DE19953796A1 - Feste Wasch-, Spül- und Reinigungsmittel - Google Patents

Feste Wasch-, Spül- und Reinigungsmittel

Info

Publication number
DE19953796A1
DE19953796A1 DE1999153796 DE19953796A DE19953796A1 DE 19953796 A1 DE19953796 A1 DE 19953796A1 DE 1999153796 DE1999153796 DE 1999153796 DE 19953796 A DE19953796 A DE 19953796A DE 19953796 A1 DE19953796 A1 DE 19953796A1
Authority
DE
Germany
Prior art keywords
acid
contain
weight
alcohol
granules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE1999153796
Other languages
English (en)
Inventor
Karl-Heinz Schmid
Bernd Fabry
Detlev Stanislowski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF Personal Care and Nutrition GmbH
Original Assignee
Cognis Deutschland GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cognis Deutschland GmbH and Co KG filed Critical Cognis Deutschland GmbH and Co KG
Priority to DE1999153796 priority Critical patent/DE19953796A1/de
Priority to EP00974487A priority patent/EP1228178A1/de
Priority to PCT/EP2000/010689 priority patent/WO2001034747A1/de
Publication of DE19953796A1 publication Critical patent/DE19953796A1/de
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/0026Low foaming or foam regulating compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/88Ampholytes; Electroneutral compounds
    • C11D1/94Mixtures with anionic, cationic or non-ionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/18Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/26Organic compounds containing nitrogen
    • C11D3/32Amides; Substituted amides
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/373Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicones
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/04Carboxylic acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/14Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/22Sulfonic acids or sulfuric acid esters; Salts thereof derived from aromatic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/28Sulfonation products derived from fatty acids or their derivatives, e.g. esters, amides
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/662Carbohydrates or derivatives
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/667Neutral esters, e.g. sorbitan esters
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/72Ethers of polyoxyalkylene glycols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/88Ampholytes; Electroneutral compounds
    • C11D1/90Betaines

Abstract

Vorgeschlagen werden feste Wasch-, Spül- und Reinigungsmittel, enthaltend DOLLAR A (a) anionische, nichtionische, kationische und/oder amphotere Tenside und DOLLAR A (b) Entschäumergranulate, bestehend aus DOLLAR A (b1) mindestens einem Weichwachs mit einem Schmelzpunkt im Bereich von 35 bis 50 DEG C, DOLLAR A (b2) mindestens einem Hartwachs mit einem Schmelzpunkt oberhalb von 50 DEG C, DOLLAR A (b3) Siliconen und DOLLAR A (b4) Trägermaterialien.

Description

Gebiet der Erfindung
Die Erfindung befindet sich auf dem Gebiet der festen Wasch-, Spül- und Reinigungsmittel und betrifft Zubereitungen mit speziellen Entschäumern.
Stand der Technik
Waschmittel für die Haushaltswäsche und die industrielle Wäsche, aber auch Spül- und Reinigungs­ mittel, enthalten im allgemeinen organische Tenside, Builder sowie zahlreiche organische und anorga­ nische Additive. Die für die Wäsche eingesetzten Tenside neigen gewöhnlich während des Einsatzes zur Schaumentwicklung, was sich negativ auf das Reinigungsergebnis auswirkt. Daher besteht ein praktisches Bedürfnis, die Schaumentwicklung während des Einsatzes zu kontrollieren. Als besonders geeignete Entschäumer haben sich dabei Silicone erwiesen, die in der Regel auf Trägermaterialien aufgebracht und gegebenenfalls mit weiteren organischen entschäumend wirkenden Substanzen be­ schichtet in festen Wasch-, Spül- und Reinigungsmitteln eingesetzt werden. Übliche Entschäumer des Marktes erweisen sich jedoch insbesondere dann, wenn die Zubereitungen besonders stark schäu­ mende anionische Tenside oder nur schwer entschäumbare nichtionische Tenside enthalten, als nicht ausreichend.
Aufgabe der vorliegenden Erfindung war es daher, unter Mitverwendung geeigneter Entschäumer neue feste Wasch-, Spül- und Reinigungsmittel zur Verfügung zu stellen, die sich insbesondere dadurch auszeichnen, daß sie auch unter Mitverwendung von stark schäumenden anionischen Tensiden oder nur schwer entschäumbarer nichtionischer Tenside über die gesamte Dauer des Reinigungsprozesses nur eine solche Schaummenge entwickeln, daß das Überschäumen beispielsweise von Wasch- oder Spülmaschine zuverlässig verhindert wird.
Beschreibung der Erfindung
Gegenstand der Erfindung sind feste Wasch-, Spül- und Reinigungsmittel, enthaltend
  • a) anionische, nichtionische, kationische und/oder amphotere Tenside und
  • b) Entschäumergranulate bestehend aus
    • 1. mindestens einem Weichwachs mit einem Schmelzpunkt im Bereich von 35 bis 50°C,
    • 2. mindestens einem Hartwachs mit einem Schmelzpunkt oberhalb von 50°C,
    • 3. Siliconen und
    • 4. Trägermaterialien.
Überraschenderweise wurde gefunden, daß durch Einsatz der neuen Entschäumergranulate nunmehr feste Wasch-, Spül- und Reinigungsmittel erhältlich sind, die das gewünschte Eigenschaftsprofil zur vollen Zufriedenheit erfüllen.
Anionische Tenside
Typische Beispiele für anionische Tenside sind Seifen, Alkylbenzolsulfonate, Alkansulfonate, Olefin­ sulfonate, Alkylethersulfonate, Glycerinethersulfonate, α-Methylestersulfonate, Sulfofettsäuren, Alkyl­ sulfate, Fettalkoholethersulfate, Glycerinether-sulfate, Hydroxymischethersulfate, Monoglycerid­ (ether)sulfate, Fettsäureamid(ether)sulfate, Mono- und Dialkyl-sulfosuccinate, Mono- und Dialkylsulfo­ succinamate, Sulfotriglyceride, Amidseifen, Ethercarbonsäuren und deren Salze, Fettsäureisethionate, Fettsäuresarcosinate, Fettsäuretauride, N-Acylamino-säuren wie beispielsweise Acyllactylate, Acyltar­ trate, Acylglutamate und Acylaspartate, Alkyloligoglucosidsulfate, Proteinfettsäurekondensate (insbe­ sondere pflanzliche Produkte auf Weizenbasis) und Alkyl(ether)phosphate. Sofern die anionischen Tenside Polyglycoletherketten enthalten, können diese eine konventionelle, vorzugsweise jedoch eine eingeengte Homologenverteilung aufweisen. Vorzugsweise werden Alkylbenzolsulfonate, Alkylsulfate, Seifen, Alkansulfonate, Olefinsulfonate, Methylestersulfonate sowie deren Gemische eingesetzt. Be­ vorzugte Alkylbenzolsulfonate folgen vorzugsweise der Formel (I),
R-Ph-SO3X (I)
in der R für einen verzweigten, vorzugsweise jedoch linearen Alkylrest mit 10 bis 18 Kohlenstoffatomen, Ph für einen Phenylrest und X für ein Alkali- und/oder Erdalkalimetall, Ammonium, Alkylammonium, Alkanolammonium oder Glucammonium steht. Insbesondere von diesen geeignet sind Dodecylbenzol­ sulfonate, Tetradecylbenzolsulfonate, Hexadecylbenzolsulfonate sowie deren technische Gemische in Form der Natriumsalze. Unter Alkyl- und/oder Alkenylsulfaten, die auch häufig als Fettalkoholsulfate bezeichnet werden, sind die Sulfatierungsprodukte primärer und/oder sekundärer Alkohole zu verste­ hen, die vorzugsweise der Formel (II) folgen,
R2O-SO3Y (II)
in der R2 für einen linearen oder verzweigten, aliphatischen Alkyl- und/oder Alkenylrest mit 6 bis 22, vorzugsweise 12 bis 18 Kohlenstoffatomen und Y für ein Alkali- und/oder Erdalkalimetall, Ammonium, Alkylammonium, Alkanolammonium oder Glucammonium steht. Typische Beispiele für Alkylsulfate, die im Sinne der Erfindung Anwendung finden können, sind die Sulfatierungsprodukte von Capronalkohol, Caprylalkohol, Caprinalkohol, 2-Ethylhexylalkohol, Laurylalkohol, Myristylalkohol, Cetylalkohol, Palmo­ leylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Arachyl­ alkohol, Gadoleylalkohol, Behenylalkohol und Erucylalkohol sowie deren technischen Gemischen, die durch Hochdruckhydrierung technischer Methylesterfraktionen oder Aldehyden aus der Roelen'schen Oxosynthese erhalten werden. Die Sulfatierungsprodukte können vorzugsweise in Form ihrer Alkali­ salze und insbesondere ihrer Natriumsalze eingesetzt werden. Besonders bevorzugt sind Alkylsulfate auf Basis von C16/18-Talg-Fettalkoholen bzw. pflanzliche Fettalkohole vergleichbarer C-Kettenverteilung in Form ihrer Natriumsalze. Im Falle von verzweigten primären Alkoholen handelt es sich um Oxoalko­ hole, wie sie z. B. durch Umsetzung von Kohlenmonoxid und Wasserstoff an alpha-ständige Olefine nach dem Shop-Verfahren zugänglich sind. Solche Alkoholmischungen sind im Handel unter dem Han­ delsnamen Dobanol® oder Neodol® erhältlich. Geeignete Alkoholmischungen sind Dobanol 91®, 23®, 25®, 45®. Eine weitere Möglichkeit sind Oxoalkohole, wie sie nach dem klassischen Oxoprozeß der Enichema bzw. der Condea durch Anlagerung von Kohlenmonoxid und Wasserstoff an Olefine erhalten werden. Bei diesen Alkoholmischungen handelt es sich um eine Mischung aus stark verzweigten Alko­ holen. Solche Alkoholmischungen sind im Handel unter dem Handelsnamen Lial® erhältlich. Geeignete Alkoholmischungen sind Lial 91®, 111®, 123®, 125®, 145®. Unter Seifen sind schließlich Fettsäu­ resalze der Formel (III) zu verstehen,
R3CO-OX (III)
in der R3CO für einen linearen oder verzweigten, gesättigten oder ungesättigten Acylrest mit 6 bis 22 und vorzugsweise 12 bis 18 Kohlenstoffatomen und X für Alkali- und/oder Erdalkali, Ammonium, Alkyl­ ammonium oder Alkanolammonium steht. Typische Beispiele sind die Natrium-, Kalium-, Magnesium-, Ammonium- und Triethanolammoniumsalze der Capronsäure, Caprylsäure, 2-Ethylhexansäure, Ca­ prinsäure, Laurinsäure, Isotridecansäure, Myristinsäure, Palmitinsäure, Palmoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Elaeostearinsäure, Arachinsäure, Gadoleinsäure, Behensäure und Erucasäure sowie deren technische Mischungen. Vor­ zugsweise werden Kokos- oder Palmkernfettsäure in Form ihrer Natrium- oder Kaliumsalze eingesetzt.
Nichtionische Tenside
Typische Beispiele für nichtionische Tenside sind Fettalkoholpolyglycolether, Alkylphenolpolygly­ colether, Fettsäurepolyglycolester, Fettsäureamidpolyglycolether, Fettaminpolyglycolether, alkoxylierte Triglyceride, Mischether bzw. Mischformale, Alk(en)yloligoglykoside, Fettsäure-N-alkylglucamide, Pro­ teinhydrolysate (insbesondere pflanzliche Produkte auf Weizenbasis), Polyolfettsäureester, Zuckere­ ster, Sorbitanester, Polysorbate und Aminoxide. Sofern die nichtionischen Tenside Polyglycoletherket­ ten enthalten, können diese eine konventionelle, vorzugsweise jedoch eine eingeengte Homologen­ verteilung aufweisen. Vorzugsweise werden Fettalkoholpolyglycolether, alkoxylierte Fettsäureniedrigal­ kylester oder Alkyloligoglucoside eingesetzt. Die bevorzugten Fettalkoholpolyglycolether folgen der Formel (IV),
R4O(CH2CHR5O)nH (IV)
in der R4 für einen linearen oder verzweigten Alkyl- und/oder Alkenylrest mit 6 bis 22, vorzugsweise 12 bis 18 Kohlenstoffatomen, R5 für Wasserstoff oder Methyl und n für Zahlen von 1 bis 20 steht. Typische Beispiele sind die Anlagerungsprodukte von durchschnittlich 1 bis 20 und vorzugsweise 5 bis 10 Mol Ethylen- und/oder Propylenoxid an Capronalkohol, Caprylalkohol, 2-Ethylhexylalkohol, Caprinalkohol, Laurylalkohol, Isotridecylalkohol, Myristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol, Isoste­ arylalkohol, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Linolylalkohol, Linolenylalkohol, Elaeo­ stearylalkohol, Arachylalkohol, Gadoleylalkohol, Behenylalkohol, Erucylalkohol und Brassidylalkohol sowie deren technische Mischungen. Besonders bevorzugt sind Anlagerungsprodukte von 3, 5 oder 7 Mol Ethylenoxid an technische Kokosfettalkohole. Als alkoxylierte Fettsäureniedrigalkylester kom­ men Tenside der Formel (V) in Betracht,
R6CO-(OCH2CHR7)mOR8 (V)
in der R6CO für einen linearen oder verzweigten, gesättigten und/oder ungesättigten Acylrest mit 6 bis 22 Kohlenstoffatomen, R7 für Wasserstoff oder Methyl, R8 für lineare oder verzweigte Alkylreste mit 1 bis 4 Kohlenstoffatomen und m für Zahlen von 1 bis 20 steht. Typische Beispiele sind die formalen Einschubprodukte von durchschnittlich 1 bis 20 und vorzugsweise 5 bis 10 Mol Ethylen- und/oder Pro­ pylenoxid in die Methyl-, Ethyl-, Propyl-, Isopropyl-, Butyl- und tert.-Butylester von Capronsäure, Ca­ prylsäure, 2-Ethylhexansäure, Caprinsäure, Laurinsäure, Isotridecansäure, Myristinsäure, Palmitinsäu­ re, Palmoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Elaeostearinsäure, Arachinsäure, Gadoleinsäure, Behensäure und Erucasäure sowie deren technische Mischungen. Üblicherweise erfolgt die Herstellung der Produkte durch Insertion der Alkylenoxide in die Carbonylesterbindung in Gegenwart spezieller Katalysatoren, wie z. B. calcinierter Hydrotalcit. Besonders bevorzugt sind Umsetzungsprodukte von durchschnittlich 5 bis 10 Mol Ethylen­ oxid in die Esterbindung von technischen Kokosfettsäuremethylestern. Alkyl- und Alkenyloligoglyko­ side, die ebenfalls bevorzugte nichtionische Tenside darstellen, folgen üblicherweise der Formel (VI),
R9O-[G]p (VI)
in der R9 für einen Alkyl- und/oder Alkenylrest mit 4 bis 22 Kohlenstoffatomen, G für einen Zuckerrest mit 5 oder 6 Kohlenstoffatomen und p für Zahlen von 1 bis 10 steht. Sie können nach den einschlä­ gigen Verfahren der präparativen organischen Chemie erhalten werden. Stellvertretend für das umfang­ reiche Schrifttum sei hier auf die Schriften EP-A1 0 301 298 und WO 90/03977 verwiesen. Die Alkyl- und/oder Alkenyloligoglykoside können sich von Aldosen bzw. Ketosen mit 5 oder 6 Kohlen­ stoffatomen, vorzugsweise der Glucose ableiten. Die bevorzugten Alkyl- und/oder Alkenyloligoglykoside sind somit Alkyl- und/oder Alkenyloligoglucoside. Die Indexzahl p in der allgemeinen Formel (VI) gibt den Oligomerisierungsgrad (DP), d. h. die Verteilung von Mono- und Oligoglykosiden an und steht für eine Zahl zwischen 1 und 10. Während p in einer gegebenen Verbindung stets ganzzahlig sein muß und hier vor allem die Werte p = 1 bis 6 annehmen kann, ist der Wert p für ein bestimmtes Alkyloligo­ glykosid eine analytisch ermittelte rechnerische Größe, die meistens eine gebrochene Zahl darstellt. Vorzugsweise werden Alkyl- und/oder Alkenyloligoglykoside mit einem mittleren Oligomerisierungsgrad p von 1,1 bis 3,0 eingesetzt. Aus anwendungstechnischer Sicht sind solche Alkyl- und/oder Alkenyl­ oligoglykoside bevorzugt, deren Oligomerisierungsgrad kleiner als 1,7 ist und insbesondere zwischen 1,2 und 1,4 liegt. Der Alkyl- bzw. Alkenylrest R9 kann sich von primären Alkoholen mit 4 bis 11, vor­ zugsweise 8 bis 10 Kohlenstoffatomen ableiten. Typische Beispiele sind Butanol, Capronalkohol, Ca­ prylalkohol, Caprinalkohol und Undecylalkohol sowie deren technische Mischungen, wie sie bei­ spielsweise bei der Hydrierung von technischen Fettsäuremethylestern oder im Verlauf der Hydrierung von Aldehyden aus der Roelen'schen Oxosynthese erhalten werden. Bevorzugt sind Alkyloli­ goglucoside der Kettenlänge C8-C10 (DP = 1 bis 3), die als Vorlauf bei der destillativen Auftrennung von technischem C8-C18-Kokosfettalkohol anfallen und mit einem Anteil von weniger als 6 Gew.-% C12- Alkohol verunreinigt sein können sowie Alkyloligoglucoside auf Basis technischer C9/11-Oxoalkohole (DP = 1 bis 3). Der Alkyl- bzw. Alkenylrest R9 kann sich ferner auch von primären Alkoholen mit 12 bis 22, vorzugsweise 12 bis 14 Kohlenstoffatomen ableiten. Typische Beispiele sind Laurylalkohol, My­ ristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylal­ kohol, Petroselinylalkohol, Arachylalkohol, Gadoleylalkohol, Behenylalkohol, Erucylalkohol, Brassidylal­ kohol sowie deren technische Gemische, die wie oben beschrieben erhalten werden können. Bevorzugt sind Alkyloligoglucoside auf Basis von gehärtetem C12/14-Kokosalkohol mit einem DP von 1 bis 3.
Kationische Tenside
Typische Beispiele für kationische Tenside sind insbesondere Tetraalkylammoniumverbindungen, wie beispielsweise Dimethyldistearylammoniumchlorid oder Hydroxyethyl Hydroxycetyl Dimmonium Chloride (Dehyquart® E) oder aber Esterquats. Hierbei handelt es sich beispielsweise um quaternierte Fettsäuretriethanolaminestersalze der Formel (VII),
in der R10CO für einen Acylrest mit 6 bis 22 Kohlenstoffatomen, R11 und R12 unabhängig voneinander für Wasserstoff oder R10CO, R13 für einen Alkylrest mit 1 bis 4 Kohlenstoffatomen oder eine (CH2CH2O)x4H-Gruppe, x1, x2 und x3 in Summe für 0 oder Zahlen von 1 bis 12, x4 für Zahlen von 1 bis 12 und X für Halogenid, Alkylsulfat oder Alkylphosphat steht. Typische Beispiele für Esterquats, die im Sinne der Erfindung Verwendung finden können, sind Produkte auf Basis von Capronsäure, Caprylsäu­ re, Caprinsäure, Laurinsäure, Myristinsäure, Palmitinsäure, Isostearinsäure, Stearinsäure, Ölsäure, Elaidinsäure, Arachinsäure, Behensäure und Erucasäure sowie deren technische Mischungen, wie sie beispielsweise bei der Druckspaltung natürlicher Fette und Öle anfallen. Vorzugsweise werden techni­ sche C12/18-Kokosfettsäuren und insbesondere teilgehärtete C16/18-Talg- bzw. Palmfettsäuren sowie elaidinsäurereiche C16/18-Fettsäureschnitte eingesetzt. Zur Herstellung der quaternierten Ester können die Fettsäuren und das Triethanolamin im molaren Verhältnis von 1,1 : 1 bis 3 : 1 eingesetzt werden. Im Hinblick auf die anwendungstechnischen Eigenschaften der Esterquats hat sich ein Einsatzverhältnis von 1,2 : 1 bis 2,2 : 1, vorzugsweise 1,5 : 1 bis 1,9 : 1 als besonders vorteilhaft erwiesen. Die bevor­ zugten Esterquats stellen technische Mischungen von Mono-, Di- und Triestern mit einem durchschnitt­ lichen Veresterungsgrad von 1,5 bis 1,9 dar und leiten sich von technischer C16/18-Talg- bzw. Palmfett­ säure (Iodzahl 0 bis 40) ab. Aus anwendungstechnischer Sicht haben sich quaternierte Fettsäuretriet­ hanolaminestersalze der Formel (VII) als besonders vorteilhaft erwiesen, in der R10CO für einen Acyl­ rest mit 16 bis 18 Kohlenstoffatomen, R11 für R10CO, R12 für Wasserstoff, R13 für eine Methylgruppe, (x1 + x2 + x3) für 0 und X für Methylsulfat steht.
Neben den quaternierten Fettsäuretriethanolaminestersalzen kommen als Esterquats ferner auch qua­ ternierte Estersalze von Fettsäuren mit Diethanolalkylaminen der Formel (VIII) in Betracht,
in der R14CO für einen Acylrest mit 6 bis 22 Kohlenstoffatomen, R15 für Wasserstoff oder R14CO, R16 und R17 unabhängig voneinander für Alkylreste mit 1 bis 4 Kohlenstoffatomen, x5 und x6 in Summe für 0 oder Zahlen von 1 bis 12 und X für Halogenid, Alkylsulfat oder Alkylphosphat steht.
Als weitere Gruppe geeigneter Esterquats sind schließlich die quaternierten Estersalze von Fettsäuren mit 1,2-Dihydroxypropyldialkylaminen der Formel (IX) zu nennen,
in der R18CO für einen Acylrest mit 6 bis 22 Kohlenstoffatomen, R19 für Wasserstoff oder R18CO, R20, R21 und R22 unabhängig voneinander für Alkylreste mit 1 bis 4 Kohlenstoffatomen, x7 und x8 in Summe für 0 oder Zahlen von 1 bis 12 und X für Halogenid, Alkylsulfat oder Alkylphosphat steht.
Schließlich kommen als Esterquats noch Stoffe in Frage, bei denen die Ester- durch eine Amidbindung ersetzt ist und die vorzugsweise basierend auf Diethylentriamin der Formel (X) folgen,
in der R23CO für einen Acylrest mit 6 bis 22 Kohlenstoffatomen, R24 für Wasserstoff oder R23CO, R25 und R26 unabhängig voneinander für Alkylreste mit 1 bis 4 Kohlenstoffatomen und X für Halogenid, Alkylsulfat oder Alkylphosphat steht. Derartige Amidesterquats sind beispielsweise unter der Bezeich­ nung Incroquat® (Croda) im Markt erhältlich.
Beispiele für geeignete amphotere bzw. zwitterionische Tenside sind Alkylbetaine, Alkylamido­ betaine, Aminopropionate, Aminoglycinate, Imidazoliniumbetaine und Sulfobetaine. Beispiele für geeig­ nete Alkylbetaine stellen die Carboxyalkylierungsprodukte von sekundären und insbesondere tertiären Aminen dar, die der Formel (XI) folgen,
in der R27 für Alkyl- und/oder Alkenylreste mit 6 bis 22 Kohlenstoffatomen, R28 für Wasserstoff oder Alkylreste mit 1 bis 4 Kohlenstoffatomen, R29 für Alkylreste mit 1 bis 4 Kohlenstoffatomen, y1 für Zahlen von 1 bis 6 und Y für ein Alkali- und/oder Erdalkalimetall oder Ammonium steht. Typische Beispiele sind die Carboxymethylierungsprodukte von Hexylmethylamin, Hexyldimethylamin, Octyldimethylamin, De­ cyldimethylamin, Dodecylmethylamin, Dodecyldimethylamin, Dodecylethylmethylamin, C12/14-Kokosal­ kyldimethylamin, Myristyldimethylamin, Cetyldimethylamin, Stearyldimethylamin, Stearylethylmethyl­ amin, Oleyldimethylamin, C16/18-Talgalkyldimethylamin sowie deren technische Gemische.
Weiterhin kommen auch Carboxyalkylierungsprodukte von Amidoaminen in Betracht, die der Formel (XII) folgen,
in der R30CO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen und 0 oder 1 bis 3 Dop­ pelbindungen, y2 für Zahlen von 1 bis 3 steht und R27, R28, y1 und Y die oben angegebenen Bedeu­ tungen haben. Typische Beispiele sind Umsetzungsprodukte von Fettsäuren mit 6 bis 22 Kohlenstof­ fatomen, namentlich Capronsäure, Caprylsäure, Caprinsäure, Laurinsäure, Myristinsäure, Palmitinsäu­ re, Palmoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Elaeostearinsäure, Arachinsäure, Gadoleinsäure, Behensäure und Erucasäure sowie deren technische Gemische, mit N,N-Dimethylaminoethylamin, N,N-Dimethylaminopropylamin, N,N- Diethylaminoethylamin und N,N-Diethyl-aminopropylamin, die mit Natriumchloracetat kondensiert wer­ den. Bevorzugt ist der Einsatz eines Kondensationsproduktes von C8/18-Kokosfettsäure-N,N-dime­ thylaminopropylamid mit Natriumchloracetat.
Weiterhin kommen auch Imidazoliniumbetaine in Betracht. Auch bei diesen Substanzen handelt es sich um bekannte Stoffe, die beispielsweise durch cyclisierende Kondensation von 1 oder 2 Mol Fett­ säure mit mehrwertigen Aminen wie beispielsweise Aminoethylethanolamin (AEEA) oder Diethylentria­ min erhalten werden können. Die entsprechenden Carboxyalkylierungsprodukte stellen Gemische unterschiedlicher offenkettiger Betaine dar. Typische Beispiele sind Kondensationsprodukte der oben genannten Fettsäuren mit AEEA, vorzugsweise Imidazoline auf Basis von Laurinsäure oder wiederum C12/14-Kokosfettsäure, die anschließend mit Natriumchloracetat betainisiert werden.
Amphotere Tenside
Als amphotere bzw. zwitterionische Tenside können die Zubereitungen Alkylbetaine, Alkyl­ amidobetaine, Aminopropionate, Aminoglycinate, Imidazoliniumbetaine und/oder Sulfobetaine enthal­ ten. Beispiele für geeignete Alkylbetaine stellen die Carboxyalkylierungsprodukte von sekundären und insbesondere tertiären Aminen dar, die der Formel (XI) folgen,
in der R27 für Alkyl- und/oder Alkenylreste mit 6 bis 22 Kohlenstoffatomen, R28 für Wasserstoff oder Alkylreste mit 1 bis 4 Kohlenstoffatomen, R29 für Alkylreste mit 1 bis 4 Kohlenstoffatomen, y1 für Zahlen von 1 bis 6 und Z für ein Alkali- und/oder Erdalkalimetall oder Ammonium steht. Typische Beispiele sind die Carboxymethylierungsprodukte von Hexylmethylamin, Hexyldimethylamin, Octyldimethylamin, De­ cyldimethylamin, Dodecylmethylamin, Dodecyldimethylamin, Dodecylethylmethylamin, C12/14-Kokosal­ kyldimethylamin, Myristyldimethylamin, Cetyldimethylamin, Stearyldimethylamin, Stearylethylmethyl­ amin, Oleyldimethylamin, C16/18-Talgalkyldimethylamin sowie deren technische Gemische. Weiterhin kommen auch Carboxyalkylierungsprodukte von Amidoaminen in Betracht, die der Formel (XII) folgen,
in der R30CO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen und 0 oder 1 bis 3 Dop­ pelbindungen, R31 für Wasserstoff oder Alkylreste mit 1 bis 4 Kohlenstoffatomen, R32 für Alkylreste mit 1 bis 4 Kohlenstoffatomen, y2 und y3 unabhängig von einander für Zahlen von 1 bis 6 und Z für ein Alkali- und/oder Erdalkalimetall oder Ammonium steht. Typische Beispiele sind Umsetzungsprodukte von Fettsäuren mit 6 bis 22 Kohlenstoffatomen, namentlich Capronsäure, Caprylsäure, Caprinsäure, Laurinsäure, Myristinsäure, Palmitinsäure, Palmoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Elaeostearinsäure, Arachinsäure, Gadolein­ säure, Behensäure und Erucasäure sowie deren technische Gemische, mit N,N-Dimethylami­ noethylamin, N,N-Dimethylaminopropylamin, N,N-Diethylaminoethylamin und N,N-Diethyl-ami­ nopropylamin, die mit Natriumchloracetat kondensiert werden. Bevorzugt ist der Einsatz eines Konden­ sationsproduktes von C8/18-Kokosfettsäure-N,N-dimethylaminopropylamid mit Natriumchloracetat.
Weiterhin kommen auch Imidazoliniumbetaine in Betracht. Auch bei diesen Substanzen handelt es sich um bekannte Stoffe, die beispielsweise durch cyclisierende Kondensation von 1 oder 2 Mol Fett­ säure mit mehrwertigen Aminen wie beispielsweise Aminoethylethanolamin (AEEA) oder Diethylentria­ min erhalten werden können. Die entsprechenden Carboxyalkylierungsprodukte stellen Gemische unterschiedlicher offenkettiger Betaine dar. Typische Beispiele sind Kondensationsprodukte der oben genannten Fettsäuren mit AEEA, vorzugsweise Imidazoline auf Basis von Laurinsäure oder wiederum C12/14-Kokosfettsäure, die anschließend mit Natriumchloracetat betainisiert werden.
Üblicherweise enthalten die erfindungsgemäßen Zubereitungen die anionischen, nichtionischen, katio­ nischen und/oder amphoteren Tenside in Mengen von 1 bis 50, vorzugsweise 5 bis 35 und insbesonde­ re 15 bis 25 Gew.-%.
Entschäumergranulate
Die als Komponente (b) obligatorischen Entschäumergranulate sind Gegenstand einer weiteren Pa­ tentanmeldung der Anmelderin. Weichwachse, die die Komponente (b1) bilden und einen Schmelz­ punkt im Bereich von 35 bis 50°C aufweisen, zählen vorzugsweise zur Gruppe der Petrolate und deren Hydrierprodukte. Sie setzen sich aus mikrokristallinen Paraffinen und bis zu 70 Gew.-% Öl zusammen, besitzen eine salbenartige bis plastisch feste Konsistenz und stellen bitumenfreie Rückstände aus der Erdölverarbeitung dar. Besonders bevorzugt sind Destillationsrückstände (Petrolatumstock) bestimmter paraffinbasischer und gemischtbasischer Rohöle, die zu Vaeline weiterverarbeitet werden.
Als Hartwachse, die die Entschäumerkomponente (b2) darstellen, sind solche wachsartigen Stoffe zu verstehen, die einen Schmelzpunkt bei Atmospärendruck über 50°C (Raumtemperatur), vorzugsweise über 56°C und insbesondere über 70°C aufweisen. Die Hartwachse sind in Wasser praktisch nicht löslich, d. h. bei 20°C weisen sie in 100 g Wasser eine Löslichkeit unter 0,1 Gew.-% auf. Geeignete wachsartige Verbindungen sind beispielsweise Bisamide, Fettalkohole, Fettsäuren, Carbonsäureester von ein- und mehrwertigen Alkoholen sowie Paraffinwachse oder Mischungen derselben. Geeignet sind Bisamide, die sich von gesättigten Fettsäuren mit 12 bis 22, vorzugsweise 14 bis 18 C-Atomen sowie von Alkylendiaminen mit 2 bis 7 C-Atomen ableiten. Geeignete Fettsäuren sind Laurin-, Myristin-, Stea­ rin-, Arachin- und Behensäure sowie deren Gemische, wie sie aus natürlichen Fetten beziehungsweise gehärteten Ölen, wie Talg oder hydriertem Palmöl, erhältlich sind. Geeignete Diamine sind beispiels­ weise Ethylendiamin, 1,3-Propylendiamin, Tetramethylendiamin, Pentamethylendiamin, Hexamethylen­ diamin, p-Phenylendiamin und Toluylendiamin. Bevorzugte Diamine sind Ethylendiamin und Hexame­ thylendiamin. Besonders bevorzugte Bisamide sind Bis-myristoyl-ethylendiamin, Bis-palmitoyl­ ethylendiamin, Bis-stearoylethylendiamin und deren Gemische sowie die entsprechenden Derivate des Hexamethylendiamins. Geeignete Carbonsäureester leiten sich von Carbonsäuren mit 12 bis 28 Koh­ lenstoffatomen ab. Insbesondere handelt es sich um Ester von Behensäure, Stearinsäure, Ölsäure, Palmitinsäure, Myristinsäure und/oder Laurinsäure. Der Alkoholteil des Carbonsäureesters enthält ei­ nen ein- oder mehrwertigen Alkohole mit 1 bis 28 Kohlenstoffatomen in der Kohlenwasserstoffkette. Beispiele von geeigneten Alkoholen sind Behenylalkohol, Arachidylalkohol, Kokosalkohol, 12- Hydroxystearylalkohol, Oleylalkohol und Laurylalkohol sowie Ethylenglykol, Glycerin, Methanol, Etha­ nol, Isopropanol, Vinylalkohol, Saccharose, Erythrit, Pentaerythrit, Sorbitan und/oder Sorbit. Bevorzugte Ester sind solche von Methanol, Ethylenglykol, Glycerin und Sorbitan, wobei der Säureteil des Esters insbesondere aus Behensäure, Stearinsäure, Ölsäure, Palmitinsäure oder Myristinsäure ausgewählt wird. In Frage kommende Ester mehrwertiger Alkohole sind beispielsweise Xylitmonopalmitat, Penta­ rythritmonostearat, Glycerinmonostearat, Ethylenglykolmonostearat und Sorbitanmonostearat, Sorbi­ tanpalmitat, Sorbitanmonolaurat, Sorbitandilaurat, Sorbitandistearat, Sorbitandibehenat, Sorbitandioleat sowie gemischte Talgalkylsorbitanmono- und -diester. Brauchbare Glycerinester sind die Mono-, Di- oder Triester von Glycerin und genannten Carbonsäuren, wobei die Mono- oder Dieester bevorzugt sind. Glycerinmonostearat, Glycerinmonooleat, Glycerinmonopalmitat, Glycerinmonobehenat und Gly­ cerindistearat sind Beispiele hierfür. Beispiele für geeignete natürliche Ester sind Bienen- und Carnau­ bawachs, wobei letzteres ein Gemisch von Carnaubasäurealkylestern, oft in Kombination mit geringen Anteilen freier Carnaubasäure, weiteren langkettigen Säuren, hochmolekularen Alkoholen und Kohlen­ wasserstoffen, darstellt. Geeignete Carbonsäuren als weitere Entschäumerverbindung sind insbeson­ dere Behensäure, Stearinsäure, Ölsäure, Palmitinsäure, Myristinsäure und Laurinsäure sowie deren Gemische, wie sie aus natürlichen Fetten bzw. gegebenenfalls gehärteten Ölen, wie Talg oder hydrier­ tem Palmöl, erhältlich sind. Bevorzugt sind gesättigte Fettsäuren mit 12 bis 22, insbesondere 14 bis 18 C-Atomen. Geeignete Fettalkohole als weitere Entschäumerverbindung sind die hydrierten Produkte der beschriebenen Fettsäuren. Das im Sinne der Erfindung bevorzugte Paraffinwachs als weitere Ent­ schäumerverbindung stellt im allgemeinen ein komplexes Stoffgemisch ohne scharfen Schmelzpunkt dar. Zur Charakterisierung bestimmt man üblicherweise seinen Schmelzbereich durch Differential- Thermo-Analyse (DTA), wie in "The Analyst" 87 (1962), 420, beschrieben, und/oder seinen Erstar­ rungspunkt. Darunter versteht man die Temperatur, bei der das Paraffin durch langsames Abkühlen aus dem flüssigen in den festen Zustand übergeht. Dabei sind bei Raumtemperatur vollständig flüssige Paraffine, das heißt solche mit einem Erstarrungspunkt unter 25°C, erfindungsgemäß nicht brauchbar. Vorzugsweise handelt es sich beispielsweise um aus Destillationsrückständen paraffin- und gemischt­ basischer Rohöle und Zylinderöldestillate mittels Lösungsmittel abgeschiedene bitumenfreie, ölartige bis feste Kohlenwasserstoffe. Sie sind von halbfester, zügiger, klebriger bis plastisch-fester Konsistenz und besitzen Schmelzpunkte zwischen 50 und 70°C. Diese Petrolate stellen die wichtigste Ausgangs­ basis für die Herstellung von Mikrowachsen dar. Weiterhin geeignet sind die aus hochviskosen, paraf­ finhaltigen Schmieröldestillaten bei der Entparaffinierung abgeschiedenen festen Kohlenwasserstoffe mit Schmelzpunkten zwischen 63 und 79°C. Bei diesen Petrolaten handelt es sich um Gemische aus mikrokristallinen Wachsen und hochschmelzenden n-Paraffinen. Eingesetzt werden können beispiels­ weise auch die aus EP 0309931 A1 bekannten Paraffinwachsgemische aus beispielsweise 26 Gew.-% bis 49 Gew.-% mikrokristallinem Paraffinwachs mit einem Erstarrungspunkt von 62°C bis 90°C, 20 Gew.-% bis 49 Gew.-% Hartparaffin mit einem Erstarrungspunkt von 42°C bis 56°C und 2 Gew.-% bis 25 Gew.-% Weichparaffin mit einem Erstarrungspunkt von 35°C bis 40°C. Vorzugsweise werden Paraffine bzw. Paraffingemische verwendet, die im Bereich von 50°C bis 90°C erstarren. Dabei ist zu beachten, daß auch bei Raumtemperatur fest erscheinende Paraffinwachsgemische unterschiedliche Anteile an flüssigem Paraffin enthalten können. Bei Paraffinwachsen der Komponente (b) liegt dieser Flüssiganteil so niedrig wie möglich und fehlt vorzugsweise ganz. So weisen besonders bevorzugte Paraffinwachsgemische bei 30°C einen Flüssiganteil von unter 10 Gew.-%, insbesondere von 2 Gew.-% bis 5 Gew.-%, bei 40°C einen Flüssiganteil von unter 30 Gew.-%, vorzugsweise von 5 Gew.-% bis 25 Gew.-% und insbesondere von 5 Gew.-% bis 15 Gew.-%, bei 60°C einen Flüssiganteil von 30 Gew.-% bis 60 Gew.-%, insbesondere von 40 Gew.-% bis 55 Gew.-%, bei 80°C einen Flüssiganteil von 80 Gew.-% bis 100 Gew.-%, und bei 90°C einen Flüssiganteil von 100 Gew.-% auf. Die Tempe­ ratur, bei der ein Flüssiganteil von 100 Gew.-% des Paraffinwachses erreicht wird, liegt bei besonders bevorzugten Paraffinwachsgemischen noch unter 85°C, insbesondere bei 75°C bis 82°C. Im Sinne der Erfindung werden insbesondere die Paraffinwachse der geschilderten Art eingesetzt.
Im Sinne der vorliegenden Erfindung sind geeignete Silicone, die die Komponente (b3) bilden, übliche Organopolysiloxane, die einen Gehalt an feinteiliger Kieselsäure, die wiederum auch silaniert sein kann, aufweisen können. Derartige Organopolysiloxane sind beispielsweise in der Europäischen Pa­ tentanmeldung EP Q496510 A1 beschrieben. Besonders bevorzugt sind Polydiorganosiloxane und insbesondere Polydimethylsiloxane, die aus dem Stand der Technik bekannt sind. Geeignete Polydior­ ganosiloxane weisen eine nahezu lineare Kette auf und weisen einen Oligomerisierungsgrad von 40 bis 1500 auf. Beispiele für geeignete Substituenten sind Methyl, Ethyl, Propyl, Isobutyl, tert. Butyl und Phenyl. Weiterhin geeignet sind amino-, fettsäure-, alkohol-, polyether-, epoxy-, fluor-, glykosid- und/oder alkylmodifizierte Siliconverbindungen, die bei Raumtemperatur sowohl flüssig als auch harz­ förmig vorliegen können. Weiterhin geeignet sind Simethicone, bei denen es sich um Mischungen aus Dimethiconen mit einer durchschnittlichen Kettenfänge von 200 bis 300 Dimethylsiloxan-Einheiten und hydrierten Silicaten handelt. In der Regel enthalten die Silicone im allgemeinen und die Polydiorgano­ siloxane im besonderen feinteilige Kieselsäure, die auch silaniert sein kann. Insbesondere geeignet sind im Sinne der vorliegenden Erfindung kieselsäurehaltige Dimethylpolysiloxane. Vorteilhafterweise haben die Polydiorganosiloxane eine Viskosität nach Brookfield bei 25°C (Spindel 1,10 Upm) im Be­ reich von 5000 mPa.s bis 30 000 mPa.s, insbesondere von 15 000 bis 25 000 mPa.s. Vorzugsweise werden die Silicone in Form ihrer wäßrigen Emulsionen eingesetzt. In der Regel gibt man das Silicon zu vorgelegtem Wasser unter Rühren. Falls gewünscht kann man zur Erhöhung der Viskosität der wäßri­ gen Siliconemulsionen Verdickungsmittel, wie sie aus dem Stand der Technik bekannt sind, zugeben. Diese können anorganischer und/oder organischer Natur sein, besonders bevorzugt werden nichtioni­ sche Celluloseether wie Methylcellulose, Ethylcellulose und Mischether wie Methylhydroxyethylcellulose, Methylhydroxypropylcellulose, Methylhydroxybutylcellulose sowie anionische Carboxycellulose-Typen wie das Carboxymethylcellulose-Natriumsalz (Abkürzung CMC). Insbesondere geeignete Verdicker sind Mischungen von CMC zu nichtionischen Celluloseethern im Gewichtsverhältnis 80 : 20 bis 40 : 60, insbesondere 75 : 25 bis 60 : 40. In der Regel und besonders bei Zugabe der beschriebenen Verdik­ kermischungen empfehlen sich Einsatzkonzentrationen von cirka 0,5 bis 10, insbesondere von 2,0 bis 6 Gew.-% - berechnet als Verdickermischung und bezogen auf wäßrige Siliconemulsion. Die Gehalt an Siliconen der beschriebenen Art in den wäßrigen Emulsionen liegt vorteilhafterweise im Bereich von 5 bis 50 Gew.-%, insbesondere von 20 bis 40 Gew.-% - berechnet als Silicone und bezogen auf wäßrige Siliconemulsion. Nach einer weiteren vorteilhaften Ausgestaltung erhalten die wäßrigen Siliconlösun­ gen als Verdicker Stärke, die aus natürlichen Quellen zugänglich ist, beispielsweise aus Reis, Kartof­ feln, Mais und Weizen. Die Stärke ist vorteilhafterweise in Mengen von 0,1 bis zu 50 Gew.-% - bezogen auf Silicon-Emulsion - enthalten und insbesondere in Mischung mit den schon beschriebenen Verdic­ kermischungen aus Natrium-Carboxymethylcellulose und einem nichtionischen Celluloseether in den schon genannten Mengen. Zur Herstellung der wäßrigen Siliconemulsionen geht man zweckmäßiger­ weise so vor, daß man die gegebenenfalls vorhandenen Verdickungsmittel in Wasser vorquellen läßt, bevor die Zugabe der Silicone erfolgt. Das Einarbeiten der Silicone erfolgt zweckmäßigerweise mit Hilfe wirksamer Rühr- und Mischungsvorrichtungen.
Als Trägermaterial (Komponente b4) können im Sinne der Erfindung alle bekannten anorganischen und/oder organischen Trägermaterialien eingesetzt werden. Beispiele für typische anorganische Trä­ germaterialien Alkalicarbonate, Alumosilicate, wasserlösliche Schichtsilicate, Alkalisilicate, Alkalisulfate, beispielsweise Natriumsulfat und Alkaliphosphate. Bei den Alkalisilicaten handelt es sich vorzugsweise um eine Verbindung mit einem Molverhältnis Alkalioxid zu SiO2 von 1 : 1,5 bis 1 : 3,5. Die Verwendung derartiger Silicate resultiert in besonders guten Korneigenschaften, insbesondere hoher Ab­ riebsstabilität und dennoch hoher Auflösungsgeschwindigkeit in Wasser. Zu den als Trägermaterial bezeichneten Alumosilicaten gehören insbesondere die Zeolithe, beispielsweise Zeolith NaA und NaX. Zu den als wasserlöslichen Schichtsilicaten bezeichneten Verbindungen gehören beispielsweise amor­ phes oder kristallines Wasserglas. Als organische Trägermaterialien kommen zum Beispiel filmbildende Polymere, beispielsweise Polyvinylalkohole, Polyvinylpyrrolidone, Poly(meth)acrylate, Polycarboxylate, Cellulosederivate und Stärke in Frage. Brauchbare Celluloseether sind insbesondere Alkalicarb­ oxymethylcellulose, Methylcellulose, Ethylcellulose, Hydroxyethylcellulose und sogenannte Cellulose­ mischether, wie zum Beispiel Methylhydroxyethylcellulose und Methylhydroxypropylcellulose, sowie deren Mischungen. Besonders geeignete Mischungen sind aus Natrium-Carboxymethylcellulose und Methylcellulose zusammengesetzt, wobei die Carboxymethylcellulose üblicherweise einen Substi­ tutionsgrad von 0,5 bis 0,8 Carboxymethylgruppen pro Anhydroglukoseeinheit und die Methylcellulose einen Substitutionsgrad von 1,2 bis 2 Methylgruppen pro Anhydroglukoseeinheit aufweist. Die Gemi­ sche enthalten vorzugsweise Alkalicarboxymethylcellulose und nichtionischen Celluloseether in Ge­ wichtsverhältnissen von 80 : 20 bis 40 : 60, insbesondere von 75 : 25 bis 50 : 50. Derartige Cellulose­ ethergemische können in fester Form oder als wäßrige Lösungen verwendet werden, die in üblicher Weise vorgequollen sein können. Im Sinne der Erfindung werden als Träger besonders bevorzugt die native Stärke, die aus Amylose und Amylopectin aufgebaut ist. Als native Stärke wird Stärke bezeich­ net, wie sie als Extrakt aus natürlichen Quellen zugänglich ist, beispielsweise aus Reis, Kartoffeln, Mais und Weizen. Native Stärke ist ein handelsübliches Produkt und damit leicht zugänglich. Als Trägerma­ terialien können einzelne oder mehrere der vorstehend genannten Verbindungen eingesetzt werden, insbesondere ausgewählt aus der Gruppe der Alkalicarbonate, Alkalisulfate, Alkaliphosphate, Zeolithe, wasserlösliche Schichtsilicate, Alkalisilicate, Polycarboxylate, Carboxymethylcellulose, Polyacry­ lat/Polymethacrylat und Stärke. Besonders geeignet sind Mischungen von Alkalicarbonaten, insbeson­ dere Natriumcarbonat, Alkalisilicaten, insbesondere Natriumsilicat, Alkalisulfaten, insbesondere Natri­ umsulfat, Zeolithen, Polycarboxylate, insbesondere Poly(meth)acrylat, und Celluloseether und nativer Stärke. Die Trägermaterialien können folgendermaßen zusammengesetzt sein:
0 bis 2 Gew.-% Celluloseether
0 bis 75 Gew.-% native Stärke
0 bis 30 Gew.-% Alkalisilicat
0 bis 75 Gew.-% Alkalisulfat
0 bis 95 Gew.-% Alkalicarbonat
0 bis 95 Gew.-% Zeolithe
0 bis 5 Gew.-% Polycarboxylate, wobei sich die Summe zu 100 Gew.-% addieren muß.
In einer besonders bevorzugten Ausführungsform der Erfindung können die Entschäumergranulate aus
  • a) 5 bis 25, vorzugsweise 10 bis 20 und insbesondere 12 bis 15 Gew.-% mindestens einem Weichwachs mit einem Schmelzpunkt im Bereich von 35 bis 50°C,
  • b) 1 bis 10, vorzugsweise 2 bis 8 Gew.-% mindestens einem Hartwachs mit einem Schmelzpunkt oberhalb von 50°C.
  • c) 1 bis 10, vorzugsweise 2 bis 5 Gew.-% Siliconen und
  • d) ad 100 Gew.-% Trägermaterialien
bestehen. Die Herstellung der Entschäumergranulate kann beispielsweise erfolgen, indem man Silico­ ne in Form wäßriger Emulsionen auf ein zugemischtes Vorprodukt aus Weichwachsen, Hartwachsen und Trägermaterialien aufbringt und die Produkte gleichzeitig in der Wirbelschicht trocknet und granu­ liert. Alternativ können auch wäßrige Zubereitungen aus den vier Bestandteilen in konventioneller Wei­ se einer Sprühtrocknung oder einer Trocknung im Fließbett unterworfen werden.
Im Sinne einer bevorzugten Ausführungsform der vorliegenden Erfindung wird zunächst ein Vorprodukt aus den Trägermaterialien und den Entschäumerwachsen hergestellt. Der Gewichtsanteil an Träger­ materialien beträgt vorzugsweise 20 bis 98 Gew.-%, insbesondere 35 bis 95 Gew.-%, und der der Weich- und Hartwachse in Summe vorzugsweise 2 bis 80 Gew.-%, insbesondere 5 bis 65 Gew.-% - berechnet auf Vorprodukt. Das Trägermaterial kann in üblicher Weise durch Sprühtrocknen einer wäß­ rigen Aufschlämmung erzeugt werden. Die Wachse können beispielsweise durch Aufbringen der ge­ schmolzenen wachsartigen Entschäumersubstanzen auf das sprühgetrocknete, körnige Trägermaterial, beispielsweise durch sukzessives Zumischen, insbesondere in Form eines Sprays aufgebracht werden. Das Trägermaterial, wird dabei vorzugsweise durch Mischorgane oder durch Fluidisierung in Bewegung gehalten, um eine gleichmäßige Beladung des Trägermaterials zu gewährleisten. Die dafür verwende­ ten Sprühmischer können kontinuierlich oder diskontinuierlich betrieben werden. Die Herstellung der Vorprodukte kann in einer weiteren Ausgestaltung derart erfolgen, daß man das Trägermaterial in Wasser löst beziehungsweise aufschlämmt, die Wachse darin dispergiert und diesen Slurry anschlie­ ßend sprühtrocknet. Der Dispersion kann ein wasserlöslicher, nichttensidischer Dispersionsstabilisator in Form eines in Wasser quellfähigen Polymeren zugesetzt werden. Beispiele hierfür sind die genann­ ten Celluloseether, Homo- und Copolymere von ungesättigten Carbonsäuren, wie Acrylsäure, Malein­ säure und copolymerisierbaren Vinylverbindungen, wie Vinylether, Acrylamid und Ethylen. Der Zusatz an derartigen als Dispersionsstabilisatoren wirkenden Verbindungen in der wäßrigen Aufschlämmung beträgt vorzugsweise nicht über 5 Gew.-%, insbesondere 1 Gew.-% bis 3 Gew.-%, bezogen auf das entstehende Vorprodukt. Der Wassergehalt des Slurries kann je nach Art beziehungsweise Löslichkeit der Trägermaterialien 30 Gew.-% bis 60 Gew.-% betragen. Das Sprühtrocknen der Dispersion kann in im Prinzip bekannter Weise in dafür vorgesehenen Anlagen, sogenannten Sprühtürmen, mittels heißer, in Gleichstrom oder Gegenstrom geführter Trocknungsgase erfolgen. Dabei ist die Trocknung durch im Gleichstrom mit dem Sprühgut geführte Trocknungsgase bevorzugt, da so insbesondere bei paraffin­ haltigen Vorprodukten der auf die potentielle Heißluftflüchtigkeit einiger Bestandteile des Paraffins zu­ rückzuführende Aktivitätsverlust auf ein Minimum gesenkt werden kann.
Das Aufsprühen der wäßrigen Siliconemulsionen auf das Vorprodukt erfolgt im Rahmen der vorliegen­ den Erfindung vorzugsweise kontinuierlich auf das feste Vorprodukt unter gleichzeitigem Trocknen und Granulieren in einer Wirbelschicht, insbesondere in einer kontinuierlich arbeitenden Wirbelschicht nach dem sogenannten SKET-Verfahren. Dabei werden die wäßrigen Siliconemulsionen über eine oder mehrere Düsen in die Wirbelschicht eingebracht. Im Sinne des erfindungsgemäßen Verfahrens werden gleichzeitig mit den wäßrigen Siliconemulsionen, aber separat von diesen das Vorprodukt aus Träger­ material und wachsartigen Entschäumersubstanzen zugemischt, vorzugsweise über eine automatisch geregelte Feststoffdosierung. Die Produktströme an wäßrigen Siliconemulsion und zugemischtem Vor­ produkt werden dabei so gesteuert, daß sich Entschäumergranulate ergeben, die vorzugsweise 1 bis 10 Gew.-%, insbesondere 2 bis 8 Gew.-% Silicon - berechnet als Silicon und bezogen auf Entschäu­ mergranulat - enthalten. Der zu 100 Gew.-% fehlende Rest des Entschäumergranulats ist das schon beschriebene Vorprodukt. In der Wirbelschicht trifft die wäßrige Siliconemulsion auf die zugemischten Vorprodukte unter gleichzeitigem Verdampfen des Wassers, wodurch angetrocknete bis getrocknete Keime entstehen, die mit weiteren eingebrachten wäßrigen Siliconemulsionen bzw. mit den zuge­ mischten Vorprodukten umhüllt, granuliert und wiederum gleichzeitig getrocknet werden. Das gleichzei­ tige Trocknen und Granulieren erfolgt in der Wirbelschicht oberhalb eines mit Durchtrittsöffnungen für die Trocknungsluft versehenen kreisrunden Anströmbodens, wobei das zu trocknende Produkt wäh­ rend dieser Trocknungsphase stationär über dem Anströmboden verbleibt, so daß eine Aufbaugranulie­ rung erfolgt. Nähere Angaben zu dem sogenannten SKET-Verfahren sind in der Europäischen Patent­ schrift EP 0603207 B1 zu finden. Ein besonderer Vorteil des Verfahrens ist, daß die entstehenden Ent­ schäumergranulate hinsichtlich ihrer Korngröße und damit auch hinsichtlich ihres Gewichts von der anströmenden Trocknungsluft gesichtet bzw. klassiert werden, so daß solche Granulate, die die ge­ wünschte Korngröße bzw. Gewicht erreicht haben, aus der Wirbelschicht herausfallen auf den Wirbel­ schichtboden in eine Austragsschleuse. Bevorzugt eingesetzte Wirbelschichtapparate besitzen kreis­ runde Bodenplatten (Anströmboden) mit einem Durchmesser zwischen 0,4 und 5 m, beispielsweise 1,2 m oder 2,5 m. Als Bodenplatte können Lochbodenplatten, eine Contidurplatte (Handelsprodukt der Firma Hein & Lehmann, Bundesrepublik Deutschland) oder Lochbodenplatten eingesetzt werden, de­ ren Löcher (Durchtrittsöffnungen) von einem Gitternetz mit Maschenweiten kleiner als 600 µm bedeckt sind. Dabei kann das Gitternetz innerhalb oder oberhalb der Durchtrittsöffnungen angeordnet sein. Vorzugsweise liegt das Gitternetz jedoch unmittelbar unterhalb der Durchtrittsöffnungen des Anström­ bodens. Vorteilhafterweise ist dies so realisiert, daß eine Metall-Gaze mit der entsprechenden Ma­ schenweite aufgesintert ist. Vorzugsweise besteht die Metallgaze aus dem gleichen Material wie der Anströmboden, insbesondere aus Edelstahl. Vorzugsweise liegt die Maschenweite des genannten Git­ ternetzes zwischen 200 und 400 µm. Bevorzugt im Sinne der Erfindung wird das Verfahren bei Wirbel­ luftgeschwindigkeiten zwischen 1 und 8 m/s und insbesondere zwischen 1,5 und 5,5 m/s durchgeführt. Der Austrag der Granulate erfolgt vorteilhafterweise über eine Größenklassierung der Granulate. Diese Klassierung erfolgt bevorzugt mittels einem entgegengeführtem Trocknungsluftstrom (Sichterluft), der so reguliert wird, daß erst Teilchen ab einer bestimmten Teilchengröße aus der Wirbelschicht entfernt und kleinere Teilchen in der Wirbelschicht zurückgehalten werden. In einer bevorzugten Ausführungs­ form setzt sich die einströmende Luft aus der beheizten oder unbeheizten Sichterluft und der beheizten Bodenluft zusammen. Die Bodenlufttemperatur liegt dabei vorzugsweise zwischen 80 und 400°C. Die Wirbelluft kühlt sich durch Wärmeverluste und durch die Verdampfungswärme ab und beträgt vor­ zugsweise etwa 5 cm oberhalb der Bodenplatte 60 bis 120°C, vorzugsweise 65 bis 90 und insbeson­ dere 70 bis 85°C. Die Luftaustrittstemperatur liegt vorzugsweise zwischen 60 und 120°C, insbesonde­ re unterhalb 80°C. Die Aufenthaltszeit für das zu trocknende Produkt, welches stationär über dem Anströmboden verbleibt, liegt vorzugsweise im Bereich von 5 bis 60 Minuten. Im Sinne der vorliegen­ den Erfindung werden die Entschäumergranulate als getrocknet betrachtet, sofern der Gehalt an freiem Wasser unter 10 Gew.-%, vorzugsweise von 0,1 bis 2 Gew.-%, jeweils bezogen auf die fertigen Gra­ nulate, beträgt. Bei dem bevorzugt durchgeführtem Verfahren in der Wirbelschicht ist es notwendig, daß zu Beginn des Verfahrens eine Startmasse vorhanden ist, die als anfänglicher Träger für die ein­ gesprühte wäßrige Siliconemulsion dient. Als Startmasse eignen sich die zugemischten Vorprodukte oder insbesondere die Entschäumergranulate selber, die bereits bei einem vorangegangenen Verfah­ rensablauf erhalten wurden. Insbesondere werden Entschäumergranulate mit einer Korngröße im Be­ reich über 0,2 und unter 0,9 mm als Startmasse eingesetzt und vorzugsweise über einen Walzenstuhl eingespeist. Bevorzugt werden die aus der Wirbelschicht erhaltenen Entschäumergranulate anschlie­ ßend in einem separaten Wirbelbett abgekühlt und mittels eines Siebes klassiert in Granulate mit Korn­ größen zwischen 0,4 und 1,5 mm als Gutkornfraktion, in Granulate über 1,5 mm als Überkornfraktion und in Granulate unter 0,4 mm als Unterkornfraktion. Die Granulate der Unterkornfraktion werden wie­ der in die Wirbelschicht zurückgeführt. Die Überkornfraktion wird gemahlen, vorzugsweise in Korngrö­ ßen unter 0,4 mm, und ebenfalls in die Wirbelschicht zurückgeführt.
Hilfs- und Zusatzstoffe
Die erfindungsgemäßen festen Wasch-, Spül- und Reinigungsmittel können des weiteren zusätzliche anorganische und organische Buildersubstanzen enthalten, wobei als anorganische Buildersubstanzen hauptsächlich Zeolithe kristalline Schichtsilicate, amorphe Silicate und - soweit zulässig - auch Phos­ phate, wie z. B. Tripolyphosphat zum Einsatz kommen.
Die erfindungsgemäßen Wasch-, Spül-, Reinigungs- und Avivagemittel können des weiteren zusätzli­ che anorganische und organische Buildersubstanzen enthalten, wobei als anorganische Buildersub­ stanzen hauptsächlich Zeolithe kristalline Schichtsilicate, amorphe Silicate und - soweit zulässig - auch Phosphate, wie z. B. Tripolyphosphat zum Einsatz kommen. Die Menge an Co-Builder ist dabei auf die bevorzugten Mengen an Phosphaten anzurechnen.
Der als Waschmittelbuilder häufig eingesetzte feinkristalline, synthetische und gebundenes Wasser enthaltende Zeolith ist vorzugsweise Zeolith A und/oder P. Als Zeolith P wird beispielsweise Zeolith MAP(R) (Handelsprodukt der Firma Crosfield) besonders bevorzugt. Geeignet sind jedoch auch Zeolith X sowie Mischungen aus A, X und/oder P wie auch Y. Von besonderem Interesse ist auch ein cokristal­ lisiertes Natrium/Kalium-Aluminiumsilicat aus Zeolith A und Zeolith X, welches als VEGOBOND AX® (Handelsprodukt der Firma Condea Augusta S.p.A.) im Handel erhältlich ist. Der Zeolith kann als sprühgetrocknetes Pulver oder auch als ungetrocknete, von ihrer Herstellung noch feuchte, stabilisierte Suspension zum Einsatz kommen. Für den Fall, daß der Zeolith als Suspension eingesetzt wird, kann diese geringe Zusätze an nichtionischen Tensiden als Stabilisatoren enthalten, beispielsweise 1 bis 3 Gew.-%, bezogen auf Zeolith, an ethoxylierten C12-C18-Fettalkoholen mit 2 bis 5 Ethylenoxidgruppen, C12-C14-Fettalkoholen mit 4 bis 5 Ethylenoxidgruppen oder ethoxylierten Isotridecanolen. Geeignete Zeolithe weisen eine mittlere Teilchengröße von weniger als 10 µm (Volumenverteilung; Meßmethode: Coulter Counter) auf und enthalten vorzugsweise 18 bis 22 Gew.-%, insbesondere 20 bis 22 Gew.-% an gebundenem Wasser.
Geeignete Substitute bzw. Teilsubstitute für Phosphate und Zeolithe sind kristalline, schichtförmige Natriumsilicate der allgemeinen Formel NaMSixO2x+1.yH2O, wobei M Natrium oder Wasserstoff be­ deutet, x eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Derartige kristalline Schichtsilicate werden beispielsweise in der europäischen Patentanmeldung EP 0164514 A1 beschrieben. Bevorzugte kristalline Schichtsilicate der angegebenen Formel sind sol­ che, in denen M für Natrium steht und x die Werte 2 oder 3 annimmt. Insbesondere sind sowohl β- als auch α-Natriumdisilicate Na2Si2O5.yH2O bevorzugt, wobei β-Natriumdisilicat beispielsweise nach dem Verfahren erhalten werden kann, das in der internationalen Patentanmeldung WO 91/08171 beschrie­ ben ist. Weitere geeignete Schichtsilicate sind beispielsweise aus den Patentanmeldungen DE 23 34 899 A1, EP 0026529 A1 und DE 35 26 405 A1 bekannt. Ihre Verwendbarkeit ist nicht auf eine spe­ zielle Zusammensetzung bzw. Strukturformel beschränkt. Bevorzugt sind hier jedoch Smectite, insbe­ sondere Bentonite. Geeignete Schichtsilicate, die zur Gruppe der mit Wasser quellfähigen Smectite zählen, sind z. B. solche der allgemeinen Formeln
(OH)4Si8-yAly(MgxAl4-x)O20 Montmorrilonit
(OH)4Si8-yAly(Mg6-zLiz)O20 Hectorit
(OH)4Si8-yAly(Mg6-zAlz)O20 Saponit
mit x = 0 bis 4, y = 0 bis 2, z = 0 bis 6. Zusätzlich kann in das Kristallgitter der Schichtsilicate gemäß den vorstehenden Formeln geringe Mengen an Eisen eingebaut sein. Ferner können die Schichtsilicate aufgrund ihrer ionenaustauschenden Eigenschaften Wasserstoff-, Alkali-, Erdalkaliionen, insbesondere Na+ und Ca2+ enthalten. Die Hydratwassermenge liegt meist im Bereich von 8 bis 20 Gew.-% und ist vom Quellzustand bzw. von der Art der Bearbeitung abhängig. Brauchbare Schichtsilicate sind bei­ spielsweise aus US 3,966,629, US 4,062,647, EP 0026529 A1 und EP 0028432 A1 bekannt. Vorzugs­ weise werden Schichtsilicate verwendet, die aufgrund einer Alkalibehandlung weitgehend frei von Cal­ ciumionen und stark färbenden Eisenionen sind.
Zu den bevorzugten Buildersubstanzen gehören auch amorphe Natriumsilicate mit einem Modul Na2O : SiO2 von 1 : 2 bis 1 : 3,3, vorzugsweise von 1 : 2 bis 1 : 2,8 und insbesondere von 1 : 2 bis 1 : 2,6, welche löseverzögert sind und Sekundärwascheigenschaften aufweisen. Die Löseverzögerung ge­ genüber herkömmlichen amorphen Natriumsilicaten kann dabei auf verschiedene Weise, beispiels­ weise durch Oberflächenbehandlung, Compoundierung, Kompaktierung/Verdichtung oder durch Über­ trocknung hervorgerufen worden sein. Im Rahmen dieser Erfindung wird unter dem Begriff "amorph" auch "röntgenamorph" verstanden. Dies heißt, daß die Silicate bei Röntgenbeugungsexperimenten keine scharfen Röntgenreflexe liefern, wie sie für kristalline Substanzen typisch sind, sondern allenfalls ein oder mehrere Maxima der gestreuten Röntgenstrahlung, die eine Breite von mehreren Gradeinhei­ ten des Beugungswinkels aufweisen. Es kann jedoch sehr wohl sogar zu besonders guten Builder­ eigenschaften führen, wenn die Silicatpartikel bei Elektronenbeugungsexperimenten verwaschene oder sogar scharfe Beugungsmaxima liefern. Dies ist so zu interpretieren, daß die Produkte mikrokristalline Bereiche der Größe 10 bis einige Hundert nm aufweisen, wobei Werte bis max. 50 nm und insbesonde­ re bis max. 20 nm bevorzugt sind. Derartige sogenannte röntgenamorphe Silicate, welche ebenfalls eine Löseverzögerung gegenüber den herkömmlichen Wassergläsern aufweisen, werden beispielswei­ se in der deutschen Patentanmeldung DE 44 00 024 A1 beschrieben. Insbesondere bevorzugt sind ver­ dichtete/kompaktierte amorphe Silicate, compoundierte amorphe Silicate und übertrocknete röntgen­ amorphe Silicate.
Selbstverständlich ist auch ein Einsatz der allgemein bekannten Phosphate als Buildersubstanzen möglich, sofern ein derartiger Einsatz nicht aus ökologischen Gründen vermieden werden sollte. Ge­ eignet sind insbesondere die Natriumsalze der Orthophosphate, der Pyrophosphate und insbesondere der Tripolyphosphate. Ihr Gehalt beträgt im allgemeinen nicht mehr als 25 Gew.-%, vorzugsweise nicht mehr als 20 Gew.-%, jeweils bezogen auf das fertige Mittel. In einigen Fällen hat es sich gezeigt, daß insbesondere Tripolyphosphate schon in geringen Mengen bis maximal 10 Gew.-%, bezogen auf das fertige Mittel, in Kombination mit anderen Buildersubstanzen zu einer synergistischen Verbesserung des Sekundärwaschvermögens führen.
Brauchbare organische Gerüstsubstanzen sind beispielsweise die in Form ihrer Natriumsalze ein­ setzbaren Polycarbonsäuren, wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Wein­ säure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Wein­ säure, Zuckersäuren und Mischungen aus diesen. Auch die Säuren an sich können eingesetzt werden. Die Säuren besitzen neben ihrer Builderwirkung typischerweise auch die Eigenschaft einer Säuerungs­ komponente und dienen somit auch zur Einstellung eines niedrigeren und milderen pH-Wertes von Wasch- oder Reinigungsmitteln. Insbesondere sind hierbei Citronensäure, Bernsteinsäure, Glutarsäure, Adipinsäure, Gluconsäure und beliebige Mischungen aus diesen zu nennen.
Weitere geeignete organische Buildersubstanzen sind Dextrine, beispielsweise Oligomere bzw. Po­ lymere von Kohlenhydraten, die durch partielle Hydrolyse von Stärken erhalten werden können. Die Hydrolyse kann nach üblichen, beispielsweise säure- oder enzymkatalysierten Verfahren durchgeführt werden. Vorzugsweise handelt es sich um Hydrolyseprodukte mit mittleren Molmassen im Bereich von 400 bis 500 000. Dabei ist ein Polysaccharid mit einem Dextrose-Äquivalent (DE) im Bereich von 0,5 bis 40, insbesondere von 2 bis 30 bevorzugt, wobei DE ein gebräuchliches Maß für die reduzierende Wirkung eines Polysaccharids im Vergleich zu Dextrose, welche ein DE von 100 besitzt, ist. Brauchbar sind sowohl Maltodextrine mit einem DE zwischen 3 und 20 und Trockenglucosesirupe mit einem DE zwischen 20 und 37 als auch sogenannte Gelbdextrine und Weißdextrine mit höheren Molmassen im Bereich von 2 000 bis 30 000. Ein bevorzugtes Dextrin ist in der britischen Patentanmeldung GB 9419091 A1 beschrieben. Bei den oxidierten Derivaten derartiger Dextrine handelt es sich um deren Umsetzungsprodukte mit Oxidationsmitteln, welche in der Lage sind, mindestens eine Alkoholfunktion des Saccharidrings zur Carbonsäurefunktion zu oxidieren. Derartige oxidierte Dextrine und Verfahren ihrer Herstellung sind beispielsweise aus den europäischen Patentanmeldungen EP 0232202 A1, EP 0427349 A1, EP 0472042 A1 und EP 0542496 A1 sowie den internationalen Patentanmeldungen WO 92/18542, WO 93/08251, WO 93/16110, WO 94/28030, WO 95/07303, WO 95/12619 und WO 95/20608 bekannt. Ebenfalls geeignet ist ein oxidiertes Oligosaccharid gemäß der deutschen Pa­ tentanmeldung DE 196 00 018 A1. Ein an C6 des Saccharidrings oxidiertes Produkt kann besonders vorteilhaft sein.
Weitere geeignete Cobuilder sind Oxydisuccinate und andere Derivate von Disuccinaten, vorzugs­ weise Ethylendiamindisuccinat. Besonders bevorzugt sind in diesem Zusammenhang auch Glyce­ rindisuccinate und Glycerintrisuccinate, wie sie beispielsweise in den US-amerikanischen Patent­ schriften US 4,524,009, US 4,639,325, in der europäischen Patentanmeldung EP 0150930 A1 und der japanischen Patentanmeldung JP 93/339896 beschrieben werden. Geeignete Einsatzmengen liegen in zeolithhaltigen und/oder silicathaltigen Formulierungen bei 3 bis 15 Gew.-%.
Weitere brauchbare organische Cobuilder sind beispielsweise acetylierte Hydroxycarbonsäuren bzw. deren Salze, welche gegebenenfalls auch in Lactonform vorliegen können und welche mindestens 4 Kohlenstoffatome und mindestens eine Hydroxygruppe sowie maximal zwei Säuregruppen enthalten. Derartige Cobuilder werden beispielsweise in der internationalen Patentanmeldung WO 95/20029 be­ schrieben.
Geeignete polymere Polycarboxylate sind beispielsweise die Natriumsalze der Polyacrylsäure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 800 bis 150 000 (auf Säure bezogen und jeweils gemessen gegen Polystyrolsulfonsäure). Geeignete copolymere Poly­ carboxylate sind insbesondere solche der Acrylsäure mit Methacrylsäure und der Acrylsäure oder Methacrylsäure mit Maleinsäure. Als besonders geeignet haben sich Copolymere der Acrylsäure mit Maleinsäure erwiesen, die 50 bis 90 Gew.-% Acrylsäure und 50 bis 10 Gew.-% Maleinsäure enthalten. Ihre relative Molekülmasse, bezogen auf freie Säuren, beträgt im allgemeinen 5 000 bis 200 000, vor­ zugsweise 10 000 bis 120 000 und insbesondere 50 000 bis 100 000 (jeweils gemessen gegen Po­ lystyrolsulfonsäure). Die (co-)polymeren Polycarboxylate können entweder als Pulver oder als wäßrige Lösung eingesetzt werden, wobei 20 bis 55gew.-%ige wäßrige Lösungen bevorzugt sind. Granulare Polymere werden zumeist nachträglich zu einem oder mehreren Basisgranulaten zugemischt. Insbe­ sondere bevorzugt sind auch biologisch abbaubare Polymere aus mehr als zwei verschiedenen Mono­ mereinheiten, beispielsweise solche, die gemäß der DE 43 00 772 A1 als Monomere Salze der Acrylsäu­ re und der Maleinsäure sowie Vinylalkohol bzw. Vinylalkohol-Derivate oder gemäß der DE 42 21 381 C2 als Monomere Salze der Acrylsäure und der 2-Alkylallylsulfonsäure sowie Zucker-Derivate enthalten.
Weitere bevorzugte Copolymere sind solche, die in den deutschen Patentanmeldungen DE 43 03 320 A1 und DE 44 17 734 A1 beschrieben werden und als Monomere vorzugsweise Acrolein und Acryl­ säure/Acrylsäuresalze bzw. Acrolein und Vinylacetat aufweisen. Ebenso sind als weitere bevorzugte Buildersubstanzen polymere Aminodicarbonsäuren, deren Salze oder deren Vorläufersubstanzen zu nennen. Besonders bevorzugt sind Polyasparaginsäuren bzw. deren Salze und Derivate.
Weitere geeignete Buildersubstanzen sind Polyacetale, welche durch Umsetzung von Dialdehyden mit Polyolcarbonsäuren, welche 5 bis 7 C-Atome und mindestens 3 Hydroxylgruppen aufweisen, bei­ spielsweise wie in der europäischen Patentanmeldung EP 0280223 A1 beschrieben, erhalten werden können. Bevorzugte Polyacetale werden aus Dialdehyden wie Glyoxal, Glutaraldehyd, Terephthalalde­ hyd sowie deren Gemischen und aus Polyolcarbonsäuren wie Gluconsäure und/oder Glucoheptonsäu­ re erhalten.
Zusätzlich können die Mittel auch Komponenten enthalten, welche die Öl- und Fett-Auswaschbarkeit aus Textilien positiv beeinflussen. Zu den bevorzugten Öl- und fettlösenden Komponenten zählen bei­ spielsweise nichtionische Celluloseether wie Methylcellulose und Methylhydroxypropylcellulose mit einem Anteil an Methoxyl-Gruppen von 15 bis 30 Gew.-% und an Hydroxypropoxyl-Gruppen von 1 bis 15 Gew.-%, jeweils bezogen auf den nichtionischen Celluloseether, sowie die aus dem Stand der Technik bekannten Polymere der Phthalsäure und/oder der Terephthalsäure bzw. von deren Deriva­ ten, insbesondere Polymere aus Ethylenterephthalaten und/oder Polyethylenglykolterephthalaten oder anionisch und/oder nichtionisch modifizierten Derivaten von diesen. Besonders bevorzugt von diesen sind die sulfonierten Derivate der Phthalsäure- und der Terephthalsäure-Polymere.
Weitere geeignete Inhaltsstoffe der Mittel sind wasserlösliche anorganische Salze wie Bicarbonate, Carbonate, amorphe Silicate, normale Wassergläser, welche keine herausragenden Buildereigen­ schaften aufweisen, oder Mischungen aus diesen; insbesondere werden Alkalicarbonat und/oder amorphes Alkalisilicat, vor allem Natriumsilicat mit einem molaren Verhältnis Na2O : SiO2 von 1 : 1 bis 1 : 4,5, vorzugsweise von 1 : 2 bis 1 : 3,5, eingesetzt. Der Gehalt an Natriumcarbonat in den endzube­ reitungen beträgt dabei vorzugsweise bis zu 40 Gew.-%, vorteilhafterweise zwischen 2 und 35 Gew.-%. Der Gehalt der Mittel an Natriumsilicat (ohne besondere Buildereigenschaften) beträgt im allgemeinen bis zu 10 Gew.-% und vorzugsweise zwischen 1 und 8 Gew.-%.
Außer den genannten Inhaltsstoffen können die Mittel weitere bekannte Zusatzstoffe, beispielsweise Salze von Polyphosphonsäuren, optische Aufheller, Enzyme, Enzymstabilisatoren, Entschäumer, ge­ ringe Mengen an neutralen Füllsalzen sowie Farb- und Duftstoffe und dergleichen enthalten.
Unter den als Bleichmittel dienenden, in Wasser H2O2 liefernden Verbindungen haben das Natrium­ perborattetrahydrat und das Natriumperboratmonohydrat besondere Bedeutung. Weitere brauchbare Bleichmittel sind beispielsweise Natriumpercarbonat, Peroxypyrophosphate, Citratperhydrate sowie H2O2 liefernde persaure Salze oder Persäuren, wie Perbenzoate, Peroxophthalate, Diperazelainsäure, Phthaloiminopersäure oder Diperdodecandisäure. Der Gehalt der Mittel an Bleichmitteln beträgt vor­ zugsweise 5 bis 35 Gew.-% und insbesondere bis 30 Gew.-%, wobei vorteilhafterweise Per­ boratmonohydrat oder Percarbonat eingesetzt wird.
Als Bleichaktivatoren können Verbindungen, die unter Perhydrolysebedingungen aliphatische Per­ oxocarbonsäuren mit vorzugsweise 1 bis 10 C-Atomen, insbesondere 2 bis 4 C-Atomen, und/oder ge­ gebenenfalls substituierte Perbenzoesäure ergeben, eingesetzt werden. Geeignet sind Substanzen, die O- und/oder N-Acylgruppen der genannten C-Atomzahl und/oder gegebenenfalls substituierte Benzoyl­ gruppen tragen. Bevorzugt sind mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylen­ diamin (TAED), acylierte Triazinderivate, insbesondere 9,5-Diacetyl-2,4-dioxohexahydro-1,3,5-triazin (DADHT), acylierte Glykolurile, insbesondere Tetraacetylglykoluril (TAGU), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyl­ oxybenzolsulfonat (n- bzw. iso-NOBS), Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, acylierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglykoldiacetat, 2,5-Diacetoxy-2,5- dihydrofuran und die aus den deutschen Patentanmeldungen DE 196 16 693 A1 und DE 196 16 767 A1 bekannten Enolester sowie acetyliertes Sorbitol und Mannitol beziehungsweise deren in der europäi­ schen Patentanmeldung EP 0525239 A1 beschriebene Mischungen (SORMAN), acylierte Zucker­ derivate, insbesondere Pentaacetylglukose (PAG), Pentaacetylfruktose, Tetraacetylxylose und Octa­ acetyllactose sowie acetyliertes, gegebenenfalls N-alkyliertes Glucamin und Gluconolacton, und/oder N­ acylierte Lactame, beispielsweise N-Benzoylcaprolactam, die aus den internationalen Patentanmeldun­ gen WO 94/27970, WO 94/28102, WO 94/28103, WO 95/00626, WO 95/14759 und WO 95/17498 bekannt sind. Die aus der deutschen Patentanmeldung DE 196 16 769 A1 bekannten hydrophil sub­ stituierten Acylacetale und die in der deutschen Patentanmeldung DE 196 16 770 sowie der internatio­ nalen Patentanmeldung WO 95/14075 beschriebenen Acyllactame werden ebenfalls bevorzugt einge­ setzt. Auch die aus der deutschen Patentanmeldung DE 44 43 177 A1 bekannten Kombinationen kon­ ventioneller Bleichaktivatoren können eingesetzt werden. Derartige Bleichaktivatoren sind im üblichen Mengenbereich, vorzugsweise in Mengen von 1 Gew.-% bis 10 Gew.-%, insbesondere 2 Gew.-% bis 8 Gew.-%, bezogen auf gesamtes Mittel, enthalten. Zusätzlich zu den oben aufgeführten konventionel­ len Bleichaktivatoren oder an deren Stelle können auch die aus den europäischen Patentschriften EP 0446982 B1 und EP 0453 003 B1 bekannten Sulfonimine und/oder bleichverstärkende Über­ gangsmetallsalze beziehungsweise Übergangsmetallkomplexe als sogenannte Bleichkatalysatoren enthalten sein. Zu den in Frage kommenden Übergangsmetallverbindungen gehören insbesondere die aus der deutschen Patentanmeldung DE 195 29 905 A1 bekannten Mangan-, Eisen-, Kobalt-, Rutheni­ um- oder Molybdän-Salenkomplexe und deren aus der deutschen Patentanmeldung DE 196 20 267 A1 bekannte N-Analogverbindungen, die aus der deutschen Patentanmeldung DE 195 36 082 A1 bekann­ ten Mangan-, Eisen-, Kobalt-, Ruthenium- oder Molybdän-Carbonylkomplexe, die in der deutschen Patentanmeldung DE 196 05 688 beschriebenen Mangan-, Eisen-, Kobalt-, Ruthenium-, Molybdän-, Titan-, Vanadium- und Kupfer-Komplexe mit stickstoffhaltigen Tripod-Liganden, die aus der deutschen Patentanmeldung DE 196 20 411 A1 bekannten Kobalt-, Eisen-, Kupfer- und Ruthenium-Aminkomplexe, die in der deutschen Patentanmeldung DE 44 16 438 A1 beschriebenen Mangan-, Kupfer- und Kobalt- Komplexe, die in der europäischen Patentanmeldung EP 0272030 A1 beschriebenen Kobalt- Komplexe, die aus der europäischen Patentanmeldung EP 0693550 A1 bekannten Mangan-Komplexe, die aus der europäischen Patentschrift EP 0392592 A1 bekannten Mangan-, Eisen-, Kobalt- und Kup­ fer-Komplexe und/oder die in der europäischen Patentschrift EP 0443651 B1 oder den europäischen Patentanmeldungen EP 0458397 A1, EP 0458398 A1, EP 0549271 A1, EP 0549272 A1, EP 0544490 A1 und EP 0544519 A1 beschriebenen Mangan-Komplexe. Kombinationen aus Bleichaktivatoren und Übergangsmetall-Bleichkatalysatoren sind beispielsweise aus der deutschen Patentanmeldung DE 196 13 103 A1 und der internationalen Patentanmeldung WO 95/27775 bekannt. Bleichverstärkende Übergangsmetallkomplexe, insbesondere mit den Zentralatomen Mn, Fe, Co, Cu, Mo, V, Ti und/oder Ru, werden in üblichen Mengen, vorzugsweise in einer Menge bis zu 1 Gew.-%, insbesondere von 0,0025 Gew.-% bis 0,25 Gew.-% und besonders bevorzugt von 0,01 Gew.-% bis 0,1 Gew.-%, jeweils bezogen auf gesamtes Mittel, eingesetzt.
Als Enzyme kommen insbesondere solche aus der Klasse der Hydrolasen, wie der Proteasen, Estera­ sen, Lipasen bzw. lipolytisch wirkenden Enzyme, Amylasen, Cellulasen bzw. andere Glyko­ sylhydrolasen und Gemische der genannten Enzyme in Frage. Alle diese Hydrolasen tragen in der Wäsche zur Entfernung von Verfleckungen, wie protein-, fett- oder stärkehaltigen Verfleckungen, und Vergrauungen bei. Cellulasen und andere Glykosylhydrolasen können durch das Entfernen von Pilling und Mikrofibrillen zur Farberhaltung und zur Erhöhung der Weichheit des Textils beitragen. Zur Bleiche bzw. zur Hemmung der Farbübertragung können auch Oxidoreduktasen eingesetzt werden. Besonders gut geeignet sind aus Bakterienstämmen oder Pilzen, wie Bacillus subtilis, Bacillus licheniformis, Streptomyces griseus und Humicola insolens gewonnene enzymatische Wirkstoffe. Vorzugsweise wer­ den Proteasen vom Subtilisin-Typ und insbesondere Proteasen, die aus Bacillus lentus gewonnen wer­ den, eingesetzt. Dabei sind Enzymmischungen, beispielsweise aus Protease und Amylase oder Pro­ tease und Lipase bzw. lipolytisch wirkenden Enzymen oder Protease und Cellulase oder aus Cellulase und Lipase bzw. lipolytisch wirkenden Enzymen oder aus Protease, Amylase und Lipase bzw. lipoly­ tisch wirkenden Enzymen oder Protease, Lipase bzw. lipolytisch wirkenden Enzymen und Cellulase, insbesondere jedoch Protease- und/oder Lipase-haltige Mischungen bzw. Mischungen mit lipolytisch wirkenden Enzymen von besonderem Interesse. Beispiele für derartige lipolytisch wirkende Enzyme sind die bekannten Cutinasen. Auch Peroxidasen oder Oxidasen haben sich in einigen Fällen als ge­ eignet erwiesen. Zu den geeigneten Amylasen zählen insbesondere α-Amylasen, Iso-Amylasen, Pul­ lulanasen und Pektinasen. Als Cellulasen werden vorzugsweise Cellobiohydrolasen, Endoglucanasen und β-Glucosidasen, die auch Cellobiasen genannt werden, bzw. Mischungen aus diesen eingesetzt.
Da sich die verschiedenen Cellulase-Typen durch ihre CMCase- und Avicelase-Aktivitäten unterschei­ den, können durch gezielte Mischungen der Cellulasen die gewünschten Aktivitäten eingestellt werden. Die Enzyme können an Trägerstoffen adsorbiert und/oder in Hüllsubstanzen eingebettet sein, um sie gegen vorzeitige Zersetzung zu schützen. Der Anteil der Enzyme, Enzymmischungen oder Enzym­ granulate kann beispielsweise etwa 0,1 bis 5 Gew.-%, vorzugsweise 0,1 bis etwa 2 Gew.-% betragen.
Zusätzlich zu den mono- und polyfunktionellen Alkoholen können die Mittel weitere Enzymstabilisa­ toren enthalten. Beispielsweise können 0,5 bis 1 Gew.-% Natriumformiat eingesetzt werden. Möglich ist auch der Einsatz von Proteasen, die mit löslichen Calciumsalzen und einem Calciumgehalt von vor­ zugsweise etwa 1,2 Gew.-%, bezogen auf das Enzym, stabilisiert sind. Außer Calciumsalzen dienen auch Magnesiumsalze als Stabilisatoren. Besonders vorteilhaft ist jedoch der Einsatz von Borverbin­ dungen, beispielsweise von Borsäure, Boroxid, Borax und anderen Alkalimetallboraten wie den Salzen der Orthoborsäure (H3BO3), der Metaborsäure (HBO2) und der Pyroborsäure (Tetraborsäure H2B4O7).
Vergrauungsinhibitoren haben die Aufgabe, den von der Faser abgelösten Schmutz in der Flotte suspendiert zu halten und so das Wiederaufziehen des Schmutzes zu verhindern. Hierzu sind was­ serlösliche Kolloide meist organischer Natur geeignet, beispielsweise die wasserlöslichen Salze poly­ merer Carbonsäuren, Leim, Gelatine, Salze von Ethercarbonsäuren oder Ethersulfonsäuren der Stär­ ke oder der Cellulose oder Salze von sauren Schwefelsäureestern der Cellulose oder der Stärke. Auch wasserlösliche, saure Gruppen enthaltende Polyamide sind für diesen Zweck geeignet. Weiter­ hin lassen sich lösliche Stärkepräparats und andere als die obengenannten Stärkeprodukte verwen­ den, z. B. abgebaute Stärke, Aldehydstärken usw.. Auch Polyvinylpyrrolidon ist brauchbar. Bevorzugt werden jedoch Celluloseether, wie Carboxymethylcellulose (Na-Salz), Methylcellulose, Hydroxyalkyl­ cellulose und Mischether, wie Methylhydroxyethylcellulose, Methylhydroxypropylcellulose, Methylcarb­ oxymethylcellulose und deren Gemische, sowie Polyvinylpyrrolidon beispielsweise in Mengen von 0,1 bis 5 Gew.-%, bezogen auf die Mittel, eingesetzt.
Die Mittel können als optische Aufheller Derivate der Diaminostilbendisulfonsäure bzw. deren Alkali­ metallsalze enthalten. Geeignet sind z. B. Salze der 4,4'-Bis(2-anilino-4-morpholino-1,3,5-triazinyl-6- amino)stilben-2,2'-disulfonsäure oder gleichartig aufgebaute Verbindungen, die anstelle der Morpho­ lino-Gruppe eine Diethanolaminogruppe, eine Methylaminogruppe, eine Anilinogruppe oder eine 2- Methoxyethylaminogruppe tragen. Weiterhin können Aufheller vom Typ der substituierten Diphenylsty­ ryle anwesend sein, z. B. die Alkalisalze des 4,4'-Bis(2-sulfostyryl)-diphenyls, 4,4'-Bis(4-chlor-3-sulfo­ styryl)-diphenyls, oder 4-(4-Chlorstyryl)-4'-(2-sulfostyryl)-diphenyls. Auch Gemische der vorgenannten Aufheller können verwendet werden. Einheitlich weiße Granulate werden erhalten, wenn die Mittel au­ ßer den üblichen Aufhellern in üblichen Mengen, beispielsweise zwischen 0,1 und 0,5 Gew.-%, vor­ zugsweise zwischen 0,1 und 0,3 Gew.-%, auch geringe Mengen, beispielsweise 10-6 bis 10-3 Gew.-%, vorzugsweise um 10-5 Gew.-%, eines blauen Farbstoffs enthalten. Ein besonders bevorzugter Farbstoff ist Tinolux® (Handelsprodukt der Ciba-Geigy).
Als schmutzabweisende Polymere ("soll repellants") kommen solche Stoffe in Frage, die vorzugsweise Ethylenterephthalat- und/oder Polyethylenglycolterephthalatgruppen enthalten, wobei das Molverhältnis Ethylenterephthalat zu Polyethylenglycolterephthalat im Bereich von 50 : 50 bis 90 : 10 liegen kann. Das Molekulargewicht der verknüpfenden Polyethylenglycoleinheiten liegt insbesondere im Bereich von 750 bis 5000, d. h., der Ethoxylierungsgrad der Polyethylenglycolgruppen-haltigen Polymere kann ca. 15 bis 100 betragen. Die Polymeren zeichnen sich durch ein durchschnittliches Molekulargewicht von etwa 5000 bis 200 000 aus und können eine Block-, vorzugsweise aber eine Random-Struktur aufweisen. Bevorzugte Polymere sind solche mit Molverhältnissen Ethylenterephthalat/Polyethylen­ glycolterephthalat von etwa 65 : 35 bis etwa 90 : 10, vorzugsweise von etwa 70 : 30 bis 80 : 20. Wei­ terhin bevorzugt sind solche Polymeren, die verknüpfende Polyethylenglycoleinheiten mit einem Mole­ kulargewicht von 750 bis 5000, vorzugsweise von 1000 bis etwa 3000 und ein Molekulargewicht des Polymeren von etwa 10 000 bis etwa 50 000 aufweisen. Beispiele für handelsübliche Polymere sind die Produkte Milease® T (ICI) oder Repelotex® SRP 3 (Rhône-Poulenc).
Die festen Zubereitungen können des weiteren Sprengmittel enthalten. Hierunter sind Stoffe zu ver­ stehen, die den Formkörpern zugegeben werden, um deren Zerfall beim Inkontaktbringen mit Wasser zu beschleunigen. Übersichten hierzu finden sich z. B. in J. Pharm. Sci. 61 (1972) oder Römpp Chemi­ lexikon, 9. Auflage, Band 6, S. 4440. Die Sprengmittel können im Formkörper makroskopisch be­ trachtet homogen verteilt vorliegen, mikroskopisch gesehen bilden sie jedoch herstellungsbedingt Zo­ nen erhöhter Konzentration. Zu den bevorzugten Sprengmitteln gehören Polysaccharide, wie z. B. na­ türliche Stärke und deren Derivate (Carboxymethylstärke, Stärkeglycolate in Form ihrer Alkalisalze, Agar Agar, Guar Gum, Pektine usw.), Cellulosen und deren Derivate (Carboxymethylcellulose, mikro­ kristalline Cellulose), Polyvinylpyrrolidon, Kollidon, Alginsäure und deren Alkalisalze, amorphe oder auch teilweise kristalline Schichtsilicate (Bentonite), Polyurethane, Polyethylenglycole sowie gaserzeu­ gende Systeme. Weitere Sprengmittel, die im Sinne der Erfindung zugegen sein können, sind bei­ spielsweise den Druckschriften WO 98/40462 (Rettenmeyer), WO 98/55583 und WO 98/55590 (Unile­ ver) und WO 98/40463, DE 197 09 991 und DE 197 10 254 (Henkel) zu entnehmen. Auf die Lehre dieser Schriften wird ausdrücklich Bezug genommen. Die Formkörper können die Sprengmittel in Mengen von 0,1 bis 25, vorzugsweise 1 bis 20 und insbesondere 5 bis 15 Gew.-% - bezogen auf die Formkörper enthalten.
Als Parfümöle bzw. Duftstoffe können einzelne Riechstoffverbindungen, z. B. die synthetischen Pro­ dukte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe verwendet wer­ den. Riechstoffverbindungen vom Typ der Ester sind z. B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.- Butylcyclohexylacetat, Linalylacetat, Dimethylbenzylcarbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenylglycinat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsa­ licylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z. B. die linearen Alka­ nale mit 8-18 C-Atomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitro­ nellal, Lilial und Bourgeonal, zu den Ketonen z. B. die Jonone, α-Isomethylionon und Methylcedrylke­ ton, zu den Alkoholen Anethol, Citronellol, Eugenol, Geraniol, Linalool, Phenylethylalkohol und Terpi­ neol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene wie Limonen und Pinen. Bevor­ zugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine anspre­ chende Duftnote erzeugen. Solche Parfümöle können auch natürliche Riechstoffgemische enthalten, wie sie aus pflanzlichen Quellen zugänglich sind, z. B. Pine-, Citrus-, Jasmin-, Patchouly-, Rosen- oder Ylang-Ylang-Öl. Ebenfalls geeignet sind Muskateller, Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeeröl, Vetiveröl, Olibanumöl, Galbanumöl und Labdanumöl sowie Orangenblütenöl, Neroliol, Orangenschalenöl und Sandelholzöl.
Die Duftstoffe können direkt in die erfindungsgemäßen Mittel eingearbeitet werden, es kann aber auch vorteilhaft sein, die Duftstoffe auf Träger aufzubringen, welche die Haftung des Parfüms auf der Wä­ sche verstärken und durch eine langsamere Duftfreisetzung für langanhaltenden Duft der Textilien sor­ gen. Als solche Trägermaterialien haben sich beispielsweise Cyclodextrine bewährt, wobei die Cyclo­ dextrin-Parfüm-Komplexe zusätzlich noch mit weiteren Hilfsstoffen beschichtet werden können. Falls gewünscht können die Endzubereitungen noch anorganische Salze als Füll- bzw. Stellmittel enthalten, wie beispielsweise Natriumsulfat, welches vorzugsweise in Mengen von 0 bis 10, insbeson­ dere 1 bis 5 Gew.-% - bezogen auf Mittel - enthalten ist.
Herstellung der Mittel
Die unter Einsatz der neuen Entschäumergranulate erhältlichen Mittel können in Form von Pulvern, Extrudaten, Granulaten oder Agglomeraten hergestellt bzw. eingesetzt werden. Es kann sich dabei sowohl um Universal- als auch Fein- bzw. Colorwaschmittel, gegebenenfalls in Form von Kompaktaten oder Superkompaktaten handeln. Zur Herstellung solcher Mittel sind die entsprechenden, aus dem Stand der Technik bekannten Verfahren, geeignet. Bevorzugt werden die Mittel dadurch hergestellt, daß verschiedene teilchenförmige Komponenten, die Waschmittelinhaltsstoffe enthalten, miteinander vermischt werden. Die teilchenförmigen Komponenten können durch Sprühtrocknung, einfaches Mi­ schen oder komplexe Granulationsverfahren, beispielsweise Wirbelschichtgranulation, hergestellt wer­ den. Bevorzugt ist dabei insbesondere, daß mindestens eine tensidhaltige Komponente durch Wirbel­ schichtgranulation hergestellt wird. Weiter kann es insbesondere bevorzugt sein, wenn wäßrige Zube­ reitungen des Alkalisilicats und des Alkalicarbonats gemeinsam mit anderen Waschmittelinhaltsstoffen in einer Trockeneinrichtung versprüht werden, wobei gleichzeitig mit der Trocknung eine Granulation stattfinden kann.
Bei der Trockeneinrichtung, in die die wäßrige Zubereitung versprüht wird, kann es sich um beliebige Trockenapparaturen handeln. In einer bevorzugten Verfahrensführung wird die Trocknung als Sprüh­ trocknung in einem Trockenturm durchgeführt. Dabei werden die wäßrigen Zubereitungen in be­ kannter Weise einem Trocknungsgasstrom in feinverteilter Form ausgesetzt. In Patentveröffentlichun­ gen der Firma Henkel wird eine Ausführungsform der Sprühtrocknung mit überhitztem Wasserdampf beschrieben. Das dort offenbarte Arbeitsprinzip wird hiermit ausdrücklich auch zum Gegenstand der vorliegenden Erfindungsoffenbarung gemacht. Verwiesen wird hier insbesondere auf die nachfol­ genden Druckschriften: DE 40 30 688 A1 sowie die weiterführenden Veröffentlichungen gemäß DE 42 04 035 A1; DE 42 04 090 A1; DE 42 06 050 A1; DE 42 06 521 A1; DE 42 06 495 A1; DE 42 08 773 A1; DE 42 09 432 A1 und DE 42 34 376 A1. Dieses Verfahren wurde schon im Zusammenhang mit der Herstel­ lung des Entschäumerkorn vorgestellt.
In einer anderen, insbesondere wenn Mittel hoher Schüttdichte erhalten werden sollen, bevorzugten Variante werden die Gemische anschließend einem Kompaktierungsschritt unterworfen, wobei weitere Inhaltsstoffe den Mitteln erst nach dem Kompaktierungsschritt zugemischt werden. Die Kompaktierung der Inhaltsstoffe findet in einer bevorzugten Ausführungsform der Erfindung in einem Preßagglomerati­ onsverfahren statt. Der Preßagglomerationsvorgang, dem das feste Vorgemisch (getrocknetes Basis­ waschmittel) unterworfen wird, kann dabei in verschiedenen Apparaten realisiert werden. Je nach dem Typ des verwendeten Agglomerators werden unterschiedliche Preßagglomerationsverfahren unter­ schieden. Die drei häufigsten und im Rahmen der vorliegenden Erfindung bevorzugten Preßagglome­ rationsverfahren sind dabei die Extrusion, das Walzenpressen bzw. -kompaktieren und das Lochpres­ sen (Pelletieren), so daß im Rahmen der vorliegenden Erfindung bevorzugte Preßagglomerationsvor­ gänge Extrusions-, Walzenkompaktierungs- und Pelletierungsvorgänge sind.
Allen Verfahren ist gemeinsam, daß das Vorgemisch unter Druck verdichtet und plastifiziert wird und die einzelnen Partikel unter Verringerung der Porosität aneinandergedrückt werden und aneinander haften. Bei allen Verfahren (bei der Tablettierung mit Einschränkungen) lassen sich die Werkzeuge dabei auf höhere Temperaturen aufheizen oder zur Abführung der durch Scherkräfte entstehenden Wärme kühlen.
In allen Verfahren kann als Hilfsmittel zur Verdichtung ein oder mehrere Bindemittel eingesetzt werden. Dabei soll jedoch klargestellt sein, daß an sich immer auch der Einsatz von mehreren, verschiedenen Bindemitteln und Mischungen aus verschiedenen Bindemitteln möglich ist. In einer bevorzugten Aus­ führungsform der Erfindung wird ein Bindemittel eingesetzt, daß bei Temperaturen bis maximal 130°C, vorzugsweise bis maximal 100°C und insbesondere bis 90°C bereits vollständig als Schmelze vor­ liegt. Das Bindemittel muß also je nach Verfahren und Verfahrensbedingungen ausgewählt werden oder die Verfahrensbedingungen, insbesondere die Verfahrenstemperatur, müssen - falls ein be­ stimmtes Bindemittel gewünscht wird - an das Bindemittel angepaßt werden.
Der eigentliche Verdichtungsprozeß erfolgt dabei vorzugsweise bei Verarbeitungstemperaturen, die zumindest im Verdichtungsschritt mindestens der Temperatur des Erweichungspunkts, wenn nicht so­ gar der Temperatur des Schmelzpunkts des Bindemittels entsprechen. In einer bevorzugten Aus­ führungsform der Erfindung liegt die Verfahrenstemperatur signifikant über dem Schmelzpunkt bzw. oberhalb der Temperatur, bei der das Bindemittel als Schmelze vorliegt. Insbesondere ist es aber be­ vorzugt, daß die Verfahrenstemperatur im Verdichtungsschritt nicht mehr als 20°C über der Schmelz­ temperatur bzw. der oberen Grenze des Schmelzbereichs des Bindemittels liegt. Zwar ist es technisch durchaus möglich, auch noch höhere Temperaturen einzustellen; es hat sich aber gezeigt, daß eine Temperaturdifferenz zur Schmelztemperatur bzw. zur Erweichungstemperatur des Bindemittels von 20°C im allgemeinen durchaus ausreichend ist und noch höhere Temperaturen keine zusätzlichen Vor­ teile bewirken. Deshalb ist es - insbesondere auch aus energetischen Gründen - besonders bevorzugt, zwar oberhalb, jedoch so nah wie möglich am Schmelzpunkt bzw. an der oberen Temperaturgrenze des Schmelzbereichs des Bindemittels zu arbeiten. Eine derartige Temperaturführung besitzt den wei­ teren Vorteil, daß auch thermisch empfindliche Rohstoffe, beispielsweise Peroxybleichmittel wie Perbo­ rat und/oder Percarbonat, aber auch Enzyme, zunehmend ohne gravierende Aktivsubstanzverluste ver­ arbeitet werden können. Die Möglichkeit der genauen Temperatursteuerung des Binders insbesondere im entscheidenden Schritt der Verdichtung, also zwischen der Vermischung/Homogenisierung des Vorgemisches und der Formgebung, erlaubt eine energetisch sehr günstige und für die temperatu­ rempfindlichen Bestandteile des Vorgemisches extrem schonende Verfahrensführung, da das Vor­ gemisch nur für kurze Zeit den höheren Temperaturen ausgesetzt ist. In bevorzugten Preßagglomerati­ onsverfahren weisen die Arbeitswerkzeuge des Preßagglomerators (die Schnecke(n) des Extruders, die Walze(n) des Walzenkompaktors sowie die Preßwalze(n) der Pelletpresse) eine Temperatur von maximal 150°C, vorzugsweise maximal 100°C und insbesondere maximal 75°C auf und die Verfah­ renstemperatur liegt bei 30°C und insbesondere maximal 20°C oberhalb der Schmelztemperatur bzw. der oberen Temperaturgrenze des Schmelzbereichs des Bindemittels. Vorzugsweise beträgt die Dauer der Temperatureinwirkung im Kompressionsbereich der Preßagglomeratoren maximal 2 Minuten und liegt insbesondere in einem Bereich zwischen 30 Sekunden und 1 Minute.
Bevorzugte Bindemittel, die allein oder in Mischung mit anderen Bindemitteln eingesetzt werden kön­ nen, sind Polyethylenglykole, 1,2-Polypropylenglykole sowie modifizierte Polyethylenglykole und Poly­ propylenglykole. Zu den modifizierten Polyalkylenglykolen zählen insbesondere die Sulfate und/oder die Disulfate von Polyethylenglykolen oder Polypropylenglykolen mit einer relativen Molekülmasse zwi­ schen 600 und 12 000 und insbesondere zwischen 1000 und 4000. Eine weitere Gruppe besteht aus Mono- und/oder Disuccinaten der Polyalkylenglykole, welche wiederum relative Molekülmassen zwi­ schen 600 und 6000, vorzugsweise zwischen 1000 und 4000 aufweisen. Für eine genauere Be­ schreibung der modifizierten Polyalkylenglykolether wird auf die Offenbarung der internationalen Pa­ tentanmeldung WO 93/02176 verwiesen. Im Rahmen dieser Erfindung zählen zu Polyethylenglykolen solche Polymere, bei deren Herstellung neben Ethylenglykol ebenso C3-C5-Glykole sowie Glycerin und Mischungen aus diesen als Startmoleküle eingesetzt werden. Ferner werden auch ethoxylierte Derivate wie Trimethylolpropan mit 5 bis 30 EO umfaßt. Die vorzugsweise eingesetzten Polyethylenglykole kön­ nen eine lineare oder verzweigte Struktur aufweisen, wobei insbesondere lineare Polyethylenglykole bevorzugt sind. Zu den insbesondere bevorzugten Polyethylenglykolen gehören solche mit relativen Molekülmassen zwischen 2000 und 12 000, vorteilhafterweise um 4000, wobei Polyethylenglykole mit relativen Molekülmassen unterhalb 3500 und oberhalb 5000 insbesondere in Kombination mit Poly­ ethylenglykolen mit einer relativen Molekülmasse um 4000 eingesetzt werden können und derartige Kombinationen vorteilhafterweise zu mehr als 50 Gew.-%, bezogen auf die gesamte Menge der Polye­ thylenglykole, Polyethylenglykole mit einer relativen Molekülmasse zwischen 3500 und 5000 aufwei­ sen. Als Bindemittel können jedoch auch Polyethylenglykole eingesetzt werden, welche an sich bei Raumtemperatur und einem Druck von 1 bar in flüssigem Stand vorliegen; hier ist vor allem von Poly­ ethylenglykol mit einer relativen Molekülmasse von 200, 400 und 600 die Rede. Allerdings sollten diese an sich flüssigen Polyethylenglykole nur in einer Mischung mit mindestens einem weiteren Bindemittel eingesetzt werden, wobei diese Mischung wieder den erfindungsgemäßen Anforderungen genügen muß, also einen Schmelzpunkt bzw. Erweichungspunkt von mindestens oberhalb 45°C aufweisen muß. Ebenso eignen sich als Bindemittel niedermolekulare Polyvinylpyrrolidone und Derivate von die­ sen mit relativen Molekülmassen bis maximal 30 000. Bevorzugt sind hierbei relative Mo­ lekülmassenbereiche zwischen 3000 und 30 000, beispielsweise um 10 000. Polyvinylpyrrolidone wer­ den vorzugsweise nicht als alleinige Bindemittel, sondern in Kombination mit anderen, insbesondere in Kombination mit Polyethylenglykolen, eingesetzt.
Das verdichtete Gut weist direkt nach dem Austritt aus dem Herstellungsapparat vorzugsweise Tempe­ raturen nicht oberhalb von 90°C auf, wobei Temperaturen zwischen 35 und 85°C besonders bevor­ zugt sind. Es hat sich herausgestellt, daß Austrittstemperaturen - vor allem im Extrusionsverfahren - von 40 bis 80°C, beispielsweise bis 70°C, besonders vorteilhaft sind.
In einer bevorzugten Ausführungsform wird das erfindungsgemäße Waschmittel mittels einer Extrusion hergestellt, wie sie beispielsweise in dem europäischen Patent EP 0486592 B1 oder den interna­ tionalen Patentanmeldungen WO 93/02176 und WO 94/09111 bzw. WO 98/12299 beschrieben wer­ den. Dabei wird ein festes Vorgemisch unter Druck strangförmig verpreßt und der Strang nach Austritt aus der Lochform mittels einer Schneidevorrichtung auf die vorbestimmbare Granulatdimension zuge­ schnitten. Das homogene und feste Vorgemisch enthält ein Plastifizier- und/oder Gleitmittel, welches bewirkt, daß das Vorgemisch unter dem Druck bzw. unter dem Eintrag spezifischer Arbeit plastisch erweicht und extrudierbar wird. Bevorzugte Plastifizier- und/oder Gleitmittel sind Tenside und/oder Po­ lymere. Zur Erläuterung des eigentlichen Extrusionsverfahrens wird hiermit ausdrücklich auf die oben­ genannten Patente und Patentanmeldungen verwiesen. Vorzugsweise wird dabei das Vorgemisch vorzugsweise einem Planetwalzenextruder oder einem 2-Wellen-Extruder bzw. 2-Schnecken-Extruder mit gleichlaufender oder gegenlaufender Schneckenführung zugeführt, dessen Gehäuse und dessen Extruder-Granulierkopf auf die vorbestimmte Extrudiertemperatur aufgeheizt sein können. Unter der Schereinwirkung der Extruderschnecken wird das Vorgemisch unter Druck, der vorzugsweise minde­ stens 25 bar beträgt, bei extrem hohen Durchsätzen in Abhängigkeit von dem eingesetzten Apparat aber auch darunter liegen kann, verdichtet, plastifiziert, in Form feiner Stränge durch die Lochdüsen­ platte im Extruderkopf extrudiert und schließlich das Extrudat mittels eines rotierenden Abschlag­ messers vorzugsweise zu etwa kugelförmigen bis zylindrischen Granulatkörnern verkleinert. Der Loch­ durchmesser der Lochdüsenplatte und die Strangschnittlänge werden dabei auf die gewählte Granulat­ dimension abgestimmt. So gelingt die Herstellung von Granulaten einer im wesentlichen gleichmäßig vorherbestimmbaren Teilchengröße, wobei im einzelnen die absoluten Teilchengrößen dem beabsich­ tigten Einsatzzweck angepaßt sein können. Im allgemeinen werden Teilchendurchmesser bis höch­ stens 0,8 cm bevorzugt. Wichtige Ausführungsformen sehen hier die Herstellung von einheitlichen Gra­ nulaten im Millimeterbereich, beispielsweise im Bereich von 0,5 bis 5 mm und insbesondere im Bereich von etwa 0,8 bis 3 mm vor. Das Länge/Durchmesser-Verhältnis der abgeschlagenen primären Granu­ late liegt dabei vorzugsweise im Bereich von etwa 1 : 1 bis etwa 3 : 1. Weiterhin ist es bevorzugt, das noch plastische Primärgranulat einem weiteren formgebenden Verarbeitungsschritt zuzuführen; dabei werden am Rohextrudat vorliegende Kanten abgerundet, so daß letztlich kugelförmig bis annähernd kugelförmige Extrudatkörner erhalten werden können. Falls gewünscht können in dieser Stufe geringe Mengen an Trockenpulver, beispielsweise Zeolithpulver wie Zeolith NaA-Pulver, mitverwendet werden. Diese Formgebung kann in marktgängigen Rondiergeräten erfolgen. Dabei ist darauf zu achten, daß in dieser Stufe nur geringe Mengen an Feinkornanteil entstehen. Eine Trocknung, welche in den obenge­ nannten Dokumenten des Standes der Technik als bevorzugte Ausführungsform beschrieben wird, ist anschließend möglich, aber nicht zwingend erforderlich. Es kann gerade bevorzugt sein, nach dem Kompaktierungsschritt keine Trocknung mehr durchzuführen. Alternativ können Extrusionen/Verpres­ sungen auch in Niedrigdruckextrudern, in der Kahl-Presse (Fa. Amandus Kahl) oder im Bextruder der Fa. Bepex durchgeführt werden. Bevorzugt ist die Temperaturführung im Übergangsbereich der Schnecke, des Vorverteilers und der Düsenplatte derart gestaltet, daß die Schmelztemperatur des Bin­ demittels bzw. die obere Grenze des Schmelzbereichs des Bindemittels zumindest erreicht, vorzugs­ weise aber überschritten wird. Dabei liegt die Dauer der Temperatureinwirkung im Kompressionsbe­ reich der Extrusion vorzugsweise unterhalb von 2 Minuten und insbesondere in einem Bereich zwi­ schen 30 Sekunden und 1 Minute.
Die erfindungsgemäßen Waschmittel können auch mittels einer Walzenkompaktierung hergestellt werden. Hierbei wird das Vorgemisch gezielt zwischen zwei glatte oder mit Vertiefungen von definierter Form versehene Walzen eindosiert und zwischen den beiden Walzen unter Druck zu einem blattförmi­ gen Kompaktat, der sogenannten Schülpe, ausgewalzt. Die Walzen üben auf das Vorgemisch einen hohen Liniendruck aus und können je nach Bedarf zusätzlich geheizt bzw. gekühlt werden. Bei der Verwendung von Glattwalzen erhält man glatte, unstrukturierte Schülpenbänder, während durch die Verwendung strukturierter Walzen entsprechend strukturierte Schülpen erzeugt werden können, in denen beispielsweise bestimmte Formen der späteren Waschmittelteilchen vorgegeben werden kön­ nen. Das Schülpenband wird nachfolgend durch einen Abschlag- und Zerkleinerungsvorgang in kleine­ re Stücke gebrochen und kann auf diese Weise zu Granulatkörnern verarbeitet werden, die durch wei­ tere an sich bekannte Oberflächenbehandlungsverfahren veredelt, insbesondere in annähernd kugel­ förmige Gestalt gebracht werden können. Auch bei der Walzenkompaktierung liegt die Temperatur der pressenden Werkzeuge, also der Walzen, bevorzugt bei maximal 150°C, vorzugsweise bei maximal 100°C und insbesondere bei maximal 75°C. Besonders bevorzugte Herstellungsverfahren arbeiten bei der Walzenkompaktierung mit Verfahrenstemperaturen, die 10°C, insbesondere maximal 5°C oberhalb der Schmelztemperatur bzw. der oberen Temperaturgrenze des Schmelzbereichs des Binde­ mittels liegen. Hierbei ist es weiter bevorzugt, daß die Dauer der Temperatureinwirkung im Kompressi­ onsbereich der glatten oder mit Vertiefungen von definierter Form versehenen Walzen maximal 2 Mi­ nuten beträgt und insbesondere in einem Bereich zwischen 30 Sekunden und 1 Minute liegt.
Das erfindungsgemäße Waschmittel kann auch mittels einer Pelletierung hergestellt werden. Hierbei wird das Vorgemisch auf eine perforierte Fläche aufgebracht und mittels eines druckgebenden Körpers unter Plastifizierung durch die Löcher gedrückt. Bei üblichen Ausführungsformen von Pelletpressen wird das Vorgemisch unter Druck verdichtet, plastifiziert, mittels einer rotierenden Walze in Form feiner Stränge durch eine perforierte Fläche gedrückt und schließlich mit einer Abschlagvorrichtung zu Gra­ 05041 00070 552 001000280000000200012000285910493000040 0002019953796 00004 04922nulatkörnern zerkleinert. Hierbei sind die unterschiedlichsten Ausgestaltungen von Druckwalze und perforierter Matrize denkbar. So finden beispielsweise flache perforierte Teller ebenso Anwendung wie konkave oder konvexe Ringmatrizen, durch die das Material mittels einer oder mehrerer Druckwalzen hindurchgepreßt wird. Die Preßrollen können bei den Tellergeräten auch konisch geformt sein, in den ringförmigen Geräten können Matrizen und Preßrolle(n) gleichläufigen oder gegenläufigen Drehsinn besitzen. Ein zur Durchführung des Verfahrens geeigneter Apparat wird beispielsweise in der deut­ schen Offenlegungsschrift DE 38 16 842 A1 beschrieben. Die in dieser Schrift offenbarte Ringmatrizen­ presse besteht aus einer rotierenden, von Preßkanälen durchsetzten Ringmatrize und wenigstens einer mit deren Innenfläche in Wirkverbindung stehenden Preßrolle, die das dem Matrizenraum zugeführte Material durch die Preßkanäle in einen Materialaustrag preßt. Hierbei sind Ringmatrize und Preßrolle gleichsinnig antreibbar, wodurch eine verringerte Scherbelastung und damit geringere Temperaturer­ höhung des Vorgemischs realisierbar ist. Selbstverständlich kann aber auch bei der Pelletierung mit heiz- oder kühlbaren Walzen gearbeitet werden, um eine gewünschte Temperatur des Vorgemischs einzustellen. Auch bei der Pelletierung liegt die Temperatur der pressenden Werkzeuge, also der Druckwalzen oder Preßrollen, bevorzugt bei maximal 150°C, vorzugsweise bei maximal 100°C und insbesondere bei maximal 75°C. Besonders bevorzugte Herstellungsverfahren arbeiten bei der Wal­ zenkompaktierung mit Verfahrenstemperaturen, die 10°C, insbesondere maximal 5°C oberhalb der Schmelztemperatur bzw. der oberen Temperaturgrenze des Schmelzbereichs des Bindemittels liegen.
Beispiele
Herstellbeispiel. 10 000 kg eines wäßrigen Slurries bestehend aus 0,5 Gew.-% Celluloseether, 5,0 Gew.-% Natriumsilicat, 20,7 Gew.-% Natriumsulfat, 15,8 Gew.-% Natriumcarbonat, 2,0% Po­ lyacryl/methacrylat, 50 Gew.-% Wasser und 6 Gew.-% eines Gemisches aus 80 Gew.-% teilhydriertem Petrolatumwachs mit einem Erstarrungspunkt von 43°C und 20 Gew.-% Ethylendiaminbisstearat wur­ de unter ständigem Homogenisieren unter einem Druck von 40 bar in einem Sprühturm zerstäubt und mittels heißer, im Gegenstrom geführter Verbrennungsgase (Temperatur im Ringkanal 250°C, im Tur­ maustritt 98°C) getrocknet. Parallel herzu wurden 2000 kg einer wäßrigen Lösung, enthaltend 3,7 Gew.-% einer Verdickermischung aus Natrium-Carboxymethylcellulose und Methylcellulose im Ge­ wichtsverhältnis 70 : 30 wurden 4 Stunden bei 25°C quellen gelassen. Zu dieser Lösung wurden 20 Gew.-% eines Polysiloxan-Entschäumers (Polydimethylsiloxan mit mikrofeiner silanierter Kieselsäure) zugesetzt. Man erhielt eine stabile wäßrige Emulsion. In eine Wirbelschichtapparatur (SKET-Anlage) mit einem kreisrunden Wirbelschichtboden, durch den Trocknungsluft mit ca. 20 000 m3 Luft/h mit einer Temperatur von 140°C strömte, wurden pro Stunde kontinuierlich 650 kg des hergestellten pulver­ förmigen Vorprodukts über eine Feststoffdosierung eingespeist und auf dieses pulverförmige Vorpro­ dukt kontinuierlich 350 kg pro Stunde der zuvor hergestellten wäßrigen Silicon-Emulsion aufgedüst. Die Temperatur in der Wirbelschicht über dem Wirbelschichtboden betrug 85°C, die Abluft 79°C. Man erhielt ein Granulat mit folgender Zusammensetzung: 13 Gew.-% Petrolatum (Weichwachs), 2 Gew.-% Ethylendiaminbisstearat (Hartwachs), 3 Gew.-% Silicon und ad 100 Gew.-% Trägermaterialien. Das Produkt besaß ein Schüttgewicht von 800 g/l und eine Kornverteilung, bei der 95 Gew.-% der Teilchen einen mittleren Durchmesser unterhalb von 1,5 mm aufwies. Das Produkt zeigte eine sehr gute Rie­ selfähigkeit und hatte praktisch keinerlei Staubanteile.
Anwendungstechnische Beispiele. Das erfindungsgemäße Entschäumergranulat wurde in einer handelsüblicher Universalwaschmittelformulierung gegen ein Entschäumergranulat des Handels (De­ hydran® 760, Paraffinwachs/Silicon auf Träger) bei 30, 60 und 90°C getestet. Die Schaumentwicklung wurde über einen Zeitraum von 40 min verfolgt und auf einer Skala von 0 bis 6 beurteilt: dabei bedeutet 0 = kein Schaum; 1 = geringe Schaummenge; 2 = deutliche Schaummenge; 3 = erhebliche Schaum­ menge; 5 = Schaumentwicklung nicht mehr tolerierbar; 6 = Maschine schäumt über. Die Ergebnisse sind in Tabelle 1 zusammengefaßt:
Tabelle 1
Zusammensetzung von UWM und Schaumentwicklung (Mengenangaben als Gew.-%)
Tabelle 2 enthält einige Rezepturbeispiele.
Tabelle 2
Detergenszubereitungen (Wasser, Konservierungsmittel ad 100 Gew.-%)

Claims (10)

1. Feste Wasch-, Spül- und Reinigungsmittel, enthaltend
  • a) anionische, nichtionische, kationische und/oder amphotere Tenside und
  • b) Entschäumergranulate bestehend aus
    • 1. mindestens einem Weichwachs mit einem Schmelzpunkt im Bereich von 35 bis 50°C,
    • 2. mindestens einem Hartwachs mit einem Schmelzpunkt oberhalb von 50°C,
    • 3. Siliconen und
    • 4. Trägermaterialien.
2. Mittel nach Anspruch 1, dadurch gekennzeichnet, daß sie als Komponente (a) anionische Tensi­ de enthalten, die ausgewählt sind aus der Gruppe, die gebildet wird von Alkylbenzolsulfonaten, Al­ kylsulfaten, Seifen, Alkansulfonaten, Olefinsulfonaten und Methylestersulfonaten.
3. Mittel nach den Ansprüchen 1 und/oder 2, dadurch gekennzeichnet, daß sie als Komponente (a) nichtionische Tenside enthalten, die ausgewählt sind aus der Gruppe, die gebildet wird von Fettal­ koholpolyglycolethern, alkoxylierten Fettsäureniedrigalkylestern und Alkyloligoglucosiden.
4. Mittel nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß sie als Komponente (a) kationische und/oder amphotere Tenside enthalten, die ausgewählt sind aus der Gruppe, die gebildet wird von Esterquats, Alkylbetainen und Alkylamidobetainen.
5. Mittel nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß sie die Ten­ side in Mengen von 1 bis 50 Gew.-% - bezogen auf die Mittel - enthalten.
6. Mittel nach mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß sie Ent­ schäumergranulate enthalten, die als Weichwachs (Komponente b1) Petrolate oder deren Hy­ drierprodukte aufweisen.
7. Mittel nach mindestens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß sie Ent­ schäumergranulate enthalten, die als Hartwachs (Komponente b2) Bisamide, Fettsäuren, Fettal­ kohole, Carbonsäureester und/oder Paraffinwachse aufweisen.
8. Mittel nach mindestens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß sie Ent­ schäumergranulate enthalten, die als Silicone (Komponente b3) Polydiorganosiloxane aufweisen.
9. Mittel nach mindestens einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß sie Ent­ schäumergranulate enthalten, die aus
  • 1. 5 bis 25 Gew.-% mindestens einem Weichwachs mit einem Schmelzpunkt im Bereich von 35 bis 50°C,
  • 2. 1 bis 10 Gew.-% mindestens einem Hartwachs mit einem Schmelzpunkt oberhalb von 50°C,
  • 3. 1 bis 10 Gew.-% Siliconen und
  • 4. ad 100 Gew.-% Trägermaterialien
bestehen.
10. Mittel nach mindestens einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß sie die Ent­ schäumergranulate in Mengen von 1 bis 25 Gew.-% - bezogen auf die Mittel - enthalten.
DE1999153796 1999-11-09 1999-11-09 Feste Wasch-, Spül- und Reinigungsmittel Ceased DE19953796A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE1999153796 DE19953796A1 (de) 1999-11-09 1999-11-09 Feste Wasch-, Spül- und Reinigungsmittel
EP00974487A EP1228178A1 (de) 1999-11-09 2000-10-31 Feste wasch-, spül- und reinigungsmittel
PCT/EP2000/010689 WO2001034747A1 (de) 1999-11-09 2000-10-31 Feste wasch-, spül- und reinigungsmittel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE1999153796 DE19953796A1 (de) 1999-11-09 1999-11-09 Feste Wasch-, Spül- und Reinigungsmittel

Publications (1)

Publication Number Publication Date
DE19953796A1 true DE19953796A1 (de) 2001-05-17

Family

ID=7928376

Family Applications (1)

Application Number Title Priority Date Filing Date
DE1999153796 Ceased DE19953796A1 (de) 1999-11-09 1999-11-09 Feste Wasch-, Spül- und Reinigungsmittel

Country Status (3)

Country Link
EP (1) EP1228178A1 (de)
DE (1) DE19953796A1 (de)
WO (1) WO2001034747A1 (de)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6797687B2 (en) 2001-08-07 2004-09-28 Cognis Deutschland Gmbh & Co. Kg Gemini surfactant compositions
EP1844917A2 (de) 2006-03-24 2007-10-17 Entex Rust & Mitschke GmbH Verfahren zur Verarbeitung von zu entgasenden Produkten
EP1939087A1 (de) 2006-12-28 2008-07-02 Eurocopter Verbesserung an den Rotoren von Drehflügelflugzeugen, die mit Drehschwingungsdämpfern zwischen den Flügelblättern ausgestattet sind
DE102007059299A1 (de) 2007-05-16 2008-11-20 Entex Rust & Mitschke Gmbh Vorrichtung zur Verarbeitung von zu entgasenden Produkten
DE102011112080A1 (de) 2011-09-03 2013-03-07 Entex Rust & Mitschke Gmbh Einarbeitung von Additiven und Füllstoffen in einem Planetwalzenextruder oder einem Planetwalzenextruderabschnitt
DE102013000708A1 (de) 2012-10-11 2014-04-17 Entex Rust & Mitschke Gmbh Verfahren zur Extrusion von Kunststoffen, die zum Kleben neigen
DE102011112081A1 (de) 2011-05-11 2015-08-20 Entex Rust & Mitschke Gmbh Verfahren zur Verarbeitung von Elasten
DE102015001167A1 (de) 2015-02-02 2016-08-04 Entex Rust & Mitschke Gmbh Entgasen bei der Extrusion von Kunststoffen
WO2017001048A1 (de) 2015-07-02 2017-01-05 Entex Rust & Mitschke Gmbh Verfahren zur verarbeitung von produkten im extruder
DE102016002143A1 (de) 2016-02-25 2017-08-31 Entex Rust & Mitschke Gmbh Füllteilmodul in Planetwalzenextruderbauweise
DE102017001093A1 (de) 2016-04-07 2017-10-26 Entex Rust & Mitschke Gmbh Entgasen bei der Extrusion von Kunststoffen mit Filterscheiben aus Sintermetall
DE102017003681A1 (de) 2017-04-17 2018-10-18 Entex Rust & Mitschke Gmbh Kühlen beim Extrudieren von Schmelze
WO2018188716A1 (de) 2017-03-05 2018-10-18 Entex Rust & Mitschke Gmbh Entgasen beim extrudieren von stoffen, vorzugsweise von kunststoffen
DE102017005999A1 (de) 2017-05-28 2018-11-29 Entex Rust & Mitschke Gmbh Herstellung von essbaren Wurstpellen aus Kollagen oder gleichartigen Stoffen durch Extrudieren
DE102017005998A1 (de) 2017-06-23 2018-12-27 Entex Rust & Mitschke Gmbh Chemische Prozeßführung für fließfähiges Einsatzgut in einem Planetwalzenextruder
WO2019011461A1 (de) 2017-07-13 2019-01-17 Entex Rust & Mitschke Gmbh Füllteilmodul in planetwalzenextruderbauweise
DE102018001412A1 (de) 2017-12-11 2019-06-13 Entex Rust & Mitschke Gmbh Entgasen beim Extrudieren von Stoffen, vorzugsweise von Kunststoffen
WO2019166125A1 (de) 2018-02-28 2019-09-06 Entex Rust & Mitschke Gmbh Verfahren zur herstellung und verarbeitung von polymeren und polymermischungen in einem modular aufgebauten planetwalzenextruder
DE102020007239A1 (de) 2020-04-07 2021-10-07 E N T E X Rust & Mitschke GmbH Kühlen beim Extrudieren von Schmelzen
EP3892441A1 (de) 2020-04-07 2021-10-13 Entex Rust & Mitschke GmbH Nachrüstung für eine extruderanlage

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100229312A1 (en) * 2009-03-16 2010-09-16 De Buzzaccarini Francesco Cleaning method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA833292B (en) * 1982-05-11 1984-12-24 Unilever Plc Granules containing silicone-based anti-foam and a process for preparing them
GB8513074D0 (en) * 1985-05-23 1985-06-26 Unilever Plc Antifoam ingredient
EP0712437B1 (de) * 1993-08-02 1997-10-08 Henkel Kommanditgesellschaft auf Aktien Schaumregulatorgranulat und verfahren zu seiner herstellung
DE19828080A1 (de) * 1998-06-24 1999-12-30 Henkel Kgaa Verfahren zur Herstellung von Entschäumergranulaten
DE19837195A1 (de) * 1998-08-17 2000-02-24 Cognis Deutschland Gmbh Herstellung von Entschäumergranulaten im Fließbettverfahren

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6797687B2 (en) 2001-08-07 2004-09-28 Cognis Deutschland Gmbh & Co. Kg Gemini surfactant compositions
EP1844917A2 (de) 2006-03-24 2007-10-17 Entex Rust & Mitschke GmbH Verfahren zur Verarbeitung von zu entgasenden Produkten
EP1939087A1 (de) 2006-12-28 2008-07-02 Eurocopter Verbesserung an den Rotoren von Drehflügelflugzeugen, die mit Drehschwingungsdämpfern zwischen den Flügelblättern ausgestattet sind
DE102007059299A1 (de) 2007-05-16 2008-11-20 Entex Rust & Mitschke Gmbh Vorrichtung zur Verarbeitung von zu entgasenden Produkten
EP1997608A2 (de) 2007-05-16 2008-12-03 Entex Rust & Mitschke GmbH Verfahren zur Verarbeitung von zu entgasenden Produkten
EP2289687A1 (de) 2007-05-16 2011-03-02 Entex Rust & Mitschke GmbH Verfahren zur Verarbeitung von zu entgasenden Produkten
DE102011112081A1 (de) 2011-05-11 2015-08-20 Entex Rust & Mitschke Gmbh Verfahren zur Verarbeitung von Elasten
DE102011112080A1 (de) 2011-09-03 2013-03-07 Entex Rust & Mitschke Gmbh Einarbeitung von Additiven und Füllstoffen in einem Planetwalzenextruder oder einem Planetwalzenextruderabschnitt
WO2014056553A1 (de) 2012-10-11 2014-04-17 Entex Gmbh Rust & Mitschke Gmbh Extruder zur verarbeitung von kunststoffen, die zum kleben neigen
US10112320B2 (en) 2012-10-11 2018-10-30 Entex Rust & Mitschke Gmbh Process for the extrusion of plastics tending to adherence
DE102013000708A1 (de) 2012-10-11 2014-04-17 Entex Rust & Mitschke Gmbh Verfahren zur Extrusion von Kunststoffen, die zum Kleben neigen
DE102015001167A1 (de) 2015-02-02 2016-08-04 Entex Rust & Mitschke Gmbh Entgasen bei der Extrusion von Kunststoffen
WO2017001048A1 (de) 2015-07-02 2017-01-05 Entex Rust & Mitschke Gmbh Verfahren zur verarbeitung von produkten im extruder
DE102015008406A1 (de) 2015-07-02 2017-04-13 Entex Rust & Mitschke Gmbh Verfahren zur Bearbeitung von Produkten im Extruder
US10589452B2 (en) 2015-07-02 2020-03-17 Entex Rust & Mitschke Gmbh Method for processing products in an extruder
DE102016002143A1 (de) 2016-02-25 2017-08-31 Entex Rust & Mitschke Gmbh Füllteilmodul in Planetwalzenextruderbauweise
DE102017001093A1 (de) 2016-04-07 2017-10-26 Entex Rust & Mitschke Gmbh Entgasen bei der Extrusion von Kunststoffen mit Filterscheiben aus Sintermetall
WO2018188716A1 (de) 2017-03-05 2018-10-18 Entex Rust & Mitschke Gmbh Entgasen beim extrudieren von stoffen, vorzugsweise von kunststoffen
US11613060B2 (en) 2017-03-05 2023-03-28 Entex Rust & Mitschke Gmbh Planetary roller extruder with a degassing section
US11446617B2 (en) 2017-04-17 2022-09-20 Entex Rust & Mitschke Gmbh Extruder with planetary roller section for cooling melts
WO2018192677A1 (de) 2017-04-17 2018-10-25 Entex Rust & Mitschke Gmbh Kühlen beim extrudieren von schmelzen
DE102017003681A1 (de) 2017-04-17 2018-10-18 Entex Rust & Mitschke Gmbh Kühlen beim Extrudieren von Schmelze
DE102017005999A1 (de) 2017-05-28 2018-11-29 Entex Rust & Mitschke Gmbh Herstellung von essbaren Wurstpellen aus Kollagen oder gleichartigen Stoffen durch Extrudieren
DE102017005998A1 (de) 2017-06-23 2018-12-27 Entex Rust & Mitschke Gmbh Chemische Prozeßführung für fließfähiges Einsatzgut in einem Planetwalzenextruder
WO2019011461A1 (de) 2017-07-13 2019-01-17 Entex Rust & Mitschke Gmbh Füllteilmodul in planetwalzenextruderbauweise
DE102017006638A1 (de) 2017-07-13 2019-01-17 Entex Rust & Mitschke Gmbh Füllteilmodul in Planetwalzenextruderbauweise
US11485298B2 (en) 2017-07-13 2022-11-01 Entex Rust & Mitschke Gmbh Feeder module in planetary roller extruder design
DE102018001412A1 (de) 2017-12-11 2019-06-13 Entex Rust & Mitschke Gmbh Entgasen beim Extrudieren von Stoffen, vorzugsweise von Kunststoffen
WO2019166125A1 (de) 2018-02-28 2019-09-06 Entex Rust & Mitschke Gmbh Verfahren zur herstellung und verarbeitung von polymeren und polymermischungen in einem modular aufgebauten planetwalzenextruder
EP3892441A1 (de) 2020-04-07 2021-10-13 Entex Rust & Mitschke GmbH Nachrüstung für eine extruderanlage
DE102020007239A1 (de) 2020-04-07 2021-10-07 E N T E X Rust & Mitschke GmbH Kühlen beim Extrudieren von Schmelzen

Also Published As

Publication number Publication date
EP1228178A1 (de) 2002-08-07
WO2001034747A1 (de) 2001-05-17

Similar Documents

Publication Publication Date Title
EP1240290B1 (de) Tensidgranulate mit verbesserter auflösegeschwindigkeit
EP1106675B1 (de) Verwendung von Partialglyceridpolyglycolethern
DE19962859A1 (de) Feste Waschmittel
DE19953796A1 (de) Feste Wasch-, Spül- und Reinigungsmittel
DE19962883A1 (de) Waschmitteltabletten
EP1188817A2 (de) Waschmittel
EP1232242A1 (de) Tensidgranulate mit verbesserter auflösegeschwindigkeit
EP1191094A2 (de) Waschmittel
DE19953793A1 (de) Tensidgranulate mit verbesserter Auflösegeschwindigkeit
EP1250412B1 (de) Verfahren zur herstellung von tensidgranulaten
DE19942539A1 (de) Waschmittel
DE19953797A1 (de) Entschäumergranulate
EP1090979A1 (de) Entschäumergranulate
EP1205536A2 (de) Verwendung von Tensidgemischen
DE19939806A1 (de) Schaumkontrollierte feste Waschmittel
EP1090978A1 (de) Feste Wasch-, Spül- und Reinigungsmittel enthaltend Entschäumergranulate
WO2001000763A1 (de) Schaumkontrollierte feste waschmittel
EP1375633A1 (de) Waschmittel mit Polymeren
EP1207193A1 (de) Verwendung von Tensidgemischen zur Herstellung von Wasch- und Reinigungsmitteln
DE19939804A1 (de) Schaumkontrollierte feste Waschmittel
DE10002009A1 (de) Tensidgranulate
DE19953794A1 (de) Formkörper mit verbesserter Wasserlöslichkeit
EP1090982A1 (de) Formkörper mit verbesserter Wasserlöslichkeit
DE19948671A1 (de) Waschmittel
DE19953026A1 (de) Sprengmittelgranulate

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8127 New person/name/address of the applicant

Owner name: COGNIS DEUTSCHLAND GMBH & CO. KG, 40589 DUESSELDOR

8131 Rejection