EP1235897B1 - Waschmitteltabletten - Google Patents

Waschmitteltabletten Download PDF

Info

Publication number
EP1235897B1
EP1235897B1 EP00987256A EP00987256A EP1235897B1 EP 1235897 B1 EP1235897 B1 EP 1235897B1 EP 00987256 A EP00987256 A EP 00987256A EP 00987256 A EP00987256 A EP 00987256A EP 1235897 B1 EP1235897 B1 EP 1235897B1
Authority
EP
European Patent Office
Prior art keywords
acid
weight
alcohol
contain
granules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00987256A
Other languages
English (en)
French (fr)
Other versions
EP1235897A1 (de
Inventor
Manfred Weuthen
Ditmar Kischkel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cognis IP Management GmbH
Original Assignee
Cognis Deutschland GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cognis Deutschland GmbH and Co KG filed Critical Cognis Deutschland GmbH and Co KG
Publication of EP1235897A1 publication Critical patent/EP1235897A1/de
Application granted granted Critical
Publication of EP1235897B1 publication Critical patent/EP1235897B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/32Protein hydrolysates; Fatty acid condensates thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • C11D17/0065Solid detergents containing builders
    • C11D17/0073Tablets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products

Definitions

  • the invention is in the field of molded detergents and relates to tablets special surfactant granules.
  • DE 22 63 939 describes tablets which contain 85 to 98% by weight of one Granular bleach activator containing hydrogen peroxide and water-soluble ones contain film-forming polymers and a water-soluble or swellable starch. The ingredients are mixed and processed into granules, which are then compressed into tablets can be.
  • EP 0 799 886 A2 describes detergent tablets, the nonionic surfactants, amphoteric surfactants and 20 to 50 wt .-% polyfunctional carboxylic acids, layered silicates and Potassium carbonate included. The tablets are made by removing a solid fraction from the polyfunctional carboxylic acids, the layered silicates and the potassium carbonate is produced and the surfactant fraction is then sprayed onto this.
  • the resulting powder is in conventional tableting machines pressed into tablets.
  • DE 197 23 028 A1 describes a Aid granules for detergent tablets. It contains 10 to 95% by weight Cellulose with a particle size ⁇ 100 mm and 5 to 90 wt .-% microcrystalline cellulose and / or one or more ingredients of washing and cleaning agents.
  • the so obtained Granules can be pressed into shaped articles, in particular detergent tablets.
  • the object of the present invention was therefore to provide detergent tablets To make available particularly quickly without contact with cold water Gel phase disintegrate, so that the disadvantages of the prior art are reliably overcome.
  • the invention relates to detergent tablets which contain surfactant granules which have a Grain size in the range of 0.01 to 6 mm, these granules by granulation and compacting surface-active protein hydrolyzates and / or Protein fatty acid condensates in the presence of disintegrants selected from the group consisting of is formed by polysaccharides, polyacrylates, polyvinylpyrrolidone, polyurethanes, Polyethylene glycols, alginic acids, alginates and layered silicates.
  • detergent tablets are based on the new Surfactant granules show such a high dissolution rate that they are directly over the dispenser of the washing machine can be metered in and there quickly and Dissolve without residue.
  • this effect can also be used in other for example in the machine Dishwashing can be used.
  • laundry detergent also includes others below Applications in the field of cleaning hard surfaces, but especially detergents and cleaning agents Roger that.
  • Protein hydrolyzates and their condensation products with fatty acids are preferred as protein components, and subordinate protein hydrolyzate esters and quaternized protein fatty acid condensates are also suitable.
  • Protein hydrolysates are breakdown products of animal or vegetable proteins, for example collagen, elastin or keratin and preferably almond and potato protein, and in particular wheat, rice and soy protein, which are split by acidic, alkaline and / or enzymatic hydrolysis and then have an average molecular weight in Have range from 600 to 4000, preferably 2000 to 3500.
  • protein hydrolyzates, in the absence of a hydrophobic residue are not surfactants in the classical sense, they are widely used for the formulation of surface-active agents because of their dispersing properties.
  • Anionic surfactants so-called protein fatty acid condensates, which have properties comparable to soaps, can be produced from the protein hydrolyzates by condensation with C 6 -C 22 , preferably C 12 -C 18 fatty acids.
  • anionic surfactants which can also be contained in the surfactant granules, are soaps, alkylbenzenesulfonates, alkanesulfonates, olefin sulfonates, alkyl ether sulfonates, glycerol ether sulfonates, ⁇ -methyl ester sulfonates, sulfofatty acids, alkysulfates, fatty alcohol ether sulfates, hydroxyl ether amide sulfates (glycerol ether sulfates) (glycerol ether sulfates), ether) sulfates, mono- and dialkyl sulfosuccinates, mono- and dialkyl sulfosuccinamates, sulfotriglycerides, amide soaps, ether carboxylic acids and their salts, fatty acid isethionates, fatty acid sarcosinates
  • anionic surfactants contain polyglycol ether chains, these can have a conventional, but preferably a narrow, homolog distribution.
  • Alkyl benzene sulfonates, alkyl sulfates, soaps, alkane sulfonates, olefin sulfonates, methyl ester sulfonates and mixtures thereof are preferably used.
  • Preferred alkylbenzenesulfonates preferably follow the formula (I) R-Ph-SO 3 X (I) in which R stands for a branched, but preferably linear alkyl radical having 10 to 18 carbon atoms, Ph for a phenyl radical and X for an alkali and / or alkaline earth metal, ammonium, alkylammonium, alkanolammonium or glucammonium.
  • R stands for a branched, but preferably linear alkyl radical having 10 to 18 carbon atoms
  • Ph for a phenyl radical
  • X for an alkali and / or alkaline earth metal
  • ammonium alkylammonium
  • alkanolammonium or glucammonium dodecylbenzenesulfonates, tetradecylbenzenesulfonates, hexadecylbenzenesulfonates and their technical mixtures in the form of the sodium salts
  • Alkyl and / or alkenyl sulfates which are also often referred to as fatty alcohol sulfates, are to be understood as meaning the sulfation products of primary and / or secondary alcohols, which preferably follow the formula (II) R 2 O-SO 3 Y (II) in which R 2 represents a linear or branched, aliphatic alkyl and / or alkenyl radical having 6 to 22, preferably 12 to 18 carbon atoms and Y represents an alkali and / or alkaline earth metal, ammonium, alkylammonium, alkanolammonium or glucammonium.
  • alkyl sulfates which can be used in the context of the invention are the sulfation products of capron alcohol, caprylic alcohol, capric alcohol, 2-ethylhexyl alcohol, lauryl alcohol, myristyl alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, aryl selenyl alcohol, elaidyl alcohol, Behenyl alcohol and erucyl alcohol as well as their technical mixtures, which are obtained by high pressure hydrogenation of technical methyl ester fractions or aldehydes from Roelen's oxosynthesis.
  • the sulfation products can preferably be used in the form of their alkali metal salts and in particular their sodium salts.
  • Alkyl sulfates based on C 16/18 tallow fatty alcohols or vegetable fatty alcohols of comparable C chain distribution in the form of their sodium salts are particularly preferred.
  • these are oxo alcohols, as are obtainable, for example, by converting carbon monoxide and hydrogen to alpha-containing olefins using the shop process.
  • Such alcohol mixtures are commercially available under the trade name Dobanol® or Neodol®. Suitable alcohol mixtures are Dobanot 91®, 23®, 25®, 45®.
  • oxo alcohols such as those obtained by the classic Enichema or Condea oxo process by adding carbon monoxide and hydrogen to olefins.
  • These alcohol mixtures are a mixture of strongly branched alcohols.
  • Such alcohol mixtures are commercially available under the trade name Lial®.
  • Suitable alcohol mixtures are Lial 91®, 111®, 123®, 125®, 145®.
  • the nonionic surfactants which are also suitable as an additional surfactant component of the granules for the purposes of the present invention, can be, for example, fatty alcohol polyglycol ethers, alkylphenol polyglycol ethers, fatty acid polyglycol esters, fatty acid amide polyglycol ethers, fatty amine polyglycol ethers, alkoxylated triglycerides, mixed ethers or mixed formulas, alk (enoglyl) glycerols, alk (enol) glycosyl alcohols Act fatty acid-N-alkylglucamides, protein hydrolyzates (especially vegetable products based on wheat), polyol fatty acid esters, sugar esters, sorbitan esters, polysorbates and amine oxides.
  • nonionic surfactants contain polyglycol ether chains, they can have a conventional, but preferably a narrow, homolog distribution. Preference is given to using nonionic surfactants which can be dried off, in particular alkyl and / or alkenyl oligoglycosides which preferably follow the formula (III), R 3 O- [G] p (III) in which R 3 is an alkyl and / or alkenyl radical having 4 to 22 carbon atoms, G is a sugar radical having 5 or 6 carbon atoms and p is a number from 1 to 10. They can be obtained according to the relevant procedures in preparative organic chemistry.
  • the alkyl and / or alkenyl oligoglycosides can be derived from aldoses or ketoses with 5 or 6 carbon atoms, preferably glucose.
  • the preferred alkyl and / or alkenyl oligoglycosides are thus alkyl and / or alkenyl oligoglucosides.
  • the index number p in the general formula (III) indicates the degree of oligomerization (DP), ie the distribution of mono- and oligoglycosides, and stands for a number between 1 and 10.
  • Alkyl and / or alkenyl oligoglycosides with an average degree of oligomerization p of 1.1 to 3.0 are preferably used. From an application point of view, preference is given to those alkyl and / or alkenyl oligoglycosides whose degree of oligomerization is less than 1.7 and is in particular between 1.2 and 1.4.
  • the alkyl or alkenyl radical R 3 can be derived from primary alcohols having 4 to 11, preferably 8 to 10, carbon atoms. Typical examples are butanol, caprona alcohol, caprylic alcohol, capric alcohol and undecyl alcohol and their technical mixtures, such as are obtained, for example, in the hydrogenation of technical fatty acid methyl testers or in the course of the hydrogenation of aldehydes from Roelen's oxosynthesis.
  • the alkyl or alkenyl radical R 3 can also be derived from primary alcohols having 12 to 22, preferably 12 to 14, carbon atoms. Typical examples are lauryl alcohol, myristyl alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, elaidyl alcohol.
  • Alkyl oligoglucosides based on hardened C 12/14 coconut alcohol with a DP of 1 to 3 are preferred.
  • the surfactants - individually or together - both as aqueous pastes with solids contents ( active substance contents) from, for example, 1 to 60, preferably 5 to 50 and in particular 15 to 35% by weight or as dry Solids with residual water contents of typically less than 10 and preferably less than 5% by weight be used.
  • disintegrant is to be understood as meaning substances which are contained in the surfactant granules in order to accelerate their disintegration when brought into contact with water. Overviews can be found, for example, in J.Pharm.Sci. 61 (1972) or Römpp Chemielexikon, 9th edition, volume 6, p. 4440 .
  • the disintegrants can be present in the granules homogeneously distributed macroscopically, but microscopically they can form zones of increased concentration due to the manufacturing process.
  • the preferred disintegrants include polysaccharides, such as, for example, natural starch and its derivatives (carboxymethyl starch, starch glycolates in the form of their alkali salts, agar agar, guar gum, pectins etc.), celluloses and their derivatives (carboxymethyl cellulose, microcrystalline cellulose), polyacrylates, polyvinylpyrrolidone, alginic acid and their alkali salts (alginates), amorphous or also partially crystalline phyllosilicates (bentonites), polyurethanes, polyethylene glycols and gas-generating systems.
  • polysaccharides such as, for example, natural starch and its derivatives (carboxymethyl starch, starch glycolates in the form of their alkali salts, agar agar, guar gum, pectins etc.), celluloses and their derivatives (carboxymethyl cellulose, microcrystalline cellulose), polyacrylates, polyvinylpyrrolidon
  • disintegrants which may be present in the sense of the invention are, for example, the publications WO 98/40462 (Rettenmaier), WO 98/55583 and WO 98/55590 (Unilever) and WO 98/40463, DE 19709991 and DE 19710254 (Henkel) refer to.
  • the surfactants and the disintegrants - in each case based on the solids content - can be used in a weight ratio of 1:10 to 10: 1, preferably 1: 5 to 5: 1 and in particular 1: 2 to 2: 1. It is also advisable to adjust the water content of the disintegrants or the surfactant granules so that swelling does not automatically occur during storage.
  • the residual water content should preferably not exceed 10% by weight.
  • the production of the surfactant granules can be carried out for detergents known way. It is particularly possible during the granules or compact after granulation. The compaction is imperative to to achieve a sufficient increase in the dissolution rate.
  • Visibility has proven to be very favorable if the surfactant granules used have a grain size in Have range from 0.01 to 6, preferably 0.1 to 5 mm and in particular the proportion which is not in the range of 0.1 to 5 mm, makes up less than 25% by weight.
  • a particularly preferred way of producing the surfactant granules is to subject the mixtures to fluidized bed granulation (“SKET” granulation).
  • SKET fluidized bed granulation
  • This is understood to mean granulation with simultaneous drying, which is preferably carried out batchwise or continuously.
  • the mixtures of surfactants and disintegrants can be used both in the dried state and as an aqueous preparation.
  • Fluidized bed apparatuses which are preferably used have base plates with dimensions of 0.4 to 5 m.
  • the granulation is preferably carried out at fluidizing air speeds in the range from 1 to 8 m / s.
  • the granules are preferably discharged from the fluidized bed via a size classification of the granules.
  • the classification can take place, for example, by means of a sieve device or by means of an opposed air flow (classifier air) which is regulated in such a way that only particles of a certain particle size are removed from the fluidized bed and smaller particles are retained in the fluidized bed.
  • the inflowing air is usually composed of the heated or unheated classifier air and the heated floor air.
  • the soil air temperature is between 80 and 400, preferably 90 and 350 ° C.
  • a starting compound, for example a surfactant granulate from an earlier test batch, is advantageously introduced at the start of the granulation.
  • the mixtures are only after the granulation, for example in one Mixer or a fluid bed, subjected to a compacting step, with further ingredients the agents are only added after the compacting step.
  • Compacting the ingredients takes place in a preferred embodiment of the invention in a press agglomeration process instead of.
  • the press agglomeration process to which the solid premix is subjected can be carried out in various devices can be realized. Depending on the type of agglomerator used differentiated press agglomeration processes.
  • preferred press agglomeration processes are extrusion, roll pressing or compacting, and the hole pressing (pelletizing), so that within the scope of the present Invention preferred press agglomeration operations extrusion, roll compacting or Are pelleting operations.
  • binders can be used as an aid to compaction.
  • a binder is used that at temperatures up to 130 ° C, preferably up to a maximum of 100 ° C. and in particular up to 90 ° C. is already completely in the form of a melt.
  • the binder must therefore be selected depending on the process and process conditions or the process conditions, especially the process temperature - if a certain one Binder is desired - to be adapted to the binder.
  • the actual compression process is preferably carried out at processing temperatures that at least in the compression step at least the temperature of the softening point, if not correspond to the temperature of the melting point of the binder.
  • the process temperature is significantly above the melting point or above the temperature at which the binder is in the form of a melt.
  • the process temperature in the compression step is not more than 20 ° C above the melting temperature or the upper limit of the melting range of the binder. It is technical quite possible to set even higher temperatures; but it has been shown that a Temperature difference to the melting temperature or the softening temperature of the binder of 20 ° C is generally sufficient and even higher temperatures are no additional advantages cause.
  • Such a temperature control has the other Advantage that also thermally sensitive raw materials, for example peroxy bleaching agents such as perborate and / or percarbonate, but also enzymes, increasingly processed without serious loss of active substance can be.
  • thermally sensitive raw materials for example peroxy bleaching agents such as perborate and / or percarbonate, but also enzymes, increasingly processed without serious loss of active substance can be.
  • the possibility of precise temperature control of the binder in particular in the decisive step of compression, i.e. between the mixing / homogenization of the Premix and the shape, allows an energetically very favorable and for the temperature sensitive Components of the premix extremely gentle process management, because the premix is only exposed to the higher temperatures for a short time.
  • the working tools of the press agglomerator (the screw (s) of the extruder, the roller (s) of the roller compactor and the press roller (s) of the pellet press) have a temperature of a maximum of 150 ° C, preferably a maximum of 100 ° C and in particular a maximum of 75 ° C and the process temperature is 30 ° C and in particular a maximum of 20 ° C above the melting temperature or the upper temperature limit of the melting range of the binder.
  • the duration is preferably the temperature effect in the compression area of the press agglomerators a maximum of 2 minutes and is particularly in a range between 30 seconds and 1 minute.
  • Preferred binders which can be used alone or in a mixture with other binders are polyethylene glycols, 1,2-polypropylene glycols and modified polyethylene glycols and polypropylene glycols.
  • the modified polyalkylene glycols include in particular the sulfates and / or the disulfates of polyethylene glycols or polypropylene glycols with a relative molecular weight between 600 and 12,000 and in particular between 1,000 and 4,000.
  • Another group consists of mono- and / or disuccinates of the polyalkylene glycols, which again have relative molecular weights between 600 and 6,000, preferably between 1,000 and 4,000.
  • polyethylene glycols include those polymers which, in addition to ethylene glycol, also use C 3 -C 5 glycols and glycerol and mixtures of these as starting molecules. Ethoxylated derivatives such as trimethylolpropane with 5 to 30 EO are also included.
  • the preferably used polyethylene glycols can have a linear or branched structure, linear polyethylene glycols being preferred in particular.
  • the particularly preferred polyethylene glycols include those with relative molecular weights between 2,000 and 12,000, advantageously around 4,000, polyethylene glycols with relative molecular weights below 3,500 and above 5,000, in particular in combination with polyethylene glycols with a relative molecular weight of around 4,000, and can be used such combinations advantageously have more than 50% by weight, based on the total amount of polyethylene glycols, of polyethylene glycols with a relative molecular weight of between 3,500 and 5,000.
  • polyethylene glycols can also be used as binders, which are per se in liquid state at room temperature and a pressure of 1 bar; here we are mainly talking about polyethylene glycol with a relative molecular mass of 200, 400 and 600.
  • these per se liquid polyethylene glycols should only be used in a mixture with at least one further binder, this mixture again having to meet the requirements according to the invention, that is to say having a melting point or softening point of at least above 45 ° C.
  • Low molecular weight polyvinylpyrrolidones and derivatives thereof with relative molecular weights of up to a maximum of 30,000 are also suitable as binders. Relative molecular mass ranges between 3,000 and 30,000, for example around 10,000, are preferred.
  • Polyvinylpyrrolidones are preferably not used as the sole binder, but in combination with others, in particular in combination with polyethylene glycols.
  • the compacted material preferably has temperatures immediately after it leaves the production apparatus not above 90 ° C, with temperatures between 35 and 85 ° C particularly preferred are. It has been found that outlet temperatures - especially in the extrusion process - from 40 to 80 ° C, for example up to 70 ° C, are particularly advantageous.
  • the surfactant granules are produced by means of an extrusion , as described, for example, in European patent EP 0486592 B1 or international patent applications WO 93/02176 and WO 94/09111 or WO 98/12299 .
  • a solid premix is extruded under pressure and the strand is cut to the predeterminable size of the granulate by means of a cutting device after it has emerged from the hole shape.
  • the homogeneous and solid premix contains a plasticizer and / or lubricant, which causes the premix to become plastically softened and extrudable under the pressure or under the entry of specific work.
  • Preferred plasticizers and / or lubricants are surfactants and / or polymers.
  • the premix is preferably fed to a planetary roller extruder or a 2-shaft extruder or 2-screw extruder with co-rotating or counter-rotating screw guidance, the housing and the extruder pelletizing head of which can be heated to the predetermined extrusion temperature.
  • the premix is compressed, plasticized, extruded in the form of fine strands through the perforated die plate in the extruder head, and finally, under pressure, which is preferably at least 25 bar, but can also be lower at extremely high throughputs depending on the apparatus used the extrudate is preferably reduced to approximately spherical to cylindrical granules by means of a rotating cutting knife.
  • the hole diameter of the perforated nozzle plate and the strand cut length are matched to the selected granule size. In this way, granules of an essentially uniformly predeterminable particle size can be produced, the absolute particle sizes in particular being able to be adapted to the intended use.
  • particle diameters of up to at most 0.8 cm are generally preferred.
  • Important embodiments provide for the production of uniform granules in the millimeter range, for example in the range from 0.5 to 5 mm and in particular in the range from approximately 0.8 to 3 mm.
  • the length / diameter ratio of the chopped-off primary granules is preferably in the range from about 1: 1 to about 3: 1. It is also preferred to feed the still plastic primary granules to a further shaping processing step; edges present on the crude extrudate are rounded off, so that ultimately spherical to approximately spherical extrudate grains can be obtained.
  • small amounts of dry powder for example zeolite powder such as zeolite NaA powder, can also be used in this step.
  • extrusions / pressings can also be carried out in low-pressure extruders, in the Kahl press (from Amandus Kahl) or in the Bepex extruder.
  • the temperature control in the transition region of the screw, the pre-distributor and the nozzle plate is preferably designed such that the melting temperature of the binder or the upper limit of the melting range of the binder is at least reached, but preferably exceeded.
  • the duration of the temperature influence in the compression range of the extrusion is preferably less than 2 minutes and in particular in a range between 30 seconds and 1 minute.
  • the surfactant granules can also be produced by means of roller compaction.
  • the premix between two smooth or with wells of a defined shape Rolls metered in and between the two rolls under pressure to a sheet-like compact, the so-called Schülpe, rolled out.
  • the rollers exert a high line pressure on the premix and can be additionally heated or cooled as required.
  • Smooth rolling gives you smooth, unstructured sash bands, while using structured ones
  • Correspondingly structured slugs can be produced in which, for example certain forms of the later detergent particles can be specified.
  • the Schülpenband is subsequently broken up into smaller pieces by a knock-off and crushing process and can be processed in this way to Granulatkömem, known by others Surface treatment process refined, especially brought into an approximately spherical shape can be.
  • the temperature of the pressing tools is So the rollers, preferably at a maximum of 150 ° C, preferably at a maximum of 100 ° C and in particular at a maximum of 75 ° C.
  • Particularly preferred manufacturing processes work in roller compaction with process temperatures that are 10 ° C, in particular a maximum of 5 ° C above the melting temperature or the upper temperature limit of the melting range of the binder.
  • the duration of temperature exposure in the compression range of the smooth or rollers provided with depressions of a defined shape is a maximum of 2 minutes and in particular is in a range between 30 seconds and 1 minute.
  • the surfactant granules can also be produced by pelleting.
  • the premix is applied to a perforated surface and pressed through the holes by means of a pressure-producing body with plasticization.
  • the premix is compressed under pressure, plasticized, pressed through a perforated surface by means of a rotating roller in the form of fine strands, and finally comminuted into granules using a knock-off device.
  • the most varied configurations of the pressure roller and perforated die are conceivable here. For example, flat perforated plates are used as well as concave or convex ring matrices through which the material is pressed using one or more pressure rollers.
  • the press rollers in the Tefler devices can also be conical in shape, in the ring-shaped devices the dies and press roll (s) can have the same or opposite direction of rotation.
  • An apparatus suitable for carrying out the method is described, for example, in German laid-open specification DE 3816842 A1 .
  • the ring die press disclosed in this document consists of a rotating ring die interspersed with press channels and at least one press roller which is operatively connected to its inner surface and which presses the material supplied to the die space through the press channels into a material discharge.
  • the ring die and the press roller can be driven in the same direction, which means that a reduced shear stress and thus a lower temperature increase in the premix can be achieved.
  • the temperature of the pressing tools is preferably at most 150 ° C., preferably at most 100 ° C. and in particular at a maximum of 75 ° C.
  • Particularly preferred production processes work in roller compacting with process temperatures which are 10 ° C., in particular a maximum of 5 ° C. above the melting temperature or the upper temperature limit of the melting range of the binder.
  • the detergent tablets can contain other known additives, above all builders, but also optical brighteners, enzymes, enzyme stabilizers, defoamers, co-disintegrants, contain small amounts of neutral filling salts as well as colors and fragrances and the like.
  • Zeolites can be used as builders.
  • the fine crystalline, synthetic and bound water-containing zeolite which is frequently used as a detergent builder is preferably zeolite A and / or P.
  • zeolite P for example, zeolite MAP (R) (commercial product from Crosfield) is particularly preferred.
  • zeolite X and mixtures of A, X and / or P and Y are also suitable.
  • a cocrystallized sodium / potassium aluminum silicate made of zeolite A and zeolite X, which is soft as VEGOBOND AX® (commercial product from Condea Augusta SpA) is commercially available.
  • the zeolite can be used as a spray-dried powder or as an undried stabilized suspension that is still moist from its production.
  • the zeolite can contain small additions of nonionic surfactants as stabilizers, for example 1 to 3% by weight, based on zeolite, of ethoxylated C 12 -C 18 fatty alcohols with 2 to 5 ethylene oxide groups , C 12 -C 14 fatty alcohols with 4 to 5 ethylene oxide groups or ethoxylated isotridecanols.
  • Suitable zeolites have an average particle size of less than 10 ⁇ m (volume distribution; measurement method: Coulter Counter) and preferably contain 18 to 22% by weight, in particular 20 to 22% by weight, of bound water.
  • Suitable substitutes or partial substitutes for phosphates and zeolites are crystalline, layered sodium silicates ( “layer silicates” ) of the general formula NaMSi x O 2x + 1 .yH 2 O, where M is sodium or hydrogen, x is a number from 1.9 to 4 and y is a number from 0 to 20 and preferred values for x are 2, 3 or 4.
  • layer silicates Such crystalline layered silicates are described, for example, in European patent application EP 0164514 A1 .
  • Preferred crystalline layered silicates of the formula given are those in which M represents sodium and x assumes the values 2 or 3.
  • both ⁇ - and ⁇ -sodium disilicate Na 2 Si 2 O 5 .yH 2 O are preferred, wherein ⁇ -sodium disilicate can be obtained, for example, by the method described in international patent application WO 91/08171 .
  • Further suitable layered silicates are known, for example, from patent applications DE 2334899 A1 , EP 0026529 A1 and DE 3526405 A1 . Their usability is not limited to a special composition or structural formula. However, smectites, in particular bentonites, are preferred here.
  • small amounts of iron can be incorporated into the crystal lattice of the layered silicates according to the above formulas.
  • the layered silicates can contain hydrogen, alkali, alkaline earth ions, in particular Na + and Ca 2+ .
  • the amount of water of hydration is usually in the range from 8 to 20% by weight and depends on the swelling condition or the type of processing.
  • Useful layer silicates are known, for example, from US 3,966,629, US 4,062,647, EP 0026529 A1 and EP 0028432 A1 .
  • Layered silicates are preferably used which are largely free of calcium ions and strongly coloring iron ions due to an alkali treatment.
  • the preferred builder substances also include amorphous sodium silicates with a modulus Na 2 O: SiO 2 from 1: 2 to 1: 3.3, preferably from 1: 2 to 1: 2.8 and in particular from 1: 2 to 1: 2, 6, which are delayed release and have secondary washing properties.
  • the delay in dissolution compared to conventional amorphous sodium silicates can be caused in various ways, for example by surface treatment, compounding, compacting / compression or by overdrying.
  • the term “amorphous” is also understood to mean “X-ray amorphous”.
  • silicates in X-ray diffraction experiments do not produce sharp X-ray reflections, as are typical for crystalline substances, but at most one or more maxima of the scattered X-rays, which have a width of several degree units of the diffraction angle.
  • it can very well lead to particularly good builder properties if the silicate particles provide washed-out or even sharp diffraction maxima in electron diffraction experiments. This is to be interpreted as meaning that the products have microcrystalline areas of size 10 to a few hundred nm, values up to max. 50 nm and in particular up to max. 20 nm are preferred.
  • Such so-called X-ray amorphous silicates which also have a delay in dissolution compared to conventional water glasses, are described, for example, in German patent application DE 4400024 A1 .
  • Compacted / compacted amorphous silicates, compounded amorphous silicates and over-dried X-ray amorphous silicates are particularly preferred.
  • phosphates are also used as builder substances possible if such use should not be avoided for ecological reasons.
  • Suitable are in particular the sodium salts of orthophosphates, pyrophosphates and in particular the tripolyphosphate.
  • Their content is generally not more than 25% by weight, preferably not more than 20 wt .-%, each based on the finished agent.
  • tripolyphosphates even in small amounts up to a maximum of 10% by weight, based on the finished agents, in combination with other builder substances to a synergistic improvement of secondary washing power.
  • the builders are preferably in the detergent tablets in amounts of 10 to 60, in particular 20 up to 40 wt .-% - based on the agent - contain.
  • Useful organic builders are, for example, those that can be used in the form of their sodium salts
  • Polycarboxylic acids such as citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, Sugar acids, aminocarboxylic acids, nitrilotriacetic acid (NTA), provided such use ecological reasons are not objectionable, as well as mixtures of these.
  • Preferred salts are the salts of polycarboxylic acids such as citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, Sugar acids and mixtures of these. The acids themselves can also be used.
  • the acids typically also have the property of an acidifying component and thus also serve to set a lower and milder pH value of Detergents or cleaning agents.
  • an acidifying component typically also serve to set a lower and milder pH value of Detergents or cleaning agents.
  • dextrins for example oligomers or polymers of carbohydrates, which can be obtained by partial hydrolysis of starches.
  • the hydrolysis can be carried out by customary, for example acid or enzyme-catalyzed, processes. They are preferably hydrolysis products with average molecular weights in the range from 400 to 500,000.
  • DE dextrose equivalent
  • Both maltodextrins with a DE between 3 and 20 and dry glucose syrups with a DE between 20 and 37 as well as so-called yellow dextrins and white dextrins with higher molar masses in the range from 2,000 to 30,000 can be used.
  • a preferred dextrin is described in British patent application GB 9419091 A1 ,
  • the oxidized derivatives of such dextrins are their reaction products with oxidizing agents which are capable of oxidizing at least one alcohol function of the saccharide ring to the carboxylic acid function.
  • Such oxidized dextrins and processes for their preparation are known, for example, from European patent applications EP 0232202 A1, EP 0427349 A1 , EP 0472042 A1 and EP 0542496 A1 and from international patent applications WO 92/18542, WO 93/08251 , WO 93/16110 , WO 94128030 , WO 95/07303 , WO 95/12619 and WO 95/20608 are known.
  • An oxidized oligosaccharide according to German patent application DE 19600018 A1 is also suitable.
  • a product oxidized at C 6 of the saccharide ring can be particularly advantageous.
  • Suitable cobuilders are oxydisuccinates and other derivatives of disuccinates, preferably ethylenediamine disuccinate. Also particularly preferred in this context are glycerol disuccinates and glycerol trisuccinates , such as are described, for example, in US Pat. Nos . 4,524,009, 4,639,325 , in European patent application EP 0150930 A1 and in Japanese patent application JP 93/339896 . Suitable amounts used in formulations containing zeolite and / or silicate are from 3 to 15% by weight.
  • organic cobuilders are, for example, acetylated hydroxycarboxylic acids or their salts, which may also be in lactone form and which have at least 4 Contain carbon atoms and at least one hydroxyl group and a maximum of two acid groups.
  • Suitable polymeric polycarboxylates are, for example, the sodium salts of polyacrylic acid or polymethacrylic acid, for example those with a relative molecular weight of 800 to 150,000 (based on acid and measured in each case against polystyrene sulfonic acid).
  • Suitable copolymeric polycarboxylates are, in particular, those of acrylic acid with methacrylic acid and of acrylic acid or methacrylic acid with maleic acid. Copolymers of acrylic acid with maleic acid which contain 50 to 90% by weight of acrylic acid and 50 to 10% by weight of maleic acid have proven to be particularly suitable.
  • the relative molecular weight, based on free acids, is generally 5,000 to 200,000, preferably 10,000 to 120,000 and in particular 50,000 to 100,000 (measured in each case against polystyrene sulfonic acid).
  • the (co) polymeric polycarboxylates can be used either as a powder or as an aqueous solution, with 20 to 55% by weight aqueous solutions being preferred.
  • Granular polymers are usually subsequently mixed into one or more basic granules.
  • biodegradable polymers composed of more than two different monomer units, for example those which, according to DE 4300772 A1, are salts of acrylic acid and maleic acid, as well as vinyl alcohol or vinyl alcohol derivatives, or, according to DE 4221381 C2, are monomer salts of acrylic acid and the 2-alkylallylsulfonic acid and sugar derivatives.
  • Further preferred copolymers are those which are described in German patent applications DE 4303320 A1 and DE 4417734 A1 and which preferably contain acrolein and acrylic acid-acrylic acid salts or acrolein and vinyl acetate as monomers.
  • polymeric aminodicarboxylic acids are also salts or their precursor substances. Polyaspartic acids or their salts and derivatives are particularly preferred.
  • polyacetals which can be obtained by reacting dialdehydes with polyolcarboxylic acids which have 5 to 7 carbon atoms and at least 3 hydroxyl groups, for example as described in European patent application EP 0280223 A1 .
  • Preferred polyacetals are obtained from dialdehydes such as glyoxal, glutaraldehyde, terephthalaldehyde and mixtures thereof and from polyol carboxylic acids such as gluconic acid and / or glucoheptonic acid.
  • the agents can also contain components that make the oil and fat washable made of textiles.
  • the preferred oil and fat-dissolving components include, for example nonionic cellulose ethers such as methyl cellulose and methyl hydroxypropyl cellulose a proportion of methoxyl groups from 15 to 30 wt .-% and of hydroxypropoxyl groups from 1 to 15% by weight, based in each case on the nonionic cellulose ether, and that from the prior art Polymers of phthalic acid and / or terephthalic acid or their derivatives known from technology, in particular polymers of ethylene terephthalates and / or polyethylene glycol terephthalates or anionically and / or nonionically modified derivatives of these. Particularly preferred of these are the sulfonated derivatives of phthalic acid and terephthalic acid polymers.
  • Suitable ingredients of the agents are water-soluble inorganic salts such as bicarbonates, carbonates, amorphous silicates, normal water glasses which have no outstanding builder properties, or mixtures of these; in particular, alkali carbonate and / or amorphous alkali silicate, especially sodium silicate with a molar ratio Na 2 O: SiO 2 of 1: 1 to 1: 4.5, preferably of 1: 2 to 1: 3.5, are used.
  • the content of sodium carbonate in the final preparations is preferably up to 40% by weight, advantageously between 2 and 35% by weight.
  • the content of sodium silicate in the agents (without special builder properties) is generally up to 10% by weight and preferably between 1 and 8% by weight.
  • bleaching agents which serve as bleaching agents and which are H 2 O 2 in water
  • sodium perborate tetrahydrate and sodium perborate monohydrate are of particular importance.
  • Further bleaching agents which can be used are, for example, sodium percarbonate, peroxypyrophosphates, citrate perhydrates and H 2 O 2 -producing peracidic salts or peracids, such as perbenzoates, peroxophthalates, diperazelaic acid, phthaloiminoperic acid or diperdodecanedioic acid.
  • the bleaching agent content of the agents is preferably 5 to 35% by weight and in particular up to 30% by weight, advantageously using perborate monohydrate or percarbonate.
  • Bleach activators which can be used are compounds which, under perhydrolysis conditions, give aliphatic peroxocarboxylic acids having preferably 1 to 10 C atoms, in particular 2 to 4 C atoms, and / or optionally substituted perbenzoic acid. Substances are suitable which carry O- and / or N-acyl groups of the number of carbon atoms mentioned and / or optionally substituted benzoyl groups.
  • Multi-acylated alkylenediamines in particular tetraacetylethylene diamine (TAED), acylated triazine derivatives, in particular 1,5-diacetyl-2,4-dioxohexahydro-1,3,5-triazine (DADHT), acylated glycolurils, in particular tetraacetylglycoluril (TAGU), N- Acylimides, especially N-nonanoylsuccinimide (NOSI), acylated phenolsulfonates, especially n-nonanoyl- or isononanoyloxybenzenesulfonate (n- or iso-NOBS), carboxylic acid anhydrides, especially phthalic anhydride, acylated polyhydric alcohols, especially triacetyloxy, 2,5-diacetyloxy, 2,5-ethylene glycol 2,5-dihydrofuran and the enol esters known from German patent
  • hydrophilically substituted acylacetals known from German patent application DE 19616769 A1 and the acyl lactams described in German patent application DE 19616 770 and international patent application WO 95/14075 are also preferably used.
  • the combinations of conventional bleach activators known from German patent application DE 4443177 A1 can also be used. Bleach activators of this type are present in the customary quantitative range, preferably in amounts of 1% by weight to 10% by weight, in particular 2% by weight to 8% by weight, based on the total agent.
  • the sulfonimines and / or bleach-enhancing transition metal salts or transition metal complexes known from European patents EP 0446982 B1 and EP 0453 003 B1 can also be present as so-called bleaching catalysts.
  • the transition metal compounds in question include in particular the manganese, iron, cobalt, ruthenium or molybdenum-salt complexes known from German patent application DE 19529905 A1 and their N-analog compounds known from German patent application DE 19620267 A1 , which are known from German Patent application DE 19536082 A1 known manganese, iron, cobalt, ruthenium or molybdenum carbonyl complexes, the manganese, iron, cobalt, ruthenium, molybdenum, titanium, vanadium described in German patent application DE 196 05 688 - and copper complexes with nitrogen-containing tripod ligands that from German patent application DE known cobalt 19620411 A1, iron-, copper- and ruthenium-ammine complexes, the manganese in the German patent application DE 4416438 A1 described, copper and cobalt complexes, the cobalt complexes described in European patent application EP 0272030 A1 , the manganese ko known from European patent application
  • Bleach-enhancing transition metal complexes in particular with the central atoms Mn, Fe, Co, Cu, Mo, V, Ti and / or Ru, are used in customary amounts, preferably in an amount of up to 1% by weight, in particular 0.0025% by weight. % to 0.25% by weight and particularly preferably from 0.01% by weight to 0.1% by weight, in each case based on the total agent.
  • Enzymes in particular include those from the class of hydrolases, such as proteases, esterases, lipases or lipolytically active enzymes, amylases, cellulases or other glycosyl hydrolases and mixtures of the enzymes mentioned. All of these hydrolases contribute to the removal of stains, such as stains containing protein, fat or starch, and graying in the laundry. By removing pilling and microfibrils, cellulases and other glycosyl hydrolases can contribute to color retention and increase the softness of the textile. Oxidoreductases can also be used for bleaching or for inhibiting color transfer.
  • hydrolases such as proteases, esterases, lipases or lipolytically active enzymes, amylases, cellulases or other glycosyl hydrolases and mixtures of the enzymes mentioned. All of these hydrolases contribute to the removal of stains, such as stains containing protein, fat or starch, and graying in the laundry. By removing pilling and
  • Enzymes obtained from bacterial strains or fungi such as Bacillus subtilis, Bacillus licheniformis, Streptomyces griseus and Humicola insolens are particularly suitable.
  • Proteases of the subtilisin type and in particular proteases which are obtained from Bacillus lentus are preferably used.
  • Enzyme mixtures for example from protease and amylase or protease and lipase or lipolytically active enzymes or protease and cellulase or from cellulase and lipase or lipolytically active enzymes or from protease, amylase and lipase or lipolytically active enzymes or protease, lipase or lipolytically active enzymes and cellulase, but especially protease- and / or lipase-containing mixtures or mixtures with lipolytically active enzymes of particular interest.
  • Known cutinases are examples of such lipolytically active enzymes.
  • Peroxidases or oxidases have also proven to be suitable in some cases.
  • Suitable amylases include in particular ⁇ -amylases, iso-amylases, pullulanases and pectinases.
  • Cellobiohydrolases, endoglucanases and ⁇ -glucosidases, which are also called cellobiases, or mixtures thereof, are preferably used as cellulases. Since the different cellulase types differ in their CMCase and avicelase activities, the desired activities can be set by targeted mixtures of the cellulases.
  • the enzymes can be adsorbed on carriers and / or embedded in coating substances in order to protect them against premature decomposition.
  • the proportion of the enzymes, enzyme mixtures or enzyme granules can be, for example, about 0.1 to 5% by weight, preferably 0.1 to about 2% by weight.
  • the agents can contain further enzyme stabilizers.
  • enzyme stabilizers For example, 0.5 to 1% by weight sodium formate can be used. It is also possible to use proteases which are stabilized with soluble calcium salts and a calcium content of preferably about 1.2% by weight, based on the enzyme.
  • calcium salts magnesium salts also serve as stabilizers.
  • boron compounds for example boric acid, boron oxide, borax and other alkali metal borates such as the salts of orthoboric acid (H 3 BO 3 ), metaboric acid (HBO 2 ) and pyrobic acid (tetraboric acid H 2 B 4 O 7 ), is particularly advantageous.
  • Graying inhibitors have the task of keeping the dirt detached from the fiber suspended in the liquor and thus preventing the dirt from being re-absorbed.
  • Water-soluble colloids of mostly organic nature are suitable for this purpose, for example the water-soluble salts of polymeric carboxylic acids, glue, gelatin, salts of ether carboxylic acids or ether sulfonic acids of starch or cellulose or salts of acidic sulfuric acid esters of cellulose or starch.
  • Water-soluble polyamides containing acidic groups are also suitable for this purpose. Soluble starch preparations and starch products other than those mentioned above can also be used, for example degraded starch, aldehyde starches, etc. Polyvinylpyrrolidone can also be used.
  • cellulose ethers such as carboxymethyl cellulose (sodium salt), methyl cellulose, hydroxyalkyl cellulose and mixed ethers, such as methyl hydroxyethyl cellulose, methyl hydroxypropyl cellulose, methyl carboxymethyl cellulose and mixtures thereof, and polyvinylpyrrolidone, for example in amounts of 0.1 to 5% by weight, based on the composition, are preferred , used.
  • the agents can contain derivatives of diaminostilbenedisulfonic acid or their alkali metal salts as optical brighteners. Suitable are, for example, salts of 4,4'-bis (2-anilino-4-morpholino-1,3,5-triazinyl-6-amino) stilbene-2,2'-disulfonic acid or compounds of similar structure which instead of the morpholino- Group carry a diethanolamino group, a methylamino group, anilino group or a 2-methoxyethylamino group.
  • Brighteners of the substituted diphenylstyryl type may also be present, for example the alkali salts of 4,4'-bis (2-sulfostyryl) diphenyl, 4,4'-bis (4-chloro-3-sulfostyryl) diphenyl, or 4- (4-chlorostyryl) -4 '- (2-sulfostyryl). Mixtures of the aforementioned brighteners can also be used.
  • Uniformly white granules are obtained if, in addition to the usual brighteners, the agents are used in customary amounts, for example between 0.1 and 0.5% by weight, preferably between 0.1 and 0.3% by weight, and also small amounts, for example Contain 10 -6 to 10 -3 wt .-%, preferably by 10- 5 wt .-%, of a blue dye.
  • a particularly preferred dye is iinolux® (commercial product from Ciba-Geigy).
  • Soil repellants are substances which preferably contain ethylene terephthalate and / or polyethylene glycol terephthalate groups, the molar ratio of ethylene terephthalate to polyethylene glycol terephthalate being in the range from 50:50 to 90:10.
  • the molecular weight of the linking polyethylene glycol units is in particular in the range from 750 to 5000, ie the degree of ethoxylation of the polymers containing polyethylene glycol groups can be approximately 15 to 100.
  • the polymers are characterized by an average molecular weight of about 5000 to 200,000 and can have a block, but preferably a random structure.
  • Preferred polymers are those with molar ratios of ethylene terephthalate to polyethylene glycol terephthalate from about 65:35 to about 90:10, preferably from about 70:30 to 80:20. Also preferred are those polymers which have linking polyethylene glycol units with a molecular weight of 750 to 5000, preferably from 1000 to about 3000 and a molecular weight of the polymer from about 10,000 to about 50,000. Examples of commercially available polymers are the products Milease® T (ICI) or Repelotex® SRP 3 (Rhône-Poulenc).
  • Wax-like compounds can be used as defoamers .
  • Compounds which have a melting point at atmospheric pressure above 25 ° C. (room temperature), preferably above 50 ° C. and in particular above 70 ° C., are understood to be “waxy”.
  • the waxy defoamer substances are practically insoluble in water, ie at 20 ° C. they have a solubility of less than 0.1% by weight in 100 g of water.
  • all wax-like defoamer substances known from the prior art can be contained.
  • Suitable waxy compounds are, for example, bisamides, fatty alcohols, fatty acids, carboxylic acid esters of mono- and polyhydric alcohols, and paraffin waxes or mixtures thereof.
  • the silicone compounds known for this purpose can of course also be used.
  • Suitable paraffin waxes generally represent a complex mixture of substances without a sharp melting point. For characterization, one usually determines its melting range by differential thermal analysis (DTA), as described in "The Analyst” 87 (1962), 420 , and / or its solidification point , This is the temperature at which the paraffin changes from the liquid to the solid state by slow cooling. Paraffins which are completely liquid at room temperature, that is to say those having a solidification point below 25 ° C., cannot be used according to the invention. For example, the paraffin wax mixtures known from EP 0309931 A1 of, for example, 26% by weight to 49% by weight of microcrystalline paraffin wax with a solidification point of 62 ° C.
  • paraffin waxes which can be used according to the invention, this liquid fraction is as low as possible and is preferably absent entirely.
  • Particularly preferred paraffin wax mixtures at 30 ° C have a liquid fraction of less than 10% by weight, in particular from 2% by weight to 5% by weight, at 40 ° C a liquid fraction of less than 30% by weight, preferably of 5 % By weight to 25% by weight and in particular from 5% by weight to 15% by weight.
  • at 60 ° C a liquid fraction from 30% by weight to 60% by weight, in particular from 40% by weight to 55% by weight, at 80 ° C a liquid fraction from 80% by weight to 100% by weight %, and at 90 ° C a liquid content of 100% by weight.
  • the temperature at which a liquid content of 100% by weight of the paraffin wax is reached is still below 85 ° C., in particular at 75 ° C. to 82 ° C., in particularly preferred paraffin wax mixtures.
  • the paraffin waxes can be petrolatum, microcrystalline waxes or hydrogenated or partially hydrogenated paraffin waxes.
  • Suitable bisamides as defoamers are those which differ from saturated fatty acids with 12 to 22, preferably derived from 14 to 18 carbon atoms and from alkylenediamines with 2 to 7 carbon atoms.
  • suitable Fatty acids are lauric, myristic, stearic, arachic and behenic acid and mixtures thereof, such as they are available from natural fats or hardened oils, such as tallow or hydrogenated palm oil are.
  • Suitable diamines are, for example, ethylenediamine, 1,3-propylenediamine, tetramethylenediamine, Pentamethylenediamine, hexamethylenediamine, p-phenylenediamine and toluenediamine.
  • Diamines are ethylenediamine and hexamethylenediamine.
  • Bisamides are particularly preferred Bismyristoylethylenediamine, bispalmitoylethylenediamine, bisstearoylethylenediamine and mixtures thereof and the corresponding derivatives of hexamethylenediamine.
  • Suitable carboxylic acid esters as defoamers are derived from carboxylic acids with 12 to 28 carbon atoms.
  • these are esters of behenic acid, stearic acid, hydroxystearic acid, oleic acid, palmitic acid, myristic acid and / or lauric acid.
  • the alcohol part of the carboxylic acid ester contains a mono- or polyhydric alcohol with 1 to 28 carbon atoms in the hydrocarbon chain.
  • suitable alcohols are behenyl alcohol, arachidyl alcohol, coconut alcohol, 12-hydroxystearyl alcohol, oleyl alcohol and lauryl alcohol as well as ethylene glycol, glycerin, polyvinyl alcohol, sucrose, erythritol, pentaerythritol, sorbitan and / or sorbitol.
  • Preferred esters are those of ethylene glycol, glycerol and sorbitan, the acid part of the ester being selected in particular from behenic acid, stearic acid, oleic acid, palmitic acid or myristic acid.
  • Eligible esters of polyhydric alcohols are, for example, xylitol monopalmitate, pentaryanth monostearate, glycerol monostearate, ethylene glycol monostearate and sorbitan monostearate, sorbitan palmitate, sorbitan monolaurate, sorbitan dilaurate, sorbitan distearate, sorbitan dibundyl alkylate, and sorbitan dibehenate, and sorbitan dibehenate, mixed sorbitan dibehenate, and sorbitan dibehenate, and sorbitan dibehenate, as well as mixed sorbitan dibehenate.
  • Glycerol esters which can be used are the mono-, di- or triesters of glycerol and the carboxylic acids mentioned, the mono- or diesters being preferred. Glycerol monostearate, glycerol monooleate, glycerol monopalmitate, glycerol monobehenate and glycerol distearate are examples of this.
  • Suitable natural esters as defoamers are beeswax, which mainly consists of the esters CH 3 (CH 2 ) 24 COO (CH 2 ) 27 CH 3 and CH 3 (CH 2 ) 26 COO (CH 2 ) 25 CH 3 , and camauba wax , which is a mixture of CamaubaTexrealkylestem, often in combination with small amounts of free Camaubaklare, other long-chain acids, high molecular weight alcohols and hydrocarbons.
  • Suitable carboxylic acids as a further defoamer compound are in particular behenic acid, stearic acid, Oleic acid, palmitic acid, myristic acid and lauric acid and their mixtures, as made up natural fats or optionally hardened oils, such as tallow or hydrogenated palm oil are. Saturated fatty acids with 12 to 22, in particular 18 to 22, carbon atoms are preferred.
  • Suitable fatty alcohols as a further defoamer compound are the hydrogenated products of the described Fatty acids.
  • Dialkyl ethers may also be present as defoamers.
  • the ethers can be asymmetric or be symmetrical, i.e. two identical or different alkyl chains, preferably containing 8 to 18 carbon atoms.
  • Typical examples are di-n-octyl ether, di-octyl ether and di-n-stearyl ether, particularly suitable are dialkyl ethers which have a melting point above Have 25 ° C, especially above 40 ° C.
  • Suitable defoamer compounds are fatty ketones, which are based on the relevant methods of preparative organic chemistry can be obtained.
  • carboxylic acid magnesium salts which at temperatures above 300 ° C below Elimination of carbon dioxide and water are pyrolyzed, for example according to the German Laid-open specification DE 2553900 OS.
  • Suitable fat ketones are those obtained by pyrolysis of the magnesium salts of lauric acid, myristic acid, palmitic acid, palmitoleic acid, stearic acid, oleic acid, Elaidic acid, petroselinic acid, arachic acid, gadoleic acid, behenic acid or erucic acid become.
  • Suitable defoamers are fatty acid polyethylene glycol esters, which are preferably obtained by base-homogeneously catalyzed addition of ethylene oxide to fatty acids.
  • the addition of ethylene oxide to the fatty acids takes place in the presence of alkanolamines as catalysts.
  • alkanolamines especially triethanolamine, leads to an extremely selective ethoxylation of the fatty acids, especially when it comes to producing low-ethoxylated compounds.
  • the paraffin waxes described are particularly preferably used alone as wax-like defoamers or in a mixture with one of the other wax-like defoamers, the proportion of paraffin waxes in the mixture preferably making up more than 50% by weight, based on the wax-like defoamer mixture.
  • the paraffin waxes can be applied to carriers if necessary. All known inorganic and / or organic carrier materials are suitable as carrier materials. Examples of typical inorganic carrier materials are alkali carbonates, aluminosilicates, water-soluble layered silicates, alkali silicates, alkali sulfates, for example sodium sulfate, and alkali phosphates.
  • the alkali silicates are preferably a compound with a molar ratio of alkali oxide to SiO 2 of 1: 1.5 to 1: 3.5.
  • the use of such silicates results in particularly good grain properties, in particular high abrasion stability and nevertheless a high rate of dissolution in water.
  • the aluminosilicates referred to as carrier material include, in particular, the zeolites, for example zeolite NaA and NaX.
  • the compounds referred to as water-soluble layered silicates include, for example, amorphous or crystalline water glass. Silicates which are commercially available under the names Aerosil® or Sipemat® can also be used.
  • suitable organic carrier materials are film-forming polymers, for example polyvinyl alcohols, polyvinyl pyrrolidones, poly (meth) acrylates, polycarboxylates, cellulose derivatives and starch.
  • Usable cellulose ethers are, in particular, alkali carboxymethyl cellulose, methyl cellulose, ethyl cellulose, hydroxyethyl cellulose and so-called cellulose mixed ethers, such as, for example, methyl hydroxyethyl cellulose and methyl hydroxypropyl cellulose, and mixtures thereof.
  • Particularly suitable mixtures are composed of sodium carboxymethyl cellulose and methyl cellulose, the carboxymethyl cellulose usually having a degree of substitution of 0.5 to 0.8 carboxymethyl groups per anhydroglucose unit and the methyl cellulose having a degree of substitution of 1.2 to 2 methyl groups per anhydroglucose unit.
  • the mixtures preferably contain alkali carboxymethyl cellulose and nonionic cellulose ethers in weight ratios from 80:20 to 40:60, in particular from 75:25 to 50 50.
  • native starch which is composed of amylose and amylopectin. Starch is referred to as native starch, as it is available as an extract from natural sources, for example from rice, potatoes, corn and wheat.
  • Carrier materials which can be used individually or more than one of the abovementioned compounds, in particular selected from the group of alkali metal carbonates, alkali metal sulfates, alkali metal phosphates, zeolites, water-soluble sheet silicates, alkali metal silicates, polycarboxylates, cellulose ethers, polyacrylate / polymethacrylate and starch.
  • alkali carbonates in particular sodium carbonate, alkali silicates, in particular sodium silicate, alkali sulfates, in particular sodium sulfate and zeolites are particularly suitable.
  • Suitable silicones are conventional organopolysiloxanes, which can have a content of finely divided silica, which in turn can also be silanized. Such organopolysiloxanes are described, for example, in European patent application EP 0496510 A1 . Polydiorganosiloxanes which are known from the prior art are particularly preferred. However, compounds crosslinked via siloxane can also be used, as are known to the person skilled in the art under the name silicone resins. As a rule, the polydiorganosiloxanes contain finely divided silica, which can also be silanized. Silica-containing dimethylpolysiloxanes are particularly suitable.
  • the polydiorganosiloxanes advantageously have a Brookfield viscosity at 25 ° C. in the range from 5,000 mPas to 30,000 mPas, in particular from 15,000 to 25,000 mPas.
  • the silicones are preferably applied to carrier materials. Suitable carrier materials have already been described in connection with the paraffins.
  • the carrier materials are generally present in amounts of 40 to 90% by weight, preferably in amounts of 45 to 75% by weight, based on defoamers.
  • fragrance compounds e.g. the synthetic products of the ester, ether, aldehyde, ketone, alcohol and hydrocarbon type.
  • Fragrance compounds of the ester type are e.g. Benzyl acetate, phenoxyethyl isobutyrate, p-tert-butylcyclohexyl acetate, Linalyl acetate, dimethylbenzylcarbinylacetate, phenylethyl acetate, linalylbenzoate, Benzyl formate, ethyl methylphenyl glycinate, allyl cyclohexyl propionate, styrallyl propionate and benzyl salicylate.
  • the ethers include, for example, benzyl ethyl ether, the aldehydes e.g. the linear alkanals with 8-18 C atoms, citral, citronellal, citronellyloxyacetaldehyde, cyclamenaldehyde, hydroxycitronellal, Lilial and bourgeonal, to the ketones e.g.
  • the hydrocarbons mainly include the terpenes such as limonene and pinene.
  • perfume oils can also contain natural fragrance mixtures, as they are accessible from plant sources, e.g. Pine, citrus, jasmine, patchouly, rose or Ylang-ylang oil.
  • fragrances can be directly in the agents according to the invention are incorporated, but it may also be advantageous to use the fragrances to apply on carriers which increase the adhesion of the perfume to the laundry and by a slower fragrance release ensures long-lasting fragrance of the textiles.
  • carrier materials Cyclodextrins have proven themselves, for example, with the cyclodextrin-perfume complexes additionally can be coated with other auxiliaries.
  • the final preparations can also contain inorganic salts as fillers or fillers contain, such as sodium sulfate, which is preferably present in amounts of 0 to 10, in particular 1 to 5 wt .-% - based on agent - is included.
  • inorganic salts such as sodium sulfate, which is preferably present in amounts of 0 to 10, in particular 1 to 5 wt .-% - based on agent - is included.
  • the detergent tablets can be produced using the new surfactant granules and further auxiliaries and additives, such as, for example, builders, in a manner known per se, for example by tableting.
  • the tablets obtained can either be used directly as detergents or aftertreated and / or prepared beforehand by customary methods.
  • the usual aftertreatments include, for example, powdering with finely divided ingredients from washing or cleaning agents, which generally further increases the bulk density.
  • a preferred aftertreatment is also the procedure according to German patent applications DE 19524287 A1 and DE 19547457 A1 , in which dusty or at least finely divided ingredients (the so-called fine fractions) are adhered to the particulate end products of the process, which serve as the core, and thus give rise to means , which have these so-called fines as an outer shell.
  • this advantageously takes place by melting agglomeration.
  • the solid detergents are in the form of tablets, these preferably having rounded corners and edges, in particular for storage and transport reasons.
  • the base of these tablets can be circular or rectangular, for example.
  • Multi-layer tablets in particular tablets with 2 or 3 layers, which can also have different colors, are particularly preferred. Blue-white or green-white or blue-green-white tablets are particularly preferred.
  • the tablets can also contain pressed and unpressed parts.
  • Manufacturing example H2 1000 g of cellulose (Technocel® 150) were mixed with 300 g of protein fatty acid condensate (Lamepon® SCE-B), 200 g of coconut alkyl oligoglucoside (Glucopon® 600 CSUP, 50% by weight aqueous paste, Cognis Deutschland GmbH / DE) and 150 g of a polyethylene glycol wax mixed with an average molecular weight of 4000 in a mixer and the water content reduced by drying to 12 wt .-%. The extrusion was then carried out at 45 ° C. through a sieve plate (diameter of the bores: 2 mm). The crude product was crushed and a sieve fraction between 1.2 and 1.6 mm was removed.
  • Lamepon® SCE-B protein fatty acid condensate
  • Glucopon® 600 CSUP 50% by weight aqueous paste, Cognis Germany GmbH / DE
  • Comparative Example V Surfactant granules consisting of 50% by weight protein fatty acid condensate (Lamepon® SCE-B), 5% by weight coconut alkyl sulfate sodium salt, 5% by weight soda, 10% by weight sodium silicate and 30% by weight sodium sulfate; Sieve fraction between 1.2 and 1.6 mm.
  • Comparative example V2 Granular surfactant consisting of 95% by weight protein fatty acid condensate (Lamepon® SCE-B), sieve fraction between 1.2 and 1.6 mm.
  • the surfactant granules H1, H2 and H3 and the two comparative samples were used in detergent formulations.
  • the preparations were pressed into tablets (weight 40 g, constant breaking hardness), packed airtight and then stored at 40 ° C. for 2 weeks.
  • the composition of the detergent tablets is shown in Table 1.
  • Formulations 1, 2 and 3 are according to the invention, formulations V1 and V2 are used for comparison.
  • To assess the dissolution behavior the tablets were placed on a wire rack which was in water (0 ° d, 25 ° C). The tablets were completely surrounded by water. The disintegration time from immersion to complete dissolution was measured. The disintegration times are also shown in Table 1.
  • Test formulation for detergent tablets and solubility tests (data in% by weight, water ad 100%) composition 1 2 3 V1 V2 C 12/18 coconut alcohol sulfate sodium salt 5.0 5.0 5.0 5.0 5.0 5.0 C 12/14 alkyl polyglucoside 6.0 3.4 2.4 6.0 6.0 Protein fatty acid condensate - 1.3 1.3 - - C 12/18 coconut fatty alcohol + 7EO 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 PaimkemfettTex 1972re sodium salt 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 H1 surfactant granules 8.0 - - - - Granules of surfactant H2 - 20.0 - - - H3 surfactant granules - - 20.0 - - Granular surfactant V1 - - - 8.0 - Granular surfactant V2 - - -

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)

Description

Gebiet der Erfindung
Die Erfindung befindet sich auf dem Gebiet der geformten Waschmittel und betrifft Tabletten mit speziellen Tensidgranulaten.
Stand der Technik
Zur Herstellung von festen Wasch-, Spül- und Reinigungsmitteln werden heutzutage bevorzugt Tenside in granularer, praktisch wasserfreier Form ein gesetzt. Zur Herstellung solcher Anbietungsformen haben sich die unterschiedlichsten Verfahren als geeignet erwiesen. Aus der DE 28 32 288 sind Tabletten bekannt, die wasserlösliche oder in Wasser dispergierbare Eiweißstoffe, wasserlösliche Polymere, Sequestierungsmittel, Konservierungsmittel und Hilfsstoffe enthalten. Die Inhaltsstoffe werden vermischt und auf eine Rundläufer-Tablettiermaschine gepresst. Aus der DE 198 01 085 A1 sind homogene, Alkalihalogene enthaltenden Tensidgranulate mit einer Körnung im Bereich von 0,01 bis 0,5 mm bekannt, die sich für die Herstellung dieser Wasch- und Reinigungsmittel eigenen. Die Granulate werden durch Extrusion oder Tablettierung weiterverarbeitet. Die DE 22 63 939 beschreibt Tabletten, die 85 bis 98 Gew.-% eines mit Wasserstoffperoxid persäurebildenden, körnigen Bleichaktivators enthalten sowie wasserlösliche filmbildende Polymere und eine wasserlösliche bzw. quellbare Stärke enthalten. Die Inhaltsstoffe werden vermischt und zu einem Granulat verarbeitet, welches anschließend zu Tabletten verpresst werden kann. Die EP 0 799 886 A2 beschreibt Waschmitteltabletten, die nichtionische Tenside, amphotere Tenside sowie 20 bis 50 Gew.-% polyfunktionelle Carbonsäuren, Schichtsilikate und Kaliumcarbonat enthalten. Die Tabletten werden hergestellt, indem eine Feststofffraktion aus den polyfunktionellen Carbonsäuren, den Schichtsilikaten und dem Kaliumcarbonat hergestellt wird und auf dieses anschließend die Tensidfraktion aufgesprüht wird. Das so entstehende Pulver wird in herkömmlichen Tablettiermaschinen zu Tabletten verpresst. Die DE 197 23 028 A1 beschreibt ein Hilfsmittelgranulat für Wasch- und Reinigungsmittelformkörper. Es enthält 10 bis 95 Gew.-% Cellulose mit einer Teilchengröße < 100 mm und 5 bis 90 Gew.-% mikrokristalliner Cellulose und/oder eines oder mehrere Inhaltsstoffe von Wasch- und Reinigungsmitteln. Das so erhaltene Granulat kann zu Formkörpern, insbesondere Waschmitteltabletten verpresst werden.
Gemeinsam ist den im Handel befindlichen Tensidgranulaten jedoch, daß sie über eine unzureichende Auflösegeschwindigkeit insbesondere in kaltem Wasser verfügen. Waschmitteltabletten, die auf Basis von anionischen oder nichtionischen Tensidgranulaten hergestellt werden, können aus diesem Grunde trotz Mitverwendung von erheblichen Mengen an Sprengmitteln nicht direkt in die Einspülkammer der Waschmaschine eingesetzt, sondern müssen der Waschflotte direkt zugesetzt werden.
Die Aufgabe der vorliegenden Erfindung hat somit darin bestanden, Waschmittel tabletten zur Verfügung zu stellen, die bei Kontakt mit kaltem Wasser besonders schnell ohne Bildung einer Gelphase zerfallen, so daß die Nachteile des Stands der Technik zuverlässig überwunden werden.
Beschreibung der Erfindung
Gegenstand der Erfindung sind Waschmitteltabletten, die Tensidgranulate enthalten, welche eine Korngröße im Bereich von 0,01 bis 6 mm aufweisen, wobei man diese Granulate durch Granulation und Kompaktierung von oberflächenaktiven Proteinhydrolysaten und/oder Proteinfettsäurekondensaten in Gegenwart von Sprengmitteln, ausgewählt aus der Gruppe, die gebildet wird von Polysacchariden, Polyacrylaten, Polyvinylpyrrolidon, Polyurethanen, Polyethylenglycolen, Alginsäuren, Alginaten und Schichtsilicaten, erhält.
Überraschenderweise wurde gefunden, dass Waschmitteltabletten auf Basis der neuen Tensidgranulate eine so hohe Auflösegeschwindigkeit zeigen, dass sie beispielsweise direkt über die Einspülkammer der Waschmaschine eindosiert werden können und sich dort rasch und rückstandslos auflösen. Dieser Effekt kann natürlich grundsätzlich auch bei anderen Anwendungen, beispielsweise beim maschinellen Geschirrspülen genutzt werden. Unter dem Begriff Waschmittel werden dabei im folgenden auch andere Anwendungen im Bereich der Reinigung harter Oberflächen, insbesondere aber Spül- und Reinigungsmittel verstanden.
Proteine und Proteinderivate
Als Proteinkomponente kommen vorzugsweise Proteinhydrolysate sowie deren Kondensationsprodukte mit Fettsäuren, untergeordnet auch Proteinhydrolysatester und quatemierte Proteinfettsäurekondensate in Frage. Proteinhydrolysate stellen Abbauprodukte von tierischen oder pflanzlichen Proteinen, beispielsweise Collagen, Elastin oder Keratin und vorzugsweise Mandel- und Kartoffelprotein sowie insbesondere Weizen-, Reis- und Sojaprotein dar, die durch saure, alkalische und/oder enzymatische Hydrolyse gespalten werden und danach ein durchschnittliches Molekulargewicht im Bereich von 600 bis 4000, vorzugsweise 2000 bis 3500 aufweisen. Obschon Proteinhydrolysate in Ermangelung eines hydrophoben Restes keine Tenside im klassischen Sinne darstellen, finden sie wegen ihrer dispergierenden Eigenschaften vielfach Verwendung zur Formulierung oberflächenaktiver Mittel. Übersichten zu Herstellung und Verwendung von Proteinhydrolysaten sind beispielsweise von G. Schuster und A. Domsch in Seifen Öle Fette Wachse 108, 177 (1982) bzw. Cosm.Toil. 99 , 63 (1984), von H. W. Steisslinger in Parf.Kosm. 72, 556 (1991) und F. Aurich et al. in Tens.Surf.Det. 29 , 389 (1992) erschienen. Vorzugsweise werden pflanzliche Proteinhydrolysate auf Basis von Weizengluten oder Reisprotein eingesetzt, deren Herstellung in den beiden Deutschen Patentschriften DE 19502167 C1 und DE 19502168 C1 (Henkel) beschrieben wird. Aus den Proteinhydrolysaten lassen sich durch Kondensation mit C6-C22-, vorzugsweise C12-C18-Fettsäuren anionische Tenside, sogenannte Proteinfettsäurekondensate herstellen, die mit Seifen vergleichbare Eigenschaften aufweisen. Vorzugsweise werden Kondensate der genannten Hydrolysate mit Capronsäure, Caprylsäure, 2-Ethylhexansäure, Caprinsäure, Laurinsäure, Isotridecansäure, Myristinsäure, Palmitinsäure, Palmoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Elaeostearinsäure, Arachinsäure, Gadoleinsäure, Behensäure und Erucasäure eingesetzt.
Anionische Tenside
Typische Beispiele für anionische Tenside, welche ebenfalls in den Tensidgranulaten enthalten sein können, sind Seifen, Alkylbenzolsulfonate, Alkansulfonate, Olefinsulfonate, Alkylethersulfonate, Glycerinethersulfonate, α-Methylestersulfonate, Sulfofettsäuren, Alkysulfate, Fettalkoholethersulfate, Glycerinethersuliate, Hydroxymischethersulfate, Monoglycerid(ether)sulfate, Fettsäureamid(ether)sulfate, Mono- und Dialkylsulfosuccinate, Mono- und Dialkylsulfosuccinamate, Sulfotriglyceride, Amidseifen, Ethercarbonsäuren und deren Salze, Fettsäureisethionate, Fettsäuresarcosinate, Fettsäuretauride, N-Acylaminosäuren wie beispielsweise Acyllactylate, Acyltartrate, Acylglutamate und Acylaspartate, Alkyloligoglucosidsulfate, Proteinfettsäurekondensate (insbesondere pflanzliche Produkte auf Weizenbasis) und Alkyl(ether)phosphate. Sofern die anionischen Tenside Polyglycoletherketten enthalten, können diese eine konventionelle, vorzugsweise jedoch eine eingeengte Homologenverteilung aufweisen. Vorzugsweise werden Alkylbenzolsulfonate, Alkylsulfate, Seifen, Alkansulfonate, Olefinsulfonate, Methylestersulfonate sowie deren Gemische eingesetzt. Bevorzugte Alkylbenzolsulfonate folgen vorzugsweise der Formel (I), R-Ph-SO3X   (I) in der R für einen verzweigten, vorzugsweise jedoch linearen Alkylrest mit 10 bis 18 Kohlenstoffatomen, Ph für einen Phenylrest und X für ein Alkali- und/oder Erdalkalimetall, Ammonium, Alkylammonium, Alkanolammonium oder Glucammonium steht. Insbesondere von diesen geeignet sind Dodecylbenzolsulfonate, Tetradecylbenzolsulfonate, Hexadecylbenzolsulfonate sowie deren technische Gemische in Form der Natriumsalze. Unter Alkyl- und/oder Alkenylsulfaten, die auch häufig als Fettalkoholsulfate bezeichnet werden, sind die Sulfatierungsprodukte primärer und/oder sekundärer Alkohole zu verstehen, die vorzugsweise der Formel (II) folgen, R2O-SO3Y   (II) in der R2 für einen linearen oder verzweigten, aliphatischen Alkyl- und/oder Alkenylrest mit 6 bis 22, vorzugsweise 12 bis 18 Kohlenstoffatomen und Y für ein Alkali- und/oder Erdalkalimetall, Ammonium, Alkylammonium, Alkanolammonium oder Glucammonium steht. Typische Beispiele für Alkylsulfate, die im Sinne der Erfindung Anwendung finden können, sind die Sulfatierungsprodukte von Capronalkohol, Caprylalkohol, Caprinalkohol, 2-Ethylhexylalkohol, Laurylalkohol, Myristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Arachylalkohol, Gadoleylalkohol, Behenylalkohol und Erucylalkohol sowie deren technischen Gemischen, die durch Hochdruckhydrierung technischer Methylesterfraktionen oder Aldehyden aus der Roelenschen Oxosynthese erhalten werden. Die Sulfatierungsprodukte können vorzugsweise in Form ihrer Alkalisalze und insbesondere ihrer Natriumsalze eingesetzt werden. Besonders bevorzugt sind Alkylsulfate auf Basis von C16/18-Talg-Fettalkoholen bzw. pflanzliche Fettalkohole vergleichbarer C-Kettenverteilung in Form ihrer Natriumsalze. Im Falle von verzweigten primären Alkoholen handelt es sich um Oxoalkohole, wie sie z.B. durch Umsetzung von Kohlenmonoxid und Wasserstoff an alpha-ständige Olefine nach dem Shop-Verfahren zugänglich sind. Solche Alkoholmischungen sind im Handel unter dem Handeisnamen Dobanol® oder Neodol® erhältlich. Geeignete Alkoholmischungen sind Dobanot 91®, 23®, 25®, 45®. Eine weitere Möglichkeit sind Oxoalkohole, wie sie nach dem klassischen Oxoprozeß der Enichema bzw. der Condea durch Anlagerung von Kohlenmonoxid und Wasserstoff an Olefine erhalten werden. Bei diesen Alkoholmischungen handelt es sich um eine Mischung aus stark verzweigten Alkoholen. Solche Alkoholmischungen sind im Handel unter dem Handelsnamen Lial® erhältlich. Geeignete Alkoholmischungen sind Lial 91®, 111®, 123®, 125®, 145®.
Nichtionische Tenside
Bei den nichtionischen Tensiden, die im Sinne der vorliegenden Erfindung ebenfalls als zusätzliche Tensidkomponente der Granulate in Frage kommen, kann es sich beispielsweise um Fettalkoholpolyglycolether, Alkylphenolpolyglycolether, Fettsäurepolyglycolester, Fettsäureamidpolyglycolether, Fettaminpolyglycolether, alkoxylierte Triglyceride, Mischether bzw. Mischformale, Alk(en)yloligoglykoside, Fettsäure-N-alkylglucamide, Proteinhydrolysate (insbesondere pflanzliche Produkte auf Weizenbasis), Polyolfettsäureester, Zuckerester, Sorbitanester, Polysorbate und Aminoxide handeln. Sofern die nichtionischen Tenside Polyglycoletherketten enthalten, können diese eine konventionelle, vorzugsweise jedoch eine eingeengte Homologenverteilung aufweisen. Vorzugsweise werden solche nichtionische Tenside eingesetzt werden, welche sich abtrocknen lassen, insbesondere Alkyl- und/oder Alkenyloligoglykoside, die vorzugsweise der Formel (III) folgen, R3O-[G]p   (III) in der R3 für einen Alkyl- und/oder Alkenylrest mit 4 bis 22 Kohlenstoffatomen, G für einen Zuckerrest mit 5 oder 6 Kohlenstoffatomen und p für Zahlen von 1 bis 10 steht. Sie können nach den einschlägigen Verfahren der präparativen organischen Chemie erhalten werden. Stellvertretend für das umfangreiche Schrifttum sei hier auf die Schriften EP 0301298 A1 und WO 90/03977 verwiesen. Die Alkylund/oder Alkenyloligoglykoside können sich von Aldosen bzw. Ketosen mit 5 oder 6 Kohlenstoffatomen, vorzugsweise der Glucose ableiten. Die bevorzugten Alkyl- und/oder Alkenyloligoglykoside sind somit Alkyl- und/oder Alkenyloligoglucoside. Die Indexzahl p in der allgemeinen Formel (III) gibt den Oligomerisierungsgrad (DP), d. h. die Verteilung von Mono- und Oligoglykosiden an und steht für eine Zahl zwischen 1 und 10. Während p in einer gegebenen Verbindung stets ganzzahlig sein muß und hier vor allem die Werte p = 1 bis 6 annehmen kann, ist der Wert p für ein bestimmtes Alkyloligoglykosid eine analytisch ermittelte rechnerische Größe, die meistens eine gebrochene Zahl darstellt. Vorzugsweise werden Alkyl- und/oder Alkenyloligoglykoside mit einem mittleren Oligomerisierungsgrad p von 1,1 bis 3,0 eingesetzt. Aus anwendungstechnischer Sicht sind solche Alkyl- und/oder Alkenyloligoglykoside bevorzugt, deren Oligomerisierungsgrad kleiner als 1,7 ist und insbesondere zwischen 1,2 und 1,4 liegt. Der Alkyl- bzw. Alkenylrest R3 kann sich von primären Alkoholen mit 4 bis 11, vorzugsweise 8 bis 10 Kohlenstoffatomen ableiten. Typische Beispiele sind Butanol, Capronafkohol, Caprylalkohol, Caprinalkohol und Undecylalkohol sowie deren technische Mischungen, wie sie beispielsweise bei der Hydrierung von technischen Fettsäuremethytestem oder im Verlauf der Hydrierung von Aldehyden aus der Roelen'schen Oxosynthese erhalten werden. Bevorzugt sind Alkyloligoglucoside der Kettenlänge C8-C10 (DP =1 bis 3), die als Vorlauf bei der destttfativen Auftrennung von technischem C8-C18-Kokosfettalkohol anfallen und mit einem Anteil von weniger als 6 Gew.-% C12- Alkohol verunreinigt sein können sowie Alkyloligoglucoside auf Basis technischer C9/11-Oxoalkohole (DP = 1 bis 3). Der Alkyl- bzw. Alkenylrest R3 kann sich femer auch von primären Alkoholen mit 12 bis 22, vorzugsweise 12 bis 14 Kohlenstoffatomen ableiten. Typische Beispiele sind Laurylalkohol, Myristytalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylal-. kohol, Petroselinylalkohol, Arachylalkohol, Gadoleyialkohol, Behenylalkohol, Erucylalkohol, Brassidylalkohol sowie deren technische Gemische, die wie oben beschrieben erhalten werden können. Bevorzugt sind Alkyloligoglucoside auf Basis von gehärtetem C12/14-Kokosalkohol mit einem DP von 1 bis 3.
Werden Proteine und/oder Proteinderivate einerseits und anionische und/oder nichtionische Tenside andererseits gemeinsam verwendet, so empfiehlt es sich, diese im Gewichtsverhältnis 1 : 10 bis 10 : 1, vorzugsweise 1 : 5 bis 5 : 1 und insbesondere 1. 2 bis 2 : 1 einzusetzen. Dabei können die Tenside - einzeln oder gemeinsam - sowohl als wäßrige Pasten mit Feststoffgehalten (= Aktivsubstanzgehalten) von beispielsweise 1 bis 60, vorzugsweise 5 bis 50 und insbesondere 15 bis 35 Gew.-% oder als trokkene Feststoffe mit Restwassergehalten von typischerweise unter 10 und vorzugsweise unter 5 Gew.-% eingesetzt werden.
Sprengmittel
Unter dem Begriff Sprengmittel sind Stoffe zu verstehen, die in den Tensidgranulaten enthalten sind, um deren Zerfall beim Inkontaktbringen mit Wasser zu beschleunigen. Übersichten hierzu finden sich z.B. in J.Pharm.Sci. 61 (1972) oder Römpp Chemielexikon, 9. Auflage, Band 6, S. 4440. Die Sprengmittel können im Granulat makroskopisch betrachtet homogen verteilt vorliegen, mikroskopisch gesehen können sie jedoch herstellungsbedingt Zonen erhöhter Konzentration bilden. Zu den bevorzugten Sprengmittetn gehören Polysaccharide, wie z.B. natürliche Stärke und deren Derivate (Carboxymethylstärke, Stärkeglycolate in Form ihrer Alkalisalze, Agar Agar, Guar Gum, Pektine usw.), Cellulosen und deren Derivate (Carboxymethylcellulose, mikrokristalline Cellulose), Polyacrylaten, Polyvinylpyrrolidon, Alginsäure und deren Alkalisalze (Alginate), amorphe oder auch teilweise kristalline Schichtsilicate (Bentonite), Polyurethane, Polyethytenglycole sowie gaserzeugende Systeme. Weitere Sprengmittel, die im Sinne der Erfindung zugegen sein können, sind beispielsweise den Druckschriften WO 98/40462 (Rettenmaier), WO 98/55583 und WO 98/55590 (Unilever) und WO 98/40463, DE 19709991 und DE 19710254 (Henkel) zu entnehmen. Zur Herstellung der erfindungsgemäßen Granulate kann man die Tenside und die Sprengmittel - jeweils bezogen auf den Feststoffgehalt - im Gewichtsverhältnis 1 : 10 bis 10 : 1, vorzugsweise 1 : 5 bis 5: 1 und insbesondere 1 : 2 bis 2: 1 einzusetzen. Es empfiehlt sich weiterhin, den Wassergehalt der Sprengmittel bzw. der Tensidgranulate so einzustellen, daß bei Lagerung nicht automatisch eine Quellung einsetzt. Vorzugsweise sollte der Restwassergehalt 10 Gew.-% nicht übersteigen.
Granulierung und Kompaktierung
Die Herstellung der Tensidgranulate, also die Granulierung und Kompaktierung kann in der für Waschmittel bekannten Art und Weise erfolgen. Dabei ist es insbesondere möglich, die Granulate während oder nach der Granulierung zu kompaktieren. Die Kompaktierung ist zwingend erforderlich, um eine hinreichende Steigerung der Auflösegeschwindigkeit zu erreichen. Aus anwendungstechnischer Sicht hat es sich als sehr günstig erwiesen, wenn die eingesetzten Tensidgranulate eine Korngröße im Bereich von 0,01 bis 6, vorzugsweise 0,1 bis 5 mm aufweisen und insbesondere der Anteil, welcher nicht im Bereich von 0,1 bis 5 mm liegt, weniger als 25 Gew.-% ausmacht.
Eine besonders bevorzugte Möglichkeit zur Herstellung der Tensidgranulate besteht darin, die Mischungen einer Wirbelschichtgranulierung ("SKET"-Granulierung) zu unterwerfen. Hierunter ist eine Granulierung unter gleichzeitiger Trocknung zu verstehen, die vorzugsweise batchweise oder kontinuierlich erfolgt. Dabei können die Mischungen aus Tensiden und Sprengmitteln sowohl in getrocknetem Zustand als auch als wäßrige Zubereitung eingesetzt werden. Bevorzugt eingesetzte Wirbelschicht-Apparate besitzen Bodenplatten mit Abmessungen von 0,4 bis 5 m. Vorzugsweise wird die Granulierung bei Wirbelluftgeschwindigkeiten im Bereich von 1 bis 8 m/s durchgeführt. Der Austrag der Granulate aus der Wirbelschicht erfolgt vorzugsweise über eine Größenklassierung der Granulate. Die Klassierung kann beispielsweise mittels einer Siebvorrichtung oder durch einen entgegengeführten Luftstrom (Sichterluft) erfolgen, der so reguliert wird, daß erst Teilchen ab einer bestimmten Teilchehgröße aus der Wirbelschicht entfernt und kleinere Teilchen in der Wirbelschicht zurückgehalten werden. Üblicherweise setzt sich die einströmende Luft aus der beheizten oder unbeheizten Sichterluft und der beheizten Bödenluft zusammen. Die Bodenlufttemperatur liegt dabei zwischen 80 und 400, vorzugsweise 90 und 350 °C. Vorteilhafterweise wird zu Beginn der Granulierung eine Startmasse, beispielsweise ein Tensidgranulat aus einem früheren Versuchsansatz, vorgelegt.
In einer anderen Variante werden die Gemische erst nach der Granulierung, beispielsweise in einem Mischer oder einem Fließbett, einem Kompaktierungsschritt unterworfen, wobei weitere Inhaltsstoffe den Mitteln erst nach dem Kompaktierungsschritt zugemischt werden. Die Kompaktierung der Inhaltsstoffe findet in einer bevorzugten Ausführungsform der Erfindung in einem Preßagglomerationsverfahren statt. Der Preßagglomerationsvorgang, dem das feste Vorgemisch unterworfen wird, kann dabei in verschiedenen Apparaten realisiert werden. Je nach dem Typ des verwendeten Agglomerators werden unterschiedliche Preßagglomerationsverfahren unterschieden. Die drei häufigsten und im Rahmen der vorliegenden Erfindung bevorzugten Preßagglomerationsverfahren sind dabei die Extrusion, das Walzenpressen bzw. -kompaktieren, und das Lochpressen (Pelletieren), so daß im Rahmen der vorliegenden Erfindung bevorzugte Preßagglomerationsvorgänge Extrusions-, Walzenkompaktierungs- oder Pelletierungsvorgänge sind.
Allen Verfahren ist gemeinsam, daß das Vorgemisch unter Druck verdichtet und plastifiziert wird und die einzelnen Partikel unter Verringerung der Porosität aneinandergedrückt werden und aneinander haften. Bei allen Verfahren lassen sich die Werkzeuge dabei auf höhere Temperaturen aufheizen oder zur Abführung der durch Scherkräfte entstehenden Wärme kühlen.
In allen Verfahren kann als Hilfsmittel zur Verdichtung ein oder mehrere Bindemittel eingesetzt werden. Dabei soll jedoch klargestellt sein, daß an sich immer auch der Einsatz von mehreren, verschiedenen Bindemitteln und Mischungen aus verschiedenen Bindemitteln möglich ist. In einer bevorzugten Ausführungsform der Erfindung wird ein Bindemittel eingesetzt, daß bei Temperaturen bis maximal 130 °C, vorzugsweise bis maximal 100 °C und insbesondere bis 90 °C bereits vollständig als Schmelze vorliegt. Das Bindemittel muß also je nach Verfahren und Verfahrensbedingungen ausgewählt werden oder die Verfahrensbedingungen, insbesondere die Verfahrenstemperatur, müssen - falls ein bestimmtes Bindemittel gewünscht wird - an das Bindemittel angepaßt werden.
Der eigentliche Verdichtungsprozeß erfolgt dabei vorzugsweise bei Verarbeitungstemperaturen, die zumindest im Verdichtungsschritt mindestens der Temperatur des Erweichungspunkts, wenn nicht sogar der Temperatur des Schmelzpunkts des Bindemittels entsprechen. In einer bevorzugten Ausführungsform der Erfindung liegt die Verfahrenstemperatur signifikant über dem Schmelzpunkt bzw. oberhalb der Temperatur, bei der das Bindemittel als Schmelze vorliegt. Insbesondere ist es aber bevorzugt, daß die Verfahrenstemperatur im Verdichtungsschritt nicht mehr als 20 °C über der Schmelztemperatur bzw. der oberen Grenze des Schmelzbereichs des Bindemittels liegt. Zwar ist es technisch durchaus möglich, auch noch höhere Temperaturen einzustellen; es hat sich aber gezeigt, daß eine Temperaturdifferenz zur Schmelztemperatur bzw. zur Erweichungstemperatur des Bindemittels von 20 °C im allgemeinen durchaus ausreichend ist und noch höhere Temperaturen keine zusätzlichen Vorteile bewirken. Deshalb ist es - insbesondere auch aus energetischen Gründen - besonders bevorzugt, zwar oberhalb, jedoch so nah wie möglich am Schmelzpunkt bzw. an der oberen Temperaturgrenze des Schmelzbereichs des Bindemittels zu arbeiten. Eine derartige Temperaturführung besitzt den weiteren Vorteil, daß auch thermisch empfindliche Rohstoffe, beispielsweise Peroxybleichmittel wie Perborat und/oder Percarbonat, aber auch Enzyme, zunehmend ohne gravierende Aktivsubstanzverluste verarbeitet werden können. Die Möglichkeit der genauen Temperatursteuerung des Binders insbesondere im entscheidenden Schritt der Verdichtung, also zwischen der Vermischung/Homogenisierung des Vorgemisches und der Formgebung, erlaubt eine energetisch sehr günstige und für die temperaturernpfindlichen Bestandteile des Vorgemisches extrem schonende Verfahrensführung, da das Vorgemisch nur für kurze Zeit den höheren Temperaturen ausgesetzt ist. In bevorzugten Preßagglomerationsverfahren weisen die Arbeitswerkzeuge des Preßagglomerators (die Schnecke(n) des Extruders, die Walze(n) des Walzenkompaktors sowie die Preßwalze(n) der Pelletpresse) eine Temperatur von maximal 150 °C, vorzugsweise maximal 100 °C und insbesondere maximal 75 °C auf und die Verfahrenstemperatur liegt bei 30 °C und insbesondere maximal 20 °C oberhalb der Schmelztemperatur bzw. der oberen Temperaturgrenze des Schmelzbereichs des Bindemittels. Vorzugsweise beträgt die Dauer der Temperatureinwirkung im Kompressionsbereich der Preßagglomeratoren maximal 2 Minuten und liegt insbesondere in einem Bereich zwischen 30 Sekunden und 1 Minute.
Bevorzugte Bindemittel, die allein oder in Mischung mit anderen Bindemitteln eingesetzt werden können, sind Polyethylenglykole, 1,2-Polypropylenglykole sowie modifizierte Polyethylenglykole und Polypropylenglykole. Zu den modifizierten Polyalkylenglykolen zählen insbesondere die Sulfate und/oder die Disulfate von Polyethylenglykolen oder Polypropylenglykolen mit einer relativen Molekülmasse zwischen 600 und 12 000 und insbesondere zwischen 1 000 und 4 000. Eine weitere Gruppe besteht aus Mono- und/oder Disuccinaten der Polyalkylenglykole, welche wiederum relative Molekülmassen zwischen 600 und 6 000, vorzugsweise zwischen 1 000 und 4 000 aufweisen. Für eine genauere Beschreibung der modifizierten Polyalkylenglykolether wird auf die Offenbarung der internationalen Patentanmeldung WO 93/02176 verwiesen. lm Rahmen dieser Erfindung zählen zu Polyethylenglykolen solche Polymere, bei deren Herstellung neben Ethylenglykol ebenso C3-C5-Glykole sowie Glycerin und Mischungen aus diesen als Startmoleküle eingesetzt werden. Ferner werden auch ethoxylierte Derivate wie Trimethylolpropan mit 5 bis 30 EO umfaßt. Die vorzugsweise eingesetzten Polyethylenglykole können eine lineare oder verzweigte Struktur aufweisen, wobei insbesondere lineare Polyethylenglykole bevorzugt sind. Zu den insbesondere bevorzugten Polyethylenglykolen gehören solche mit relativen Molekülmassen zwischen 2 000 und 12 000, vorteilhafterweise um 4 000, wobei Polyethylenglykole mit relativen Molekülmassen unterhalb 3 500 und oberhalb 5 000 insbesondere in Kombination mit Polyethylenglykolen mit einer relativen Molekülmasse um 4 000 eingesetzt werden können und derartige Kombinationen vorteilhafterweise zu mehr als 50 Gew.-%, bezogen auf die gesamte Menge der Polyethylengiykole, Polyethylenglykole mit einer relativen Molekülmasse zwischen 3 500 und 5 000 aufweisen. Als Bindemittel können jedoch auch Polyethylenglykole eingesetzt werden, welche an sich bei Raumtemperatur und einem Druck von 1 bar in flüssigem Stand vorliegen; hier ist vor allem von Polyethylenglykol mit einer relativen Molekülmasse von 200, 400 und 600 die Rede. Allerdings sollten diese an sich flüssigen Polyethylenglykole nur in einer Mischung mit mindestens einem weiteren Bindemittel eingesetzt werden, wobei diese Mischung wieder den erfindungsgemäßen Anforderungen genügen muß, also einen Schmelzpunkt bzw. Erweichungspunkt von mindestens oberhalb 45 °C aufweisen muß. Ebenso eignen sich als Bindemittel niedermolekulare Polyvinylpyrrolidone und Derivate von diesen mit relativen Molekülmassen bis maximal 30.000. Bevorzugt sind hierbei relative Molekülmassenbereiche zwischen 3.000 und 30.000, beispielsweise um 10.000. Polyvinylpyrrolidone werden vorzugsweise nicht als alleinige Bindemittel, sondern in Kombination mit anderen, insbesondere in Kombination mit Polyethylenglykolen, eingesetzt.
Das verdichtete Gut weist direkt nach dem Austritt aus dem Herstellungsapparat vorzugsweise Temperaturen nicht oberhalb von 90 °C auf, wobei Temperaturen zwischen 35 und 85 °C besonders bevorzugt sind. Es hat sich herausgestellt, daß Austrittstemperaturen - vor allem im Extrusionsverfahren - von 40 bis 80 °C, beispielsweise bis 70 °C, besonders vorteilhaft sind.
In einer weiteren Ausführungsform werden die Tensidgranulate mittels einer Extrusion hergestellt, wie sie beispielsweise in dem europäischen Patent EP 0486592 B1 oder den internationalen Patentanmeldungen WO 93/02176 und WO 94/09111 bzw. WO 98/12299 beschrieben werden. Dabei wird ein festes Vorgemisch unter Druck strangförmig verpreßt und der Strang nach Austritt aus der Lochform mittels einer Schneidevorrichtung auf die vorbestimmbare Granulatdimension zugeschnitten. Das homogene und feste Vorgemisch enthält ein Plastifizier- und/oder Gleitmittel, welches bewirkt, daß das Vorgemisch unter dem Druck bzw. unter dem Eintrag spezifischer Arbeit plastisch erweicht und extrudierbar wird. Bevorzugte Plastifizier- und/oder Gleitmittel sind Tenside und/oder Polymere. Zur Erläuterung des eigentlichen Extrusionsverfahrens wird hiermit ausdrücklich auf die obengenannten Patente und Patentanmeldungen verwiesen. Vorzugsweise wird dabei das Vorgemisch vorzugsweise einem Planetwalzenextruder oder einem 2-Wellen-Extruder bzw. 2-Schnecken-Extruder mit gleichlaufender oder gegenlaufender Schneckenführung zugeführt, dessen Gehäuse und dessen Extruder-Granulierkopf auf die vorbestimmte Extrudiertemperatur aufgeheizt sein können. Unter der Schereinwirkung der Extruderschnecken wird das Vorgemisch unter Druck, der vorzugsweise mindestens 25 bar beträgt, bei extrem hohen Durchsätzen in Abhängigkeit von dem eingesetzten Apparat aber auch darunter liegen kann, verdichtet, plastifiziert, in Form feiner Stränge durch die Lochdüsenplatte im Extruderkopf extrudiert und schließlich das Extrudat mittels eines rotierenden Abschlagmessers vorzugsweise zu etwa kugelförmigen bis zylindrischen Granulatkömern verkleinert. Der Lochdurchmesser der Lochdüsenplatte und die Strangschnittlänge werden dabei auf die gewählte Granulatdimension abgestimmt. So gelingt die Herstellung von Granulaten einer im wesentlichen gleichmäßig vorherbestimmbaren Teilchengröße, wobei im einzelnen die absoluten Teilchengrößen dem beabsichtigten Einsatzzweck angepaßt sein können. im allgemeinen werden Teilchendurchmesser bis höchstens 0,8 cm bevorzugt. Wichtige Ausführungsformen sehen hier die Herstellung von einheitlichen Granulaten im Millimeterbereich, beispielsweise im Bereich von 0,5 bis 5 mm und insbesondere im Bereich von etwa 0,8 bis 3 mm vor. Das Länge/Durchmesser-Verhältnis der abgeschlagenen primären Granulate liegt dabei vorzugsweise im Bereich von etwa 1 : 1 bis etwa 3 : 1. Weiterhin ist es bevorzugt, das noch plastische Primärgranulat einem weiteren formgebenden Verarbeitungsschritt zuzuführen; dabei werden am Rohextrudat vorliegende Kanten abgerundet, so daß letztlich kugelförmig bis annähernd kugelförmige Extrudatkömer erhalten werden können. Falls gewünscht können in dieser Stufe geringe Mengen an Trockenpulver, beispielsweise Zeolithpulver wie Zeolith NaA-Pulver, mitverwendet werden. Diese Formgebung kann in marktgängigen Rondiergeräten erfolgen. Dabei ist darauf zu achten, daß in dieser Stufe nur geringe Mengen an Feinkomanteil entstehen. Eine Trocknung, welche in den obengenannten Dokumenten des Standes der Technik als bevorzugte Ausführungsform beschrieben wird, ist anschließend möglich, aber nicht zwingend erforderlich. Es kann gerade bevorzugt sein, nach dem Kompaktierungsschritt keine Trocknung mehr durchzuführen. Alternativ können Extrusionen/ Verpressungen auch in Niedrigdruckextrudem, in der Kahl-Presse (Fa. Amandus Kahl) oder im Bextruder der Fa. Bepex durchgeführt werden. Bevorzugt ist die Temperaturführung im Übergangsbereich der Schnecke, des Vorverteilers und der Düsenplatte derart gestaltet, daß die Schmelztemperatur des Bindemittels bzw. die obere Grenze des Schmelzbereichs des Bindemittels zumindest erreicht, vorzugsweise aber überschritten wird. Dabei liegt die Dauer der Temperatureinwirkung im Kompressionsbereich der Extrusion vorzugsweise unterhalb von 2 Minuten und insbesondere in einem Bereich zwischen 30 Sekunden und 1 Minute.
Die Tensidgranulate können auch mittels einer Walzenkompaktierung hergestellt werden. Hierbei wird das Vorgemisch gezielt zwischen zwei glatte oder mit Vertiefungen von definierter Form versehene Walzen eindosiert und zwischen den beiden Walzen unter Druck zu einem blattförmigen Kompaktat, der sogenannten Schülpe, ausgewalzt. Die Walzen üben auf das Vorgemisch einen hohen Liniendruck aus und können je nach Bedarf zusätzlich geheizt bzw. gekühlt werden. Bei der Verwendung von Glattwalzen erhält man glatte, unstrukturierte Schülpenbänder, während durch die Verwendung strukturierter Walzen entsprechend strukturierte Schülpen erzeugt werden können, in denen beispielsweise bestimmte Formen der späteren Waschmittelteilchen vorgegeben werden können. Das Schülpenband wird nachfolgend durch einen Abschlag- und Zerkleinerungsvorgang in kleinere Stücke gebrochen und kann auf diese Weise zu Granulatkömem verarbeitet werden, die durch weitere an sich bekannte Oberflächenbehandlungsverfahren veredelt, insbesondere in annähernd kugelförmige Gestalt gebracht werden können. Auch bei der Walzenkompaktierung liegt die Temperatur der pressenden Werkzeuge, also der Walzen, bevorzugt bei maximal 150 °C, vorzugsweise bei maximal 100 °C und insbesondere bei maximal 75 °C. Besonders bevorzugte Herstellungsverfahren arbeiten bei der Walzenkompaktierung mit Verfahrenstemperaturen, die 10 °C, insbesondere maximal 5 °C oberhalb der Schmeiztemperatur bzw. der oberen Temperaturgrenze des Schmelzbereichs des Bindemittels liegen. Hierbei ist es weiter bevorzugt, daß die Dauer der Temperatureinwirkung im Kompressionsbereich der glatten oder mit Vertiefungen von definierter Form versehenen Walzen maximal 2 Minuten beträgt und insbesondere in einem Bereich zwischen 30 Sekunden und 1 Minute liegt.
Das Tensidgranulate können auch mittels Pelletierung hergestellt werden. Hierbei wird das Vorgemisch auf eine perforierte Fläche aufgebracht und mittels eines druckgebenden Körpers unter Plastifizierung durch die Löcher gedrückt. Bei üblichen Ausführungsformen von Pelletpressen wird das Vorgemisch unter Druck verdichtet, plastifiziert, mittels einer rotierenden Walze in Form feiner Stränge durch eine perforierte Fläche gedrückt und schließlich mit einer Abschlagvorrichtung zu Granulatkörnem zerkleinert. Hierbei sind die unterschiedlichsten Ausgestaltungen von Druckwalze und perforierter Matrize denkbar. So finden beispielsweise flache perforierte Teller ebenso Anwendung wie konkave oder konvexe Ringmatrizen, durch die das Material mittels einer oder mehrerer Druckwalzen hindurchgepreßt wird. Die Preßrollen können bei den Teflergeräten auch konisch geformt sein, in den ringförmigen Geräten können Matrizen und Preßrolle(n) gleichläufigen oder gegenläufigen Drehsinn besitzen. Ein zur Durchführung des Verfahrens geeigneter Apparat wird beispielsweise in der deutschen Offenlegungsschrift DE 3816842 A1 beschrieben. Die in dieser Schrift offenbarte Ringmatrizenpresse besteht aus einer rotierenden, von Preßkanälen durchsetzten Ringmatrize und wenigstens einer mit deren Innenfläche in Wirkverbindung stehenden Preßrolle, die das dem Matrizenraum zugeführte Material durch die Preßkanäle in einen Materialaustrag preßt. Hierbei sind Ringmatrize und Preßrolle gleichsinnig antreibbar, wodurch eine verringerte Scherbelastung und damit geringere Temperaturerhöhung des Vorgemischs realisierbar ist. Selbstverständlich kann aber auch bei der Pelletierung mit heiz- oder kühlbaren Walzen gearbeitet werden, um eine gewünschte Temperatur des Vorgemischs einzustellen. Auch bei der Pelletierung liegt die Temperatur der pressenden Werkzeuge, also der Druckwalzen oder Preßrollen, bevorzugt bei maximal 150 °C, vorzugsweise bei maximal 100 °C und insbesondere bei maximal 75 °C. Besonders bevorzugte Herstellungsverfahren arbeiten bei der Walzenkompaktierung mit Verfahrenstemperaturen, die 10 °C, insbesondere maximal 5 °C oberhalb der Schmelztemperatur bzw. der oberen Temperaturgrenze des Schmelzbereichs des Bindemittels liegen.
Hilfs- und Zusatzstoffe
Außer den genannten Inhaltsstoffen können die Waschmitteltabletten weitere bekannte Zusatzstoffe, vor allem Builder, ferner aber auch optische Aufheller, Enzyme, Enzymstabilisatoren, Entschäumer, Co-Sprengmittel, geringe Mengen an neutralen Füllsalzen sowie Farb- und Duftstoffe und dergleichen enthalten.
Als Builder können beispielsweise Zeolithe eingesetzt werden. Der als Waschmittelbuilder häufig eingesetzte feinkristalline, synthetische und gebundenes Wasser enthaltende Zeolith ist vorzugsweise Zeolith A und/oder P. Als Zeolith P wird beispielsweise Zeolith MAP(R) (Handelsprodukt der Firma Crosfield) besonders bevorzugt. Geeignet sind jedoch auch Zeolith X sowie Mischungen aus A, X und/oder P wie auch Y. Von besonderem Interesse ist auch ein cokristallisiertes NatriumlKalium-Aluminiumsilicat aus Zeolith A und Zeolith X, weiches als VEGOBOND AX® (Handelsprodukt der Firma Condea Augusta S.p.A.) im Handel erhältlich ist. Der Zeolith kann als sprühgetrocknetes Pulver oder auch als ungetrocknete, von ihrer Herstellung noch feuchte, stabilisierte Suspension zum Einsatz kommen. Für den Fall, daß der Zeolith als Suspension eingesetzt wird, kann diese geringe Zusätze an nichtionischen Tensiden als Stabilisatoren enthalten, beispielsweise 1 bis 3 Gew.-%, bezogen auf Zeolith, an ethoxylierten C12-C18-Fettalkoholen mit 2 bis 5 Ethylenoxidgruppen, C12-C14-Fettalkoholen mit 4 bis 5 Ethylenoxidgruppen oder ethoxylierten Isotridecanolen. Geeignete Zeolithe weisen eine mittlere Teilchengröße von weniger als 10 µm (Volumenverteilung; Meßmethode: Coulter Counter) auf und enthalten vorzugsweise 18 bis 22 Gew.-%, insbesondere 20 bis 22 Gew.-% an gebundenem Wasser.
Geeignete Substitute bzw. Teilsubstitute für Phosphate und Zeolithe sind kristalline, schichtförmige Natriumsilicate ("Schichtsilicate") der allgemeinen Formel NaMSixO2x+1·yH2O, wobei M Natrium oder Wasserstoff bedeutet, x eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Derartige kristalline Schichtsilicate werden beispielsweise in der europäischen Patentanmeldung EP 0164514 A1 beschrieben. Bevorzugte kristalline Schichtsilicate der angegebenen Formel sind solche, in denen M für Natrium steht und x die Werte 2 oder 3 annimmt. Insbesondere sind sowohl β- als auch δ-Natriumdisilicate Na2Si2O5·yH2O bevorzugt, wobei β-Natriumdisilicat beispielsweise nach dem Verfahren erhalten werden kann, das in der internationalen Patentanmeldung WO 91/08171 beschrieben ist. Weitere geeignete Schichtsilicate sind beispielsweise aus den Patentanmeldungen DE 2334899 A1, EP 0026529 A1 und DE 3526405 A1 bekannt. Ihre Verwendbarkeit ist nicht auf eine spezielle Zusammensetzung bzw. Strukturformel beschränkt. Bevorzugt sind hier jedoch Smectite, insbesondere Bentonite. Geeignete Schichtsilicate, die zur Gruppe der mit Wasser quellfähigen Smectite zählen, sind z.B. solche der allgemeinen Formeln (OH)4Si8-yAly(MgxAl4-x)O20    Montmorrilonit (OH)4Si8-yAly(Mg6-zLiz)O20   Hectorit (OH)4Si8-yAly(Mg6-z Alz)O20   Saponit mit x = 0 bis 4, y = 0 bis 2, z = 0 bis 6. Zusätzlich kann in das Kristallgitter der Schichtsilicate gemäß den vorstehenden Formeln geringe Mengen an Eisen eingebaut sein. Ferner können die Schichtsilicate aufgrund ihrer ionenaustauschenden Eigenschaften Wasserstoff-, Alkali-, Erdalkaliionen, insbesondere Na+ und Ca2+ enthalten. Die Hydratwassermenge liegt meist im Bereich von 8 bis 20 Gew.-% und ist vom Quellzustand bzw. von der Art der Bearbeitung abhängig. Brauchbare Schichtsilicate sind beispielsweise aus US 3,966,629, US 4,062,647, EP 0026529 A1 und EP 0028432 A1 bekannt. Vorzugsweise werden Schichtsilicate verwendet, die aufgrund einer Alkalibehandlung weitgehend frei von Calciumionen und stark färbenden Eisenionen sind.
Zu den bevorzugten Buildersubstanzen gehören auch amorphe Natriumsilicate mit einem Modul Na2O : SiO2 von 1 : 2 bis 1 : 3,3, vorzugsweise von 1 : 2 bis 1 : 2,8 und insbesondere von 1 : 2 bis 1 : 2,6, welche löseverzögert sind und Sekundärwascheigenschaften aufweisen. Die Löseverzögerung gegenüber herkömmlichen amorphen Natriumsilicaten kann dabei auf verschiedene Weise, beispielsweise durch Oberflächenbehandlung, Compoundierung, Kompaktierung/Verdichtung oder durch Übertrocknung hervorgerufen worden sein. Im Rahmen dieser Erfindung wird unter dem Begriff "amorph" auch "röntgenamorph" verstanden. Dies heißt, daß die Silicate bei Röntgenbeugungsexperimenten keine scharfen Röntgenreflexe liefem, wie sie für kristalline Substanzen typisch sind, sondern allenfalls ein oder mehrere Maxima der gestreuten Röntgenstrahlung, die eine Breite von mehreren Gradeinheiten des Beugungswinkels aufweisen. Es kann jedoch sehr wohl sogar zu besonders guten Buildereigenschaften führen, wenn die Silicatpartikel bei Elektronenbeugungsexperimenten verwaschene oder sogar scharfe Beugungsmaxima liefern. Dies ist so zu interpretieren, daß die Produkte mikrokristalline Bereiche der Größe 10 bis einige Hundert nm aufweisen, wobei Werte bis max. 50 nm und insbesondere bis max. 20 nm bevorzugt sind. Derartige sogenannte röntgenamorphe Silicate, welche ebenfalls eine Löseverzögerung gegenüber den herkömmlichen Wassergläsem aufweisen, werden beispielsweise in der deutschen Patentanmeldung DE 4400024 A1 beschrieben. Insbesondere bevorzugt sind verdichtete/kompaktierte amorphe Silicate, compoundierte amorphe Silicate und übertrocknete röntgenamorphe Silicate.
Selbstverständlich ist auch ein Einsatz der allgemein bekannten Phosphate als Buildersubstanzen möglich, sofern ein derartiger Einsatz nicht aus ökologischen Gründen vermieden werden sollte. Geeignet sind insbesondere die Natriumsalze der Orthophosphate, der Pyrophosphate und insbesondere der Tripolyphosphate. Ihr Gehalt beträgt im allgemeinen nicht mehr als 25 Gew.-%, vorzugsweise nicht mehr als 20 Gew.-%, jeweils bezogen auf das fertige Mittel. In einigen Fällen hat es sich gezeigt, daß insbesondere Tripolyphosphate schon in geringen Mengen bis maximal 10 Gew.-%, bezogen auf das fertige Mittel, in Kombination mit anderen Buildersubstanzen zu einer synergistischen Verbesserung des Sekundärwaschvermögens führen.
Die Builder sind in den Waschmitteltabletten vorzugsweise in Mengen von 10 bis 60, insbesondere 20 bis 40 Gew.-% - bezogen auf die Mittel - enthalten.
Brauchbare organische Gerüstsubstanzen sind beispielsweise die in Form ihrer Natriumsalze einsetzbaren Polycarbonsäuren, wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren und Mischungen aus diesen. Auch die Säuren an sich können eingesetzt werden. Die Säuren besitzen neben ihrer Builderwirkung typischerweise auch die Eigenschaft einer Säuerungskomponente und dienen somit auch zur Einstellung eines niedrigeren und milderen pH-Wertes von Wasch- oder Reinigungsmitteln. Insbesondere sind hierbei Citronensäure, Bemsteinsäure, Glutarsäure, Adipinsäure, Gluconsäure und beliebige Mischungen aus diesen zu nennen.
Weitere geeignete organische Buildersubstanzen sind Dextrine, beispielsweise Oligomere bzw. Polymere von Kohlenhydraten, die durch partielle Hydrolyse von Stärken erhalten werden können. Die Hydrolyse kann nach üblichen, beispielsweise säure- oder enzymkatalysierten Verfahren durchgeführt werden. Vorzugsweise handelt es sich um Hydrolyseprodukte mit mittleren Molmassen im Bereich von 400 bis 500 000. Dabei ist ein Polysaccharid mit einem Dextrose-Äquivalent (DE) im Bereich von 0,5 bis 40, insbesondere von 2 bis 30 bevorzugt, wobei DE ein gebräuchliches Maß für die reduzierende Wirkung eines Polysaccharids im Vergleich zu Dextrose, welche ein DE von 100 besitzt, ist. Brauchbar sind sowohl Maltodextrine mit einem DE zwischen 3 und 20 und Trockenglucosesirupe mit einem DE zwischen 20 und 37 als auch sogenannte Gelbdextrine und Weißdextrine mit höheren Molmassen im Bereich von 2 000 bis 30 000. Ein bevorzugtes Dextrin ist in der britischen Patentanmeldung GB 9419091 A1 beschrieben. Bei den oxidierten Derivaten derartiger Dextrine handelt es sich um deren Umsetzungsprodukte mit Oxidationsmitteln, welche in der Lage sind, mindestens eine Alkoholfunktion des Saccharidrings zur Carbonsäurefunktion zu oxidieren. Derartige oxidierte Dextrine und Verfahren ihrer Herstellung sind beispielsweise aus den europäischen Patentanmeldungen EP 0232202 A1, EP 0427349 A1, EP 0472042 A1 und EP 0542496 A1 sowie den internationalen Patentanmeldungen WO 92/18542, WO 93/08251, WO 93/16110, WO 94128030, WO 95/07303, WO 95/12619 und WO 95/20608 bekannt. Ebenfalls geeignet ist ein oxidiertes Oligosaccharid gemäß der deutschen Patentanmeldung DE 19600018 A1. Ein an C6 des Saccharidrings oxidiertes Produkt kann besonders vorteilhaft sein.
Weitere geeignete Cobuilder sind Oxydisuccinate und andere Derivate von Disuccinaten, vorzugsweise Ethylendiamindisuccinat. Besonders bevorzugt sind in diesem Zusammenhang auch Glycerindisuccinate und Glycerintrisuccinate, wie sie beispielsweise in den US-amerikanischen Patentschriften US 4,524,009, US 4,639,325, in der europäischen Patentanmeldung EP 0150930 A1 und der japanischen Patentanmeldung JP 93/339896 beschrieben werden. Geeignete Einsatzmengen liegen in zeolithhaltigen und/oder silikathaltigen Formulierungen bei 3 bis 15 Gew.-%.
Weitere brauchbare organische Cobuilder sind beispielsweise acetylierte Hydroxycarbonsäuren bzw. deren Salze, welche gegebenenfalls auch in Lactonform vorliegen können und welche mindestens 4 Kohlenstoffatome und mindestens eine Hydroxygruppe sowie maximal zwei Säuregruppen enthalten.
Derartige Cobuilder werden beispielsweise in der internationalen Patentanmeldung WO 95/20029 beschrieben.
Geeignete polymere Polycarboxylate sind beispielsweise die Natriumsalze der Polyacrylsäure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 800 bis 150 000 (auf Säure bezogen und jeweils gemessen gegen Polystyrolsulfonsäure). Geeignete copolymere Polycarboxylate sind insbesondere solche der Acrylsäure mit Methacrylsäure und der Acrylsäure oder Methacrylsäure mit Maleinsäure. Als besonders geeignet haben sich Copolymere der Acrylsäure mit Maleinsäure erwiesen, die 50 bis 90 Gew.-% Acrylsäure und 50 bis 10 Gew.-% Maleinsäure enthalten. lhre relative Molekülmasse, bezogen auf freie Säuren, beträgt im allgemeinen 5 000 bis 200 000, vorzugsweise 10 000 bis 120 000 und insbesondere 50 000 bis 100 000 (jeweils gemessen gegen Polystyrolsulfonsäure). Die (co-)polymeren Polycarboxylate können entweder als Pulver oder als wäßrige Lösung eingesetzt werden, wobei 20 bis 55 Gew.-%ige wäßrige Lösungen bevorzugt sind. Granulare Polymere werden zumeist nachträglich zu einem oder mehreren Basisgranulaten zugemischt. Insbesondere bevorzugt sind auch biologisch abbaubare Polymere aus mehr als zwei verschiedenen Monomereinheiten, beispielsweise solche, die gemäß der DE 4300772 A1 als Monomere Salze der Acrylsäure und der Maleinsäure sowie Vinylalkohol bzw. Vinylalkohol-Derivate oder gemäß der DE 4221381 C2 als Monomere Salze der Acrylsäure und der 2-Alkylallylsulfonsäure sowie Zucker-Derivate enthalten. Weitere bevorzugte Copolymere sind solche, die in den deutschen Patentanmeldungen DE 4303320 A1 und DE 4417734 A1 beschrieben werden und als Monomere vorzugsweise Acrolein und AcrylsäurelAcrylsäuresalze bzw. Acrolein und Vinylacetat aufweisen. Ebenso sind als weitere bevorzugte Buildersubstanzen polymere Aminodicarbonsäuren, deren Salze oder deren Vorläufersubstanzen zu nennen. Besonders bevorzugt sind Polyasparaginsäuren bzw. deren Salze und Derivate.
Weitere geeignete Buildersubstanzen sind Polyacetale, welche durch Umsetzung von Dialdehyden mit Polyolcarbonsäuren, welche 5 bis 7 C-Atome und mindestens 3 Hydroxylgruppen aufweisen, beispielsweise wie in der europäischen Patentanmeldung EP 0280223 A1 beschrieben, erhalten werden können. Bevorzugte Polyacetale werden aus Dialdehyden wie Glyoxal, Glutaraldehyd, Terephthalaldehyd sowie deren Gemischen und aus Polyolcarbonsäuren wie Gluconsäure und/oder Glucoheptonsäure erhalten.
Zusätzlich können die Mittel auch Komponenten enthalten, welche die Öl- und Fett-Auswaschbarkeit aus Textilien positiv beeinflussen. Zu den bevorzugten öl- und fettlösenden Komponenten zählen beispielsweise nichtionische Celluloseether wie Methylcellulose und Methylhydroxypropylcellulose mit einem Anteil an Methoxyl-Gruppen von 15 bis 30 Gew.-% und an Hydroxypropoxyl-Gruppen von 1 bis 15 Gew.-%, jeweils bezogen auf den nichtionischen Celluloseether, sowie die aus dem Stand der Technik bekannten Polymere der Phthalsäure und/oder der Terephthalsäure bzw. von deren Derivaten, insbesondere Polymere aus Ethylenterephthalaten und/oder Polyethylenglykolterephthalaten oder anionisch und/oder nichtionisch modifizierten Derivaten von diesen. Besonders bevorzugt von diesen sind die sulfonierten Derivate der Phthalsäure- und der Terephthalsäure-Polymere.
Weitere geeignete Inhaltsstoffe der Mittel sind wasserlösliche anorganische Salze wie Bicarbonate, Carbonate, amorphe Silikate, normale Wassergläser, welche keine herausragenden Buildereigenschaften aufweisen, oder Mischungen aus diesen; insbesondere werden Alkalicarbonat und/oder amorphes Alkalisilikat, vor allem Natriumsilikat mit einem molaren Verhältnis Na2O : SiO2 von 1 : 1 bis 1 : 4,5, vorzugsweise von 1 : 2 bis 1 : 3,5, eingesetzt. Der Gehalt an Natriumcarbonat in den endzubereitungen beträgt dabei vorzugsweise bis zu 40 Gew.-%, vorteilhafterweise zwischen 2 und 35 Gew.-%. Der Gehalt der Mittel an Natriumsilikat (ohne besondere Buildereigenschaften) beträgt im allgemeinen bis zu 10 Gew:-% und vorzugsweise zwischen 1 und 8 Gew.-%.
Unter den als Bleichmittel dienenden, in Wasser H2O2 liefemden Verbindungen haben das Natriumperborattetrahydrat und das Natriumperboratmonohydrat besondere Bedeutung. Weitere brauchbare Bleichmittel sind beispielsweise Natriumpercarbonat, Peroxypyrophosphate, Citratperhydrate sowie H2O2 liefernde persaure Salze oder Persäuren, wie Perbenzoate, Peroxophthalate, Diperazelainsäure, Phthaloiminopersäure oder Diperdodecandisäure. Der Gehalt der Mittel an Bleichmitteln beträgt vorzugsweise 5 bis 35 Gew.-% und insbesondere bis 30 Gew.-%, wobei vorteilhafterweise Perboratmonohydrat oder Percarbonat eingesetzt wird.
Als Bleichaktivatoren können Verbindungen, die unter Perhydrolysebedingungen aliphatische Peroxocarbonsäuren mit vorzugsweise 1 bis 10 C-Atomen, insbesondere 2 bis 4 C-Atomen, und/oder gegebenenfalls substituierte Perbenzoesäure ergeben, eingesetzt werden. Geeignet sind Substanzen, die O- und/oder N-Acylgruppen der genannten C-Atomzahl und/oder gegebenenfalls substituierte Benzoylgruppen tragen. Bevorzugt sind mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), acylierte Triazinderivate, insbesondere 1,5-Diacetyl-2,4-dioxohexahydro-1,3,5-triazin (DADHT), acylierte Glykolurile, insbesondere Tetraacetylglykoluril (TAGU), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS), Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, acylierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglykoldiacetat, 2,5-Diacetoxy-2,5-dihydrofuran und die aus den deutschen Patentanmeldungen DE 19616693 A1 und DE 19616767 A1 bekannten Enolester sowie acetyliertes Sorbitol und Mannitol beziehungsweise deren in der europäischen Patentanmeldung EP 0525239 A1 beschriebene Mischungen (SORMAN), acylierte Zuckerderivate, insbesondere Pentaacetylglukose (PAG), Pentaacetylfruktose, Tetraacetylxylose und Octaacetyllactose sowie acetyliertes, gegebenenfalls N-alkyliertes Glucamin und Gluconolacton, und/oder N-acylierte Lactame, beispielsweise N-Benzoylcaprolactam, die aus den internationalen Patentanmeldungen WO 94/27970, WO 94/28102, WO 94/28103, WO 95/00626, WO 95/14759 und WO 95/17498 bekannt sind. Die aus der deutschen Patentanmeldung DE 19616769 A1 bekannten hydrophil substituierten Acylacetale und die in der deutschen Patentanmeldung DE 19616 770 sowie der intemationalen Patentanmeldung WO 95/14075 beschriebenen Acyllactame werden ebenfalls bevorzugt eingesetzt. Auch die aus der deutschen Patentanmeldung DE 4443177 A1 bekannten Kombinationen konventioneller Bleichaktivatoren können eingesetzt werden. Derartige Bleichaktivatoren sind im üblichen Mengenbereich, vorzugsweise in Mengen von 1 Gew.-% bis 10 Gew.-%, insbesondere 2 Gew.-% bis 8 Gew.-%, bezogen auf gesamtes Mittel, enthalten. Zusätzlich zu den oben aufgeführten konventionellen Bleichaktivatoren oder an deren Stelle können auch die aus den europäischen Patentschriften EP 0446982 B1 und EP 0453 003 B1 bekannten Sulfonimine und/oder bleichverstärkende Übergangsmetallsalze beziehungsweise Übergangsmetallkomplexe als sogenannte Bleichkatalysatoren enthalten sein. Zu den in Frage kommenden Übergangsmetallverbindungen gehören insbesondere die aus der deutschen Patentanmeldung DE 19529905 A1 bekannten Mangan-, Eisen-, Kobalt-, Ruthenium- oder Molybdän-Salenkomplexe und deren aus der deutschen Patentanmeldung DE 19620267 A1 bekannte N-Analogverbindungen, die aus der deutschen Patentanmeldung DE 19536082 A1 bekannten Mangan-, Eisen-, Kobalt-, Ruthenium- oder Molybdän-Carbonylkomplexe, die in der deutschen Patentanmeldung DE 196 05 688 beschriebenen Mangan-, Eisen-, Kobalt-, Ruthenium-, Molybdän-, Titan-, Vanadium- und Kupfer-Komplexe mit stickstoffhaltigen Tripod-Liganden, die aus der deutschen Patentanmeldung DE 19620411 A1 bekannten Kobalt-, Eisen-, Kupfer- und Ruthenium-Aminkomplexe, die in der deutschen Patentanmeldung DE 4416438 A1 beschriebenen Mangan-, Kupfer- und KobaltKomplexe, die in der europäischen Patentanmeldung EP 0272030 A1 beschriebenen KobaltKomplexe, die aus der europäischen Patentanmeldung EP 0693550 A1 bekannten Mangan-Komplexe, die aus der europäischen Patentschrift EP 0392592 A1 bekannten Mangan-, Eisen-, Kobalt- und Kupfer-Komplexe und/oder die in der europäischen Patentschrift EP 0443651 B1 oder den europäischen Patentanmeldungen EP 0458397 A1, EP 0458398 A1, EP 0549271 A1, EP 0549272 A1, EP 0544490 A1 und EP 0544519 A1 beschriebenen Mangan-Komplexe. Kombinationen aus Bleichaktivatoren und Übergangsmetall-Bleichkatalysatoren sind beispielsweise aus der deutschen Patentanmeldung DE 19613103 A1 und der internationalen Patentanmeldung WO 95/27775 bekannt. Bleichverstärkende Übergangsmetallkomplexe, insbesondere mit den Zentralatomen Mn, Fe, Co, Cu, Mo, V, Ti und/oder Ru, werden in üblichen Mengen, vorzugsweise in einer Menge bis zu 1 Gew.-%, insbesondere von 0,0025 Gew.-% bis 0,25 Gew.-% und besonders bevorzugt von 0,01 Gew.-% bis 0,1 Gew.-%, jeweils bezogen auf gesamtes Mittel, eingesetzt.
Als Enzyme kommen insbesondere solche aus der Klasse der Hydrolasen, wie der Proteasen, Esterasen, Lipasen bzw. lipolytisch wirkenden Enzyme, Amylasen, Cellulasen bzw. andere Glykosylhydrolasen und Gemische der genannten Enzyme in Frage. Alle diese Hydrolasen tragen in der Wäsche zur Entfernung von Verfleckungen, wie protein-, fett- oder stärkehaltigen Verfleckungen, und Vergrauungen bei. Cellulasen und andere Glykosylhydrolasen können durch das Entfemen von Pilling und Mikrofibrillen zur Farberhaltung und zur Erhöhung der Weichheit des Textils beitragen. Zur Bleiche bzw. zur Hemmung der Farbübertragung können auch Oxidoreduktasen eingesetzt werden. Besonders gut geeignet sind aus Bakterienstämmen oder Pilzen, wie Bacillus subtilis, Bacillus licheniformis, Streptomyces griseus und Humicola insolens gewonnene enzymatische Wirkstoffe. Vorzugsweise werden Proteasen vom Subtilisin-Typ und insbesondere Proteasen, die aus Bacillus lentus gewonnen werden, eingesetzt. Dabei sind Enzymmischungen, beispielsweise aus Protease und Amylase oder Protease und Lipase bzw. lipolytisch wirkenden Enzymen oder Protease und Cellulase oder aus Cellulase und Lipase bzw. lipolytisch wirkenden Enzymen oder aus Protease, Amylase und Lipase bzw. lipolytisch wirkenden Enzymen oder Protease, Lipase bzw. lipolytisch wirkenden Enzymen und Cellulase, insbesondere jedoch Protease- und/oder Lipase-haltige Mischungen bzw. Mischungen mit lipolytisch wirkenden-Enzymen von besonderem Interesse. Beispiele für derartige lipolytisch wirkende Enzyme sind die bekannten Cutinasen. Auch Peroxidasen oder Oxidasen haben sich in einigen Fällen als geeignet erwiesen. Zu den geeigneten Amylasen zählen insbesondere α-Amylasen, lso-Amylasen, Pullulanasen und Pektinasen. Als Cellulasen werden vorzugsweise Cellobiohydrolasen, Endoglucanasen und β-Glucosidasen, die auch Cellobiasen genannt werden, bzw. Mischungen aus diesen eingesetzt. Da sich die verschiedenen Cellulase-Typen durch ihre CMCase- und Avicelase-Aktivitäten unterscheiden, können durch gezielte Mischungen der Cellulasen die gewünschten Aktivitäten eingestellt werden. Die Enzyme können an Trägerstoffen adsorbiert und/oder in Hüllsubstanzen eingebettet sein, um sie gegen vorzeitige Zersetzung zu schützen. Der Anteil der Enzyme, Enzymmischungen oder Enzymgranulate kann beispielsweise etwa 0,1 bis 5 Gew.-%, vorzugsweise 0,1 bis etwa 2 Gew.-% betragen.
Zusätzlich zu den mono- und polyfunktionellen Alkoholen können die Mittel weitere Enzymstabilisatoren enthalten. Beispielsweise können 0,5 bis 1 Gew.-% Natriumformiat eingesetzt werden. Möglich ist auch der Einsatz von Proteasen, die mit löslichen Calciumsalzen und einem Calciumgehalt von vorzugsweise etwa 1,2 Gew.-%, bezogen auf das Enzym, stabilisiert sind. Außer Calciumsalzen dienen auch Magnesiumsalze als Stabilisatoren. Besonders vorteilhaft ist jedoch der Einsatz von Borverbindungen, beispielsweise von Borsäure, Boroxid, Borax und anderen Alkalimetallboraten wie den Salzen der Orthoborsäure (H3BO3), der Metaborsäure (HBO2) und der Pyroborsäure (Tetraborsäure H2B4O7). Vergrauungsinhibitoren haben die Aufgabe, den von der Faser abgelösten Schmutz in der Flotte suspendiert zu halten und so das Wiederaufziehen des Schmutzes zu verhindern. Hierzu sind wasserlösliche Kolloide meist organischer Natur geeignet, beispielsweise die wasserlöslichen Salze polymerer Carbonsäuren, Leim, Gelatine, Salze von Ethercarbonsäuren oder Ethersulfonsäuren der Stärke oder der Cellulose oder Salze von sauren Schwefelsäureestem der Cellulose oder der Stärke. Auch wasserlösliche, saure Gruppen enthaltende Polyamide sind für diesen Zweck geeignet. Weiterhin lassen sich lösliche Stärkepräparate und andere als die obengenannten Stärkeprodukte verwenden, z.B. abgebaute Stärke, Aldehydstärken usw.. Auch Polyvinylpyrrolidon ist brauchbar. Bevorzugt werden jedoch Celluloseether, wie Carboxymethylcellulose (Na-Salz), Methylcellulose, Hydroxyalkyl cellulose und Mischether, wie Methylhydroxyethylcellulose, Methylhydroxypropylcellulose, Methylcarboxymethylcellulose und deren Gemische, sowie Polyvinylpyrrolidon beispielsweise in Mengen von 0,1 bis 5 Gew.-%, bezogen auf die Mittel, eingesetzt.
Die Mittel können als optische Aufheller Derivate der Diaminostilbendisulfonsäure bzw. deren Alkalimetallsalze enthalten. Geeignet sind z.B. Salze der 4,4'-Bis(2-anilino-4-morpholino-1,3,5-triazinyl-6-amino)stilben-2,2'-disulfonsäure oder gleichartig aufgebaute Verbindungen, die anstelle der Morpholino-Gruppe eine Diethanolaminogruppe, eine Methylaminogruppe, eine Anilinogruppe oder eine 2-Methoxyethylaminogruppe tragen. Weiterhin können Aufheller vom Typ der substituierten Diphenylstyryle anwesend sein, z.B. die Alkalisalze des 4,4'-Bis(2-sulfostyryl)-diphenyls, 4,4'-Bis(4-chlor-3-sulfostyryl)-diphenyls, oder 4-(4-Chlorstyryl)-4'-(2-sulfostyryl)-diphenyls. Auch-Gemische der vorgenannten Aufheller können verwendet werden. Einheitlich weiße Granulate werden erhalten, wenn die Mittel außer den üblichen Aufhellem in üblichen Mengen, beispielsweise zwischen 0,1 und 0,5 Gew.-%, vorzugsweise zwischen 0,1 und 0,3 Gew.-%, auch geringe Mengen, beispielsweise 10-6 bis 10-3 Gew.-%, vorzugsweise um 10-5 Gew.-%, eines blauen Farbstoffs enthalten. Ein besonders bevorzugter Farbstoff ist iinolux® (Handelsprodukt der Ciba-Geigy).
Als schmutzabweisende Polymere ("soil repellants") kommen solche Stoffe in Frage, die vorzugsweise Ethylenterephthalat- und/oder Polyethylenglycolterephthalatgruppen enthalten, wobei das Molverhältnis Ethylenterephthalat zu Polyethylenglycolterephthalat im Bereich von 50 : 50 bis 90 : 10 liegen kann. Das Molekulargewicht der verknüpfenden Polyethylenglycoleinheiten liegt insbesondere im Bereich von 750 bis 5000, d.h., der Ethoxylierungsgrad der Polyethylenglycolgruppenhaltigen Polymere kann ca. 15 bis 100 betragen. Die Polymeren zeichnen sich durch ein durchschnittliches Molekulargewicht von etwa 5000 bis 200.000 aus und können eine Block-, vorzugsweise aber eine Random-Struktur aufweisen. Bevorzugte Polymere sind solche mit Molverhältnissen EthylenterephthalatlPolyethylenglycolterephthalat von etwa 65: 35 bis etwa 90 : 10, vorzugsweise von etwa 70 : 30 bis 80 : 20. Weiterhin bevorzugt sind solche Polymeren, die verknüpfende Polyethylenglycoleinheiten mit einem Molekulargewicht von 750 bis 5000, vorzugsweise von 1000 bis etwa 3000 und ein Molekulargewicht des Polymeren von etwa 10.000 bis etwa 50.000 aufweisen. Beispiele für handelsübliche Polymere sind die Produkte Milease® T (ICI) oder Repelotex® SRP 3 (Rhöne-Poulenc).
Als Entschäumer können wachsartige Verbindungen eingesetzt werden. Als "wachsartig" werden solche Verbindungen verstanden, die einen Schmelzpunkt bei Atmosphärendruck über 25 °C (Raumtemperatur), vorzugsweise über 50 °C und insbesondere über 70 °C aufweisen. Die wachsartigen Entschäumersubstanzen sind in Wasser praktisch nicht löslich, d.h. bei 20 °C weisen sie in 100 g Wasser eine Löslichkeit unter 0,1 Gew.-% auf. Prinzipiell können alle aus dem Stand der Technik bekannten wachsartigen Entschäumersubstanzen enthalten sein. Geeignete wachsartige Verbindungen sind beispielsweise Bisamide, Fettalkohole, Fettsäuren, Carbonsäureester von ein- und mehrwertigen Alkohoien sowie Paraffinwachse oder Mischungen derselben. Alternativ können natürlich auch die für diesen Zweck bekannten Silikonverbindungen eingesetzt werden.
Geeignete Paraffinwachse stellen im allgemeinen ein komplexes Stoffgemisch ohne scharfen Schmelzpunkt dar. Zur Charakterisierung bestimmt man üblicherweise seinen Schmelzbereich durch Differential-Thermo-Analyse (DTA), wie in "The Analyst" 87 (1962), 420, beschrieben, und/oder seinen Erstarrungspunkt. Darunter versteht man die Temperatur, bei der das Paraffin durch langsames Abkühlen aus dem flüssigen in den festen Zustand übergeht. Dabei sind bei Raumtemperatur vollständig flüssige Paraffine, das heißt solche mit einem Erstarrungspunkt unter 25 °C, erfindungsgemäß nicht brauchbar. Eingesetzt werden können beispielsweise die aus EP 0309931 A1 bekannten Paraffinwachsgemische aus beispielsweise 26 Gew.-% bis 49 Gew.-% mikrokristallinem Paraffinwachs mit einem Erstarrungspunkt von 62 °C bis 90 °C, 20 Gew.-% bis 49 Gew.-% Hartparaffin mit einem Erstarrungspunkt von 42 °C bis 56 °C und 2 Gew.-% bis 25 Gew.-% Weichparaffin mit einem Erstarrungspunkt von 35 °C bis 40 °C. Vorzugsweise werden Paraffine bzw. Paraffingemische verwendet, die im Bereich von 30 °C bis 90 °C erstarren. Dabei ist zu beachten, daß auch bei Raumtemperatur fest erscheinende Paraffinwachsgemische unterschiedliche Anteile an flüssigem Paraffin enthalten können. Bei den erfindungsgemäß brauchbaren Paraffinwachsen liegt dieser Flüssiganteil so niedrig wie möglich und fehlt vorzugsweise ganz. So weisen besonders bevorzugte Paraffinwachsgemische bei 30 °C einen Flüssiganteil von unter 10 Gew.-%, insbesondere von 2 Gew.-% bis 5 Gew.-%, bei 40 °C einen Flüssiganteil von unter 30 Gew.-%, vorzugsweise von 5 Gew.-% bis 25 Gew.-% und insbesondere von 5 Gew.-% bis 15 Gew.-%. bei 60 °C einen Flüssiganteil von 30 Gew.-% bis 60 Gew.-%, insbesondere von 40 Gew.-% bis 55 Gew.-%, bei 80 °C einen Flüssiganteil von 80 Gew.-% bis 100 Gew.-%, und bei 90 °C einen Flüssiganteil von 100 Gew.-% auf. Die Temperatur, bei der ein Flüssiganteil von 100 Gew.-% des Paraffinwachses erreicht wird, liegt bei besonders bevorzugten Paraffinwachsgemischen noch unter 85 °C, insbesondere bei 75 °C bis 82 °C. Bei den Paraffinwachsen kann es sich um Petrolatum, mikrokristalline Wachse bzw. hydrierte oder partiell hydrierte Paraffinwachse handeln.
Geeignete Bisamide als Entschäumer sind solche, die sich von gesättigten Fettsäuren mit 12 bis 22, vorzugsweise 14 bis 18 C-Atomen sowie von Alkylendiaminen mit 2 bis 7 C-Atomen ableiten. Geeignete Fettsäuren sind Laurin-, Myristin-, Stearin-, Arachin- und Behensäure sowie deren Gemische, wie sie aus natürlichen Fetten beziehungsweise gehärteten Ölen, wie Talg oder hydriertem Palmöl, erhältlich sind. Geeignete Diamine sind beispielsweise Ethylendiamin, 1,3-Propylendiamin, Tetramethylendiamin, Pentamethylendiamin, Hexamethylendiamin, p-Phenylendiamin und Toluylendiamin. Bevorzugte Diamine sind Ethylendiamin und Hexamethylendiamin. Besonders bevorzugte Bisamide sind Bismyristoylethylendiamin, Bispalmitoylethylendiamin, Bisstearoylethylendiamin und deren Gemische sowie die entsprechenden Derivate des Hexamethylendiamins.
Geeignete Carbonsäureester als Entschäumer leiten sich von Carbonsäuren mit 12 bis 28 Kohlenstoffatomen ab. Insbesondere handelt es sich um Ester von Behensäure, Stearinsäure, Hydroxystearinsäure, Ölsäure, Palmitinsäure, Myristinsäure und/oder Laurinsäure. Der Alkoholteil des Carbonsäureesters enthält einen ein- oder mehrwertigen Alkohol mit 1 bis 28 Kohlenstoffatomen in der Kohlenwasserstoffkette. Beispiele von geeigneten Alkoholen sind Behenylalkohol, Arachidylalkohol, Kokosalkohol, 12-Hydroxystearylalkohol, Oleylalkohol und Laurylalkohol sowie Ethylenglykol, Glycerin, Polyvinylalkohol, Saccharose, Erythrit, Pentaerythrit, Sorbitan und/oder Sorbit. Bevorzugte Ester sind solche von Ethylenglykol, Glycerin und Sorbitan, wobei der Säureteil des Esters insbesondere aus Behensäure, Stearinsäure, Ölsäure, Palmitinsäure oder Myristinsäure ausgewählt wird. In Frage kommende Ester mehrwertiger Alkohole sind beispielsweise Xylitmonopalmitat, Pentarythntmonostearat, Glycerinmonostearat, Ethylenglykolmonostearat und Sorbitanmonostearat, Sorbitanpalmitat, Sorbitanmonolaurat, Sorbitandilaurat, Sorbitandistearat, Sorbitandibehenat, Sorbitandioleat sowie gemischte Talgalkylsorbitanmono- und -diester. Brauchbare Glycerinester sind die Mono-, Di- oder Triester von Glycerin und genannten Carbonsäuren, wobei die Mono- oder Dieester bevorzugt sind. Glycerinmonostearat, Glycerinmonooleat, Glycerinmonopalmitat, Glycerinmonobehenat und Glycerindistearat sind Beispiele hierfür. Beispiele für geeignete natürliche Ester als Entschäumer sind Bienenwachs, das hauptsächlich aus den Estem CH3(CH2)24COO(CH2)27CH3 und CH3(CH2)26COO(CH2)25CH3 besteht, und Camaubawachs, das ein Gemisch von Camaubasäurealkylestem, oft in Kombination mit geringen Anteilen freier Camaubasäure, weiteren langkettigen Säuren, hochmolekularen Alkoholen und Kohlenwasserstoffen, ist.
Geeignete Carbonsäuren als weitere Entschäumerverbindung sind insbesondere Behensäure, Stearinsäure, Ölsäure, Palmitinsäure, Myristinsäure und Laurinsäure sowie deren Gemische, wie sie aus natürlichen Fetten bzw. gegebenenfalls gehärteten Ölen, wie Talg oder hydriertem Palmöl, erhältlich sind. Bevorzugt sind gesättigte Fettsäuren mit 12 bis 22, insbesondere 18 bis 22 C-Atomen.
Geeignete Fettalkohole als weitere Entschäumerverbindung sind die hydrierten Produkte der beschriebenen Fettsäuren.
Weiterhin können zusätzlich Dialkylether als Entschäumer enthalten sein. Die Ether können asymmetrisch oder aber symmetrisch aufgebaut sein, d.h. zwei gleiche oder verschiedene Alkylketten, vorzugsweise mit 8 bis 18 Kohlenstoffatomen enthalten. Typische Beispiele sind Di-n-octylether, Di-ioctylether und Di-n-stearylether, insbesondere geeignet sind Dialkylether, die einen Schmelzpunkt über 25 °C, insbesondere über 40 °C aufweisen.
Weitere geeignete Entschäumerverbindungen sind Fettketone, die nach den einschlägigen Methoden der präparativen organischen Chemie erhalten werden können. Zu ihrer Herstellung geht man beispielsweise von Carbonsäuremagnesiumsalzen aus, die bei Temperaturen oberhalb von 300 °C unter Abspaltung von Kohlendioxid und Wasser pyrolysiert werden, beispielsweise gemäß der deutschen Offenlegungsschrift DE 2553900 OS. Geeignete Fettketone sind solche, die durch Pyrolyse der Magnesiumsalze von Laurinsäure, Myristinsäure, Palmitinsäure, Palmitoleinsäure, Stearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Arachinsäure, Gadoleinsäure, Behensäure oder Erucasäure hergestellt werden.
Weitere geeignete Entschäumer sind Fettsäurepolyethylenglykolester, die vorzugsweise durch basisch homogen katalysierte Anlagerung von Ethylenoxid an Fettsäuren erhalten werden. Insbesondere erfolgt die Anlagerung von Ethylenoxid an die Fettsäuren in Gegenwart von Alkanolaminen als Katalysatoren. Der Einsatz von Alkanolaminen, speziell Triethanolamin, führt zu einer äußerst selektiven Ethoxylierung der Fettsäuren, insbesondere dann, wenn es darum geht, niedrig ethoxylierte Verbindungen herzustellen. Innerhalb der Gruppe der Fettsäurepolyethylenglykolester werden solche bevorzugt, die einen Schmelzpunkt über 25 °C, insbesondere über 40 °C aufweisen .
lnnerhalb. der Gruppe der wachsartigen Entschäumer werden besonders bevorzugt die beschriebenen Paraffinwachse alleine als wachsartige Entschäumer eingesetzt oder in Mischung mit einem der anderen wachsartigen Entschäumer, wobei der Anteil der Paraffinwachse in der Mischung vorzugsweise über 50 Gew.-% - bezogen auf wachsartige Entschäumermischung - ausmacht. Die Paraffinwachse können bei Bedarf auf Träger aufgebracht sein. Als Trägermaterial sind alle bekannten anorganischen und/oder organischen Trägermaterialien geeignet. Beispiele für typische anorganische Trägermaterialien sind Alkalicarbonate, Alumosilikate, wasserlösliche Schichtsilikate, Alkalisilikate, Alkalisulfate, beispielsweise Natriumsulfat, und Alkaliphosphate. Bei den Alkalisilikaten handelt es sich vorzugsweise um eine Verbindung mit einem Molverhältnis Alkalioxid zu SiO2 von 1 : 1,5 bis 1 : 3,5. Die Verwendung derartiger Silikate resultiert in besonders guten Komeigenschaften, insbesondere hoher Abriebsstabilität und dennoch hoher Auflösungsgeschwindigkeit in Wasser. Zu den als Trägermaterial bezeichneten Alumosilikaten gehören insbesondere die Zeolithe, beispielsweise Zeolith NaA und NaX. Zu den als wasserlöslichen Schichtsilikaten bezeichneten Verbindungen gehören beispielsweise amorphes oder kristallines Wasserglas. Weiterhin können Silikate Verwendung finden, welche unter der Bezeichnung Aerosil® oder Sipemat® im Handel sind. Als organische Trägermaterialien kommen zum Beispiel filmbildende Polymere, beispielsweise Polyvinylalkohole, Polyvinylpyrrolidone, Poly(meth)acrylate, Polycarboxylate, Cellulosederivate und Stärke in Frage. Brauchbare Celluloseether sind insbesondere Alkalicarboxymethylcellulose, Methylcellulose, Ethylcellulose, Hydroxyethylcellulose und sogenannte Cellulosemischether, wie zum Beispiel Methylhydroxyethylcellulose und Methylhydroxypropylcellulose, sowie deren Mischungen. Besonders geeignete Mischungen sind aus Natrium-Carboxymethylcellulose und Methylcellulose zusammengesetzt, wobei die Carboxymethylcellulose üblicherweise einen Substitutionsgrad von 0,5 bis 0,8 Carboxymethylgruppen pro Anhydroglukoseeinheit und die Methylcellulose einen Substitutionsgrad von 1,2 bis 2 Methylgruppen pro Anhydroglukoseeinheit aufweist. Die Gemische enthalten vorzugsweise Alkalicarboxymethylcellulose und nichtionischen Celluloseether in Gewichtsverhältnissen von 80 : 20 bis 40 : 60, insbesondere von 75 : 25 bis 50 50. Als Träger ist auch native Stärke geeignet, die aus Amylose und Amylopectin aufgebaut ist. Als native Stärke wird Stärke bezeichnet, wie sie als Extrakt aus natürlichen Quellen zugänglich ist, beispielsweise aus Reis, Kartoffeln, Mais und Weizen. Native Stärke ist ein handelsübliches Produkt und damit leicht zugänglich. Als Trägermaterialien können einzeln oder mehrere der vorstehend genannten Verbindungen eingesetzt werden, insbesondere ausgewählt aus der Gruppe der Alkalicarbonate, Alkalisulfate, Alkaliphosphate, Zeolithe, wasserlösliche Schichtsilikate, Alkalisilikate, Polycarboxylate, Celluloseether, Polyacryiat/Polymethacrylat und Stärke. Besonders geeignet sind Mischungen von Alkalicarbonaten, insbesondere Natriumcarbonat, Alkalisilikaten, insbesondere Natriumsilikat, Alkalisulfaten, insbesondere Natriumsulfat und Zeolithen.
Geeignete Silikone sind übliche Organopolysiloxane, die einen Gehalt an feinteiliger Kieselsäure, die wiederum auch silaniert sein kann, aufweisen können. Derartige Organopolysiloxane sind beispielsweise in der europäischen Patentanmeldung EP 0496510 A1 beschrieben. Besonders bevorzugt sind Polydiorganosiloxane, die aus dem Stand der Technik bekannt sind. Es können aber auch über Siloxan vemetzte Verbindungen eingesetzt werden, wie sie-dem Fachmann unter der Bezeichnung Silikonharze bekannt sind. In der Regel enthalten die Polydiorganosiloxane feinteilige Kieselsäure, die auch silaniert sein kann. Insbesondere geeignet sind kieselsäurehaltige Dimethylpolysiloxane. Vorteilhafterweise haben die Polydiorganosiloxane eine Viskosität nach Brookfield bei 25 °C im Bereich von 5 000 mPas bis 30 000 mPas, insbesondere von 15 000 bis 25 000 mPas. Die Silikone sind vorzugsweise auf Trägermaterialien aufgebracht. Geeignete Trägermaterialien sind bereits im Zusammenhang mit den Paraffinen beschrieben worden. Die Trägermaterialien sind in der Regel in Mengen von 40 bis 90 Gew.-%, vorzugsweise in Mengen von 45 bis 75 Gew.-% - bezogen auf Entschäumer - enthalten.
Als Parfümöle bzw. Duftstoffe können einzelne Riechstoffverbindungen, z.B. die synthetischen Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe verwendet werden. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.-Butylcyclohexylacetat, Linalylacetat, Dimethylbenzylcarbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenylglycinat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethem zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8-18 C-Atomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z.B. die Jonone, α-Isomethylionon und Methylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene wie Limonen und Pinen. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Solche Parfümöle können auch natürliche Riechstoffgemische enthalten, wie sie aus pflanzlichen Quellen zugänglich sind, z.B. Pine-, Citrus-, Jasmin-, Patchouly-, Rosen- oder Ylang-Ylang-Öl. Ebenfalls geeignet sind Muskateller, Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeeröl, Vetiveröl, Olibanumöl, Galbanumöl und Labdanumöl sowie Orangenblütenöl, Neroliol, Orangenschalenöl und Sandelholzöl. Die Duftstoffe können direkt in die erfindungsgemäßen Mittel eingearbeitet werden, es kann aber auch vorteilhaft sein, die Duftstoffe auf Träger aufzubringen, welche die Haftung des Parfüms auf der Wäsche verstärken und durch eine langsamere Duftfreisetzung für langanhaltenden Duft der Textilien sorgen. Als solche Trägermaterialien haben sich beispielsweise Cyclodextrine bewährt, wobei die Cyclodextrin-Parfüm-Komplexe zusätzlich noch mit weiteren Hilfsstoffen beschichtet werden können.
Falls gewünscht können die Endzubereitungen noch anorganische Salze als Füll- bzw. Stellmittel enthalten, wie beispielsweise Natriumsulfat, welches vorzugsweise in Mengen von 0 bis 10, insbesondere 1 bis 5 Gew.-% - bezogen auf Mittel - enthalten ist.
Herstellung der Waschmitteltabletten
Die Herstellung der Waschmitteltabletten unter Einsatz der neuen Tensidgranulate und weiterer Hilfsund Zusatzstoffe, wie z.B. Builder kann in an sich bekannter Weise, beispielsweise durch Tablettierung erfolgen. Die erhaltenen Tabletten können entweder direkt als Waschmittel eingesetzt oder zuvor nach üblichen Methoden nachbehandelt und/oder aufbereitet werden. Zu den üblichen Nachbehandlungen zählen beispielsweise Abpuderungen mit feinteiligen Inhaltsstoffen von Wasch- oder Reinigungsmitteln, wodurch das Schüttgewicht im allgemeinen weiter erhöht wird. Eine bevorzugte Nachbehandlung stellt jedoch auch die Verfahrensweise gemäß den deutschen Patentanmeldungen DE 19524287 A1 und DE 19547457 A1 dar, wobei staubförmige oder zumindest feinteilige Inhaltsstoffe (die sogenannten Feinanteile) an die erfindungsgemäß hergestellten teilchenförmigen Verfahrensendprodukte, welche als Kern dienen, angeklebt werden und somit Mittel entstehen, welche diese sogenannten Feinanteile als Außenhülle aufweisen. Vorteilhafterweise geschieht dies wiederum durch eine Schmelzagglomeration. Zur Schmelzagglomerierung der Feinanteile an wird ausdrücklich auf die Offenbarung in den deutschen Patentanmeldungen DE 19524287 A1 und DE 19547457 A1 verwiesen. In der bevorzugten Ausführungsform der Erfindung liegen die festen Waschmittel als Tabletten vor, wobei diese insbesondere aus lager- und transporttechnischen Gründen vorzugsweise abgerundete Ecken und Kanten aufweisen. Die Grundfläche dieser Tabletten kann beispielsweise kreisförmig oder rechteckig sein. Mehrschichtentabletten, insbesondere Tabletten mit 2 oder 3 Schichten, welche auch farblich verschieden sein können, sind vor allem bevorzugt. Blau-weiße oder grün-weiße oder blau-grün-weiße Tabletten sind dabei besonders bevorzugt. Die Tabletten können dabei auch gepreßte und ungepreßte Anteile enthalten.
Beispiele
Herstellbeispiel H1. 100 g Cellulose (Technocel® 150) wurden mit 200 g Proteinfettsäurekondensat (Lamepon® SCE-B, 95 Gew.-%ig, Pulver, Cognis Deutschland GmbH/DE) vermischt und über einen Zahnradwalzenstuhl kompaktiert. Anschließend wurde eine Siebfraktion zwischen 1,2 und 1,6 mm entnommen.
Herstellbeispiel H2. 1000 g Cellulose (Technocel® 150) wurden mit 300 g Proteinfettsäurekondensat (Lamepon® SCE-B), 200 g Kokosalkyloligoglucosid (Glucopon® 600 CSUP, 50 Gew.-%ige wäßrige Paste, Cognis Deutschland GmbH/DE) und 150 g eines Polyethylenglycolwachses mit einem durchschnittlichen Molekulargewicht von 4000 in einem Mischer gemischt und der Wassergehalt durch Trocknung bis auf 12 Gew.-% reduziert. Anschließend erfolgte die Extrusion bei 45 °C durch eine Siebplatte (Durchmesser der Bohrungen : 2 mm). Das Rohprodukt wurde zerkleinert und eine Siebfraktion zwischen 1,2 und 1,6 mm entnommen.
Herstellbeispiel H3. 100 g Cellulose (Technocel® 150) wurden mit 100 g Proteinfettsäurekondensat (Lamepon® SCE-B) und 20 g Kokosalkylsulfat-Natriumsalz (Sulfopon® 1218 G, Restwassergehalt 5 Gew.-%, Cognis Deutschland GmbH/DE)) vermischt und über einen Zahnradwalzenstuhl kompaktiert. Anschließend wurde eine Siebfraktion zwischen 1,2 und 1,6 mm entnommen.
Vergleichsbeispiel V1. Tensidgranulat bestehend aus 50 Gew.-% Proteinfettsäurekondensat (Lamepon® SCE-B), 5 Gew.-% Kokosalkylsulfat-Natriumsalz, 5 Gew.-% Soda, 10 Gew.-% Natriumsilicat und 30 Gew.-% Natriumsulfat; Siebfraktion zwischen 1,2 und 1,6 mm.
Vergleichsbeispiel V2. Tensidgranulat bestehend aus 95 Gew.-% .-% Proteinfettsäurekondensat (Lamepon® SCE-B), Siebfraktion zwischen 1,2 und 1,6 mm.
Anwendungstechnische Prüfungen. Die erfindungsgemäßen Tensidgranulate H1, H2 und H3 sowie der beiden Vergleichsmuster wurden in Waschmittelrezepturen eingesetzt. Die Zubereitungen wurden zu Tabletten (Gewicht 40 g, konstante Bruchhärte) verpreßt, luftdicht verpackt und anschließend für 2 Wochen bei 40 °C gelagert. Die Zusammensetzung der Waschmitteltabletten ist Tabelle 1 zu entnehmen. Die Rezepturen 1, 2 und 3 sind erfindungsgemäß, die Rezepturen V1 und V2 dienen zum Vergleich. Zur Beurteilung des Auflöseverhaltens wurden die Tabletten auf ein Drahtgestell gelegt, welches in Wasser (0 °d, 25 °C) stand. Die Tabletten waren dabei vollständig von Wasser umgeben. Gemessen wurde die Zerfallszeit vom Eintauchen bis zur vollständigen Auflösung. Die Zerfallszeiten sind ebenfalls aus Tabelle 1 zu entnehmen.
Testrezeptur für Waschmitteltabletten und Löslichkeitsversuche (Angaben in Gew.-%, Wasser ad 100 %)
Zusammensetzung 1 2 3 V1 V2
C12/18-Kokosalkoholsulfat-Natriumsalz 5,0 5,0 5,0 5,0 5,0
C12/14-Alkylpolyglucosid 6,0 3,4 2,4 6,0 6,0
Proteinfettsäurekondensat - 1,3 1,3 - -
C12/18-Kokosfettalkohol+7EO 1,0 1,0 1,0 1,0 1,0
Paimkemfettsäure-Natriumsalz 2,0 2,0 2,0 2,0 2,0
Tensidgranulat H1 8,0 - - - -
Tensidgranulat H2 - 20,0 - - -
Tensidgranulat H3 - - 20,0 - -
Tensidgranulat V1 - - - 8,0 -
Tensidgranulat V2 - - - - 8,0
Natriumsulfat 12,0 11,0 11,0 12,0 12,0
Natriumsilicat 2,0 2,0 2,0 2,0 2,0
Natriumpercarbonat 12,0 12,0 12,0 12,0 12,0
Zeolith A 20,0 20,0 20,0 20,0 20,0
Polycarboxylat 4,0 4,0 4,0 4,0 4,0
TAED 4,0 4,0 4,0 4,0 4,0
Entschäumer 5,0 5,0 5,0 5,0 5,0
Natriumcarbonat 7,0 7,0 7,0 7,0 7,0
Auflösegeschwindigkeit [s] 50 25 26 65 85

Claims (7)

  1. Waschmittel tabletten, dadurch gekennzeichnet, dass sie Tensidgranulate enthalten, welche eine Korngröße im Bereich von 0,01 bis 6 mm aufweisen, wobei man diese Granulate durch Granulation und Kompaktierung von oberflächenaktiven Proteinhydrolysaten und/oder Proteinfettsäurekondensaten in Gegenwart von Sprengmitteln, ausgewählt aus der Gruppe, die gebildet wird von Polysacchariden, Polyacrylaten, Polyvinylpyrrolidon, Polyurethanen, Polyethylenglycolen, Alginsäuren, Alginaten und Schichtsilicaten, erhält.
  2. Waschmitteltabletten nach mindestens einem des Anspruchs 1, dadurch gekennzeichnet, dass sie Granulate enthalten, welche die Proteine bzw. Proteinderivate und die Sprengmittel im Gewichtsverhältnis 1 : 10 bis 10 : 1 aufweisen.
  3. Waschmitteltabletten nach mindestens einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, dass sie die Tensidgranulate in Mengen von 1 bis 50 Gew.-% - bezogen auf die Waschmittel - enthalten
  4. Waschmitteltabletten nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass sie Tensidgranulate enthalten, welche während oder nach der Granulierung kompaktiert worden sind.
  5. Waschmitteltabletten nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass sie Tensidgranulate enthalten, bei denen der Anteil, welcher nicht im Bereich von 0,1 bis 5 mm liegt, weniger als 25 Gew.-% ausmacht.
  6. Waschmitteltabletten nach mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass sie weiterhin Builder enthalten.
  7. Waschmitteltabletten nach Anspruch 6, dadurch gekennzeichnet, dass sie die Builder in Mengen von 10 bis 60 Gew.-% enthalten.
EP00987256A 1999-11-25 2000-11-16 Waschmitteltabletten Expired - Lifetime EP1235897B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19956802 1999-11-25
DE19956802A DE19956802A1 (de) 1999-11-25 1999-11-25 Waschmitteltabletten
PCT/EP2000/011340 WO2001038476A1 (de) 1999-11-25 2000-11-16 Waschmitteltabletten

Publications (2)

Publication Number Publication Date
EP1235897A1 EP1235897A1 (de) 2002-09-04
EP1235897B1 true EP1235897B1 (de) 2004-10-13

Family

ID=7930328

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00987256A Expired - Lifetime EP1235897B1 (de) 1999-11-25 2000-11-16 Waschmitteltabletten

Country Status (5)

Country Link
US (1) US6977239B1 (de)
EP (1) EP1235897B1 (de)
DE (2) DE19956802A1 (de)
ES (1) ES2231298T3 (de)
WO (1) WO2001038476A1 (de)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1848734A2 (de) * 2005-02-07 2007-10-31 Basf Aktiengesellschaft Verfahren zum beschichten von oberflächen mit hydrophobinen
JP5250264B2 (ja) * 2005-02-07 2013-07-31 ビーエーエスエフ ソシエタス・ヨーロピア 新規ハイドロフォビン融合タンパク質、その製造および使用
DE502006007963D1 (de) * 2005-03-30 2010-11-11 Basf Se Verwendung von hydrophobinen zur schmutzabweisenden behandlung von harten oberflächen
US20090297884A1 (en) * 2005-03-30 2009-12-03 Basf Aktiengesellschaft Use of hydrophobins for the surface treatment of hardened mineral building materials, natural stone, artificial stone and ceramics
US8859106B2 (en) 2005-03-31 2014-10-14 Basf Se Use of polypeptides in the form of adhesive agents
CN101175540B (zh) * 2005-04-01 2011-03-02 巴斯福股份公司 疏水蛋白作为相稳定剂的用途
EP1869138B1 (de) 2005-04-01 2009-11-25 Basf Se Bohrspülung enthaltend hydrophobin
DE102005027139A1 (de) 2005-06-10 2006-12-28 Basf Ag Neue Cystein-verarmte Hydrophobinfusionsproteine, deren Herstellung und Verwendung
DE102005027039A1 (de) * 2005-06-10 2006-12-21 Basf Ag Hydrophobin als Beschichtungsmittel für expandierbare oder expandierte, thermoplastische Polymerpartikel
DE102005029704A1 (de) * 2005-06-24 2007-01-11 Basf Ag Verwendung von Hydrophobin-Polypeptiden sowie Konjugaten aus Hydrophobin-Polypeptiden mit Wirk-oder Effektstoffen und ihre Herstellung sowie deren Einsatz in der Kosmetik
KR20080041228A (ko) * 2005-08-01 2008-05-09 바스프 에스이 표면활성 비효소 단백질의 직물을 세척하기 위한 용도
DE102005048720A1 (de) * 2005-10-12 2007-04-19 Basf Ag Verwendung von Proteinen als Antischaum-Komponente in Kraftstoffen
EP1844917A3 (de) 2006-03-24 2008-12-03 Entex Rust &amp; Mitschke GmbH Verfahren zur Verarbeitung von zu entgasenden Produkten
US8096484B2 (en) 2006-08-15 2012-01-17 Basf Se Method for the production of dry free-flowing hydrophobin preparations
FR2910877B1 (fr) 2006-12-28 2009-09-25 Eurocopter France Amelioration aux rotors de giravions equipes d'amortisseurs interpales
EP2289687A1 (de) 2007-05-16 2011-03-02 Entex Rust & Mitschke GmbH Verfahren zur Verarbeitung von zu entgasenden Produkten
DE102011112081A1 (de) 2011-05-11 2015-08-20 Entex Rust & Mitschke Gmbh Verfahren zur Verarbeitung von Elasten
DE102011112080A1 (de) 2011-09-03 2013-03-07 Entex Rust & Mitschke Gmbh Einarbeitung von Additiven und Füllstoffen in einem Planetwalzenextruder oder einem Planetwalzenextruderabschnitt
WO2014056553A1 (de) 2012-10-11 2014-04-17 Entex Gmbh Rust & Mitschke Gmbh Extruder zur verarbeitung von kunststoffen, die zum kleben neigen
DE102015001167A1 (de) 2015-02-02 2016-08-04 Entex Rust & Mitschke Gmbh Entgasen bei der Extrusion von Kunststoffen
DE102017001093A1 (de) 2016-04-07 2017-10-26 Entex Rust & Mitschke Gmbh Entgasen bei der Extrusion von Kunststoffen mit Filterscheiben aus Sintermetall
DE102015008406A1 (de) 2015-07-02 2017-04-13 Entex Rust & Mitschke Gmbh Verfahren zur Bearbeitung von Produkten im Extruder
DE102016002143A1 (de) 2016-02-25 2017-08-31 Entex Rust & Mitschke Gmbh Füllteilmodul in Planetwalzenextruderbauweise
DE102017004563A1 (de) 2017-03-05 2018-09-06 Entex Rust & Mitschke Gmbh Entgasen beim Extrudieren von Polymeren
DE102017003681A1 (de) 2017-04-17 2018-10-18 Entex Rust & Mitschke Gmbh Kühlen beim Extrudieren von Schmelze
DE102017005999A1 (de) 2017-05-28 2018-11-29 Entex Rust & Mitschke Gmbh Herstellung von essbaren Wurstpellen aus Kollagen oder gleichartigen Stoffen durch Extrudieren
DE102017005998A1 (de) 2017-06-23 2018-12-27 Entex Rust & Mitschke Gmbh Chemische Prozeßführung für fließfähiges Einsatzgut in einem Planetwalzenextruder
DE102017006638A1 (de) 2017-07-13 2019-01-17 Entex Rust & Mitschke Gmbh Füllteilmodul in Planetwalzenextruderbauweise
DE102018001412A1 (de) 2017-12-11 2019-06-13 Entex Rust & Mitschke Gmbh Entgasen beim Extrudieren von Stoffen, vorzugsweise von Kunststoffen
WO2019166125A1 (de) 2018-02-28 2019-09-06 Entex Rust & Mitschke Gmbh Verfahren zur herstellung und verarbeitung von polymeren und polymermischungen in einem modular aufgebauten planetwalzenextruder
DE102020007239A1 (de) 2020-04-07 2021-10-07 E N T E X Rust & Mitschke GmbH Kühlen beim Extrudieren von Schmelzen
EP3892441A1 (de) 2020-04-07 2021-10-13 Entex Rust & Mitschke GmbH Nachrüstung für eine extruderanlage

Family Cites Families (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4118332A (en) * 1965-10-22 1978-10-03 Colgate-Palmolive Company Synergistic antibacterial composition containing mixtures of certain halogenated diphenyl ethers and trichlorocarbanilides
DE2263939C2 (de) 1972-07-03 1983-01-13 Henkel KGaA, 4000 Düsseldorf Zur Verwendung in perhydrathaltigen Textilwaschmitteln geeignete Bleichaktivator-Tablette
ZA734721B (en) 1972-07-14 1974-03-27 Procter & Gamble Detergent compositions
GB1455873A (en) 1973-08-24 1976-11-17 Procter & Gamble Textile-softening detergent compositions
DE2553900A1 (de) 1975-12-01 1977-06-08 Konrad Ruckstuhl Verfahren und vorrichtungen zur aufbereitung von gepressten zuckerrohrbagasse-ballen
DE2832288C2 (de) 1978-07-22 1986-05-22 Henkel KGaA, 4000 Düsseldorf Reinigungsmittel zum Reinigen von Nahrungs- und Futtermitteln in Tablettenform
EP0026529B2 (de) 1979-09-29 1992-08-19 THE PROCTER &amp; GAMBLE COMPANY Reinigungsmittelzusammensetzungen
ATE5896T1 (de) 1979-11-03 1984-02-15 The Procter & Gamble Company Granulare waschmittelzusammensetzungen.
US4432888A (en) * 1981-09-30 1984-02-21 Seton Company Surface active agents based on polypeptides
US4524009A (en) 1984-01-31 1985-06-18 A. E. Staley Manufacturing Company Detergent builder
CA1238917A (en) 1984-01-31 1988-07-05 Vivian B. Valenty Detergent builder
DE3413571A1 (de) 1984-04-11 1985-10-24 Hoechst Ag, 6230 Frankfurt Verwendung von kristallinen schichtfoermigen natriumsilikaten zur wasserenthaertung und verfahren zur wasserenthaertung
US4639325A (en) 1984-10-24 1987-01-27 A. E. Staley Manufacturing Company Detergent builder
DE3526405A1 (de) 1985-07-24 1987-02-05 Henkel Kgaa Schichtsilikate mit beschraenktem quellvermoegen, verfahren zu ihrer herstellung und ihre verwendung in wasch- und reinigungsmitteln
FR2597473B1 (fr) 1986-01-30 1988-08-12 Roquette Freres Procede d'oxydation de di-, tri-, oligo- et polysaccharides en acides polyhydroxycarboxyliques, catalyseur mis en oeuvre et produits ainsi obtenus.
GB8629837D0 (en) 1986-12-13 1987-01-21 Interox Chemicals Ltd Bleach activation
DE3706036A1 (de) 1987-02-25 1988-09-08 Basf Ag Polyacetale, verfahren zu deren herstellung aus dialdehyden und polyolcarbonsaeuren und verwendung der polyacetale
DE3723826A1 (de) 1987-07-18 1989-01-26 Henkel Kgaa Verfahren zur herstellung von alkylglykosiden
DE3732947A1 (de) 1987-09-30 1989-04-13 Henkel Kgaa Zur verwendung in wasch- und reinigungsmitteln geeignetes schaumregulierungsmittel
DE3816842A1 (de) 1988-05-18 1989-11-23 Schlueter Gmbh U Co Kg H Ringmatrizenpresse
US5576425A (en) 1988-10-05 1996-11-19 Henkel Kommanditgesellschaft Auf Aktien Process for the direct production of alkyl glycosides
DE3833780A1 (de) 1988-10-05 1990-04-12 Henkel Kgaa Verfahren zur direkten herstellung von alkylglykosiden
GB8908416D0 (en) 1989-04-13 1989-06-01 Unilever Plc Bleach activation
JPH05500076A (ja) 1989-08-09 1993-01-14 ヘンケル・コマンディットゲゼルシャフト・アウフ・アクチェン 洗剤中で使用する高密度顆粒の製造方法
DE69020861T2 (de) 1989-11-10 1995-11-30 Tno Verfahren zur Herstellung von Polydicarboxysacchariden.
YU221490A (sh) 1989-12-02 1993-10-20 Henkel Kg. Postupak za hidrotermalnu izradu kristalnog natrijum disilikata
GB9003741D0 (en) 1990-02-19 1990-04-18 Unilever Plc Bleach activation
US5047163A (en) 1990-03-16 1991-09-10 Lever Brothers Company, Division Of Conopco, Inc. Activation of bleach precursors with sulfonimines
US5041232A (en) 1990-03-16 1991-08-20 Lever Brothers Company, Division Of Conopco, Inc. Sulfonimines as bleach catalysts
DE69125310T2 (de) 1990-05-21 1997-07-03 Unilever Nv Bleichmittelaktivierung
IT1249883B (it) 1990-08-13 1995-03-30 Ferruzzi Ricerca & Tec Agenti sequestranti del calcio a base di carboidrati ossidati e loro impiego come builder per detergenti
GB9101606D0 (en) 1991-01-24 1991-03-06 Dow Corning Sa Detergent foam control agents
IT1245063B (it) 1991-04-12 1994-09-13 Ferruzzi Ricerca & Tec Procedimento per l'ossidazione di carboidrati
DE4124701A1 (de) 1991-07-25 1993-01-28 Henkel Kgaa Verfahren zur herstellung fester wasch- und reinigungsmittel mit hohem schuettgewicht und verbesserter loesegeschwindigkeit
EP0525239B1 (de) 1991-07-31 1997-07-09 AUSIMONT S.p.A. Verfahren zur Erhöhung der Bleichwirksamkeit eines inorganischen Persalzes
DE4134914A1 (de) 1991-10-23 1993-04-29 Henkel Kgaa Wasch- und reinigungsmittel mit ausgewaehlten builder-systemen
EP0542496B1 (de) 1991-11-14 1998-05-20 The Procter & Gamble Company C6/C2-C3 oxidierte Stärke als Waschmittelbestandteil
US5194416A (en) 1991-11-26 1993-03-16 Lever Brothers Company, Division Of Conopco, Inc. Manganese catalyst for activating hydrogen peroxide bleaching
EP0544490A1 (de) 1991-11-26 1993-06-02 Unilever Plc Bleich- und Reinigungsmittelzusammensetzungen
CA2085642A1 (en) 1991-12-20 1993-06-21 Ronald Hage Bleach activation
GB9127060D0 (en) 1991-12-20 1992-02-19 Unilever Plc Bleach activation
DE4221381C1 (de) 1992-07-02 1994-02-10 Stockhausen Chem Fab Gmbh Pfropf-Copolymerisate von ungesättigten Monomeren und Zuckern, Verfahren zu ihrer Herstellung und ihre Verwendung
DE4203923A1 (de) 1992-02-11 1993-08-12 Henkel Kgaa Verfahren zur herstellung von polycarboxylaten auf polysaccharid-basis
JPH05339896A (ja) 1992-06-03 1993-12-21 Arakawa Chem Ind Co Ltd 紙用サイズ剤および紙サイジング方法
DE4235646A1 (de) 1992-10-22 1994-04-28 Henkel Kgaa Verfahren zur Herstellung wasch- und reinigungsaktiver Extrudate
DE4300772C2 (de) 1993-01-14 1997-03-27 Stockhausen Chem Fab Gmbh Wasserlösliche, biologisch abbaubare Copolymere auf Basis von ungesättigten Mono- und Dicarbonsäuren, Verfahren zu ihrer Herstellung und ihre Verwendung
DE4303320C2 (de) 1993-02-05 1995-12-21 Degussa Waschmittelzusammensetzung mit verbessertem Schmutztragevermögen, Verfahren zu dessen Herstellung und Verwendung eines geeigneten Polycarboxylats hierfür
ATE169003T1 (de) 1993-05-20 1998-08-15 Procter & Gamble Bleichmittel, welche einen substituierten benzoyl caprolactam bleichaktivator enthalten
EP0699229A1 (de) 1993-05-20 1996-03-06 The Procter & Gamble Company Bleichmittelverbindungen enthaltend n-acylcaprolactam für die handwäsche und anderen kaltwasser
DE4317519A1 (de) 1993-05-26 1994-12-01 Henkel Kgaa Herstellung von Polycarboxylaten auf Polysaccharid-Basis
DE4400024A1 (de) 1994-01-03 1995-07-06 Henkel Kgaa Silikatische Builder und ihre Verwendung in Wasch- und Reinigungsmitteln sowie Mehrstoffgemische für den Einsatz auf diesem Sachgebiet
DE4402851A1 (de) 1994-01-31 1995-08-03 Henkel Kgaa Wirbelschicht-Oxidationsverfahren zur Herstellung von Polycarboxylaten auf Polysaccharid-Basis
DE4416438A1 (de) 1994-05-10 1995-11-16 Basf Ag Ein- oder mehrkernige Metall-Komplexe und ihre Verwendung als Bleich- und Oxidationskatalysatoren
DE4417734A1 (de) 1994-05-20 1995-11-23 Degussa Polycarboxylate
ATE269392T1 (de) 1994-07-21 2004-07-15 Ciba Sc Holding Ag Bleichmittelzusammensetzung für gewebe
GB9419091D0 (en) 1994-09-22 1994-11-09 Cerestar Holding Bv Process for decreasing the build up of inorganic incrustations on textiles and detergent composition used in such process
DE4443177A1 (de) 1994-12-05 1996-06-13 Henkel Kgaa Aktivatormischungen für anorganische Perverbindungen
DE19502167C2 (de) 1995-01-25 1997-02-06 Henkel Kgaa Verfahren zur Herstellung von Reisproteinhydrolysaten
DE19502168C1 (de) 1995-01-25 1996-06-27 Henkel Kgaa Verfahren zur Herstellung von Weizenproteinhydrolysaten
DE19547457A1 (de) 1995-12-19 1997-06-26 Henkel Kgaa Von Staub- und Feinanteilen freie granulare Wasch- und Reinigungsmittel hoher Schüttdichte
DE19524287A1 (de) 1995-07-06 1997-01-09 Henkel Kgaa Von Staub- und Feinanteilen freie granulare Wasch- und Reinigungsmittel hoher Schüttdichte
DE19529905A1 (de) 1995-08-15 1997-02-20 Henkel Kgaa Aktivatorkomplexe für Persauerstoffverbindungen
DE19536082A1 (de) 1995-09-28 1997-04-03 Henkel Kgaa Aktivatorkomplexe für Persauerstoffverbindungen
DE19600018A1 (de) 1996-01-03 1997-07-10 Henkel Kgaa Waschmittel mit bestimmten oxidierten Oligosacchariden
DE19605688A1 (de) 1996-02-16 1997-08-21 Henkel Kgaa Übergangsmetallkomplexe als Aktivatoren für Persauerstoffverbindungen
DE19620411A1 (de) 1996-04-01 1997-10-02 Henkel Kgaa Übergangsmetallamminkomplexe als Aktivatoren für Persauerstoffverbindungen
DE19613103A1 (de) 1996-04-01 1997-10-02 Henkel Kgaa Übergangsmetallkomplex-haltige Systeme als Aktivatoren für Persauerstoffverbindungen
DK173111B1 (da) * 1996-04-03 2000-01-31 Cleantabs As Tøjvasketabletter
DE19616767A1 (de) 1996-04-26 1997-11-06 Henkel Kgaa Bleichaktivatoren für Wasch- und Reinigungsmittel
DE19616770A1 (de) 1996-04-26 1997-11-06 Henkel Kgaa Acyllactame als Bleichaktivatoren für Wasch- und Reinigungsmittel
DE19616693A1 (de) 1996-04-26 1997-11-06 Henkel Kgaa Enolester als Bleichaktivatoren für Wasch- und Reinigungsmittel
DE19616769A1 (de) 1996-04-26 1997-11-06 Henkel Kgaa Acylacetale als Bleichaktivatoren für Wasch- und Reinigungsmittel
DE19620267A1 (de) 1996-05-20 1997-11-27 Henkel Kgaa Katalytisch wirksame Aktivatorkomplexe mit N¶4¶-Liganden für Persauerstoffverbindungen
DE19701896A1 (de) * 1997-01-21 1998-07-23 Clariant Gmbh Granulares sekundäres Alkansulfonat
DE19709991C2 (de) 1997-03-11 1999-12-23 Rettenmaier & Soehne Gmbh & Co Waschmittelpreßling und Verfahren zu seiner Herstellung
DE19710254A1 (de) 1997-03-13 1998-09-17 Henkel Kgaa Wasch- oder reinigungsaktive Formkörper für den Gebrauch im Haushalt
DE19723028A1 (de) * 1997-06-03 1998-12-10 Henkel Kgaa Hilfsmittelgranulat für wasch- und reinigungsaktive Formkörper
DE19801085A1 (de) 1998-01-14 1999-07-15 Henkel Kgaa Homogene Tensidgranulate für die Herstellung von stückigen Wasch- und Reinigungsmitteln
AU2452499A (en) * 1999-01-07 2000-07-24 Procter & Gamble Company, The Detergent compositions having a protein
DE19918188A1 (de) * 1999-04-22 2000-10-26 Cognis Deutschland Gmbh Reinigungsmittel für harte Oberflächen

Also Published As

Publication number Publication date
WO2001038476A1 (de) 2001-05-31
EP1235897A1 (de) 2002-09-04
US6977239B1 (en) 2005-12-20
DE50008268D1 (de) 2004-11-18
DE19956802A1 (de) 2001-06-13
ES2231298T3 (es) 2005-05-16

Similar Documents

Publication Publication Date Title
EP1235897B1 (de) Waschmitteltabletten
EP1240290B1 (de) Tensidgranulate mit verbesserter auflösegeschwindigkeit
EP1240287B1 (de) Waschmitteltabletten
EP1232242B1 (de) Tensidgranulate mit verbesserter auflösegeschwindigkeit
EP1188817A2 (de) Waschmittel
EP1106675A2 (de) Verwendung von Partialglyceridpolyglycolethern
EP1228192A1 (de) Tensidgranulate mit verbesserter auflösegeschwindigkeit
EP1191094A2 (de) Waschmittel
EP1081219B1 (de) Detergentien in fester Form
EP1214389B1 (de) Tensidmischungen
WO2001018164A1 (de) Waschmittel
EP1228187A1 (de) Waschmitteltabletten
WO2001000763A1 (de) Schaumkontrollierte feste waschmittel
EP1081213A1 (de) Schaumkontrollierte feste Waschmittel
EP1090979A1 (de) Entschäumergranulate
EP1204732A1 (de) Schaumkontrollierte feste wachmittel
EP1248831A1 (de) Tensidgranulate
DE10162645A1 (de) Tensidgranulate mit verbesserter Auflösegeschwindigkeit durch Zusatz von modifizierten Polyacrylsäure-Salzen
EP1078979A1 (de) Schaumkontrollierte feste Waschmittel
EP1090978A1 (de) Feste Wasch-, Spül- und Reinigungsmittel enthaltend Entschäumergranulate
WO2001000762A1 (de) Schaumkontrollierte feste waschmittel
WO2001000761A1 (de) Schaumkontrollierte feste waschmittel
EP1083215A1 (de) Waschmittel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020516

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20030925

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RBV Designated contracting states (corrected)

Designated state(s): BE DE ES FR GB IT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50008268

Country of ref document: DE

Date of ref document: 20041118

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041130

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050214

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2231298

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

BERE Be: lapsed

Owner name: COGNIS DEUTSCHLAND G.M.B.H. & CO. KG

Effective date: 20041130

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: COGNIS DEUTSCHLAND GMBH & CO. KG

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: COGNIS IP MANAGEMENT GMBH

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ET Fr: translation filed
26N No opposition filed

Effective date: 20050714

BERE Be: lapsed

Owner name: *COGNIS DEUTSCHLAND G.M.B.H. & CO. K.G.

Effective date: 20041130

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20090514 AND 20090520

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20101120

Year of fee payment: 11

Ref country code: GB

Payment date: 20101110

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20111228

Year of fee payment: 12

Ref country code: FR

Payment date: 20111214

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120131

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20121116

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121116

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50008268

Country of ref document: DE

Effective date: 20130601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121116

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121117