EP1188817A2 - Composition Detergente - Google Patents

Composition Detergente Download PDF

Info

Publication number
EP1188817A2
EP1188817A2 EP01120862A EP01120862A EP1188817A2 EP 1188817 A2 EP1188817 A2 EP 1188817A2 EP 01120862 A EP01120862 A EP 01120862A EP 01120862 A EP01120862 A EP 01120862A EP 1188817 A2 EP1188817 A2 EP 1188817A2
Authority
EP
European Patent Office
Prior art keywords
acid
alcohol
weight
alkyl
cationic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01120862A
Other languages
German (de)
English (en)
Other versions
EP1188817A3 (fr
Inventor
Ditmar Kischkel
Manfred Dr. Weuthen
Jutta Stute
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF Personal Care and Nutrition GmbH
Original Assignee
Cognis Deutschland GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cognis Deutschland GmbH and Co KG filed Critical Cognis Deutschland GmbH and Co KG
Publication of EP1188817A2 publication Critical patent/EP1188817A2/fr
Publication of EP1188817A3 publication Critical patent/EP1188817A3/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/373Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicones
    • C11D3/3742Nitrogen containing silicones
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • C11D3/124Silicon containing, e.g. silica, silex, quartz or glass beads
    • C11D3/1246Silicates, e.g. diatomaceous earth
    • C11D3/1253Layer silicates, e.g. talcum, kaolin, clay, bentonite, smectite, montmorillonite, hectorite or attapulgite
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • C11D3/124Silicon containing, e.g. silica, silex, quartz or glass beads
    • C11D3/1246Silicates, e.g. diatomaceous earth
    • C11D3/1253Layer silicates, e.g. talcum, kaolin, clay, bentonite, smectite, montmorillonite, hectorite or attapulgite
    • C11D3/1273Crystalline layered silicates of type NaMeSixO2x+1YH2O
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • C11D3/124Silicon containing, e.g. silica, silex, quartz or glass beads
    • C11D3/1246Silicates, e.g. diatomaceous earth
    • C11D3/128Aluminium silicates, e.g. zeolites
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/22Carbohydrates or derivatives thereof
    • C11D3/222Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin
    • C11D3/227Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin with nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3719Polyamides or polyimides
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3723Polyamines or polyalkyleneimines
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3769(Co)polymerised monomers containing nitrogen, e.g. carbonamides, nitriles or amines
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3769(Co)polymerised monomers containing nitrogen, e.g. carbonamides, nitriles or amines
    • C11D3/3776Heterocyclic compounds, e.g. lactam

Definitions

  • the invention is in the field of detergents and relates to preparations with an active surfactant system.
  • Detergents are available on the market that not only clean the laundry, but also you should give a soft grip.
  • Such preparations often referred to as soft detergents contain, as a finishing agent, generally cationic surfactants of the type Tetraalkylammonium compounds, usually together with layered silicates.
  • the detergent are usually based on anionic surfactants, it occurs in the presence of cationic surfactants easily lead to undesirable salt formation, which can deactivate part of the active washing components and also leads to deposits on the fibers.
  • the manufacturer of soft detergents to maintain a balance and only use as much cationic surfactant in the recipe as this without significant salt formation is possible. As a rule, this amount is still less than 0.5% by weight.
  • Use concentrations are of course immediately clear why the soft detergents of the market so far are not very successful and usual liquid fabric softener, which is only in the rinse cycle be metered after completion of the actual laundry, so far have not displaced can.
  • the object of the present invention was to provide new detergents, preferably in the form of powders, granules, extrudates or agglomerates to face where the problem of salt formation between anionic and cationic Surfactants is dissolved, so that with high washing performance, the use of larger Amounts of cationic surfactants are possible and thus better fiber finish is achieved.
  • the detergents according to the invention initially meet the requirements mentioned in an excellent manner.
  • the cationic polymers do not show only one improved soft feel, at the same time the tendency to salt formation with anionic surfactants reduced, which makes the production of detergents possible compared to the State of the art have a higher cationic surfactant content.
  • the detergents can be anionic, nonionic and / or amphoteric as component (a) or contain zwitterionic surfactants; however, anionic surfactants or Combinations of anionic and nonionic surfactants present.
  • anionic surfactants are soaps, alkyl benzene sulfonates, alkane sulfonates, olefin sulfonates, alkyl ether sulfonates, Glycerol ether sulfonates, ⁇ -methyl ester sulfonates, sulfofatty acids, alkyl sulfates, Fatty alcohol ether sulfates, glycerol ether sulfates, hydroxy mixed ether sulfates, monoglyceride (ether) sulfates, Fatty acid amide (ether) sulfates, mono- and dialkyl sulfosuccinates, mono- and Dialkylsulfosuccina
  • anionic surfactants contain polyglycol ether chains, these can be a conventional, but preferably a narrowed homolog distribution exhibit.
  • Alkylbenzenesulfonates, alkylsulfates, soaps, alkanesulfonates, Olefin sulfonates, methyl ester sulfonates and mixtures thereof are used.
  • Preferred alkylbenzenesulfonates preferably follow the formula (I) R-Ph-SO 3 X in which R stands for a branched, but preferably linear alkyl radical having 10 to 18 carbon atoms, Ph for a phenyl radical and X for an alkali and / or alkaline earth metal, ammonium, alkylammonium, alkanolammonium or glucammonium.
  • R stands for a branched, but preferably linear alkyl radical having 10 to 18 carbon atoms
  • Ph for a phenyl radical
  • X for an alkali and / or alkaline earth metal, ammonium, alkylammonium, alkanolammonium or glucammonium.
  • dodecylbenzenesulfonates, tetradecylbenzenesulfonates, hexadecylbenzenesulfonates and their technical mixtures in the form of the sodium salts are
  • Alkyl and / or alkenyl sulfates which are also often referred to as fatty alcohol sulfates, are to be understood as meaning the sulfation products of primary and / or secondary alcohols, which preferably follow the formula (II) R 2 O-SO 3 Y in which R 2 represents a linear or branched, aliphatic alkyl and / or alkenyl radical having 6 to 22, preferably 12 to 18 carbon atoms and Y represents an alkali and / or alkaline earth metal, ammonium, alkylammonium, alkanolammonium or glucammonium.
  • alkyl sulfates which can be used in the context of the invention are the sulfation products of capron alcohol, caprylic alcohol, capric alcohol, 2-ethylhexyl alcohol, lauryl alcohol, myristyl alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, aryl selenyl alcohol, elaidyl alcohol, Behenyl alcohol and erucyl alcohol and their technical mixtures, which are obtained from high pressure hydrogenation of technical methyl ester fractions or aldehydes from Roelen's oxosynthesis.
  • the sulfation products can preferably be used in the form of their alkali metal salts and in particular their sodium salts.
  • Alkyl sulfates based on C 16/18 tallow fatty alcohols or vegetable fatty alcohols of comparable C chain distribution in the form of their sodium salts are particularly preferred.
  • these are oxo alcohols, as are obtainable, for example, by converting carbon monoxide and hydrogen to alpha-permanent olefins using the shop process.
  • Such alcohol mixtures are commercially available under the trade names Dobanol® or Neodol®. Suitable alcohol mixtures are Dobanol 91®, 23®, 25®, 45®.
  • oxo alcohols such as those obtained by the classic Enichema or Condea oxo process by addition of carbon monoxide and hydrogen onto olefins.
  • These alcohol mixtures are a mixture of strongly branched alcohols.
  • Such alcohol mixtures are commercially available under the trade name Lial®.
  • Suitable alcohol mixtures are Lial 91®, 111®, 123®, 125®, 145®.
  • soaps are to be understood as meaning fatty acid salts of the formula (III) R 3 CO-OX in which R 3 CO represents a linear or branched, saturated or unsaturated acyl radical having 6 to 22 and preferably 12 to 18 carbon atoms and X represents alkali and / or alkaline earth metal, ammonium, alkylammonium or alkanolammonium.
  • Typical examples are the sodium, potassium, magnesium, ammonium and triethanolammonium salts of caproic acid, caprylic acid, 2-ethylhexanoic acid, capric acid, lauric acid, isotridecanoic acid, myristic acid, palmitic acid, palmoleic acid, stearic acid, isostearic acid, oleic acid, elaoleic acid, petoleic acid, linoleic acid, petoleic acid, linoleic acid, linoleic acid, petol acid Linolenic acid, elaeostearic acid, arachic acid, gadoleic acid, behenic acid and erucic acid and their technical mixtures.
  • coconut or palm kernel fatty acid is preferably used in the form of its sodium or potassium salts.
  • nonionic surfactants are fatty alcohol polyglycol ethers, alkylphenol polyglycol ethers, Fatty acid polyglycol ester, fatty acid amide polyglycol ether, fatty amine polyglycol ether, alkoxylated triglycerides, mixed ethers or mixed formals, alk (en) yl oligoglycosides, fatty acid N-alkylglucamides, Protein hydrolysates (especially vegetable products based on wheat), Polyol fatty acid esters, sugar esters, sorbitan esters, polysorbates and amine oxides.
  • nonionic surfactants contain polyglycol ether chains, these can be a conventional, but preferably have a narrow homolog distribution. Preferably become fatty alcohol polyglycol ethers, alkoxylated fatty acid lower alkyl esters or alkyl oligoglucosides used.
  • the preferred fatty alcohol polyglycol ethers follow the formula (IV) R 4 O (CH 2 CHR 5 O) n H in which R 4 represents a linear or branched alkyl and / or alkenyl radical having 6 to 22, preferably 12 to 18 carbon atoms, R 5 represents hydrogen or methyl and n represents numbers from 1 to 20.
  • Typical examples are the addition products of an average of 1 to 20 and preferably 5 to 10 moles of ethylene and / or propylene oxide with capron alcohol, caprylic alcohol, 2-ethylhexyl alcohol, capric alcohol, lauryl alcohol, isotricecyl alcohol, myristyl alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, isosteary alcohol , Oleyl alcohol, elaidyl alcohol, petroselinyl alcohol, linolyl alcohol, linolenyl alcohol, elaeostearyl alcohol, arachyl alcohol, gadoleyl alcohol, behenyl alcohol, erucyl alcohol and brassidyl alcohol and their technical mixtures. Addition products of 3, 5 or 7 moles of ethylene oxide onto technical coconut oil alcohols are particularly preferred.
  • Suitable alkoxylated fatty acid lower alkyl esters are surfactants of the formula (V) R 6 CO (OCH 2 CHR 7 ) m OR 8 in which R 6 CO is a linear or branched, saturated and / or unsaturated acyl radical having 6 to 22 carbon atoms, R 7 is hydrogen or methyl, R 8 is a linear or branched alkyl radical having 1 to 4 carbon atoms and m is a number from 1 to 20 stands.
  • Typical examples are the formal insert products of an average of 1 to 20 and preferably 5 to 10 moles of ethylene and / or propylene oxide in the methyl, ethyl, propyl, isopropyl, butyl and tert-butyl esters of caproic acid, caprylic acid, 2 -Ethylhexanoic acid, capric acid, lauric acid, isotridecanoic acid, myristic acid, palmitic acid, palmoleic acid, stearic acid, isostearic acid, oleic acid, elaidic acid, petroselinic acid, linoleic acid, linolenic acid, elaeostearic acid, arachidic acid, gadoleic acid, behenic acid, and technical grade mixtures and erucas.
  • the products are usually prepared by inserting the alkylene oxides into the carbonyl ester bond in the presence of special catalysts, such as, for example, calcined hydrotalcite. Conversion products of an average of 5 to 10 moles of ethylene oxide into the ester linkage of technical coconut fatty acid methyl esters are particularly preferred.
  • Alkyl and alkenyl oligoglycosides which are also preferred nonionic surfactants, usually follow the formula (VI), R 9 O [G] p in which R 9 represents an alkyl and / or alkenyl radical having 4 to 22 carbon atoms, G represents a sugar radical having 5 or 6 carbon atoms and p represents numbers from 1 to 10. They can be obtained according to the relevant procedures in preparative organic chemistry. As representative of the extensive literature, reference is made here to the documents EP 0301298 A1 and WO 90/03977 .
  • the alkyl and / or alkenyl oligoglycosides can be derived from aldoses or ketoses with 5 or 6 carbon atoms, preferably glucose.
  • the preferred alkyl and / or alkenyl oligoglycosides are thus alkyl and / or alkenyl oligoglucosides.
  • Alkyl and / or alkenyl oligoglycosides with an average degree of oligomerization p of 1.1 to 3.0 are preferably used. From an application point of view, preference is given to those alkyl and / or alkenyl oligoglycosides whose degree of oligomerization is less than 1.7 and in particular between 1.2 and 1.4.
  • the alkyl or alkenyl radical R 9 can be derived from primary alcohols having 4 to 11, preferably 8 to 10, carbon atoms.
  • Typical examples are butanol, capro alcohol, caprylic alcohol, capric alcohol and undecyl alcohol and their technical mixtures, such as are obtained, for example, in the hydrogenation of technical fatty acid methyl esters or in the course of the hydrogenation of aldehydes from Roelen's oxosynthesis.
  • the alkyl or alkenyl radical R 9 can also be derived from primary alcohols having 12 to 22, preferably 12 to 14, carbon atoms. Typical examples are lauryl alcohol, myristyl alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, elaidyl alcohol, petroselinyl alcohol, arachyl alcohol, gadoleyl alcohol, behenyl alcohol, erucyl alcohol, brassidyl alcohol and their technical mixtures, which can be obtained as described above. Alkyl oligoglucosides based on hardened C 12/14 coconut alcohol with a DP of 1 to 3 are preferred.
  • amphoteric or zwitterionic surfactants are alkyl betaines, alkyl amido betaines, aminopropionates, aminoglycinates, imidazolinium betaines and sulfobetaines.
  • the surfactants mentioned are exclusively known compounds. With regard to the structure and manufacture of these substances, reference is made to relevant reviews, for example, J.Falbe (ed.), "Surfactants in Consumer Products", Springer Verlag, Berlin, 1987, pp. 54-124 or J.Falbe (ed.), "Catalysts, Tenside und Mineralöladditive ", Thieme Verlag, Stuttgart, 1978, pp. 123-217 .
  • the detergents can be anionic, nonionic and / or amphoteric or zwitterionic Surfactants in amounts of 1 to 50, preferably 5 to 25 and in particular 10 to 20 wt .-% - based on the detergent - contain.
  • Cationic polymers suitable as component (b) are, for example, cationic cellulose derivatives, such as, for example, a quaternized hydroxyethyl cellulose, which is available under the name Polymer JR 400® from Amerchol, cationic starch, copolymers of diallylammonium salts and acrylamides, quaternized vinylpyrrolidone / vinylmidazole polymers, for example Luviquat® (BASF), condensation products of polyglycols and amines, quaternized collagen polypeptides, such as lauryldimonium hydroxypropyl hydrolyzed collagen (Lamequat®L / Grünau), quaternized wheat polypeptides, polyethyleneimine, cationic silicone polymers, such as amodimethicone, copolymers of adehydohydroxyamine and adipohydroxin amine (adipohydroxin amine) Sandoz), copolymers of acrylic acid with dimethyl-
  • the agents according to the invention can contain the cationic polymers in amounts of 0.1 to 10. preferably 1 to 8 and in particular 3 to 5% by weight, based on the composition.
  • the detergents according to the invention may contain zeolites as builders (component c).
  • the fine crystalline, synthetic and bound water-containing zeolite which is frequently used as a detergent builder is preferably zeolite A and / or P.
  • zeolite P for example, zeolite MAP (R) (commercial product from Crosfield) is particularly preferred.
  • zeolite X and mixtures of A, X and / or P and Y are also suitable.
  • zeolite X and mixtures of A, X and / or P and Y are also suitable.
  • zeolite X and mixtures of A, X and / or P and Y are also suitable.
  • zeolite X and mixtures of A, X and / or P and Y are also suitable.
  • VEGOBOND AX® commercial product from Condea Augusta SpA
  • the zeolite can be used as a spray-dried powder or as an undried stabilized suspension that is still moist from its manufacture.
  • the zeolite can contain minor additions of nonionic surfactants as stabilizers, for example 1 to 3% by weight, based on zeolite, of ethoxylated C 12 -C 18 fatty alcohols with 2 to 5 ethylene oxide groups , C 12 -C 14 fatty alcohols with 4 to 5 ethylene oxide groups or ethoxylated isotridecanols.
  • Suitable zeolites have an average particle size of less than 10 ⁇ m (volume distribution; measurement method: Coulter Counter) and preferably contain 18 to 22% by weight, in particular 20 to 22% by weight, of bound water.
  • the zeolites are preferably contained in the final preparations in amounts of 10 to 60, in particular 15 to 25,% by weight, based on the composition.
  • amorphous sodium silicates with a Na 2 O: SiO 2 modulus from 1: 2 to 1: 3.3, preferably from 1: 2 to 1: 2.8 and in particular from 1: 2 to 1: 2.6 can also be used , which are delayed release and have secondary washing properties.
  • the delay in dissolution compared to conventional amorphous sodium silicates can be caused in various ways, for example by surface treatment, compounding, compacting / compression or by overdrying.
  • the term “amorphous” is also understood to mean “X-ray amorphous”.
  • silicates in X-ray diffraction experiments do not provide sharp X-ray reflections, as are typical for crystalline substances, but at most one or more maxima of the scattered X-rays, which have a width of several degree units of the diffraction angle.
  • it can very well lead to particularly good builder properties if the silicate particles deliver washed-out or even sharp diffraction maxima in electron diffraction experiments. This is to be interpreted as meaning that the products have microcrystalline areas of size 10 to a few hundred nm, values up to max. 50 nm and in particular up to max. 20 nm are preferred.
  • Such so-called X-ray amorphous silicates which also have a delay in dissolution compared to conventional water glasses, are described, for example, in German patent application DE 4400024 A1 .
  • Compacted / compacted amorphous silicates, compounded amorphous silicates and over-dried X-ray amorphous silicates are particularly preferred.
  • the phyllosilicates can be - based on the agent - in amounts of 1 to 10, preferably 3 to 8 wt .-% be present.
  • Further preferred ingredients of the detergents according to the invention are additional inorganic and organic builder substances, being inorganic builder substances mainly phosphates are used.
  • the amount of co-builder is based on that count preferred amounts of zeolites.
  • the sodium salts of orthophosphates, pyrophosphates, are particularly suitable and especially the tripolyphosphates.
  • the phosphates are in the en preparations preferably in amounts of 10 to 60, in particular 20 to 40% by weight, based on the means - contain.
  • Useful organic builders are, for example, those in the form of their sodium salts usable polycarboxylic acids, such as citric acid, adipic acid, succinic acid, Glutaric acid, tartaric acid, sugar acids, aminocarboxylic acids, nitrilotriacetic acid (NTA), if such use is not objectionable for ecological reasons, and Mixtures of these.
  • Preferred salts are the salts of polycarboxylic acids such as Citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, sugar acids and Mixtures of these. The acids themselves can also be used.
  • the acids In addition to their builder effect, they typically also have the property of an acidifying component and thus also serve to set a lower and milder one pH value of detergents or cleaning agents.
  • organic cobuilders are, for example, acetylated hydroxycarboxylic acids or their salts, which may also be in lactone form and which contain at least 4 carbon atoms and at least one hydroxyl group and a maximum of two acid groups.
  • Such cobuilders are described, for example, in international patent application WO 95/20029 .
  • Suitable polymeric polycarboxylates are, for example, the sodium salts of polyacrylic acid or polymethacrylic acid, for example those with a relative molecular weight of 800 to 150,000 (based on acid and measured in each case against polystyrene sulfonic acid).
  • Suitable copolymeric polycarboxylates are, in particular, those of acrylic acid with methacrylic acid and of acrylic acid or methacrylic acid with maleic acid. Copolymers of acrylic acid with maleic acid which contain 50 to 90% by weight of acrylic acid and 50 to 10% by weight of maleic acid have proven to be particularly suitable.
  • the relative molecular weight, based on free acids, is generally 5,000 to 200,000, preferably 10,000 to 120,000 and in particular 50,000 to 100,000 (measured in each case against polystyrene sulfonic acid).
  • the (co) polymeric polycarboxylates can be used either as a powder or as an aqueous solution, with 20 to 55% by weight aqueous solutions being preferred.
  • Granular polymers are usually subsequently mixed into one or more basic granules.
  • biodegradable polymers composed of more than two different monomer units, for example those which, according to DE 4300772 A1, as salts of acrylic acid and maleic acid as well as vinyl alcohol or vinyl alcohol derivatives or as DE 4221381 C2 as monomer salts of acrylic acid and the 2-alkylallylsulfonic acid and sugar derivatives.
  • Further preferred copolymers are those which are described in German patent applications DE 4303320 A1 and DE 4417734 A1 and which preferably have acrolein and acrylic acid / acrylic acid salts or acrolein and vinyl acetate as monomers.
  • polymeric aminodicarboxylic acids their salts or their precursor substances. Polyaspartic acids or their salts and derivatives are particularly preferred.
  • polyacetals which can be obtained by reacting dialdehydes with polyolcarboxylic acids which have 5 to 7 carbon atoms and at least 3 hydroxyl groups, for example as described in European patent application EP 0280223 A1 .
  • Preferred polyacetals are obtained from dialdehydes such as glyoxal, glutaraldehyde, terephthalaldehyde and their mixtures and from polyol carboxylic acids such as gluconic acid and / or glucoheptonic acid.
  • Suitable organic builder substances are dextrins, for example oligomers or polymers of carbohydrates, which can be obtained by partial hydrolysis of starches.
  • the hydrolysis can be carried out by customary processes, for example acid-catalyzed or enzyme-catalyzed. They are preferably hydrolysis products with average molar masses in the range from 400 to 500,000.
  • DE dextrose equivalent
  • Both maltodextrins with a DE between 3 and 20 and dry glucose syrups with a DE between 20 and 37 as well as so-called yellow dextrins and white dextrins with higher molar masses in the range from 2,000 to 30,000 can be used.
  • a preferred dextrin is described in British patent application GB 9419091 A1 ,
  • the oxidized derivatives of such dextrins are their reaction products with oxidizing agents which are capable of oxidizing at least one alcohol function of the saccharide ring to the carboxylic acid function.
  • Such oxidized dextrins and processes for their preparation are known, for example, from European patent applications EP 0232202 A1, EP 0427349 A1, EP 0472042 A1 and EP 0542496 A1 as well as from international patent applications WO 92/18542, WO 93/08251, WO 93/16110, WO 94 / 28030, WO 95/07303, WO 95/12619 and WO 95/20608 are known.
  • An oxidized oligosaccharide according to German patent application DE 19600018 A1 is also suitable .
  • a product oxidized at C 6 of the saccharide ring can be particularly advantageous.
  • Suitable cobuilders are oxydisuccinates and other derivatives of disuccinates, preferably ethylenediamine disuccinate. Also particularly preferred in this context are glycerol disuccinates and glycerol trisuccinates , as described, for example, in US Pat. Nos. 4,524,009, 4,639,325, in European patent application EP 0150930 A1 and in Japanese patent application JP 93/339896 . Suitable amounts used in formulations containing zeolite and / or silicate are 3 to 15% by weight.
  • the agents can also contain components that make the oil and fat washable made of textiles.
  • the preferred oil and fat dissolving Components include, for example, nonionic cellulose ethers such as methyl cellulose and Methyl hydroxypropyl cellulose with a proportion of methoxyl groups of 15 to 30% by weight and on hydroxypropoxyl groups from 1 to 15% by weight, based in each case on the nonionic Cellulose ether, as well as the polymers of phthalic acid known from the prior art and / or terephthalic acid or its derivatives, in particular polymers Ethylene terephthalates and / or polyethylene glycol terephthalates or anionic and / or nonionically modified derivatives of these. Of these, the are particularly preferred sulfonated derivatives of phthalic acid and terephthalic acid polymers.
  • bleaching agents that can be used are, for example, sodium percarbonate, peroxypyrophosphates, citrate perhydrates and H 2 O 2 -supplying peracidic salts or peracids, such as perbenzoates, peroxophthalates, diperazelaic acid, phthaloiminoperic acid or diperdodecanedioic acid.
  • the bleaching agent content of the agents is preferably 5 to 35% by weight and in particular up to 30% by weight, advantageously using perborate monohydrate or percarbonate.
  • Bleach activators which can be used are compounds which, under perhydrolysis conditions, give aliphatic peroxocarboxylic acids having preferably 1 to 10 C atoms, in particular 2 to 4 C atoms, and / or optionally substituted perbenzoic acid. Suitable substances are those which carry O- and / or N-acyl groups of the number of carbon atoms mentioned and / or optionally substituted benzoyl groups.
  • Multi-acylated alkylenediamines in particular tetraacetylethylenediamine (TAED), acylated triazine derivatives, in particular 1,5-diacetyl-2,4-dioxohexahydro-1,3,5-triazine (DADHT), acylated glycolurils, in particular tetraacetylglycoluril (TAGU), N- Acylimides, especially N-nonanoylsuccinimide (NOSI), acylated phenolsulfonates, especially n-nonanoyl- or isononanoyloxybenzenesulfonate (n- or iso-NOBS), carboxylic acid anhydrides, especially phthalic anhydride, acylated polyhydric alcohols, especially triacetyloxy, 2,5-acetiacetyl, ethylene glycol 2,5-dihydrofuran and the enol esters known from German patent applications
  • hydrophilically substituted acylacetals known from German patent application DE 19616769 A1 and the acyl lactams described in German patent application DE 196 16 770 and international patent application WO 95/14075 are also preferably used.
  • the combinations of conventional bleach activators known from German patent application DE 4443177 A1 can also be used. Bleach activators of this type are present in the customary quantitative range, preferably in amounts of 1% by weight to 10% by weight, in particular 2% by weight to 8% by weight, based on the total agent.
  • the sulfonimines and / or bleach-enhancing transition metal salts or transition metal complexes known from European patents EP 0446982 B1 and EP 0453 003 B1 can also be present as so-called bleaching catalysts.
  • the transition metal compounds in question include in particular the manganese, iron, cobalt, ruthenium or molybdenum-salt complexes known from German patent application DE 19529905 A1 and their N-analog compounds known from German patent application DE 19620267 A1, which are known from German Patent application DE 19536082 A1 known manganese, iron, cobalt, ruthenium or molybdenum carbonyl complexes, the manganese, iron, cobalt, ruthenium, molybdenum, titanium, vanadium described in German patent application DE 196 05 688 - and copper complexes with nitrogen-containing tripod ligands known from the German patent application DE 19620411 A1 cobalt, iron, copper and ruthenium-ammine complexes, the manganese described in the German patent application DE 4416438 A1, copper and cobalt complexes, the cobalt complexes described in European patent application EP 0272030 A1, which are known from the European patent application EP 0693550 A1 manganese Complex
  • Bleach-enhancing transition metal complexes in particular with the central atoms Mn, Fe, Co, Cu, Mo, V, Ti and / or Ru, are used in customary amounts, preferably in an amount of up to 1% by weight, in particular 0.0025% by weight. % to 0.25% by weight and particularly preferably from 0.01% by weight to 0.1% by weight, in each case based on the total agent.
  • hydrolases such as proteases, Esterases, lipases or lipolytic enzymes, amylases, cellulases or others Glycosyl hydrolases and mixtures of the enzymes mentioned in question. All of these hydrolases contribute to the removal of stains in the laundry, such as those containing protein, fat or starch Stains, and graying. Cellulases and other glycos
  • Bacterial strains are particularly suitable or fungi such as Bacillus subtilis, Bacillus licheniformis, Streptomyces griseus and Humicola insolens obtained enzymatic agents.
  • Proteases are preferred of the subtilisin type and in particular proteases obtained from Bacillus lentus, used.
  • Enzyme mixtures for example of protease and amylase or Protease and lipase or lipolytic enzymes or protease and cellulase or from cellulase and lipase or lipolytically active enzymes or from protease, amylase and lipase or lipolytic enzymes or protease, lipase or lipolytic Enzymes and cellulase, but especially protease and / or lipase-containing mixtures or mixtures with lipolytically active enzymes of particular interest.
  • Known cutinases are examples of such lipolytically active enzymes.
  • Peroxidases too or oxidases have been found to be suitable in some cases.
  • Amylases include in particular ⁇ -amylases, iso-amylases, pullulanases and pectinases.
  • Cellobiohydrolases, endoglucanases and ⁇ -glucosidases are preferably used as cellulases, which are also called cellobiases, or mixtures of these are used. Because the different cellulase types are characterized by their CMCase and Avicelase activities can differentiate, by targeted mixtures of the cellulases the desired activities can be set.
  • the enzymes can be adsorbed on carriers and / or embedded in coating substances to protect them against premature decomposition.
  • the proportion of enzymes, enzyme mixtures or enzyme granules can, for example, about 0.1 to 5 wt .-%, preferably 0.1 to about 2 wt .-%.
  • the agents can contain further enzyme stabilizers.
  • enzyme stabilizers For example, 0.5 to 1% by weight sodium formate can be used. It is also possible to use proteases which are stabilized with soluble calcium salts and a calcium content of preferably about 1.2% by weight, based on the enzyme.
  • calcium salts magnesium salts also serve as stabilizers.
  • boron compounds for example boric acid, boron oxide, borax and other alkali metal borates, such as the salts of orthoboric acid (H 3 BO 3 ), metaboric acid (HBO 2 ) and pyrobic acid (tetraboric acid H 2 B 4 O 7 ), is particularly advantageous.
  • Graying inhibitors have the task of removing the dirt detached from the fiber in the Keep the liquor suspended and thus prevent the dirt from re-opening.
  • Water-soluble colloids of mostly organic nature are suitable for this purpose, for example the water-soluble salts of polymeric carboxylic acids, glue, gelatin, salts of ether carboxylic acids or ether sulfonic acids of starch or cellulose or salts of acidic sulfuric acid esters cellulose or starch. Also water-soluble containing acidic groups Polyamides are suitable for this purpose. Soluble starch preparations can also be used and use starch products other than the above, e.g. degraded starch, aldehyde starches etc. Polyvinylpyrrolidone can also be used.
  • cellulose ethers are preferred, such as carboxymethyl cellulose (Na salt), methyl cellulose, hydroxyalkyl cellulose and mixed ethers such as methylhydroxyethyl cellulose, methyl hydroxypropyl cellulose, methyl carboxymethyl cellulose and their mixtures, and polyvinylpyrrolidone, for example in quantities from 0.1 to 5% by weight, based on the composition.
  • the agents can contain derivatives of diaminostilbenedisulfonic acid or its alkali metal salts. Suitable are, for example, salts of 4,4'-bis (2-anilino-4-morpholino-1,3,5-triazinyl-6-amino) stilbene-2,2'-disulfonic acid or compounds of similar structure which instead of the morpholino- Group carry a diethanolamino group, a methylamino group, anilino group or a 2-methoxyethylamino group.
  • Brighteners of the substituted diphenylstyryl type may also be present, for example the alkali salts of 4,4'-bis (2-sulfostyryl) diphenyl, 4,4'-bis (4-chloro-3-sulfostyryl) diphenyl, or 4- (4-chlorostyryl) -4 '- (2-sulfostyryl). Mixtures of the aforementioned brighteners can also be used.
  • Uniformly white granules are obtained if, in addition to the usual brighteners, the agents are present in customary amounts, for example between 0.1 and 0.5% by weight, preferably between 0.1 and 0.3% by weight, and also in small amounts, for example Contain 10 -6 to 10 -3 wt .-%, preferably by 10 -5 wt .-%, of a blue dye.
  • a particularly preferred dye is Tinolux® (commercial product from Ciba-Geigy).
  • Suitable soil-repellants are substances which preferably Contain ethylene terephthalate and / or polyethylene glycol terephthalate groups, wherein the molar ratio of ethylene terephthalate to polyethylene glycol terephthalate is in the range of 50: 50 to 90: 10 can be.
  • the molecular weight of the linking polyethylene glycol units is in particular in the range from 750 to 5000, i.e. the degree of ethoxylation of the Polymers containing polyethylene glycol groups can be approximately 15 to 100.
  • the polymers are characterized by an average molecular weight of approximately 5000 to 200,000 and can have a block structure, but preferably a random structure.
  • preferred Polymers are those with molar ratios of ethylene terephthalate / polyethylene glycol terephthalate from about 65:35 to about 90:10, preferably from about 70:30 to 80:20. Also preferred are those polymers that link the polyethylene glycol units with a molecular weight of 750 to 5000, preferably from 1000 to about 3000 and a Have molecular weight of the polymer from about 10,000 to about 50,000.
  • examples for Commercial polymers are the products Milease® T (ICI) or Repelotex® SRP 3 (Rhône-Poulenc).
  • Wax-like compounds can be used as defoamers.
  • “waxy” are understood to mean those compounds which have a melting point at atmospheric pressure above 25 ° C (room temperature), preferably above 50 ° C and in particular above 70 ° C.
  • the waxy defoamer substances are practically insoluble in water, i.e. at 20 ° C they have a solubility of less than 0.1% by weight in 100 g of water.
  • Suitable waxy compounds are, for example, bisamides, fatty alcohols, Fatty acids, carboxylic acid esters of mono- and polyhydric alcohols and paraffin waxes or mixtures thereof. Alternatively, of course, those known for this purpose can also be used Silicone compounds are used.
  • Suitable paraffin waxes are generally a complex mixture of substances without a sharp melting point. For characterization, one usually determines its melting range by differential thermal analysis (DTA), as described in "The Analyst” 87 (1962), 420 , and / or its solidification point , This is the temperature at which the paraffin changes from the liquid to the solid state by slow cooling. Paraffins which are completely liquid at room temperature, that is to say those having a solidification point below 25 ° C., cannot be used according to the invention. For example, the paraffin wax mixtures known from EP 0309931 A1 of, for example, 26% by weight to 49% by weight of microcrystalline paraffin wax with a solidification point of 62 ° C.
  • paraffin waxes which can be used according to the invention, this liquid fraction is as low as possible and is preferably absent entirely.
  • Particularly preferred paraffin wax mixtures at 30 ° C have a liquid content of less than 10% by weight, in particular from 2% by weight to 5% by weight, at 40 ° C a liquid content of less than 30% by weight, preferably 5 % By weight to 25% by weight and in particular from 5% by weight to 15% by weight, at 60 ° C. a liquid fraction of 30% by weight to 60% by weight, in particular 40% by weight % to 55% by weight, at 80 ° C a liquid content of 80% by weight to 100% by weight, and at 90 ° C a liquid content of 100% by weight.
  • the temperature at which a liquid content of 100% by weight of the paraffin wax is reached is still below 85 ° C. in particularly preferred paraffin wax mixtures, in particular at 75 ° C. to 82 ° C.
  • the paraffin waxes can be petrolatum, microcrystalline waxes or hydrogenated or partially hydrogenated paraffin waxes.
  • Suitable bisamides as defoamers are those that differ from saturated fatty acids 12 to 22, preferably 14 to 18 carbon atoms and alkylene diamines with 2 to 7 carbon atoms derived.
  • Suitable fatty acids are lauric, myristic, stearic, arachine and Behenic acid and mixtures thereof, such as those obtained from natural fats or hardened Oils such as tallow or hydrogenated palm oil are available.
  • Suitable diamines are for example ethylene diamine, 1,3-propylene diamine, tetramethylene diamine, pentamethylene diamine, Hexamethylenediamine, p-phenylenediamine and toluenediamine.
  • preferred Diamines are ethylenediamine and hexamethylenediamine.
  • Particularly preferred bisamides are bismyristoylethylenediamine, bispalmitoylethylenediamine, bisstearoylethylenediamine and their mixtures and the corresponding derivatives of hexamethylened
  • Suitable carboxylic acid esters as defoamers are derived from carboxylic acids with 12 to 28 carbon atoms.
  • these are esters of behenic acid, stearic acid, hydroxystearic acid, oleic acid, palmitic acid, myristic acid and / or lauric acid.
  • the alcohol part of the carboxylic acid ester contains a mono- or polyhydric alcohol with 1 to 28 carbon atoms in the hydrocarbon chain.
  • suitable alcohols are behenyl alcohol, arachidyl alcohol, coconut alcohol, 12-hydroxystearyl alcohol, oleyl alcohol and lauryl alcohol as well as ethylene glycol, glycerin, polyvinyl alcohol, sucrose, erythritol, pentaerythritol, sorbitan and / or sorbitol.
  • Preferred esters are those of ethylene glycol, glycerol and sorbitan, the acid part of the ester being selected in particular from behenic acid, stearic acid, oleic acid, palmitic acid or myristic acid.
  • Eligible esters of polyhydric alcohols are, for example, xylitol monopalmitate, pentarythritol monostearate, glycerol monostearate, ethylene glycol monostearate and sorbitan monostearate, sorbitan palmitate, sorbitan monolaurate, sorbitan dilaurate, sorbitan dististearate, sorbitan dandghenoate and mixed sorbitan dibehenate, and sorbitan dandebehenate, and sorbitan dandebehenate as well as mixed sorbitan dandebehenate and sorbitan dandebiolate.
  • Glycerol esters which can be used are the mono-, di- or triesters of glycerol and the carboxylic acids mentioned, the mono- or diesters being preferred. Glycerol monostearate, glycerol monooleate, glycerol monopalmitate, glycerol monobehenate and glycerol distearate are examples of this.
  • esters as defoamers are beeswax, which mainly consists of the esters CH 3 (CH 2 ) 24 COO (CH 2 ) 27 CH 3 and CH 3 (CH 2 ) 26 COO (CH 2 ) 25 CH 3 , and carnauba wax , which is a mixture of carnauba acid alkyl esters, often in combination with small amounts of free carnauba acid, other long-chain acids, high-molecular alcohols and hydrocarbons.
  • beeswax which mainly consists of the esters CH 3 (CH 2 ) 24 COO (CH 2 ) 27 CH 3 and CH 3 (CH 2 ) 26 COO (CH 2 ) 25 CH 3
  • carnauba wax which is a mixture of carnauba acid alkyl esters, often in combination with small amounts of free carnauba acid, other long-chain acids, high-molecular alcohols and hydrocarbons.
  • Suitable carboxylic acids as a further defoamer compound are, in particular, behenic acid, Stearic acid, oleic acid, palmitic acid, myristic acid and lauric acid and their Mixtures such as those obtained from natural fats or possibly hardened oils, such as tallow or hydrogenated palm oil are available.
  • Saturated fatty acids with 12 to are preferred 22, in particular 18 to 22 carbon atoms.
  • Suitable fatty alcohols as a further defoamer compound are the hydrogenated products of the fatty acids described.
  • Dialkyl ethers may also be present as defoamers.
  • the ethers can be constructed asymmetrically or symmetrically, ie contain two identical or different alkyl chains, preferably with 8 to 18 carbon atoms. Typical examples are di-n-octyl ether, di-i-octyl ether and di-n-stearyl ether; dialkyl ethers which have a melting point above 25 ° C., in particular above 40 ° C., are particularly suitable.
  • Other suitable defoamer compounds are fatty ketones, which can be obtained by the relevant methods of preparative organic chemistry.
  • Suitable fat ketones are those which are prepared by pyrolysis of the magnesium salts of lauric acid, myristic acid, palmitic acid, palmitoleic acid, stearic acid, oleic acid, elaidic acid, petroselinic acid, arachic acid, gadoleic acid, behenic acid or erucic acid.
  • Suitable defoamers are fatty acid polyethylene glycol esters, which are preferred obtained by basic homogeneously catalyzed addition of ethylene oxide to fatty acids become.
  • the addition of ethylene oxide to the fatty acids takes place in the presence of alkanolamines as catalysts.
  • alkanolamines especially Triethanolamine, leads to an extremely selective ethoxylation of the fatty acids, in particular when it comes to producing low ethoxylated compounds.
  • the paraffin waxes described are particularly preferably used alone as wax-like defoamers or in a mixture with one of the other wax-like defoamers, the proportion of paraffin waxes in the mixture preferably making up more than 50% by weight, based on the wax-like defoamer mixture.
  • the paraffin waxes can be applied to carriers if necessary. All known inorganic and / or organic carrier materials are suitable as carrier materials. Examples of typical inorganic carrier materials are alkali carbonates, aluminosilicates, water-soluble sheet silicates, alkali silicates, alkali sulfates, for example sodium sulfate, and alkali phosphates.
  • the alkali silicates are preferably a compound with a molar ratio of alkali oxide to SiO 2 of 1: 1.5 to 1: 3.5.
  • the use of such silicates results in particularly good grain properties, in particular high abrasion stability and nevertheless high dissolution rate in water.
  • the aluminosilicates referred to as carrier material include, in particular, the zeolites, for example zeolite NaA and NaX.
  • the compounds referred to as water-soluble layered silicates include, for example, amorphous or crystalline water glass. Silicates which are commercially available under the name Aerosil® or Sipernat® can also be used.
  • suitable organic carrier materials are film-forming polymers, for example polyvinyl alcohols, polyvinyl pyrrolidones, poly (meth) acrylates, polycarboxylates, cellulose derivatives and starch.
  • Usable cellulose ethers are, in particular, alkali carboxymethyl cellulose, methyl cellulose, ethyl cellulose, hydroxyethyl cellulose and so-called cellulose mixed ethers, such as, for example, methyl hydroxyethyl cellulose and methyl hydroxypropyl cellulose, and mixtures thereof.
  • Particularly suitable mixtures are composed of sodium carboxymethyl cellulose and methyl cellulose, the carboxymethyl cellulose usually having a degree of substitution of 0.5 to 0.8 carboxymethyl groups per anhydroglucose unit and the methyl cellulose having a degree of substitution of 1.2 to 2 methyl groups per anhydroglucose unit.
  • the mixtures preferably contain alkali carboxymethyl cellulose and nonionic cellulose ethers in weight ratios from 80:20 to 40:60, in particular from 75:25 to 50:50.
  • native starch which is composed of amylose and amylopectin. Starch is referred to as native starch as it is available as an extract from natural sources, for example from rice, potatoes, corn and wheat.
  • Carrier materials which can be used individually or more than one of the abovementioned compounds, in particular selected from the group of alkali metal carbonates, alkali metal sulfates, alkali metal phosphates, zeolites, water-soluble sheet silicates, alkali metal silicates, polycarboxylates, cellulose ethers, polyacrylate / polymethacrylate and starch.
  • alkali carbonates in particular sodium carbonate, alkali silicates, in particular sodium silicate, alkali sulfates, in particular sodium sulfate and zeolites are particularly suitable.
  • Suitable silicones are conventional organopolysiloxanes, which can have a content of finely divided silica, which in turn can also be silanized. Such organopolysiloxanes are described, for example, in European patent application EP 0496510 A1 . Polydiorganosiloxanes which are known from the prior art are particularly preferred. However, compounds crosslinked via siloxane can also be used, as are known to the person skilled in the art under the name silicone resins. As a rule, the polydiorganosiloxanes contain finely divided silica, which can also be silanized. Silica-containing dimethylpolysiloxanes are particularly suitable.
  • the polydiorganosiloxanes advantageously have a Brookfield viscosity at 25 ° C. in the range from 5,000 mPas to 30,000 mPas, in particular from 15,000 to 25,000 mPas.
  • the silicones are preferably applied to carrier materials. Suitable carrier materials have already been described in connection with the paraffins.
  • the carrier materials are generally present in amounts of 40 to 90% by weight, preferably in amounts of 45 to 75% by weight, based on defoamers.
  • fragrance compounds for example the synthetic products of the ester, ether, aldehyde, ketone, alcohol and hydrocarbon type, can be used as perfume oils or fragrances.
  • Fragrance compounds of the ester type are, for example, benzyl acetate, phenoxyethyl isobutyrate, p-tert-butylcyclohexyl acetate, linalyl acetate, dimethylbenzylcarbinylacetate, phenylethyl acetate, linalyl benzoate, benzyl formate, ethyl methylphenyl glycinate, allyl cyclohexyl benzylatepylpropionate, stally.
  • the ethers include, for example, benzyl ethyl ether
  • the aldehydes include, for example, the linear alkanals with 8-18 C atoms, citral, citronellal, citronellyloxyacetaldehyde, cyclamenaldehyde, hydroxycitronellal, lilial and bourgeonal
  • the ketones include, for example, the jonones, ⁇ -isomethylionone and methylcedryl ketone the alcohols anethole, citronellol, eugenol, geraniol, linalool, phenylethyl alcohol and terpineol
  • the hydrocarbons mainly include the terpenes such as limonene and pinene.
  • Perfume oils of this type can also contain natural fragrance mixtures such as are obtainable from plant sources, for example pine, citrus, jasmine, patchouly, rose or ylang-ylang oil. Also suitable are muscatel, sage oil, chamomile oil, clove oil, lemon balm oil, mint oil, cinnamon leaf oil, linden blossom oil, juniper berry oil, vetiver oil, olibanum oil, galbanum oil and labdanum oil as well as orange blossom oil, neroliol, orange peel oil and sandalwood oil.
  • the fragrances can be incorporated directly into the agents according to the invention, but it can also be advantageous to apply the fragrances to carriers which increase the adhesion of the perfume to the laundry and ensure a long-lasting fragrance of the textiles due to a slower fragrance release.
  • Cyclodextrins for example, have proven useful as such carrier materials, and the cyclodextrin-perfume complexes can additionally be coated with further auxiliaries.
  • Suitable ingredients of the agents are water-soluble inorganic salts such as bicarbonates, carbonates, amorphous silicates, normal water glasses which have no outstanding builder properties, or mixtures of these; in particular, alkali carbonate and / or amorphous alkali silicate, especially sodium silicate with a molar ratio Na 2 O: SiO 2 of 1: 1 to 1: 4.5, preferably of 1: 2 to 1: 3.5, are used.
  • the content of sodium carbonate in the final preparations is preferably up to 40% by weight, advantageously between 2 and 35% by weight.
  • the sodium silicate content of the agents (without special builder properties) is generally up to 10% by weight and preferably between 1 and 8% by weight.
  • the final preparations can also contain inorganic salts as fillers or fillers, such as sodium sulfate, which is preferably present in amounts of 0 to 10, in particular 1 to 5% by weight, based on the composition.
  • the detergents obtainable using the additives according to the invention can be found in Form or used in the form of powders, extrudates, granules or agglomerates become. It can be both universal and fine or color detergents, if necessary, act in the form of compact or super compact. For the production such means are the corresponding methods known from the prior art, suitable.
  • the agents are preferably prepared in that different particulate Components that contain detergent ingredients are mixed together.
  • the Particulate components can be by spray drying, simple mixing or complex Granulation processes, for example fluidized bed granulation, are produced.
  • At least one surfactant-containing component Fluid bed granulation is produced. It can also be particularly preferred if aqueous preparations of alkali silicate and alkali carbonate together with others Detergent ingredients are sprayed in a drying device, at the same time granulation can take place with the drying.
  • the drying device into which the aqueous preparation is sprayed can be any drying apparatus.
  • the drying is carried out as spray drying in a drying tower.
  • the aqueous preparations are exposed to a drying gas stream in finely divided form in a known manner.
  • Patent publications by Henkel describe an embodiment of spray drying with superheated steam. The working principle disclosed there is hereby expressly made the subject of the present disclosure of the invention.
  • a particularly preferred way of producing the agents is to use the precursors to subject fluidized bed granulation ("SKET" granulation). This includes is to be understood as a granulation with simultaneous drying, which is preferred is carried out batchwise or continuously.
  • the precursors can be dried Condition as well as used as an aqueous preparation.
  • Prefers Fluid bed apparatuses used have base plates with dimensions from 0.4 to 5 m.
  • the granulation is preferably carried out at fluidizing air speeds in the range of 1 to 8 m / s carried out.
  • the granules are preferably discharged from the fluidized bed about a size classification of the granules.
  • the classification can, for example by means of a screening device or by means of an opposed air flow (Classifier air), which is regulated so that only particles above a certain particle size removed from the fluidized bed and smaller particles retained in the fluidized bed become.
  • Classifier air which is regulated so that only particles above a certain particle size removed from the fluidized bed and smaller particles retained in the fluidized bed become.
  • the inflowing air usually settles out of the heated one or unheated classifier air and the heated bottom air together.
  • the soil air temperature is between 80 and 400, preferably 90 and 350 ° C. advantageously, is a starting mass, for example a granulate, at the start of the granulation from an earlier experimental approach.
  • the mixtures are then subjected to a compacting step subject to further ingredients of the agents only after the compacting step be added.
  • the ingredients are compacted in one preferred embodiment of the invention in a press agglomeration process instead of.
  • the press agglomeration process to which the solid premix (dried basic detergent) subject can be realized in various devices. Depending on the type of agglomerator used, different press agglomeration processes are used distinguished.
  • the four most common and within the scope of the present invention The preferred press agglomeration process is extrusion, roller pressing or compacting, hole pressing (pelleting) and tableting, so that preferred agglomeration processes within the scope of the present invention Extrusion, roll compacting, pelletizing or tableting processes are.
  • binders can be used as an aid to compaction become.
  • the use is always of several different binders and mixtures of different binders is possible.
  • a binder used that at temperatures up to a maximum of 130 ° C, preferably up to a maximum 100 ° C and in particular up to 90 ° C is already completely in the form of a melt.
  • the Binder must therefore be selected depending on the process and process conditions or the process conditions, in particular the process temperature, must - if a certain binder is desired - be adapted to the binder.
  • the actual compression process is preferably carried out at processing temperatures, at least in the compression step at least the temperature of the softening point, if not the temperature of the melting point of the binder correspond.
  • the process temperature is significantly above the melting point or above the temperature at which the binder is in the form of a melt.
  • the process temperature in the compression step not more than 20 ° C above the melting temperature or the upper limit of the melting range of the binder. It is technically quite possible to set even higher temperatures; it has but shown that a temperature difference to the melting temperature or the softening temperature the binder of 20 ° C is generally sufficient and even higher temperatures have no additional advantages.
  • Such a temperature control has the further advantage that thermally sensitive raw materials, for example peroxy bleach such as perborate and / or percarbonate, but also enzymes, increasingly without serious losses of active substance can be processed.
  • thermally sensitive raw materials for example peroxy bleach such as perborate and / or percarbonate, but also enzymes, increasingly without serious losses of active substance can be processed.
  • a temperature of maximum 150 ° C preferably maximum 100 ° C and in particular a maximum of 75 ° C and the process temperature is 30 ° C and in particular a maximum of 20 ° C above the melting temperature or the upper temperature limit the melting range of the binder.
  • the duration is preferably Temperature impact in the compression area of the press agglomerators a maximum of 2 minutes and is in particular in a range between 30 seconds and 1 minute.
  • Preferred binders which can be used alone or in a mixture with other binders are polyethylene glycols, 1,2-polypropylene glycols and also modified polyethylene glycols and polypropylene glycols.
  • the modified polyalkylene glycols include in particular the sulfates and / or the disulfates of polyethylene glycols or polypropylene glycols with a relative molecular weight between 600 and 12,000 and in particular between 1,000 and 4,000.
  • Another group consists of mono- and / or disuccinates of the polyalkylene glycols, which again have relative molecular weights between 600 and 6,000, preferably between 1,000 and 4,000.
  • polyethylene glycols include those polymers which, in addition to ethylene glycol, also use C 3 -C 5 glycols and glycerol and mixtures of these as starting molecules. Ethoxylated derivatives such as trimethylolpropane with 5 to 30 EO are also included.
  • the polyethylene glycols preferably used can have a linear or branched structure, linear polyethylene glycols being particularly preferred.
  • the particularly preferred polyethylene glycols include those with relative molecular weights between 2,000 and 12,000, advantageously around 4,000, polyethylene glycols with relative molecular weights below 3,500 and above 5,000, in particular in combination with polyethylene glycols with a relative molecular weight of around 4,000, can be used such combinations advantageously have more than 50% by weight, based on the total amount of polyethylene glycols, of polyethylene glycols with a relative molecular weight of between 3,500 and 5,000.
  • polyethylene glycols can also be used as binders, which are per se in liquid state at room temperature and a pressure of 1 bar; here we are mainly talking about polyethylene glycol with a relative molecular mass of 200, 400 and 600.
  • these per se liquid polyethylene glycols should only be used in a mixture with at least one further binder, this mixture again having to meet the requirements according to the invention, that is to say having a melting point or softening point of at least above 45 ° C.
  • suitable as binders are low molecular weight polyvinylpyrrolidones and derivatives thereof with relative molecular weights of up to a maximum of 30,000. Relative molecular weight ranges between 3,000 and 30,000, for example around 10,000 are preferred.
  • Polyvinylpyrrolidones are preferably not used as sole binders, but in combination with other used in particular in combination with polyethylene glycols.
  • the compacted material preferably points directly after leaving the manufacturing apparatus Temperatures do not exceed 90 ° C, with temperatures between 35 and 85 ° C are particularly preferred. It has been found that outlet temperatures - especially in the extrusion process - from 40 to 80 ° C, for example up to 70 ° C, are particularly advantageous.
  • the detergent according to the invention is produced by means of an extrusion, as described, for example, in European patent EP 0486592 B1 or international patent applications WO 93/02176 and WO 94/09111 or WO 98/12299 .
  • a solid premix is pressed in the form of a strand under pressure and the strand is cut to the predeterminable size of the granulate after it has emerged from the hole shape by means of a cutting device.
  • the homogeneous and solid premix contains a plasticizer and / or lubricant, which causes the premix to become plastically softened and extrudable under the pressure or under the entry of specific work.
  • Preferred plasticizers and / or lubricants are surfactants and / or polymers.
  • the premix is preferably fed to a planetary roller extruder or a 2-shaft extruder or 2-screw extruder with co-rotating or counter-rotating screw guidance, the housing and the extruder pelletizing head of which can be heated to the predetermined extrusion temperature.
  • the premix is compressed, plasticized, extruded in the form of fine strands through the perforated die plate in the extruder head and finally, under pressure, which is preferably at least 25 bar, but can also be lower at extremely high throughputs depending on the apparatus used the extrudate is preferably reduced to approximately spherical to cylindrical granules by means of a rotating knife.
  • the hole diameter of the perforated nozzle plate and the strand cut length are matched to the selected granulate dimension. In this way, the production of granules of an essentially uniformly predeterminable particle size succeeds, and in particular the absolute particle sizes can be adapted to the intended use.
  • particle diameters up to at most 0.8 cm are preferred.
  • Important embodiments provide for the production of uniform granules in the millimeter range, for example in the range from 0.5 to 5 mm and in particular in the range from approximately 0.8 to 3 mm.
  • the length / diameter ratio of the chopped-off primary granules is preferably in the range from about 1: 1 to about 3: 1. It is also preferred to feed the still plastic primary granules to a further shaping processing step; edges present on the crude extrudate are rounded off so that ultimately spherical to approximately spherical extrudate grains can be obtained.
  • small amounts of dry powder for example zeolite powder such as zeolite NaA powder, can also be used in this step.
  • extrusions / pressings can also be carried out in low-pressure extruders, in the Kahl press (from Amandus Kahl) or in the Bepex extruder.
  • the temperature control in the transition region of the screw, the pre-distributor and the nozzle plate is preferably designed such that the melting temperature of the binder or the upper limit of the melting range of the binder is at least reached, but preferably exceeded.
  • the duration of the temperature influence in the compression range of the extrusion is preferably less than 2 minutes and in particular in a range between 30 seconds and 1 minute.
  • the detergents according to the invention can also be roll compacted getting produced.
  • the premix is targeted between two smooth or with Wells of defined shape are metered in and between the two rollers Rolling under pressure to a leaf-shaped compact, the so-called Schülpe, rolled out.
  • the rollers exert a high line pressure on the premix and can be additionally heated or cooled as required.
  • Smooth rolling gives you smooth, unstructured wristbands while using structured rollers correspondingly structured slugs are generated can, in which, for example, certain forms of the later detergent particles can be specified.
  • the cuff belt is subsequently knocked off and Crushing process broken into smaller pieces and can be done in this way Granules are processed by further known surface treatment processes refined, in particular brought into an approximately spherical shape can be.
  • the temperature of the pressing is also in the roller compacting Tools, that is the rollers, preferably at a maximum of 150 ° C., preferably at a maximum 100 ° C and especially at a maximum of 75 ° C.
  • Particularly preferred manufacturing processes work with roller compaction with process temperatures that 10 ° C, in particular a maximum of 5 ° C above the melting temperature or the upper temperature limit of the melting range of the binder.
  • the duration of exposure to temperature in the compression range of the smooth or rollers with recesses of a defined shape is a maximum of 2 minutes and in particular is in a range between 30 seconds and 1 minute.
  • the detergent according to the invention can also be produced by pelleting.
  • the premix is applied to a perforated surface and pressed through the holes by means of a pressure-producing body with plasticization.
  • the premix is compressed under pressure, plasticized, pressed through a perforated surface by means of a rotating roller in the form of fine strands and finally comminuted into granules using a knock-off device.
  • the most varied configurations of the pressure roller and perforated die are conceivable here. For example, flat perforated plates are used as well as concave or convex ring matrices through which the material is pressed using one or more pressure rollers.
  • the press rolls can also be conical in the plate devices, in the ring-shaped devices dies and press roll (s) can have the same or opposite direction of rotation.
  • An apparatus suitable for carrying out the method is described, for example, in German laid-open specification DE 3816842 A1 .
  • the ring die press disclosed in this document consists of a rotating ring die interspersed with press channels and at least one press roller which is operatively connected to its inner surface and which presses the material supplied to the die space through the press channels into a material discharge.
  • the ring die and the press roller can be driven in the same direction, which means that a reduced shear stress and thus a lower temperature increase in the premix can be achieved.
  • the temperature of the pressing tools is preferably at most 150 ° C., preferably at most 100 ° C. and in particular at most 75 ° C.
  • Particularly preferred production processes work in roller compacting with process temperatures which are 10 ° C., in particular a maximum of 5 ° C. above the melting temperature or the upper temperature limit of the melting range of the binder.
  • Examples 1 to 12 comparative examples V1 to V4.
  • a washing machine Miele W 918
  • 3.5 kg of standard laundry and a terry towel (which was washed twice with a universal detergent for pretreatment) were washed in a full wash at 90 ° C.
  • 84 g of detergent of the composition shown in Table 1 were added to the dispenser immediately before the test.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Emergency Medicine (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Detergent Compositions (AREA)
EP01120862A 2000-09-08 2001-08-30 Composition Detergente Withdrawn EP1188817A3 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10044472 2000-09-08
DE10044472A DE10044472A1 (de) 2000-09-08 2000-09-08 Waschmittel

Publications (2)

Publication Number Publication Date
EP1188817A2 true EP1188817A2 (fr) 2002-03-20
EP1188817A3 EP1188817A3 (fr) 2003-06-11

Family

ID=7655522

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01120862A Withdrawn EP1188817A3 (fr) 2000-09-08 2001-08-30 Composition Detergente

Country Status (3)

Country Link
US (1) US6620209B2 (fr)
EP (1) EP1188817A3 (fr)
DE (1) DE10044472A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6620209B2 (en) * 2000-09-08 2003-09-16 Cognis Deutschland Gmbh & Co. Kg Laundry detergent compositions
WO2005054419A1 (fr) * 2003-12-03 2005-06-16 Unilever Plc Detergent pour lessive adoucissant
WO2007141145A1 (fr) * 2006-06-08 2007-12-13 Unilever Plc Compositions détergentes
EP1894993A1 (fr) * 2006-08-28 2008-03-05 Süd-Chemie Ag Additif détergent au base de minéraux d'argile et des copolymers contenant du PVP
WO2013070559A1 (fr) * 2011-11-11 2013-05-16 The Procter & Gamble Company Compositions de traitement de surface comprenant des sels protecteurs

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6881717B1 (en) 1999-04-01 2005-04-19 The Procter & Gamble Company Fabric softening component
DE10044471A1 (de) * 2000-09-08 2002-03-21 Cognis Deutschland Gmbh Waschmittel
US20080188392A1 (en) * 2002-12-02 2008-08-07 Diamond Chemical Company, Inc. Laundry Compositions
WO2004069979A2 (fr) 2003-02-03 2004-08-19 Unilever Plc Compositions de nettoyage et de conditionnement pour blanchisserie
US20040152616A1 (en) * 2003-02-03 2004-08-05 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Laundry cleansing and conditioning compositions
US20060030513A1 (en) * 2004-08-03 2006-02-09 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Softening laundry detergent
US20060217287A1 (en) * 2005-03-22 2006-09-28 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Fabric softening composition
US20060223739A1 (en) * 2005-04-05 2006-10-05 Unilever Home And Personal Care Usa, Division Of Conopco, Inc. Fabric softening composition with cationic polymer, soap, and amphoteric surfactant
US7635731B2 (en) 2005-07-28 2009-12-22 Chemtura Corporation Cellulosic-thermoplastic composite and method of making the same
US8226775B2 (en) * 2007-12-14 2012-07-24 Lam Research Corporation Methods for particle removal by single-phase and two-phase media
EP2083065A1 (fr) * 2008-01-22 2009-07-29 The Procter and Gamble Company Compositions de soin de couleur
RU2011103096A (ru) * 2008-08-28 2012-10-10 Дзе Проктер Энд Гэмбл Компани (US) Композиции для ухода за тканью, способ изготовления и способ применения
US20100050346A1 (en) * 2008-08-28 2010-03-04 Corona Iii Alessandro Compositions and methods for providing a benefit
JP5882991B2 (ja) 2010-05-14 2016-03-09 ザ サン プロダクツ コーポレーション ポリマー含有洗浄組成物ならびにその生成法および使用法
US8470760B2 (en) * 2010-05-28 2013-06-25 Milliken 7 Company Colored speckles for use in granular detergents
US10913921B2 (en) 2014-06-18 2021-02-09 HEX Performance, LLC Performance gear, textile technology, and cleaning and protecting systems and methods
DE102017120099A1 (de) 2017-08-31 2019-02-28 Henkel Ag & Co. Kgaa Verwendung eines Amodimethicone/ Organosilizium Copolymers, Waschmittel, Verwendung des Waschmittels und Waschverfahren
CN109267405B (zh) * 2018-08-02 2020-09-25 广州大久生物科技有限公司 防染稳定添加剂组合物及其制备方法和应用以及复配纤维素酶及其应用
US11851634B2 (en) 2020-12-15 2023-12-26 Henkel IP & Holding GmbH Detergent composition having reduced turbidity
US11505766B2 (en) 2020-12-15 2022-11-22 Henkel Ag & Co. Kgaa Surfactant compositions for improved transparency of DADMAC-acrylic acid co-polymers
US11560534B2 (en) 2020-12-15 2023-01-24 Henkel Ag & Co. Kgaa Surfactant compositions for improved transparency of DADMAC-acrylamide co-polymers

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0366070A2 (fr) * 1988-10-25 1990-05-02 Kao Corporation Composition pour le bain
WO1997044417A1 (fr) * 1996-05-17 1997-11-27 The Procter & Gamble Company Composition detergente
WO1998013453A1 (fr) * 1996-09-24 1998-04-02 The Procter & Gamble Company Particulate pour detergent
US5965515A (en) * 1994-04-07 1999-10-12 The Andrew Jergens Company Coated amine functionality-containing materials
EP0971030A1 (fr) * 1998-07-10 2000-01-12 The Procter & Gamble Company Agglomérats tensio-actifs
WO2000022091A1 (fr) * 1998-10-09 2000-04-20 The Procter & Gamble Company Compositions detergentes
WO2001027238A1 (fr) * 1999-10-08 2001-04-19 Cognis Deutschland Gmbh Pastilles detergentes
EP1146110A2 (fr) * 2000-04-12 2001-10-17 Unilever Plc Utilisation de polymères dans le nettoyage du linge

Family Cites Families (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA734721B (en) 1972-07-14 1974-03-27 Procter & Gamble Detergent compositions
GB1455873A (en) 1973-08-24 1976-11-17 Procter & Gamble Textile-softening detergent compositions
US4172887A (en) 1973-11-30 1979-10-30 L'oreal Hair conditioning compositions containing crosslinked polyaminopolyamides
LU68901A1 (fr) 1973-11-30 1975-08-20
DE2553900A1 (de) 1975-12-01 1977-06-08 Konrad Ruckstuhl Verfahren und vorrichtungen zur aufbereitung von gepressten zuckerrohrbagasse-ballen
EP0026529B2 (fr) 1979-09-29 1992-08-19 THE PROCTER & GAMBLE COMPANY Compositions détergentes
ATE5896T1 (de) 1979-11-03 1984-02-15 The Procter & Gamble Company Granulare waschmittelzusammensetzungen.
US4524009A (en) 1984-01-31 1985-06-18 A. E. Staley Manufacturing Company Detergent builder
CA1238917A (fr) 1984-01-31 1988-07-05 Vivian B. Valenty Adjuvant pour detergent
DE3413571A1 (de) 1984-04-11 1985-10-24 Hoechst Ag, 6230 Frankfurt Verwendung von kristallinen schichtfoermigen natriumsilikaten zur wasserenthaertung und verfahren zur wasserenthaertung
US4639325A (en) 1984-10-24 1987-01-27 A. E. Staley Manufacturing Company Detergent builder
DE3526405A1 (de) 1985-07-24 1987-02-05 Henkel Kgaa Schichtsilikate mit beschraenktem quellvermoegen, verfahren zu ihrer herstellung und ihre verwendung in wasch- und reinigungsmitteln
DE3545990A1 (de) * 1985-12-23 1987-06-25 Henkel Kgaa Neue schmutz sammelnde reinigungsverstaerker in waessrigen wasch- und reinigungsloesungen
FR2597473B1 (fr) 1986-01-30 1988-08-12 Roquette Freres Procede d'oxydation de di-, tri-, oligo- et polysaccharides en acides polyhydroxycarboxyliques, catalyseur mis en oeuvre et produits ainsi obtenus.
GB8629837D0 (en) 1986-12-13 1987-01-21 Interox Chemicals Ltd Bleach activation
DE3706036A1 (de) 1987-02-25 1988-09-08 Basf Ag Polyacetale, verfahren zu deren herstellung aus dialdehyden und polyolcarbonsaeuren und verwendung der polyacetale
DE3723826A1 (de) 1987-07-18 1989-01-26 Henkel Kgaa Verfahren zur herstellung von alkylglykosiden
DE3732947A1 (de) 1987-09-30 1989-04-13 Henkel Kgaa Zur verwendung in wasch- und reinigungsmitteln geeignetes schaumregulierungsmittel
DE3816842A1 (de) 1988-05-18 1989-11-23 Schlueter Gmbh U Co Kg H Ringmatrizenpresse
DE3833780A1 (de) 1988-10-05 1990-04-12 Henkel Kgaa Verfahren zur direkten herstellung von alkylglykosiden
US5576425A (en) 1988-10-05 1996-11-19 Henkel Kommanditgesellschaft Auf Aktien Process for the direct production of alkyl glycosides
GB8908416D0 (en) 1989-04-13 1989-06-01 Unilever Plc Bleach activation
DE4010533A1 (de) 1990-04-02 1991-10-10 Henkel Kgaa Tablettierte wasch- und/oder reinigungsmittel fuer haushalt und gewerbe und verfahren zu ihrer herstellung
DK0486592T3 (da) 1989-08-09 1994-07-18 Henkel Kgaa Fremstilling af kompakterede granulater til vaskemidler
ATE124960T1 (de) 1989-11-10 1995-07-15 Tno Verfahren zur herstellung von polydicarboxysacchariden.
YU221490A (sh) 1989-12-02 1993-10-20 Henkel Kg. Postupak za hidrotermalnu izradu kristalnog natrijum disilikata
GB9003741D0 (en) 1990-02-19 1990-04-18 Unilever Plc Bleach activation
US5041232A (en) 1990-03-16 1991-08-20 Lever Brothers Company, Division Of Conopco, Inc. Sulfonimines as bleach catalysts
US5047163A (en) 1990-03-16 1991-09-10 Lever Brothers Company, Division Of Conopco, Inc. Activation of bleach precursors with sulfonimines
ES2100924T3 (es) 1990-05-21 1997-07-01 Unilever Nv Activacion de blanqueador.
IT1249883B (it) 1990-08-13 1995-03-30 Ferruzzi Ricerca & Tec Agenti sequestranti del calcio a base di carboidrati ossidati e loro impiego come builder per detergenti
DE4030688A1 (de) 1990-09-28 1992-04-02 Henkel Kgaa Verfahren zur spruehtrocknung von wertstoffen und wertstoffgemischen unter verwendung von ueberhitztem wasserdampf
JPH06503060A (ja) 1990-12-01 1994-04-07 ヘンケル・コマンディットゲゼルシャフト・アウフ・アクチェン 結晶性二珪酸ナトリウムの水熱製造方法
GB9101606D0 (en) 1991-01-24 1991-03-06 Dow Corning Sa Detergent foam control agents
IT1245063B (it) 1991-04-12 1994-09-13 Ferruzzi Ricerca & Tec Procedimento per l'ossidazione di carboidrati
DE4124701A1 (de) 1991-07-25 1993-01-28 Henkel Kgaa Verfahren zur herstellung fester wasch- und reinigungsmittel mit hohem schuettgewicht und verbesserter loesegeschwindigkeit
EP0525239B1 (fr) 1991-07-31 1997-07-09 AUSIMONT S.p.A. Procédé pour augmenter l'efficacité de blanchiment d'un persel inorganique
DE4134914A1 (de) 1991-10-23 1993-04-29 Henkel Kgaa Wasch- und reinigungsmittel mit ausgewaehlten builder-systemen
EP0542496B1 (fr) 1991-11-14 1998-05-20 The Procter & Gamble Company Amidon oxydé à C6/C2-C3 utilisé comme ingrédient pour détergent
US5194416A (en) 1991-11-26 1993-03-16 Lever Brothers Company, Division Of Conopco, Inc. Manganese catalyst for activating hydrogen peroxide bleaching
EP0544490A1 (fr) 1991-11-26 1993-06-02 Unilever Plc Compositions détergentes de blanchiment
CA2085642A1 (fr) 1991-12-20 1993-06-21 Ronald Hage Activation de blanchiment
GB9127060D0 (en) 1991-12-20 1992-02-19 Unilever Plc Bleach activation
DE4221381C1 (de) 1992-07-02 1994-02-10 Stockhausen Chem Fab Gmbh Pfropf-Copolymerisate von ungesättigten Monomeren und Zuckern, Verfahren zu ihrer Herstellung und ihre Verwendung
DE4203923A1 (de) 1992-02-11 1993-08-12 Henkel Kgaa Verfahren zur herstellung von polycarboxylaten auf polysaccharid-basis
DE4206495A1 (de) 1992-03-02 1993-09-09 Cognis Bio Umwelt Verfahren zum herstellen von granulaten, die als netz-, wasch und/oder reinigungsmittel geeignet sind
DE4234376A1 (de) 1992-10-12 1994-04-14 Henkel Kgaa Wertstoffe und Wertstoffgemische für Netz-, Wasch- und/oder Reinigungsmittel in neuer Zubereitungsform
DE4204090A1 (de) 1992-02-12 1993-08-19 Cognis Bio Umwelt Vereinfachtes trocknungsverfahren fuer wertstoffe und wertstoffgemische aus dem bereich der wasch- und reinigungsmittel mit ueberhitztem wasserdampf
DE4206521A1 (de) 1992-03-02 1993-09-09 Cognis Bio Umwelt Verfahren zur herstellung von granulaten, die als netz-, wasch- und/oder reinigungsmittel geeignet sind
US5637560A (en) 1992-02-12 1997-06-10 Henkel Kommanditgesellschaft Auf Aktien Process for the production of surface-active anionic surfactant salts using superheated steam
AU3496093A (en) 1992-02-12 1993-09-03 Henkel Kommanditgesellschaft Auf Aktien Powdered or granulated, dust-free concentrates of anionic surface active agents with improved dissolvability
DE4206050A1 (de) 1992-02-27 1993-09-02 Cognis Bio Umwelt Neuartige staubarme aniontensidkonzentrate in pulver- beziehungsweise granulatform mit verbessertem aufloesevermoegen in waessrigen medien
DE4209432A1 (de) 1992-03-24 1993-09-30 Henkel Kgaa Verfahren zur verbesserten Brüdenentsorgung bei der Heißdampftrocknung
DE4204035A1 (de) 1992-02-12 1993-08-19 Cognis Bio Umwelt Verbessertes verfahren zur trocknung von wertstoffen fuer wasch- und reinigungsmittel mit ueberhitztem wasserdampf
DE4208773A1 (de) 1992-03-19 1993-09-23 Cognis Bio Umwelt Verfahren zur trocknung von wertstoffen oder deren gemischen, die als netz-, wasch- und/oder reinigungsmittel geeignet sind
JPH05339896A (ja) 1992-06-03 1993-12-21 Arakawa Chem Ind Co Ltd 紙用サイズ剤および紙サイジング方法
DE4235646A1 (de) 1992-10-22 1994-04-28 Henkel Kgaa Verfahren zur Herstellung wasch- und reinigungsaktiver Extrudate
DE4300772C2 (de) 1993-01-14 1997-03-27 Stockhausen Chem Fab Gmbh Wasserlösliche, biologisch abbaubare Copolymere auf Basis von ungesättigten Mono- und Dicarbonsäuren, Verfahren zu ihrer Herstellung und ihre Verwendung
DE4303320C2 (de) 1993-02-05 1995-12-21 Degussa Waschmittelzusammensetzung mit verbessertem Schmutztragevermögen, Verfahren zu dessen Herstellung und Verwendung eines geeigneten Polycarboxylats hierfür
ES2119204T3 (es) 1993-05-20 1998-10-01 Procter & Gamble Compuestos de blanqueo que comprenden activadores de blanqueo de benzoil-caprolactama sustituidos.
DE4317519A1 (de) 1993-05-26 1994-12-01 Henkel Kgaa Herstellung von Polycarboxylaten auf Polysaccharid-Basis
DE4400024A1 (de) 1994-01-03 1995-07-06 Henkel Kgaa Silikatische Builder und ihre Verwendung in Wasch- und Reinigungsmitteln sowie Mehrstoffgemische für den Einsatz auf diesem Sachgebiet
DE4402851A1 (de) 1994-01-31 1995-08-03 Henkel Kgaa Wirbelschicht-Oxidationsverfahren zur Herstellung von Polycarboxylaten auf Polysaccharid-Basis
DE4416438A1 (de) 1994-05-10 1995-11-16 Basf Ag Ein- oder mehrkernige Metall-Komplexe und ihre Verwendung als Bleich- und Oxidationskatalysatoren
DE4417734A1 (de) 1994-05-20 1995-11-23 Degussa Polycarboxylate
EP0693550B1 (fr) 1994-07-21 2004-06-16 Ciba SC Holding AG Composition de blanchiment de tissu
GB9419091D0 (en) 1994-09-22 1994-11-09 Cerestar Holding Bv Process for decreasing the build up of inorganic incrustations on textiles and detergent composition used in such process
DE4443177A1 (de) 1994-12-05 1996-06-13 Henkel Kgaa Aktivatormischungen für anorganische Perverbindungen
DE19529905A1 (de) 1995-08-15 1997-02-20 Henkel Kgaa Aktivatorkomplexe für Persauerstoffverbindungen
DE19536082A1 (de) 1995-09-28 1997-04-03 Henkel Kgaa Aktivatorkomplexe für Persauerstoffverbindungen
DE19600018A1 (de) 1996-01-03 1997-07-10 Henkel Kgaa Waschmittel mit bestimmten oxidierten Oligosacchariden
DE19605688A1 (de) 1996-02-16 1997-08-21 Henkel Kgaa Übergangsmetallkomplexe als Aktivatoren für Persauerstoffverbindungen
DE19613103A1 (de) 1996-04-01 1997-10-02 Henkel Kgaa Übergangsmetallkomplex-haltige Systeme als Aktivatoren für Persauerstoffverbindungen
DE19620411A1 (de) 1996-04-01 1997-10-02 Henkel Kgaa Übergangsmetallamminkomplexe als Aktivatoren für Persauerstoffverbindungen
DE19616693A1 (de) 1996-04-26 1997-11-06 Henkel Kgaa Enolester als Bleichaktivatoren für Wasch- und Reinigungsmittel
DE19616767A1 (de) 1996-04-26 1997-11-06 Henkel Kgaa Bleichaktivatoren für Wasch- und Reinigungsmittel
DE19616769A1 (de) 1996-04-26 1997-11-06 Henkel Kgaa Acylacetale als Bleichaktivatoren für Wasch- und Reinigungsmittel
DE19616770A1 (de) 1996-04-26 1997-11-06 Henkel Kgaa Acyllactame als Bleichaktivatoren für Wasch- und Reinigungsmittel
DE19620267A1 (de) 1996-05-20 1997-11-27 Henkel Kgaa Katalytisch wirksame Aktivatorkomplexe mit N¶4¶-Liganden für Persauerstoffverbindungen
DE10044472A1 (de) * 2000-09-08 2002-03-21 Cognis Deutschland Gmbh Waschmittel

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0366070A2 (fr) * 1988-10-25 1990-05-02 Kao Corporation Composition pour le bain
US5965515A (en) * 1994-04-07 1999-10-12 The Andrew Jergens Company Coated amine functionality-containing materials
WO1997044417A1 (fr) * 1996-05-17 1997-11-27 The Procter & Gamble Company Composition detergente
WO1998013453A1 (fr) * 1996-09-24 1998-04-02 The Procter & Gamble Company Particulate pour detergent
EP0971030A1 (fr) * 1998-07-10 2000-01-12 The Procter & Gamble Company Agglomérats tensio-actifs
WO2000022091A1 (fr) * 1998-10-09 2000-04-20 The Procter & Gamble Company Compositions detergentes
WO2001027238A1 (fr) * 1999-10-08 2001-04-19 Cognis Deutschland Gmbh Pastilles detergentes
EP1146110A2 (fr) * 2000-04-12 2001-10-17 Unilever Plc Utilisation de polymères dans le nettoyage du linge

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6620209B2 (en) * 2000-09-08 2003-09-16 Cognis Deutschland Gmbh & Co. Kg Laundry detergent compositions
WO2005054419A1 (fr) * 2003-12-03 2005-06-16 Unilever Plc Detergent pour lessive adoucissant
US7012054B2 (en) 2003-12-03 2006-03-14 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Softening laundry detergent
WO2007141145A1 (fr) * 2006-06-08 2007-12-13 Unilever Plc Compositions détergentes
EP1894993A1 (fr) * 2006-08-28 2008-03-05 Süd-Chemie Ag Additif détergent au base de minéraux d'argile et des copolymers contenant du PVP
WO2008025505A1 (fr) 2006-08-28 2008-03-06 Süd-Chemie AG Additif pour détergent à base de minéraux argileux et de copolymères contenant de la pvp
WO2013070559A1 (fr) * 2011-11-11 2013-05-16 The Procter & Gamble Company Compositions de traitement de surface comprenant des sels protecteurs

Also Published As

Publication number Publication date
DE10044472A1 (de) 2002-03-21
US6620209B2 (en) 2003-09-16
EP1188817A3 (fr) 2003-06-11
US20020155981A1 (en) 2002-10-24

Similar Documents

Publication Publication Date Title
EP1240290B1 (fr) Granulats de tensioactifs presentant une plus grande vitesse de dissolution
EP1235897B1 (fr) Pastilles de detergent
EP1240287B1 (fr) Pastilles de detergent
EP1321509B1 (fr) Hydroxy-ethers mixtes et polymers en forme de pro-produits solides pour produits de lavage, de rinçage et de nettoyage
EP1188817A2 (fr) Composition Detergente
EP1106675B1 (fr) Utilisation de polyglycolethers de glycerides partiels
EP1240289A1 (fr) Detergent solide
EP1191094A2 (fr) Composition Detergente
WO2001038481A1 (fr) Granules d'agent tensio-actif a vitesse de decomposition amelioree
EP1228178A1 (fr) Produits solides de lavage, de rincage et de nettoyage
EP1186649A1 (fr) Tablettes détergentes
DE10152142A1 (de) Feste Wasch-, Spül- und Reinigungsmittel
EP1214389B1 (fr) Melanges de tensioactifs
DE10150400A1 (de) Feste Wasch-, Spül- und Reinigungsmittel
WO2001018164A1 (fr) Detergents
WO2001000763A1 (fr) Detergent solide a mousse controlee
EP1090979A1 (fr) Granulés anti-mousse
EP1081213A1 (fr) Agents de lavage solides à mousse contrôlée
EP1205536A2 (fr) Utilisation des mélanges tensioactifs
EP1204732A1 (fr) Detergents solides a mousse controlee
EP1207193A1 (fr) Utilisation d'un mélange d'agents tensioactif pour la préparation de compositions détergentes et de lavage
EP1375633A1 (fr) Compositions détergentes contenant des polymères
EP1090978A1 (fr) Agent de lavage, de rinçage et nettoyage solide contenant des granulats antimousse
EP1078979A1 (fr) Agents de lavage solides à mousse contrôlée
WO2001027231A1 (fr) Detergents

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010830

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COGNIS DEUTSCHLAND GMBH & CO. KG

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIC1 Information provided on ipc code assigned before grant

Ipc: 7C 11D 3/20 B

Ipc: 7C 11D 3/00 B

Ipc: 7C 11D 3/12 B

Ipc: 7C 11D 1/94 B

Ipc: 7C 11D 1/83 B

Ipc: 7C 11D 3/382 B

Ipc: 7C 11D 3/37 B

Ipc: 7C 11D 3/22 A

AKX Designation fees paid

Designated state(s): DE ES FR GB IT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20030912