a fraction for a specific product.
  • Preferred alcohol ethoxylates have a narrow homolog distribution (narrow range ethoxylates, NRE).
  • fatty alcohols with more than 12 EO can also be used, as described above. Examples of these are (tallow) fatty alcohols with 14 EO, 16 EO, 20 EO, 25 EO, 30 EO or 40 EO.
  • the nonionic surfactants also include the alkyl glycosides of the general formula RO (G) x and the polyhydroxy fatty acid amides of the formulas (I) and (II) which have already been described in detail above.
  • nonionic surfactants which are used either as the sole nonionic surfactant or in combination with other nonionic surfactants, in particular together with alkoxylated fatty alcohols and / or alkyl glycosides, are alkoxylated, preferably ethoxylated or ethoxylated and propoxylated, fatty acid alkyl esters, preferably with 1 to 4 carbon atoms in the alkyl chain, in particular fatty acid methyl esters, as described, for example, in Japanese patent application JP 58/217598 or which are preferably prepared by the process described in international patent application WO-A-90/13533.
  • C 12 -C 18 fatty acid methyl esters with an average of 3 to 15 EO, in particular with an average of 5 to 12 EO, are preferred as nonionic surfactants, while, as described above, especially higher ethoxylated fatty acid methyl esters are advantageous as binders.
  • C 12 -C 18 fatty acid methyl esters with 10 to 12 EO can be used both as surfactants and as binders.
  • nonionic surfactants of the amine oxide type for example N-cocoalkyl-N, N-dimethylamine oxide and N-tallow alkyl-N, N-dihydroxyethylamine oxide, and the fatty acid alkanolamides can be suitable.
  • the amount of these nonionic surfactants is preferably not more than that of the ethoxylated fatty alcohols, especially not more than that Half of it.
  • gemini surfactants can be considered as further surfactants.
  • the two hydrophilic groups and two have hydrophobic groups per molecule. These groups are usually by one so-called “spacers” separated from each other. This spacer is usually a carbon chain, which should be long enough that the hydrophilic groups have a sufficient Distance so that they can act independently of each other.
  • Such surfactants are generally characterized by an unusually low critical Micell concentration and the ability to greatly increase the surface tension of water reduce, out. In exceptional cases, however, the term gemini surfactants understood not only dimeric but also trimeric surfactants.
  • Suitable Gemini surfactants are, for example, sulfated hydroxy mixed ethers according to the German patent application DE-A-43 21 022 or dimeral alcohol bis and trimeral alcohol tris sulfates and ether sulfates according to German patent application DE-A-195 03 061.
  • End group capped dimeric and trimeric mixed ethers according to the German Patent application DE-A-195 13 391 are particularly characterized by their bi- and Mommy functionality.
  • the end groups capped have surfactants good network properties and are low-foaming, so that they are particularly suitable for Suitable for use in machine washing or cleaning processes.
  • Gemini polyhydroxy fatty acid amides or poly polyhydroxy fatty acid amides can also be used. as described in international patent applications WO-A-95/19953, WO-A-95/19954 and WO95-A- / 19955 can be described.
  • the inorganic and organic belong above all Builder substances for the most important ingredients of washing or cleaning agents.
  • the finely crystalline, synthetic and bound water-containing zeolite used is preferably zeolite A and / or P.
  • zeolite P for example, zeolite MAP (R) (commercial product from Crosfield) is used.
  • zeolite X and mixtures of A, X and / or P are also suitable.
  • the zeolite can be used as a spray-dried powder or as an undried stabilized suspension which is still moist from its production.
  • the zeolite in the event that the zeolite is used as a suspension, it can contain small additions of nonionic surfactants as stabilizers, for example 1 to 3% by weight, based on zeolite, of ethoxylated C 12 -C 18 fatty alcohols with 2 to 5 ethylene oxide groups , C 12 -C 14 fatty alcohols with 4 to 5 ethylene oxide groups or ethoxylated isotridecanols.
  • Suitable zeolites have an average particle size of less than 10 ⁇ m (volume distribution; measurement method: Coulter Counter) and preferably contain 18 to 22% by weight, in particular 20 to 22% by weight, of bound water.
  • Suitable substitutes or partial substitutes for phosphates and zeolites are crystalline, layered sodium silicates of the general formula NaMSi x O 2x + 1 .yH 2 O, where M is sodium or hydrogen, x is a number from 1.9 to 4 and y is a number from 0 to 20 and preferred values for x are 2, 3 or 4.
  • Such crystalline layered silicates are described, for example, in European patent application EP-A-0 164 514.
  • Preferred crystalline layered silicates of the formula given are those in which M represents sodium and x assumes the values 2 or 3. In particular, both ⁇ - and ⁇ -sodium disilicates Na 2 Si 2 O 5 .yH 2 O are preferred.
  • the preferred builder substances also include amorphous sodium silicates with a modulus Na 2 O: SiO 2 from 1: 2 to 1: 3.3, preferably from 1: 2 to 1: 2.8 and in particular from 1: 2 to 1: 2, 6, which are delayed release and have secondary washing properties.
  • the delay in dissolution compared to conventional amorphous sodium silicates can be caused in various ways, for example by surface treatment, compounding, compacting / compression or by overdrying.
  • the term “amorphous” also means “X-ray amorphous”.
  • silicates in X-ray diffraction experiments do not provide sharp X-ray reflections, as are typical for crystalline substances, but at most one or more maxima of the scattered X-rays, which have a width of several degree units of the diffraction angle.
  • it can very well lead to particularly good builder properties if the silicate particles provide washed-out or even sharp diffraction maxima in electron diffraction experiments. This is to be interpreted as meaning that the products have microcrystalline areas of size 10 to a few hundred nm, values up to max. 50 nm and in particular up to max. 20 nm are preferred.
  • Such so-called X-ray amorphous silicates which also have a delay in dissolution compared to conventional water glasses, are described, for example, in German patent application DE-A-44 00 024. Compacted / compacted amorphous silicates, compounded amorphous silicates and over-dried X-ray amorphous silicates are particularly preferred.
  • the sodium salts are particularly suitable Orthophosphate, the pyrophosphate and especially the tripolyphosphate.
  • Your salary generally not more than 25% by weight, preferably not more than 20% by weight, each based on the finished product.
  • tripolyphosphates in small amounts up to a maximum of 10% by weight, based on the finished agent, in combination with other builder substances to form one lead to synergistic improvement of secondary washing ability.
  • Suitable substitutes or partial substitutes for the zeolite are layered silicates natural and synthetic origin.
  • Layered silicates of this type are known, for example, from US Pat Patent applications DE-B-23 34 899, EP-A-0 026 529 and DE-A-35 26 405 are known. Your Applicability is not based on a special composition or structural formula limited. However, smectites, in particular bentonites, are preferred here.
  • Suitable sheet silicates which belong to the group of water-swellable smectites, are, for example, montmorrilonite, hectorite or saponite.
  • small amounts of iron can be incorporated into the crystal lattice of the layered silicates according to the above formulas.
  • the layered silicates can contain hydrogen, alkali, alkaline earth ions, in particular Na + and Ca ++ .
  • the amount of water of hydration is usually in the range from 8 to 20% by weight and depends on the swelling condition or the type of processing.
  • Useful sheet silicates are known, for example, from US-A-3,966,629, EP-A-0 026 529 and EP-A-0 028 432.
  • Layered silicates are preferably used which are largely free of calcium ions and strongly coloring iron ions due to an alkali treatment.
  • Useful organic builders are, for example, those in the form of their sodium salts usable polycarboxylic acids, such as citric acid, adipic acid, succinic acid, Glutaric acid, tartaric acid, sugar acids, aminocarboxylic acids, nitrilotriacetic acid (NTA), if such use is not objectionable for ecological reasons, and Mixtures of these.
  • Preferred salts are the salts of polycarboxylic acids such as citric acid, Adipic acid, succinic acid, glutaric acid, tartaric acid, sugar acids and mixtures from these.
  • the acids themselves can also be used.
  • the acids have a builder effect typically also the property of an acidifying component and serve thus also for setting a lower and milder pH value of washing or Detergents.
  • dextrins for example oligomers or polymers of carbohydrates, which can be obtained by partial hydrolysis of starches.
  • the hydrolysis can be carried out by customary, for example acid or enzyme-catalyzed, processes. They are preferably hydrolysis products with average molecular weights in the range from 400 to 500,000.
  • DE dextrose equivalent
  • Both maltodextrins with a DE between 3 and 20 and dry glucose syrups with a DE between 20 and 37 as well as so-called yellow dextrins and white dextrins with higher molar masses in the range from 2000 to 30000 can be used.
  • a preferred dextrin is described in British patent application 94 19 091.
  • the oxidized derivatives of such dextrins are their reaction products with oxidizing agents which are capable of oxidizing at least one alcohol function of the saccharide ring to the carboxylic acid function.
  • Such oxidized dextrins and processes for their preparation are known, for example, from European patent applications EP-A-0 232 202, EP-A-0 427 349, EP-A-0 472 042 and EP-A-0 542 496 and international patent applications WO- A-92/18542, WO-A-93/08251, WO-A-94128030, WO-A-95/07303, WO-A-95/12619 and WO-A-95/20608.
  • a product oxidized at C 6 of the saccharide ring can be particularly advantageous.
  • Suitable cobuilders are oxydisuccinates and other derivatives of disuccinates, preferably ethylenediamine disuccinate.
  • glycerol disuccinates and glycerol trisuccinates such as those found in the United States Patent specifications US 4,524,009, US 4,639,325 in the European patent application EP-A-0 150 930 and Japanese patent application JP 93/339896 become.
  • Suitable amounts are in zeolite and / or formulations containing silicate at 3 to 15% by weight.
  • organic cobuilders are, for example, acetylated hydroxycarboxylic acids or their salts, which may also be present in lactone form and which have at least 4 carbon atoms and at least one hydroxy group as well contain a maximum of two acid groups.
  • Such cobuilders are used, for example, in the international patent application WO-A-95/20029.
  • Suitable polymeric polycarboxylates are, for example, the sodium salts of polyacrylic acid or polymethacrylic acid, for example those with a relative Molecular mass from 800 to 150,000 (based on acid).
  • Suitable copolymers Polycarboxylates are in particular those of acrylic acid with methacrylic acid and Acrylic acid or methacrylic acid with maleic acid. Have proven to be particularly suitable Copolymers of acrylic acid with maleic acid have proven to be 50 to 90% by weight of acrylic acid and contain 50 to 10% by weight of maleic acid.
  • Their relative molecular mass, based on free acids is generally 5,000 to 200,000, preferably 10,000 to 120,000 and especially 50,000 to 100,000.
  • the content of (co) polymeric polycarboxylates in the compositions is in the usual range and is preferably 1 to 10% by weight.
  • biodegradable polymers made from more than two different ones Monomer units, for example those which according to DE-A-43 00 772 as Monomeric salts of acrylic acid and maleic acid as well as vinyl alcohol or vinyl alcohol derivatives or according to DE-C-42 21 381 as monomer salts of acrylic acid and the 2-alkylallylsuifonic acid and sugar derivatives.
  • copolymers are those described in the German patent applications DE-A-43 03 320 and DE-A-44 17 734 are described and as monomers preferably acrolein and acrylic acid / acrylic acid salts or acrolein and vinyl acetate exhibit.
  • Suitable builder substances are oxidation products of carboxyl-containing ones Polyglucosans and / or their water-soluble salts, such as those in the international patent application WO-A-93/08251 or their Manufactured, for example, in international patent application WO-A-93/16110 is described. Oxidized oligosaccharides according to the German patent application DE-A-196 00 018.
  • further preferred builder substances are polymeric aminodicarboxylic acids, to name their salts or their precursors.
  • Polyaspartic acids are particularly preferred or their salts and derivatives, of which in the German Patent application DE-A-195 40 086 discloses that in addition to cobuilder properties also have a bleach-stabilizing effect.
  • polyacetals which are obtained by converting Dialdehydes with polyol carboxylic acids, which have 5 to 7 carbon atoms and at least 3 Have hydroxyl groups, for example as in the European patent application EP-A-0 280 223 can be obtained.
  • Preferred polyacetals will be from dialdehydes such as glyoxal, glutaraldehyde, terephthalaldehyde and mixtures thereof and obtained from polyol carboxylic acids such as gluconic acid and / or glucoheptonic acid.
  • the agents can also contain components that make the oil and fat washable made of textiles. This effect is particularly evident if a textile is soiled that has already been washed several times with one detergent according to the invention, which contains this oil and fat-dissolving component, was washed.
  • the preferred oil and fat dissolving components include for example non-ionic cellulose ethers such as methyl cellulose and methyl hydroxypropyl cellulose with a proportion of methoxyl groups of 15 to 30 wt .-% and Hydroxypropoxyl groups from 1 to 15 wt .-%, each based on the nonionic Cellulose ether, as well as the polymers known from the prior art Phthalic acid and / or terephthalic acid or their derivatives, in particular Polymers from ethylene terephthalates and / or polyethylene tycoterephthalates or anionically and / or nonionically modified derivatives of these. Particularly preferred of these are the sulfonated derivatives of phthalic acid and terephthalic acid polymers.
  • Suitable ingredients of the agents are water-soluble inorganic salts such as bicarbonates, carbonates, amorphous silicates such as the above-mentioned dissolving-delayed silicates or mixtures thereof; in particular, alkali carbonate and amorphous alkali silicate, especially sodium silicate with a molar ratio Na 2 O: SiO 2 of 1: 1 to 1: 4.5, preferably of 1: 2 to 1: 3.5, are used.
  • the sodium carbonate content of the agents is preferably up to 20% by weight, advantageously between 5 and 15% by weight.
  • the content of sodium silicate in the agents is - if it is not to be used as builder substance - generally up to 10% by weight and preferably between 2 and 8% by weight, otherwise more.
  • Alkali carbonates also by sulfur-free, 2 to 11 carbon atoms and optionally a further carboxyl and / or amino group having amino acids and / or by the salts of which are replaced.
  • a partial to complete replacement of the alkali carbonates by glycine or glycinate he follows.
  • the other detergent ingredients include graying inhibitors (dirt carriers), Foam inhibitors, bleaches and bleach activators, optical brighteners, enzymes, fabric softening agents, dyes and fragrances as well as neutral salts such as sulfates and Chlorides in the form of their sodium or potassium salts.
  • Acid can also be used to reduce the pH of detergents or cleaning agents Salts or slightly alkaline salts can be used.
  • citric acid which is particularly preferred either added subsequently (customary procedure) or - in anhydrous form - Is used in a solid premix.
  • bleaching agents which can be used are, for example, sodium percarbonate, peroxypyrophosphates, citrate perhydrates and H 2 O 2 -producing peracidic salts or peracids, such as perbenzoates, peroxophthalates, diperazelaic acid, phthaloiminoperic acid or diperdodecanedioic acid.
  • the bleaching agent content of the agents is preferably 5 to 25% by weight and in particular 10 to 20% by weight, advantageously using perborate monohydrate or percarbonate.
  • Peroxocarboxylic acids with preferably 1 to 10 C atoms, in particular 2 to 4 C atoms, and / or optionally substituted perbenzoic acid can be used.
  • Substances containing O and / or N-acyl groups of the number of carbon atoms mentioned are suitable and / or optionally substituted benzoyl groups.
  • polyacylated alkylenediamines especially tetraacetylethylenediamine (TAED), acylated triazine derivatives, in particular 1,5-diacetyl-2,4-dioxohexahydro-1,3,5-triazine (DADHT), acylated glycolurils, especially tetraacetylglycoluril (TAGU), N-acylimides, especially N-nonanoylsuccinimide (NOSi), acylated phenol sulfonates, especially n-nonanoyl or isononanoyloxybenzenesulfonate (n- or iso-NOBS), Carboxylic anhydrides, especially phthalic anhydride, acylated polyvalent Alcohols, especially triacetin, ethylene glycol diacetate, 2,5-diacetoxy-2,5-dihydrofuran and those from German patent applications DE-A-196 16 693 and DE
  • Suitable foam inhibitors are, for example, soaps of natural or synthetic origin, which have a high proportion of C 18 -C 24 fatty acids.
  • Suitable non-surfactant-like foam inhibitors are, for example, organopolysiloxanes and their mixtures with microfine, optionally silanized silica, and paraffins, waxes, microcrystalline waxes and their mixtures with silanized silica or bistearylethylenediamide. Mixtures of different foam inhibitors are also used with advantages, for example those made of silicones, paraffins or waxes.
  • the foam inhibitors, in particular silicone and / or paraffin-containing foam inhibitors are preferably bound to a granular, water-soluble or dispersible carrier substance. Mixtures of paraffins and bistearylethylenediamides are particularly preferred.
  • the salts of polyphosphonic acids are preferably the neutral sodium salts for example, 1-hydroxyethane-1,1-diphosphonate, diethylenetriaminepentamethylenephosphonate or ethylenediaminetetramethylenephosphonate in amounts of 0.1 to 1.5 wt .-% used.
  • enzyme mixtures for example from protease and amylase or protease and lipase or lipolytic enzymes or protease and cellulase or from cellulase and Lipase or lipolytic enzymes or from protease, amylase and lipase or lipolytic enzymes or protease, lipase or lipolytic enzymes and cellulase, but especially protease- and / or lipase-containing mixtures or Mixtures with lipolytically active enzymes of particular interest.
  • lipolytic enzymes are the well-known cutinases. Peroxidases too or oxidases have been found to be suitable in some cases.
  • Amylases include in particular ⁇ -amylases, iso-amylases, pullulanases and pectinases.
  • Cellobiohydrolases, endoglucanases and ⁇ -glucosidases are preferably used as cellulases, which are also called cello bias, or mixtures of these used. Since the different cellulase types are characterized by their CMCase and Avicelase activities can be distinguished by targeted mixtures of the cellulases the desired activities are set.
  • the enzymes can be adsorbed on carriers and / or embedded in coating substances to protect them against premature decomposition.
  • the proportion of enzymes, enzyme mixtures or enzyme granules can, for example, about 0.1 to 5% by weight, preferably 0.1 to about 2% by weight.
  • the agents can also contain further enzyme stabilizers.
  • enzyme stabilizers For example, 0.5 to 1% by weight sodium formate can be used. It is also possible to use proteases which are stabilized with soluble calcium salts and a calcium content of preferably about 1.2% by weight, based on the enzyme.
  • proteases which are stabilized with soluble calcium salts and a calcium content of preferably about 1.2% by weight, based on the enzyme.
  • calcium salts magnesium salts also serve as stabilizers.
  • boron compounds for example boric acid, boron oxide, borax and other alkali metal borates such as the salts of orthoboric acid (H 3 BO 3 ), metaboric acid (HBO 2 ) and pyrobic acid (tetraboric acid H 2 B 4 O 7 ), is particularly advantageous.
  • Graying inhibitors have the task of removing the dirt detached from the fiber in the Keep the liquor suspended and thus prevent the dirt from re-opening.
  • Water-soluble colloids of mostly organic nature are suitable for this purpose, for example the water soluble salts of polymeric carboxylic acids, glue, gelatin, salts of Ether carboxylic acids or ether sulfonic acids of starch or cellulose or salts of acidic sulfuric acid esters of cellulose or starch.
  • water-soluble, acidic Group-containing polyamides are suitable for this purpose.
  • Polyvinylpyrrolidone can also be used.
  • cellulose ethers such as carboxymethyl cellulose (Na salt) are preferred, Methyl cellulose, hydroxyalkyl cellulose and mixed ethers, such as methyl hydroxyethyl cellulose, Methyl hydroxypropyl cellulose, methyl carboxymethyl cellulose and mixtures thereof, and Polyvinylpyrrolidone, for example in amounts of 0.1 to 5 wt .-%, based on the Means used.
  • the agents can be derivatives of diaminostilbenedisulfonic acid or whose alkali metal salts contain. Suitable are e.g. Salts of 4,4'-bis (2-anilino-4-morpholino-1,3,5-triazinyl-6-amino) stilbene-2,2'-disulfonic acid or similarly constructed Compounds which instead of the morpholino group a diethanolamino group, a Carry a methylamino group, an anilino group or a 2-methoxyethylamino group. Brighteners of the substituted diphenylstyryl type may also be present, e.g.
  • Means M1 and M2 were produced according to the following procedure:
  • a solid premix was made from the solid components, including the binder, which in this case was added in solid form, manufactured.
  • the binder was injected into the premix in the form of a sprayable melt; however, this did not result End products with significantly different properties.
  • the melt froze application to the solid mixture within a short time. The usual dwell time in Mixer was sufficient for this.
  • the mixture was then homogenized for a further 2 minutes and then fed to a 2-screw extruder, the pelletizing head on Temperatures between 50 and 65 ° C, preferably to 62 ° C, was preheated.
  • the bulk density of the extrudates produced was 800 ⁇ 50 g / l.
  • a homogeneous premix consisting of 61% by weight of spray-dried granules 1 (for composition see below), 6% by weight of C 12 -C 18 fatty alkyl sulfate (composition 92.00% by weight of active substance, 3 , 70% by weight sodium sulfate, 2.80% by weight other salts from raw materials and unsulfonated components and 1.50% by weight water), 3% by weight copolymeric sodium salt of acrylic acid and maleic acid (powder form), 20 % By weight of sodium perborate monohydrate and 6% by weight of polyethylene glycol as binder with a molecular weight of 4000.
  • an agent V1 was produced, which has the same ingredients in the end product contained, but in which the copolymer is not in powder form, but as about 30 wt .-% aqueous solution had been introduced into the process. The excess Water was then dried away in a fluidized bed. The bulk density of the Extrudate was 770 g / l, the L test gave a value of 28%. Received in the towel test V1 the grade 3-4, in the bowl test even the grade 4.
  • the detergent M2 turned out to be particularly cheap for washing colored textiles.
  • spray-dried granulate 2 composition see below
  • 11.83% by weight of an alkyl sulfate compound produced in the fluidized bed composition: 75% by weight C 12 -C 18 - Alkyl sulfate, 17% by weight sodium sulfate, 3% by weight sodium carbonate, 1% by weight water, remainder salts from solutions
  • 2.96% by weight copolymeric sodium salt of acrylic acid and maleic acid (powder form)
  • 6.99 % By weight of trisodium citrate dihydrate, 3.59% by weight of polyethylene glycol with a relative molecular weight of 4000 and 8.92% by weight of C 12 -C 18 fatty alcohol with an average of 7 EO, mixed to a premix as described above and extruded ,
  • an agent V2 was again produced, which has the same ingredients in the end product contained, but in which the copolymer is not in powder form, but as about 30 % By weight aqueous solution had been introduced into the process. The excess Water was then dried away in a fluidized bed. The bulk density of the Extrudate was well below 800 g / l, the L test showed a value above 20 %. If the alkyl sulfate compound was not co-extruded, but according to the teaching of German patent application DE-A-195 19 139 subsequently mixed, that was it Bulk weight of the extrudate at 780 g / l, the L test gave a value of 7% and the Bowl test a grade of 1-2.
  • Agents according to the invention were also produced by introducing 3 to 5% by weight non-ionic surfactant over a spray-dried compound, which then with the nonionic surfactant had been processed.
  • Agents according to the invention were also produced, for example, by using a mixture of binders made of polyethylene glycol with a molecular weight of 4000 and a cetylstearyl alcohol with an average of 20 EO in a weight ratio of 1: 2 to 5: 1.
  • Products according to the invention were also prepared by using a sodium C 9 -C 13 -alkylbenzenesulfonate powder of 85% by weight alkylbenzenesulfonate, 4.5% by weight sodium carbonate, 3.5% by weight sodium sulfate, 2% by weight as alkylbenzenesulfonate.
  • -% sodium chloride and 4 wt .-% water and unsulphated components were used in the premix.
  • the extrudates had values in the described L test of less than 15% or less than 10%.
  • composition of the spray-dried granules Composition of the spray-dried granules:
  • composition M3 M4 M5 M6 Spray dried granules 1 57 60 64 55 sodium perborate 20 23 - 25 Polyethylene glycol (4000) 5 - - - Polyethylene glycol (2000), capped on one side with methyl end groups - - - 7 Fatty acid methyl ester C 16/18 + 12 EO - - 6 - C 12/18 fatty alcohol + 7 EO 6 6 7 7 C 12/18 fatty alkyl sulfate (92% by weight of active substance, 3.70% by weight of sodium sulfate, 2.80% by weight of other salts from raw materials and unsulfated components, 1.50% by weight of water) 7 5 8th 6 Fatty alcohol C 12/14 polyglycoside (78% by weight active substance, 18% by weight water glass module 2.4, 5% by weight water) 5 - - - C 16/18 fatty acid ethoxylate + 80 EO - 6 - -

Description

Die Erfindung betrifft ein Verfahren zur Herstellung von schnellöslichen, verdichteten teilchenförmigen Wasch- oder Reinigungsmitteln bzw. Compounds oder behandelten Rohstoffen hierfür sowie derartig hergestellte Wasch- oder Reinigungsmittel bzw. Compounds oder behandelten Rohstoffe hierfür, welche aus der Sicht des Verbrauchers eine signifikant bessere Qualität aufweisen.
Teilchenförmige Wasch- oder Reinigungsmittel mit Schüttgewichten oberhalb 600 g/l gehören bereits seit geraumer Zeit zum Stand der Technik. In den letzten Jahren ging mit der Erhöhung des Schüttgewichts auch eine Konzentration der wasch- und reinigungsaktiven Inhaltsstoffe einher, so daß der Verbraucher nicht nur weniger Volumen, sondern auch weniger Masse pro Wasch- oder Reinigungsvorgang dosieren mußte. Die Erhöhung des Schüttgewichts und insbesondere noch einmal die höhere Konzentration der Mittel an wasch- oder reinigungsaktiven Substanzen wurde im allgemeinen erkauft durch eine aus der Sicht der Verbrauchers subjektiv schlechtere Löslichkeit, da langsamere Lösegeschwindigkeit des angewendeten Mittels. Diese unerwünschte Löseverzögerung wird unter anderem dadurch ausgelöst, daß eine Reihe praxisüblicher anionischer und nichtionischer Tenside und vor allem entsprechender Tensidmischungen bei der Auflösung in Wasser zur Ausbildung von Gelphasen neigen. Derartige Vergelungen können bereits bei Tensidgehalten von 10 Gew.-%, bezogen auf das gesamte Mittel, also bei durchaus in Wasch- oder Reinigungsmitteln üblichen Tensidmengen auftreten. Die Neigung zur Ausbildung von Gelen nimmt erfahrungsgemäß auch mit der immer kompakter werdenden Komstruktur der Teilchen zu.
Die EP-B-0 486 592 beschreibt granulare beziehungsweise extrudierte Wasch- oder Reinigungsmittel mit Schüttgewichten oberhalb 600 g/l, die anionische und/oder nichtionische Tenside in Mengen von mindestens 15 Gew.-% und bis zu etwa 35 Gew.-% enthalten. Sie werden nach einem Verfahren hergestellt, bei dem ein festes, rieselfähiges Vorgemisch, welches ein Plastifizier- und/oder Gleitmittel aus vorzugsweise wäßrigen Tensidpasten und/oder wäßrigen Polymerlösungen enthält, bei hohen Drucken zwischen 25 und 200 bar strangförmig verpreßt und der Strang nach Austritt aus der Lochform mittels einer Schneidevorrichtung auf die vorbestimmte Granulatdimension zugeschnitten und verrundet wird. Das Vorgemisch besteht wenigstens anteilsweise aus festen Inhaltsstoffen, denen gegebenenfalls flüssige Inhaltsstoffe wie bei Raumtemperatur flüssige nichtionische Tenside zugemischt sind. Wie oben gesagt werden als Plastifizierund/oder Gleitmittel in bevorzugten Ausführungsformen wäßrige Zubereitungen eingesetzt. Es kommen jedoch auch vergleichsweise hochsiedende organische Flüssigkeiten, gegebenenfalls wiederum in Abmischung mit Wasser, in Frage. Das Patent offenbart aber keine einzuhaltenden Verfahrensbedingungen für den Fall einer wasserfreien Extrusion. Die hergestellten Extrudate können entweder bereits als Waschoder Reinigungsmittel eingesetzt oder aber nachträglich mit anderen Granulaten oder Pulverkomponenten zu fertigen Wasch- oder Reinigungsmitteln aufbereitet werden. Durch die hohe Kompaktheit des Koms und die relativ hohen Tensidgehalte, aber auch durch die vom Verbraucher gewünschte Kugel- oder Perlenform, welche gegenüber herkömmlichen Granulaten eine wesentlich kleinere Oberfläche aufweisen, kann es in Abhängigkeit von den gewählten Tensidkombinationen zu den obenerwähnten Schwierigkeiten kommen.
Aus der internationalen Patentanmeldung WO-A-93/15180 ist bekannt, daß die Lösegeschwindigkeit derartiger extrudierter Mittel dadurch verbessert werden kann, daß in dem festen Vorgemisch kurzkettige Alkylsulfate, insbesondere C8- bis maximal C16-Alkylsulfate eingesetzt werden, die auf eine bestimmte Art und Weise in das Vorgemisch eingebracht werden. Diese Maßnahme reicht jedoch nicht in allen Fällen aus, um die Lösegeschwindigkeiten des gesamten Mittels in dem gewünschten Maße zu erhöhen.
Die deutsche Patentanmeldung DE 195 19 139.0 schlägt zur Lösung des Konflikts zwischen hohem Verdichtungsgrad des einzelnen Korns, insbesondere des Extrudats, auf der einen Seite und der gleichwohl geforderten raschen und insbesondere vergelungsfreien Wiederauflösbarkeit des fertigen Wasch- oder Reinigungsmitteln in wäßrigen Flotten vor, teilchenförmige Wasch- oder Reinigungsmittel mit einem Schüttgewicht oberhalb 600 g/l, welche anionische und/oder nichtionische Tenside in Mengen von mindestens 15 Gew.-% enthalten, derart zu gestalten, daß mindestens zwei verschiedene granulare Komponenten eingesetzt werden, von denen mindestens eine extrudiert und mindestens eine nicht extrudiert ist, wobei der Tensidgehalt der extrudierten Komponente einschließlich der Seifen maximal 15 Gew.-%, bezogen auf die jeweilige extrudierte Komponente, betragen soll. Weitere Tensidbestandteile des fertigen Waschoder Reinigungsmittels werden durch eine oder mehrere nicht-extrudierte Komponente(n) in das Mittel eingebracht. Dieses Verfahren löst zwar das Problem der Vergelung hochverdichteter und hochtensidhaltiger Wasch- oder Reinigungsmittel bei der Anwendung in einer wäßrigen Flotte, es beinhaltet jedoch auch eine Reihe neuer Probleme. Es können Entmischungsvorgänge und dementsprechend Schwankungen in der Reproduzierbarkeit des angestrebten Wasch- oder Reinigungsergebnisses auftreten. Außerdem ist der extrudierte Anteil der Mittel nicht nur von hoher Dichte, die aufgetrockneten Extrudate sind gleichzeitig auch vergleichsweise hart. Unter den Bedingungen von Transport, Lagerung und Einsatz kann der vergleichsweise weichere Granulatanteil damit mechanischen Kräften ausgesetzt sein, die anteilsweise zu seiner Verkleinerung und damit zur Bildung von Staub- und Feinanteilen durch Abrieb führen.
Herkömmliche Verfahren arbeiten im allgemeinen sowohl mit festen als auch bei Raumtemperatur flüssigen Inhaltsstoffen von Wasch- oder Reinigungsmitteln; auch wäßrige Lösungen und/oder Dispersionen werden als Granulierhilfsmittel oder wie im Falle der EP-B-0 486 592 als Plastifizier- und/oder Gleitmittel im breiten Umfang eingesetzt. Derartige Verfahrensweisen besitzen das Risiko, daß bereits während der Herstellung der Wasch- oder Reinigungsmittel gelartige Strukturen entstehen, die zur Löseverzögerung bei der Wiederauflösung in der wäßrigen Flotte beitragen. Außerdem besitzen insbesondere die Verfahren, in denen Wasser, wäßrige Lösungen oder wäßrige Dispersionen als Granulierhilfsmittel eingesetzt werden, den Nachteil, daß in den meisten Fällen eine energetisch ungünstige Trocknung nachgeschaltet werden muß, um ein rieselfähiges bzw. lagerstabiles Endprodukt zu erhalten, und außerdem die häufig recht groben erhaltenen Agglomerate zerkleinert und/oder gesiebt werden müssen (siehe auch "Size Enlargement by Agglomeration", W. Pietsch, John Witey&Sons, 1990, Seite 180). Ein weiterer Nachteil dieser Verfahren besteht darin, daß es durch das Anlösen fester und wasserlöslicher Bestandteile insbesondere unter dem Druckeinfluß während der Extrusion zu Partikelvergrößerungen sowie zu Kristallisationen kommen kann, welche sich im allgemeinen wiederum nachteilig auf das Löseverhalten der fertigen Mittel auswirken.
Eine Methode zur Herstellung von schweren Granulaten unter Zuhilfenahme eines wäßrigen Granulierhilfsmittels stellt die zweistufige Granulierung dar, wobei zunächst in einem üblichen Mischer/Granulator noch plastische Primäragglomerate erzeugt werden, welche anschließend in Apparaten wie einem Verrunder, Rotocoater, Marumerizer etc. mit flüssigem Bindemittel und/oder Staub nachträglich behandelt und üblicherweise anschließend getrocknet werden. Die Granulation und gleichzeitige Verrundung kann beispielsweise in Wirbelschichtgranulatoren, welche eine rotierende Scheibe beinhalten, durchgeführt werden. Dabei werden feste Ausgangsmaterialien zunächst in der Wirbelschicht fluidisiert und dann mit flüssigem Bindemittel, das über tangential ausgerichtete Düsen in das Wirbelbett eingegeben wird, agglomeriert ("Size Enlargement by Agglomeration", W. Pietsch, John Wiley&Sons, 1990, Seiten 450 bis 451). Im Prinzip kann diese Methode auch für nicht-wäßrige Verfahren angewandt werden (Schmelzcoating-Verfahren), wobei dann aber der Vorteil der Apparatur, eine gleichzeitige Trocknung bewirken zu können, nicht ausgenutzt wird.
In der Fachliteratur ("Size Enlargement by Agglomeration", W. Pietsch, John Wiley&Sons, 1990, Seiten 440 bis 441) sind nur zwei Methoden zur Granulierung unter hohem Druck bekannt, welche vollkommen wasserfrei durchgeführt werden können. Es handelt sich dabei um Tablettierungen in Tablettenpressen und um Walzenkompaktierungen, wobei im letztgenannten Verfahren üblicherweise Schülpen erzeugt werden, die nachträglich zu granularen, aber unregelmäßig geformten Produkten gebrochen werden. Aus diesem Grund werden in einigen Systemen sogenannte Prebreaker eingesetzt, um bereits das Ausgangsprodukt für den eigentlichen Granulations- bzw. Mahlschritt von der Form her einheitlicher zu gestalten. Anschließend können unerwünschte Fein- und/oder Grobkornanteile der so hergestellten Granulate abgesiebt und gegebenenfalls recyclisiert werden.
Die internationale Patentanmeldung WO-A-93/02176 beschreibt ein Verfahren zur Herstellung von festen Wasch- oder Reinigungsmitteln mit hohen Schüttgewichten durch Zusammenfügen fester und flüssiger Wasch- oder Reinigungsmittelrohstoffe unter gleichzeitiger oder anschließender Formgebung, wobei als feste Bestandteile beispielsweise Aniontenside und Buildersubstanzen und als flüssige Bestandteile Niotenside eingesetzt werden, wobei letztere in einem innigen Gemisch mit einem Strukturbrecher wie Poly-ethylenglykol oder Polypropylenglykol oder ethoxyliertem C8-C18-Fettalkohole mit 20 bis 45 EO bereitgestellt wurden. Als flüssige nichtionische Tenside werden ethoxylierte lineare oder in 2-Stellung methylverzweigte Alkohole bevorzugt, die 8 bis 20 Kohlenstoffatome in der Kohlenstoffkette und im Durchschnitt 1 bis 15 Mol Ethylenoxid pro Mol Alkohol aufweisen. Neben den obengenannten Strukturbrechern wird auch Wasser als prinzipiell geeigneter Strukturbrecher beschrieben, dessen Einsatz aber weniger bevorzugt ist, da die Mittel während der Lagerung aufgrund der inneren Trocknung der Mittel an Wasser verarmen können und damit der erwünschte Effekt der verbesserten Lösegeschwindigkeit durch Einsatz eines Strukturbrechers nicht mehr oder nicht mehr im vollen Umfang zum Tragen käme. Gemäß der Lehre dieser internationalen Patentanmeldung können die Mischungen aus Niotensiden und Strukturbrechern, welche entweder als Lösung oder als Dispersion vorliegen, in allen bekannten Granulierverfahren eingesetzt werden, in denen separat hergestellte Compounds und/oder Rohstoffe zum Einsatz kommen. Auch der Einsatz in einem Extrusionsverfahren gemäß der internationalen Patentanmeldung WO-A-91/02047 (bzw. des europäischen Patents EP-B-0 486 592) ist möglich und sogar bevorzugt. Dementsprechend wird auch der Einsatz von wäßrigen Lösungen, Pasten oder wäßrigen Dispersionen nahegelegt, wobei das Wasser wie oben gesagt nicht als Strukturbrecher eingesetzt wird und üblicherweise im Anschluß an die Extrusion weggetrocknet wird. Eine Extrusion ohne Zugabe von Wasser wird nicht explizit nahegelegt; selbst im Beispielteil erfolgt zusätzlich und separat zu dem Niotensid-Strukturbrecher-Gemisch die Zugabe von wäßrigen Lösungen; vor allem nennt aber dieses Dokument auch keine Verfahrensbedingungen, unter denen eine wasserfreie Extrusion durchgeführt werden kann.
Die europäische Patentanmeldung EP-A-0 337 330 beschreibt ein Verfahren zur Erhöhung des Schüttgewichts eines sprühgetrockneten Waschmittels durch Granulierung in einem Mischer unter Zugabe von nichtionischen Verbindungen. Zu diesen zählen ethoxylierte und/oder propoxylierte nichtionische Tenside wie primäre oder sekundäre Alkohole mit 8 bis 20 kohlenstoffatomen und 2 bis 20 Mol Alkylenoxid pro Mol Alkohol, wobei insbesondere nichtionische Tenside mit 2 bis 6 EO und HLB-Werten von 11 oder weniger im Mischer zugesetzt werden. Auch Ethylenglykole und Propylenglykole können als nichtionische Verbindungen eingesetzt werden.
Die deutsche Patentanmeldung DE-A-43 19 666 offenbart ein Verfahren zur Herstellung wasch- oder reinigungsaktiver Extrudate hoher Dichte, wobei ein homogenes und festes Vorgemisch, enthaltend bestimmte alkoxierte Alkohole, unter Druck verpreßt und danach auf Granulatdimension zugeschnitten wird. Eine Extrusion ohne Zugabe von Waser wird nicht nahegetegt.-Im Beispielteil enthält das Vorgemsich beispielsweise fast 5 % freies Wasser.
In der internationalen Patentanmeldung WO-A-92/02608 werden schütt- und rieselfähige Granulate, enthaltend Bleichaktivatoren und ein Gemisch anionischer und nichtionischer Tensidverbindungen, die eine im wesentlichen wasserfreie Bindemittelphase bilden, offenbart. Das als Bindemittel bevorzugt einzusetzende Tensidgemisch besitzt bis zu oberen Grenztemperaturen von etwa 35 bis 40°C Feststoffcharakter. Bei der Arbeitstemperatur der Granulatbildung liegt die Bindemittelphase jedoch auch ohne Zusatz von Wasser flüssig oder plastisch erweicht vor. Die Granulate werden folglich zugänglich gemacht, ohne dabei auf die Mitverwendung von Wasser als temporärer Flüssigkeitsphase angewiesen zu sein.
In der europäischen Patentanmeldung EP-A-0 711 828 wird ein Verfahren zur Herstellung von Tabletten beschrieben, wobei ein umhülltes teilchenförmiges Produkt verpreßt wird. Die Umhüllungssubstanz ist ein wasserlösliches Binde- oder Desintegrationsmittel mit Schmelztemperaturen zwischen 35 und 90 °C. Als wesentliches Merkmal wird hier jedoch angegeben, daß die Kompaktierung/Tablettierung bei Temperaturen durchgeführt werden soll, die mindestens bei 28 °C, auf jeden Fall aber unterhalb der Schmelztemperatur des Bindemittels liegen.
Aus der internationalen Patentanmeldung WO-A-96/10071 ist ein Verfahren zur Herstellung von Granulaten mit Schüttgewichten von mindestens 650 g/l und Tensidgehalten von mindestens 40 Gew.-% bekannt, wobei das Granulierverfahren in einem Schritt in einem Mischer mit hoher Scherrate bei Temperaturen zwischen Raumtemperatur und 60 °C durchgeführt wird. Als feste Einsatzstoffe dienen Partikel mit einer Teilchengröße zwischen 0,1 und 500 µm, wobei mindestens 15 Gew-.% der Teilchen eine Teilchengröße oberhalb von 50 µm aufweisen sollen, aber genügend kleine, feine Teilchen vorhanden sind, so daß eine besonders hohe Oberfläche des festen Einsatzmaterials resultiert. Als Bindemittel dienen Tensidmischungen aus Aniontensiden und Niotensiden in Gewichtsverhältnissen von 2:8 bis 8:2, welche bis zu 20 Gew.-% an Wasser aufweisen können. Als nichtionische Tenside werden primäre C12-C15-Alkohole mit 3 bis 7 EO angegeben. Besonders vorteilhaft sind im Rahmen des angegebenen Verfahrens Tensidmischungen, welche bis zu 20 Gew.-% Wasser enthalten, da hierdurch die Viskosität der Mischung erhöht und der Prozeß besser kontrollierbar wird. Zusätzlich kann die Tensidmischung auch Polyethylenglykole enthalten.
In der US-amerikanischen Patentschrift US 5,108,646 wird die Herstellung von Builderagglomeraten beschrieben, wobei 50 bis 75 Gew.-Teile Aluminosilikate oder kristalline Schichtsilikate mit 20 bis 35 Gew.-Teilen eines Bindemittels agglomeriert werden. Geeignete Bindemittel sind vor allem hochviskose Aniontensidpasten, welche zwischen 0 und 90 Gew.-% Wasser enthalten können. Aber auch Polymere wie Polyethylenglykole mit Molekulargewichten zwischen 1000 und 20000 kommen in Betracht, ebenso wie Mischungen aus diesen und üblichen nichtionischen Tensiden wie C9-C16-Alkoholen mit 4 bis 8 EO, solange der Schmelzbereich nicht unter 35 °C bzw. unter 45 °C beginnt. Die Agglomerierung findet in einem sogenannten Intensivmischer mit einem ganz bestimmten, relativ hohen Energieeintrag statt. Bei Energieeinträgen oberhalb der angegebenen Werte tritt eine Überagglomeration bis hin zu einer teigförmigen Masse ein, bei geringeren Energieeinträgen werden nur feinteilige Pulver oder sehr leichte Agglomerate mit einem unerwünscht breiten Kornspektrum erhalten.
Demgegenüber bestand die Aufgabe der Erfindung darin, teilchenförmige Wasch- oder Reinigungsmittel bzw. Compounds oder behandelte Rohstoffe hierfür herzustellen, welche selbst bei verringerter Oberfläche, insbesondere bei einer Kugelform (Perlenform) eine verbesserte Desintegration bei der Auflösung in der wäßrigen Flotte aufweisen. Außerdem sollte das Verfahren ökonomisch günstig sein und auf kostspielige Trocknungsschritte verzichten können.
Gegenstand der Erfindung ist daher in einer ersten Ausführungsform der Erfindung ein Verfahren zur Herstellung von teilchenförmigen Wasch- oder Reinigungsmitteln bzw. Compounds oder behandelten Rohstoffen hierfür mit Schüttgewichten oberhalb 600 g/l durch Zusammenfügen von Wasch- oder Reinigungsmittelcompounds und/oder -rohstoffen unter gleichzeitiger oder anschließender Formgebung, dadurch gekennzeichnet, daß zunächst ein festes, rieselfähiges Vorgemisch hergestellt wird, welches Einzelrohstoffe und/oder Compounds enthält, die bei Raumtemperatur und einem Druck von 1 bar als Feststoff vorliegen und einen Schmelzpunkt bzw. Erweichungspunkt nicht unter 45 °C aufweisen sowie gegebenenfalls bis zu 10 Gew.-% bei Temperaturen unter 45 °C und einem Druck von 1 bar flüssige nichtionische Tenside enthalten, wobei der Mischvorgang bei Raumtemperatur bis hin zu Temperaturen unterhalb der Schmelz- bzw. Erweichungspunkte der bezeichneten Einzelrohstoffe und/oder Compounds erfolgt, und wobei dieses Vorgemisch unter Einsatz von Verdichtungskräften bei Temperaturen von mindestens 45 °C in ein Korn überführt sowie gegebenenfalls anschließend weiterverarbeitet oder aufbereitet wird, mit den Maßgaben, daß
  • (a) der Gehalt an freiem Wasser, bezogen auf das Vorgemisch, unter 2 Gew.-% liegt und ein Gesamtwassergehalt von 15 Gew.-%, bezogen auf das Vorgemisch, nicht überschritten wird und
  • (b) im Vorgemisch ein oder mehrere Aniontenside in einer Mindestmenge von 0,5 Gew. -%, bezogen auf das Mittel, und mindestens ein Rohstoff oder Compound eingesetzt werden, der bzw. das bei einem Druck von 1 bar und Temperaturen unterhalb von 45 °C in fester Form vorliegt, unter den Verarbeitungsbedingungen aber als Schmelze vorliegt, wobei diese Schmelze als polyfunktioneller, in Wasser löslicher Binder dient, welche bei der Herstellung der Mittel sowohl die Funktion eines Gleitmittels als auch eine Kleberfunktion für die festen Wasch- oder Reinigungsmittelcompounds- bzw. -rohstoffe ausübt, bei der Wiederauflösung des Mittels in wäßriger Flotte hingegen desintegrierend wirkt und wobei dieser Rohstoff oder Compound ausgewählt ist aus der Gruppe lineare, verzweigte und modifizierte Polyethylenglycole, modifizierte Polypropylenglykole, 1,2-Polypropylenglycole, niedermolekulare Polyvinylpyrrolidone und Derivate von diesen mit relativen Molekülmassen bis maximal 30000, alkoxylierte Fett- und Oxoalkohole, Fettsäuremethylesterethoxylate, verzweigte und lineare ethoxylierte Fettsäuren mit 2 bis 100 EO, Hydroxymischether, wasserfreie gequollene Polymere, Alkylglycoside der Formel RO(G)x, in welcher
    R
    primäres geradkettiges oder methylverzweigtes (C8-C22)-Alkyl
    G
    eine Glycoseeinheit mit 5 oder 6 Kohlenstoffatomen
    x
    eine Zahl zwischen 1 und 10 bedeuten,
  • Polyhydroxyfettsäureamide der Formel (I)
    Figure 00090001
    in der
    R2CO
    (C6-C22)-Acyl,
    R3
    Wasserstoff, (C1-C4)-Alkyl, (C1-C4)-Hydroxyalkyl,
    [Z]
    lineares oder verzweigtes (C3-C10)-Polyhydroxyalkyl mit 3 bis 10 Hydroxylgruppen bedeuten,
    Polyhydroxyfettsäureamide der Formel (II)
    Figure 00090002
    in der
    R4
    lineares oder verzweigtes (C7-C12)-Alkyl, lineares oder verzweigtes (C7-C12)-Alkyenyl,
    R5
    lineares oder verzweigtes (C2-C8)-Alkyl, Cycloalkyl mit 2 bis 8 Kohlenstoffatomen, Aryl mit 2 bis 8 Kohlenstoffatomen,
    R6
    lineares oder verzweigtes (C1-C8)-Alkyl, (C1-C8)-Oxyalkyl, Cycloalkyl mit 1 bis 8 Kohlenstoffatomen, Aryl mit 1 bis 8 Kohlenstoffatomen,
    [Z']
    ggf. alkoxyliertes lineares Polyhydroxyalkyl mit mindestens 2 Hydroxylgruppen in der Alkylkette bedeuten,
    und deren Gemische.
    Der Gehalt an flüssigem, d.h. nicht in Form von Hydratwasser und/oder Konstitutionswasser vorliegendem Wasser liegt unter 2 Gew.-%, vorzugsweise unter 1 Gew.-% und insbesondere sogar unter 0,5 Gew.-%, jeweils bezogen auf das Vorgemisch. Wasser kann dementsprechend im wesentlichen nur in chemisch und/oder physikalisch gebundener Form bzw. als Bestandteil der bei Temperaturen unterhalb 45 °C bei einem Druck von 1 bar als Feststoff vorliegenden Rohstoffe bzw. Compounds, aber nicht als Flüssigkeit, Lösung oder Dispersion in das Verfahren zur Herstellung des Vorgemisches eingebracht werden. Das Vorgemisch weist insgesamt einen Wassergehalt von nicht mehr als 15 Gew.-% auf, wobei dieses Wasser also nicht in flüssiger freier Form, sondern chemisch und/oder physikalisch gebunden vorliegt, und es insbesondere bevorzugt ist, daß der Gehalt an nicht an Zeolith und/oder an Silikaten gebundenem Wasser im festen Vorgemisch nicht mehr als 10 Gew.-%, vorzugsweise weniger als 7 Gew.-% und unter besonderer Bevorzugung maximal 2 bis 5 Gew.-% beträgt.
    Unter teilchenförmigen Wasch- oder Reinigungsmitteln werden im Rahmen der Erfindung vorzugsweise solche verstanden, die keine staubförmigen Anteile und insbesondere keine Teilchengrößen unterhalb von 200 µm aufweisen. Insbesondere sind derartige Teilchengrößenverteilungen bevorzugt, welche zu mindestens 90 Gew.-% Teilchen mit einem Durchmesser von mindestens 400 µm aufweisen. In einer besonders bevorzugten Ausführungsform der Erfindung bestehen die hergestellten Wasch- oder Reinigungsmittel, Compounds oder behandelten Rohstoffe zu mindestens 70 Gew.-%, vorteilhafterweise zu mindestens 80 Gew.-% und mit besonderer Bevorzugung darüber bis hin zu 100 Gew.-% aus kugelförmigen (pertenförmigen) Teilchen mit einer Teilchengrößenverteilung, welche mindestens 80 Gew.-% Teilchen zwischen 0,8 und 2,0 mm aufweist.
    Unter Wasch- oder Reinigungsmitteln werden derartige Kompositionen verstanden, die zum Waschen oder Reinigen eingesetzt werden können, ohne daß üblicherweise weitere Inhaltsstoffe zugemischt werden müssen. Ein Compound hingegen besteht aus mindestens 2 üblicherweise in Wasch- oder Reinigungsmitteln eingesetzten Bestandteilen; Compounds werden normalerweise aber nur in Mischung mit anderen Bestandteilen, vorzugsweise zusammen mit anderen Compounds eingesetzt. Ein behandelter Rohstoff ist im Rahmen dieser Erfindung ein relativ feinteiliger Rohstoff, der durch das erfindungsgemäße Verfahren in ein gröberes Teilchen überführt wurde. Strenggenommen ist ein behandelter Rohstoff im Rahmen der Erfindung ein Compound, wenn das Behandlungsmittel ein üblicherweise in Wasch- oder Reinigungsmitteln eingesetzter Inhaltsstoff ist.
    Die in dem erfindungsgemäßen Verfahren eingesetzten Inhaltsstoffe können - mit Ausnahme der gegebenenfalls vorhandenen bei Temperaturen unterhalb von 45 °C und einem Druck von 1 bar flüssigen nichtionischen Tenside - separat hergestellte Compounds, aber auch Rohstoffe sein, welche pulverförmig oder partikulär (feinteilig bis grob), auf jeden Fall aber bei Raumtemperatur und einem Druck von 1 bar in fester Form vorliegen. Als partikuläre Teilchen können beispielsweise durch Sprühtrocknung hergestellte Beads oder (Wirbelschicht-) Granulate eingesetzt werden. Die Zusammensetzung der Compounds an sich ist unwesentlich für die Erfindung mit der Ausnahme des Wassergehalts, der so bemessen sein muß, daß das Vorgemisch wie oben definiert im wesentlichen wasserfrei ist und vorzugsweise nicht mehr als 10 Gew.-% an Hydratwasser und/oder Konstitutionswasser enthält. In einer bevorzugten Ausführungsform werden dabei übertrocknete Compounds in dem Vorgemisch eingesetzt. Derartige Compounds können beispielsweise durch Sprühtrocknung erhalten werden, wobei die Temperatursteuerung so geregelt ist, daß die Turmaustrittstemperaturen oberhalb von 100 °C, beispielsweise bei 110 °C oder darüber liegen. Ebenso ist es möglich, daß im Vorgemisch feste Compounds eingesetzt werden, die als Träger von Flüssigkeiten, beispielsweise flüssigen nichtionischen Tensiden oder Silikonöl und/oder Paraffinen, dienen. Diese Compounds können Wasser in dem oben angegebenen Rahmen enthalten, wobei die Compounds rieselfähig sind und auch bei höheren Temperaturen von mindestens 45 °C rieselfähig bzw. zumindest förderbar bleiben. Insbesondere ist es aber bevorzugt, daß im Vorgemisch Compounds mit maximal 10 Gew.-% und unter besonderer Bevorzugung mit maximal 7 Gew.-% Wasser, bezogen auf das Vorgemisch, eingesetzt werden. Freies Wasser, also Wasser, das nicht in irgendeiner Form an einen Feststoff gebunden ist und daher "in flüssiger Form" vorliegt, ist vorzugsweise gar nicht im Vorgemisch enthalten, da bereits sehr geringe Mengen, beispielsweise um 0,2 oder 0,5 Gew.-%, bezogen auf das Vorgemisch, ausreichen, um das an sich wasserlösliche Bindemittel anzulösen. Dies hätte zur Folge, daß der Schmelzpunkt bzw. Erweichungspunkt herabgesetzt und das Endprodukt sowohl an Rieselfähigkeit als auch an Schüttgewicht verlieren würde.
    Überraschenderweise hat es sich erwiesen, daß es keineswegs gleichgültig ist, an welchen festen Rohstoff bzw. in welchem festen Compound das Wasser gebunden ist. So ist das Wasser, das an Buildersubstanzen wie Zeolith oder Silikate (Beschreibung der Substanzen siehe unten), insbesondere wenn das Wasser an Zeolith A, Zeolith P bzw. MAP und/oder Zeolith X gebunden ist, als weniger kritisch anzusehen. Hingegen ist es bevorzugt, daß Wasser, welches an andere feste Bestandteile als an die genannten Buildersubstanzen gebunden ist, vorzugsweise in Mengen von weniger als 3 Gew.-% im Vorgemisch enthalten ist. In einer Ausführungsform der Erfindung ist es daher bevorzugt, daß der Gehalt an gebundenem Wasser im Vorgemisch nicht mehr als 10 Gew.-% beträgt und/oder der Gehalt an nicht an Zeolith und/oder an Silikaten gebundenem Wasser weniger als 7 Gew.-% und insbesondere maximal 2 bis 5 Gew.-% beträgt. Dabei ist es besonders vorteilhaft, wenn das Vorgemisch gar kein Wasser enthält, das nicht an die Buildersubstanzen gebunden ist. Dies ist technisch jedoch nur schwer zu realisieren, da in der Regel durch die Rohstoffe und Compounds zumindest immer Spuren von Wasser eingeschleppt werden.
    Der Gehalt der im Vorgemisch eingesetzten festen Compounds an bei Temperaturen unterhalb 45 °C nicht-wäßrigen Flüssigkeiten beträgt vorzugsweise ebenfalls bzw. zusätzlich bis zu 10 Gew.-%, vorteilhafterweise bis zu 6 Gew.-%, wiederum bezogen auf das Vorgemisch. Insbesondere werden in dem Vorgemisch feste Compounds eingesetzt, welche übliche bei Temperaturen unterhalb von 45 °C und einem Druck von 1 bar flüssige nichtionische Tenside enthalten, die nach allen bekannten Herstellungsarten - beispielsweise durch Sprühtrocknung, Granulierung oder Bedüsung von Trägerbeads - separat hergestellt wurden. Auf diese Weise können Vorgemische hergestellt werden, welche beispielsweise bis etwa 10 Gew.-%, vorzugsweise darunter, insbesondere bis maximal 8 Gew.-% und beispielsweise zwischen 1 und 5 Gew.-% an nichtionischen Tensiden, bezogen auf das fertige Mittel, zulassen.
    Compounds, welche Wasser in der oben angegebenen Form enthalten und/oder als Träger für Flüssigkeiten, insbesondere für bei Raumtemperatur flüssige nichtionische Tenside dienen, also diese bei Raumtemperatur flüssigen Inhaltsstoffe enthalten und erfindungsgemäß eingesetzt werden können, weisen auf keinen Fall einen Erweichungspunkt unterhalb 45 °C auf. Ebenso weisen die separat eingesetzten Einzelrohstoffe einen Schmelzpunkt von wenigstens 45 °C auf. Vorzugsweise liegt der Schmelzpunkt bzw. der Erweichungspunkt aller im Vorgemisch eingesetzten Einzelrohstoffe und Compounds oberhalb von 45 °C und vorteilhafterweise bei mindestens 50 °C.
    In einer bevorzugten Ausführungsform der Erfindung weisen mindestens 80 Gew.-%, insbesondere mindestens 85 Gew.-% und mit besonderer Bevorzugung mindestens 90 Gew.-% der im Vorgemisch eingesetzten Compounds und Einzelrohstoffe einen wesentlich höheren Erweichungspunkt bzw. Schmelzpunkt auf als die Temperaturen, die unter den Verfahrensbedingungen erreicht werden. In der Praxis werden die Verfahrenstemperaturen schon allein aus ökonomischen Gründen nicht oberhalb von 150 °C, vorzugsweise nicht oberhalb von 120 °C liegen. Somit werden mindestens 80 Gew.-% der eingesetzten Compounds und Einzelrohstoffe einen Erweichungspunkt bzw. Schmelzpunkt oberhalb von 150 °C aufweisen. In der Regel liegt der Erweichungspunkt oder der Schmelzpunkt sogar weit oberhalb dieser Temperatur. Falls Inhaltsstoffe eingesetzt werden, die sich unter Temperatureinfluß zersetzen, beispielsweise Peroxybleichmittel wie Perborat oder Percarbonat, so liegt die Zersetzungstemperatur dieser Inhaltsstoffe bei einem Druck von 1 bar und insbesondere bei höheren Drucken, die in den erfindungsgemäßen und bevorzugten Extrusionsverfahren vorliegen, ebenfalls signifikant oberhalb von 45 °C.
    Das Vorgemisch kann zusätzlich zu den festen Bestandteilen bis zu 10 Gew.-% bei Temperaturen unterhalb von 45 °C und einem Druck von 1 bar flüssige nichtionische Tenside, insbesondere die üblicherweise in Wasch- oder Reinigungsmitteln eingesetzten alkoxylierten Alkohole, wie Fettalkohole oder Oxoalkohole mit einer C-Kettentänge zwischen 8 und 20 und insbesondere durchschnittlich 3 bis 7 Ethylenoxideinheiten pro Mol Alkohol (genauere Beschreibung siehe unten). Die Zugabe der flüssigen nichtionischen Tenside kann in den Mengen erfolgen, die noch sicherstellen, daß das Vorgemisch in rieselfähiger Form vorliegt. Falls derartige flüssige Niotenside in das Vorgemisch eingebracht werden, so ist es bevorzugt, daß flüssige Niotenside und das desintegrierend wirkende Bindemittel getrennt voneinander in das Verfahren eingebracht werden. In einer bevorzugten Ausführungsform der Erfindung werden die flüssigen Niotenside in einem kontinuierlichen Produktionsverfahren insbesondere mittels Düsen auf den Pulverstrom aufgebracht und von letzerem aufgesaugt.
    Das Vorgemisch enthält aber auch mindestens einen Rohstoff oder mindestens ein Compound, welcher oder welches als Bindemittel dient, zwar bei Raumtemperatur fest ist, während der Verdichtung unter den Verfahrensbedingungen aber flüssig in Form einer Schmelze vorliegt. Das Bindemittel selber kann einmal geschmolzen auf das Vorgemisch aufgedüst oder zu dem Vorgemisch zugetropft werden, zum anderen hat es sich aber auch als vorteilhaft erwiesen, das Bindemittel in fester Form als Pulver in das Vorgemisch einzubringen. Der Schmelzpunkt bzw. der Erweichungspunkt liegt bei einem Druck von 1 bar bei mindestens 45 °C und (insbesondere aus ökonomischen Gründen) vorzugsweise unterhalb von 200 °C, insbesondere bis maximal 150 °C. Wird der Binder in Form einer Schmelze in das Vorgemisch eingebracht, so beträgt die Temperatur in dem Schmelzgefäß ebenfalls mehr als 45 °C bis maximal etwa 200 °C, wobei die Temperatur in dem Schmelzgefäß die Schmelztemperatur bzw. die Temperatur des Erweichungspunkts des Bindemittels bzw. der Bindemittelmischung durchaus signifikant übersteigen kann.
    Die Art des geeigneten Bindemittels und die Temperatur im Verfahrensschritt der Verdichtung sind voneinander abhängig. Da es sich als vorteilhaft erwiesen hat, wenn das Bindemittel im Verfahrensschritt der Verdichtung so homogen wie möglich in dem zu verdichtenden Gut verteilt ist, müssen in dem Verfahrensschritt der Verdichtung Temperaturen vorliegen, bei denen das Bindemittel zumindest erweicht, vorzugsweise aber vollständig und nicht nur partiell in aufgeschmolzener Form vorliegt. Wird also ein Bindemittel mit hohem Schmelzpunkt bzw. hohem Erweichungspunkt gewählt, so muß in dem Verfahrensschritt der Verdichtung eine Temperatur eingestellt werden, welche das Aufschmelzen des Bindemittels sicherstellt. Hinzu kommt, daß in Abhängigkeit von der gewünschten Zusammensetzung des Endprodukts auch temperatursensitive Rohstoffe verarbeitet werden sollen können. Hier wird die obere Temperaturgrenze durch die Zersetzungstemperatur des sensitiven Rohstoffes gegeben, wobei es bevorzugt ist, signifikant unterhalb der Zersetzungstemperatur dieses Rohstoffes zu arbeiten. Hingegen ist die untere Grenze für den Schmelzpunkt bzw. den Erweichungspunkt deshalb von so hoher Bedeutung, da bei Schmelzpunkten bzw. Erweichungspunkten unterhalb von 45 °C in der Regel ein Endprodukt erhalten wird, das schon bei Raumtemperatur und leicht erhöhten Temperaturen um 30 °C, also bei sommerlichen Temperaturen und unter Lager- bzw. Transportbedingungen zum Verkleben neigt. Als besonders vorteilhaft hat es sich erwiesen, wenn wenige Grade, beispielsweise 2 bis 20 °C, oberhalb des Schmelzpunkts bzw. oberhalb des Erweichungspunkts gearbeitet wird
    Ohne sich auf diese Theorie beschränken zu wollen, ist die Anmelderin der Ansicht, daß durch die homogene Verteilung des Bindemittels innerhalb des Vorgemisches unter den Verfahrensbedingungen der Verdichtung die festen Compounds und die gegebenenfalls vorhandenen Einzelrohstoffe derart von dem Bindemittel umschlossen und anschließend miteinander verklebt werden, daß die fertiggestellten Endprodukte nahezu genau aus diesen vielen kleinen Einzelteilchen aufgebaut sind, welche durch das Bindemittel, das die Aufgabe einer vorzugsweisen dünnen Trennwand zwischen diesen Einzetteilchen übernimmt, zusammengehalten werden. In der idealisierten Form kann dabei von einer Waben-ähnlichen Struktur ausgegangen werden, wobei diese Waben mit Feststoffen (Compounds oder Einzelrohstoffen) gefüllt sind. Bei Kontakt mit Wasser, auch mit kaltem Wasser, also beispielsweise zu Beginn eines maschinellen Waschvorgangs, lösen sich bzw. zerfallen diese dünnen Trennwände nahezu augenblicklich; überraschenderweise ist dies auch dann der Fall, wenn das Bindemittel an sich bei Raumtemperatur, beispielsweise aufgrund einer Kristallstruktur, nicht schnell in Wasser löslich ist. Vorzugsweise werden jedoch derartige Bindemittel eingesetzt, welche sich in einem wie unten angegebenen Testverfahren in einer Konzentration von 8 g Bindemittel auf 1 I Wasser bei 30 °C innerhalb von 90 Sekunden nahezu vollständig lösen lassen.
    Das oder die Bindemittel müssen also von der Art sein, daß die klebenden Eigenschaften auch bei Temperaturen, welche signifikant oberhalb des Schmelzpunkts bzw. des Erweichungspunktes liegen, noch erhalten bleiben. Andererseits ist es auch wesentlich für die Wahl der Art und der Menge des oder der eingesetzten Bindemittel(s), daß zwar die bindenden Eigenschaften nach dem Wiederabkühlen innerhalb des Endprodukts nicht verlorengehen, der Zusammenhalt des Endprodukts somit gesichert ist, daß jedoch das Endprodukt selber unter üblichen Lager- und Transportbedingungen nicht verklebt.
    Im weiteren Verlauf der Beschreibung dieser Erfindung wird einfachheitshalber nur noch von einem oder dem Bindemittel die Rede sein. Dabei soll jedoch klargestellt sein, daß an sich immer auch der Einsatz von mehreren, verschiedenen Bindemitteln und Mischungen aus verschiedenen Bindemitteln möglich ist.
    In einer bevorzugten Ausführungsform der Erfindung wird ein Bindemittel eingesetzt, daß bei Temperaturen bis maximal 130°C, vorzugsweise bis maximal 100 °C und insbesondere bis 90 °C bereits vollständig als Schmelze vorliegt. Das Bindemittel muß also je nach Verfahren und Verfahrensbedingungen ausgewählt werden oder die Verfahrensbedingungen, insbesondere die Verfahrenstemperatur, müssen - falls ein bestimmtes Bindemittel gewünscht wird - an das Bindemittel angepaßt werden.
    Die erfindungsgemäßen Bindemittel wurden bereits genannt. Sie werden nachfolgend genauer beschrieben. Bindemittel, die allein oder in Mischung mit anderen Bindemitteln eingesetzt werden können, sind Polyethylenglykole, 1,2-Polypropylenglykole sowie modifizierte Polyethylenglykole und Polypropylenglykole. Zu den modifizierten Polyalkylenglykolen zählen insbesondere die Sulfate und/oder die Disulfate von Polyethylenglykolen oder Polypropylenglykolen mit einer relativen Molekülmasse zwischen 600 und 12000 und insbesondere zwischen 1000 und 4000. Eine weitere Gruppe besteht aus Mono- und/oder Disuccinaten der Polyalkylenglykole, welche wiederum relative Molekülmassen zwischen 600 und 6000, vorzugsweise zwischen 1000 und 4000 aufweisen. Für eine genauere Beschreibung der modifizierten Polyalkylenglykolether wird auf die Offenbarung der internationalen Patentanmeldung WO-A-93/02176 verwiesen. Im Rahmen dieser Erfindung zählen zu Polyethylenglykolen solche Polymere, bei deren Herstellung neben Ethylenglykol ebenso C3-C5-Glykole sowie Glycerin und Mischungen aus diesen als Startmoleküle eingesetzt werden. Ferner werden auch ethoxylierte Derivate wie Trimethylol-propan mit 5 bis 30 EO umfaßt.
    Die vorzugsweise eingesetzten Polyethylenglykole können eine lineare oder verzweigte Struktur aufweisen, wobei insbesondere lineare Polyethylenglykole bevorzugt sind.
    Zu den insbesondere bevorzugten Polyethylenglykolen gehören solche mit relativen Molekülmassen zwischen 2000 und 12000, vorteilhafterweise um 4000, wobei Polyethylenglykole mit relativen Molekülmassen unterhalb 3500 und oberhalb 5000 insbesondere in Kombination mit Polyethylenglykolen mit einer relativen Molekülmasse um 4000 eingesetzt werden können und derartige Kombinationen vorteilhafterweise zu mehr als 50 Gew.-%, bezogen auf die gesamte Menge der Polyethylenglykole, Polyethylenglykole mit einer relativen Molekülmasse zwischen 3500 und 5000 aufweisen. Als Bindemittel können jedoch auch Polyethylenglykole eingesetzt werden, welche an sich bei Raumtemperatur und einem Druck von 1 bar in flüssigem Zustand vorliegen; hier ist vor allem von Polyethylenglykol mit einer relativen Molekülmasse von 200, 400 und 600 die Rede. Allerdings sollten diese an sich flüssigen Polyethylenglykole nur in einer Mischung mit mindestens einem weiteren Bindemittel eingesetzt werden, wobei diese Mischung wieder den erfindungsgemäßen Anforderungen genügen muß, also einen Schmelzpunkt bzw. Erweichungspunkt von mindestens oberhalb 45 °C aufweisen muß.
    Zu den modifizierten Polyethylenglykolen gehören auch ein- oder mehrseitig endgruppenverschlossene Polyethylenglykole, wobei die Endgruppen vorzugsweise C1-C12-Alkylketten, die linear oder verzweigt sein können, darstellen. Insbesondere weisen die Endgruppen die Alkylketten zwischen C1 und C6, vor allem zwischen C1 und C4 auf, wobei auch Isopropyl- und Isobutyl- bzw. tert.-Butyl- durchaus mögliche Alternativen darstellen.
    Einseitig endgruppenverschlossene Polyethylenglykolderivate können auch der Formel Cx(EO)y(PO)z genügen, wobei Cx eine Alkylkette mit einer C-Kettentänge von 1 bis 20, y 50 bis 500 und z 0 bis 20 sein können. Für z=0 existieren Überschneidungen mit Verbindungen des vorangegangen Absatzes.
    Aber auch EO-PO-Polymere (x gleich 0) können als Bindemittel dienen.
    Ebenso eignen sich als Bindemittel niedermolekulare Polyvinylpyrrolidone und Derivate von diesen mit relativen Molekülmassen bis maximal 30000. Bevorzugt sind hierbei relative Molekülmassenbereiche zwischen 3000 und 30000, beispielsweise um 10000. Polyvinylpyrrolidone werden vorzugsweise nicht als alleinige Bindemittel, sondern in Kombination mit anderen, insbesondere in Kombination mit Polyethylenglykolen, eingesetzt.
    Als geeignete weitere Bindemittel haben sich Rohstoffe erwiesen, welche als Rohstoffe an sich wasch- oder reinigungsaktive Eigenschaften aufweisen, also beispielsweise nichtionische Tenside mit Schmelzpunkten von mindestens 45 °C oder Mischungen aus nichtionischen Tensiden und anderen Bindemitteln. Zu den bevorzugten nichtionischen Tensiden gehören alkoxylierte Fett- oder Oxoalkohole, insbesondere C12-C18-Alkohole. Dabei haben sich Alkoxylierungsgrade, insbesondere Ethoxylierungsgrade von durchschnittlich 18 bis 100 AO, insbesondere EO pro Mol Alkohol und Mischungen aus diesen als besonders vorteilhaft erwiesen Vor allem Fettalkohole mit durchschnittlich 18 bis 35 EO, insbesondere mit durchschnittlich 20 bis 25 EO, zeigen vorteilhafte Bindereigenschaften im Sinne der vorliegenden Erfindung. Gegebenenfalls können in Bindemittelmischungen auch ethoxylierte Alkohole mit durchschnittlich weniger EO-Einheiten pro Mol Alkohol enthalten sein, beispielsweise Talgfettalkohol mit 14 EO. Allerdings ist es bevorzugt, diese relativ niedrig ethoxylierten Alkohole nur in Mischung mit höher ethoxylierten Alkoholen einzusetzen. Vorteilhafterweise beträgt der Gehalt der Bindemittel an diesen relativ niedrig ethoylierten Alkoholen weniger als 50 Gew.-%, insbesondere weniger als 40 Gew.-%, bezogen auf die Gesamtmenge an eingesetztem Bindemittel. Vor allem üblicherweise in Wasch- oder Reinigungsmitteln eingesetzte nichtionische Tenside wie C12-C18-Alkohole mit durchschnittlich 3 bis 7 EO, welche bei Raumtemperatur an sich flüssig vorliegen, sind vorzugsweise in den Bindemittelmischungen nur in den Mengen vorhanden, daß dadurch weniger als 10 Gew.-%, insbesondere weniger als 8 Gew.-% und vorteilhafterweise weniger als 2 Gew.-% dieser nichtionischen Tenside, jeweils bezogen auf das Verfahrensendprodukt, bereitgestellt werden. Wie bereits oben beschrieben ist es allerdings weniger bevorzugt, in den Bindemittelmischungen bei Raumtemperatur flüssige nichtionische Tenside einzusetzen. In einer besonders vorteilhaften Ausführungsform sind derartige nichtionische Tenside deshalb kein Bestandteil der Bindemittelmischung, da diese nicht nur den Erweichungspunkt der Mischung herabsetzen, sondern auch zur Klebrigkeit des Endprodukts beitragen können und außerdem durch ihre Neigung, beim Kontakt mit Wasser zu Vergelungen zu führen, auch dem Erfordernis der schnellen Auflösung des Bindemittels/der Trennwand im Endprodukt häufig nicht im gewünschten Umfang genügen. Ebenso ist es nicht bevorzugt, daß übliche in Wasch- oder Reinigungsmitteln abgesetzte Aniontenside oder deren Vorstufen, die Aniontensidsäuren, in der Bindemittelmischung enthalten sind. C12-C18-Fettalkohole, C16-C18-Fettalkohole oder reiner C18-Fettalkohol mit mehr als 50 EO, vorzugsweise mit etwa 80 EO, haben sich hingegen als hervorragend geeignete Bindemittel erwiesen, die allein oder in Kombination mit anderen Bindemitteln eingesetzt werden können.
    Andere nichtionische Tenside, die als Bindemittel geeignet sind, stellen die nicht zu Vergelungen neigenden Fettsäuremethylesterethoxylate, insbesondere solche mit durchschnittlich 10 bis 25 EO dar (genauere Beschreibung dieser Stoffgruppe siehe unten). Besonders bevorzugte Vertreter dieser Stoffgruppe sind überwiegend auf C16-C18-Fettsäuren basierende Methylester, beispielsweise gehärteter Rindertalgmethylester mit durchschnittlich 12 EO oder mit durchschnittlich 20 EO.
    Eine weitere Substanzklasse, die als Bindemittel im Rahmen der vorliegenden Erfindung geeignet ist, stellen ethoxylierte Fettsäuren mit 2 bis 100 EO dar, deren "Fettsäure"-Reste im Rahmen dieser Erfindung linear oder verzweigt sein können. Dabei sind vor allem derartige Ethoxylate bevorzugt, die eine eingeengte Homologenverteilung (NRE) und/oder einen Schmelzpunkt oberhalb von 50 °C aufweisen. Derartige Fettsäureethoxylate können als alleiniges Bindemittel oder in Kombination mit anderen Bindemitteln eingesetzt werden, während die nicht-ethoxylierten Natrium- und Kaliumseifen weniger bevorzugt sind und nur in Kombination mit anderen Bindemittel eingesetzt werden.
    Ebenso sind aber auch Hydroxymischether, die gemäß der Lehre der europäischen Patentanmeldung EP-A-0 754 667 (BASF) durch Ringöffnung von Epoxiden ungesättigter Fettsäureester erhalten werden können, als Bindemittel, insbesondere in Kombination mit Polyethylenglykolen, den vorgenannten Fettsäuremethylesterethoxylaten oder den Fettsäureethoxylaten, geeignet.
    Überraschenderweise haben sich auch wasserfreie gequollene Polymere, insbesondere Stärkedisphosphat/Glycerin, Polyvinylpyrrolidon/Glycerin und modifizierte Cellulose/Glycerin, beispielsweise Hydroxypropylcellulose/Glycerin, als hervorragend einsetzbare Bindemittel erwiesen. Hierbei sind 5 bis 20 Gew.-%ige "Lösungen" der Polymere in Glycerin, insbesondere etwa 10 Gew.-%ige "Lösungen", besonders vorteilhaft.
    In einer bevorzugten Ausführungsform der Erfindung wird als Bindemittel eine Mischung eingesetzt, welche C12-C18-Fettalkohol auf Basis Kokos oder Talg mit durchschnittlich 20 EO und Polyethylenglykol mit einer relativen Molekülmasse von 400 bis 4000 enthält.
    In einer weiteren bevorzugten Ausführungsform der Erfindung wird als Bindemittel eine Mischung eingesetzt, welche überwiegend auf C16-C18-Fettsäuren basierende Methylester mit durchschnittlich 10 bis 25 EO, insbesondere gehärteten Rindertalgmethylester mit durchschnittlich 12 EO oder durchschnittlich 20 EO, und einem C12-C18-Fettalkohol auf Basis Kokos oder Talg mit durchschnittlich 20 EO und/oder Polyethylenglykol mit einer relativen Molekülmasse von 400 bis 4000 enthält.
    Als besonders vorteilhafte Ausführungsformen der Erfindung haben sich Bindemittel erwiesen, die entweder allein auf Polyethylenglykolen mit einer relativen Molekülmasse um 4000 oder auf einer Mischung aus C12-C18-Fettalkohol auf Basis Kokos oder Talg mit durchschnittlich 20 EO und einem der oben beschriebenen Fettsäuremethylesterethoxylate oder auf einer Mischung aus C12-C18-Fettalkohol auf Basis Kokos oder Talg mit durchschnittlich 20 EO, einem der oben beschriebenen Fettsäuremethylesterethoxylate und einem Polyethylenglykol, insbesondere mit einer relativen Molekülmasse um 4000, basieren. Dabei sind Mischungen von Polyethylenglykol mit einer relativen Molekülmasse um 4000 mit den genannten Fettsäuremethylesterethoxylaten oder mit C16-C18-Fettalkohol mit 20 EO im Gewichtsverhättnis 1:1 oder darüber besonders bevorzugt.
    Andere Rohstoffe wie Trimethylolpropylene (Handelsprodukte der Firma BASF, Bundesrepublik Deutschland) können zwar in Bindemittelmischungen, insbesondere in Mischung mit Polyethylenglykolen, enthalten sein; sie können jedoch nicht als alleiniges Bindemittel eingesetzt werden, da sie zwar eine bindende/klebende Funktion erfüllen, jedoch keine desintegrierende Wirkung aufweisen.
    Außerdem können als weitere Bindemittel allein oder in Kombination mit anderen Bindemitteln auch Alkylglykoside der allgemeinen Formel RO(G)x eingesetzt werden, in der R einen primären geradkettigen oder methylverzweigten, insbesondere in 2-Stellung methylverzweigten aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C-Atomen bedeutet und G das Symbol ist, das für eine Glykoseeinheit mit 5 oder 6 C-Atomen, vorzugsweise für Glucose, steht. Der Oligomerisierungsgrad x, der die Verteilung von Monoglykosiden und Oligoglykosiden angibt, ist eine beliebige Zahl zwischen 1 und 10; vorzugsweise liegt x bei 1,2 bis 1,4. Insbesondere sind solche Alkylglykoside geeignet, welche einen Erweichungsgrad oberhalb 80 °C und einen Schmelzpunkt oberhalb von 140 °C aufweisen. Ebenfalls geeignet sind hochkonzentrierte Compounds mit Gehalten von mindestens 70 Gew.-% Alkylglykosiden, vorzugsweise mindestens 80 Gew.-% Alkylglykosiden. Unter Einsatz hoher Scherkräfte kann die Schmelzagglomeration und insbesondere die Schmelzextrusion mit derartig hochkonzentrierten Compounds bereits bei Temperaturen durchgeführt werden, welche oberhalb des Erweichungspunkts, aber noch unterhalb der Schmelztemperatur liegen. Obwohl Alkylglykoside auch als alleinige Binder eingesetzt werden können, ist es bevorzugt, Mischungen aus Alkylglykosiden und anderen Bindemitteln einzusetzen. Insbesondere sind hier Mischungen aus Polyethylenglykolen und Alkylglykosiden, vorteilhafterweise in Gewichtsverhältnissen von 25:1 bis 1:5 unter besonderer Bevorzugung von 10:1 bis 2:1.
    Ebenfalls als Bindemittel, insbesondere in Kombination mit Polyethylenglykolen und/oder Alkylglykosiden, geeignet sind Polyhydroxyfettsäureamide der Formel (I), in der R2CO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R3 für Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 10 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht.
    Figure 00220001
    Vorzugsweise leiten sich die Polyhydroxyfettsäureamide von reduzierenden Zuckern mit 5 oder 6 Kohlenstoffatomen, insbesondere von der Glucose ab.
    Zur Gruppe der Polyhydroxyfettsäureamide gehören auch Verbindungen der Formel (II),
    Figure 00230001
    in der R3 für einen linearen oder verzweigten Alkyl- oder Alkenylrest mit 7 bis 12 Kohlenstoffatomen, R4 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest mit 2 bis 8 Kohlenstoffatomen und R5 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest oder einen Oxy-Alkylrest mit 1 bis 8 Kohlenstoffatomen steht, wobei C1-C4-Alkyl- oder Phenylreste bevorzugt sind, und [Z] für einen linearen Polyhydroxyalkylrest, dessen Alkylkette mit mindestens zwei Hydroxylgruppen substituiert ist, oder alkoxylierte, vorzugsweise ethoxylierte oder propoxylierte Derivate dieses Restes steht. [Z] wird auch hier vorzugsweise durch reduktive Aminierung eines Zuckers wie Glucose, Fructose, Maltose, Lactose, Galactose, Mannose oder Xylose erhalten. Die N-Alkoxy- oder N-Arytoxy-substituierten Verbindungen können dann beispielsweise nach der Lehre der internationalen Patentanmeldung WO-A-95/07331 durch Umsetzung mit Fettsäuremethylestem in Gegenwart eines Alkoxids als Katalysator in die gewünschten Polyhydroxyfettsäureamide überführt werden. Besonders bevorzugte Glucamide schmelzen bereits bei 95 bis 105 °C. Aber auch hier - wie bei den Alkylglykosiden - reichen im erfindungsgemäßen Verfahren normalerweise Arbeitstemperaturen aus, welche oberhalb der Erweichungstemperatur, aber unterhalb der Schmelztemperatur liegen.
    Der Gehalt an Bindemittel bzw. Bindemitteln im Vorgemisch beträgt vorzugsweise mindestens 2 Gew.-%, aber weniger als 15 Gew.-%, insbesondere weniger als 10 Gew.-% unter besonderer Bevorzugung von 3 bis 6 Gew.-%, jeweils bezogen auf das Vorgemisch. Insbesondere die wasserfrei gequollenen Polymere werden in Mengen unterhalb 10 Gew.-%, vorteilhafterweise in Mengen von 4 bis 8 Gew.-%, unter Bevorzugung von 5 bis 6 Gew.-%, eingesetzt.
    In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens werden die Feststoffe zur Herstellung des festen und rieselfähigen Vorgemisches zunächst bei Raumtemperatur bis leicht erhöhten Temperaturen, die vorzugsweise unterhalb der Schmelztemperatur bzw. des Erweichungspunkts des Bindemittels liegen und insbesondere bei Temperaturen bis 35 °C in einer üblichen Misch- und/oder Granuliervorrichtung miteinander vermischt. Zu diesen Feststoffen gehören auch solche, welche gemäß dem europäischen Patent EP-B-0 486 592 als Plastifizier- und/oder Gleitmittel dienen können. Hierzu zählen insbesondere Aniontenside wie Alkylbenzolsulfonate und/oder (Fett-)Alkylsulfate, aber auch Polymere wie polymere Polycarboxylate. Eine genauere Beschreibung der möglichen Aniontenside und Polymere erfolgt später in der Auflistung der möglichen Inhaltsstoffe. Die Funktion eines Gleitmittels kann zusätzlich auch von dem Bindemittel oder den Bindemitteln bzw. den Bindemittelmischungen wahrgenommen werden.
    Die Bindemittel werden vorzugsweise als letzte Komponente zugemischt. Ihre Zugabe kann, wie oben bereits dargelegt, als Feststoff, also bei einer Verarbeitungstemperatur, die unterhalb ihres Schmelzpunktes bzw. ihres Erweichungspunkts liegt, oder als Schmelze erfolgen. Vorteilhafterweise wird aber die Zumischung unter derartigen Bedingungen durchgeführt, daß eine möglichst gleichmäßige, homogene Verteilung des Bindemittels in dem Feststoffgemisch erreicht wird. Bei sehr feinteiligen Bindemitteln kann dies bei Temperaturen unterhalb 40 °C, beispielsweise bei Temperaturen des Bindemittels zwischen 15 und 30 °C bewerkstelligt werden. Vorteilhafterweise weist das Bindemittel aber Temperaturen auf, bei denen es bereits in Form einer Schmelze, also oberhalb des Erweichungspunkts, insbesondere in Form einer vollständigen Schmelze, vorliegt. Bevorzugte Temperaturen der Schmelze liegen bei 60 bis 150 °C unter besonderer Bevorzugung des Temperaturbereichs von 80 bis 120 °C. Während des Mischvorgangs, der bei Raumtemperatur bis leicht erhöhter Temperatur, aber unterhalb des Erweichungspunkts bzw. des Schmelzpunkts des Bindemittels erfolgt, erstarrt die Schmelze nahezu augenblicklich, und das Vorgemisch liegt erfindungsgemäß in fester, rieselfähiger Form vor. Der Mischvorgang wird vorteilhafterweise auf jeden Fall solange fortgesetzt, bis die Schmelze erstarrt ist und das Vorgemisch in fester, rieselfähiger Form vorliegt.
    Das Zusammenfügen der Wasch- oder Reinigungsmittelcompounds und/oder -rohstoffe unter gleichzeitiger oder anschließender Formgebung kann durch übliche Verfahren, in denen Verdichtungskräfte aufgewandt werden wie Granulieren, Kompaktieren, beispielsweise Walzenkompaktieren oder Extrudieren, oder Tablettieren, gegebenenfalls unter Zusatz üblicher Sprengmittel, und Pelletieren erfolgen. Dabei können als vorgefertigte Compounds im Vorgemisch auch sprühgetrocknete Granulate eingesetzt werden, die Erfindung ist darauf jedoch keineswegs beschränkt. Vielmehr bietet sich das erfindungsgemäße Verfahren an, keine sprühgetrockneten Granulate einzusetzen, da auch sehr feinteilige Rohstoffe mit staubförmigen Anteilen problemlos erfindungsgemäß verarbeitet werden können, ohne vorher vorcompoundiert, beispielsweise sprühgetrocknet zu werden.
    Der eigentliche Granulierungs-, Kompaktierungs-, Tablettierungs- , Pelletierungs- oder Extrusionsvorgang erfolgt erfindungsgemäß bei Verarbeitungstemperaturen, die zumindest im Verdichtungsschritt mindestens der Temperatur des Erweichungspunkts, wenn nicht sogar der Temperatur des Schmelzpunkts des Bindemittels entsprechen. In einer bevorzugten Ausführungsform der Erfindung liegt die Verfahrenstemperatur signifikant über dem Schmelzpunkt bzw. oberhalb der Temperatur, bei der das Bindemittel als Schmelze vorliegt. Insbesondere ist es aber bevorzugt, daß die Verfahrenstemperatur im Verdichtungsschritt nicht mehr als 20 °C über der Schmelztemperatur bzw. der oberen Grenze des Schmelzbereichs des Bindemittels liegt. Zwar ist es technisch durchaus möglich, auch noch höhere Temperaturen einzustellen; es hat sich aber gezeigt, daß eine Temperaturdifferenz zur Schmetztemperatur bzw. zur Erweichungstemperatur des Bindemittels von 20 °C im allgemeinen durchaus ausreichend ist und noch höhere Temperaturen keine zusätzlichen Vorteile bewirken. Deshalb ist es - insbesondere auch aus energetischen Gründen - besonders bevorzugt, zwar oberhalb, jedoch so nah wie möglich am Schmelzpunkt bzw. an der oberen Temperaturgrenze des Schmelzbereichs des Bindemittels zu arbeiten. Eine derartige Temperaturführung besitzt den weiteren Vorteil, daß auch thermisch empfindliche Rohstoffe, beispielsweise Peroxybleichmittel wie Perborat und/oder Percarbonat, aber auch Enzyme, zunehmend ohne gravierende Aktivsubstanzverluste verarbeitet werden können. Die Möglichkeit der genauen Temperatursteuerung des Binders insbesondere im entscheidenden Schritt der Verdichtung, also zwischen der Vermischung/Homogenisierung des Vorgemisches und der Formgebung, erlaubt eine energetisch sehr günstige und für die temperaturempfindlichen Bestandteile des Vorgemisches extrem schonende Verfahrensführung, da das Vorgemisch nur für kurze Zeit den höheren Temperaturen ausgesetzt ist. Vorzugsweise liegt die Dauer der Temperatureinwirkung zwischen 10 Sekunden und maximal 5 Minuten, insbesondere beträgt sie maximal 3 Minuten.
    Die im wesentlichen wasserfreie Verfahrensführung ermöglicht nicht nur, daß Peroxybleichmittel ohne Aktivitätsverluste verarbeitet werden können, es wird hierdurch auch ermöglicht, Peroxybleichmittel und Bleichaktivatoren (genau Beschreibung siehe unten) gemeinsam zu verarbeiten, ohne gravierende Aktivitätsverluste befürchten zu müssen.
    In einer bevorzugten Ausführungsform der Erfindung wird das erfindungsgemäße Verfahren mittels einer Extrusion durchgeführt, wie sie beispielsweise in dem europäischen Patent EP-B-0 486 592 oder den internationalen Patentanmeldungen WO-A-93/02176 und WO-A-94/09111 beschrieben werden. Dabei wird ein festes Vorgemisch unter Druck strangförmig verpreßt und der Strang nach Austritt aus der Lochform mittels einer Schneidevorrichtung auf die vorbestimmbare Granulatdimension zugeschnitten. Das homogene und feste Vorgemisch enthält ein Plastifizier- und/oder Gleitmittel, welches bewirkt, daß das Vorgemisch unter dem Druck bzw. unter dem Eintrag spezifischer Arbeit plastisch erweicht und extrudierbar wird. Bevorzugte Plastifizier- und/oder Gleitmittel sind Tenside und/oder Polymere, die im Rahmen der nun vorliegenden Erfindung mit Ausnahme der obengenannten nichtionischen Tenside jedoch nicht in flüssiger und insbesondere nicht in wäßriger, sondern in fester Form in das Vorgemisch eingebracht werden.
    Zur Erläuterung des eigentlichen Extrusionsverfahrens wird hiermit ausdrücklich auf die obengenannten Patente und Patentanmeldungen verwiesen. In einer bevorzugten Ausführungsform der Erfindung wird dabei das Vorgemisch vorzugsweise kontinuierlich einem Planetwalzenextruder oder einem 2-Wellen-Extruder bzw. 2-Schnecken-Extruder mit gleichlaufender oder gegenlaufender Schneckenführung zugeführt, dessen Gehäuse und dessen Extruder-Granulierkopf auf die vorbestimmte Extrudiertemperatur aufgeheizt sein können. Unter der Schereinwirkung der Extruderschnecken wird das Vorgemisch unter Druck, der vorzugsweise mindestens 25 bar beträgt, bei extrem hohen Durchsätzen in Abhängigkeit von dem eingesetzten Apparat aber auch darunter liegen kann, verdichtet, plastifiziert, in Form feiner Stränge durch die Lochdüsenplatte im Extruderkopf extrudiert und schließlich das Extrudat mittels eines rotierenden Abschlagmessers vorzugsweise zu etwa kugelförmigen bis zylindrischen Granulatkömem verkleinert. Der Lochdurchmesser der Lochdüsenplatte und die Strangschnittlänge werden dabei auf die gewählte Granulatdimension abgestimmt. In dieser Ausführungsform gelingt die Herstellung von Granulaten einer im wesentlichen gleichmäßig vorherbestimmbaren Teilchengröße, wobei im einzelnen die absoluten Teilchengrößen dem beabsichtigten Einsatzzweck angepaßt sein können. Im allgemeinen werden Teilchendurchmesser bis höchstens 0,8 cm bevorzugt. Wichtige Ausführungsformen sehen hier die Herstellung von einheitlichen Granulaten im Millimeterbereich, beispielsweise im Bereich von 0,5 bis 5 mm und insbesondere im Bereich von etwa 0,8 bis 3 mm vor. Das Länge/Durchmesser-Verhältnis der abgeschlagenen primären Granulate liegt dabei in einer wichtigen Ausführungsform im Bereich von etwa 1:1 bis etwa 3:1. Weiterhin ist es bevorzugt, das noch plastische Primärgranulat einem weiteren formgebenden Verarbeitungsschritt zuzuführen; dabei werden am Rohextrudat vorliegende Kanten abgerundet, so daß letztlich kugelförmig bis annähernd kugelförmige Extrudatkörner erhalten werden können. Falls gewünscht können in dieser Stufe geringe Mengen an Trockenpulver, beispielsweise Zeolithpulver wie Zeolith NaA-Pulver, mitverwendet werden. Diese Formgebung kann in marktgängigen Rondiergeräten erfolgen. Dabei ist darauf zu achten, daß in dieser Stufe nur geringe Mengen an Feinkomanteil entstehen. Eine Trocknung, welche in den obengenannten Dokumenten des Standes der Technik als bevorzugte Ausführungsform beschrieben wird, erübrigt sich aber im Rahmen der vorliegenden Erfindung, da das Verfahren erfindungsgemäß im wesentlichen wasserfrei, also ohne die Zugabe von freiem, nichtgebundenem Wasser erfolgt.
    Alternativ können Extrusionen/Verpressungen auch in Niedrigdruckextrudem, in der Kahl-Presse oder im Bextruder durchgeführt werden.
    In einer besonders bevorzugten Ausführungsform sieht die Erfindung nun vor, daß die Temperaturführung im Übergangsbereich der Schnecke, des Vorverteilers und der Düsenplatte derart gestaltet ist, daß die Schmelztemperatur des Bindemittels bzw. die obere Grenze des Schmelzbereichs des Bindemittels zumindest erreicht, vorzugsweise aber überschritten wird. Dabei liegt die Dauer der Temperatureinwirkung im Kompressionsbereich der Extrusion vorzugsweise unterhalb von 2 Minuten und insbesondere in einem Bereich zwischen 30 Sekunden und 1 Minute.
    Die niedrigen Verweilzeiten einhergehend mit der wasserfreien Verfahrensführung ermöglichen es, daß Peroxybleichmittel gegebenenfalls sogar gemeinsam mit Bleichaktivatoren auch bei höheren Temperaturen extrudiert werden können, ohne gravierende Aktivitätsverluste zu erleiden.
    In einer besonders vorteilhaften Ausführungsform der Erfindung weist das eingesetzte Bindemittel eine Schmelztemperatur bzw. einen Schmelzbereich bis 75 °C auf; Verfahrenstemperaturen, welche maximal 10 °C und insbesondere maximal 5 °C oberhalb der Schmelztemperatur bzw. der oberen Temperaturgrenze des Schmelzbereichs des Bindemittels liegt, haben sich dann als besonders günstig erwiesen.
    Unter diesen Verfahrensbedingungen übt das Bindemittel zusätzlich zu den bisher genannten Wirkungsweisen auch noch die Funktion eines Gleitmittels aus und verhindert oder verringert zumindest das Anstehen von Anklebungen an Apparatewänden und Verdichtungswerkzeugen. Dies gilt nicht nur für die Verarbeitung im Extruder, sondern gleichermaßen auch für die Verarbeitung beispielsweise in kontinuierlich arbeitenden Mischern/Granulatoren oder Walzen.
    Das verdichtete Gut weist direkt nach dem Austritt aus dem Herstellungsapparat vorzugsweise Temperaturen nicht oberhalb von 80 °C auf, wobei Temperaturen zwischen 35 und 75 °C besonders bevorzugt sind. Es hat sich herausgestellt, daß Austrittstemperaturen - vor allem im Extrusionsverfahren - von 40 bis 70 °C, beispielsweise bis 60 °C, besonders vorteilhaft sind.
    Ebenso wie im Extrusionsverfahren ist es auch in den anderen Herstellungsverfahren bevorzugt, die entstandenen Primärgranulate/Kompaktate einem weiteren formgebenden Verarbeitungsschritt zuzuführen, insbesondere einer Verrundung zuzuführen, so daß letztlich kugelförmig bis annähemd kugelförmige (perlenförmige) Körner erhalten werden können.
    Es ist das Wesen einer bevorzugten Ausführungsform der Erfindung, daß die Teilchengrößenverteilung des Vorgemisches wesentlich breiter angelegt ist als die des erfindungsgemäß hergestellten und erfindungsgemäßen Endprodukts. Dabei kann das Vorgemisch wesentlich größere Feinkornanteile, ja sogar Staubanteile, gegebenenfalls auch grobkörnigere Anteile enthalten, wobei es jedoch bevorzugt ist, daß ein Vorgemisch mit relativ breiter Teilchengrößenverteilung und relativ hohen Anteilen an Feinkorn in ein Endprodukt mit relativ enger Teilchengrößenverteilung und relativ geringen Anteilen an Feinkorn überführt wird.
    Dadurch, daß das erfindungsgemäße Verfahren im wesentlichen wasserfrei - d.h. mit Ausnahme von Wassergehalten ("Verunreinigungen") der eingesetzten festen Rohstoffe wasserfrei - durchgeführt wird, ist nicht nur die Gefahr der Vergelung der tensidischen Rohstoffe bereits im Herstellungsprozeß minimiert bis ausgeschlossen, zusätzlich wird auch ein ökologisch wertvolles Verfahren bereitgestellt, da durch den Verzicht auf einen nachfolgenden Trocknungschritt nicht nur Energie gespart wird sondern auch Emissionen, wie sie überwiegend bei herkömmlichen Trocknungsarten auftreten, vermieden werden können.
    Es hat sich herausgestellt, daß das Wiederauftöseverhalten von erfindungsgemäß hergestellten Wasch- oder Reinigungsmitteln im Gegensatz zu herkömmlich hergestellten Mitteln jetzt im wesentlichen nur noch von dem Löseverhalten der Einzelkomponenten abhängig ist; je mehr Komponenten enthalten sind, die relativ schnell löslich sind, desto schneller sind auch die fertigen Mittel löslich; je mehr relativ langsam lösliche Komponenten enthalten sind, desto langsamer lösen sich auch die Mittel. Unerwünschte Interaktionen während der Wiederauflösung wie Gelierungen etc. spielen bei dem erfindungsgemäßen Verfahren auch bei Wasch- oder Reinigungsmitteln mit sehr hohen Dichten, beispielsweise oberhalb von 750 und 800 g/l, offensichtlich keine Rolle mehr. Die so hergestellten Mittel, Compounds und behandelten Rohstoffe weisen damit eine verbesserte Lösegeschwindigkeit gegenüber derartigen Mitteln, Compounds und behandelten Rohstoffen auf, welche zwar dieselbe Endzusammensetzung aufweisen, aber nicht nach dem erfindungsgemäßen Verfahren hergestellt wurden, also nicht mittels einer Schmelze unter wasserfreien Bedingungen hergestellt wurden.
    Dementsprechend ist ein weiterer Gegenstand der Erfindung ein teilchenförmiges Waschoder Reinigungsmittel, das nach dem erfindungsgemäßen Verfahren hergestellt wurde und dessen Löseverhalten nur noch von dem Löseverhalten der eingesetzten Einzelrohstoffe und Compounds abhängig ist. Ohne sich auf diese Theorie beschränken zu wollen, geht die Anmelderin davon aus, daß dieses besondere Löseverhalten durch eine Waben-ähnliche Struktur der Teilchen bewirkt wird, wobei diese Waben mit Feststoff gefüllt sind.
    In einer bevorzugten Ausführungsform der Erfindung wird ein granulares oder extrudiertes. Waschmittel bereitgestellt, das zu mindestens 80 Gew.-% aus erfindungsgemäß hergestellten Compounds und/oder behandelten Rohstoffen besteht. Insbesondere besteht ein granulares oder extrudiertes Waschmittel zu mindestens 80 Gew.-% aus einem erfindungsgemäß hergestellten Basisgranulat oder Basisextrudat. Die restlichen Bestandteile können nach jedem bekannten Verfahren hergestellt und zugemischt worden sein. Dabei ist es jedoch bevorzugt, daß auch diese restlichen Bestandteile, welche Compounds und/oder behandelte Rohstoffe sein können, nach dem erfindungsgemäßen Verfahren hergestellt wurden. Insbesondere wird dadurch ermöglicht, Basisgranulate und restliche Bestandteile mit angenähert gleicher Rieselfähigkeit, Schüttgewicht, Größe und Teilchengrößenverteilung herzustellen.
    Ein weiterer Gegenstand der Erfindung sind erfindungsgemäß hergestellte Compounds und behandelte Rohstoffe, beispielsweise Buildergranulate(-extrudate), Bleichaktivatorgranulate(-extrudate) oder Enzymgranulate(-extrudate). Insbesondere behandelte Rohstoffe zeigen eine erstaunlich hohe Lösegeschwindigkeit in Wasser, vor allem dann, wenn der Rohstoff an sich in sehr fein verteilter, gegebenenfalls gemahlener Form eingesetzt wurde.
    Mit besonderer Bevorzugung werden Basisgranulate, Compounds und behandelte Rohstoffe bereitgestellt, welche Kugelform bzw. Perlenform aufweisen.
    Überraschenderweise weisen die erfindungsgemäß hergestellten Verfahrensendprodukte ein sehr hohes Schüttgewicht auf. Das Schüttgewicht liegt vorzugsweise oberhalb von 700 g/l, insbesondere zwischen 750 und 1000 g/l. Selbst wenn die Extrudate mit anderen Inhaltsstoffen, welche niedrigere Schüttgewichte aufweisen, aufbereitet werden, sinkt das Schüttgewicht des Endprodukts nicht in dem Umfang, wie es normalerweise erwartet worden wäre. Es wird vermutet, daß angenähert kugelförmige Mittel und insbesondere Extrudate, die nach dem erfindungsgemäßen Verfahren hergestellt wurden, eher der Idealgestalt einer Kugel mit glatter, "verschmierter" Oberfläche ähneln als die nach herkömmlichen und insbesondere wäßrigen Verfahren hergestellten Mittel und Extrudate. Dadurch wird eine bessere Raumausfüllung erreicht, die zu einem höheren Schüttgewicht führt, selbst wenn Komponenten zugemischt werden, die weder Kugelstruktur noch ein derart hohes Schüttgewicht aufweisen.
    Die erhaltenen teilchenförmigen Verfahrensendprodukte können entweder direkt als Wasch- oder Reinigungsmittel eingesetzt oder zuvor nach üblichen Methoden nachbehandelt und/oder aufbereitet werden. Zu den üblichen Nachbehandlungen zählen beispielsweise Abpuderungen mit feinteiligen Inhaltsstoffen von Wasch- oder Reinigungsmitteln, wodurch das Schüttgewicht im allgemeinen weiter erhöht wird. Eine bevorzugte Nachbehandlung stellt jedoch auch die Verfahrensweise gemäß den deutschen Patentanmeldungen DE-A-195 24 287 und DE-A-195 47 457 dar, wobei staubförmige oder zumindest feinteilige Inhaltsstoffe (die sogenannten Feinanteile) an die erfindungsgemäß hergestellten teilchenförmigen Verfahrensendprodukte, welche als Kern dienen, angeklebt werden und somit Mittel entstehen, welche diese sogenannten Feinanteile als Außenhülle aufweisen. Vorteilhafterweise geschieht dies wiederum durch eine Schmelzagglomeration, wobei dieselben Bindemittel wie in dem erfindungsgemäßen Verfahren eingesetzt werden können. Zur Schmelzagglomerierung der Feinanteile an die erfindungsgemäßen und erfindungsgemäß hergestellten Basisgranutate wird ausdrücklich auf die Offenbarung in den deutschen Patentanmeldungen DE-A-195 24 287 und DE-A-195 47 457 verwiesen.
    Unter Aufbereitung wird im allgemeinen verstanden, daß die erfindungsgemäß hergestellten teilchenförmigen Verfahrensendprodukte als Compound dienen, zu denen andere Inhaltsstoffe, gegebenenfalls auch andere Compounds zugemischt werden. Hier sei auf die Beschreibungen der zitierten Patentanmeldungen und Patentschriften, insbesondere also auf das europäischen Patent EP-B-0 486 592 sowie die deutschen Patentanmeldungen DE-A-195 19 139, DE-A-195 24 287 und DE-A-195 47 457 verwiesen. Neben Enzymen, Bteichaktivatoren und Schauminhibitoren werden vor allem Salze wie Silikate (kristallin oder amorph) einschließlich Metasilikat, Carbonat, Bicarbonat, Sulfat, Bisulfat, Citrat oder andere Polycarboxylate, aber auch organische Säuren wie Citronensäure (s. unten) in der Aufbereitung zugemischt. Dabei ist es insbesondere bevorzugt, daß die Zumischkomponenten in granularer Form und mit einer Teilchengrößenverteilung eingesetzt werden, die auf die Teilchengrößenverteilung der erfindungsgemäß hergestellten Mittel und Compounds abgestimmt ist.
    Es folgt nun eine detaillierte Beschreibung der möglichen Inhaltsstoffe der erfindungsgemäßen Mittel und der in dem erfindungsgemäßen Verfahren eingesetzten Bestandteile.
    Wichtige Inhaltsstoffe der erfindungsgemäßen Mittel und Inhaltsstoffe, die in dem erfindungsgemäßen Verfahren eingesetzt werden, sind Tenside, insbesondere Aniontenside, die wenigstens in Mengen von 0,5 Gew.-% in den erfindungsgemäßen Mitteln bzw. erfindungsgemäß hergestellten Mitteln enthalten sein sollten. Hierzu zählen insbesondere Sulfonate und Sulfate, aber auch Seifen.
    Als Tenside vom Sulfonat-Typ kommen vorzugsweise C9-C13-Alkylbenzolsulfonate, Olefinsulfonate, d.h. Gemische aus Alken- und Hydroxyalkansulfonaten sowie Disulfonaten, wie man sie beispielsweise aus C12-C18-Monoolefinen mit end- oder innenständiger Doppelbindung durch Sulfonieren mit gasförmigem Schwefeltrioxid und anschließende alkalische oder saure Hydrolyse der Sulfonierungsprodukte erhält, in Betracht.
    Geeignet sind auch Alkansulfonate, die aus C12-C18-Alkanen beispielsweise durch Sulfochlorierung oder Sulfoxidation mit anschließender Hydrolyse bzw. Neutralisation gewonnen werden.
    Geeignet sind auch die Ester von α-Sulfofettsäuren (Estersulfonate), z.B. die α-sulfonierten Methylester der hydrierten Kokos-, Palmkem- oder Talgfettsäuren, die durch α-Sulfonierung der Methylester von Fettsäuren pflanzlichen und/oder tierischen Ursprungs mit 8 bis 20 C-Atomen im Fettsäuremolekül und nachfolgende Neutralisation zu wasserlöslichen Mono-Salzen hergestellt werden, in Betracht. Vorzugsweise handelt es sich hierbei um die α-sulfonierten Ester der hydrierten Kokos-, Palm-, Palmkern- oder Talgfettsäuren, wobei auch Sulfonierungsprodukte von ungesättigten Fettsäuren, beispielsweise Ölsäure, in geringen Mengen, vorzugsweise in Mengen nicht oberhalb etwa 2 bis 3 Gew.-%, vorhanden sein können. Insbesondere sind α-Sulfofettsäurealkylester bevorzugt, die eine Alkylkette mit nicht mehr als 4 C-Atomen in der Estergruppe aufweisen, beispielsweise Methylester, Ethylester, Propylester und Butylester. Mit besonderem Vorteil werden die Methylester der α-Sulfofettsäuren (MES), aber auch deren verseifte Disalze eingesetzt.
    Weitere geeignete Aniontenside sind sulfierte Fettsäureglycerinester, welche Mono-, Diund Triester sowie deren Gemische darstellen, wie sie bei der Herstellung durch Veresterung durch ein Monoglycerin mit 1 bis 3 Mol Fettsäure oder bei der Umesterung von Triglyceriden mit 0,3 bis 2 Mol Glycerin erhalten werden.
    Als Alk(en)ylsulfate werden die Alkali- und insbesondere die Natriumsalze der Schwefelsäurehalbester der C12-C18-Fettalkohole beispielsweise aus Kokosfettalkohol, Talgfettalkohol, Lauryl-, Myristyl-, Cetyl- oder Stearylalkohol oder der C10-C20-Oxoalkohole und diejenigen Halbester sekundärer Alkohole dieser Kettenlänge bevorzugt. Weiterhin bevorzugt sind Alk(en)ylsulfate der genannten Kettenlänge, welche einen synthetischen, auf petrochemischer Basis hergestellten geradkettigen Alkylrest enthalten, die ein analoges Abbauverhalten besitzen wie die adäquaten Verbindungen auf der Basis von fettchemischen Rohstoffen. Aus waschtechnischem Interesse sind C12-C16-Alkylsulfate und C12-C15-Alkylsulfate sowie C14-C15-Alkylsulfate insbesondere bevorzugt. Auch 2,3-Alkylsulfate, welche beispielsweise gemäß den US-Patentschriften 3,234,258 oder 5,075,041 hergestellt werden und als Handelsprodukte der Shell Oil Company unter dem Namen DAN(R) erhalten werden können, sind geeignete Anitontenside.
    Auch die Schwefelsäuremonoester der mit 1 bis 6 Mol Ethylenoxid ethoxylierten geradkettigen oder verzweigten C7-C21-Alkohole, wie 2-Methylverzweigte C9-C11-Alkohole mit im Durchschnitt 3,5 Mol Ethylenoxid (EO) oder C12-C18-Fettalkohole mit 1 bis 4 EO, sind geeignet. Sie werden in Waschmitteln aufgrund ihres hohen Schaumverhaltens nur in relativ geringen Mengen, beispielsweise in Mengen von 1 bis 5 Gew.-%, eingesetzt.
    Bevorzugte Aniontenside sind auch die Salze der Alkylsulfobernsteinsäure, die auch als Sulfosuccinate oder als Sulfobernsteinsäureester bezeichnet werden und die Monoester und/oder Diester der Sulfobemsteinsäure mit Alkoholen, vorzugsweise Fettalkoholen und insbesondere ethoxylierten Fettalkoholen darstellen. Bevorzugte Sulfosuccinate enthalten C8- bis C18-Fettalkoholreste oder Mischungen aus diesen. Insbesondere bevorzugte Sulfosuccinate enthalten einen Fettalkoholrest, der sich von ethoxylierten Fettalkoholen ableitet, die für sich betrachtet nichtionische Tenside darstellen (Beschreibung siehe unten). Dabei sind wiederum Sulfosuccinate, deren Fettalkohol-Reste sich von ethoxylierten Fettalkoholen mit eingeengter Homologenverteilung ableiten, besonders bevorzugt. Ebenso ist es auch möglich, Alk(en)ylbernsteinsäure mit vorzugsweise 8 bis 18 Kohlenstoffatomen in der Alk(en)ylkette oder deren Salze einzusetzen.
    Als weitere anionische Tenside kommen Fettsäure-Derivate von Aminosäuren, beispielsweise von N-Methyltaurin (Tauride) und/oder von N-Methylglycin (Sarkoside) in Betracht. Insbesondere bevorzugt sind dabei die Sarkoside bzw. die Sarkosinate und hier vor allem Sarkosinate von höheren und gegebenenfalls einfach oder mehrfach ungesättigten Fettsäuren wie Oleylsarkosinat.
    Als weitere anionische Tenside kommen insbesondere Seifen, vorzugsweise in Mengen von 0,2 bis 5 Gew.-%, in Betracht. Geeignet sind insbesondere gesättigte Fettsäureseifen, wie die Salze der Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, hydrierten Erucasäure und Behensäure sowie insbesondere aus natürlichen Fettsäuren, z. B. Kokos-, Palmkern- oder Talgfettsäuren, abgeleitete Seifengemische. Zusammen mit diesen Seifen oder als Ersatzmittel für Seifen können auch die bekannten Alkenylbernsteinsäuresalze eingesetzt werden.
    Die anionischen Tenside (und Seifen) können in Form ihrer Natrium-, Kalium- oder Ammoniumsalze sowie als lösliche Salze organischer Basen, wie Mono-, Di- oder Triethanolamin, vorliegen. Vorzugsweise liegen die anionischen Tenside in Form ihrer Natrium- oder Kaliumsalze, insbesondere in Form der Natriumsalze vor.
    Die anionischen Tenside sind in den erfindungsgemäßen Mitteln bzw. werden in dem erfindungsgemäßen Verfahren vorzugsweise in Mengen von 1 bis 30 Gew.-% und insbesondere in Mengen von 5 bis 25 Gew.-% enthalten bzw. eingesetzt.
    Neben den anionischen Tensiden und den kationischen, zwitterionischen und amphoteren Tensiden, sind vor allem nichtionische Tenside bevorzugt.
    Als nichtionische Tenside werden vorzugsweise alkoxylierte, vorteilhafterweise ethoxylierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann bzw. lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z.B. aus Kokos-, Palm-, Talgfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise C12-C14-Alkohole mit 3 EO oder 4 EO, C9-C11-Alkohole mit 7 EO, C13-C15-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C12-C18-Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C12-C14-Alkohol mit 3 EO und C12-C18-Alkohol mit 7 EO. Die angegebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow range ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können - wie oben beschrieben - auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind (Talg-) Fettalkohole mit 14 EO, 16 EO, 20 EO, 25 EO, 30 EO oder 40 EO.
    Zu den nichtionischen Tensiden zählen auch die bereits oben ausführlich beschriebenen Alkylglykoside der allgemeinen Formel RO(G)x und die Polyhydroxyfettsäureamide der Formeln (I) und (II).
    Eine weitere Klasse bevorzugt eingesetzter nichtionischer Tenside, die entweder als alleiniges nichtionisches Tensid oder in Kombination mit anderen nichtionischen Tensiden, insbesondere zusammen mit alkoxylierten Fettalkoholen und/oder Alkylglykosiden, eingesetzt werden, sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und propoxylierte Fettsäurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkylkette, insbesondere Fettsäuremethylester, wie sie beispielsweise in der japanischen Patentanmeldung JP 58/217598 beschrieben sind oder die vorzugsweise nach dem in der internationalen Patentanmeldung WO-A-90/13533 beschriebenen Verfahren hergestellt werden. Als Niotenside sind C12-C18-Fettsäuremethylester mit durchschnittlich 3 bis 15 EO, insbesondere mit durchschnittlich 5 bis 12 EO bevorzugt, während als Bindemittel- wie oben beschrieben - vor allem höher ethoxylierte Fettsäuremethylester vorteilhaft sind. Insbesondere C12-C18-Fettsäuremethylester mit 10 bis 12 EO können sowohl als Tenside als auch als Bindemittel eingesetzt werden.
    Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokosalkyl-N,N-dimethylaminoxid und N-Talgalkyl-N,N-dihydroxyethylaminoxid, und der Fettsäurealkanolamide können geeignet sein. Die Menge dieser nichtionischen Tenside beträgt vorzugsweise nicht mehr als die der ethoxylierten Fettalkohole, insbesondere nicht mehr als die Hälfte davon.
    Als weitere Tenside kommen sogenannte Gemini-Tenside in Betracht. Hierunter werden im allgemeinen solche Verbindungen verstanden, die zwei hydrophile Gruppen und zwei hydrophobe Gruppen pro Molekül besitzen. Diese Gruppen sind in der Regel durch einen sogenannten "Spacer" voneinander getrennt. Dieser Spacer ist in der Regel eine Kohlenstoffkette, die lang genug sein sollte, daß die hydrophilen Gruppen einen ausreichenden Abstand haben, damit sie unabhängig voneinander agieren können. Derartige Tenside zeichnen sich im allgemeinen durch eine ungewöhnlich geringe kritische Micellkonzentration und die Fähigkeit, die Oberflächenspannung des Wassers stark zu reduzieren, aus. In Ausnahmefällen werden jedoch unter dem Ausdruck Gemini-Tenside nicht nur dimere, sondern auch trimere Tenside verstanden.
    Geeignete Gemini-Tenside sind beispielsweise sulfatierte Hydroxymischether gemäß der deutschen Patentanmeldung DE-A-43 21 022 oder Dimeralkohol-bis- und Trimeralkoholtris-sulfate und -ethersulfate gemäß der deutschen Patentanmeldung DE-A-195 03 061. Endgruppenverschlossene dimere und trimere Mischether gemäß der deutschen Patentanmeldung DE-A-195 13 391 zeichnen sich insbesondere durch ihre Bi- und Muttifunktionalität aus. So besitzen die genannten endgruppenverschlossenen Tenside gute Netzeigenschaften und sind dabei schaumarm, so daß sie sich insbesondere für den Einsatz in maschinellen Wasch- oder Reinigungsverfahren eignen.
    Eingesetzt werden können aber auch Gemini-Polyhydroxyfettsäureamide oder Poly-Polyhydroxyfettsäureamide, wie sie in den internationalen Patentanmeldungen WO-A-95/19953, WO-A-95/19954 und WO95-A-/19955 beschrieben werden.
    Außer den Tensiden gehören vor allem die anorganischen und organischen Buildersubstanzen zu den wichtigsten Inhaltsstoffen von Wasch- oder Reinigungsmitteln.
    Der eingesetzte feinkristalline, synthetische und gebundenes Wasser enthaltende Zeolith ist vorzugsweise Zeolith A und/oder P. Als Zeolith P wird beispielsweise Zeolith MAP(R) (Handelsprodukt der Firma Crosfield) eingesetzt. Geeignet sind jedoch auch Zeolith X sowie Mischungen aus A, X und/oder P. Der Zeolith kann als sprühgetrocknetes Pulver oder auch als ungetrocknete, von ihrer Herstellung noch feuchte, stabilisierte Suspension zum Einsatz kommen. Für den Fall, daß der Zeolith als Suspension eingesetzt wird, kann diese geringe Zusätze an nichtionischen Tensiden als Stabilisatoren enthalten, beispielsweise 1 bis 3 Gew.-%, bezogen auf Zeolith, an ethoxylierten C12-C18-Fettalkoholen mit 2 bis 5 Ethylenoxidgruppen, C12-C14-Fettalkoholen mit 4 bis 5 Ethylenoxidgruppen oder ethoxylierten Isotridecanolen. Geeignete Zeolithe weisen eine mittlere Teilchengröße von weniger als 10 µm (Volumenverteilung; Meßmethode: Coulter Counter) auf und enthalten vorzugsweise 18 bis 22 Gew.-%, insbesondere 20 bis 22 Gew.-% an gebundenem Wasser.
    Geeignete Substitute bzw. Teilsubstitute für Phosphate und Zeolithe sind kristalline, schichtförmige Natriumsilikate der allgemeinen Formel NaMSixO2x+1·yH2O, wobei M Natrium oder Wasserstoff bedeutet, x eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Derartige kristalline Schichtsilikate werden beispielsweise in der europäischen Patentanmeldung EP-A-0 164 514 beschrieben. Bevorzugte kristalline Schichtsilikate der angegebenen Formel sind solche, in denen M für Natrium steht und x die Werte 2 oder 3 annimmt. Insbesondere sind sowohl β- als auchδ-Natriumdisilikate Na2Si2O5·yH2O bevorzugt.
    Zu den bevorzugten Buildersubstanzen gehören auch amorphe Natriumsilikate mit einem Modul Na2O : SiO2 von 1:2 bis 1:3,3, vorzugsweise von 1:2 bis 1:2,8 und insbesondere von 1:2 bis 1:2,6, welche löseverzögert sind und Sekundärwascheigenschaften aufweisen. Die Löseverzögerung gegenüber herkömmlichen amorphen Natriumsitikaten kann dabei auf verschiedene Weise, beispielsweise durch Oberflächenbehandlung, Compoundierung, Kompaktierung/Verdichtung oder durch Übertrocknung hervorgerufen worden sein. Im Rahmen dieser Erfindung wird unter dem Begriff "amorph" auch "röntgenamorph" verstanden. Dies heißt, daß die Silikate bei Röntgenbeugungsexperimenten keine scharfen Röntgenreflexe liefern, wie sie für kristalline Substanzen typisch sind, sondern allenfalls ein oder mehrere Maxima der gestreuten Röntgenstrahlung, die eine Breite von mehreren Gradeinheiten des Beugungswinkels aufweisen. Es kann jedoch sehr wohl sogar zu besonders guten Buildereigenschaften führen, wenn die Silikatpartikel bei Elektronenbeugungsexperimenten verwaschene oder sogar scharfe Beugungsmaxima liefern. Dies ist so zu interpretieren, daß die Produkte mikrokristalline Bereiche der Größe 10 bis einige Hundert nm aufweisen, wobei Werte bis max. 50 nm und insbesondere bis max. 20 nm bevorzugt sind. Derartige sogenannte röntgenamorphe Silikate, welche ebenfalls eine Löseverzögerung gegenüber den herkömmlichen Wassergläsern aufweisen, werden beispielsweise in der deutschen Patentanmeldung DE-A- 44 00 024 beschrieben. Insbesondere bevorzugt sind verdichtete/kompaktierte amorphe Silikate, compoundierte amorphe Silikate und übertrocknete röntgenamorphe Silikate.
    Selbstverständlich ist auch ein Einsatz der allgemein bekannten Phosphate als Buildersubstanzen möglich, sofern ein derartiger Einsatz nicht aus ökologischen Gründen vermieden werden sollte. Geeignet sind insbesondere die Natriumsalze der Orthophosphate, der Pyrophosphate und insbesondere der Tripolyphosphate. Ihr Gehalt im allgemeinen nicht mehr als 25 Gew.-%, vorzugsweise nicht mehr als 20 Gew.-%, jeweils bezogen auf das fertige Mittel. In einigen Fällen hat es sich gezeigt, daß insbesondere Tripolyphosphate schon in geringen Mengen bis maximal 10 Gew.-%, bezogen auf das fertige Mittel, in Kombination mit anderen Buildersubstanzen zu einer synergistischen Verbesserung des Sekundärwaschvermögens führen.
    Geeignete Substitute bzw. Teilsubstitute für den Zeolith sind Schichtsilikate natürlichen und synthetischen Ursprungs. Derartige Schichtsilikate sind beispielsweise aus den Patentanmeldungen DE-B-23 34 899, EP-A-0 026 529 und DE-A-35 26 405 bekannt. Ihre Verwendbarkeit ist nicht auf eine spezielle Zusammensetzung bzw. Strukturformel beschränkt. Bevorzugt sind hier jedoch Smectite, insbesondere Bentonite.
    Geeignete Schichtsilikate, die zur Gruppe der mit Wasser quellfähigen Smectite zählen, sind beispielsweise Montmorrilonit, Hectorit oder Saponit. Zusätzlich können in das Kristallgitter der Schichtsilikate gemäß den vorstehenden Formeln geringe Mengen an Eisen eingebaut sein. Ferner können die Schichtsilikate aufgrund ihrer ionenaustauschenden Eigenschaften Wasserstoff-, Alkali-, Erdalkali-Ionen, insbesondere Na+ und Ca++ enthalten. Die Hydratwassermenge liegt meist im Bereich von 8 bis 20 Gew.-% und ist vom Quellzustand bzw. von der Art der Bearbeitung abhängig. Brauchbare Schichtsilikate sind beispielsweise aus US-A-3,966,629, EP-A-0 026 529 und EP-A-0 028 432 bekannt. Vorzugsweise werden Schichtsilikate verwendet, die aufgrund einer Alkalibehandlung weitgehend frei von Calciumionen und stark färbenden Eisenionen sind.
    Brauchbare organische Gerüstsubstanzen sind beispielsweise die in Form ihrer Natriumsalze einsetzbaren Polycarbonsäuren, wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citronensäure, Adipinsäure, Bemsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren und Mischungen aus diesen.
    Auch die Säuren an sich können eingesetzt werden. Die Säuren besitzen neben ihrer Builderwirkung typischerweise auch die Eigenschaft einer Säuerungskomponente und dienen somit auch zur Einstellung eines niedrigeren und milderen pH-Wertes von Wasch- oder Reinigungsmitteln. Insbesondere sind hierbei Citronensäure, Bernsteinsäure, Glutarsäure, Adipinsäure, Gluconsäure und beliebige Mischungen aus diesen zu nennen. Vorzugsweise werden diese Säuren, wenn sie im erfindungsgemäßen Vorgemisch eingesetzt und nicht nachträglich zugemischt werden, wasserfrei eingesetzt.
    Weitere geeignete organische Buildersubstanzen sind Dextrine, beispielsweise Oligomere bzw. Polymere von Kohlenhydraten, die durch partielle Hydrolyse von Stärken erhalten werden können. Die Hydrolyse kann nach üblichen, beispielsweise säure- oder enzymkatalysierten Verfahren durchgeführt werden. Vorzugsweise handelt es sich um Hydrolyseprodukte mit mittleren Molmassen im Bereich von 400 bis 500000. Dabei ist ein Polysaccharid mit einem Dextrose-Äquivalent (DE) im Bereich von 0,5 bis 40, insbesondere von 2 bis 30 bevorzugt, wobei DE ein gebräuchliches Maß für die reduzierende Wirkung eines Polysaccharids im Vergleich zu Dextrose, welche ein DE von 100 besitzt, ist. Brauchbar sind sowohl Maltodextrine mit einem DE zwischen 3 und 20 und Trockenglucosesirupe mit einem DE zwischen 20 und 37 als auch sogenannte Gelbdextrine und Weißdextrine mit höheren Molmassen im Bereich von 2000 bis 30000. Ein bevorzugtes Dextrin ist in der britischen Patentanmeldung 94 19 091 beschrieben. Bei den oxidierten Derivaten derartiger Dextrine handelt es sich um deren Umsetzungsprodukte mit Oxidationsmitteln, welche in der Lage sind, mindestens eine Alkoholfunktion des Saccharidrings zur Carbonsäurefunktion zu oxidieren. Derartige oxidierte Dextrine und Verfahren ihrer Herstellung sind beispielsweise aus den europäischen Patentanmeldungen EP-A-0 232 202, EP-A-0 427 349, EP-A-0 472 042 und EP-A-0 542 496 sowie den internationalen Patentanmeldungen WO-A-92/18542, WO-A-93/08251, WO-A-94128030, WO-A-95/07303, WO-A-95/12619 und WO-A-95/20608 bekannt. Ein an C6 des Saccharidrings oxidiertes Produkt kann besonders vorteilhaft sein.
    Weitere geeignete Cobuilder sind Oxydisuccinate und andere Derivate von Disuccinaten, vorzugsweise Ethylendiamindisuccinat. Besonders bevorzugt sind in diesem Zusammenhang auch Glycerindisuccinate und Glycerintrisuccinate, wie sie beispielsweise in den US-amerikanischen Patentschriften US 4 524 009, US 4 639 325, in der europäischen Patentanmeldung EP-A-0 150 930 und der japanischen Patentanmeldung JP 93/339896 beschrieben werden. Geeignete Einsatzmengen liegen in zeolithhaltigen und/oder silikathaltigen Formulierungen bei 3 bis 15 Gew.-%.
    Weitere brauchbare organische Cobuilder sind beispielsweise acetylierte Hydroxycarbonsäuren bzw. deren Salze, welche gegebenenfalls auch in Lactonform vorliegen können und welche mindestens 4 Kohlenstoffatome und mindestens eine Hydroxygruppe sowie maximal zwei Säuregruppen enthalten. Derartige Cobuilder werden beispielsweise in der internationalen Patentanmeldung WO-A-95/20029 beschrieben.
    Geeignete polymere Polycarboxylate sind beispielsweise die Natriumsalze der Polyacrylsäure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 800 bis 150000 (auf Säure bezogen). Geeignete copolymere Polycarboxylate sind insbesondere solche der Acrylsäure mit Methacrylsäure und der Acrylsäure oder Methacrylsäure mit Maleinsäure. Als besonders geeignet haben sich Copolymere der Acrylsäure mit Maleinsäure erwiesen, die 50 bis 90 Gew.-% Acrylsäure und 50 bis 10 Gew.-% Maleinsäure enthalten. Ihre relative Molekülmasse, bezogen auf freie Säuren, beträgt im allgemeinen 5000 bis 200000, vorzugsweise 10000 bis 120000 und insbesondere 50000 bis 100000.
    Der Gehalt der Mittel an (co-)potymeren Polycarboxylaten liegt im üblichen Rahmen und beträgt vorzugsweise 1 bis 10 Gew.-%.
    Insbesondere bevorzugt sind auch biologisch abbaubare Polymere aus mehr als zwei verschiedenen Monomereinheiten, beispielsweise solche, die gemäß der DE-A-43 00 772 als Monomere Salze der Acrylsäure und der Maleinsäure sowie Vinylalkohol bzw. Vinylalkohol-Derivate oder gemäß der DE-C-42 21 381 als Monomere Salze der Acrylsäure und der 2-Alkylallylsuifonsäure sowie Zucker-Derivate enthalten.
    Weitere bevorzugte Copolymere sind solche, die in den deutschen Patentanmeldungen DE-A-43 03 320 und DE-A-44 17 734 beschrieben werden und als Monomere vorzugsweise Acrolein und Acrytsäure/Acrylsäuresalze bzw. Acrolein und Vinylacetat aufweisen.
    Weitere geeignete Buildersubstanzen sind Oxidationsprodukte von carboxylgruppenhaltigen Polyglucosanen und/oder deren wasserlöslichen Salzen, wie sie beispielsweise in der internationalen Patentanmeldung WO-A-93/08251 beschrieben werden oder deren Herstellung beispielsweise in der internationalen Patentanmeldung WO-A-93/16110 beschrieben wird. Ebenfalls geeignet sind auch oxidierte Oligosaccharide gemäß der deutschen Patentanmeldung DE-A-196 00 018.
    Ebenso sind als weitere bevorzugte Buildersubstanzen polymere Aminodicarbonsäuren, deren Salze oder deren Vorläufersubstanzen zu nennen. Besonders bevorzugt sind Polyasparaginsäuren bzw. deren Salze und Derivate, von denen in der deutschen Patentanmeldung DE-A-195 40 086 offenbart wird, daß sie neben Cobuilder-Eigenschaften auch eine bleichstabilisierende Wirkung aufweisen.
    Weitere geeignete Buildersubstanzen sind Polyacetale, welche durch Umsetzung von Dialdehyden mit Polyolcarbonsäuren, welche 5 bis 7 C-Atome und mindestens 3 Hydroxylgruppen aufweisen, beispielsweise wie in der europäischen Patentanmeldung EP-A-0 280 223 beschrieben, erhalten werden können. Bevorzugte Polyacetale werden aus Dialdehyden wie Glyoxal, Glutaraldehyd, Terephthalaldehyd sowie deren Gemischen und aus Polyolcarbonsäuren wie Gluconsäure und/oder Glucoheptonsäure erhalten.
    Zusätzlich können die Mittel auch Komponenten enthalten, welche die Öl- und Fettauswaschbarkeit aus Textilien positiv beeinflussen. Dieser Effekt wird besonders deutlich, wenn ein Textil verschmutzt wird, das bereits vorher mehrfach mit einem erfindungsgemäßen Waschmittel, das diese öl- und fettlösende Komponente enthält, gewaschen wurde. Zu den bevorzugten öl- und fettlösenden Komponenten zählen beispielsweise nicht-ionische Celluloseether wie Methylcellulose und Methylhydroxypropylcellulose mit einem Anteil an Methoxyl-Gruppen von 15 bis 30 Gew.-% und an Hydroxypropoxyl-Gruppen von 1 bis 15 Gew.-%, jeweils bezogen auf den nichtionischen Celluloseether, sowie die aus dem Stand der Technik bekannten Polymere der Phthalsäure und/oder der Terephthalsäure bzw. von deren Derivaten, insbesondere Polymere aus Ethylenterephthalaten und/oder Polyethytengtykotterephthataten oder anionisch und/oder nichtionisch modifizierten Derivaten von diesen. Besonders bevorzugt von diesen sind die sulfonierten Derivate der Phthalsäure- und der Terephthalsäure-Polymere.
    Weitere geeignete Inhaltsstoffe der Mittel sind wasserlösliche anorganische Salze wie Bicarbonate, Carbonate, amorphe Silikate wie die oben erwähnten löseverzögerten Silikate oder Mischungen aus diesen; insbesondere werden Alkalicarbonat und amorphes Alkalisilikat, vor allem Natriumsilikat mit einem molaren Verhältnis Na2O : SiO2 von 1:1 bis 1:4,5, vorzugsweise von 1:2 bis 1:3,5, eingesetzt. Der Gehalt der Mittel an Natriumcarbonat beträgt dabei vorzugsweise bis zu 20 Gew.-%, vorteilhafterweise zwischen 5 und 15 Gew.-%. Der Gehalt der Mittel an Natriumsilikat beträgt - falls es nicht als Buildersubstanz eingesetzt werden soll, im allgemeinen bis zu 10 Gew.-% und vorzugsweise zwischen 2 und 8 Gew.-%, ansonsten darüber.
    Nach der Lehre der internationalen Patentanmeldung WO-A-94/01222 können Alkalicarbonate auch durch schwefelfreie, 2 bis 11 Kohlenstoffatome und gegebenenfalls eine weitere Carboxyl- und/oder Aminogruppe aufweisende Aminosäuren und/oder durch deren Salze ersetzt werden. Im Rahmen dieser Erfindung ist es dabei möglich, daß ein teilweiser bis vollständiger Austausch der Alkalicarbonate durch Glycin bzw. Glycinat erfolgt.
    Zu den sonstigen Waschmittelbestandteilen zählen Vergrauungsinhibitoren (Schmutzträger), Schauminhibitoren, Bleichmittel und Bleichaktivatoren, optische Aufheller, Enzyme, textilweichmachende Stoffe, Farb- und Duftstoffe sowie Neutralsalze wie Sulfate und Chloride in Form ihrer Natrium- oder Kaliumsalze.
    Zur Herabsetzung des pH-Wertes von Wasch- oder Reinigungsmitteln können auch saure Salze oder leicht alkalische Salze eingesetzt werden. Bevorzugt sind hierbei als Säuerungskomponente Bisulfate und/oder Bicarbonate oder die obengenannten organischen Polycarbonsäuren, die gleichzeitig auch als Buildersubstanzen eingesetzt werden können. Insbesondere bevorzugt ist der Einsatz von Citronensäure, welche entweder nachträglich zugemischt (übliche Verfahrensweise) oder - in wasserfreier Form - im festen Vorgemisch eingesetzt wird.
    Unter den als Bleichmittel dienenden, in Wasser H2O2 liefernden Verbindungen haben das Natriumperborattetrahydrat und das Natriumperboratmonohydrat besondere Bedeutung. Weitere brauchbare Bleichmittel sind beispielsweise Natriumpercarbonat, Peroxypyrophosphate, Citratperhydrate sowie H2O2 liefernde persaure Salze oder Persäuren, wie Perbenzoate, Peroxophthalate, Diperazelainsäure, Phthaloiminopersäure oder Diperdodecandisäure. Der Gehalt der Mittel an Bleichmitteln beträgt vorzugsweise 5 bis 25 Gew.-% und insbesondere 10 bis 20 Gew.-%, wobei vorteilhafterweise Perboratmonohydrat oder Percarbonat eingesetzt wird.
    Als Bleichaktivatoren können Verbindungen, die unter Perhydrolysebedingungen aliphatische Peroxocarbonsäuren mit vorzugsweise 1 bis 10 C-Atomen, insbesondere 2 bis 4 C-Atomen, und/oder gegebenenfalls substituierte Perbenzoesäure ergeben, eingesetzt werden. Geeignet sind Substanzen, die O- und/oder N-Acylgruppen der genannten C-Atomzahl und/oder gegebenenfalls substituierte Benzoylgruppen tragen. Bevorzugt sind mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), acylierte Triazinderivate, insbesondere 1,5-Diacetyl-2,4-dioxohexahydro-1,3,5-triazin (DADHT), acylierte Glykolurile, insbesondere Tetraacetylglykoluril (TAGU), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSi), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS), Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, acylierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglykoldiacetat, 2,5-Diacetoxy-2,5-dihydrofuran und die aus den deutschen Patentanmeldungen DE-A-196 16 693 und DE-A-196 16 767 bekannten Enolester sowie acetyliertes Sorbitol und Mannitol beziehungsweise deren in der europäischen Patentanmeldung EP-A-0 525 239 beschriebene Mischungen (SORMAN), acylierte Zuckerderivate, insbesondere Pentaacetylglukose (PAG), Pentaacetylfruktose, Tetraacetylxylose und Octaacetyllactose sowie acetyliertes, gegebenenfalls N-alkyliertes Glucamin und Gluconolacton, und/oder N-acylierte Lactame, beispielsweise N-Benzoylcaprolactam, die aus den internationalen Patentanmeldungen WO-A-94/27970, WO-A-94/28102, WO-A-94/28103, WO-A-95/00626, WO-A-95/14759 und WO-A-95/17498 bekannt sind. Die aus der deutschen Patentanmeldung DE-A-196 16 769 bekannten hydrophil substituierten Acylacetale und die in der deutschen Patentanmeldung DE-A-196 16 770 sowie der internationalen Patentanmeldung WO-A-95/14075 beschriebenen Acyllactame werden ebenfalls bevorzugt eingesetzt. Auch die aus der deutschen Patentanmeldung DE-A-44 43 177 bekannten Kombinationen konventioneller Bleichaktivatoren können eingesetzt werden. Derartige Bleichaktivatoren sind im üblichen Mengenbereich, vorzugsweise in Mengen von 1 Gew.-% bis 10 Gew.-%, insbesondere 2 Gew.-% bis 8 Gew.-%, bezogen auf gesamtes Mittel, enthalten.
    Beim Einsatz in maschinellen Waschverfahren kann es von Vorteil sein, den Mitteln übliche Schauminhibitoren zuzusetzen. Als Schauminhibitoren eignen sich beispielsweise Seifen natürlicher oder synthetischer Herkunft, die einen hohen Anteil an C18-C24-Fettsäuren aufweisen. Geeignete nichttensidartige Schauminhibitoren sind beispielsweise Organopolysiloxane und deren Gemische mit mikrofeiner, ggf. silanierter Kieselsäure sowie Paraffine, Wachse, Mikrokristallinwachse und deren Gemische mit silanierter Kieselsäure oder Bistearylethylendiamid. Mit Vorteilen werden auch Gemische aus verschiedenen Schauminhibitoren verwendet, z.B. solche aus Silikonen, Paraffinen oder Wachsen. Vorzugsweise sind die Schauminhibitoren, insbesondere Silikon- und/oder Paraffin-haltige Schauminhibitoren, an eine granulare, in Wasser lösliche bzw. dispergierbare Trägersubstanz gebunden. Insbesondere sind dabei Mischungen aus Paraffinen und Bistearylethylendiamiden bevorzugt.
    Als Salze von Polyphosphonsäuren werden vorzugsweise die neutral reagierenden Natriumsalze von beispielsweise 1-Hydroxyethan-1,1-diphosphonat, Diethylentriaminpentamethylenphosphonat oder Ethylendiamintetramethylenphosphonat in Mengen von 0,1 bis 1,5 Gew.-% verwendet.
    Als Enzyme kommen insbesondere solche aus der Klasse der Hydrolasen, wie der Proteasen, Lipasen bzw. lipolytisch wirkenden Enzyme, Amylasen, Cellulasen bzw. deren Gemische in Frage. Auch Oxireduktasen sind geeignet.
    Besonders gut geeignet sind aus Bakterienstämmen oder Pilzen, wie Bacillus subtilis, Bacillus licheniformis, Streptomyces griseus und Humicola insolens gewonnene enzymatische Wirkstoffe. Vorzugsweise werden Proteasen vom Subtilisin-Typ und insbesondere Proteasen, die aus Bacillus lentus gewonnen werden, eingesetzt. Dabei sind Enzymmischungen, beispielsweise aus Protease und Amylase oder Protease und Lipase bzw. lipolytisch wirkenden Enzymen oder Protease und Cellulase oder aus Cellulase und Lipase bzw. lipolytisch wirkenden Enzymen oder aus Protease, Amylase und Lipase bzw. lipolytisch wirkenden Enzymen oder Protease, Lipase bzw. lipolytisch wirkenden Enzymen und Cellulase, insbesondere jedoch Protease- und/oder Lipase-haltige Mischungen bzw. Mischungen mit lipolytisch wirkenden Enzymen von besonderem Interesse. Beispiele für derartige lipolytisch wirkende Enzyme sind die bekannten Cutinasen. Auch Peroxidasen oder Oxidasen haben sich in einigen Fällen als geeignet erwiesen. Zu den geeigneten Amylasen zählen insbesondere α-Amylasen, Iso-Amylasen, Pullulanasen und Pektinasen. Als Cellulasen werden vorzugsweise Cellobiohydrolasen, Endoglucanasen und β-Glucosidasen, die auch Cellobiasen genannt werden, bzw. Mischungen aus diesen eingesetzt. Da sich die verschiedenen Cellulase-Typen durch ihre CMCase- und Avicelase-Aktivitäten unterscheiden, können durch gezielte Mischungen der Cellulasen die gewünschten Aktivitäten eingestellt werden.
    Die Enzyme können an Trägerstoffen adsorbiert und/oder in Hüllsubstanzen eingebettet sein, um sie gegen vorzeitige Zersetzung zu schützen. Der Anteil der Enzyme, Enzymmischungen oder Enzymgranulate kann beispielsweise etwa 0,1 bis 5 Gew.-%, vorzugsweise 0,1 bis etwa 2 Gew.-% betragen.
    Zusätzlich zu Phosphonaten können die Mittel noch weitere Enzymstabilisatoren enthalten. Beispielsweise können 0,5 bis 1 Gew.-% Natriumformiat eingesetzt werden. Möglich ist auch der Einsatz von Proteasen, die mit löslichen Calciumsalzen und einem Calciumgehalt von vorzugsweise etwa 1,2 Gew.-%, bezogen auf das Enzym, stabilisiert sind. Außer Calciumsalzen dienen auch Magnesiumsalze als Stabilisatoren. Besonders vorteilhaft ist jedoch der Einsatz von Borverbindungen, beispielsweise von Borsäure, Boroxid, Borax und anderen Alkalimetallboraten wie den Salzen der Orthoborsäure (H3BO3), der Metaborsäure (HBO2) und der Pyroborsäure (Tetraborsäure H2B4O7).
    Vergrauungsinhibitoren haben die Aufgabe, den von der Faser abgelösten Schmutz in der Flotte suspendiert zu halten und so das Wiederaufziehen des Schmutzes zu verhindern.
    Hierzu sind wasserlösliche Kolloide meist organischer Natur geeignet, beispielsweise die wasserlöslichen Salze polymerer Carbonsäuren, Leim, Gelatine, Salze von Ethercarbonsäuren oder Ethersulfonsäuren der Stärke oder der Cellulose oder Salze von sauren Schwefelsäureestem der Cellulose oder der Stärke. Auch wasserlösliche, saure Gruppen enthaltende Polyamide sind für diesen Zweck geeignet. Weiterhin lassen sich lösliche Stärkepräparate und andere als die obengenannten Stärkeprodukte verwenden, z.B. abgebaute Stärke, Aldehydstärken usw. Auch Polyvinylpyrrolidon ist brauchbar. Bevorzugt werden jedoch Celluloseether, wie Carboxymethylcellulose (Na-Salz), Methylcellulose, Hydroxyalkylcellulose und Mischether, wie Methylhydroxyethylcellulose, Methylhydroxypropylcellulose, Methylcarboxymethylcellulose und deren Gemische, sowie Polyvinylpyrrolidon beispielsweise in Mengen von 0,1 bis 5 Gew.-%, bezogen auf die Mittel, eingesetzt.
    Die Mittel können als optische Aufheller Derivate der Diaminostilbendisulfonsäure bzw. deren Alkalimetallsalze enthalten. Geeignet sind z.B. Salze der 4,4'-Bis(2-anilino-4-morpholino-1,3,5-triazinyl-6-amino)stilben-2,2'-disulfonsäure oder gleichartig aufgebaute Verbindungen, die anstelle der Morpholino-Gruppe eine Diethanolaminogruppe, eine Methylaminogruppe, eine Anilinogruppe oder eine 2-Methoxyethylaminogruppe tragen. Weiterhin können Aufheller vom Typ der substituierten Diphenylstyryle anwesend sein, z.B. die Alkalisalze des 4,4'-Bis(2-sulfostyryl)-diphenyls, 4,4'-Bis(4-chlor-3-sulfostyryl)-diphenyls, oder 4-(4-Chlorstyryl)-4'-(2-sulfostyryl)-diphenyls. Auch Gemische der vorgenannten Aufheller können verwendet werden.
    Beispiele
    Die Mittel M1 und M2 wurden nach folgendem Verfahren hergestellt:
    In einem Chargenmischer (20 Liter), der mit einem Messerkopf Zerkleinerer (Zerhacker) ausgerüstet war, wurde ein festes Vorgemisch aus den festen Bestandteilen, einschließlich des Bindemittels, das in diesem Fall in fester Form zugegeben wurde, hergestellt. (In einer alternativen Ausführungsform erfolgte das Eindüsen des Bindemittels in das Vorgemisch in Form einer versprühbaren Schmelze; dies führte jedoch nicht zu Endprodukten mit signifikant verschiedenen Eigenschaften. Die Schmelze erstarrte nach dem Aufbringen auf das Feststoffgemisch innerhalb kurzer Zeit. Die übliche Verweilzeit im Mischer reichte hierzu aus.) Danach wurde die Mischung noch 2 Minuten homogenisiert und im Anschluß daran einem 2-Schnecken-Extruder zugeführt, dessen Granulierkopf auf Temperaturen zwischen 50 und 65 °C, vorzugsweise auf 62 °C, vorgewärmt war. Die Zugabe der gegebenenfalls vorhandenen bei Temperaturen unterhalb 45 °C und einem Druck von 1 bar flüssigen nichtionischen Tenside erfolgte in den Pulverstrom durch das Versprühen durch Düsen. Unter der Schereinwirkung der Extruderschnecken wurde das Vorgemisch plastifiziert und anschließend bei einem Druck zwischen 50 und 100 bar, vorzugsweise um 78 bar, durch die Extruderkopf-Lochdüsenplatte zu feinen Strängen mit einem Durchmesser von 1,4 mm extrudiert, welche nach dem Düsenaustritt mittels eines Abschlagmessers zu angenähert kugelförmigen Granulaten zerkleinert wurden (Länge/Durchmesser-Verhältnis etwa 1, Heißabschlag). Das anfallende warme Granulat wurde eine Minute in einem marktgängigen Rondiergerät vom Typ Marumerizer® verrundet und gegebenenfalls mit einem feinteiligen Pulver überzogen.
    Das Schüttgewicht der hergestellten Extrudate lag bei 800 ± 50 g/l.
    Zur Herstellung des erfindungsgemäßen Mittels M1 wurde ein homogenes Vorgemisch aus 61 Gew.-% des Sprühgetrockneten Granulats 1 (Zusammensetzung siehe unten), 6 Gew.-% C12-C18-Fettalkylsulfat (Zusammensetzung 92,00 Gew.-% Aktivsubstanz, 3,70 Gew.-% Natriumsulfat, 2,80 Gew.-% sonstige Salze aus Rohstoffen und unsulfierte Anteile sowie 1,50 Gew.-% Wasser), 3 Gew.-% copolymerem Natriumsalz der Acrylsäure und der Maleinsäure (Pulverform), 20 Gew.-% Natriumperboratmonohydrat und 6 Gew.-% Polyethylenglykol als Binder mit einer relativen Molekülmasse von 4000 hergestellt. In den Pulverstrom wurden 4 Gew.-% C12-C18-Fettalkohol mit durchschnittlich 7 EO eingesprüht. Das Vorgemisch wurde anschließend extrudiert. Das Extrudat wies bei der angegebenen Siebanalyse ein Schüttgewicht von 758 g/l auf und erzielte im unten beschriebenen Löslichkeitstest (L-Test) einen Wert von 8%.
    Siebanalyse M1: auf Sieb 1,60 mm 6 Gew.-%
    1,25 mm 76 Gew.-%
    1,00 mm 8 Gew.-%
    0,80 mm 4 Gew.-%
    durch Sieb 0,80 mm 6 Gew.-%
    Zur Bestimmung des Rückstandsverhaltens bzw. des Löslichkeitsverhaltens (L-Test) wurden in einem 2 I-Becherglas 8 g des zu testenden Mittels unter Rühren (800 U/min mit Laborrührer/Propeller-Ruhrkopf 1,5 cm vom Becherglasboden entfernt zentriert) eingestreut und 1,5 Minuten bei 30 °C gerührt. Der Versuch wurde mit Wasser einer Härte von 16 °d durchgeführt. Anschließend wurde die Waschlauge durch ein Sieb (80 µm) abgegossen. Das Becherglas wurde mit sehr wenig kaltem Wasser über dem Sieb ausgespült. Es erfolgte eine 2fach-Bestimmung. Die Siebe wurden im Trockenschrank bei 40 °C ± 2 °C bis zur Gewichtskonstanz getrocknet und der Waschmittelrückstand ausgewogen. Der Rückstand wird als Mittelwert aus den beiden Einzelbestimmungen in Prozent angegeben. Bei Abweichungen der Einzelergebnisse um mehr als 20 % voneinander werden üblicherweise weitere Versuche durchgeführt; dies war bei den vorliegenden Untersuchungen aber nicht erforderlich.
    Die Neigung zur Gelierung beim Auflösen in der wäßrigen Flotte wurde in einem Handtuchtest und einem Schüsseltest untersucht: Hierzu wurden in einer Waschschüssel aus dunklem Kunststoff (beispielsweise dunkelrot) in 5 l Leitungswasser (16 °d, 30 °C) 25 g von M1 eingestreut. Nach 15 Sekunden wurde das Mittel mit der Hand in der Schüssel verteilt. Nach weiteren 15 Sekunden wurde 1 blaues Frottierhandtuch in die Waschflotte gegeben und wie in einer typischen Handwäsche bewegt. Nach 30 Sekunden wurde mit dem Handtuch die Wand der Schüssel abgewischt. Schließlich wurde das Handtuch nach weiteren 30 Sekunden ausgewrungen und visuell benotet. Dabei bedeuten:
    Note 1:
    einwandfrei, keine erkennbaren Rückstände
    Note 2:
    tolerierbare, vereinzelte, noch nicht störende Rückstände
    Note 3:
    erkennbare, bei kritischer Beurteilung bereits störende Rückstände
    ab Note 4:
    deutlich erkennbare und störende Rückstände in steigender Anzahl und Menge
    Die Waschlauge wurde abdekantiert und der Rückstand nach Behandlung mit 5 bis 10 ml Wasser ebenfalls visuell benotet. Dabei bedeuten:
    Note 1:
    einwandfrei, keine erkennbaren Rückstände
    Note 2:
    tolerierbare, vereinzelte, noch nicht störende Rückstände, sehr fein verteilt, bei Zugabe von Wasser nicht gelierend
    Note 3:
    erkennbare, bei kritischer Beurteilung bereits störende Rückstände,
    ab Note 4:
    deutlich erkennbare und störende Rückstände in steigender Anzahl und Menge, Agglomerat- bis Klumpenbildung, bei Zugabe von Wasser gelierend
    M1 erzielte sowohl im Handtuchtest als auch im Schüsseltest Noten von 1-2.
    Zum Vergleich wurde ein Mittel V1 hergestellt, das dieselben Inhaltsstoffe im Endprodukt enthielt, bei dem aber das Copolymere nicht in Pulverform, sondern als etwa 30 Gew.-%ige wäßrige Lösung in das Verfahren eingebracht worden war. Das überschüssige Wasser wurde anschließend in einer Wirbelschicht weggetrocknet. Das Schüttgewicht des Extrudats lag bei 770 g/l, der L-Test ergab einen Wert von 28%. Im Handtuchtest erhielt V1 die Note 3-4, im Schüsseltest sogar die Note 4.
    Das Waschmittel M2 erwies sich als besonders günstig zum Waschen von farbigen Textilien. Zu seiner Herstellung wurden 65,71 Gew.-% des Sprühgetrockneten Granulats 2 (Zusammensetzung siehe unten) mit 11,83 Gew.-% eines in der Wirbelschicht hergestellten Alkylsulfat-Compounds (Zusammensetzung: 75 Gew.-% C12-C18-Alkylsulfat, 17 Gew.-% Natriumsulfat, 3 Gew.-% Natriumcarbonat, 1 Gew.-% Wasser, Rest Salze aus Lösungen), 2,96 Gew.-% copolymerem Natriumsalz der Acrylsäure und der Maleinsäure (Pulverform), 6,99 Gew.-% Trinatriumcitrat-dihydrat, 3,59 Gew.-% Polyethylenglykol mit einer relativen Molekülmasse von 4000 und 8,92 Gew.-% C12-C18-Fettalkohol mit durchschnittlich 7 EO wie oben beschrieben zu einem Vorgemisch vermischt und extrudiert.
    Das Extrudat wies bei der angegebenen Siebanalyse ein Schüttgewicht von 811 g/l auf und erzielte im oben beschriebenen Löslichkeitstest (L-Test) einen Wert von 2%. Der Schüsseltest ergab eine Note von 1-2.
    Siebanalyse M1: auf Sieb 1,60 mm 2 Gew.-%
    1,25 mm 90 Gew.-%
    1,00 mm 7 Gew.-%
    0,80 mm 0 Gew.-%
    durch Sieb 0,80 mm 1 Gew.-%
    Zum Vergleich wurde wieder ein Mittel V2 hergestellt, das dieselben Inhaltsstoffe im Endprodukt enthielt, bei dem aber das Copolymere nicht in Pulverform, sondern als etwa 30 Gew.-%ige wäßrige Lösung in das Verfahren eingebracht worden war. Das überschüssige Wasser wurde anschließend in einer Wirbelschicht weggetrocknet. Das Schüttgewicht des Extrudats lag deutlich unterhalb von 800 g/l, der L-Test ergab einen Wert von oberhalb 20 %. Wurde das Alkylsulfat-Compound nicht koextrudiert, sondern gemäß der Lehre der deutschen Patentanmeldung DE-A-195 19 139 nachträglich zugemischt, so lag das Schüttgewicht des Extrudats bei 780 g/l, der L-Test ergab einen Wert von 7% und der Schüsseltest eine Note von 1-2.
    Nach dem Aufbereiten von 90 Gew.-Teilen des Extrudats M2 mit 3 Gew.-Teilen Enzymgranulat, 4 Gew.-Teilen eines Schauminhibitor-Granulats, 2,5 Gew.-Teilen eines Polymeren (Repelotex®, Handelsprodukt der Firma Rhöne-Poulenc) sowie 0,5 Gew.-Teilen Kieselsäure (zur nachträglichen Oberflächenbehandlung) wurde ein Mittel A2 erhalten, welches ein Schüttgewicht von 820 g/l (Schüttgewichtserhöhung!) mit einem L-Testwert von 7 % bei gleichgebliebener Schüsseltestnote aufwies.
    Wurden hingegen 90 Gew.-Teile des Vergleichsextrudats mit zugemischtem Alkylsulfat-Compound entsprechend aufbereitet, so stieg der L-Test auf 12 % an, während das Schüttgewicht auf 735 g/l sank.
    Erfindungsgemäße Mittel wurden auch hergestellt durch Einbringen von 3 bis 5 Gew.-% nichtionisches Tensid über ein sprühgetrocknetes Compound, welches anschließend mit dem nichtionischen Tensid aufbereitet worden war.
    Erfindungsgemäße Mittel wurden beispielsweise auch hergestellt durch Einsatz eines Bindemittelgemisches aus Polyethylenglykol mit einer relativen Molekülmasse von 4000 und einem Cetylstearylalkohol mit durchschnittlich 20 EO in einem Gewichtsverhältnis von 1:2 bis 5:1.
    Erfindungsgemäße Produkte wurden auch hergestellt, indem als Alkylbenzolsulfonat ein Natrium-C9-C13-Alkylbenzolsulfonat-Pulver aus 85 Gew.-% Alkylbenzolsulfonat, 4,5 Gew.-% Natriumcarbonat, 3,5 Gew.-% Natriumsulfat, 2 Gew.-% Natriumchlorid und 4 Gew.-% Wasser und unsulfierte Anteile im Vorgemisch eingesetzt wurde. Die Extrudate wiesen in Abhängigkeit von ihrer sonstigen Rezeptur Werte im beschriebenen L-Test von weniger als 15 % bzw. von weniger als 10 % auf. Wurde in den Vergleichsbeispielen anstelle des Alkylbenzolsulfonat-Pulvers eine konzentrierte wäßrige Alkylbenzolsulfonat-Paste eingesetzt und das Wasser anschließend weggetrocknet, so wiesen alle Produkte im L-Test einen Wert oberhalb 20 % auf.
    Zusammensetzungen der sprühgetrockneten Granulate:
    Sprühgetrocknetes Granulat 1 26,3D Gew.-% C9-C13-Alkylbenzolsulfonat
    1,10 Gew.-% Talgfettalkohol mit durchschnittlich 5 EO
    1,40 Gew.-% C12-C18-Natriumfettsäureseife
    9,40 Gew.-% Natriumcarbonat
    4,00 Gew.-% Copolymeres Natriumsalz der Acrylsäure und Maleinsäure
    39,50 Gew.-% Zeolith A, bezogen auf wasserfreie Aktivsubstanz)
    2,80 Gew.-% amorphes Natriumdisilikat
    13,60 Gew.-% Wasser
    Rest Salze aus Lösungen
    Sprühgetrocknetes Granulat 2 12,07 Gew.-% C9-C13-Alkylbenzolsulfonat
    3,00 Gew.-% C12-C18-Natriumfettsäureseife
    0,03 Gew.-% Natriumhydroxid
    4,15 Gew.-% Natriumcarbonat
    0.80 Gew.-% Phosphonat
    0,80 Gew.-% Polyvinylpyrrolidon
    57,75 Gew.-% Zeolith A, bezogen auf wasserfreie Aktivsubstanz
    4,15 Gew.-% Copolymeres Natriumsalz der Acrylsäure und der Maleinsäure
    16,65 Gew.-% Wasser
    Rest Salze aus Lösungen
    Weitere erfindungsgemäße Mittel M3 bis M10 wiesen folgende Zusammensetzungen auf und wurde wie vorhergehend beschrieben hergestellt:
    Zusammensetzung M3 M4 M5 M6
    Sprühgetrocknetes Granulat 1 57 60 64 55
    Natriumperboratmonohydrat 20 23 - 25
    Polyethylenglykol (4000) 5 - - -
    Polyethylenglykol (2000), einseitig methylendgruppenverschlossen - - - 7
    Fettsäuremethylester C16/18 + 12 EO - - 6 -
    C12/18-Fettalkohol + 7 EO 6 6 7 7
    C12/18-Fettalkylsulfat (92 Gew.-% Aktivsubstanz, 3,70 Gew.-% Natriumsulfat, 2,80 Gew.-% sonstige Salze aus Rohstoffen und unsulfierte Anteile, 1,50 Gew.-% Wasser) 7 5 8 6
    Fettalkohol-C12/14-polyglycosid (78 Gew.-% Aktivsubstanz, 18 Gew.-% Wasserglas Modul 2,4, 5 Gew.-% Wasser) 5 - - -
    C16/18-Fettsäureethoxylat + 80 EO - 6 - -
    Trinatriumcitratdihydrat - - 15 -
    Zusammensetzung M7 M8 M9 M10
    Sprühgetrocknetes Granulat 1 72 51 54,5 52
    Natriumperboratmonohydrat - 20 20 20
    Polyethylenglykol (4000) 6 - 5 -
    Polyethylenglykol (2000), einseitig methylendgruppenverschlossen - 6 - 7
    C12/18-Fettalkohol + 7 EO 7 8 7 -
    C12/14-Fettalkohol + 5 EO - - - 7
    C12/18-Fettalkylsulfat (92 Gew.-% Aktivsubstanz, 3,70 Gew.-% Natriumsulfat, 2,80 Gew.-% sonstige Salze aus Rohstoffen und unsulfierte Anteile, 1,50 Gew.-% Wasser) - 15 5 10
    Fettalkohol-C12/14-polyglycosid (78 Gew.-% Aktivsubstanz, 18 Gew.-% Wasserglas Modul 2,4, 5 Gew.-% Wasser) - - - 4
    Trinatriumcitratdihydrat 15 - - -
    Tetraacethylethylendiamin (95 Gew.-% TAED, 2 Gew.-% Carboxymethylcellulose, 2,75 Gew.-% Salze, 0,25 Gew.-% Wasser) - - 8,5 -
    Ergebnisse des Schüsseltests für M3 bis M10:
    M3 1-2
    M4 1-2
    M5 1
    M6 1-2
    M7 1
    M8 1
    M9 1-2
    M10 1-2

    Claims (24)

    1. Verfahren zur Herstellung von teilchenförmigen Wasch- oder Reinigungsmitteln bzw. Compounds oder behandelten Rohstoffen hierfür mit Schüttgewichten oberhalb 600 g/l durch Zusammenfügen von Wasch- oder Reinigungsmittelcompounds und/oder -rohstoffen unter gleichzeitiger oder anschließender Formgebung, dadurch gekennzeichnet, daß zunächst ein festes, rieselfähiges Vorgemisch hergestellt wird, welches Einzelrohstoffe und/oder Compounds enthält, die bei Raumtemperatur und einem Druck von 1 bar als Feststoff vorliegen und einen Schmelzpunkt bzw. Erweichungspunkt nicht unter 45 °C aufweisen sowie gegebenenfalls bis zu 10 Gew.-% bei Temperaturen unter 45 °C und einem Druck von 1 bar flüssige nichtionische Tenside enthalten, wobei der Mischvorgang bei Raumtemperatur bis hin zu Temperaturen unterhalb der Schmelz- bzw. Erweichungspunkte der bezeichneten Einzelrohstoffe und/oder Compounds erfolgt, und wobei dieses Vorgemisch unter Einsatz von Verdichtungskräften bei Temperaturen von mindestens 45 °C in ein Korn überführt sowie gegebenenfalls anschließend weiterverarbeitet oder aufbereitet wird, mit den Maßgaben, daß
      (a) der Gehalt an freiem Wasser, bezogen auf das Vorgemisch, unter 2 Gew.-% liegt und ein Gesamtwassergehalt von 15 Gew.-%, bezogen auf das Vorgemisch, nicht überschritten wird und
      (b) im Vorgemisch ein oder mehrere Aniontenside in einer Mindestmenge von 0,5 Gew. -%, bezogen auf das Mittel, und mindestens ein Rohstoff oder Compound eingesetzt werden, der bzw. das bei einem Druck von 1 bar und Temperaturen unterhalb von 45 °C in fester Form vorliegt, unter den Verarbeitungsbedingungen aber als Schmelze vorliegt, wobei diese Schmelze als polyfunktioneller, in Wasser löslicher Binder dient, welche bei der Herstellung der Mittel sowohl die Funktion eines Gleitmittels als auch eine Kleberfunktion für die festen Wasch- oder Reinigungsmittelcompounds- bzw. -rohstoffe ausübt, bei der Wiederauflösung des Mittels in wäßriger Flotte hingegen desintegrierend wirkt und wobei dieser Rohstoff oder Compound ausgewählt ist aus der Gruppe lineare, verzweigte und modifizierte Polyethylenglycole, modifizierte Polypropylenglykole, 1,2-Polypropylenglycole, niedermolekulare Polyvinylpyrrolidone und Derivate von diesen mit relativen Molekülmassen bis maximal 30000, alkoxylierte Fett- und Oxoalkohole, Fettsäuremethylesterethoxylate, verzweigte und lineare ethoxylierte Fettsäuren mit 2 bis 100 EO, Hydroxymischether, wasserfreie gequollene Polymere, Alkylglycoside der Formel RO(G)x, in welcher
      R
      primäres geradkettiges oder methylverzweigtes (C8-C22)-Alkyl
      G
      eine Glycoseeinheit mit 5 oder 6 Kohlenstoffatomen
      x
      eine Zahl zwischen 1 und 10 bedeuten,
      Polyhydroxyfettsäureamide der Formel (I)
      Figure 00580001
      in der
      R2CO
      (C6-C22)-Acyl,
      R3
      Wasserstoff, (C1-C4)-Alkyl, (C1-C4)-Hydroxyalkyl,
      [Z]
      lineares oder verzweigtes (C3-C10)-Polyhydroxyalkyl mit 3 bis 10 Hydroxylgruppen bedeuten,
      Polyhydroxyfettsäureamide der Formel (II)
      Figure 00580002
      in der
      R4
      lineares oder verzweigtes (C7-C12)-Alkyl, lineares oder verzweigtes (C7-C12)-Alkenyl,
      R5
      lineares oder verzweigtes (C2-C8)-Alkyl, Cycloalkyl mit 2 bis 8 Kohlenstoffatomen, Aryl mit 2 bis 8 Kohlenstoffatomen,
      R6
      lineares oder verzweigtes (C1-C8)-Alkyl, (C1-C8)-Oxyalkyl, Cycloalkyl mit 1 bis 8 Kohlenstoffatomen, Aryl mit 1 bis 8 Kohlenstoffatomen,
      [Z']
      ggf. alkoxyliertes lineares Polyhydroxyalkyl mit mindestens 2 Hydroxylgruppen in der Alkylkette bedeuten,
      und deren Gemische.
    2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Gehalt an nicht an Zeolith und/oder Silikaten gebundenem Wasser im Vorgemisch nicht mehr als 10 Gew.-% und insbesondere weniger als 7 Gew.-% beträgt.
    3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Vorgemisch zusätzlich zu den festen Bestandteilen bis zu 10 Gew.-% bei Temperaturen unterhalb von 45 °C und einem Druck von 1 bar flüssige nichtionische Tenside, insbesondere die üblicherweise in Wasch- oder Reinigungsmitteln eingesetzten alkoxylierten Alkohole, wie Fettalkohole oder Oxoalkohole mit einer C-Kettentänge zwischen 8 und 20 und insbesondere durchschnittlich 3 bis 7 Ethylenoxideinheiten pro Mol Alkohol aufweist, wobei die Zugabe der flüssigen nichtionischen Tenside und des desintegrierend wirkenden Bindemittels in das Vorgemisch vorzugsweise getrennt erfolgt.
    4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Schmelzpunkt der im Vorgemisch eingesetzten Einzelrohstoffe bzw. der Erweichungspunkt der im Vorgemisch eingesetzten Compounds oberhalb von 45 °C und vorzugsweise bei mindestens 50 °C liegt.
    5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß im Vorgemisch Compounds und Rohstoffe eingesetzt werden, die zu 80 Gew.-%. vorzugsweise zu mindestens 85 Gew.-% und mit besonderer Bevorzugung zu mindestens 90 Gew.-% einen wesentlich höheren Erweichungspunkt bzw. Schmelzpunkt aufweisen als die Temperaturen, die unter den Verfahrensbedingungen erreicht werden.
    6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß im Verdichtungsschritt in einem Temperaturbereich wenige Grade, beispielsweise 2 bis 20 °C, oberhalb des Schmelzpunkts bzw. oberhalb des Erweichungspunkts gearbeitet wird.
    7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß ein oder mehrere Bindemittel eingesetzt werden, welche sich in einer Konzentration von 8 g Bindemittel auf 1 l Wasser bei 30 °C innerhalb von 90 Sekunden nahezu vollständig lösen.
    8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß Bindemittel eingesetzt werden, welche bereits bei Temperaturen bis maximal 130°C, vorzugsweise bis maximal 100 °C und insbesondere bis 90 °C vollständig als Schmelze vorliegen.
    9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Feststoffe zur Herstellung des festen und rieselfähigen Vorgemisches zunächst bei Raumtemperatur bis leicht erhöhten Temperaturen, die vorzugsweise unterhalb der Schmelztemperatur bzw. des Schmelzbereichs des Bindemittels liegen und insbesondere bei Temperaturen bis 35 °C, in einer üblichen Misch- und/oder Granuliervorrichtung vorgelegt werden.
    10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die Bindemittel als letzte Komponente in das Vorgemisch gegeben werden, wobei ihre Zumischung unter derartigen Bedingungen durchgeführt wird, daß eine möglichst gleichmäßige, homogene Verteilung des Bindemittels - als erstarrte Schmelze oder als Pulver - in dem Feststoffgemisch erreicht wird.
    11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die Einarbeitung des Bindemittels bei Temperaturen erfolgt, bei denen das Bindemittel in Form einer Schmelze vorliegt, wobei bevorzugte Temperaturen der Schmelze bei 60 bis 150 °C, insbesondere im Temperaturbereich von 80 bis 120 °C liegen.
    12. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß der Mischvorgang solange fortgesetzt wird, bis die Schmelze erstarrt ist und das Vorgemisch in fester, rieselfähiger Form vorliegt.
    13. Verfahren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß ein Vorgemisch eingesetzt wird, dessen Gehalt an Bindemittel bzw. Bindemitteln mindestens 2 Gew.-%, aber weniger als 15 Gew.-%, vorzugsweise weniger als 10 Gew.-% und unter besonderer Bevorzugung 3 bis 6 Gew.-%, jeweils bezogen auf das Vorgemisch, beträgt.
    14. Verfahren nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß eine Verfahrenstemperatur im eigentlichen Granulierungs-, Kompaktierungs-, Tablettierungs-, Pelletierungs- oder Extrusionsvorgang über dem Schmelzpunkt bzw. oberhalb der Temperatur, bei der das Bindemittel (oder die Bindemittel) als Schmelze vorliegt, eingestellt wird, wobei die Verfahrenstemperatur vorzugsweise aber nicht mehr als 20 °C über der Schmelztemperatur bzw. des Schmelzbereichs des Bindemittels liegt.
    15. Verfahren nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß das Bindemittel eine Schmelztemperatur bzw. einen Schmelzbereich bis maximal 150 °C, vorzugsweise bis maximal 100 °C und insbesondere bis 75 °C aufweist und die Verfahrenstemperatur 10 °C und insbesondere maximal 5 °C oberhalb der Schmelztemperatur bzw. der oberen Temperaturgrenze des Schmelzbereichs des Bindemittels liegt.
    16. Verfahren nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß die Dauer der Temperatureinwirkung zwischen der Vermischung/Homogenisierung des Vorgemisches und der Formgebung, also im Verdichtungsbereich zwischen 10 Sekunden und maximal 5 Minuten liegt und insbesondere maximal 3 Minuten beträgt.
    17. Verfahren nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, daß die Herstellung durch Extrusion erfolgt, wobei das Vorgemisch unter Druck verdichtet, plastifiziert, in Form feiner Stränge durch die Lochdüsenplatte im Extruderkopf extrudiert und schließlich mittels eines rotierenden Abschlagmessers, vorzugsweise zu etwa kugelförmigen (perlenförmigen) bis zylindrischen Granulatkörnern, verkleinert wird und die Temperaturführung im Übergangsbereich der Extruderschnecke, des Vorverteilers und der Düsenplatte derart gestaltet ist, daß die Schmelztemperatur des Bindemittels bzw. die obere Grenze des Schmelzbereichs des Bindemittels zumindest erreicht, vorzugsweise aber überschritten wird
    18. Verfahren nach Anspruch 17, dadurch gekennzeichnet, daß die Dauer der Temperatureinwirkung im Kompressionsbereich der Extrusion maximal 2 Minuten beträgt und insbesondere in einem Bereich zwischen 30 Sekunden und 1 Minute liegt.
    19. Verfahren nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, daß das verdichtete Gut direkt nach dem Austritt aus dem Herstellungsapparat Temperaturen nicht oberhalb von 80 °C, vorzugsweise zwischen 35 und 75 °C und insbesondere zwischen 40 bis 70 °C, beispielsweise bis 60 °C, aufweist.
    20. Verfahren nach einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, daß ein Vorgemisch mit relativ breiter Teilchengrößenverteilung und relativ hohen Anteilen an Feinkorn in ein Endprodukt mit relativ enger Teilchengrößenverteilung und relativ geringen Anteilen an Feinkorn überführt wird.
    21. Teilchenförmiges Wasch- oder Reinigungsmittel, Compound oder behandelter Rohstoff hierfür mit Schüttgewichten oberhalb 600 g/l, hergestellt nach einem der Ansprüche 1 bis 20, wobei aus Compounds und/oder Rohstoffen hierfür zunächst ein festes, rieselfähiges Vorgemisch hergestellt wird, welches Einzelrohstoffe und/oder Compounds, die bei Raumtemperatur und einem Druck von 1 bar als Feststoff vorliegen und einen Schmelzpunkt bzw. Erweichungspunkt nicht unter 45 °C aufweisen, sowie gegebenenfalls bis zu 10 Gew.-% bei Temperaturen unter 45 °C und einem Druck von 1 bar flüssige nichtionische Tenside enthält, wobei der Mischvorgang bei Raumtemperatur bis hin zu Temperaturen unterhalb der Schmelz- bzw. Erweichungspunkte der bezeichneten Einzelrohstoffe und/oder Compounds erfolgt, und wobei dieses Vorgemisch unter Einsatz von Verdichtungskräften bei Temperaturen von mindestens 45 °C in ein Korn überführt sowie gegebenenfalls anschließend weiterverarbeitet oder aufbereitet wird, mit der Maßgabe, daß der Gehalt an freiem Wasser im Vorgemisch, bezogen auf das Vorgemisch, unter 2 Gew.-% liegt und ein Gesamtwassergehalt von 15 Gew.-% im Vorgemisch, bezogen auf das Vorgemisch, nicht überschritten wird, dadurch gekennzeichnet, daß das Vorgemisch ein oder mehrere Aniontenside in einer Mindestmenge von 0,5 Gew.-%, bezogen auf das Mittel, mindestens einen Rohstoff oder ein Compound, der bzw. das über das Vorgemisch eingebracht wird und bei einem Druck von 1 bar und Temperaturen unterhalb von 45 °C in fester Form vorliegt, unter den Verarbeitungsbedingungen aber als Schmelze vorliegt, wobei die Schmelze als polyfunktioneller, in Wasser löslicher Binder dient, welche bei der Herstellung der Mittel sowohl die Funktion eines Gleitmittels als auch eine Kleberfunktion für die festen Waschoder Reinigungsmittelcompounds bzw. -rohstoffe ausübt, bei der Wiederauflösung des Mittels in wäßriger Flotte hingegen desintegrierend wirkt und wobei dieser Rohstoff oder Compound ausgewählt ist aus der Gruppe lineare, verzweigte und modifizierte Polyethylenglycole, modifizierte Polypropylenglykole, 1,2-Polypropylenglycole, niedermolekulare Polyvinylpyrrolidone und Derivate von diesen mit relativen Molekülmassen bis maximal 30000, alkoxylierte Fett- und Oxoalkohole, Fettsäuremethylesterethoxylate, verzweigte und lineare ethoxylierte Fettsäuren mit 2 bis 100 EO, Hydroxymischether, wasserfreie gequollene Polymere, Alkylglycoside der Formel RO(G)x, in welcher
      R
      primäres geradkettiges oder methylverzweigtes (C8-C22)-Alkyl
      G
      eine Glycoseeinheit mit 5 oder 6 Kohlenstoffatomen
      x
      eine Zahl zwischen 1 und 10 bedeuten,
      Polyhydroxyfettsäureamide der Formel (I)
      Figure 00630001
      in der
      R2CO
      (C6-C22)-Acyl,
      R3
      Wasserstoff, (C1-C4)-Alkyl, (C1-C4)-Hydroxyalkyl,
      [Z]
      lineares oder verzweigtes (C3-C10)-Polyhydroxyalkyl mit 3 bis 10 Hydroxylgruppen bedeuten.
      Polyhydroxyfettsäureamide der Formel (II)
      Figure 00640001
      in der
      R4
      lineares oder verzweigtes (C7-C12)-Alkyl, lineares oder verzweigtes (C7-C12)-Alkenyl,
      R5
      lineares oder verzweigtes (C2-C8)-Alkyl, Cycloalkyl mit 2 bis 8 Kohlenstoffatomen, Aryl mit 2 bis 8 Kohlenstoffatomen,
      R6
      lineares oder verzweigtes (C1-C8)-Alkyl, (C1-C8)-Oxyalkyl, Cycloalkyl mit 1 bis 8 Kohtenstoffatomen, Aryl mit 1 bis 8 Kohlenstoffatomen,
      [Z']
      ggf. alkoxyliertes lineares Polyhydroxyalkyl mit mindestens 2 Hydroxylgruppen in der Alkylkette bedeuten,
      und deren Gemische, enthält sowie eine Waben-ähnliche Struktur aufweist, wobei die Waben mit Feststoff gefüllt sind.
    22. Granuliertes oder extrudiertes Waschmittel nach Anspruch 21, dadurch gekennzeichnet, daß es zu mindestens 80 Gew.-% aus erfindungsgemäß hergestellten Compounds und/oder behandelten Rohstoffen besteht und insbesondere zu mindestens 80 Gew.-% aus einem erfindungsgemäß hergestellten Basisgranulat oder Basisextrudat besteht, wobei es besonders vorteilhaft ist, wenn die restlichen Bestandteile ebenfalls Compounds oder behandelte Rohstoffe sind, welche gemäß einem der Ansprüche 1 bis 20 hergestellt wurden.
    23. Mittel gemäß einem der Ansprüche 21 oder 22, dadurch gekennzeichnet, daß es als Außenhülle staubförmige oder zumindest feinteilige Inhaltsstoffe (die sogenannten Feinanteile) aufweist, welche durch Schmelzagglomeration angeklebt wurden.
    24. Waschmittelformkörper, insbesondere Tablette, erhältlich nach einem der Ansprüche 1 bis 20, wobei aus Compounds und/oder Rohstoffen hierfür zunächst ein festes, rieselfähiges Vorgemisch hergestellt wird, welches Einzelrohstoffe und/oder Compounds, die bei Raumtemperatur und einem Druck von 1 bar als Feststoff vorliegen und einen Schmelzpunkt bzw. Erweichungspunkt nicht unter 45 °C aufweisen, sowie gegebenenfalls bis zu 10 Gew.-% bei Temperaturen unter 45 °C und einem Druck von 1 bar flüssige nicht-ionische Tenside enthält, wobei der Mischvorgang bei Raumtemperatur bis hin zu Temperaturen unterhalb der Schmelz- bzw. Erweichungspunkte der bezeichneten Einzelrohstoffe und/oder Compounds erfolgt, und wobei dieses Vorgemisch unter Einsatz von Verdichtungskräften bei Temperaturen von mindestens 45 °C in ein Korn überführt sowie anschließend weiterverarbeitet oder aufbereitet wird, mit der Maßgabe, daß der Gehalt an freiem Wasser im Vorgemisch, bezogen auf das Vorgemisch, unter 2 Gew.-% liegt und ein Gesamtwassergehalt von 15 Gew.-% im Vorgemisch, bezogen auf das Vorgemisch, nicht überschritten wird, dadurch gekennzeichnet, daß der Formkörper ein oder mehrere Aniontenside in einer Mindestmenge von 0,5 Gew.-%, bezogen auf das Mittel, mindestens einen Rohstoff oder ein Compound, der bzw. das über das Vorgemisch eingebracht wird und bei einem Druck von 1 bar und Temperaturen unterhalb von 45 °C in fester Form vorliegt, unter den Verarbeitungsbedingungen aber als Schmelze vorliegt, wobei die Schmelze als polyfunktioneller, in Wasser löslicher Binder dient, welche bei der Herstellung der Mittel sowohl die Funktion eines Gleitmittels als auch eine Kleberfunktion für die festen Waschoder Reinigungsmittelcompounds bzw. -rohstoffe ausübt, bei der Wiederauflösung des Mittels in wäßriger Flotte hingegen desintegrierend wirkt und wobei dieser Rohstoff oder Compound ausgewählt ist aus der Gruppe lineare, verzweigte und modifizierte Polyethylenglycole, modifizierte Polypropylenglykole, 1,2-Polypropylenglycole, niedermolekulare Polyvinylpyrrolidone und Derivate von diesen mit relativen Molekülmassen bis maximal 30000, alkoxylierte Fett- und Oxoalkohole, Fettsäuremethylesterethoxylate, verzweigte und lineare ethoxylierte Fettsäuren mit 2 bis 100 EO, Hydroxymischether, wasserfreie gequollene Polymere, Alkylglycoside der Formel RO(G)x, in welcher
      R
      primäres geradkettiges oder methylverzweigtes (C8-C22)-Alkyl
      G
      eine Glycoseeinheit mit 5 oder 6 Kohlenstoffatomen
      x
      eine Zahl zwischen 1 und 10 bedeuten,
      Potyhydroxyfettsäureamide der Formel (I)
      Figure 00650001
      in der
      R2CO
      (C6-C22)-Acyl,
      R3
      Wasserstoff (C1-C4)-Alkyl, (C1-C4)-Hydroxyalkyl,
      [Z]
      lineares oder verzweigtes (C3-C10)-Polyhydroxyalkyl mit 3 bis 10 Hydroxylgruppen bedeuten,
      Polyhydroxyfettsäureamide der Formel (II)
      Figure 00660001
      in der
      R4
      lineares oder verzweigtes (C7-C12)-Alkyl, lineares oder verzweigtes (C7-C12)-Alkenyl,
      R5
      lineares oder verzweigtes (C2-C8)-Alkyl, Cycloalkyl mit 2 zu 8 Kohlenstoffatomen, Aryl mit 2 bis 8 Kohlenstoffatomen,
      R6
      lineares oder verzweigtes (C1-C8)-Alkyl, (C1-C8)-Oxyalkyl, Cycloalkyl mit 1 bis 8 Kohlenstoffatomen, Aryl mit 1 bis 8 Kohlenstoffatomen,
      [Z']
      ggf. alkoxyliertes lineares Polyhydroxyalkyl mit mindestens 2 Hydroxylgruppen in der Alkylkette bedeuten,
      und deren Gemische, sowie ein oder mehrere Sprengmittel enthält.
    EP97942019A 1996-09-20 1997-09-11 Verfahren zur herstellung eines teilchenförmigen wasch- oder reinigungsmittels Expired - Lifetime EP0931137B1 (de)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE19638599 1996-09-20
    DE19638599A DE19638599A1 (de) 1996-09-20 1996-09-20 Verfahren zur Herstellung eines teilchenförmigen Wasch- oder Reinigungsmittels
    PCT/EP1997/004975 WO1998012299A1 (de) 1996-09-20 1997-09-11 Verfahren zur herstellung eines teilchenförmigen wasch- oder reinigungsmittels

    Publications (2)

    Publication Number Publication Date
    EP0931137A1 EP0931137A1 (de) 1999-07-28
    EP0931137B1 true EP0931137B1 (de) 2003-12-10

    Family

    ID=7806359

    Family Applications (2)

    Application Number Title Priority Date Filing Date
    EP97942019A Expired - Lifetime EP0931137B1 (de) 1996-09-20 1997-09-11 Verfahren zur herstellung eines teilchenförmigen wasch- oder reinigungsmittels
    EP98947499A Expired - Lifetime EP1015550B1 (de) 1996-09-20 1998-09-02 Verfahren zur herstellung teilchenförmiger wasch- oder reinigungsmittel

    Family Applications After (1)

    Application Number Title Priority Date Filing Date
    EP98947499A Expired - Lifetime EP1015550B1 (de) 1996-09-20 1998-09-02 Verfahren zur herstellung teilchenförmiger wasch- oder reinigungsmittel

    Country Status (14)

    Country Link
    EP (2) EP0931137B1 (de)
    JP (1) JP2001500557A (de)
    KR (3) KR20010029500A (de)
    CN (1) CN1187435C (de)
    AT (1) ATE256176T1 (de)
    CZ (1) CZ296295B6 (de)
    DE (2) DE19638599A1 (de)
    ES (1) ES2213222T3 (de)
    PL (1) PL331987A1 (de)
    RU (1) RU2200190C2 (de)
    SK (1) SK285376B6 (de)
    TR (1) TR199900582T2 (de)
    UA (1) UA64724C2 (de)
    WO (1) WO1998012299A1 (de)

    Cited By (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    USD762486S1 (en) 2015-02-18 2016-08-02 Henkel Ag & Co. Kgaa Solid state detergent in a transparent container
    US9512388B2 (en) 2015-02-18 2016-12-06 Henkel Ag & Co. Kgaa Solid state detergent in a transparent container
    USD784819S1 (en) 2015-02-18 2017-04-25 Henkel Us Iv Corporation Container for a solid state detergent

    Families Citing this family (17)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE19723616A1 (de) * 1997-06-05 1998-12-10 Henkel Kgaa Granulares Waschmittel
    DE19746781A1 (de) * 1997-10-23 1999-04-29 Henkel Kgaa Verfahren zur Herstellung duftverstärkter Wasch- oder Reinigungsmittel
    DE19753310A1 (de) * 1997-12-02 1999-06-10 Henkel Kgaa Rohstoff-Compounds mit hohem Schüttgewicht
    DE19808758A1 (de) * 1998-03-02 1999-09-09 Henkel Kgaa Verfahren zur Herstellung von Wasch- und Reinigungsmittelformkörpern
    BR9914047A (pt) * 1998-09-25 2001-06-19 Procter & Gamble Composições detergentes granulares tendo perfis de solubilidade aperfeiçoados
    DE19848024A1 (de) * 1998-10-17 2000-04-20 Henkel Kgaa Verfahren zur Herstellung extrudierter Formkörper
    DE19858887A1 (de) * 1998-12-19 2000-06-21 Henkel Kgaa Kompaktat mit silicatischem Builder
    DE10031619A1 (de) 2000-06-29 2002-01-10 Cognis Deutschland Gmbh Tensidgranulate mit verbesserter Auflösegeschwindigkeit
    DE10137925A1 (de) 2001-08-07 2003-02-20 Cognis Deutschland Gmbh Geminitenside und Polyethylenglycol
    DE10242222A1 (de) * 2002-09-12 2004-03-25 Henkel Kgaa Unter Druck kompaktiertes Wasch- oder Reinigungsmittel
    WO2008054335A1 (fr) * 2006-10-30 2008-05-08 Eduard Valerievich Belinskiy Moyen de lavage granulé synthétique et cabine de douche associée
    US8119112B2 (en) * 2008-01-31 2012-02-21 Bausch & Lomb Incorporated Ophthalmic compositions with an amphoteric surfactant and hyaluronic acid
    GB0915572D0 (en) * 2009-09-07 2009-10-07 Reckitt Benckiser Nv Detergent composition
    BR112015021133B8 (pt) * 2013-03-22 2020-02-18 Basf Se mistura de compostos, processo para produzir uma mistura de compostos e limpar superfícies duras ou fibras, formulação aquosa, e, uso de misturas de compostos
    CN104152293A (zh) * 2014-07-28 2014-11-19 张洪山 洗涤用碱性蛋白彩色粒子成套生产线
    DE102015002877A1 (de) 2015-03-09 2016-09-15 Henkel Ag & Co. Kgaa Granulares Wasch- oder Reinigungsmittel mit verbesserter Lösegeschwindigkeit
    WO2020050426A1 (ko) * 2018-09-03 2020-03-12 주식회사 프랜드 전분 항균스크럽비드의 제조방법

    Family Cites Families (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE4024759A1 (de) * 1990-08-03 1992-02-06 Henkel Kgaa Bleichaktivatoren in granulatform
    DE4124701A1 (de) * 1991-07-25 1993-01-28 Henkel Kgaa Verfahren zur herstellung fester wasch- und reinigungsmittel mit hohem schuettgewicht und verbesserter loesegeschwindigkeit
    DE4319666A1 (de) * 1993-06-14 1994-12-15 Henkel Kgaa Verfahren zur Herstellung fester Wasch- oder Reinigungsmittel mit hohem Schüttgewicht und verbesserter Rheologie
    GB9422924D0 (en) * 1994-11-14 1995-01-04 Unilever Plc Detergent compositions

    Cited By (6)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    USD762486S1 (en) 2015-02-18 2016-08-02 Henkel Ag & Co. Kgaa Solid state detergent in a transparent container
    US9512388B2 (en) 2015-02-18 2016-12-06 Henkel Ag & Co. Kgaa Solid state detergent in a transparent container
    USD784819S1 (en) 2015-02-18 2017-04-25 Henkel Us Iv Corporation Container for a solid state detergent
    USD799324S1 (en) 2015-02-18 2017-10-10 Henkel IP & Holding GmbH Container for a solid state detergent
    USD799326S1 (en) 2015-02-18 2017-10-10 Henkel IP & Holding GmbH Container for a solid state detergent
    USD799327S1 (en) 2015-02-18 2017-10-10 Henkel IP & Holding GmbH Container for a solid state detergent

    Also Published As

    Publication number Publication date
    WO1998012299A1 (de) 1998-03-26
    DE19638599A1 (de) 1998-03-26
    CZ296295B6 (cs) 2006-02-15
    DE59711115D1 (de) 2004-01-22
    RU99108122A (ru) 2001-02-20
    EP0931137A1 (de) 1999-07-28
    KR20010023926A (ko) 2001-03-26
    KR20010029500A (ko) 2001-04-06
    UA64724C2 (uk) 2004-03-15
    ES2213222T3 (es) 2004-08-16
    RU2200190C2 (ru) 2003-03-10
    PL331987A1 (en) 1999-08-16
    CN1187435C (zh) 2005-02-02
    ATE256176T1 (de) 2003-12-15
    SK35299A3 (en) 1999-07-12
    KR20010023917A (ko) 2001-03-26
    EP1015550B1 (de) 2006-02-01
    EP1015550A1 (de) 2000-07-05
    CZ97799A3 (cs) 1999-09-15
    JP2001500557A (ja) 2001-01-16
    SK285376B6 (sk) 2006-12-07
    CN1230984A (zh) 1999-10-06
    TR199900582T2 (xx) 1999-06-21

    Similar Documents

    Publication Publication Date Title
    EP0931137B1 (de) Verfahren zur herstellung eines teilchenförmigen wasch- oder reinigungsmittels
    EP1235897B1 (de) Waschmitteltabletten
    EP1025198B1 (de) Verfahren zur herstellung duftverstärkter wasch- oder reinigungsmittel
    DE19956803A1 (de) Tensidgranulate mit verbesserter Auflösegeschwindigkeit
    EP1253193A2 (de) Feste Tensidzusammensetzungen, deren Herstellung und Verwendung
    EP0804529B1 (de) Amorphes alkalisilikat-compound
    EP1842900A1 (de) Verfahren zur Herstellung von Granulaten und deren Einsatz in Wasch- und/oder Reinigungsmitteln
    DE19941934A1 (de) Detergentien in fester Form
    EP1012221B1 (de) Verfahren zur herstellung teilchenförmiger wasch- oder reinigungsmittel
    EP0839178B1 (de) Amorphes alkalisilicat-compound
    EP0724620B1 (de) Verfahren zur herstellung wasch- oder reinigungsaktiver extrudate mit verbessertem redispergiervermögen
    EP1036158B1 (de) Verfahren zur herstellung von rohstoff-compounds mit hohem schüttgewicht
    EP0845028B1 (de) Verfahren zur herstellung eines amorphen alkalisilikats mit imprägnierung
    EP0888428A1 (de) Verfahren zur herstellung von granularen silikaten mit hohem schüttgewicht
    EP0888450B2 (de) Wasch- oder reinigungsmitteladditiv sowie ein verfahren zu seiner herstellung
    EP0846758A2 (de) Additiv für Wasch- oder Reinigungsmittel
    EP0836641A1 (de) Von staub- und feinanteilen freie granulare wasch- und reinigungsmittel hoher schüttdichte
    WO2016142209A1 (de) Granulares wasch- oder reinigungsmittel mit verbesserter lösegeschwindigkeit
    WO2000022076A1 (de) Posphonathaltige granulate
    DE19911570A1 (de) Aniontensid-Granulate
    DE10108573A1 (de) Feste Waschmittelzusatzstoffe, deren Herstellung und Verwendung
    DE102004053385A1 (de) Kugelförmige Agglomerate
    DE19632284A1 (de) Wasch- oder Reinigungsmitteladditiv sowie ein Verfahren zu seiner Herstellung
    EP0876469A1 (de) Verfahren zur herstellung von granularen wasch- oder reinigungsmitteln oder komponenten hierfür

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19990311

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE DE ES FR GB IT NL

    17Q First examination report despatched

    Effective date: 20020903

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    RIC1 Information provided on ipc code assigned before grant

    Ipc: 7C 11D 11/00 B

    Ipc: 7C 11D 17/06 A

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE DE ES FR GB IT NL

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REF Corresponds to:

    Ref document number: 59711115

    Country of ref document: DE

    Date of ref document: 20040122

    Kind code of ref document: P

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20040319

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2213222

    Country of ref document: ES

    Kind code of ref document: T3

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20040913

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20160921

    Year of fee payment: 20

    Ref country code: NL

    Payment date: 20160920

    Year of fee payment: 20

    Ref country code: GB

    Payment date: 20160920

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20160921

    Year of fee payment: 20

    Ref country code: AT

    Payment date: 20160921

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20160920

    Year of fee payment: 20

    Ref country code: ES

    Payment date: 20160916

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20160922

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R071

    Ref document number: 59711115

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: MK

    Effective date: 20170910

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: PE20

    Expiry date: 20170910

    REG Reference to a national code

    Ref country code: AT

    Ref legal event code: MK07

    Ref document number: 256176

    Country of ref document: AT

    Kind code of ref document: T

    Effective date: 20170911

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20170910

    REG Reference to a national code

    Ref country code: BE

    Ref legal event code: MK

    Effective date: 20170911

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20180508

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20170912