DE10044472A1 - Waschmittel - Google Patents

Waschmittel

Info

Publication number
DE10044472A1
DE10044472A1 DE10044472A DE10044472A DE10044472A1 DE 10044472 A1 DE10044472 A1 DE 10044472A1 DE 10044472 A DE10044472 A DE 10044472A DE 10044472 A DE10044472 A DE 10044472A DE 10044472 A1 DE10044472 A1 DE 10044472A1
Authority
DE
Germany
Prior art keywords
acid
alcohol
contain
cationic
alkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE10044472A
Other languages
English (en)
Inventor
Ditmar Kischkel
Manfred Weuthen
Jutta Stute
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF Personal Care and Nutrition GmbH
Original Assignee
Cognis Deutschland GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cognis Deutschland GmbH and Co KG filed Critical Cognis Deutschland GmbH and Co KG
Priority to DE10044472A priority Critical patent/DE10044472A1/de
Priority to EP01120862A priority patent/EP1188817A3/de
Priority to US09/949,529 priority patent/US6620209B2/en
Publication of DE10044472A1 publication Critical patent/DE10044472A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/373Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicones
    • C11D3/3742Nitrogen containing silicones
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • C11D3/124Silicon containing, e.g. silica, silex, quartz or glass beads
    • C11D3/1246Silicates, e.g. diatomaceous earth
    • C11D3/1253Layer silicates, e.g. talcum, kaolin, clay, bentonite, smectite, montmorillonite, hectorite or attapulgite
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • C11D3/124Silicon containing, e.g. silica, silex, quartz or glass beads
    • C11D3/1246Silicates, e.g. diatomaceous earth
    • C11D3/1253Layer silicates, e.g. talcum, kaolin, clay, bentonite, smectite, montmorillonite, hectorite or attapulgite
    • C11D3/1273Crystalline layered silicates of type NaMeSixO2x+1YH2O
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • C11D3/124Silicon containing, e.g. silica, silex, quartz or glass beads
    • C11D3/1246Silicates, e.g. diatomaceous earth
    • C11D3/128Aluminium silicates, e.g. zeolites
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/22Carbohydrates or derivatives thereof
    • C11D3/222Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin
    • C11D3/227Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin with nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3719Polyamides or polyimides
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3723Polyamines or polyalkyleneimines
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3769(Co)polymerised monomers containing nitrogen, e.g. carbonamides, nitriles or amines
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3769(Co)polymerised monomers containing nitrogen, e.g. carbonamides, nitriles or amines
    • C11D3/3776Heterocyclic compounds, e.g. lactam

Abstract

Vorgeschlagen werden Waschmittel, enthaltend DOLLAR A (a) anionische Tenside, nichtionische und/oder amphotere Tenside, DOLLAR A (b) kationische Polymere, DOLLAR A (c) Zeolithe sowie gegebenenfalls DOLLAR A (d) Schichtsilikate.

Description

Gebiet der Erfindung
Die Erfindung befindet sich auf dem Gebiet der Waschmittel und betrifft Zubereitungen mit einem avivierenden Tensidsystem.
Stand der Technik
Im Markt sind Waschmittel erhältlich, die die Wäsche nicht nur reinigen, sondern ihr auch einen Weichgriff verleihen sollen. Solche Zubereitungen, die häufig als Softdetergents be­ zeichnet werden, enthalten als Avivagemittel in der Regel kationische Tenside vom Typ der Tetraalkylammoniumverbindungen, meist gemeinsam mit Schichtsilicaten. Da die Wasch­ mittel üblicherweise aniontensidbasiert sind, kommt es in Gegenwart von kationischen Ten­ siden leicht zu einer unerwünschten Salzbildung, die zur Desaktivierung eines Teils der waschaktiven Komponenten und zudem zu Ablagerungen auf den Fasern führt. Demzufolge besteht für den Hersteller von Softdetergents die Notwendigkeit, eine Balance zu wahren und nur soviel Kationtensid in der Rezeptur einzusetzen, wie dies ohne signifikante Salzbil­ dung möglich ist. In der Regel liegt diese Menge noch unter 0,5 Gew.-%. Bei solch niedrigen Einsatzkonzentrationen ist natürlich sofort klar, warum die Softdetergents des Marktes bis­ lang wenig erfolgreich sind und übliche flüssige Weichspüler, die erst im Nachspülgang, also nach Abschluß der eigentlichen Wäsche zudosiert werden, bislang nicht haben verdrängen können.
Demzufolge hat die Aufgabe der vorliegenden Erfindung darin bestanden, neue Waschmittel, vorzugsweise in Form von Pulvern, Granulaten, Extrudaten oder Agglomeraten zur Verfü­ gung zu stellen, bei denen das Problem der Salzbildung zwischen anionischen und kationi­ schen Tensiden gelöst ist, so dass bei hoher Waschleistung die Mitverwendung größerer Mengen an Kationtensiden möglich ist und damit eine bessere Faseravivage erreicht wird.
Beschreibung der Erfindung
Gegenstand der Erfindung sind Waschmittel, enthaltend
  • a) anionische Tenside, nichtionische und/oder amphotere Tenside,
  • b) kationischen Polymeren,
  • c) Zeolithen sowie gegebenenfalls
  • d) Schichtsilikaten,
wobei die Komponente (b) vorzugsweise in Mengen von 1 bis 20, vorzugsweise 2 bis 15, insbesondere 3 bis 10 und besonders bevorzugt 4 bis 8 Gew.-% zugegen ist.
Überraschenderweise wurde gefunden, dass die erfindungsgemäßen Waschmittel die ein­ gangs genannten Anforderungen in vorzüglicher Weise erfüllen. In Kombination mit nichtio­ nischen und/oder amphoteren Tensiden zeigen die kationischen Polymeren nicht nur einen verbesserten Weichgriff, gleichzeitig wird die Tendenz zur Salzbildung mit Aniontensiden herabgesetzt, was die Herstellung von Waschmitteln möglich macht, die gegenüber dem Stand der Technik einen höheren Kationtensidgehalt aufweisen. Zudem wird in Kombination mit Phosphaten als Buildern ein besonders vorteilhafter Avivageeffekt beobachtet, der durch den Zusatz von Schichtsilikaten bzw. den Einsatz eines aniontensidfreien Tensidsystems auf Basis von nichtionischen und/oder amphoteren Tensiden, speziell Alk(en)yloligoglykosiden und/oder Betainen noch weiter verbessert werden kann.
Anionische Tenside
Die Waschmittel können als Komponente (a) anionische, nichtionische und/oder amphotere bzw. zwitterionische Tenside enthalten; vorzugsweise sind jedoch anionische Tenside bzw. Kombinationen von anionischen und nichtionischen Tensiden zugegen. Typische Beispiele für anionische Tenside sind Seifen, Alkylbenzolsulfonate, Alkansulfonate, Olefinsulfonate, Alkyl­ ethersulfonate, Glycerinethersulfonate, α-Methylestersulfonate, Sulfofettsäuren, Alkylsulfate, Fettalkoholethersulfate, Glycerinethersulfate, Hydroxymischethersulfate, Monoglycerid- (ether)sulfate, Fettsäureamid(ether)sulfate, Mono- und Dialkylsulfosuccinate, Mono- und Dialkylsulfosuccinamate, Sulfotriglyceride, Amidseifen, Ethercarbonsäuren und deren Salze, Fettsäureisethionate, Fettsäuresarcosinate, Fettsäuretauride, N-Acylaminosäuren wie bei­ spielsweise Acyllactylate, Acyltartrate, Acylglutamate und Acylaspartate, Alkyloligogluco­ sidsulfate, Proteinfettsäurekondensate (insbesondere pflanzliche Produkte auf Weizenbasis) und Alkyl(ether)phosphate. Sofern die anionischen Tenside Polyglycoletherketten enthalten, können diese eine konventionelle, vorzugsweise jedoch eine eingeengte Homologenvertei­ lung aufweisen. Vorzugsweise werden Alkylbenzolsulfonate, Alkylsulfate, Seifen, Alkansulfo­ nate, Olefinsulfonate, Methylestersulfonate sowie deren Gemische eingesetzt.
Alkylbenzolsulfonate
Bevorzugte Alkylbenzolsulfonate folgen vorzugsweise der Formel (I),
R-Ph-SO3X (I)
in der R für einen verzweigten, vorzugsweise jedoch linearen Alkylrest mit 10 bis 18 Kohlenstoffatomen, Ph für einen Phenylrest und X für ein Alkali- und/oder Erdalka­ limetall, Ammonium, Alkylammonium, Alkanolammonium oder Giucammonium steht. Insbesondere von diesen geeignet sind Dodecylbenzolsulfonate, Tetradecylbenzolsulfo­ nate, Hexadecylbenzolsulfonate sowie deren technische Gemische in Form der Natrium­ salze.
Alkyl- und/oder Alkenylsulfate
Unter Alkyl- und/oder Alkenylsulfaten, die auch häufig als Fettalkoholsulfate bezeichnet werden, sind die Sulfatierungsprodukte primärer und/oder sekundärer Alkohole zu ver­ stehen, die vorzugsweise der Formel (II) folgen,
R2O-SO3Y (II)
in der R2 für einen linearen oder verzweigten, aliphatischen Alkyl- und/oder Alkenylrest mit 6 bis 22, vorzugsweise 12 bis 18 Kohlenstoffatomen und Y für ein Alkali- und/oder Erdalkalimetall, Ammonium, Alkylammonium, Alkanolammonium oder Glucammonium steht. Typische Beispiele für Alkylsulfate, die im Sinne der Erfindung Anwendung finden können, sind die Sulfatierungsprodukte von Capronalkohol, Caprylalkohol, Caprinalkohol, 2-Ethylhexylalkohol, Laurylalkohol, Myristylalkohol, Cetylalkohol, Palmoleylalkohol, Stea­ rylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Arachyl­ alkohol, Gadoleylalkohol, Behenylalkohol und Erucylalkohol sowie deren technischen Gemischen, die durch Hochdruckhydrierung technischer Methylesterfraktionen oder Al­ dehyden aus der Roelenschen Oxosynthese erhalten werden. Die Sulfatierungsprodukte können vorzugsweise in Form ihrer Alkalisalze und insbesondere ihrer Natriumsalze ein­ gesetzt werden. Besonders bevorzugt sind Alkylsulfate auf Basis von C16/18-Talg-Fettal­ koholen bzw. pflanzliche Fettalkohole vergleichbarer C-Kettenverteilung in Form ihrer Natriumsalze. Im Falle von verzweigten primären Alkoholen handelt es sich um Oxoal­ kohole, wie sie z. B. durch Umsetzung von Kohlenmonoxid und Wasserstoff an alpha­ ständige Olefine nach dem Shop-Verfahren zugänglich sind. Solche Alkoholmischungen sind im Handel unter dem Handelsnamen Dobanol® oder Neodol® erhältlich. Geeig­ nete Alkoholmischungen sind Dobanol 91®, 23®, 25®, 45®. Eine weitere Möglichkeit sind Oxoalkohole, wie sie nach dem klassischen Oxoprozeß der Enichema bzw. der Con­ dea durch Anlagerung von Kohlenmonoxid und Wasserstoff an Olefine erhalten werden. Bei diesen Alkoholmischungen handelt es sich um eine Mischung aus stark verzweigten Alkoholen. Solche Alkoholmischungen sind im Handel unter dem Handelsnamen Lial® erhältlich. Geeignete Alkoholmischungen sind Lial 91®, 111®, 123®, 125®, 145®.
Seifen
Unter Seifen sind schließlich Fettsäuresalze der Formel (III) zu verstehen,
R3CO-OX (III)
in der R3CO für einen linearen oder verzweigten, gesättigten oder ungesättigten Acylrest mit 6 bis 22 und vorzugsweise 12 bis 18 Kohlenstoffatomen und X für Alkali- und/oder Erdalkali, Ammonium, Alkylammonium oder Alkanolammonium steht. Typische Beispiele sind die Natrium-, Kalium-, Magnesium-, Ammonium- und Triethanolammoniumsalze der Capronsäure, Caprylsäure, 2-Ethylhexansäure, Caprinsäure, Laurinsäure, Isotridecansäu­ re, Myristinsäure, Palmitinsäure, Palmoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Elaeostearinsäure, Arachinsäure, Gadoleinsäure, Behensäure und Erucasäure sowie deren technische Mischungen. Vor­ zugsweise werden Kokos- oder Palmkernfettsäure in Form ihrer Natrium- oder Kalium­ salze eingesetzt.
Nichtionische Tenside
Typische Beispiele für nichtionische Tenside sind Fettalkoholpolyglycolether, Alkylphenolpo­ lyglycolether, Fettsäurepolyglycolester, Fettsäureamidpolyglycolether, Fettaminpolyglycol­ ether, alkoxylierte Triglyceride, Mischether bzw. Mischformale, Alk(en)yloligoglykoside, Fett­ säure-N-alkylglucamide, Proteinhydrolysate (insbesondere pflanzliche Produkte auf Weizen­ basis), Polyolfettsäureester, Zuckerester, Sorbitanester, Polysorbate und Aminoxide. Sofern die nichtionischen Tenside Polyglycoletherketten enthalten, können diese eine konventio­ nelle, vorzugsweise jedoch eine eingeengte Homologenverteilung aufweisen. Vorzugsweise werden Fettalkoholpolyglycolether, alkoxylierte Fettsäureniedrigalkylester oder Alkyloligoglu­ coside eingesetzt.
Fettalkoholpolyglycolether
Die bevorzugten Fettalkoholpolyglycolether folgen der Formel (IV),
R4O(CH2CHR5O)nH (IV)
in der R4 für einen linearen oder verzweigten Alkyl- und/oder Alkenylrest mit 6 bis 22, vorzugsweise 12 bis 18 Kohlenstoffatomen, R5 für Wasserstoff oder Methyl und n für Zahlen von 1 bis 20 steht. Typische Beispiele sind die Anlagerungsprodukte von durch­ schnittlich 1 bis 20 und vorzugsweise 5 bis 10 Mol Ethylen- und/oder Propylenoxid an Capronalkohol, Caprylalkohol, 2-Ethylhexylalkohol, Caprinalkohol, Laurylalkohol, Isotri­ decylalkohol, Myristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol, Isostea­ rylalkohol, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Linolylalkohol, Linolenylalko­ hol, Elaeostearylalkohol, Arachylalkohol, Gadoleylalkohol, Behenylalkohol, Erucylalkohol und Brassidylalkohol sowie deren technische Mischungen. Besonders bevorzugt sind Anlagerungsprodukte von 3, 5 oder 7 Mol Ethylenoxid an technische Kokosfettalkohole.
Alkoxylierte Fettsäureniedrigalkylester
Als alkoxylierte Fettsäureniedrigalkylester kommen Tenside der Formel (V) in Betracht,
R6CO(OCH2CHR7)mOR8 (V)
in der R6CO für einen linearen oder verzweigten, gesättigten und/oder ungesättigten Acylrest mit 6 bis 22 Kohlenstoffatomen, R7 für Wasserstoff oder Methyl, R8 für lineare oder verzweigte Alkylreste mit 1 bis 4 Kohlenstoffatomen und m für Zahlen von 1 bis 20 steht. Typische Beispiele sind die formalen Einschubprodukte von durchschnittlich 1 bis 20 und vorzugsweise 5 bis 10 Mol Ethylen- und/oder Propylenoxid in die Methyl-, Ethyl-, Propyl-, Isopropyl-, Butyl- und tert.-Butylester von Capronsäure, Caprylsäure, 2-Ethyl­ hexansäure, Caprinsäure, Laurinsäure, Isotridecansäure, Myristinsäure, Palmitinsäure, Palmoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Li­ nolsäure, Linolensäure, Elaeostearinsäure, Arachinsäure, Gadoleinsäure, Behensäure und Erucasäure sowie deren technische Mischungen. Üblicherweise erfolgt die Herstellung der Produkte durch Insertion der Alkylenoxide in die Carbonylesterbindung in Gegenwart spezieller Katalysatoren, wie z. B. calcinierter Hydrotalcit. Besonders bevorzugt sind Um­ setzungsprodukte von durchschnittlich 5 bis 10 Mol Ethylenoxid in die Esterbindung von technischen Kokosfettsäuremethylestern.
Alkyl- und/oder Alkenyloligoglykoside
Alkyl- und Alkenyloligoglykoside, die ebenfalls bevorzugte nichtionische Tenside darstel­ len, folgen üblicherweise der Formel (VI),
R9O[G]p (VI)
in der R9 für einen Alkyl- und/oder Alkenylrest mit 4 bis 22 Kohlenstoffatomen, G für ei­ nen Zuckerrest mit 5 oder 6 Kohlenstoffatomen und p für Zahlen von 1 bis 10 steht. Sie können nach den einschlägigen Verfahren der präparativen organischen Chemie erhalten werden. Stellvertretend für das umfangreiche Schrifttum sei hier auf die Schriften EP 0301298 A1 und WO 90/03977 verwiesen. Die Alkyl- und/oder Alkenyloligoglykoside können sich von Aldosen bzw. Ketosen mit 5 oder 6 Kohlenstolfatomen, vorzugsweise der Glucose ableiten. Die bevorzugten Alkyl- und/oder Alkenyloligoglykoside sind somit Alkyl- und/oder Alkenyloligoglucoside. Die Indexzahl p in der allgemeinen Formel (VI) gibt den Oligomerisierungsgrad (DP), d. h. die Verteilung von Mono- und Oli­ goglykosiden an und steht für eine Zahl zwischen 1 und 10. Während p in einer gegebe­ nen Verbindung stets ganzzahlig sein muß und hier vor allem die Werte p = 1 bis 6 an­ nehmen kann, ist der Wert p für ein bestimmtes Alkyloligoglykosid eine analytisch er­ mittelte rechnerische Größe, die meistens eine gebrochene Zahl darstellt. Vorzugsweise werden Alkyl- und/oder Alkenyloligoglykoside mit einem mittleren Oligomerisierungsgrad p von 1,1 bis 3,0 eingesetzt. Aus anwendungstechnischer Sicht sind solche Alkyl- und/oder Alkenyloligoglykoside bevorzugt, deren Oligomerisierungsgrad kleiner als 1,7 ist und insbesondere zwischen 1,2 und 1,4 liegt. Der Alkyl- bzw. Alkenylrest R9 kann sich von primären Alkoholen mit 4 bis 11, vorzugsweise 8 bis 10 Kohlenstoffatomen ableiten. Typische Beispiele sind Butanol, Capronalkohol, Caprylalkohol, Caprinalkohol und Un­ decylalkohol sowie deren technische Mischungen, wie sie beispielsweise bei der Hy­ drierung von technischen Fettsäuremethylestern oder im Verlauf der Hydrierung von Al­ dehyden aus der Roelenschen Oxosynthese erhalten werden. Bevorzugt sind Alkyloli­ goglucoside der Kettenlänge C8-C10 (DP = 1 bis 3), die als Vorlauf bei der destillativen Auftrennung von technischem C8-C18-Kokosfettalkohol anfallen und mit einem Anteil von weniger als 6 Gew.-% C12-Alkohol verunreinigt sein können sowie Alkyloligoglucoside auf Basis technischer C9/11-Oxoalkohole (DP = 1 bis 3). Der Alkyl- bzw. Alkenylrest R9 kann sich ferner auch von primären Alkoholen mit 12 bis 22, vorzugsweise 12 bis 14 Kohlen­ stoffatomen ableiten. Typische Beispiele sind Laurylalkohol, Myristylalkohol, Cetylalko­ hol, Palmoleylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylalkohol, Pe­ troselinylalkohol, Arachylalkohol, Gadoleylalkohol, Behenylalkohol, Erucylalkohol, Brassi­ dylalkohol sowie deren technische Gemische, die wie oben beschrieben erhalten werden können. Bevorzugt sind Alkyloligoglucoside auf Basis von gehärtetem C12/14-Kokosalkohol mit einem DP von 1 bis 3.
Amphotere bzw. zwitterionische Tenside
Typische Beispiele für amphotere bzw. zwitterionische Tenside sind Alkylbetaine, Alkyl­ amidobetaine, Aminopropionate, Aminoglycinate, Imidazoliniumbetaine und Sulfobetaine. Bei den genannten Tensiden handelt es sich ausschließlich um bekannte Verbindungen. Hin­ sichtlich Struktur und Herstellung dieser Stoffe sei auf einschlägige Übersichtsarbeiten (bei­ spielsweise J. Falbe (ed.), "Surfactants in Consumer Products", Springer Verlag, Berlin, 1987, S. 54-124 oder J. Falbe (ed.), "Katalysatoren, Tenside und Mineral­ öladditive", Thieme Verlag, Stuttgart, 1978, S. 123-217) verwiesen.
Die Waschmittel können die anionischen, nichtionischen und/oder amphoteren bzw. zwitte­ rionischen Tenside in Mengen von 1 bis 50, vorzugsweise 5 bis 25 und insbesondere 10 bis 20 Gew.-% - bezogen auf die Waschmittel - enthalten.
Kationische Polymere
Als Komponente (b) geeignete kationische Polymere sind beispielsweise kationische Cellulo­ sederivate, wie z. B. eine quaternierte Hydroxyethylcellulose, die unter der Bezeichnung Po­ lymer JR 400® von Amerchol erhältlich ist, kationische Stärke, Copolymere von Diallylammo­ niumsalzen und Acrylamiden, quaternierte Vinylpyrrolidon/Vinylimidazol-Polymere, wie z. B. Luviquat® (BASF), Kondensationsprodukte von Polyglycolen und Aminen, quaternierte Kolla­ genpolypeptide, wie beispielsweise Lauryldimonium Hydroxypropyl Hydrolyzed Collagen (Lamequat®L/Grünau), quaternierte Weizenpolypeptide, Polyethylenimin, kationische Sili­ conpolymere, wie z. B. Amodimethicone, Copolymere der Adipinsäure und Dimethyla­ minohydroxypropyldiethylentriamin (Cartaretine®/Sandoz), Copolymere der Acrylsäure mit Dimethyldiallylammoniumchlorid (Merquat® 550/Chemviron), Polyaminopolyamide, wie z. B. beschrieben in der FR 2252840 A sowie deren vernetzte wasserlöslichen Polymere, kationi­ sche Chitinderivate wie beispielsweise quaterniertes Chitosan, gegebenenfalls mikrokristallin verteilt, Kondensationsprodukte aus Dihalogenalkylen, wie z. B. Dibrombutan mit Bisdialkyla­ minen, wie z. B. Bis-Dimethylamino-1,3-propan, quaternierte Ammoniumsalz-Polymere, wie z. B. Mirapol® A-15, Mirapol® AD-1, Mirapol® AZ-1 der Firma Miranol sowie insbesondere kationischer Guar-Gum, auch bekannt als Guar Hydroxypropyltrimethylammoniumchlorid, wie z. B. Jaguar® CBS, Jaguar® C-17, Jaguar® C-16 der Firma Celanese oder Cosmedia® Guar der Firma Cognis.
Die erfindungsgemäßen Mittel können die kationischen Polymeren in Mengen von 0,1 bis 10, vorzugsweise 1 bis 8 und insbesondere 3 bis 5 Gew.-% - bezogen auf die Mittel - enthalten.
Zeolithe
Als Builder (Komponente c) können die erfindungsgemäßen Waschmittel Zeolithe enthalten. Der als Waschmittelbuilder häufig eingesetzte feinkristalline, synthetische und gebundenes Wasser enthaltende Zeolith ist vorzugsweise Zeolith A und/oder P. Als Zeolith P wird bei­ spielsweise Zeolith MAP® (Handelsprodukt der Firma Crosfield) besonders bevorzugt. Ge­ eignet sind jedoch auch Zeolith X sowie Mischungen aus A, X und/oder P wie auch Y. Von besonderem Interesse ist auch ein cokristallisiertes Natrium/Kalium-Aluminiumsilikat aus Zeolith A und Zeolith X, welches als VEGOBOND AX® (Handelsprodukt der Firma Condea Augusta S. p. A.) im Handel erhältlich ist. Der Zeolith kann als sprühgetrocknetes Pulver oder auch als ungetrocknete, von ihrer Herstellung noch feuchte, stabilisierte Suspension zum Einsatz kommen. Für den Fall, dass der Zeolith als Suspension eingesetzt wird, kann diese geringe Zusätze an nichtionischen Tensiden als Stabilisatoren enthalten, beispielsweise 1 bis 3 Gew.-%, bezogen auf Zeolith, an ethoxylierten C12-C18-Fettalkoholen mit 2 bis 5 Ethylen­ oxidgruppen, C12-C14-Fettalkoholen mit 4 bis 5 Ethylenoxidgruppen oder ethoxylierten Iso­ tridecanolen. Geeignete Zeolithe weisen eine mittlere Teilchengröße von weniger als 10 µm (Volumenverteilung; Meßmethode: Coulter Counter) auf und enthalten vorzugsweise 18 bis 22 Gew.-%, insbesondere 20 bis 22 Gew.-% an gebundenem Wasser. Die Zeolithe sind in den Endzubereitungen vorzugsweise in Mengen von 10 bis 60, insbesondere 15 bis 25 Gew.-% - bezogen auf die Mittel - enthalten.
Schichtsilikate
Als optionale Komponente (d) können die Mittel zudem Schichtsilikate bzw. Bentonite ent­ halten. Typische Beispiele sind kristalline, schichtförmige Natriumsilikate der allgemeinen Formel NaMSixO2x+1.yH2O, wobei M Natrium oder Wasserstoff bedeutet, x eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Derartige kristalline Schichtsilikate werden beispielsweise in der europäischen Patentanmeldung EP 0164514 A1 beschrieben. Bevorzugte kristalline Schichtsilikate der angegebenen Formel sind solche, in denen M für Natrium steht und x die Werte 2 oder 3 annimmt. Insbesondere sind sowohl β- als auch δ-Natriumdisilikate Na2Si2O5.yH2O bevorzugt, wobei β-Natrium­ disilikat beispielsweise nach dem Verfahren erhalten werden kann, das in der internationalen Patentanmeldung WO 91/08171 beschrieben ist. Weitere geeignete Schichtsilikate sind beispielsweise aus den Patentanmeldungen DE 23 34 899 A1, EP 0026529 A1 und DE 35 26 405 A1 bekannt. Ihre Verwendbarkeit ist nicht auf eine spezielle Zusammensetzung bzw. Strukturformel beschränkt. Bevorzugt sind hier jedoch Smectite, insbesondere Ben­ tonite. Geeignete Schichtsilikate, die zur Gruppe der mit Wasser quellfähigen Smectite zäh­ len, sind z. B. solche der allgemeinen Formeln
(OH)4Si8-yAly(MgxAl4-x)O20 Montmorrilonit
(OH)4Si8-yAly(Mg6-zLiz)O20 Hectorit
(OH)4Si8-yAly(Mg6-zAlz)O20 Saponit
mit x = 0 bis 4, y = 0 bis 2, z = 0 bis 6. Zusätzlich kann in das Kristallgitter der Schichtsili­ kate gemäß den vorstehenden Formeln geringe Mengen an Eisen eingebaut sein. Ferner können die Schichtsilikate aufgrund ihrer ionenaustauschenden Eigenschaften Wasserstoff-, Alkali-, Erdalkaliionen, insbesondere Na+ und Ca2+ enthalten. Die Hydratwassermenge liegt meist im Bereich von 8 bis 20 Gew.-% und ist vom Quellzustand bzw. von der Art der Bear­ beitung abhängig. Brauchbare Schichtsilikate sind beispielsweise aus US 3966629, US 4062647, EP 0026529 A1 und EP 0028432 A1 bekannt. Vorzugsweise werden Schicht­ silikate verwendet, die aufgrund einer Alkalibehandlung weitgehend frei von Calciumionen und stark färbenden Eisenionen sind.
Alternativ können auch amorphe Natriumsilikate mit einem Modul Na2O : SiO2 von 1 : 2 bis 1 : 3,3, vorzugsweise von 1 : 2 bis 1 : 2,8 und insbesondere von 1 : 2 bis 1 : 2,6 eingesetzt werden, welche löseverzögert sind und Sekundärwascheigenschaften aufweisen. Die Löse­ verzögerung gegenüber herkömmlichen amorphen Natriumsilikaten kann dabei auf ver­ schiedene Weise, beispielsweise durch Oberflächenbehandlung, Compoundierung, Kompak­ tierung/Verdichtung oder durch Übertrocknung hervorgerufen worden sein. Im Rahmen die­ ser Erfindung wird unter dem Begriff "amorph" auch "röntgenamorph" verstanden. Dies heißt, daß die Silikate bei Röntgenbeugungsexperimenten keine scharfen Röntgenreflexe liefern, wie sie für kristalline Substanzen typisch sind, sondern allenfalls ein oder mehrere Maxima der gestreuten Röntgenstrahlung, die eine Breite von mehreren Gradeinheiten des Beugungswinkels aufweisen. Es kann jedoch sehr wohl sogar zu besonders guten Builder­ eigenschaften führen, wenn die Silikatpartikel bei Elektronenbeugungsexperimenten ver­ waschene oder sogar scharfe Beugungsmaxima liefern. Dies ist so zu interpretieren, daß die Produkte mikrokristalline Bereiche der Größe 10 bis einige Hundert nm aufweisen, wobei Werte bis max. 50 nm und insbesondere bis max. 20 nm bevorzugt sind. Derartige soge­ nannte röntgenamorphe Silikate, welche ebenfalls eine Löseverzögerung gegenüber den her­ kömmlichen Wassergläsern aufweisen, werden beispielsweise in der deutschen Patentanmel­ dung DE 44 00 024 A1 beschrieben. Insbesondere bevorzugt sind verdichtete/kompaktierte amorphe Silikate, compoundierte amorphe Silikate und übertrocknete röntgenamorphe Sili­ kate.
Die Schichtsilikate können - bezogen auf die Mittel - in Mengen von 1 bis 10, vorzugsweise 3 bis 8 Gew.-% zugegen sein.
Builder
Weitere bevorzugte Inhaltsstoffe der erfindungsgemäßen Waschmittel sind zusätzliche anor­ ganische und organische Buildersubstanzen, wobei als anorganische Buildersubstanzen hauptsächlich Phosphate zum Einsatz kommen. Die Menge an Co-Builder ist dabei auf die bevorzugten Mengen an Zeolithen anzurechnen.
Phosphate
Geeignet sind insbesondere die Natriumsalze der Orthophosphate, der Pyrophosphate und insbesondere der Tripolyphosphate. Die Phosphate sind in den Endzubereitungen vorzugsweise in Mengen von 10 bis 60, insbesondere 20 bis 40 Gew.-% - bezogen auf die Mittel - enthalten.
Poly- und Hydroxycarbonsäuren
Brauchbare organische Gerüstsubstanzen sind beispielsweise die in Form ihrer Natrium­ salze einsetzbaren Polycarbonsäuren, wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren und Mischungen aus diesen. Auch die Säuren an sich können eingesetzt werden. Die Säuren besitzen neben ihrer Builderwirkung typischerweise auch die Eigenschaft einer Säue­ rungskomponente und dienen somit auch zur Einstellung eines niedrigeren und milderen pH-Wertes von Wasch- oder Reinigungsmitteln. Insbesondere sind hierbei Citronensäu­ re, Bernsteinsäure, Glutarsäure, Adipinsäure, Gluconsäure und beliebige Mischungen aus diesen zu nennen.
Weitere brauchbare organische Cobuilder sind beispielsweise acetylierte Hydroxycar­ bonsäuren bzw. deren Salze, welche gegebenenfalls auch in Lactonform vorliegen kön­ nen und welche mindestens 4 Kohlenstoffatome und mindestens eine Hydroxygruppe sowie maximal zwei Säuregruppen enthalten. Derartige Cobuilder werden beispielswei­ se in der internationalen Patentanmeldung WO 95/20029 beschrieben.
Polymere Polycarboxylate
Geeignete polymere Polycarboxylate sind beispielsweise die Natriumsalze der Polyacryl­ säure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülma­ sse von 800 bis 150 000 (auf Säure bezogen und jeweils gemessen gegen Polystyrol­ sulfonsäure). Geeignete copolymere Polycarboxylate sind insbesondere solche der Acryl­ säure mit Methacrylsäure und der Acrylsäure oder Methacrylsäure mit Maleinsäure. Als besonders geeignet haben sich Copolymere der Acrylsäure mit Maleinsäure erwiesen, die 50 bis 90 Gew.-% Acrylsäure und 50 bis 10 Gew.-% Maleinsäure enthalten. Ihre relative Molekülmasse, bezogen auf freie Säuren, beträgt im allgemeinen 5000 bis 200 000, vorzugsweise 10 000 bis 120 000 und insbesondere 50 000 bis 100 000 (jeweils gemes­ sen gegen Polystyrolsulfonsäure). Die (co-)polymeren Polycarboxylate können entweder als Pulver oder als wäßrige Lösung eingesetzt werden, wobei 20 bis 55 Gew.-%ige wäß­ rige Lösungen bevorzugt sind. Granulare Polymere werden zumeist nachträglich zu ei­ nem oder mehreren Basisgranulaten zugemischt. Insbesondere bevorzugt sind auch biologisch abbaubare Polymere aus mehr als zwei verschiedenen Monomereinheiten, beispielsweise solche, die gemäß der DE 43 00 772 A1 als Monomere Salze der Acryl­ säure und der Maleinsäure sowie Vinylalkohol bzw. Vinylalkohol-Derivate oder gemäß der DE 42 21 381 C2 als Monomere Salze der Acrylsäure und der 2-Alkylallylsulfonsäure sowie Zucker-Derivate enthalten. Weitere bevorzugte Copolymere sind solche, die in den deutschen Patentanmeldungen DE 43 03 320 A1 und DE 44 17 734 A1 beschrieben werden und als Monomere vorzugsweise Acrolein und Acrylsäure/Acryl-säuresalze bzw. Acrolein und Vinylacetat aufweisen. Ebenso sind als weitere bevorzugte Buildersubstan­ zen polymere Aminodicarbonsäuren, deren Salze oder deren Vorläufersubstanzen zu nennen. Besonders bevorzugt sind Polyasparaginsäuren bzw. deren Salze und Derivate.
Polyacetale
Weitere geeignete Buildersubstanzen sind Polyacetale, welche durch Umsetzung von Dialdehyden mit Polyolcarbonsäuren, welche 5 bis 7 C-Atome und mindestens 3 Hy­ droxylgruppen aufweisen, beispielsweise wie in der europäischen Patentanmeldung EP 0280223 A1 beschrieben, erhalten werden können. Bevorzugte Polyacetale werden aus Dialdehyden wie Glyoxal, Glutaraldehyd, Terephthalaldehyd sowie deren Gemischen und aus Polyolcarbonsäuren wie Gluconsäure und/oder Glucoheptonsäure erhalten.
Dextrine
Weitere geeignete organische Buildersubstanzen sind Dextrine, beispielsweise Oligomere bzw. Polymere von Kohlenhydraten, die durch partielle Hydrolyse von Stärken erhalten werden können. Die Hydrolyse kann nach üblichen, beispielsweise säure- oder enzym­ katalysierten Verfahren durchgeführt werden. Vorzugsweise handelt es sich um Hydroly­ seprodukte mit mittleren Molmassen im Bereich von 400 bis 500 000. Dabei ist ein Poly­ saccharid mit einem Dextrose-Äquivalent (DE) im Bereich von 0,5 bis 40, insbesondere von 2 bis 30 bevorzugt, wobei DE ein gebräuchliches Maß für die reduzierende Wirkung eines Polysaccharids im Vergleich zu Dextrose, welche ein DE von 100 besitzt, ist. Brauchbar sind sowohl Maltodextrine mit einem DE zwischen 3 und 20 und Trockenglu­ cosesirupe mit einem DE zwischen 20 und 37 als auch sogenannte Gelbdextrine und Weißdextrine mit höheren Molmassen im Bereich von 2000 bis 30 000. Ein bevorzugtes Dextrin ist in der britischen Patentanmeldung GB 9419091 A1 beschrieben. Bei den oxidierten Derivaten derartiger Dextrine handelt es sich um deren Umsetzungsprodukte mit Oxidationsmitteln, welche in der Lage sind, mindestens eine Alkoholfunktion des Saccharidrings zur Carbonsäurefunktion zu oxidieren. Derartige oxidierte Dextrine und Verfahren ihrer Herstellung sind beispielsweise aus den europäischen Patentanmel­ dungen EP 0232202 A1, EP 0427349 A1, EP 0472042 A1 und EP 0542496 A1 sowie den internationalen Patentanmeldungen WO 92/18542, WO 93/08251, WO 93/16110, WO 94/28030, WO 95/07303, WO 95/12619 und WO 95/20608 bekannt. Ebenfalls geeignet ist ein oxidiertes Oligosaccharid gemäß der deutschen Pa­ tentanmeldung DE 196 00 018 A1. Ein an C6 des Saccharidrings oxidiertes Produkt kann besonders vorteilhaft sein.
Disuccinate
Weitere geeignete Cobuilder sind Oxydisuccinate und andere Derivate von Disuccinaten, vorzugsweise Ethylendiamindisuccinat. Besonders bevorzugt sind in diesem Zusammen­ hang auch Glycerindisuccinate und Glycerintrisuccinate, wie sie beispielsweise in den US- amerikanischen Patentschriften US 4,524,009, US 4,639,325, in der europäischen Patentanmeldung EP 0150930 A1 und der japanischen Patentanmeldung JP 93/339896 beschrieben werden. Geeignete Einsatzmengen liegen in zeolithhaltigen und/oder silikathaltigen Formulierungen bei 3 bis 15 Gew.-%.
Fett- und öllösende Komponenten
Zusätzlich können die Mittel auch Komponenten enthalten, welche die Öl- und Fett-Aus­ waschbarkeit aus Textilien positiv beeinflussen. Zu den bevorzugten Öl- und fettlösenden Komponenten zählen beispielsweise nichtionische Celluloseether wie Methylcellulose und Methylhydroxypropylcellulose mit einem Anteil an Methoxyl-Gruppen von 15 bis 30 Gew.-% und an Hydroxypropoxyl-Gruppen von 1 bis 15 Gew.-%, jeweils bezogen auf den nichtioni­ schen Celluloseether, sowie die aus dem Stand der Technik bekannten Polymere der Phthal­ säure und/oder der Terephthalsäure bzw. von deren Derivaten, insbesondere Polymere aus Ethylenterephthalaten und/oder Polyethylenglykolterephthalaten oder anionisch und/oder nichtionisch modifizierten Derivaten von diesen. Besonders bevorzugt von diesen sind die sulfonierten Derivate der Phthalsäure- und der Terephthalsäure-Polymere.
Bleichmittel
Unter den als Bleichmittel dienenden, in Wasser H2O2 liefernden Verbindungen haben das Natriumperborattetrahydrat und das Natriumperboratmonohydrat besondere Bedeutung.
Weitere brauchbare Bleichmittel sind beispielsweise Natriumpercarbonat, Peroxypyrophos­ phate, Citratperhydrate sowie H2O2 liefernde persaure Salze oder Persäuren, wie Perben­ zoate, Peroxophthalate, Diperazelainsäure, Phthaloiminopersäure oder Diperdodecandisäure. Der Gehalt der Mittel an Bleichmitteln beträgt vorzugsweise 5 bis 35 Gew.-% und insbeson­ dere bis 30 Gew.-%, wobei vorteilhafterweise Perboratmonohydrat oder Percarbonat einge­ setzt wird.
Bleichaktivatoren
Als Bleichaktivatoren können Verbindungen, die unter Perhydrolysebedingungen aliphatische Peroxocarbonsäuren mit vorzugsweise 1 bis 10 C-Atomen, insbesondere 2 bis 4 C-Atomen, und/oder gegebenenfalls substituierte Perbenzoesäure ergeben, eingesetzt werden. Geeignet sind Substanzen, die O- und/oder N-Acylgruppen der genannten C-Atomzahl und/oder gege­ benenfalls substituierte Benzoylgruppen tragen. Bevorzugt sind mehrfach acylierte Alkylen­ diamine, insbesondere Tetraacetylethylendiamin (TAED), acylierte Triazinderivate, insbeson­ dere 1,5-Diacetyl-2,4-dioxohexahydro-1,3,5-triazin (DADHT), acylierte Glykolurile, insbe­ sondere Tetraacetylglykoluril (TAGU), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsul­ fonat (n- bzw. iso-NOBS), Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, acy­ lierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglykoldiacetat, 2,5-Diacetoxy- 2,5-dihydrofuran und die aus den deutschen Patentanmeldungen DE 196 16 693 A1 und DE 196 16 767 A1 bekannten Enolester sowie acetyliertes Sorbitol und Mannitol bezie­ hungsweise deren in der europäischen Patentanmeldung EP 0525239 A1 beschriebene Mi­ schungen (SORMAN), acylierte Zuckerderivate, insbesondere Pentaacetylglukose (PAG), Pentaacetylfruktose, Tetraacetylxylose und Octaacetyllactose sowie acetyliertes, gegebe­ nenfalls N-alkyliertes Glucamin und Gluconolacton, und/oder N-acylierte Lactame, beispiels­ weise N-Benzoylcaprolactam, die aus den internationalen Patentanmeldungen WO 94/27970, WO 94/28102, WO 94/28103, WO 95/00626, WO 95/14759 und WO 95/17498 bekannt sind. Die aus der deutschen Patentanmeldung DE 196 16 769 A1 bekannten hydrophil substituierten Acylacetale und die in der deutschen Patentanmeldung DE 196 16 770 sowie der internationalen Patentanmeldung WO 95/14075 beschriebenen Acyllactame werden ebenfalls bevorzugt eingesetzt. Auch die aus der deutschen Patentan­ meldung DE 44 43 177 A1 bekannten Kombinationen konventioneller Bleichaktivatoren kön­ nen eingesetzt werden. Derartige Bleichaktivatoren sind im üblichen Mengenbereich, vor­ zugsweise in Mengen von 1 Gew.-% bis 10 Gew.-%, insbesondere 2 Gew.-% bis 8 Gew.-%, bezogen auf gesamtes Mittel, enthalten. Zusätzlich zu den oben aufgeführten konventionel­ len Bleichaktivatoren oder an deren Stelle können auch die aus den europäischen Patent­ schriften EP 0446982 B1 und EP 0453003 B1 bekannten Sulfonimine und/oder bleich­ verstärkende Übergangsmetallsalze beziehungsweise Übergangsmetallkomplexe als soge­ nannte Bleichkatalysatoren enthalten sein. Zu den in Frage kommenden Übergangs­ metallverbindungen gehören insbesondere die aus der deutschen Patentanmeldung DE 195 29 905 A1 bekannten Mangan-, Eisen-, Kobalt-, Ruthenium- oder Molybdän- Salenkomplexe und deren aus der deutschen Patentanmeldung DE 196 20 267 A1 bekannte N-Analogverbindungen, die aus der deutschen Patentanmeldung DE 195 36 082 A1 be­ kannten Mangan-, Eisen-, Kobalt-, Ruthenium- oder Molybdän-Carbonylkomplexe, die in der deutschen Patentanmeldung DE 196 05 688 beschriebenen Mangan-, Eisen-, Kobalt-, Rut­ henium-, Molybdän-, Titan-, Vanadium- und Kupfer-Komplexe mit stickstoffhaltigen Tripod- Liganden, die aus der deutschen Patentanmeldung DE 196 20 411 A1 bekannten Kobalt-, Eisen-, Kupfer- und Ruthenium-Aminkomplexe, die in der deutschen Patentanmeldung DE 44 16 438 A1 beschriebenen Mangan-, Kupfer- und Kobalt-Komplexe, die in der euro­ päischen Patentanmeldung EP 0272030 A1 beschriebenen Kobalt-Komplexe, die aus der europäischen Patentanmeldung EP 0693550 A1 bekannten Mangan-Komplexe, die aus der europäischen Patentschrift EP 0392592 A1 bekannten Mangan-, Eisen-, Kobalt- und Kup­ fer-Komplexe und/oder die in der europäischen Patentschrift EP 0443651 B1 oder den europäischen Patentanmeldungen EP 0458397 A1, EP 0458398 A1, EP 0549271 A1, EP 0549272 A1, EP 0544490 A1 und EP 0544519 A1 beschriebenen Mangan- Komplexe. Kombinationen aus Bleichaktivatoren und Übergangsmetall-Bleichkatalysatoren sind beispielsweise aus der deutschen Patentanmeldung DE 196 13 103 A1 und der in­ ternationalen Patentanmeldung WO 95/27775 bekannt. Bleichverstärkende Übergangs­ metallkomplexe, insbesondere mit den Zentralatomen Mn, Fe, Co, Cu, Mo, V, Ti und/oder Ru, werden in üblichen Mengen, vorzugsweise in einer Menge bis zu 1 Gew.-%, insbesonde­ re von 0,0025 Gew.-% bis 0,25 Gew.-% und besonders bevorzugt von 0,01 Gew.-% bis 0,1 Gew.-%, jeweils bezogen auf gesamtes Mittel, eingesetzt.
Enzyme
Als Enzyme kommen insbesondere solche aus der Klasse der Hydrolasen, wie der Proteasen, Esterasen, Lipasen bzw. lipolytisch wirkenden Enzyme, Amylasen, Cellulasen bzw. andere Glykosylhydrolasen und Gemische der genannten Enzyme in Frage. Alle diese Hydrolasen tragen in der Wäsche zur Entfernung von Verfleckungen, wie protein-, fett- oder stärkehalti­ gen Verfleckungen, und Vergrauungen bei. Cellulasen und andere Glykosylhydrolasen kön­ nen durch das Entfernen von Pilling und Mikrofibrillen zur Farberhaltung und zur Erhöhung der Weichheit des Textils beitragen. Zur Bleiche bzw. zur Hemmung der Farbübertragung können auch Oxidoreduktasen eingesetzt werden. Besonders gut geeignet sind aus Bakte­ rienstämmen oder Pilzen, wie Bacillus subtilis, Bacillus licheniformis, Streptomyces griseus und Humicola insolens gewonnene enzymatische Wirkstoffe. Vorzugsweise werden Proteasen vom Subtilisin-Typ und insbesondere Proteasen, die aus Bacillus lentus gewonnen werden, eingesetzt. Dabei sind Enzymmischungen, beispielsweise aus Protease und Amylase oder Protease und Lipase bzw. lipolytisch wirkenden Enzymen oder Protease und Cellulase oder aus Cellulase und Lipase bzw. lipolytisch wirkenden Enzymen oder aus Protease, Amylase und Lipase bzw. lipolytisch wirkenden Enzymen oder Protease, Lipase bzw. lipolytisch wir­ kenden Enzymen und Cellulase, insbesondere jedoch Protease- und/oder Lipase-haltige Mi­ schungen bzw. Mischungen mit lipolytisch wirkenden Enzymen von besonderem Interesse. Beispiele für derartige lipolytisch wirkende Enzyme sind die bekannten Cutinasen. Auch Per­ oxidasen oder Oxidasen haben sich in einigen Fällen als geeignet erwiesen. Zu den geeig­ neten Amylasen zählen insbesondere α-Amylasen, Iso-Amyiasen, Pullulanasen und Pektina­ sen. Als Cellulasen werden vorzugsweise Cellobiohydrolasen, Endoglucanasen und β- Glucosidasen, die auch Cellobiasen genannt werden, bzw. Mischungen aus diesen eingesetzt. Da sich die verschiedenen Cellulase-Typen durch ihre CMCase- und Avicelase-Aktivitäten unterscheiden, können durch gezielte Mischungen der Cellulasen die gewünschten Aktivitä­ ten eingestellt werden.
Die Enzyme können an Trägerstoffen adsorbiert und/oder in Hüllsubstanzen eingebettet sein, um sie gegen vorzeitige Zersetzung zu schützen. Der Anteil der Enzyme, Enzymmi­ schungen oder Enzymgranulate kann beispielsweise etwa 0,1 bis 5 Gew.-%, vorzugsweise 0,1 bis etwa 2 Gew.-% betragen.
Enzymstabilisatoren
Zusätzlich zu den mono- und polyfunktionellen Alkoholen können die Mittel weitere En­ zymstabilisatoren enthalten. Beispielsweise können 0,5 bis 1 Gew.-% Natriumformiat einge­ setzt werden. Möglich ist auch der Einsatz von Proteasen, die mit löslichen Calciumsalzen und einem Calciumgehalt von vorzugsweise etwa 1,2 Gew.-%, bezogen auf das Enzym, sta­ bilisiert sind. Außer Calciumsalzen dienen auch Magnesiumsalze als Stabilisatoren. Besonders vorteilhaft ist jedoch der Einsatz von Borverbindungen, beispielsweise von Borsäure, Boroxid, Borax und anderen Alkalimetallboraten wie den Salzen der Orthoborsäure (H3BO3), der Me­ taborsäure (HBO2) und der Pyroborsäure (Tetraborsäure H2B4O7).
Vergrauungsinhibitoren
Vergrauungsinhibitoren haben die Aufgabe, den von der Faser abgelösten Schmutz in der Flotte suspendiert zu halten und so das Wiederaufziehen des Schmutzes zu verhindern. Hierzu sind wasserlösliche Kolloide meist organischer Natur geeignet, beispielsweise die wasserlöslichen Salze polymerer Carbonsäuren, Leim, Gelatine, Salze von Ethercarbonsäu­ ren oder Ethersulfonsäuren der Stärke oder der Cellulose oder Salze von sauren Schwefel­ säureestern der Cellulose oder der Stärke. Auch wasserlösliche, saure Gruppen enthaltende Polyamide sind für diesen Zweck geeignet. Weiterhin lassen sich lösliche Stärkepräparate und andere als die obengenannten Stärkeprodukte verwenden, z. B. abgebaute Stärke, Al­ dehydstärken usw.. Auch Polyvinylpyrrolidon ist brauchbar. Bevorzugt werden jedoch Cel­ luloseether, wie Carboxymethylcellulose (Na-Salz), Methylcellulose, Hydroxyalkylcellulose und Mischether, wie Methylhydroxyethylcellulose, Methylhydroxypropylcellulose, Methylcar­ boxymethylcellulose und deren Gemische, sowie Polyvinylpyrrolidon beispielsweise in Men­ gen von 0,1 bis 5 Gew.-%, bezogen auf die Mittel, eingesetzt.
Optische Aufheller
Die Mittel können als optische Aufheller Derivate der Diaminostilbendisulfonsäure bzw. deren Alkalimetallsalze enthalten. Geeignet sind z. B. Salze der 4,4'-Bis(2-anilino-4-morpholino- 1,3,5-triazinyl-6-amino)stilben-2,2'-disulfonsäure oder gleichartig aufgebaute Verbindungen, die anstelle der Morpholino-Gruppe eine Diethanolaminogruppe, eine Methylaminogruppe, eine Anilinogruppe oder eine 2-Methoxyethylaminogruppe tragen. Weiterhin können Aufhel­ ler vom Typ der substituierten Diphenylstyryle anwesend sein, z. B. die Alkalisalze des 4,4'- Bis(2-sulfostyryl)-diphenyls, 4,4'-Bis(4-chlor-3-sulfostyryl)-diphenyls, oder 4-(4-Chlorstyryl)- 4'-(2-sulfostyryl)-diphenyls. Auch Gemische der vorgenannten Aufheller können verwendet werden. Einheitlich weiße Granulate werden erhalten, wenn die Mittel außer den üblichen Aufhellern in üblichen Mengen, beispielsweise zwischen 0,1 und 0,5 Gew.-%, vorzugsweise zwischen 0,1 und 0,3 Gew.-%, auch geringe Mengen, beispielsweise 10-6 bis 10-3 Gew.-%, vorzugsweise um 10-5 Gew.-%, eines blauen Farbstoffs enthalten. Ein besonders bevorzugter Farbstoff ist Tinolux® (Handelsprodukt der Ciba-Geigy).
Soil repellants
Als schmutzabweisende Polymere ("soil repellants") kommen solche Stoffe in Frage, die vor­ zugsweise Ethylenterephthalat- und/oder Polyethylenglycolterephthalatgruppen enthalten, wobei das Molverhältnis Ethylenterephthalat zu Polyethylenglycolterephthalat im Bereich von 50 : 50 bis 90 : 10 liegen kann. Das Molekulargewicht der verknüpfenden Polyethylengly­ coleinheiten liegt insbesondere im Bereich von 750 bis 5000, d. h., der Ethoxylierungsgrad der Polyethylenglycolgruppen-haltigen Polymere kann ca. 15 bis 100 betragen. Die Polymeren zeichnen sich durch ein durchschnittliches Molekulargewicht von etwa 5000 bis 200.000 aus und können eine Block-, vorzugsweise aber eine Random-Struktur aufweisen. Bevorzugte Polymere sind solche mit Molverhältnissen Ethylenterephthalat/Polyethylenglycoltere­ phthalat von etwa 65 : 35 bis etwa 90 : 10, vorzugsweise von etwa 70 : 30 bis 80 : 20. Weiterhin bevorzugt sind solche Polymeren, die verknüpfende Polyethylenglycoleinheiten mit einem Molekulargewicht von 750 bis 5000, vorzugsweise von 1000 bis etwa 3000 und ein Molekulargewicht des Polymeren von etwa 10.000 bis etwa 50.000 aufweisen. Beispiele für handelsübliche Polymere sind die Produkte Milease® T (ICI) oder Repelotex® SRP 3 (Rhône- Poulenc).
Entschäumer
Als Entschäumer können wachsartige Verbindungen eingesetzt werden. Als "wachsartig" werden solche Verbindungen verstanden, die einen Schmelzpunkt bei Atmosphärendruck über 25°C (Raumtemperatur), vorzugsweise über 50°C und insbesondere über 70°C auf­ weisen. Die wachsartigen Entschäumersubstanzen sind in Wasser praktisch nicht löslich, d. h. bei 20°C weisen sie in 100 g Wasser eine Löslichkeit unter 0,1 Gew.-% auf. Prinzipiell kön­ nen alle aus dem Stand der Technik bekannten wachsartigen Entschäumersubstanzen ent­ halten sein. Geeignete wachsartige Verbindungen sind beispielsweise Bisamide, Fettalkohole, Fettsäuren, Carbonsäureester von ein- und mehrwertigen Alkoholen sowie Paraffinwachse oder Mischungen derselben. Alternativ können natürlich auch die für diesen Zweck bekann­ ten Silikonverbindungen eingesetzt werden.
Paraffinwachse
Geeignete Paraffinwachse stellen im allgemeinen ein komplexes Stoffgemisch ohne scharfen Schmelzpunkt dar. Zur Charakterisierung bestimmt man üblicherweise seinen Schmelzbereich durch Differential-Thermo-Analyse (DTA), wie in "The Analyst" 87 (1962), 420, beschrieben, und/oder seinen Erstarrungspunkt. Darunter versteht man die Temperatur, bei der das Paraffin durch langsames Abkühlen aus dem flüssigen in den festen Zustand übergeht. Dabei sind bei Raumtemperatur vollständig flüssige Paraf­ fine, das heißt solche mit einem Erstarrungspunkt unter 25°C, erfindungsgemäß nicht brauchbar. Eingesetzt werden können beispielsweise die aus EP 0309931 A1 bekann­ ten Paraffinwachsgemische aus beispielsweise 26 Gew.-% bis 49 Gew.-% mikro­ kristallinem Paraffinwachs mit einem Erstarrungspunkt von 62°C bis 90°C, 20 Gew.-% bis 49 Gew.-% Hartparaffin mit einem Erstarrungspunkt von 42°C bis 56°C und 2 Gew.-% bis 25 Gew.-% Weichparaffin mit einem Erstarrungspunkt von 35°C bis 40°C. Vorzugsweise werden Paraffine bzw. Paraffingemische verwendet, die im Bereich von 30°C bis 90°C erstarren. Dabei ist zu beachten, dass auch bei Raumtemperatur fest erscheinende Paraffinwachsgemische unterschiedliche Anteile an flüssigem Paraffin enthalten können. Bei den erfindungsgemäß brauchbaren Paraffinwachsen liegt dieser Flüssiganteil so niedrig wie möglich und fehlt vorzugsweise ganz. So weisen besonders bevorzugte Paraffinwachsgemische bei 30°C einen Flüssiganteil von unter 10 Gew.-%, insbesondere von 2 Gew.-% bis 5 Gew.-%, bei 40°C einen Flüssiganteil von unter 30 Gew.-%, vorzugsweise von 5 Gew.-% bis 25 Gew.-% und insbesondere von 5 Gew.-% bis 15 Gew.-%, bei 60°C einen Flüssiganteil von 30 Gew.-% bis 60 Gew.-%, insbe­ sondere von 40 Gew.-% bis 55 Gew.-%, bei 80°C einen Flüssiganteil von 80 Gew.-% bis 100 Gew.-%, und bei 90°C einen Flüssiganteil von 100 Gew.-% auf. Die Tempera­ tur, bei der ein Flüssiganteil von 100 Gew.-% des Paraffinwachses erreicht wird, liegt bei besonders bevorzugten Paraffinwachsgemischen noch unter 85°C, insbesondere bei 75°C bis 82°C. Bei den Paraffinwachsen kann es sich um Petrolatum, mikrokristalline Wachse bzw. hydrierte oder partiell hydrierte Paraffinwachse handeln.
Bisamide
Geeignete Bisamide als Entschäumer sind solche, die sich von gesättigten Fettsäuren mit 12 bis 22, vorzugsweise 14 bis 18 C-Atomen sowie von Alkylendiaminen mit 2 bis 7 C- Atomen ableiten. Geeignete Fettsäuren sind Laurin-, Myristin-, Stearin-, Arachin- und Behensäure sowie deren Gemische, wie sie aus natürlichen Fetten beziehungsweise ge­ härteten Ölen, wie Talg oder hydriertem Palmöl, erhältlich sind. Geeignete Diamine sind beispielsweise Ethylendiamin, 1,3-Propylendiamin, Tetramethylendiamin, Pentamethy­ lendiamin, Hexamethylendiamin, p-Phenylendiamin und Toluylendiamin. Bevorzugte Diamine sind Ethylendiamin und Hexamethylendiamin. Besonders bevorzugte Bisamide sind Bismyristoylethylendiamin, Bispalmitoylethylendiamin, Bisstearoylethylendiamin und deren Gemische sowie die entsprechenden Derivate des Hexamethylendiamins.
Carbonsäureester
Geeignete Carbonsäureester als Entschäumer leiten sich von Carbonsäuren mit 12 bis 28 Kohlenstoffatomen ab. Insbesondere handelt es sich um Ester von Behensäure, Stea­ rinsäure, Hydroxystearinsäure, Ölsäure, Palmitinsäure, Myristinsäure und/oder Laurin­ säure. Der Alkoholteil des Carbonsäureesters enthält einen ein- oder mehrwertigen Al­ kohol mit 1 bis 28 Kohlenstoffatomen in der Kohlenwasserstoffkette. Beispiele von ge­ eigneten Alkoholen sind Behenylalkohol, Arachidylalkohol, Kokosalkohol, 12- Hydroxystearylalkohol, Oleylalkohol und Laurylalkohol sowie Ethylenglykol, Glycerin, Polyvinylalkohol, Saccharose, Erythrit, Pentaerythrit, Sorbitan und/oder Sorbit. Bevor­ zugte Ester sind solche von Ethylenglykol, Glycerin und Sorbitan, wobei der Säureteil des Esters insbesondere aus Behensäure, Stearinsäure, Ölsäure, Palmitinsäure oder My­ ristinsäure ausgewählt wird. In Frage kommende Ester mehrwertiger Alkohole sind bei­ spielsweise Xylitmonopalmitat, Pentarythritmonostearat, Glycerinmonostearat, Ethylen­ glykolmonostearat und Sorbitanmonostearat, Sorbitanpalmitat, Sorbitanmonolaurat, Sorbitandilaurat, Sorbitandistearat, Sorbitandibehenat, Sorbitandioleat sowie gemischte Talgalkylsorbitanmono- und -diester. Brauchbare Glycerinester sind die Mono-, Di- oder Triester von Glycerin und genannten Carbonsäuren, wobei die Mono- oder Dieester be­ vorzugt sind. Glycerinmonostearat, Glycerinmonooleat, Glycerinmonopalmitat, Glyce­ rinmonobehenat und Glycerindistearat sind Beispiele hierfür. Beispiele für geeignete natürliche Ester als Entschäumer sind Bienenwachs, das hauptsächlich aus den Estern CH3(CH2)24COO(CH2)27CH3 und CH3(CH2)26COO(CH2)25CH3 besteht, und Carnaubawachs, das ein Gemisch von Carnaubasäurealkylestern, oft in Kombination mit geringen Anteilen freier Carnaubasäure, weiteren langkettigen Säuren, hochmolekularen Alkoholen und Kohlenwasserstoffen, ist.
Carbonsäuren
Geeignete Carbonsäuren als weitere Entschäumerverbindung sind insbesondere Behen­ säure, Stearinsäure, Ölsäure, Palmitinsäure, Myristinsäure und Laurinsäure sowie deren Gemische, wie sie aus natürlichen Fetten bzw. gegebenenfalls gehärteten Ölen, wie Talg oder hydriertem Palmöl, erhältlich sind. Bevorzugt sind gesättigte Fettsäuren mit 12 bis 22, insbesondere 18 bis 22 C-Atomen.
Fettstoffe
Geeignete Fettalkohole als weitere Entschäumerverbindung sind die hydrierten Produkte der beschriebenen Fettsäuren. Weiterhin können zusätzlich Dialkylether als Entschäumer enthalten sein. Die Ether können asymmetrisch oder aber symmetrisch aufgebaut sein, d. h. zwei gleiche oder verschiedene Alkylketten, vorzugsweise mit 8 bis 18 Kohlenstof­ fatomen enthalten. Typische Beispiele sind Di-n-octylether, Di-i-octylether und Di-n- stearylether, insbesondere geeignet sind Dialkylether, die einen Schmelzpunkt über 25°C, insbesondere über 40°C aufweisen. Weitere geeignete Entschäumerverbindungen sind Fettketone, die nach den einschlägigen Methoden der präparativen organischen Chemie erhalten werden können. Zu ihrer Herstellung geht man beispielsweise von Car­ bonsäuremagnesiumsalzen aus, die bei Temperaturen oberhalb von 300°C unter Ab­ spaltung von Kohlendioxid und Wasser pyrolysiert werden, beispielsweise gemäß der deutschen Offenlegungsschrift DE 25 53 900 OS. Geeignete Fettketone sind solche, die durch Pyrolyse der Magnesiumsalze von Laurinsäure, Myristinsäure, Palmitinsäure, Pal­ mitoleinsäure, Stearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Arachinsäure, Gado­ leinsäure, Behensäure oder Erucasäure hergestellt werden.
Fettsäurepolyethylenglycolester
Weitere geeignete Entschäumer sind Fettsäurepolyethylenglykolester, die vorzugsweise durch basisch homogen katalysierte Anlagerung von Ethylenoxid an Fettsäuren erhalten werden. Insbesondere erfolgt die Anlagerung von Ethylenoxid an die Fettsäuren in Ge­ genwart von Alkanolaminen als Katalysatoren. Der Einsatz von Alkanolaminen, speziell Triethanolamin, führt zu einer äußerst selektiven Ethoxylierung der Fettsäuren, insbe­ sondere dann, wenn es darum geht, niedrig ethoxylierte Verbindungen herzustellen. In­ nerhalb der Gruppe der Fettsäurepolyethylenglykolester werden solche bevorzugt, die einen Schmelzpunkt über 25°C, insbesondere über 40°C aufweisen.
Trägermaterialien
Innerhalb der Gruppe der wachsartigen Entschäumer werden besonders bevorzugt die beschriebenen Paraffinwachse alleine als wachsartige Entschäumer eingesetzt oder in Mischung mit einem der anderen wachsartigen Entschäumer, wobei der Anteil der Par­ affinwachse in der Mischung vorzugsweise über 50 Gew.-% - bezogen auf wachsartige Entschäumermischung - ausmacht. Die Paraffinwachse können bei Bedarf auf Träger aufgebracht sein. Als Trägermaterial sind alle bekannten anorganischen und/oder orga­ nischen Trägermaterialien geeignet. Beispiele für typische anorganische Trä­ germaterialien sind Alkalicarbonate, Alumosilikate, wasserlösliche Schichtsilikate, Alkali­ silikate, Alkalisulfate, beispielsweise Natriumsulfat, und Alkaliphosphate. Bei den Alkalisi­ likaten handelt es sich vorzugsweise um eine Verbindung mit einem Molverhältnis Alkali­ oxid zu SiO2 von 1 : 1,5 bis 1 : 3,5. Die Verwendung derartiger Silikate resultiert in be­ sonders guten Korneigenschaften, insbesondere hoher Abriebsstabilität und dennoch hoher Auflösungsgeschwindigkeit in Wasser. Zu den als Trägermaterial bezeichneten Alumosilikaten gehören insbesondere die Zeolithe, beispielsweise Zeolith NaA und NaX. Zu den als wasserlöslichen Schichtsilikaten bezeichneten Verbindungen gehören bei­ spielsweise amorphes oder kristallines Wasserglas. Weiterhin können Silikate Verwen­ dung finden, welche unter der Bezeichnung Aerosil® oder Sipernat® im Handel sind. Als organische Trägermaterialien kommen zum Beispiel filmbildende Polymere, beispiels­ weise Polyvinylalkohole, Polyvinylpyrrolidone, Poly(meth)acrylate, Polycarboxylate, Cel­ lulosederivate und Stärke in Frage. Brauchbare Celluloseether sind insbesondere Alkali­ carboxymethylcellulose, Methylcellulose, Ethylcellulose, Hydroxyethylcellulose und soge­ nannte Cellulosemischether, wie zum Beispiel Methylhydroxyethylcellulose und Methyl­ hydroxypropylcellulose, sowie deren Mischungen. Besonders geeignete Mischungen sind aus Natrium-Carboxymethylcellulose und Methylcellulose zusammengesetzt, wobei die Carboxymethylcellulose üblicherweise einen Substitutionsgrad von 0,5 bis 0,8 Carboxy­ methylgruppen pro Anhydroglukoseeinheit und die Methylcellulose einen Substitu­ tionsgrad von 1,2 bis 2 Methylgruppen pro Anhydroglukoseeinheit aufweist. Die Gemi­ sche enthalten vorzugsweise Alkalicarboxymethylcellulose und nichtionischen Cellulo­ seether in Gewichtsverhältnissen von 80 : 20 bis 40 : 60, insbesondere von 75 : 25 bis 50 : 50. Als Träger ist auch native Stärke geeignet, die aus Amylose und Amylopectin aufgebaut ist. Als native Stärke wird Stärke bezeichnet, wie sie als Extrakt aus natürli­ chen Quellen zugänglich ist, beispielsweise aus Reis, Kartoffeln, Mais und Weizen. Native Stärke ist ein handelsübliches Produkt und damit leicht zugänglich. Als Trägermaterialien können einzeln oder mehrere der vorstehend genannten Verbindungen eingesetzt wer­ den, insbesondere ausgewählt aus der Gruppe der Alkalicarbonate, Alkalisulfate, Alka­ liphosphate, Zeolithe, wasserlösliche Schichtsilikate, Alkalisilikate, Polycarboxylate, Cel­ luloseether, Polyacrylat/Polymethacrylat und Stärke. Besonders geeignet sind Mischun­ gen von Alkalicarbonaten, insbesondere Natriumcarbonat, Alkalisilikaten, insbesondere Natriumsilikat, Alkalisulfaten, insbesondere Natriumsulfat und Zeolithen.
Silikone
Geeignete Silikone sind übliche Organopolysiloxane, die einen Gehalt an feinteiliger Kie­ selsäure, die wiederum auch silaniert sein kann, aufweisen können. Derartige Orga­ nopolysiloxane sind beispielsweise in der europäischen Patentanmeldung EP 0496510­­ A1 beschrieben. Besonders bevorzugt sind Polydiorganosiloxane, die aus dem Stand der Technik bekannt sind. Es können aber auch über Siloxan vernetzte Verbindungen einge­ setzt werden, wie sie dem Fachmann unter der Bezeichnung Silikonharze bekannt sind. In der Regel enthalten die Polydiorganosiloxane feinteilige Kieselsäure, die auch silaniert sein kann. Insbesondere geeignet sind kieselsäurehaltige Dimethylpolysiloxane. Vorteil­ hafterweise haben die Polydiorganosiloxane eine Viskosität nach Brookfield bei 25°C im Bereich von 5000 mPas bis 30 000 mPas, insbesondere von 15 000 bis 25 000 mPas. Die Silikone sind vorzugsweise auf Trägermaterialien aufgebracht. Geeignete Träger­ materialien sind bereits im Zusammenhang mit den Paraffinen beschrieben worden. Die Trägermaterialien sind in der Regel in Mengen von 40 bis 90 Gew.-%, vorzugsweise in Mengen von 45 bis 75 Gew.-% - bezogen auf Entschäumer - enthalten.
Parfümöle und Duftstoffe
Als Parfümöle bzw. Duftstoffe können einzelne Riechstoffverbindungen, z. B. die syntheti­ schen Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasser­ stoffe verwendet werden. Riechstoffverbindungen vom Typ der Ester sind z. B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.-Butylcyclohexylacetat, Linalylacetat, Dimethylbenzylcarbi­ nylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenylglycinat, Al­ lylcyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen bei­ spielsweise Benzylethylether, zu den Aldehyden z. B. die linearen Alkanale mit 8-18 C- Atomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z. B. die Jonone, α-Isomethylionon und Methylcedryl­ keton, zu den Alkoholen Anethol, Citronellol, Eugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene wie Limonen und Pinen. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Solche Parfümöle können auch natürliche Riechstoffgemische enthalten, wie sie aus pflanzlichen Quellen zugänglich sind, z. B. Pine-, Citrus-, Jasmin-, Patchouly-, Rosen- oder Ylang-Ylang-Öl. Ebenfalls geeignet sind Muskatel­ ler, Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzöl, Zimtblätteröl, Lindenblütenöl, Wachol­ derbeeröl, Vetiveröl, Olibanumöl, Galbanumöl und Labdanumöl sowie Orangenblütenöl, Neroliol, Orangenschalenöl und Sandelholzöl.
Die Duftstoffe können direkt in die erfindungsgemäßen Mittel eingearbeitet werden, es kann aber auch vorteilhaft sein, die Duftstoffe auf Träger aufzubringen, welche die Haftung des Parfüms auf der Wäsche verstärken und durch eine langsamere Duftfreisetzung für langan­ haltenden Duft der Textilien sorgen. Als solche Trägermaterialien haben sich beispielsweise Cyclodextrine bewährt, wobei die Cyclodextrin-Parfüm-Komplexe zusätzlich noch mit weite­ ren Hilfsstoffen beschichtet werden können.
Wasserlösliche anorganische Salze
Weitere geeignete Inhaltsstoffe der Mittel sind wasserlösliche anorganische Salze wie Bicar­ bonate, Carbonate, amorphe Silikate, normale Wassergläser, welche keine herausragenden Buildereigenschaften aufweisen, oder Mischungen aus diesen; insbesondere werden Alkali­ carbonat und/oder amorphes Alkalisilikat, vor allem Natriumsilikat mit einem molaren Ver­ hältnis Na2O : SiO2 von 1 : 1 bis 1 : 4,5, vorzugsweise von 1 : 2 bis 1 : 3,5, eingesetzt. Der Gehalt an Natriumcarbonat in den Endzubereitungen beträgt dabei vorzugsweise bis zu 40 Gew.-%, vorteilhafterweise zwischen 2 und 35 Gew.-%. Der Gehalt der Mittel an Na­ triumsilikat (ohne besondere Buildereigenschaften) beträgt im allgemeinen bis zu 10 Gew.-% und vorzugsweise zwischen 1 und 8 Gew.-%. Falls gewünscht können die Endzubereitungen noch anorganische Salze als Füll- bzw. Stellmittel enthalten, wie beispielsweise Natriumsul­ fat, welches vorzugsweise in Mengen von 0 bis 10, insbesondere 1 bis 5 Gew.-% - bezogen auf Mittel - enthalten ist.
Herstellung der Waschmittel
Die unter Einsatz der erfindungsgemäßen Zusatzstoffe erhältlichen Waschmittel können in Form von Pulvern, Extrudaten, Granulaten oder Agglomeraten hergestellt bzw. eingesetzt werden. Es kann sich dabei sowohl um Universal- als auch Fein- bzw. Colorwaschmittel, gegebenenfalls in Form von Kompaktaten oder Superkompaktaten handeln. Zur Herstellung solcher Mittel sind die entsprechenden, aus dem Stand der Technik bekannten Verfahren, geeignet. Bevorzugt werden die Mittel dadurch hergestellt, daß verschiedene teilchenförmige Komponenten, die Waschmittelinhaltsstoffe enthalten, miteinander vermischt werden. Die teilchenförmigen Komponenten können durch Sprühtrocknung, einfaches Mischen oder kom­ plexe Granulationsverfahren, beispielsweise Wirbelschichtgranulation, hergestellt werden. Bevorzugt ist dabei insbesondere, daß mindestens eine tensidhaltige Komponente durch Wirbelschichtgranulation hergestellt wird. Weiter kann es insbesondere bevorzugt sein, wenn wäßrige Zubereitungen des Alkalisilicats und des Alkalicarbonats gemeinsam mit anderen Waschmittelinhaltsstoffen in einer Trockeneinrichtung versprüht werden, wobei gleichzeitig mit der Trocknung eine Granulation stattfinden kann.
Sprühtrocknung
Bei der Trockeneinrichtung, in die die wäßrige Zubereitung versprüht wird, kann es sich um beliebige Trockenapparaturen handeln. In einer bevorzugten Verfahrensführung wird die Trocknung als Sprühtrocknung in einem Trockenturm durchgeführt. Dabei werden die wäßrigen Zubereitungen in bekannter Weise einem Trocknungsgasstrom in feinver­ teilter Form ausgesetzt. In Patentveröffentlichungen der Firma Henkel wird eine Ausfüh­ rungsform der Sprühtrocknung mit überhitztem Wasserdampf beschrieben. Das dort of­ fenbarte Arbeitsprinzip wird hiermit ausdrücklich auch zum Gegenstand der vorliegenden Erfindungsoffenbarung gemacht. Verwiesen wird hier insbesondere auf die nachfol­ genden Druckschriften: DE 40 30 688 A1 sowie die weiterführenden Veröffentlichungen gemäß DE 42 04 035 A1; DE 42 04 090 A1; DE 42 06 050 A1; DE 42 06 521 A1; DE 42 06 495 A1; DE 42 08 773 A1; DE 42 09 432 A1 und DE 42 34 376 A1. Dieses Verfahren wurde schon im Zusammenhang mit der Herstellung des Entschäumerkorns vorgestellt.
Wirbelschichtgranulierung
Eine besonders bevorzugte Möglichkeit zur Herstellung der Mittel besteht darin, die Vor­ produkte einer Wirbelschichtgranulierung ("SKET"-Granulierung) zu unterwerfen. Hier­ unter ist eine Granulierung unter gleichzeitiger Trocknung zu verstehen, die vorzugswei­ se batchweise oder kontinuierlich erfolgt. Dabei können die Vorprodukte sowohl in ge­ trocknetem Zustand als auch als wäßrige Zubereitung eingesetzt werden. Bevorzugt eingesetzte Wirbelschicht-Apparate besitzen Bodenplatten mit Abmessungen von 0,4 bis 5 m. Vorzugsweise wird die Granulierung bei Wirbelluftgeschwindigkeiten im Bereich von 1 bis 8 m/s durchgeführt. Der Austrag der Granulate aus der Wirbelschicht erfolgt vor­ zugsweise über eine Größenklassierung der Granulate. Die Klassierung kann bei­ spielsweise mittels einer Siebvorrichtung oder durch einen entgegengeführten Luftstrom (Sichterluft) erfolgen, der so reguliert wird, daß erst Teilchen ab einer bestimmten Teil­ chengröße aus der Wirbelschicht entfernt und kleinere Teilchen in der Wirbelschicht zu­ rückgehalten werden. Üblicherweise setzt sich die einströmende Luft aus der beheizten oder unbeheizten Sichterluft und der beheizten Bodenluft zusammen. Die Bodenlufttem­ peratur liegt dabei zwischen 80 und 400, vorzugsweise 90 und 350°C. Vorteil­ hafterweise wird zu Beginn der Granulierung eine Startmasse, beispielsweise ein Gra­ nulat aus einem früheren Versuchsansatz, vorgelegt.
Pressagglomeration
In einer anderen, insbesondere wenn Mittel hoher Schüttdichte erhalten werden sollen, bevorzugten Variante werden die Gemische anschließend einem Kompaktierungsschritt unterworfen, wobei weitere Inhaltsstoffe den Mitteln erst nach dem Kompaktierungs­ schritt zugemischt werden. Die Kompaktierung der Inhaltsstoffe findet in einer bevor­ zugten Ausführungsform der Erfindung in einem Preßagglomerationsverfahren statt. Der Preßagglomerationsvorgang, dem das feste Vorgemisch (getrocknetes Basiswaschmittel) unterworfen wird, kann dabei in verschiedenen Apparaten realisiert werden. Je nach dem Typ des verwendeten Agglomerators werden unterschiedliche Preßagglomerations­ verfahren unterschieden. Die vier häufigsten und im Rahmen der vorliegenden Erfindung bevorzugten Preßagglomerationsverfahren sind dabei die Extrusion, das Walzenpressen bzw. -kompaktieren, das Lochpressen (Pelletieren) und das Tablettieren, so daß im Rahmen der vorliegenden Erfindung bevorzugte Preßagglomerationsvorgänge Extrusi­ ons-, Walzenkompaktierungs-, Pelletierungs- oder Tablettierungsvorgänge sind.
Allen Verfahren ist gemeinsam, daß das Vorgemisch unter Druck verdichtet und plastifi­ ziert wird und die einzelnen Partikel unter Verringerung der Porosität aneinanderge­ drückt werden und aneinander haften. Bei allen Verfahren (bei der Tablettierung mit Einschränkungen) lassen sich die Werkzeuge dabei auf höhere Temperaturen aufheizen oder zur Abführung der durch Scherkräfte entstehenden Wärme kühlen.
In allen Verfahren kann als Hilfsmittel zur Verdichtung ein oder mehrere Bindemittel ein­ gesetzt werden. Dabei soll jedoch klargestellt sein, daß an sich immer auch der Einsatz von mehreren, verschiedenen Bindemitteln und Mischungen aus verschiedenen Binde­ mitteln möglich ist. In einer bevorzugten Ausführungsform der Erfindung wird ein Bin­ demittel eingesetzt, daß bei Temperaturen bis maximal 130°C, vorzugsweise bis maxi­ mal 100°C und insbesondere bis 90°C bereits vollständig als Schmelze vorliegt. Das Bindemittel muß also je nach Verfahren und Verfahrensbedingungen ausgewählt werden oder die Verfahrensbedingungen, insbesondere die Verfahrenstemperatur, müssen - falls ein bestimmtes Bindemittel gewünscht wird - an das Bindemittel angepaßt werden.
Der eigentliche Verdichtungsprozeß erfolgt dabei vorzugsweise bei Verarbeitungstempe­ raturen, die zumindest im Verdichtungsschritt mindestens der Temperatur des Erwei­ chungspunkts, wenn nicht sogar der Temperatur des Schmelzpunkts des Bindemittels entsprechen. In einer bevorzugten Ausführungsform der Erfindung liegt die Verfahren­ stemperatur signifikant über dem Schmelzpunkt bzw. oberhalb der Temperatur, bei der das Bindemittel als Schmelze vorliegt. Insbesondere ist es aber bevorzugt, daß die Ver­ fahrenstemperatur im Verdichtungsschritt nicht mehr als 20°C über der Schmelztempe­ ratur bzw. der oberen Grenze des Schmelzbereichs des Bindemittels liegt. Zwar ist es technisch durchaus möglich, auch noch höhere Temperaturen einzustellen; es hat sich aber gezeigt, daß eine Temperaturdifferenz zur Schmelztemperatur bzw. zur Er­ weichungstemperatur des Bindemittels von 20°C im allgemeinen durchaus ausreichend ist und noch höhere Temperaturen keine zusätzlichen Vorteile bewirken. Deshalb ist es - insbesondere auch aus energetischen Gründen - besonders bevorzugt, zwar oberhalb, jedoch so nah wie möglich am Schmelzpunkt bzw. an der oberen Temperaturgrenze des Schmelzbereichs des Bindemittels zu arbeiten. Eine derartige Temperaturführung besitzt den weiteren Vorteil, daß auch thermisch empfindliche Rohstoffe, beispielsweise Peroxy­ bleichmittel wie Perborat und/oder Percarbonat, aber auch Enzyme, zunehmend ohne gravierende Aktivsubstanzverluste verarbeitet werden können. Die Möglichkeit der ge­ nauen Temperatursteuerung des Binders insbesondere im entscheidenden Schritt der Verdichtung, also zwischen der Vermischung/Homogenisierung des Vorgemisches und der Formgebung, erlaubt eine energetisch sehr günstige und für die temperaturempfind­ lichen Bestandteile des Vorgemisches extrem schonende Verfahrensführung, da das Vor­ gemisch nur für kurze Zeit den höheren Temperaturen ausgesetzt ist. In bevorzugten Preßagglomerationsverfahren weisen die Arbeitswerkzeuge des Preßagglomerators (die Schnecke(n) des Extruders, die Walze(n) des Walzenkompaktors sowie die Preßwalze(n) der Pelletpresse) eine Temperatur von maximal 150°C, vorzugsweise maximal 100°C und insbesondere maximal 75°C auf und die Verfahrenstemperatur liegt bei 30°C und insbesondere maximal 20°C oberhalb der Schmelztemperatur bzw. der oberen Tempe­ raturgrenze des Schmelzbereichs des Bindemittels. Vorzugsweise beträgt die Dauer der Temperatureinwirkung im Kompressionsbereich der Preßagglomeratoren maximal 2 Mi­ nuten und liegt insbesondere in einem Bereich zwischen 30 Sekunden und 1 Minute.
Bindemittel
Bevorzugte Bindemittel, die allein oder in Mischung mit anderen Bindemitteln eingesetzt werden können, sind Polyethylenglykole, 1,2-Polypropylenglykole sowie modifizierte Po­ lyethylenglykole und Polypropylenglykole. Zu den modifizierten Polyalkylenglykolen zäh­ len insbesondere die Sulfate und/oder die Disulfate von Polyethylenglykolen oder Poly­ propylenglykolen mit einer relativen Molekülmasse zwischen 600 und 12 000 und insbe­ sondere zwischen 1000 und 4000. Eine weitere Gruppe besteht aus Mono- und/oder Disuccinaten der Polyalkylenglykole, welche wiederum relative Molekülmassen zwischen 600 und 6000, vorzugsweise zwischen 1000 und 4000 aufweisen. Für eine genauere Beschreibung der modifizierten Polyalkylenglykolether wird auf die Offenbarung der in­ ternationalen Patentanmeldung WO 93/02176 verwiesen. Im Rahmen dieser Erfin­ dung zählen zu Polyethylenglykolen solche Polymere, bei deren Herstellung neben Ethylenglykol ebenso C3-C5-Glykole sowie Glycerin und Mischungen aus diesen als Startmoleküle eingesetzt werden. Ferner werden auch ethoxylierte Derivate wie Trime­ thylolpropan mit 5 bis 30 EO umfaßt. Die vorzugsweise eingesetzten Polyethylenglykole können eine lineare oder verzweigte Struktur aufweisen, wobei insbesondere lineare Polyethylenglykole bevorzugt sind. Zu den insbesondere bevorzugten Poly­ ethylenglykolen gehören solche mit relativen Molekülmassen zwischen 2000 und 12 000, vorteilhafterweise um 4000, wobei Polyethylenglykole mit relativen Molekülmassen unterhalb 3500 und oberhalb 5000 insbesondere in Kombination mit Polyethy­ lenglykolen mit einer relativen Molekülmasse um 4 000 eingesetzt werden können und derartige Kombinationen vorteilhafterweise zu mehr als 50 Gew.-%, bezogen auf die ge­ samte Menge der Polyethylenglykole, Polyethylenglykole mit einer relativen Molekülma­ sse zwischen 3500 und 5000 aufweisen. Als Bindemittel können jedoch auch Po­ lyethylenglykole eingesetzt werden, welche an sich bei Raumtemperatur und einem Druck von 1 bar in flüssigem Stand vorliegen; hier ist vor allem von Poly-ethylenglykol mit einer relativen Molekülmasse von 200, 400 und 600 die Rede. Allerdings sollten die­ se an sich flüssigen Polyethylenglykole nur in einer Mischung mit mindestens einem weiteren Bindemittel eingesetzt werden, wobei diese Mischung wieder den erfindungs­ gemäßen Anforderungen genügen muß, also einen Schmelzpunkt bzw. Erweichungs­ punkt von mindestens oberhalb 45°C aufweisen muß. Ebenso eignen sich als Binde­ mittel niedermolekulare Polyvinylpyrrolidone und Derivate von diesen mit relativen Mole­ külmassen bis maximal 30 000. Bevorzugt sind hierbei relative Molekülmassenbereiche zwischen 3000 und 30 000, beispielsweise um 10 000. Polyvinylpyrrolidone werden vor­ zugsweise nicht als alleinige Bindemittel, sondern in Kombination mit anderen, insbe­ sondere in Kombination mit Polyethylenglykolen, eingesetzt.
Das verdichtete Gut weist direkt nach dem Austritt aus dem Herstellungsapparat vor­ zugsweise Temperaturen nicht oberhalb von 90°C auf, wobei Temperaturen zwischen 35 und 85°C besonders bevorzugt sind. Es hat sich herausgestellt, daß Austrittstempe­ raturen - vor allem im Extrusionsverfahren - von 40 bis 80°C, beispielsweise bis 70°C, besonders vorteilhaft sind.
Extrusion
In einer bevorzugten Ausführungsform wird das erfindungsgemäße Waschmittel mittels einer Extrusion hergestellt, wie sie beispielsweise in dem europäischen Patent EP 0486592 B1 oder den internationalen Patentanmeldungen WO 93/02176 und WO 94/09111 bzw. WO 98/12299 beschrieben werden. Dabei wird ein festes Vor­ gemisch unter Druck strangförmig verpreßt und der Strang nach Austritt aus der Loch­ form mittels einer Schneidevorrichtung auf die vorbestimmbare Granulatdimension zu­ geschnitten. Das homogene und feste Vorgemisch enthält ein Plastifizier- und/oder Gleitmittel, welches bewirkt, daß das Vorgemisch unter dem Druck bzw. unter dem Ein­ trag spezifischer Arbeit plastisch erweicht und extrudierbar wird. Bevorzugte Plastifizier- und/oder Gleitmittel sind Tenside und/oder Polymere. Zur Erläuterung des eigentlichen Extrusionsverfahrens wird hiermit ausdrücklich auf die obengenannten Patente und Pa­ tentanmeldungen verwiesen. Vorzugsweise wird dabei das Vorgemisch vorzugsweise ei­ nem Planetwalzenextruder oder einem 2-Wellen-Extruder bzw. 2-Schnecken-Extruder mit gleichlaufender oder gegenlaufender Schneckenführung zugeführt, dessen Gehäuse und dessen Extruder-Granulierkopf auf die vorbestimmte Extrudiertemperatur aufgeheizt sein können. Unter der Schereinwirkung der Extruderschnecken wird das Vorgemisch unter Druck, der vorzugsweise mindestens 25 bar beträgt, bei extrem hohen Durchsät­ zen in Abhängigkeit von dem eingesetzten Apparat aber auch darunter liegen kann, ver­ dichtet, plastifiziert, in Form feiner Stränge durch die Lochdüsenplatte im Extruderkopf extrudiert und schließlich das Extrudat mittels eines rotierenden Abschlagmessers vor­ zugsweise zu etwa kugelförmigen bis zylindrischen Granulatkörnern verkleinert. Der Lochdurchmesser der Lochdüsenplatte und die Strangschnittlänge werden dabei auf die gewählte Granulatdimension abgestimmt. So gelingt die Herstellung von Granulaten ei­ ner im wesentlichen gleichmäßig vorherbestimmbaren Teilchengröße, wobei im ein­ zelnen die absoluten Teilchengrößen dem beabsichtigten Einsatzzweck angepaßt sein können. Im allgemeinen werden Teilchendurchmesser bis höchstens 0,8 cm bevorzugt. Wichtige Ausführungsformen sehen hier die Herstellung von einheitlichen Granulaten im Millimeterbereich, beispielsweise im Bereich von 0,5 bis 5 mm und insbesondere im Be­ reich von etwa 0,8 bis 3 mm vor. Das Länge/Durchmesser-Verhältnis der abgeschlage­ nen primären Granulate liegt dabei vorzugsweise im Bereich von etwa 1 : 1 bis etwa 3 : 1. Weiterhin ist es bevorzugt, das noch plastische Primärgranulat einem weiteren form­ gebenden Verarbeitungsschritt zuzuführen; dabei werden am Rohextrudat vorliegende Kanten abgerundet, so daß letztlich kugelförmig bis annähernd kugelförmige Extrudat­ körner erhalten werden können. Falls gewünscht können in dieser Stufe geringe Mengen an Trockenpulver, beispielsweise Zeolithpulver wie Zeolith NaA-Pulver, mitverwendet werden. Diese Formgebung kann in marktgängigen Rondiergeräten erfolgen. Dabei ist darauf zu achten, daß in dieser Stufe nur geringe Mengen an Feinkornanteil entstehen. Eine Trocknung, welche in den obengenannten Dokumenten des Standes der Technik als bevorzugte Ausführungsform beschrieben wird, ist anschließend möglich, aber nicht zwingend erforderlich. Es kann gerade bevorzugt sein, nach dem Kompaktierungsschritt keine Trocknung mehr durchzuführen. Alternativ können Extrusionen/Verpressungen auch in Niedrigdruckextrudern, in der Kahl-Presse (Fa. Amandus Kahl) oder im Bextruder der Fa. Bepex durchgeführt werden. Bevorzugt ist die Temperaturführung im Über­ gangsbereich der Schnecke, des Vorverteilers und der Düsenplatte derart gestaltet, daß die Schmelztemperatur des Bindemittels bzw. die obere Grenze des Schmelzbereichs des Bindemittels zumindest erreicht, vorzugsweise aber überschritten wird. Dabei liegt die Dauer der Temperatureinwirkung im Kompressionsbereich der Extrusion vorzugsweise unterhalb von 2 Minuten und insbesondere in einem Bereich zwischen 30 Sekunden und 1 Minute.
Walzenkompaktierung
Die erfindungsgemäßen Waschmittel können auch mittels einer Walzenkompaktierung hergestellt werden. Hierbei wird das Vorgemisch gezielt zwischen zwei glatte oder mit Vertiefungen von definierter Form versehene Walzen eindosiert und zwischen den bei­ den Walzen unter Druck zu einem blattförmigen Kompaktat, der sogenannten Schülpe, ausgewalzt. Die Walzen üben auf das Vorgemisch einen hohen Liniendruck aus und können je nach Bedarf zusätzlich geheizt bzw. gekühlt werden. Bei der Verwendung von Glattwalzen erhält man glatte, unstrukturierte Schülpenbänder, während durch die Ver­ wendung strukturierter Walzen entsprechend strukturierte Schülpen erzeugt werden können, in denen beispielsweise bestimmte Formen der späteren Waschmittelteilchen vorgegeben werden können. Das Schülpenband wird nachfolgend durch einen Abschlag- und Zerkleinerungsvorgang in kleinere Stücke gebrochen und kann auf diese Weise zu Granulatkörnern verarbeitet werden, die durch weitere an sich bekannte Oberflächenbe­ handlungsverfahren veredelt, insbesondere in annähernd kugelförmige Gestalt gebracht werden können. Auch bei der Walzenkompaktierung liegt die Temperatur der pressen­ den Werkzeuge, also der Walzen, bevorzugt bei maximal 150°C, vorzugsweise bei ma­ ximal 100°C und insbesondere bei maximal 75°C. Besonders bevorzugte Herstellungs­ verfahren arbeiten bei der Walzenkompaktierung mit Verfahrenstemperaturen, die 10°C, insbesondere maximal 5°C oberhalb der Schmelztemperatur bzw. der oberen Tem­ peraturgrenze des Schmelzbereichs des Bindemittels liegen. Hierbei ist es weiter bevor­ zugt, daß die Dauer der Temperatureinwirkung im Kompressionsbereich der glatten oder mit Vertiefungen von definierter Form versehenen Walzen maximal 2 Minuten beträgt und insbesondere in einem Bereich zwischen 30 Sekunden und 1 Minute liegt.
Pelletierung
Das erfindungsgemäße Waschmittel kann auch mittels einer Pelletierung hergestellt wer­ den. Hierbei wird das Vorgemisch auf eine perforierte Fläche aufgebracht und mittels ei­ nes druckgebenden Körpers unter Plastifizierung durch die Löcher gedrückt. Bei üblichen Ausführungsformen von Pelletpressen wird das Vorgemisch unter Druck verdichtet, pla­ stifiziert, mittels einer rotierenden Walze in Form feiner Stränge durch eine perforierte Fläche gedrückt und schließlich mit einer Abschlagvorrichtung zu Granulatkörnern zer­ kleinert. Hierbei sind die unterschiedlichsten Ausgestaltungen von Druckwalze und per­ forierter Matrize denkbar. So finden beispielsweise flache perforierte Teller ebenso An­ wendung wie konkave oder konvexe Ringmatrizen, durch die das Material mittels einer oder mehrerer Druckwalzen hindurchgepreßt wird. Die Preßrollen können bei den Teller­ geräten auch konisch geformt sein, in den ringförmigen Geräten können Matrizen und Preßrolle(n) gleichläufigen oder gegenläufigen Drehsinn besitzen. Ein zur Durchführung des Verfahrens geeigneter Apparat wird beispielsweise in der deutschen Offenlegungs­ schrift DE 38 16 842 A1 beschrieben. Die in dieser Schrift offenbarte Ringmatrizenpres­ se besteht aus einer rotierenden, von Preßkanälen durchsetzten Ringmatrize und wenig­ stens einer mit deren Innenfläche in Wirkverbindung stehenden Preßrolle, die das dem Matrizenraum zugeführte Material durch die Preßkanäle in einen Materialaustrag preßt. Hierbei sind Ringmatrize und Preßrolle gleichsinnig antreibbar, wodurch eine verringerte Scherbelastung und damit geringere Temperaturerhöhung des Vorgemischs realisierbar ist. Selbstverständlich kann aber auch bei der Pelletierung mit heiz- oder kühlbaren Wal­ zen gearbeitet werden, um eine gewünschte Temperatur des Vorgemischs einzustellen. Auch bei der Pelletierung liegt die Temperatur der pressenden Werkzeuge, also der Druckwalzen oder Preßrollen, bevorzugt bei maximal 150°C, vorzugsweise bei maximal 100°C und insbesondere bei maximal 75°C. Besonders bevorzugte Herstellungsverfah­ ren arbeiten bei der Walzenkompaktierung mit Verfahrenstemperaturen, die 10°C, ins­ besondere maximal 5°C oberhalb der Schmelztemperatur bzw. der oberen Temperatur­ grenze des Schmelzbereichs des Bindemittels liegen.
Beispiele Beispiele 1 bis 12, Vergleichsbeispiele V1 bis V4
In einer Waschmaschine (Miele W 918) wurden 3,5 kg Standard-Wäsche und ein Frottiertuch (welches zur Vorbehandlung zweimal mit einem Universalwaschmittel gewaschen wurde) in einem Vollwaschgang bei 90°C gewaschen. Jeweils 84 g Waschmittel der Zusammensetzung nach Tabelle 1 wurden unmittelbar vor dem Versuch in die Einspülkammer gegeben. Nach dem Waschgang wurde das Frottiertuch 24 Stunden bei Raumtemperatur getrocknet und anschließend einem Panel- Test von 20 Personen unterzogen. Jede Person vergab eine Note zwischen 1 und 4 (1 = hart; 4 = sehr weich). Aus dem Durchschnitt ergab sich die Bewertung für die Produkte, die ebenfalls Tabelle 1 zu entnehmen ist.
Tabelle 1
Waschmittelzusammensetzung und Weichgriff
Tabelle 1
Waschmittelzusammensetzung und Weichgriff (Fortsetzung)

Claims (10)

1. Waschmittel, enthaltend
  • a) anionische Tenside, nichtionische und/oder amphotere Tenside,
  • b) kationische Polymere,
  • c) Zeolithe sowie gegebenenfalls
  • d) Schichtsilikate.
2. Waschmittel nach Anspruch 1, dadurch gekennzeichnet, dass sie anionische Tenside enthalten, die ausgesucht sind aus der Gruppe, die gebildet wird von Alkylbenzolsulfo­ naten, Alkylsulfaten, Seifen, Alkansulfonaten, Olefinsulfonaten und Methylestersulfona­ ten.
3. Waschmittel nach den Ansprüchen 1 und/oder 2, dadurch gekennzeichnet, dass sie nichtionische Tenside enthalten, die ausgewählt sind aus der Gruppe, die gebildet wird von Fettalkoholpolyglycolethern, alkoxylierten Fettsäureniedrigalkylestern und Alkyl- und/oder Alkenyloligoglykosiden.
4. Waschmittel nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeich­ net, dass sie amphotere Tenside enthalten, die ausgewählt sind aus der Gruppe, die gebildet wird von Alkylbetainen, Alkylamidobetainen und Imidazoliniumbetainen.
5. Waschmittel nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeich­ net, dass sie die Tenside, die die Komponente (a) bilden, in Mengen von 1 bis 50 Gew.-% - bezogen auf die Waschmittel - enthalten.
6. Waschmittel nach mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeich­ net, dass sie kationische Polymere enthalten, die ausgewählt sind aus der Gruppe, die gebildet wird von kationischen Cellulosederivaten, kationischen Stärken, Copolymeren von Diallylammoniumsalzen und Acrylamiden, quaternierten Vinylpyrrolidon/ Vinylimida­ zol-Polymere, Kondensationsprodukten von Polyglycolen und Aminen, quaternierten Kollagenpolypeptiden, quaternierten Weizenpolypeptiden, Polyethylenimin, kationischen Siliconpolymeren, Copolymeren der Adipinsäure und Dimethylaminohydroxypro­ pyldiethylentriamin, Copolymeren der Acrylsäure mit Dimethyldiallylammoniumchlorid, Polyaminopolyamiden, kationischen Chitinderivaten, Kondensationsprodukten aus Diha­ logenalkylen mit Bisdialkylaminen, quaternierten Ammoniumsalz-Polymeren und kationi­ schen Guar-Gums.
7. Waschmittel nach mindestens einem der Ansprüche 1 bis 6, dadurch gekennzeich­ net, dass sie als kationisches Polymer Guar Hydroxypropyltrimethylammoniumchlorid enthalten.
8. Waschmittel nach mindestens einem der Ansprüche 1 bis 7, dadurch gekenn­ zeichnet, dass sie die kationischen Polymeren in Mengen von 0,1 bis 10 Gew.-% - be­ zogen auf die Mittel - enthalten.
9. Waschmittel nach mindestens einem der Ansprüche 1 bis 8, dadurch gekenn­ zeichnet, dass sie Zeolith A und/oder P enthalten.
10. Waschmittel nach mindestens einem der Ansprüche 1 bis 9, dadurch gekennzeich­ net, dass sie die Zeolithe in Mengen von 10 bis 60 Gew.-% - bezogen auf die Mittel - enthalten.
DE10044472A 2000-09-08 2000-09-08 Waschmittel Withdrawn DE10044472A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE10044472A DE10044472A1 (de) 2000-09-08 2000-09-08 Waschmittel
EP01120862A EP1188817A3 (de) 2000-09-08 2001-08-30 Waschmittel
US09/949,529 US6620209B2 (en) 2000-09-08 2001-09-07 Laundry detergent compositions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10044472A DE10044472A1 (de) 2000-09-08 2000-09-08 Waschmittel

Publications (1)

Publication Number Publication Date
DE10044472A1 true DE10044472A1 (de) 2002-03-21

Family

ID=7655522

Family Applications (1)

Application Number Title Priority Date Filing Date
DE10044472A Withdrawn DE10044472A1 (de) 2000-09-08 2000-09-08 Waschmittel

Country Status (3)

Country Link
US (1) US6620209B2 (de)
EP (1) EP1188817A3 (de)
DE (1) DE10044472A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6620209B2 (en) * 2000-09-08 2003-09-16 Cognis Deutschland Gmbh & Co. Kg Laundry detergent compositions
DE102017120099A1 (de) 2017-08-31 2019-02-28 Henkel Ag & Co. Kgaa Verwendung eines Amodimethicone/ Organosilizium Copolymers, Waschmittel, Verwendung des Waschmittels und Waschverfahren

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6881717B1 (en) 1999-04-01 2005-04-19 The Procter & Gamble Company Fabric softening component
DE10044471A1 (de) * 2000-09-08 2002-03-21 Cognis Deutschland Gmbh Waschmittel
US20080188392A1 (en) * 2002-12-02 2008-08-07 Diamond Chemical Company, Inc. Laundry Compositions
US20040152616A1 (en) * 2003-02-03 2004-08-05 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Laundry cleansing and conditioning compositions
BRPI0407114B1 (pt) 2003-02-03 2018-09-11 Unilever Nv composição para lavagem de roupa
US7012054B2 (en) 2003-12-03 2006-03-14 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Softening laundry detergent
US20060030513A1 (en) * 2004-08-03 2006-02-09 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Softening laundry detergent
US20060217287A1 (en) * 2005-03-22 2006-09-28 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Fabric softening composition
US20060223739A1 (en) * 2005-04-05 2006-10-05 Unilever Home And Personal Care Usa, Division Of Conopco, Inc. Fabric softening composition with cationic polymer, soap, and amphoteric surfactant
US7635731B2 (en) * 2005-07-28 2009-12-22 Chemtura Corporation Cellulosic-thermoplastic composite and method of making the same
GB0611218D0 (en) * 2006-06-08 2006-07-19 Unilever Plc Detergent compositions
EP1894993A1 (de) * 2006-08-28 2008-03-05 Süd-Chemie Ag Waschmitteladditiv auf der Basis von Tonmineralien und PVP-haltigen Copolymeren
US8226775B2 (en) 2007-12-14 2012-07-24 Lam Research Corporation Methods for particle removal by single-phase and two-phase media
EP2083065A1 (de) * 2008-01-22 2009-07-29 The Procter and Gamble Company Farbpflegezusammensetzung
BRPI0918972A2 (pt) * 2008-08-28 2015-12-01 Procter & Gamble composições para tratamento de tecidos, processo de fabricação, e método de uso
US20100050346A1 (en) * 2008-08-28 2010-03-04 Corona Iii Alessandro Compositions and methods for providing a benefit
MX2012013145A (es) 2010-05-14 2013-10-30 Sun Products Corp Composiciones de limpieza que contienen polimero y metodos de produccion y uso de las mismas.
US8470760B2 (en) * 2010-05-28 2013-06-25 Milliken 7 Company Colored speckles for use in granular detergents
WO2013070559A1 (en) * 2011-11-11 2013-05-16 The Procter & Gamble Company Surface treatment compositions including shielding salts
US10913921B2 (en) 2014-06-18 2021-02-09 HEX Performance, LLC Performance gear, textile technology, and cleaning and protecting systems and methods
CN109267405B (zh) * 2018-08-02 2020-09-25 广州大久生物科技有限公司 防染稳定添加剂组合物及其制备方法和应用以及复配纤维素酶及其应用
US11505766B2 (en) 2020-12-15 2022-11-22 Henkel Ag & Co. Kgaa Surfactant compositions for improved transparency of DADMAC-acrylic acid co-polymers
US11560534B2 (en) 2020-12-15 2023-01-24 Henkel Ag & Co. Kgaa Surfactant compositions for improved transparency of DADMAC-acrylamide co-polymers
US11851634B2 (en) 2020-12-15 2023-12-26 Henkel IP & Holding GmbH Detergent composition having reduced turbidity

Family Cites Families (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA734721B (en) 1972-07-14 1974-03-27 Procter & Gamble Detergent compositions
GB1455873A (en) 1973-08-24 1976-11-17 Procter & Gamble Textile-softening detergent compositions
LU68901A1 (de) 1973-11-30 1975-08-20
US4172887A (en) 1973-11-30 1979-10-30 L'oreal Hair conditioning compositions containing crosslinked polyaminopolyamides
DE2553900A1 (de) 1975-12-01 1977-06-08 Konrad Ruckstuhl Verfahren und vorrichtungen zur aufbereitung von gepressten zuckerrohrbagasse-ballen
EP0026529B2 (de) 1979-09-29 1992-08-19 THE PROCTER & GAMBLE COMPANY Reinigungsmittelzusammensetzungen
ATE5896T1 (de) 1979-11-03 1984-02-15 The Procter & Gamble Company Granulare waschmittelzusammensetzungen.
CA1238917A (en) 1984-01-31 1988-07-05 Vivian B. Valenty Detergent builder
US4524009A (en) 1984-01-31 1985-06-18 A. E. Staley Manufacturing Company Detergent builder
DE3413571A1 (de) 1984-04-11 1985-10-24 Hoechst Ag, 6230 Frankfurt Verwendung von kristallinen schichtfoermigen natriumsilikaten zur wasserenthaertung und verfahren zur wasserenthaertung
US4639325A (en) 1984-10-24 1987-01-27 A. E. Staley Manufacturing Company Detergent builder
DE3526405A1 (de) 1985-07-24 1987-02-05 Henkel Kgaa Schichtsilikate mit beschraenktem quellvermoegen, verfahren zu ihrer herstellung und ihre verwendung in wasch- und reinigungsmitteln
DE3545990A1 (de) * 1985-12-23 1987-06-25 Henkel Kgaa Neue schmutz sammelnde reinigungsverstaerker in waessrigen wasch- und reinigungsloesungen
FR2597473B1 (fr) 1986-01-30 1988-08-12 Roquette Freres Procede d'oxydation de di-, tri-, oligo- et polysaccharides en acides polyhydroxycarboxyliques, catalyseur mis en oeuvre et produits ainsi obtenus.
GB8629837D0 (en) 1986-12-13 1987-01-21 Interox Chemicals Ltd Bleach activation
DE3706036A1 (de) 1987-02-25 1988-09-08 Basf Ag Polyacetale, verfahren zu deren herstellung aus dialdehyden und polyolcarbonsaeuren und verwendung der polyacetale
DE3723826A1 (de) 1987-07-18 1989-01-26 Henkel Kgaa Verfahren zur herstellung von alkylglykosiden
DE3732947A1 (de) 1987-09-30 1989-04-13 Henkel Kgaa Zur verwendung in wasch- und reinigungsmitteln geeignetes schaumregulierungsmittel
DE3816842A1 (de) 1988-05-18 1989-11-23 Schlueter Gmbh U Co Kg H Ringmatrizenpresse
DE3833780A1 (de) 1988-10-05 1990-04-12 Henkel Kgaa Verfahren zur direkten herstellung von alkylglykosiden
US5576425A (en) 1988-10-05 1996-11-19 Henkel Kommanditgesellschaft Auf Aktien Process for the direct production of alkyl glycosides
JPH0825866B2 (ja) * 1988-10-25 1996-03-13 花王株式会社 入浴剤組成物
GB8908416D0 (en) 1989-04-13 1989-06-01 Unilever Plc Bleach activation
ATE107352T1 (de) 1989-08-09 1994-07-15 Henkel Kgaa Herstellung verdichteter granulate für waschmittel.
DE4010533A1 (de) 1990-04-02 1991-10-10 Henkel Kgaa Tablettierte wasch- und/oder reinigungsmittel fuer haushalt und gewerbe und verfahren zu ihrer herstellung
DK0427349T3 (da) 1989-11-10 1995-11-20 Tno Fremgangsmåde til fremstilling af polydicarboxysaccharider, og erstatninger for phosphater i detergenter baseret på polydicarboxsaccharider
YU221490A (sh) 1989-12-02 1993-10-20 Henkel Kg. Postupak za hidrotermalnu izradu kristalnog natrijum disilikata
GB9003741D0 (en) 1990-02-19 1990-04-18 Unilever Plc Bleach activation
US5041232A (en) 1990-03-16 1991-08-20 Lever Brothers Company, Division Of Conopco, Inc. Sulfonimines as bleach catalysts
US5047163A (en) 1990-03-16 1991-09-10 Lever Brothers Company, Division Of Conopco, Inc. Activation of bleach precursors with sulfonimines
DE69125309T2 (de) 1990-05-21 1997-07-03 Unilever Nv Bleichmittelaktivierung
IT1249883B (it) 1990-08-13 1995-03-30 Ferruzzi Ricerca & Tec Agenti sequestranti del calcio a base di carboidrati ossidati e loro impiego come builder per detergenti
DE4030688A1 (de) 1990-09-28 1992-04-02 Henkel Kgaa Verfahren zur spruehtrocknung von wertstoffen und wertstoffgemischen unter verwendung von ueberhitztem wasserdampf
ATE124667T1 (de) 1990-12-01 1995-07-15 Henkel Kgaa Verfahren zur hydrothermalen herstellung von kristallinem natriumdisilikat.
GB9101606D0 (en) 1991-01-24 1991-03-06 Dow Corning Sa Detergent foam control agents
IT1245063B (it) 1991-04-12 1994-09-13 Ferruzzi Ricerca & Tec Procedimento per l'ossidazione di carboidrati
DE4124701A1 (de) 1991-07-25 1993-01-28 Henkel Kgaa Verfahren zur herstellung fester wasch- und reinigungsmittel mit hohem schuettgewicht und verbesserter loesegeschwindigkeit
DE69126778T2 (de) 1991-07-31 1998-01-02 Ausimont Spa Verfahren zur Erhöhung der Bleichwirksamkeit eines inorganischen Persalzes
DE4134914A1 (de) 1991-10-23 1993-04-29 Henkel Kgaa Wasch- und reinigungsmittel mit ausgewaehlten builder-systemen
ATE166362T1 (de) 1991-11-14 1998-06-15 Procter & Gamble C6/c2-c3 oxidierte stärke als waschmittelbestandteil
US5194416A (en) 1991-11-26 1993-03-16 Lever Brothers Company, Division Of Conopco, Inc. Manganese catalyst for activating hydrogen peroxide bleaching
EP0544490A1 (de) 1991-11-26 1993-06-02 Unilever Plc Bleich- und Reinigungsmittelzusammensetzungen
CA2085642A1 (en) 1991-12-20 1993-06-21 Ronald Hage Bleach activation
GB9127060D0 (en) 1991-12-20 1992-02-19 Unilever Plc Bleach activation
DE4221381C1 (de) 1992-07-02 1994-02-10 Stockhausen Chem Fab Gmbh Pfropf-Copolymerisate von ungesättigten Monomeren und Zuckern, Verfahren zu ihrer Herstellung und ihre Verwendung
DE4203923A1 (de) 1992-02-11 1993-08-12 Henkel Kgaa Verfahren zur herstellung von polycarboxylaten auf polysaccharid-basis
DE4204035A1 (de) 1992-02-12 1993-08-19 Cognis Bio Umwelt Verbessertes verfahren zur trocknung von wertstoffen fuer wasch- und reinigungsmittel mit ueberhitztem wasserdampf
DE4206050A1 (de) 1992-02-27 1993-09-02 Cognis Bio Umwelt Neuartige staubarme aniontensidkonzentrate in pulver- beziehungsweise granulatform mit verbessertem aufloesevermoegen in waessrigen medien
DE4208773A1 (de) 1992-03-19 1993-09-23 Cognis Bio Umwelt Verfahren zur trocknung von wertstoffen oder deren gemischen, die als netz-, wasch- und/oder reinigungsmittel geeignet sind
DE4206521A1 (de) 1992-03-02 1993-09-09 Cognis Bio Umwelt Verfahren zur herstellung von granulaten, die als netz-, wasch- und/oder reinigungsmittel geeignet sind
DE4209432A1 (de) 1992-03-24 1993-09-30 Henkel Kgaa Verfahren zur verbesserten Brüdenentsorgung bei der Heißdampftrocknung
DE4206495A1 (de) 1992-03-02 1993-09-09 Cognis Bio Umwelt Verfahren zum herstellen von granulaten, die als netz-, wasch und/oder reinigungsmittel geeignet sind
DE4234376A1 (de) 1992-10-12 1994-04-14 Henkel Kgaa Wertstoffe und Wertstoffgemische für Netz-, Wasch- und/oder Reinigungsmittel in neuer Zubereitungsform
JPH07503987A (ja) 1992-02-12 1995-04-27 ヘンケル・コマンディットゲゼルシャフト・アウフ・アクチェン 溶解性を改良した、ダストを含有しない粉末状または顆粒状のアニオン界面活性剤濃厚物
US5637560A (en) 1992-02-12 1997-06-10 Henkel Kommanditgesellschaft Auf Aktien Process for the production of surface-active anionic surfactant salts using superheated steam
DE4204090A1 (de) 1992-02-12 1993-08-19 Cognis Bio Umwelt Vereinfachtes trocknungsverfahren fuer wertstoffe und wertstoffgemische aus dem bereich der wasch- und reinigungsmittel mit ueberhitztem wasserdampf
JPH05339896A (ja) 1992-06-03 1993-12-21 Arakawa Chem Ind Co Ltd 紙用サイズ剤および紙サイジング方法
DE4235646A1 (de) 1992-10-22 1994-04-28 Henkel Kgaa Verfahren zur Herstellung wasch- und reinigungsaktiver Extrudate
DE4300772C2 (de) 1993-01-14 1997-03-27 Stockhausen Chem Fab Gmbh Wasserlösliche, biologisch abbaubare Copolymere auf Basis von ungesättigten Mono- und Dicarbonsäuren, Verfahren zu ihrer Herstellung und ihre Verwendung
DE4303320C2 (de) 1993-02-05 1995-12-21 Degussa Waschmittelzusammensetzung mit verbessertem Schmutztragevermögen, Verfahren zu dessen Herstellung und Verwendung eines geeigneten Polycarboxylats hierfür
DE69412092T2 (de) 1993-05-20 1999-04-01 Procter & Gamble Bleichmittel, welche einen substituierten benzoyl caprolactam bleichaktivator enthalten
DE4317519A1 (de) 1993-05-26 1994-12-01 Henkel Kgaa Herstellung von Polycarboxylaten auf Polysaccharid-Basis
DE4400024A1 (de) 1994-01-03 1995-07-06 Henkel Kgaa Silikatische Builder und ihre Verwendung in Wasch- und Reinigungsmitteln sowie Mehrstoffgemische für den Einsatz auf diesem Sachgebiet
DE4402851A1 (de) 1994-01-31 1995-08-03 Henkel Kgaa Wirbelschicht-Oxidationsverfahren zur Herstellung von Polycarboxylaten auf Polysaccharid-Basis
US5478501A (en) * 1994-04-07 1995-12-26 The Andrew Jergens Company Bathing composition containing coated cationic polymer
DE4416438A1 (de) 1994-05-10 1995-11-16 Basf Ag Ein- oder mehrkernige Metall-Komplexe und ihre Verwendung als Bleich- und Oxidationskatalysatoren
DE4417734A1 (de) 1994-05-20 1995-11-23 Degussa Polycarboxylate
EP0693550B1 (de) 1994-07-21 2004-06-16 Ciba SC Holding AG Bleichmittelzusammensetzung für Gewebe
GB9419091D0 (en) 1994-09-22 1994-11-09 Cerestar Holding Bv Process for decreasing the build up of inorganic incrustations on textiles and detergent composition used in such process
DE4443177A1 (de) 1994-12-05 1996-06-13 Henkel Kgaa Aktivatormischungen für anorganische Perverbindungen
DE19529905A1 (de) 1995-08-15 1997-02-20 Henkel Kgaa Aktivatorkomplexe für Persauerstoffverbindungen
DE19536082A1 (de) 1995-09-28 1997-04-03 Henkel Kgaa Aktivatorkomplexe für Persauerstoffverbindungen
DE19600018A1 (de) 1996-01-03 1997-07-10 Henkel Kgaa Waschmittel mit bestimmten oxidierten Oligosacchariden
DE19605688A1 (de) 1996-02-16 1997-08-21 Henkel Kgaa Übergangsmetallkomplexe als Aktivatoren für Persauerstoffverbindungen
DE19620411A1 (de) 1996-04-01 1997-10-02 Henkel Kgaa Übergangsmetallamminkomplexe als Aktivatoren für Persauerstoffverbindungen
DE19613103A1 (de) 1996-04-01 1997-10-02 Henkel Kgaa Übergangsmetallkomplex-haltige Systeme als Aktivatoren für Persauerstoffverbindungen
DE19616770A1 (de) 1996-04-26 1997-11-06 Henkel Kgaa Acyllactame als Bleichaktivatoren für Wasch- und Reinigungsmittel
DE19616767A1 (de) 1996-04-26 1997-11-06 Henkel Kgaa Bleichaktivatoren für Wasch- und Reinigungsmittel
DE19616769A1 (de) 1996-04-26 1997-11-06 Henkel Kgaa Acylacetale als Bleichaktivatoren für Wasch- und Reinigungsmittel
DE19616693A1 (de) 1996-04-26 1997-11-06 Henkel Kgaa Enolester als Bleichaktivatoren für Wasch- und Reinigungsmittel
WO1997044417A1 (en) * 1996-05-17 1997-11-27 The Procter & Gamble Company Detergent composition
DE19620267A1 (de) 1996-05-20 1997-11-27 Henkel Kgaa Katalytisch wirksame Aktivatorkomplexe mit N¶4¶-Liganden für Persauerstoffverbindungen
JP3773542B2 (ja) * 1996-09-24 2006-05-10 ザ プロクター アンド ギャンブル カンパニー 洗剤粒子
EP0971030A1 (de) * 1998-07-10 2000-01-12 The Procter & Gamble Company Tensidagglomerate
GB2342358A (en) * 1998-10-09 2000-04-12 Procter & Gamble Detergent compositions comprising cationic polymers
DE19948668A1 (de) * 1999-10-08 2001-04-19 Cognis Deutschland Gmbh Waschmitteltabletten
GB0009059D0 (en) * 2000-04-12 2000-05-31 Unilever Plc Use of polymers in laundry cleaners
DE10044472A1 (de) * 2000-09-08 2002-03-21 Cognis Deutschland Gmbh Waschmittel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6620209B2 (en) * 2000-09-08 2003-09-16 Cognis Deutschland Gmbh & Co. Kg Laundry detergent compositions
DE102017120099A1 (de) 2017-08-31 2019-02-28 Henkel Ag & Co. Kgaa Verwendung eines Amodimethicone/ Organosilizium Copolymers, Waschmittel, Verwendung des Waschmittels und Waschverfahren
EP3450532A1 (de) 2017-08-31 2019-03-06 Henkel AG & Co. KGaA Verwendung eines amodimethicone/ organosilizium copolymers, waschmittel, verwendung des waschmittels und waschverfahren

Also Published As

Publication number Publication date
US6620209B2 (en) 2003-09-16
EP1188817A3 (de) 2003-06-11
US20020155981A1 (en) 2002-10-24
EP1188817A2 (de) 2002-03-20

Similar Documents

Publication Publication Date Title
EP1240290B1 (de) Tensidgranulate mit verbesserter auflösegeschwindigkeit
DE10044472A1 (de) Waschmittel
EP1240287B1 (de) Waschmitteltabletten
EP1106675B1 (de) Verwendung von Partialglyceridpolyglycolethern
DE10044471A1 (de) Waschmittel
DE19956802A1 (de) Waschmitteltabletten
DE19962859A1 (de) Feste Waschmittel
EP1321509A1 (de) Hydroxymischether und Polymere in Form von festen Mitteln als Vorcompound für Wasch-, Spül- und Reinigungsmittel
WO2001038481A1 (de) Tensidgranulate mit verbesserter auflösegeschwindigkeit
DE19953796A1 (de) Feste Wasch-, Spül- und Reinigungsmittel
DE10152142A1 (de) Feste Wasch-, Spül- und Reinigungsmittel
DE10150400A1 (de) Feste Wasch-, Spül- und Reinigungsmittel
EP1214389B1 (de) Tensidmischungen
WO2001018164A1 (de) Waschmittel
EP1081213A1 (de) Schaumkontrollierte feste Waschmittel
EP1090979A1 (de) Entschäumergranulate
DE10055303A1 (de) Verwendung von Gemischen
EP1375633A1 (de) Waschmittel mit Polymeren
WO2001014508A1 (de) Schaumkontrollierte feste wachmittel
WO2001000763A1 (de) Schaumkontrollierte feste waschmittel
DE10055517A1 (de) Verwendung von Gemischen
EP1078979A1 (de) Schaumkontrollierte feste Waschmittel
EP1090978A1 (de) Feste Wasch-, Spül- und Reinigungsmittel enthaltend Entschäumergranulate
WO2001027231A1 (de) Waschmittel
WO2001027230A1 (de) Waschmittel

Legal Events

Date Code Title Description
8127 New person/name/address of the applicant

Owner name: COGNIS DEUTSCHLAND GMBH & CO. KG, 40589 DUESSELDOR

8139 Disposal/non-payment of the annual fee