EP1235897B1 - Pastilles de detergent - Google Patents
Pastilles de detergent Download PDFInfo
- Publication number
- EP1235897B1 EP1235897B1 EP00987256A EP00987256A EP1235897B1 EP 1235897 B1 EP1235897 B1 EP 1235897B1 EP 00987256 A EP00987256 A EP 00987256A EP 00987256 A EP00987256 A EP 00987256A EP 1235897 B1 EP1235897 B1 EP 1235897B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- acid
- weight
- alcohol
- contain
- granules
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/02—Anionic compounds
- C11D1/32—Protein hydrolysates; Fatty acid condensates thereof
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/0047—Detergents in the form of bars or tablets
- C11D17/0065—Solid detergents containing builders
- C11D17/0073—Tablets
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/38—Products with no well-defined composition, e.g. natural products
Definitions
- the invention is in the field of molded detergents and relates to tablets special surfactant granules.
- DE 22 63 939 describes tablets which contain 85 to 98% by weight of one Granular bleach activator containing hydrogen peroxide and water-soluble ones contain film-forming polymers and a water-soluble or swellable starch. The ingredients are mixed and processed into granules, which are then compressed into tablets can be.
- EP 0 799 886 A2 describes detergent tablets, the nonionic surfactants, amphoteric surfactants and 20 to 50 wt .-% polyfunctional carboxylic acids, layered silicates and Potassium carbonate included. The tablets are made by removing a solid fraction from the polyfunctional carboxylic acids, the layered silicates and the potassium carbonate is produced and the surfactant fraction is then sprayed onto this.
- the resulting powder is in conventional tableting machines pressed into tablets.
- DE 197 23 028 A1 describes a Aid granules for detergent tablets. It contains 10 to 95% by weight Cellulose with a particle size ⁇ 100 mm and 5 to 90 wt .-% microcrystalline cellulose and / or one or more ingredients of washing and cleaning agents.
- the so obtained Granules can be pressed into shaped articles, in particular detergent tablets.
- the object of the present invention was therefore to provide detergent tablets To make available particularly quickly without contact with cold water Gel phase disintegrate, so that the disadvantages of the prior art are reliably overcome.
- the invention relates to detergent tablets which contain surfactant granules which have a Grain size in the range of 0.01 to 6 mm, these granules by granulation and compacting surface-active protein hydrolyzates and / or Protein fatty acid condensates in the presence of disintegrants selected from the group consisting of is formed by polysaccharides, polyacrylates, polyvinylpyrrolidone, polyurethanes, Polyethylene glycols, alginic acids, alginates and layered silicates.
- detergent tablets are based on the new Surfactant granules show such a high dissolution rate that they are directly over the dispenser of the washing machine can be metered in and there quickly and Dissolve without residue.
- this effect can also be used in other for example in the machine Dishwashing can be used.
- laundry detergent also includes others below Applications in the field of cleaning hard surfaces, but especially detergents and cleaning agents Roger that.
- Protein hydrolyzates and their condensation products with fatty acids are preferred as protein components, and subordinate protein hydrolyzate esters and quaternized protein fatty acid condensates are also suitable.
- Protein hydrolysates are breakdown products of animal or vegetable proteins, for example collagen, elastin or keratin and preferably almond and potato protein, and in particular wheat, rice and soy protein, which are split by acidic, alkaline and / or enzymatic hydrolysis and then have an average molecular weight in Have range from 600 to 4000, preferably 2000 to 3500.
- protein hydrolyzates, in the absence of a hydrophobic residue are not surfactants in the classical sense, they are widely used for the formulation of surface-active agents because of their dispersing properties.
- Anionic surfactants so-called protein fatty acid condensates, which have properties comparable to soaps, can be produced from the protein hydrolyzates by condensation with C 6 -C 22 , preferably C 12 -C 18 fatty acids.
- anionic surfactants which can also be contained in the surfactant granules, are soaps, alkylbenzenesulfonates, alkanesulfonates, olefin sulfonates, alkyl ether sulfonates, glycerol ether sulfonates, ⁇ -methyl ester sulfonates, sulfofatty acids, alkysulfates, fatty alcohol ether sulfates, hydroxyl ether amide sulfates (glycerol ether sulfates) (glycerol ether sulfates), ether) sulfates, mono- and dialkyl sulfosuccinates, mono- and dialkyl sulfosuccinamates, sulfotriglycerides, amide soaps, ether carboxylic acids and their salts, fatty acid isethionates, fatty acid sarcosinates
- anionic surfactants contain polyglycol ether chains, these can have a conventional, but preferably a narrow, homolog distribution.
- Alkyl benzene sulfonates, alkyl sulfates, soaps, alkane sulfonates, olefin sulfonates, methyl ester sulfonates and mixtures thereof are preferably used.
- Preferred alkylbenzenesulfonates preferably follow the formula (I) R-Ph-SO 3 X (I) in which R stands for a branched, but preferably linear alkyl radical having 10 to 18 carbon atoms, Ph for a phenyl radical and X for an alkali and / or alkaline earth metal, ammonium, alkylammonium, alkanolammonium or glucammonium.
- R stands for a branched, but preferably linear alkyl radical having 10 to 18 carbon atoms
- Ph for a phenyl radical
- X for an alkali and / or alkaline earth metal
- ammonium alkylammonium
- alkanolammonium or glucammonium dodecylbenzenesulfonates, tetradecylbenzenesulfonates, hexadecylbenzenesulfonates and their technical mixtures in the form of the sodium salts
- Alkyl and / or alkenyl sulfates which are also often referred to as fatty alcohol sulfates, are to be understood as meaning the sulfation products of primary and / or secondary alcohols, which preferably follow the formula (II) R 2 O-SO 3 Y (II) in which R 2 represents a linear or branched, aliphatic alkyl and / or alkenyl radical having 6 to 22, preferably 12 to 18 carbon atoms and Y represents an alkali and / or alkaline earth metal, ammonium, alkylammonium, alkanolammonium or glucammonium.
- alkyl sulfates which can be used in the context of the invention are the sulfation products of capron alcohol, caprylic alcohol, capric alcohol, 2-ethylhexyl alcohol, lauryl alcohol, myristyl alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, aryl selenyl alcohol, elaidyl alcohol, Behenyl alcohol and erucyl alcohol as well as their technical mixtures, which are obtained by high pressure hydrogenation of technical methyl ester fractions or aldehydes from Roelen's oxosynthesis.
- the sulfation products can preferably be used in the form of their alkali metal salts and in particular their sodium salts.
- Alkyl sulfates based on C 16/18 tallow fatty alcohols or vegetable fatty alcohols of comparable C chain distribution in the form of their sodium salts are particularly preferred.
- these are oxo alcohols, as are obtainable, for example, by converting carbon monoxide and hydrogen to alpha-containing olefins using the shop process.
- Such alcohol mixtures are commercially available under the trade name Dobanol® or Neodol®. Suitable alcohol mixtures are Dobanot 91®, 23®, 25®, 45®.
- oxo alcohols such as those obtained by the classic Enichema or Condea oxo process by adding carbon monoxide and hydrogen to olefins.
- These alcohol mixtures are a mixture of strongly branched alcohols.
- Such alcohol mixtures are commercially available under the trade name Lial®.
- Suitable alcohol mixtures are Lial 91®, 111®, 123®, 125®, 145®.
- the nonionic surfactants which are also suitable as an additional surfactant component of the granules for the purposes of the present invention, can be, for example, fatty alcohol polyglycol ethers, alkylphenol polyglycol ethers, fatty acid polyglycol esters, fatty acid amide polyglycol ethers, fatty amine polyglycol ethers, alkoxylated triglycerides, mixed ethers or mixed formulas, alk (enoglyl) glycerols, alk (enol) glycosyl alcohols Act fatty acid-N-alkylglucamides, protein hydrolyzates (especially vegetable products based on wheat), polyol fatty acid esters, sugar esters, sorbitan esters, polysorbates and amine oxides.
- nonionic surfactants contain polyglycol ether chains, they can have a conventional, but preferably a narrow, homolog distribution. Preference is given to using nonionic surfactants which can be dried off, in particular alkyl and / or alkenyl oligoglycosides which preferably follow the formula (III), R 3 O- [G] p (III) in which R 3 is an alkyl and / or alkenyl radical having 4 to 22 carbon atoms, G is a sugar radical having 5 or 6 carbon atoms and p is a number from 1 to 10. They can be obtained according to the relevant procedures in preparative organic chemistry.
- the alkyl and / or alkenyl oligoglycosides can be derived from aldoses or ketoses with 5 or 6 carbon atoms, preferably glucose.
- the preferred alkyl and / or alkenyl oligoglycosides are thus alkyl and / or alkenyl oligoglucosides.
- the index number p in the general formula (III) indicates the degree of oligomerization (DP), ie the distribution of mono- and oligoglycosides, and stands for a number between 1 and 10.
- Alkyl and / or alkenyl oligoglycosides with an average degree of oligomerization p of 1.1 to 3.0 are preferably used. From an application point of view, preference is given to those alkyl and / or alkenyl oligoglycosides whose degree of oligomerization is less than 1.7 and is in particular between 1.2 and 1.4.
- the alkyl or alkenyl radical R 3 can be derived from primary alcohols having 4 to 11, preferably 8 to 10, carbon atoms. Typical examples are butanol, caprona alcohol, caprylic alcohol, capric alcohol and undecyl alcohol and their technical mixtures, such as are obtained, for example, in the hydrogenation of technical fatty acid methyl testers or in the course of the hydrogenation of aldehydes from Roelen's oxosynthesis.
- the alkyl or alkenyl radical R 3 can also be derived from primary alcohols having 12 to 22, preferably 12 to 14, carbon atoms. Typical examples are lauryl alcohol, myristyl alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, elaidyl alcohol.
- Alkyl oligoglucosides based on hardened C 12/14 coconut alcohol with a DP of 1 to 3 are preferred.
- the surfactants - individually or together - both as aqueous pastes with solids contents ( active substance contents) from, for example, 1 to 60, preferably 5 to 50 and in particular 15 to 35% by weight or as dry Solids with residual water contents of typically less than 10 and preferably less than 5% by weight be used.
- disintegrant is to be understood as meaning substances which are contained in the surfactant granules in order to accelerate their disintegration when brought into contact with water. Overviews can be found, for example, in J.Pharm.Sci. 61 (1972) or Römpp Chemielexikon, 9th edition, volume 6, p. 4440 .
- the disintegrants can be present in the granules homogeneously distributed macroscopically, but microscopically they can form zones of increased concentration due to the manufacturing process.
- the preferred disintegrants include polysaccharides, such as, for example, natural starch and its derivatives (carboxymethyl starch, starch glycolates in the form of their alkali salts, agar agar, guar gum, pectins etc.), celluloses and their derivatives (carboxymethyl cellulose, microcrystalline cellulose), polyacrylates, polyvinylpyrrolidone, alginic acid and their alkali salts (alginates), amorphous or also partially crystalline phyllosilicates (bentonites), polyurethanes, polyethylene glycols and gas-generating systems.
- polysaccharides such as, for example, natural starch and its derivatives (carboxymethyl starch, starch glycolates in the form of their alkali salts, agar agar, guar gum, pectins etc.), celluloses and their derivatives (carboxymethyl cellulose, microcrystalline cellulose), polyacrylates, polyvinylpyrrolidon
- disintegrants which may be present in the sense of the invention are, for example, the publications WO 98/40462 (Rettenmaier), WO 98/55583 and WO 98/55590 (Unilever) and WO 98/40463, DE 19709991 and DE 19710254 (Henkel) refer to.
- the surfactants and the disintegrants - in each case based on the solids content - can be used in a weight ratio of 1:10 to 10: 1, preferably 1: 5 to 5: 1 and in particular 1: 2 to 2: 1. It is also advisable to adjust the water content of the disintegrants or the surfactant granules so that swelling does not automatically occur during storage.
- the residual water content should preferably not exceed 10% by weight.
- the production of the surfactant granules can be carried out for detergents known way. It is particularly possible during the granules or compact after granulation. The compaction is imperative to to achieve a sufficient increase in the dissolution rate.
- Visibility has proven to be very favorable if the surfactant granules used have a grain size in Have range from 0.01 to 6, preferably 0.1 to 5 mm and in particular the proportion which is not in the range of 0.1 to 5 mm, makes up less than 25% by weight.
- a particularly preferred way of producing the surfactant granules is to subject the mixtures to fluidized bed granulation (“SKET” granulation).
- SKET fluidized bed granulation
- This is understood to mean granulation with simultaneous drying, which is preferably carried out batchwise or continuously.
- the mixtures of surfactants and disintegrants can be used both in the dried state and as an aqueous preparation.
- Fluidized bed apparatuses which are preferably used have base plates with dimensions of 0.4 to 5 m.
- the granulation is preferably carried out at fluidizing air speeds in the range from 1 to 8 m / s.
- the granules are preferably discharged from the fluidized bed via a size classification of the granules.
- the classification can take place, for example, by means of a sieve device or by means of an opposed air flow (classifier air) which is regulated in such a way that only particles of a certain particle size are removed from the fluidized bed and smaller particles are retained in the fluidized bed.
- the inflowing air is usually composed of the heated or unheated classifier air and the heated floor air.
- the soil air temperature is between 80 and 400, preferably 90 and 350 ° C.
- a starting compound, for example a surfactant granulate from an earlier test batch, is advantageously introduced at the start of the granulation.
- the mixtures are only after the granulation, for example in one Mixer or a fluid bed, subjected to a compacting step, with further ingredients the agents are only added after the compacting step.
- Compacting the ingredients takes place in a preferred embodiment of the invention in a press agglomeration process instead of.
- the press agglomeration process to which the solid premix is subjected can be carried out in various devices can be realized. Depending on the type of agglomerator used differentiated press agglomeration processes.
- preferred press agglomeration processes are extrusion, roll pressing or compacting, and the hole pressing (pelletizing), so that within the scope of the present Invention preferred press agglomeration operations extrusion, roll compacting or Are pelleting operations.
- binders can be used as an aid to compaction.
- a binder is used that at temperatures up to 130 ° C, preferably up to a maximum of 100 ° C. and in particular up to 90 ° C. is already completely in the form of a melt.
- the binder must therefore be selected depending on the process and process conditions or the process conditions, especially the process temperature - if a certain one Binder is desired - to be adapted to the binder.
- the actual compression process is preferably carried out at processing temperatures that at least in the compression step at least the temperature of the softening point, if not correspond to the temperature of the melting point of the binder.
- the process temperature is significantly above the melting point or above the temperature at which the binder is in the form of a melt.
- the process temperature in the compression step is not more than 20 ° C above the melting temperature or the upper limit of the melting range of the binder. It is technical quite possible to set even higher temperatures; but it has been shown that a Temperature difference to the melting temperature or the softening temperature of the binder of 20 ° C is generally sufficient and even higher temperatures are no additional advantages cause.
- Such a temperature control has the other Advantage that also thermally sensitive raw materials, for example peroxy bleaching agents such as perborate and / or percarbonate, but also enzymes, increasingly processed without serious loss of active substance can be.
- thermally sensitive raw materials for example peroxy bleaching agents such as perborate and / or percarbonate, but also enzymes, increasingly processed without serious loss of active substance can be.
- the possibility of precise temperature control of the binder in particular in the decisive step of compression, i.e. between the mixing / homogenization of the Premix and the shape, allows an energetically very favorable and for the temperature sensitive Components of the premix extremely gentle process management, because the premix is only exposed to the higher temperatures for a short time.
- the working tools of the press agglomerator (the screw (s) of the extruder, the roller (s) of the roller compactor and the press roller (s) of the pellet press) have a temperature of a maximum of 150 ° C, preferably a maximum of 100 ° C and in particular a maximum of 75 ° C and the process temperature is 30 ° C and in particular a maximum of 20 ° C above the melting temperature or the upper temperature limit of the melting range of the binder.
- the duration is preferably the temperature effect in the compression area of the press agglomerators a maximum of 2 minutes and is particularly in a range between 30 seconds and 1 minute.
- Preferred binders which can be used alone or in a mixture with other binders are polyethylene glycols, 1,2-polypropylene glycols and modified polyethylene glycols and polypropylene glycols.
- the modified polyalkylene glycols include in particular the sulfates and / or the disulfates of polyethylene glycols or polypropylene glycols with a relative molecular weight between 600 and 12,000 and in particular between 1,000 and 4,000.
- Another group consists of mono- and / or disuccinates of the polyalkylene glycols, which again have relative molecular weights between 600 and 6,000, preferably between 1,000 and 4,000.
- polyethylene glycols include those polymers which, in addition to ethylene glycol, also use C 3 -C 5 glycols and glycerol and mixtures of these as starting molecules. Ethoxylated derivatives such as trimethylolpropane with 5 to 30 EO are also included.
- the preferably used polyethylene glycols can have a linear or branched structure, linear polyethylene glycols being preferred in particular.
- the particularly preferred polyethylene glycols include those with relative molecular weights between 2,000 and 12,000, advantageously around 4,000, polyethylene glycols with relative molecular weights below 3,500 and above 5,000, in particular in combination with polyethylene glycols with a relative molecular weight of around 4,000, and can be used such combinations advantageously have more than 50% by weight, based on the total amount of polyethylene glycols, of polyethylene glycols with a relative molecular weight of between 3,500 and 5,000.
- polyethylene glycols can also be used as binders, which are per se in liquid state at room temperature and a pressure of 1 bar; here we are mainly talking about polyethylene glycol with a relative molecular mass of 200, 400 and 600.
- these per se liquid polyethylene glycols should only be used in a mixture with at least one further binder, this mixture again having to meet the requirements according to the invention, that is to say having a melting point or softening point of at least above 45 ° C.
- Low molecular weight polyvinylpyrrolidones and derivatives thereof with relative molecular weights of up to a maximum of 30,000 are also suitable as binders. Relative molecular mass ranges between 3,000 and 30,000, for example around 10,000, are preferred.
- Polyvinylpyrrolidones are preferably not used as the sole binder, but in combination with others, in particular in combination with polyethylene glycols.
- the compacted material preferably has temperatures immediately after it leaves the production apparatus not above 90 ° C, with temperatures between 35 and 85 ° C particularly preferred are. It has been found that outlet temperatures - especially in the extrusion process - from 40 to 80 ° C, for example up to 70 ° C, are particularly advantageous.
- the surfactant granules are produced by means of an extrusion , as described, for example, in European patent EP 0486592 B1 or international patent applications WO 93/02176 and WO 94/09111 or WO 98/12299 .
- a solid premix is extruded under pressure and the strand is cut to the predeterminable size of the granulate by means of a cutting device after it has emerged from the hole shape.
- the homogeneous and solid premix contains a plasticizer and / or lubricant, which causes the premix to become plastically softened and extrudable under the pressure or under the entry of specific work.
- Preferred plasticizers and / or lubricants are surfactants and / or polymers.
- the premix is preferably fed to a planetary roller extruder or a 2-shaft extruder or 2-screw extruder with co-rotating or counter-rotating screw guidance, the housing and the extruder pelletizing head of which can be heated to the predetermined extrusion temperature.
- the premix is compressed, plasticized, extruded in the form of fine strands through the perforated die plate in the extruder head, and finally, under pressure, which is preferably at least 25 bar, but can also be lower at extremely high throughputs depending on the apparatus used the extrudate is preferably reduced to approximately spherical to cylindrical granules by means of a rotating cutting knife.
- the hole diameter of the perforated nozzle plate and the strand cut length are matched to the selected granule size. In this way, granules of an essentially uniformly predeterminable particle size can be produced, the absolute particle sizes in particular being able to be adapted to the intended use.
- particle diameters of up to at most 0.8 cm are generally preferred.
- Important embodiments provide for the production of uniform granules in the millimeter range, for example in the range from 0.5 to 5 mm and in particular in the range from approximately 0.8 to 3 mm.
- the length / diameter ratio of the chopped-off primary granules is preferably in the range from about 1: 1 to about 3: 1. It is also preferred to feed the still plastic primary granules to a further shaping processing step; edges present on the crude extrudate are rounded off, so that ultimately spherical to approximately spherical extrudate grains can be obtained.
- small amounts of dry powder for example zeolite powder such as zeolite NaA powder, can also be used in this step.
- extrusions / pressings can also be carried out in low-pressure extruders, in the Kahl press (from Amandus Kahl) or in the Bepex extruder.
- the temperature control in the transition region of the screw, the pre-distributor and the nozzle plate is preferably designed such that the melting temperature of the binder or the upper limit of the melting range of the binder is at least reached, but preferably exceeded.
- the duration of the temperature influence in the compression range of the extrusion is preferably less than 2 minutes and in particular in a range between 30 seconds and 1 minute.
- the surfactant granules can also be produced by means of roller compaction.
- the premix between two smooth or with wells of a defined shape Rolls metered in and between the two rolls under pressure to a sheet-like compact, the so-called Schülpe, rolled out.
- the rollers exert a high line pressure on the premix and can be additionally heated or cooled as required.
- Smooth rolling gives you smooth, unstructured sash bands, while using structured ones
- Correspondingly structured slugs can be produced in which, for example certain forms of the later detergent particles can be specified.
- the Schülpenband is subsequently broken up into smaller pieces by a knock-off and crushing process and can be processed in this way to Granulatkömem, known by others Surface treatment process refined, especially brought into an approximately spherical shape can be.
- the temperature of the pressing tools is So the rollers, preferably at a maximum of 150 ° C, preferably at a maximum of 100 ° C and in particular at a maximum of 75 ° C.
- Particularly preferred manufacturing processes work in roller compaction with process temperatures that are 10 ° C, in particular a maximum of 5 ° C above the melting temperature or the upper temperature limit of the melting range of the binder.
- the duration of temperature exposure in the compression range of the smooth or rollers provided with depressions of a defined shape is a maximum of 2 minutes and in particular is in a range between 30 seconds and 1 minute.
- the surfactant granules can also be produced by pelleting.
- the premix is applied to a perforated surface and pressed through the holes by means of a pressure-producing body with plasticization.
- the premix is compressed under pressure, plasticized, pressed through a perforated surface by means of a rotating roller in the form of fine strands, and finally comminuted into granules using a knock-off device.
- the most varied configurations of the pressure roller and perforated die are conceivable here. For example, flat perforated plates are used as well as concave or convex ring matrices through which the material is pressed using one or more pressure rollers.
- the press rollers in the Tefler devices can also be conical in shape, in the ring-shaped devices the dies and press roll (s) can have the same or opposite direction of rotation.
- An apparatus suitable for carrying out the method is described, for example, in German laid-open specification DE 3816842 A1 .
- the ring die press disclosed in this document consists of a rotating ring die interspersed with press channels and at least one press roller which is operatively connected to its inner surface and which presses the material supplied to the die space through the press channels into a material discharge.
- the ring die and the press roller can be driven in the same direction, which means that a reduced shear stress and thus a lower temperature increase in the premix can be achieved.
- the temperature of the pressing tools is preferably at most 150 ° C., preferably at most 100 ° C. and in particular at a maximum of 75 ° C.
- Particularly preferred production processes work in roller compacting with process temperatures which are 10 ° C., in particular a maximum of 5 ° C. above the melting temperature or the upper temperature limit of the melting range of the binder.
- the detergent tablets can contain other known additives, above all builders, but also optical brighteners, enzymes, enzyme stabilizers, defoamers, co-disintegrants, contain small amounts of neutral filling salts as well as colors and fragrances and the like.
- Zeolites can be used as builders.
- the fine crystalline, synthetic and bound water-containing zeolite which is frequently used as a detergent builder is preferably zeolite A and / or P.
- zeolite P for example, zeolite MAP (R) (commercial product from Crosfield) is particularly preferred.
- zeolite X and mixtures of A, X and / or P and Y are also suitable.
- a cocrystallized sodium / potassium aluminum silicate made of zeolite A and zeolite X, which is soft as VEGOBOND AX® (commercial product from Condea Augusta SpA) is commercially available.
- the zeolite can be used as a spray-dried powder or as an undried stabilized suspension that is still moist from its production.
- the zeolite can contain small additions of nonionic surfactants as stabilizers, for example 1 to 3% by weight, based on zeolite, of ethoxylated C 12 -C 18 fatty alcohols with 2 to 5 ethylene oxide groups , C 12 -C 14 fatty alcohols with 4 to 5 ethylene oxide groups or ethoxylated isotridecanols.
- Suitable zeolites have an average particle size of less than 10 ⁇ m (volume distribution; measurement method: Coulter Counter) and preferably contain 18 to 22% by weight, in particular 20 to 22% by weight, of bound water.
- Suitable substitutes or partial substitutes for phosphates and zeolites are crystalline, layered sodium silicates ( “layer silicates” ) of the general formula NaMSi x O 2x + 1 .yH 2 O, where M is sodium or hydrogen, x is a number from 1.9 to 4 and y is a number from 0 to 20 and preferred values for x are 2, 3 or 4.
- layer silicates Such crystalline layered silicates are described, for example, in European patent application EP 0164514 A1 .
- Preferred crystalline layered silicates of the formula given are those in which M represents sodium and x assumes the values 2 or 3.
- both ⁇ - and ⁇ -sodium disilicate Na 2 Si 2 O 5 .yH 2 O are preferred, wherein ⁇ -sodium disilicate can be obtained, for example, by the method described in international patent application WO 91/08171 .
- Further suitable layered silicates are known, for example, from patent applications DE 2334899 A1 , EP 0026529 A1 and DE 3526405 A1 . Their usability is not limited to a special composition or structural formula. However, smectites, in particular bentonites, are preferred here.
- small amounts of iron can be incorporated into the crystal lattice of the layered silicates according to the above formulas.
- the layered silicates can contain hydrogen, alkali, alkaline earth ions, in particular Na + and Ca 2+ .
- the amount of water of hydration is usually in the range from 8 to 20% by weight and depends on the swelling condition or the type of processing.
- Useful layer silicates are known, for example, from US 3,966,629, US 4,062,647, EP 0026529 A1 and EP 0028432 A1 .
- Layered silicates are preferably used which are largely free of calcium ions and strongly coloring iron ions due to an alkali treatment.
- the preferred builder substances also include amorphous sodium silicates with a modulus Na 2 O: SiO 2 from 1: 2 to 1: 3.3, preferably from 1: 2 to 1: 2.8 and in particular from 1: 2 to 1: 2, 6, which are delayed release and have secondary washing properties.
- the delay in dissolution compared to conventional amorphous sodium silicates can be caused in various ways, for example by surface treatment, compounding, compacting / compression or by overdrying.
- the term “amorphous” is also understood to mean “X-ray amorphous”.
- silicates in X-ray diffraction experiments do not produce sharp X-ray reflections, as are typical for crystalline substances, but at most one or more maxima of the scattered X-rays, which have a width of several degree units of the diffraction angle.
- it can very well lead to particularly good builder properties if the silicate particles provide washed-out or even sharp diffraction maxima in electron diffraction experiments. This is to be interpreted as meaning that the products have microcrystalline areas of size 10 to a few hundred nm, values up to max. 50 nm and in particular up to max. 20 nm are preferred.
- Such so-called X-ray amorphous silicates which also have a delay in dissolution compared to conventional water glasses, are described, for example, in German patent application DE 4400024 A1 .
- Compacted / compacted amorphous silicates, compounded amorphous silicates and over-dried X-ray amorphous silicates are particularly preferred.
- phosphates are also used as builder substances possible if such use should not be avoided for ecological reasons.
- Suitable are in particular the sodium salts of orthophosphates, pyrophosphates and in particular the tripolyphosphate.
- Their content is generally not more than 25% by weight, preferably not more than 20 wt .-%, each based on the finished agent.
- tripolyphosphates even in small amounts up to a maximum of 10% by weight, based on the finished agents, in combination with other builder substances to a synergistic improvement of secondary washing power.
- the builders are preferably in the detergent tablets in amounts of 10 to 60, in particular 20 up to 40 wt .-% - based on the agent - contain.
- Useful organic builders are, for example, those that can be used in the form of their sodium salts
- Polycarboxylic acids such as citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, Sugar acids, aminocarboxylic acids, nitrilotriacetic acid (NTA), provided such use ecological reasons are not objectionable, as well as mixtures of these.
- Preferred salts are the salts of polycarboxylic acids such as citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, Sugar acids and mixtures of these. The acids themselves can also be used.
- the acids typically also have the property of an acidifying component and thus also serve to set a lower and milder pH value of Detergents or cleaning agents.
- an acidifying component typically also serve to set a lower and milder pH value of Detergents or cleaning agents.
- dextrins for example oligomers or polymers of carbohydrates, which can be obtained by partial hydrolysis of starches.
- the hydrolysis can be carried out by customary, for example acid or enzyme-catalyzed, processes. They are preferably hydrolysis products with average molecular weights in the range from 400 to 500,000.
- DE dextrose equivalent
- Both maltodextrins with a DE between 3 and 20 and dry glucose syrups with a DE between 20 and 37 as well as so-called yellow dextrins and white dextrins with higher molar masses in the range from 2,000 to 30,000 can be used.
- a preferred dextrin is described in British patent application GB 9419091 A1 ,
- the oxidized derivatives of such dextrins are their reaction products with oxidizing agents which are capable of oxidizing at least one alcohol function of the saccharide ring to the carboxylic acid function.
- Such oxidized dextrins and processes for their preparation are known, for example, from European patent applications EP 0232202 A1, EP 0427349 A1 , EP 0472042 A1 and EP 0542496 A1 and from international patent applications WO 92/18542, WO 93/08251 , WO 93/16110 , WO 94128030 , WO 95/07303 , WO 95/12619 and WO 95/20608 are known.
- An oxidized oligosaccharide according to German patent application DE 19600018 A1 is also suitable.
- a product oxidized at C 6 of the saccharide ring can be particularly advantageous.
- Suitable cobuilders are oxydisuccinates and other derivatives of disuccinates, preferably ethylenediamine disuccinate. Also particularly preferred in this context are glycerol disuccinates and glycerol trisuccinates , such as are described, for example, in US Pat. Nos . 4,524,009, 4,639,325 , in European patent application EP 0150930 A1 and in Japanese patent application JP 93/339896 . Suitable amounts used in formulations containing zeolite and / or silicate are from 3 to 15% by weight.
- organic cobuilders are, for example, acetylated hydroxycarboxylic acids or their salts, which may also be in lactone form and which have at least 4 Contain carbon atoms and at least one hydroxyl group and a maximum of two acid groups.
- Suitable polymeric polycarboxylates are, for example, the sodium salts of polyacrylic acid or polymethacrylic acid, for example those with a relative molecular weight of 800 to 150,000 (based on acid and measured in each case against polystyrene sulfonic acid).
- Suitable copolymeric polycarboxylates are, in particular, those of acrylic acid with methacrylic acid and of acrylic acid or methacrylic acid with maleic acid. Copolymers of acrylic acid with maleic acid which contain 50 to 90% by weight of acrylic acid and 50 to 10% by weight of maleic acid have proven to be particularly suitable.
- the relative molecular weight, based on free acids, is generally 5,000 to 200,000, preferably 10,000 to 120,000 and in particular 50,000 to 100,000 (measured in each case against polystyrene sulfonic acid).
- the (co) polymeric polycarboxylates can be used either as a powder or as an aqueous solution, with 20 to 55% by weight aqueous solutions being preferred.
- Granular polymers are usually subsequently mixed into one or more basic granules.
- biodegradable polymers composed of more than two different monomer units, for example those which, according to DE 4300772 A1, are salts of acrylic acid and maleic acid, as well as vinyl alcohol or vinyl alcohol derivatives, or, according to DE 4221381 C2, are monomer salts of acrylic acid and the 2-alkylallylsulfonic acid and sugar derivatives.
- Further preferred copolymers are those which are described in German patent applications DE 4303320 A1 and DE 4417734 A1 and which preferably contain acrolein and acrylic acid-acrylic acid salts or acrolein and vinyl acetate as monomers.
- polymeric aminodicarboxylic acids are also salts or their precursor substances. Polyaspartic acids or their salts and derivatives are particularly preferred.
- polyacetals which can be obtained by reacting dialdehydes with polyolcarboxylic acids which have 5 to 7 carbon atoms and at least 3 hydroxyl groups, for example as described in European patent application EP 0280223 A1 .
- Preferred polyacetals are obtained from dialdehydes such as glyoxal, glutaraldehyde, terephthalaldehyde and mixtures thereof and from polyol carboxylic acids such as gluconic acid and / or glucoheptonic acid.
- the agents can also contain components that make the oil and fat washable made of textiles.
- the preferred oil and fat-dissolving components include, for example nonionic cellulose ethers such as methyl cellulose and methyl hydroxypropyl cellulose a proportion of methoxyl groups from 15 to 30 wt .-% and of hydroxypropoxyl groups from 1 to 15% by weight, based in each case on the nonionic cellulose ether, and that from the prior art Polymers of phthalic acid and / or terephthalic acid or their derivatives known from technology, in particular polymers of ethylene terephthalates and / or polyethylene glycol terephthalates or anionically and / or nonionically modified derivatives of these. Particularly preferred of these are the sulfonated derivatives of phthalic acid and terephthalic acid polymers.
- Suitable ingredients of the agents are water-soluble inorganic salts such as bicarbonates, carbonates, amorphous silicates, normal water glasses which have no outstanding builder properties, or mixtures of these; in particular, alkali carbonate and / or amorphous alkali silicate, especially sodium silicate with a molar ratio Na 2 O: SiO 2 of 1: 1 to 1: 4.5, preferably of 1: 2 to 1: 3.5, are used.
- the content of sodium carbonate in the final preparations is preferably up to 40% by weight, advantageously between 2 and 35% by weight.
- the content of sodium silicate in the agents (without special builder properties) is generally up to 10% by weight and preferably between 1 and 8% by weight.
- bleaching agents which serve as bleaching agents and which are H 2 O 2 in water
- sodium perborate tetrahydrate and sodium perborate monohydrate are of particular importance.
- Further bleaching agents which can be used are, for example, sodium percarbonate, peroxypyrophosphates, citrate perhydrates and H 2 O 2 -producing peracidic salts or peracids, such as perbenzoates, peroxophthalates, diperazelaic acid, phthaloiminoperic acid or diperdodecanedioic acid.
- the bleaching agent content of the agents is preferably 5 to 35% by weight and in particular up to 30% by weight, advantageously using perborate monohydrate or percarbonate.
- Bleach activators which can be used are compounds which, under perhydrolysis conditions, give aliphatic peroxocarboxylic acids having preferably 1 to 10 C atoms, in particular 2 to 4 C atoms, and / or optionally substituted perbenzoic acid. Substances are suitable which carry O- and / or N-acyl groups of the number of carbon atoms mentioned and / or optionally substituted benzoyl groups.
- Multi-acylated alkylenediamines in particular tetraacetylethylene diamine (TAED), acylated triazine derivatives, in particular 1,5-diacetyl-2,4-dioxohexahydro-1,3,5-triazine (DADHT), acylated glycolurils, in particular tetraacetylglycoluril (TAGU), N- Acylimides, especially N-nonanoylsuccinimide (NOSI), acylated phenolsulfonates, especially n-nonanoyl- or isononanoyloxybenzenesulfonate (n- or iso-NOBS), carboxylic acid anhydrides, especially phthalic anhydride, acylated polyhydric alcohols, especially triacetyloxy, 2,5-diacetyloxy, 2,5-ethylene glycol 2,5-dihydrofuran and the enol esters known from German patent
- hydrophilically substituted acylacetals known from German patent application DE 19616769 A1 and the acyl lactams described in German patent application DE 19616 770 and international patent application WO 95/14075 are also preferably used.
- the combinations of conventional bleach activators known from German patent application DE 4443177 A1 can also be used. Bleach activators of this type are present in the customary quantitative range, preferably in amounts of 1% by weight to 10% by weight, in particular 2% by weight to 8% by weight, based on the total agent.
- the sulfonimines and / or bleach-enhancing transition metal salts or transition metal complexes known from European patents EP 0446982 B1 and EP 0453 003 B1 can also be present as so-called bleaching catalysts.
- the transition metal compounds in question include in particular the manganese, iron, cobalt, ruthenium or molybdenum-salt complexes known from German patent application DE 19529905 A1 and their N-analog compounds known from German patent application DE 19620267 A1 , which are known from German Patent application DE 19536082 A1 known manganese, iron, cobalt, ruthenium or molybdenum carbonyl complexes, the manganese, iron, cobalt, ruthenium, molybdenum, titanium, vanadium described in German patent application DE 196 05 688 - and copper complexes with nitrogen-containing tripod ligands that from German patent application DE known cobalt 19620411 A1, iron-, copper- and ruthenium-ammine complexes, the manganese in the German patent application DE 4416438 A1 described, copper and cobalt complexes, the cobalt complexes described in European patent application EP 0272030 A1 , the manganese ko known from European patent application
- Bleach-enhancing transition metal complexes in particular with the central atoms Mn, Fe, Co, Cu, Mo, V, Ti and / or Ru, are used in customary amounts, preferably in an amount of up to 1% by weight, in particular 0.0025% by weight. % to 0.25% by weight and particularly preferably from 0.01% by weight to 0.1% by weight, in each case based on the total agent.
- Enzymes in particular include those from the class of hydrolases, such as proteases, esterases, lipases or lipolytically active enzymes, amylases, cellulases or other glycosyl hydrolases and mixtures of the enzymes mentioned. All of these hydrolases contribute to the removal of stains, such as stains containing protein, fat or starch, and graying in the laundry. By removing pilling and microfibrils, cellulases and other glycosyl hydrolases can contribute to color retention and increase the softness of the textile. Oxidoreductases can also be used for bleaching or for inhibiting color transfer.
- hydrolases such as proteases, esterases, lipases or lipolytically active enzymes, amylases, cellulases or other glycosyl hydrolases and mixtures of the enzymes mentioned. All of these hydrolases contribute to the removal of stains, such as stains containing protein, fat or starch, and graying in the laundry. By removing pilling and
- Enzymes obtained from bacterial strains or fungi such as Bacillus subtilis, Bacillus licheniformis, Streptomyces griseus and Humicola insolens are particularly suitable.
- Proteases of the subtilisin type and in particular proteases which are obtained from Bacillus lentus are preferably used.
- Enzyme mixtures for example from protease and amylase or protease and lipase or lipolytically active enzymes or protease and cellulase or from cellulase and lipase or lipolytically active enzymes or from protease, amylase and lipase or lipolytically active enzymes or protease, lipase or lipolytically active enzymes and cellulase, but especially protease- and / or lipase-containing mixtures or mixtures with lipolytically active enzymes of particular interest.
- Known cutinases are examples of such lipolytically active enzymes.
- Peroxidases or oxidases have also proven to be suitable in some cases.
- Suitable amylases include in particular ⁇ -amylases, iso-amylases, pullulanases and pectinases.
- Cellobiohydrolases, endoglucanases and ⁇ -glucosidases, which are also called cellobiases, or mixtures thereof, are preferably used as cellulases. Since the different cellulase types differ in their CMCase and avicelase activities, the desired activities can be set by targeted mixtures of the cellulases.
- the enzymes can be adsorbed on carriers and / or embedded in coating substances in order to protect them against premature decomposition.
- the proportion of the enzymes, enzyme mixtures or enzyme granules can be, for example, about 0.1 to 5% by weight, preferably 0.1 to about 2% by weight.
- the agents can contain further enzyme stabilizers.
- enzyme stabilizers For example, 0.5 to 1% by weight sodium formate can be used. It is also possible to use proteases which are stabilized with soluble calcium salts and a calcium content of preferably about 1.2% by weight, based on the enzyme.
- calcium salts magnesium salts also serve as stabilizers.
- boron compounds for example boric acid, boron oxide, borax and other alkali metal borates such as the salts of orthoboric acid (H 3 BO 3 ), metaboric acid (HBO 2 ) and pyrobic acid (tetraboric acid H 2 B 4 O 7 ), is particularly advantageous.
- Graying inhibitors have the task of keeping the dirt detached from the fiber suspended in the liquor and thus preventing the dirt from being re-absorbed.
- Water-soluble colloids of mostly organic nature are suitable for this purpose, for example the water-soluble salts of polymeric carboxylic acids, glue, gelatin, salts of ether carboxylic acids or ether sulfonic acids of starch or cellulose or salts of acidic sulfuric acid esters of cellulose or starch.
- Water-soluble polyamides containing acidic groups are also suitable for this purpose. Soluble starch preparations and starch products other than those mentioned above can also be used, for example degraded starch, aldehyde starches, etc. Polyvinylpyrrolidone can also be used.
- cellulose ethers such as carboxymethyl cellulose (sodium salt), methyl cellulose, hydroxyalkyl cellulose and mixed ethers, such as methyl hydroxyethyl cellulose, methyl hydroxypropyl cellulose, methyl carboxymethyl cellulose and mixtures thereof, and polyvinylpyrrolidone, for example in amounts of 0.1 to 5% by weight, based on the composition, are preferred , used.
- the agents can contain derivatives of diaminostilbenedisulfonic acid or their alkali metal salts as optical brighteners. Suitable are, for example, salts of 4,4'-bis (2-anilino-4-morpholino-1,3,5-triazinyl-6-amino) stilbene-2,2'-disulfonic acid or compounds of similar structure which instead of the morpholino- Group carry a diethanolamino group, a methylamino group, anilino group or a 2-methoxyethylamino group.
- Brighteners of the substituted diphenylstyryl type may also be present, for example the alkali salts of 4,4'-bis (2-sulfostyryl) diphenyl, 4,4'-bis (4-chloro-3-sulfostyryl) diphenyl, or 4- (4-chlorostyryl) -4 '- (2-sulfostyryl). Mixtures of the aforementioned brighteners can also be used.
- Uniformly white granules are obtained if, in addition to the usual brighteners, the agents are used in customary amounts, for example between 0.1 and 0.5% by weight, preferably between 0.1 and 0.3% by weight, and also small amounts, for example Contain 10 -6 to 10 -3 wt .-%, preferably by 10- 5 wt .-%, of a blue dye.
- a particularly preferred dye is iinolux® (commercial product from Ciba-Geigy).
- Soil repellants are substances which preferably contain ethylene terephthalate and / or polyethylene glycol terephthalate groups, the molar ratio of ethylene terephthalate to polyethylene glycol terephthalate being in the range from 50:50 to 90:10.
- the molecular weight of the linking polyethylene glycol units is in particular in the range from 750 to 5000, ie the degree of ethoxylation of the polymers containing polyethylene glycol groups can be approximately 15 to 100.
- the polymers are characterized by an average molecular weight of about 5000 to 200,000 and can have a block, but preferably a random structure.
- Preferred polymers are those with molar ratios of ethylene terephthalate to polyethylene glycol terephthalate from about 65:35 to about 90:10, preferably from about 70:30 to 80:20. Also preferred are those polymers which have linking polyethylene glycol units with a molecular weight of 750 to 5000, preferably from 1000 to about 3000 and a molecular weight of the polymer from about 10,000 to about 50,000. Examples of commercially available polymers are the products Milease® T (ICI) or Repelotex® SRP 3 (Rhône-Poulenc).
- Wax-like compounds can be used as defoamers .
- Compounds which have a melting point at atmospheric pressure above 25 ° C. (room temperature), preferably above 50 ° C. and in particular above 70 ° C., are understood to be “waxy”.
- the waxy defoamer substances are practically insoluble in water, ie at 20 ° C. they have a solubility of less than 0.1% by weight in 100 g of water.
- all wax-like defoamer substances known from the prior art can be contained.
- Suitable waxy compounds are, for example, bisamides, fatty alcohols, fatty acids, carboxylic acid esters of mono- and polyhydric alcohols, and paraffin waxes or mixtures thereof.
- the silicone compounds known for this purpose can of course also be used.
- Suitable paraffin waxes generally represent a complex mixture of substances without a sharp melting point. For characterization, one usually determines its melting range by differential thermal analysis (DTA), as described in "The Analyst” 87 (1962), 420 , and / or its solidification point , This is the temperature at which the paraffin changes from the liquid to the solid state by slow cooling. Paraffins which are completely liquid at room temperature, that is to say those having a solidification point below 25 ° C., cannot be used according to the invention. For example, the paraffin wax mixtures known from EP 0309931 A1 of, for example, 26% by weight to 49% by weight of microcrystalline paraffin wax with a solidification point of 62 ° C.
- paraffin waxes which can be used according to the invention, this liquid fraction is as low as possible and is preferably absent entirely.
- Particularly preferred paraffin wax mixtures at 30 ° C have a liquid fraction of less than 10% by weight, in particular from 2% by weight to 5% by weight, at 40 ° C a liquid fraction of less than 30% by weight, preferably of 5 % By weight to 25% by weight and in particular from 5% by weight to 15% by weight.
- at 60 ° C a liquid fraction from 30% by weight to 60% by weight, in particular from 40% by weight to 55% by weight, at 80 ° C a liquid fraction from 80% by weight to 100% by weight %, and at 90 ° C a liquid content of 100% by weight.
- the temperature at which a liquid content of 100% by weight of the paraffin wax is reached is still below 85 ° C., in particular at 75 ° C. to 82 ° C., in particularly preferred paraffin wax mixtures.
- the paraffin waxes can be petrolatum, microcrystalline waxes or hydrogenated or partially hydrogenated paraffin waxes.
- Suitable bisamides as defoamers are those which differ from saturated fatty acids with 12 to 22, preferably derived from 14 to 18 carbon atoms and from alkylenediamines with 2 to 7 carbon atoms.
- suitable Fatty acids are lauric, myristic, stearic, arachic and behenic acid and mixtures thereof, such as they are available from natural fats or hardened oils, such as tallow or hydrogenated palm oil are.
- Suitable diamines are, for example, ethylenediamine, 1,3-propylenediamine, tetramethylenediamine, Pentamethylenediamine, hexamethylenediamine, p-phenylenediamine and toluenediamine.
- Diamines are ethylenediamine and hexamethylenediamine.
- Bisamides are particularly preferred Bismyristoylethylenediamine, bispalmitoylethylenediamine, bisstearoylethylenediamine and mixtures thereof and the corresponding derivatives of hexamethylenediamine.
- Suitable carboxylic acid esters as defoamers are derived from carboxylic acids with 12 to 28 carbon atoms.
- these are esters of behenic acid, stearic acid, hydroxystearic acid, oleic acid, palmitic acid, myristic acid and / or lauric acid.
- the alcohol part of the carboxylic acid ester contains a mono- or polyhydric alcohol with 1 to 28 carbon atoms in the hydrocarbon chain.
- suitable alcohols are behenyl alcohol, arachidyl alcohol, coconut alcohol, 12-hydroxystearyl alcohol, oleyl alcohol and lauryl alcohol as well as ethylene glycol, glycerin, polyvinyl alcohol, sucrose, erythritol, pentaerythritol, sorbitan and / or sorbitol.
- Preferred esters are those of ethylene glycol, glycerol and sorbitan, the acid part of the ester being selected in particular from behenic acid, stearic acid, oleic acid, palmitic acid or myristic acid.
- Eligible esters of polyhydric alcohols are, for example, xylitol monopalmitate, pentaryanth monostearate, glycerol monostearate, ethylene glycol monostearate and sorbitan monostearate, sorbitan palmitate, sorbitan monolaurate, sorbitan dilaurate, sorbitan distearate, sorbitan dibundyl alkylate, and sorbitan dibehenate, and sorbitan dibehenate, mixed sorbitan dibehenate, and sorbitan dibehenate, and sorbitan dibehenate, as well as mixed sorbitan dibehenate.
- Glycerol esters which can be used are the mono-, di- or triesters of glycerol and the carboxylic acids mentioned, the mono- or diesters being preferred. Glycerol monostearate, glycerol monooleate, glycerol monopalmitate, glycerol monobehenate and glycerol distearate are examples of this.
- Suitable natural esters as defoamers are beeswax, which mainly consists of the esters CH 3 (CH 2 ) 24 COO (CH 2 ) 27 CH 3 and CH 3 (CH 2 ) 26 COO (CH 2 ) 25 CH 3 , and camauba wax , which is a mixture of CamaubaTexrealkylestem, often in combination with small amounts of free Camaubaklare, other long-chain acids, high molecular weight alcohols and hydrocarbons.
- Suitable carboxylic acids as a further defoamer compound are in particular behenic acid, stearic acid, Oleic acid, palmitic acid, myristic acid and lauric acid and their mixtures, as made up natural fats or optionally hardened oils, such as tallow or hydrogenated palm oil are. Saturated fatty acids with 12 to 22, in particular 18 to 22, carbon atoms are preferred.
- Suitable fatty alcohols as a further defoamer compound are the hydrogenated products of the described Fatty acids.
- Dialkyl ethers may also be present as defoamers.
- the ethers can be asymmetric or be symmetrical, i.e. two identical or different alkyl chains, preferably containing 8 to 18 carbon atoms.
- Typical examples are di-n-octyl ether, di-octyl ether and di-n-stearyl ether, particularly suitable are dialkyl ethers which have a melting point above Have 25 ° C, especially above 40 ° C.
- Suitable defoamer compounds are fatty ketones, which are based on the relevant methods of preparative organic chemistry can be obtained.
- carboxylic acid magnesium salts which at temperatures above 300 ° C below Elimination of carbon dioxide and water are pyrolyzed, for example according to the German Laid-open specification DE 2553900 OS.
- Suitable fat ketones are those obtained by pyrolysis of the magnesium salts of lauric acid, myristic acid, palmitic acid, palmitoleic acid, stearic acid, oleic acid, Elaidic acid, petroselinic acid, arachic acid, gadoleic acid, behenic acid or erucic acid become.
- Suitable defoamers are fatty acid polyethylene glycol esters, which are preferably obtained by base-homogeneously catalyzed addition of ethylene oxide to fatty acids.
- the addition of ethylene oxide to the fatty acids takes place in the presence of alkanolamines as catalysts.
- alkanolamines especially triethanolamine, leads to an extremely selective ethoxylation of the fatty acids, especially when it comes to producing low-ethoxylated compounds.
- the paraffin waxes described are particularly preferably used alone as wax-like defoamers or in a mixture with one of the other wax-like defoamers, the proportion of paraffin waxes in the mixture preferably making up more than 50% by weight, based on the wax-like defoamer mixture.
- the paraffin waxes can be applied to carriers if necessary. All known inorganic and / or organic carrier materials are suitable as carrier materials. Examples of typical inorganic carrier materials are alkali carbonates, aluminosilicates, water-soluble layered silicates, alkali silicates, alkali sulfates, for example sodium sulfate, and alkali phosphates.
- the alkali silicates are preferably a compound with a molar ratio of alkali oxide to SiO 2 of 1: 1.5 to 1: 3.5.
- the use of such silicates results in particularly good grain properties, in particular high abrasion stability and nevertheless a high rate of dissolution in water.
- the aluminosilicates referred to as carrier material include, in particular, the zeolites, for example zeolite NaA and NaX.
- the compounds referred to as water-soluble layered silicates include, for example, amorphous or crystalline water glass. Silicates which are commercially available under the names Aerosil® or Sipemat® can also be used.
- suitable organic carrier materials are film-forming polymers, for example polyvinyl alcohols, polyvinyl pyrrolidones, poly (meth) acrylates, polycarboxylates, cellulose derivatives and starch.
- Usable cellulose ethers are, in particular, alkali carboxymethyl cellulose, methyl cellulose, ethyl cellulose, hydroxyethyl cellulose and so-called cellulose mixed ethers, such as, for example, methyl hydroxyethyl cellulose and methyl hydroxypropyl cellulose, and mixtures thereof.
- Particularly suitable mixtures are composed of sodium carboxymethyl cellulose and methyl cellulose, the carboxymethyl cellulose usually having a degree of substitution of 0.5 to 0.8 carboxymethyl groups per anhydroglucose unit and the methyl cellulose having a degree of substitution of 1.2 to 2 methyl groups per anhydroglucose unit.
- the mixtures preferably contain alkali carboxymethyl cellulose and nonionic cellulose ethers in weight ratios from 80:20 to 40:60, in particular from 75:25 to 50 50.
- native starch which is composed of amylose and amylopectin. Starch is referred to as native starch, as it is available as an extract from natural sources, for example from rice, potatoes, corn and wheat.
- Carrier materials which can be used individually or more than one of the abovementioned compounds, in particular selected from the group of alkali metal carbonates, alkali metal sulfates, alkali metal phosphates, zeolites, water-soluble sheet silicates, alkali metal silicates, polycarboxylates, cellulose ethers, polyacrylate / polymethacrylate and starch.
- alkali carbonates in particular sodium carbonate, alkali silicates, in particular sodium silicate, alkali sulfates, in particular sodium sulfate and zeolites are particularly suitable.
- Suitable silicones are conventional organopolysiloxanes, which can have a content of finely divided silica, which in turn can also be silanized. Such organopolysiloxanes are described, for example, in European patent application EP 0496510 A1 . Polydiorganosiloxanes which are known from the prior art are particularly preferred. However, compounds crosslinked via siloxane can also be used, as are known to the person skilled in the art under the name silicone resins. As a rule, the polydiorganosiloxanes contain finely divided silica, which can also be silanized. Silica-containing dimethylpolysiloxanes are particularly suitable.
- the polydiorganosiloxanes advantageously have a Brookfield viscosity at 25 ° C. in the range from 5,000 mPas to 30,000 mPas, in particular from 15,000 to 25,000 mPas.
- the silicones are preferably applied to carrier materials. Suitable carrier materials have already been described in connection with the paraffins.
- the carrier materials are generally present in amounts of 40 to 90% by weight, preferably in amounts of 45 to 75% by weight, based on defoamers.
- fragrance compounds e.g. the synthetic products of the ester, ether, aldehyde, ketone, alcohol and hydrocarbon type.
- Fragrance compounds of the ester type are e.g. Benzyl acetate, phenoxyethyl isobutyrate, p-tert-butylcyclohexyl acetate, Linalyl acetate, dimethylbenzylcarbinylacetate, phenylethyl acetate, linalylbenzoate, Benzyl formate, ethyl methylphenyl glycinate, allyl cyclohexyl propionate, styrallyl propionate and benzyl salicylate.
- the ethers include, for example, benzyl ethyl ether, the aldehydes e.g. the linear alkanals with 8-18 C atoms, citral, citronellal, citronellyloxyacetaldehyde, cyclamenaldehyde, hydroxycitronellal, Lilial and bourgeonal, to the ketones e.g.
- the hydrocarbons mainly include the terpenes such as limonene and pinene.
- perfume oils can also contain natural fragrance mixtures, as they are accessible from plant sources, e.g. Pine, citrus, jasmine, patchouly, rose or Ylang-ylang oil.
- fragrances can be directly in the agents according to the invention are incorporated, but it may also be advantageous to use the fragrances to apply on carriers which increase the adhesion of the perfume to the laundry and by a slower fragrance release ensures long-lasting fragrance of the textiles.
- carrier materials Cyclodextrins have proven themselves, for example, with the cyclodextrin-perfume complexes additionally can be coated with other auxiliaries.
- the final preparations can also contain inorganic salts as fillers or fillers contain, such as sodium sulfate, which is preferably present in amounts of 0 to 10, in particular 1 to 5 wt .-% - based on agent - is included.
- inorganic salts such as sodium sulfate, which is preferably present in amounts of 0 to 10, in particular 1 to 5 wt .-% - based on agent - is included.
- the detergent tablets can be produced using the new surfactant granules and further auxiliaries and additives, such as, for example, builders, in a manner known per se, for example by tableting.
- the tablets obtained can either be used directly as detergents or aftertreated and / or prepared beforehand by customary methods.
- the usual aftertreatments include, for example, powdering with finely divided ingredients from washing or cleaning agents, which generally further increases the bulk density.
- a preferred aftertreatment is also the procedure according to German patent applications DE 19524287 A1 and DE 19547457 A1 , in which dusty or at least finely divided ingredients (the so-called fine fractions) are adhered to the particulate end products of the process, which serve as the core, and thus give rise to means , which have these so-called fines as an outer shell.
- this advantageously takes place by melting agglomeration.
- the solid detergents are in the form of tablets, these preferably having rounded corners and edges, in particular for storage and transport reasons.
- the base of these tablets can be circular or rectangular, for example.
- Multi-layer tablets in particular tablets with 2 or 3 layers, which can also have different colors, are particularly preferred. Blue-white or green-white or blue-green-white tablets are particularly preferred.
- the tablets can also contain pressed and unpressed parts.
- Manufacturing example H2 1000 g of cellulose (Technocel® 150) were mixed with 300 g of protein fatty acid condensate (Lamepon® SCE-B), 200 g of coconut alkyl oligoglucoside (Glucopon® 600 CSUP, 50% by weight aqueous paste, Cognis Deutschland GmbH / DE) and 150 g of a polyethylene glycol wax mixed with an average molecular weight of 4000 in a mixer and the water content reduced by drying to 12 wt .-%. The extrusion was then carried out at 45 ° C. through a sieve plate (diameter of the bores: 2 mm). The crude product was crushed and a sieve fraction between 1.2 and 1.6 mm was removed.
- Lamepon® SCE-B protein fatty acid condensate
- Glucopon® 600 CSUP 50% by weight aqueous paste, Cognis Germany GmbH / DE
- Comparative Example V Surfactant granules consisting of 50% by weight protein fatty acid condensate (Lamepon® SCE-B), 5% by weight coconut alkyl sulfate sodium salt, 5% by weight soda, 10% by weight sodium silicate and 30% by weight sodium sulfate; Sieve fraction between 1.2 and 1.6 mm.
- Comparative example V2 Granular surfactant consisting of 95% by weight protein fatty acid condensate (Lamepon® SCE-B), sieve fraction between 1.2 and 1.6 mm.
- the surfactant granules H1, H2 and H3 and the two comparative samples were used in detergent formulations.
- the preparations were pressed into tablets (weight 40 g, constant breaking hardness), packed airtight and then stored at 40 ° C. for 2 weeks.
- the composition of the detergent tablets is shown in Table 1.
- Formulations 1, 2 and 3 are according to the invention, formulations V1 and V2 are used for comparison.
- To assess the dissolution behavior the tablets were placed on a wire rack which was in water (0 ° d, 25 ° C). The tablets were completely surrounded by water. The disintegration time from immersion to complete dissolution was measured. The disintegration times are also shown in Table 1.
- Test formulation for detergent tablets and solubility tests (data in% by weight, water ad 100%) composition 1 2 3 V1 V2 C 12/18 coconut alcohol sulfate sodium salt 5.0 5.0 5.0 5.0 5.0 5.0 C 12/14 alkyl polyglucoside 6.0 3.4 2.4 6.0 6.0 Protein fatty acid condensate - 1.3 1.3 - - C 12/18 coconut fatty alcohol + 7EO 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 PaimkemfettTex 1972re sodium salt 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 H1 surfactant granules 8.0 - - - - Granules of surfactant H2 - 20.0 - - - H3 surfactant granules - - 20.0 - - Granular surfactant V1 - - - 8.0 - Granular surfactant V2 - - -
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Detergent Compositions (AREA)
Claims (7)
- Pastilles de produits détergents,
caractérisées en ce qu'
elles contiennent des granulés tensioactifs présentant une granulométrie allant de 0,01 à 6 mm, que l'on obtient par granulation et compactage d'hydrolysats de protéines tensioactifs et/ou de produits de condensation d'acides gras à base de protéines en présence d'agents désagrégeants, choisis dans le groupe formé par les polysaccharides, les polyacrylates, la polyvinylpyrrolidone, les polyuréthanes, les polyéthylène glycols, la collidone, les acides alginiques, les alginates et les silicates stratifiés. - Pastilles de produits détergents selon la revendication 1,
caractérisées en ce qu'
elles contiennent des granulés qui renferment les protéines ou les dérivés de protéines et les agents désagrégeants dans un rapport pondéral de 1 : 10 à 10 : 1. - Pastilles de produits détergents selon l'une des revendications là 2,
caractérisées en ce qu'
elles contiennent les granulés tensioactifs en quantités de 1 à 50 % en poids - par rapport aux produits détergents -. - Pastilles de produits détergents selon au moins une des revendications 1à 3,
caractérisées en ce qu'
elles contiennent des granulés tensioactifs qui ont été compactés avant, pendant ou après la granulation. - Pastilles de produits détergents selon l'une des revendications 1 à 4,
caractérisées en ce qu'
elles contiennent des granulés tensioactifs dans lesquels la fraction qui ne se situe pas dans une plage de granulométrie allant de 0,1 à 5 mm représente moins de 25 % en poids. - Pastilles de produits détergents selon au moins une des revendications 1 à 5,
caractérisées en ce qu'
elles contiennent en outre des adjuvants. - Pastilles de produits détergents selon la revendication 6,
caractérisées en ce qu'
elles contiennent les adjuvants en quantités allant de 10 à 60 % en poids.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19956802 | 1999-11-25 | ||
DE19956802A DE19956802A1 (de) | 1999-11-25 | 1999-11-25 | Waschmitteltabletten |
PCT/EP2000/011340 WO2001038476A1 (fr) | 1999-11-25 | 2000-11-16 | Pastilles de detergent |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1235897A1 EP1235897A1 (fr) | 2002-09-04 |
EP1235897B1 true EP1235897B1 (fr) | 2004-10-13 |
Family
ID=7930328
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00987256A Expired - Lifetime EP1235897B1 (fr) | 1999-11-25 | 2000-11-16 | Pastilles de detergent |
Country Status (5)
Country | Link |
---|---|
US (1) | US6977239B1 (fr) |
EP (1) | EP1235897B1 (fr) |
DE (2) | DE19956802A1 (fr) |
ES (1) | ES2231298T3 (fr) |
WO (1) | WO2001038476A1 (fr) |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7892788B2 (en) | 2005-02-07 | 2011-02-22 | Basf Se | Hydrophobin fusion products, production and use thereof |
TW200639179A (en) * | 2005-02-07 | 2006-11-16 | Basf Ag | Method for coating surfaces with hydrophobins |
WO2006103230A1 (fr) * | 2005-03-30 | 2006-10-05 | Basf Aktiengesellschaft | Utilisation d'hydrophobines pour traiter la surface de materiaux de construction mineraux durcis, de pierre naturelle, de pierre artificielle et de ceramiques |
WO2006103215A1 (fr) * | 2005-03-30 | 2006-10-05 | Basf Aktiengesellschaft | Utilisation d'hydrophobines pour le traitement antisalissant de surfaces dures |
JP4772110B2 (ja) | 2005-03-31 | 2011-09-14 | ビーエーエスエフ ソシエタス・ヨーロピア | 接着促進剤としてのポリペプチド使用方法 |
EP1868700A2 (fr) * | 2005-04-01 | 2007-12-26 | Basf Aktiengesellschaft | Utilisation d'hydrophobine comme stabilisateur de phases |
CA2602706C (fr) | 2005-04-01 | 2013-01-08 | Basf Aktiengesellschaft | Lavage de forage au moyen d'hydrophobine |
DE102005027039A1 (de) * | 2005-06-10 | 2006-12-21 | Basf Ag | Hydrophobin als Beschichtungsmittel für expandierbare oder expandierte, thermoplastische Polymerpartikel |
DE102005027139A1 (de) | 2005-06-10 | 2006-12-28 | Basf Ag | Neue Cystein-verarmte Hydrophobinfusionsproteine, deren Herstellung und Verwendung |
DE102005029704A1 (de) * | 2005-06-24 | 2007-01-11 | Basf Ag | Verwendung von Hydrophobin-Polypeptiden sowie Konjugaten aus Hydrophobin-Polypeptiden mit Wirk-oder Effektstoffen und ihre Herstellung sowie deren Einsatz in der Kosmetik |
DE502006008140D1 (de) * | 2005-08-01 | 2010-12-02 | Basf Se | Verwendung von grenzflächenaktiven, nicht-enzymatischen proteinen für die textilwäsche |
DE102005048720A1 (de) * | 2005-10-12 | 2007-04-19 | Basf Ag | Verwendung von Proteinen als Antischaum-Komponente in Kraftstoffen |
EP1844917A3 (fr) | 2006-03-24 | 2008-12-03 | Entex Rust & Mitschke GmbH | Procédé pour traiter des produits qui doivent être dégazés |
US8096484B2 (en) * | 2006-08-15 | 2012-01-17 | Basf Se | Method for the production of dry free-flowing hydrophobin preparations |
FR2910877B1 (fr) | 2006-12-28 | 2009-09-25 | Eurocopter France | Amelioration aux rotors de giravions equipes d'amortisseurs interpales |
DE102007059299A1 (de) | 2007-05-16 | 2008-11-20 | Entex Rust & Mitschke Gmbh | Vorrichtung zur Verarbeitung von zu entgasenden Produkten |
DE102011112081A1 (de) | 2011-05-11 | 2015-08-20 | Entex Rust & Mitschke Gmbh | Verfahren zur Verarbeitung von Elasten |
DE102011112080A1 (de) | 2011-09-03 | 2013-03-07 | Entex Rust & Mitschke Gmbh | Einarbeitung von Additiven und Füllstoffen in einem Planetwalzenextruder oder einem Planetwalzenextruderabschnitt |
EP2906406B1 (fr) | 2012-10-11 | 2019-07-17 | Entex Rust & Mitschke GmbH | Extrudeuse pour le traitement de polymères ayant la tendance à l'adhérence |
DE102017001093A1 (de) | 2016-04-07 | 2017-10-26 | Entex Rust & Mitschke Gmbh | Entgasen bei der Extrusion von Kunststoffen mit Filterscheiben aus Sintermetall |
DE102015001167A1 (de) | 2015-02-02 | 2016-08-04 | Entex Rust & Mitschke Gmbh | Entgasen bei der Extrusion von Kunststoffen |
DE102015008406A1 (de) | 2015-07-02 | 2017-04-13 | Entex Rust & Mitschke Gmbh | Verfahren zur Bearbeitung von Produkten im Extruder |
DE102016002143A1 (de) | 2016-02-25 | 2017-08-31 | Entex Rust & Mitschke Gmbh | Füllteilmodul in Planetwalzenextruderbauweise |
DE102017004563A1 (de) | 2017-03-05 | 2018-09-06 | Entex Rust & Mitschke Gmbh | Entgasen beim Extrudieren von Polymeren |
DE102017003681A1 (de) | 2017-04-17 | 2018-10-18 | Entex Rust & Mitschke Gmbh | Kühlen beim Extrudieren von Schmelze |
DE102017005999A1 (de) | 2017-05-28 | 2018-11-29 | Entex Rust & Mitschke Gmbh | Herstellung von essbaren Wurstpellen aus Kollagen oder gleichartigen Stoffen durch Extrudieren |
DE102017005998A1 (de) | 2017-06-23 | 2018-12-27 | Entex Rust & Mitschke Gmbh | Chemische Prozeßführung für fließfähiges Einsatzgut in einem Planetwalzenextruder |
DE102017006638A1 (de) | 2017-07-13 | 2019-01-17 | Entex Rust & Mitschke Gmbh | Füllteilmodul in Planetwalzenextruderbauweise |
DE102018001412A1 (de) | 2017-12-11 | 2019-06-13 | Entex Rust & Mitschke Gmbh | Entgasen beim Extrudieren von Stoffen, vorzugsweise von Kunststoffen |
WO2019166125A1 (fr) | 2018-02-28 | 2019-09-06 | Entex Rust & Mitschke Gmbh | Procédé pour la préparation et la transformation de polymères et de mélanges polymères dans une extrudeuse planétaire de structure modulaire |
DE102020007239A1 (de) | 2020-04-07 | 2021-10-07 | E N T E X Rust & Mitschke GmbH | Kühlen beim Extrudieren von Schmelzen |
EP3892441A1 (fr) | 2020-04-07 | 2021-10-13 | Entex Rust & Mitschke GmbH | La mise à niveau d'une installation d'extrudeuse |
Family Cites Families (80)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4118332A (en) * | 1965-10-22 | 1978-10-03 | Colgate-Palmolive Company | Synergistic antibacterial composition containing mixtures of certain halogenated diphenyl ethers and trichlorocarbanilides |
DE2263939C2 (de) | 1972-07-03 | 1983-01-13 | Henkel KGaA, 4000 Düsseldorf | Zur Verwendung in perhydrathaltigen Textilwaschmitteln geeignete Bleichaktivator-Tablette |
ZA734721B (en) | 1972-07-14 | 1974-03-27 | Procter & Gamble | Detergent compositions |
GB1455873A (en) | 1973-08-24 | 1976-11-17 | Procter & Gamble | Textile-softening detergent compositions |
DE2553900A1 (de) | 1975-12-01 | 1977-06-08 | Konrad Ruckstuhl | Verfahren und vorrichtungen zur aufbereitung von gepressten zuckerrohrbagasse-ballen |
DE2832288C2 (de) | 1978-07-22 | 1986-05-22 | Henkel KGaA, 4000 Düsseldorf | Reinigungsmittel zum Reinigen von Nahrungs- und Futtermitteln in Tablettenform |
EP0026529B2 (fr) | 1979-09-29 | 1992-08-19 | THE PROCTER & GAMBLE COMPANY | Compositions détergentes |
DE3066202D1 (en) | 1979-11-03 | 1984-02-23 | Procter & Gamble | Granular laundry compositions |
US4432888A (en) * | 1981-09-30 | 1984-02-21 | Seton Company | Surface active agents based on polypeptides |
CA1238917A (fr) | 1984-01-31 | 1988-07-05 | Vivian B. Valenty | Adjuvant pour detergent |
US4524009A (en) | 1984-01-31 | 1985-06-18 | A. E. Staley Manufacturing Company | Detergent builder |
DE3413571A1 (de) | 1984-04-11 | 1985-10-24 | Hoechst Ag, 6230 Frankfurt | Verwendung von kristallinen schichtfoermigen natriumsilikaten zur wasserenthaertung und verfahren zur wasserenthaertung |
US4639325A (en) | 1984-10-24 | 1987-01-27 | A. E. Staley Manufacturing Company | Detergent builder |
DE3526405A1 (de) | 1985-07-24 | 1987-02-05 | Henkel Kgaa | Schichtsilikate mit beschraenktem quellvermoegen, verfahren zu ihrer herstellung und ihre verwendung in wasch- und reinigungsmitteln |
FR2597473B1 (fr) | 1986-01-30 | 1988-08-12 | Roquette Freres | Procede d'oxydation de di-, tri-, oligo- et polysaccharides en acides polyhydroxycarboxyliques, catalyseur mis en oeuvre et produits ainsi obtenus. |
GB8629837D0 (en) | 1986-12-13 | 1987-01-21 | Interox Chemicals Ltd | Bleach activation |
DE3706036A1 (de) | 1987-02-25 | 1988-09-08 | Basf Ag | Polyacetale, verfahren zu deren herstellung aus dialdehyden und polyolcarbonsaeuren und verwendung der polyacetale |
DE3723826A1 (de) | 1987-07-18 | 1989-01-26 | Henkel Kgaa | Verfahren zur herstellung von alkylglykosiden |
DE3732947A1 (de) | 1987-09-30 | 1989-04-13 | Henkel Kgaa | Zur verwendung in wasch- und reinigungsmitteln geeignetes schaumregulierungsmittel |
DE3816842A1 (de) | 1988-05-18 | 1989-11-23 | Schlueter Gmbh U Co Kg H | Ringmatrizenpresse |
US5576425A (en) | 1988-10-05 | 1996-11-19 | Henkel Kommanditgesellschaft Auf Aktien | Process for the direct production of alkyl glycosides |
DE3833780A1 (de) | 1988-10-05 | 1990-04-12 | Henkel Kgaa | Verfahren zur direkten herstellung von alkylglykosiden |
GB8908416D0 (en) | 1989-04-13 | 1989-06-01 | Unilever Plc | Bleach activation |
ATE107352T1 (de) | 1989-08-09 | 1994-07-15 | Henkel Kgaa | Herstellung verdichteter granulate für waschmittel. |
ATE124960T1 (de) | 1989-11-10 | 1995-07-15 | Tno | Verfahren zur herstellung von polydicarboxysacchariden. |
YU221490A (sh) | 1989-12-02 | 1993-10-20 | Henkel Kg. | Postupak za hidrotermalnu izradu kristalnog natrijum disilikata |
GB9003741D0 (en) | 1990-02-19 | 1990-04-18 | Unilever Plc | Bleach activation |
US5041232A (en) | 1990-03-16 | 1991-08-20 | Lever Brothers Company, Division Of Conopco, Inc. | Sulfonimines as bleach catalysts |
US5047163A (en) | 1990-03-16 | 1991-09-10 | Lever Brothers Company, Division Of Conopco, Inc. | Activation of bleach precursors with sulfonimines |
EP0458397B1 (fr) | 1990-05-21 | 1997-03-26 | Unilever N.V. | Activation du blanchiment |
IT1249883B (it) | 1990-08-13 | 1995-03-30 | Ferruzzi Ricerca & Tec | Agenti sequestranti del calcio a base di carboidrati ossidati e loro impiego come builder per detergenti |
GB9101606D0 (en) | 1991-01-24 | 1991-03-06 | Dow Corning Sa | Detergent foam control agents |
IT1245063B (it) | 1991-04-12 | 1994-09-13 | Ferruzzi Ricerca & Tec | Procedimento per l'ossidazione di carboidrati |
DE4124701A1 (de) | 1991-07-25 | 1993-01-28 | Henkel Kgaa | Verfahren zur herstellung fester wasch- und reinigungsmittel mit hohem schuettgewicht und verbesserter loesegeschwindigkeit |
DE69126778T2 (de) | 1991-07-31 | 1998-01-02 | Ausimont Spa | Verfahren zur Erhöhung der Bleichwirksamkeit eines inorganischen Persalzes |
DE4134914A1 (de) | 1991-10-23 | 1993-04-29 | Henkel Kgaa | Wasch- und reinigungsmittel mit ausgewaehlten builder-systemen |
ATE166362T1 (de) | 1991-11-14 | 1998-06-15 | Procter & Gamble | C6/c2-c3 oxidierte stärke als waschmittelbestandteil |
EP0544490A1 (fr) | 1991-11-26 | 1993-06-02 | Unilever Plc | Compositions détergentes de blanchiment |
US5194416A (en) | 1991-11-26 | 1993-03-16 | Lever Brothers Company, Division Of Conopco, Inc. | Manganese catalyst for activating hydrogen peroxide bleaching |
GB9127060D0 (en) | 1991-12-20 | 1992-02-19 | Unilever Plc | Bleach activation |
CA2085642A1 (fr) | 1991-12-20 | 1993-06-21 | Ronald Hage | Activation de blanchiment |
DE4221381C1 (de) | 1992-07-02 | 1994-02-10 | Stockhausen Chem Fab Gmbh | Pfropf-Copolymerisate von ungesättigten Monomeren und Zuckern, Verfahren zu ihrer Herstellung und ihre Verwendung |
DE4203923A1 (de) | 1992-02-11 | 1993-08-12 | Henkel Kgaa | Verfahren zur herstellung von polycarboxylaten auf polysaccharid-basis |
JPH05339896A (ja) | 1992-06-03 | 1993-12-21 | Arakawa Chem Ind Co Ltd | 紙用サイズ剤および紙サイジング方法 |
DE4235646A1 (de) | 1992-10-22 | 1994-04-28 | Henkel Kgaa | Verfahren zur Herstellung wasch- und reinigungsaktiver Extrudate |
DE4300772C2 (de) | 1993-01-14 | 1997-03-27 | Stockhausen Chem Fab Gmbh | Wasserlösliche, biologisch abbaubare Copolymere auf Basis von ungesättigten Mono- und Dicarbonsäuren, Verfahren zu ihrer Herstellung und ihre Verwendung |
DE4303320C2 (de) | 1993-02-05 | 1995-12-21 | Degussa | Waschmittelzusammensetzung mit verbessertem Schmutztragevermögen, Verfahren zu dessen Herstellung und Verwendung eines geeigneten Polycarboxylats hierfür |
JP3238406B2 (ja) | 1993-05-20 | 2001-12-17 | ザ、プロクター、エンド、ギャンブル、カンパニー | 置換ベンゾイルカプロラクタム漂白活性剤を含む漂白コンパウンド |
CA2161213A1 (fr) | 1993-05-20 | 1994-12-08 | Alan David Willey | Composes de blanchiment renfermant du caprolactame n-acyle pour lavage a la main ou autres methodes de nettoyage utilisant peu d'eau |
DE4317519A1 (de) | 1993-05-26 | 1994-12-01 | Henkel Kgaa | Herstellung von Polycarboxylaten auf Polysaccharid-Basis |
DE4400024A1 (de) | 1994-01-03 | 1995-07-06 | Henkel Kgaa | Silikatische Builder und ihre Verwendung in Wasch- und Reinigungsmitteln sowie Mehrstoffgemische für den Einsatz auf diesem Sachgebiet |
DE4402851A1 (de) | 1994-01-31 | 1995-08-03 | Henkel Kgaa | Wirbelschicht-Oxidationsverfahren zur Herstellung von Polycarboxylaten auf Polysaccharid-Basis |
DE4416438A1 (de) | 1994-05-10 | 1995-11-16 | Basf Ag | Ein- oder mehrkernige Metall-Komplexe und ihre Verwendung als Bleich- und Oxidationskatalysatoren |
DE4417734A1 (de) | 1994-05-20 | 1995-11-23 | Degussa | Polycarboxylate |
ES2221665T3 (es) | 1994-07-21 | 2005-01-01 | Ciba Specialty Chemicals Holding Inc. | Composicion de blanqueo de tejidos. |
GB9419091D0 (en) | 1994-09-22 | 1994-11-09 | Cerestar Holding Bv | Process for decreasing the build up of inorganic incrustations on textiles and detergent composition used in such process |
DE4443177A1 (de) | 1994-12-05 | 1996-06-13 | Henkel Kgaa | Aktivatormischungen für anorganische Perverbindungen |
DE19502168C1 (de) | 1995-01-25 | 1996-06-27 | Henkel Kgaa | Verfahren zur Herstellung von Weizenproteinhydrolysaten |
DE19502167C2 (de) | 1995-01-25 | 1997-02-06 | Henkel Kgaa | Verfahren zur Herstellung von Reisproteinhydrolysaten |
DE19524287A1 (de) | 1995-07-06 | 1997-01-09 | Henkel Kgaa | Von Staub- und Feinanteilen freie granulare Wasch- und Reinigungsmittel hoher Schüttdichte |
DE19547457A1 (de) | 1995-12-19 | 1997-06-26 | Henkel Kgaa | Von Staub- und Feinanteilen freie granulare Wasch- und Reinigungsmittel hoher Schüttdichte |
DE19529905A1 (de) | 1995-08-15 | 1997-02-20 | Henkel Kgaa | Aktivatorkomplexe für Persauerstoffverbindungen |
DE19536082A1 (de) | 1995-09-28 | 1997-04-03 | Henkel Kgaa | Aktivatorkomplexe für Persauerstoffverbindungen |
DE19600018A1 (de) | 1996-01-03 | 1997-07-10 | Henkel Kgaa | Waschmittel mit bestimmten oxidierten Oligosacchariden |
DE19605688A1 (de) | 1996-02-16 | 1997-08-21 | Henkel Kgaa | Übergangsmetallkomplexe als Aktivatoren für Persauerstoffverbindungen |
DE19613103A1 (de) | 1996-04-01 | 1997-10-02 | Henkel Kgaa | Übergangsmetallkomplex-haltige Systeme als Aktivatoren für Persauerstoffverbindungen |
DE19620411A1 (de) | 1996-04-01 | 1997-10-02 | Henkel Kgaa | Übergangsmetallamminkomplexe als Aktivatoren für Persauerstoffverbindungen |
DK173111B1 (da) * | 1996-04-03 | 2000-01-31 | Cleantabs As | Tøjvasketabletter |
DE19616693A1 (de) | 1996-04-26 | 1997-11-06 | Henkel Kgaa | Enolester als Bleichaktivatoren für Wasch- und Reinigungsmittel |
DE19616767A1 (de) | 1996-04-26 | 1997-11-06 | Henkel Kgaa | Bleichaktivatoren für Wasch- und Reinigungsmittel |
DE19616769A1 (de) | 1996-04-26 | 1997-11-06 | Henkel Kgaa | Acylacetale als Bleichaktivatoren für Wasch- und Reinigungsmittel |
DE19616770A1 (de) | 1996-04-26 | 1997-11-06 | Henkel Kgaa | Acyllactame als Bleichaktivatoren für Wasch- und Reinigungsmittel |
DE19620267A1 (de) | 1996-05-20 | 1997-11-27 | Henkel Kgaa | Katalytisch wirksame Aktivatorkomplexe mit N¶4¶-Liganden für Persauerstoffverbindungen |
DE19701896A1 (de) * | 1997-01-21 | 1998-07-23 | Clariant Gmbh | Granulares sekundäres Alkansulfonat |
DE19709991C2 (de) | 1997-03-11 | 1999-12-23 | Rettenmaier & Soehne Gmbh & Co | Waschmittelpreßling und Verfahren zu seiner Herstellung |
DE19710254A1 (de) | 1997-03-13 | 1998-09-17 | Henkel Kgaa | Wasch- oder reinigungsaktive Formkörper für den Gebrauch im Haushalt |
DE29724283U1 (de) * | 1997-06-03 | 2000-10-05 | Henkel KGaA, 40589 Düsseldorf | Hilfsmittelgranulat für wasch- und reinigungsaktive Formkörper |
DE19801085A1 (de) | 1998-01-14 | 1999-07-15 | Henkel Kgaa | Homogene Tensidgranulate für die Herstellung von stückigen Wasch- und Reinigungsmitteln |
AU2452499A (en) * | 1999-01-07 | 2000-07-24 | Procter & Gamble Company, The | Detergent compositions having a protein |
DE19918188A1 (de) * | 1999-04-22 | 2000-10-26 | Cognis Deutschland Gmbh | Reinigungsmittel für harte Oberflächen |
-
1999
- 1999-11-25 DE DE19956802A patent/DE19956802A1/de not_active Ceased
-
2000
- 2000-11-16 ES ES00987256T patent/ES2231298T3/es not_active Expired - Lifetime
- 2000-11-16 US US10/130,841 patent/US6977239B1/en not_active Expired - Fee Related
- 2000-11-16 WO PCT/EP2000/011340 patent/WO2001038476A1/fr active IP Right Grant
- 2000-11-16 DE DE2000508268 patent/DE50008268D1/de not_active Expired - Lifetime
- 2000-11-16 EP EP00987256A patent/EP1235897B1/fr not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
WO2001038476A1 (fr) | 2001-05-31 |
US6977239B1 (en) | 2005-12-20 |
DE19956802A1 (de) | 2001-06-13 |
ES2231298T3 (es) | 2005-05-16 |
EP1235897A1 (fr) | 2002-09-04 |
DE50008268D1 (de) | 2004-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1235897B1 (fr) | Pastilles de detergent | |
EP1240290B1 (fr) | Granulats de tensioactifs presentant une plus grande vitesse de dissolution | |
EP1240287B1 (fr) | Pastilles de detergent | |
EP1232242B1 (fr) | Granules d'agent tensio-actif a vitesse de decomposition amelioree | |
EP1188817A2 (fr) | Composition Detergente | |
EP1106675A2 (fr) | Utilisation de polyglycolethers de glycerides partiels | |
EP1228192A1 (fr) | Granules de tensioactifs presentant une vitesse de dissolution amelioree | |
EP1191094A2 (fr) | Composition Detergente | |
EP1081219B1 (fr) | Détergents sous forme solide | |
EP1214389B1 (fr) | Melanges de tensioactifs | |
WO2001018164A1 (fr) | Detergents | |
EP1228187A1 (fr) | Pastilles de detergent | |
WO2001000763A1 (fr) | Detergent solide a mousse controlee | |
EP1081213A1 (fr) | Agents de lavage solides à mousse contrôlée | |
EP1090979A1 (fr) | Granulés anti-mousse | |
EP1204732A1 (fr) | Detergents solides a mousse controlee | |
EP1248831A1 (fr) | Granulats tensioactifs | |
DE10162645A1 (de) | Tensidgranulate mit verbesserter Auflösegeschwindigkeit durch Zusatz von modifizierten Polyacrylsäure-Salzen | |
EP1078979A1 (fr) | Agents de lavage solides à mousse contrôlée | |
EP1090978A1 (fr) | Agent de lavage, de rinçage et nettoyage solide contenant des granulats antimousse | |
WO2001000762A1 (fr) | Detergents solides a mousse controlee | |
WO2001000761A1 (fr) | Detergents solides a mousse controlee | |
EP1083215A1 (fr) | Composition détergente |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20020516 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
17Q | First examination report despatched |
Effective date: 20030925 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): BE DE ES FR GB IT |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE ES FR GB IT |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: GERMAN |
|
REF | Corresponds to: |
Ref document number: 50008268 Country of ref document: DE Date of ref document: 20041118 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20041130 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20050214 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2231298 Country of ref document: ES Kind code of ref document: T3 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
BERE | Be: lapsed |
Owner name: COGNIS DEUTSCHLAND G.M.B.H. & CO. KG Effective date: 20041130 |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: COGNIS DEUTSCHLAND GMBH & CO. KG |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: COGNIS IP MANAGEMENT GMBH |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
ET | Fr: translation filed | ||
26N | No opposition filed |
Effective date: 20050714 |
|
BERE | Be: lapsed |
Owner name: *COGNIS DEUTSCHLAND G.M.B.H. & CO. K.G. Effective date: 20041130 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20090514 AND 20090520 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20101120 Year of fee payment: 11 Ref country code: GB Payment date: 20101110 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20111228 Year of fee payment: 12 Ref country code: FR Payment date: 20111214 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20120131 Year of fee payment: 12 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20121116 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20130731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121116 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50008268 Country of ref document: DE Effective date: 20130601 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130601 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121130 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121116 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20140513 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121117 |