WO2001000763A1 - Detergent solide a mousse controlee - Google Patents

Detergent solide a mousse controlee Download PDF

Info

Publication number
WO2001000763A1
WO2001000763A1 PCT/EP2000/005499 EP0005499W WO0100763A1 WO 2001000763 A1 WO2001000763 A1 WO 2001000763A1 EP 0005499 W EP0005499 W EP 0005499W WO 0100763 A1 WO0100763 A1 WO 0100763A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
carbon atoms
formula
detergent according
nonionic surfactants
Prior art date
Application number
PCT/EP2000/005499
Other languages
German (de)
English (en)
Inventor
Karl Heinz Schmid
Detlef Stanislowski
Original Assignee
Cognis Deutschland Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cognis Deutschland Gmbh filed Critical Cognis Deutschland Gmbh
Publication of WO2001000763A1 publication Critical patent/WO2001000763A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/0026Low foaming or foam regulating compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/83Mixtures of non-ionic with anionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/14Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
    • C11D1/146Sulfuric acid esters
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/22Sulfonic acids or sulfuric acid esters; Salts thereof derived from aromatic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/72Ethers of polyoxyalkylene glycols

Definitions

  • the invention is in the field of solid detergents, in particular for the household laundry of textiles, and relates to foam-controlled solid detergents containing anionic surfactants, a special nonionic surfactant mixture and defoamers.
  • Another object of the present application relates to the use of slightly branched alcohol ethoxyates as a foam-controlling compound in these detergents.
  • Detergents for household and industrial laundry generally contain anionic surfactants, nonionic surfactants, builders and numerous organic and inorganic additives.
  • the anionic surfactants used to clean the laundry usually tend to develop foam during the washing cycle, which on the one hand has a negative effect on the washing result and on the other hand can cause the washing machine to overflow. There is therefore a practical need to control the foam development during the washing process and in particular to minimize it.
  • defoamers or so-called anti-foaming agents are used, which on the one hand are intended to reduce the development of foam and on the other hand to reduce foam that has already formed.
  • anionic surfactants such as alkylbenzenesulfonates (also known as ABS or LAS for short) or fatty alcohol sulfates (also known as FAS for short) can be defoamed relatively easily and reliably with ordinary defoamers, for example based on paraffins. Suitable paraffin wax mixtures as defoamers are described, for example, in European patent application EP 0309931 A1.
  • silicone-containing defoamers are known from European patent application EP 0496510 A1, a mixture of silicones and fatty alcohols, fatty acids or glycerol monoesters having special melting points being applied to the starch as the carrier material.
  • silicones tend to stick together due to their sticky, oily consistency, which can result in undesired silicone stains as residue on the washed laundry and secondly, the silicones are relatively expensive defoamers.
  • foam-controlled solid detergents especially for those which contain highly branched nonionic surfactants in a mixture with anionic surfactants, it being possible to dispense at least partially, preferably completely, with silicones.
  • the object of the present invention was therefore to provide solid detergents based on anionic surfactants and highly branched nonionic surfactants, preferably in a weight ratio of 70:30 to 40:60, which are controlled in their foam. Furthermore, the detergents should make do with small amounts or without silicones as defoamers. Finally, the detergent should be designed so that reliable foam control is guaranteed even with small amounts of defoamers.
  • One object of the present invention therefore relates to foam-controlled solid detergents containing anionic and nonionic surfactants and defoamers, which are distinguished by the fact that they
  • x is a number from 1 to 20 and R 1 is alkyl radicals which are derived from an alcohol mixture: 70 to 100% by weight of linear saturated and / or unsaturated alcohols having 8 to 22 carbon atoms and 0 to 30% by weight. % and saturated and / or unsaturated alcohols having 8 to 22 carbon atoms and branched with methyl groups and 0 to 10% by weight of saturated and / or unsaturated alcohols having 8 to 22 carbon atoms and branched with alkyl groups having at least 2 carbon atoms and (b) at least one nonionic surfactant of the formula (II),
  • y represents a number from 1 to 20 and R 2 represents alkyl radicals which are derived from an alcohol mixture: 30 to 60% by weight of linear saturated and / or unsaturated alcohols having 8 to 22 carbon atoms and 10 to 20% by weight.
  • -% Saturated and / or unsaturated alcohols with 8 to 22 carbon atoms branched with methyl groups and 30 to 50% by weight with saturated and / or unsaturated alcohols with 8 to 22 carbon atoms branched with alkyl groups with at least 2 carbon atoms
  • the invention includes the finding that linear or slightly branched alcohol ethoxylates of the formula (I) in admixture with the highly branched nonionic surfactants of the formula (II) already give foam-controlled solid detergents which can be further easily used in small quantities by conventional defoaming compounds can be reduced in foam.
  • Particularly advantageous foam-controlled detergents are obtained if linear alcohol ethoxylates having 16 to 22 carbon atoms, in particular those having 7 to 15 ethylene oxide units, are used as the nonionic surfactant of the formula (I). This finding is therefore particularly surprising since the person skilled in the art would have guessed that rather branched alcohol ethoxylates are suitable for defoaming, but they have proven to be completely ineffective.
  • soaps alkylbenzenesulfonates, alkanesulfonates, olefin sulfonates, alkyl ether sulfonates, glycerol ether sulfonates, ⁇ -methyl ester sulfonates, sulfofatty acids, alkyl sulfates, fatty alcohol ether sulfates, glycerol ether sulfates, fatty acid ether sulfates, sulfate ether sulfates, sulfate ether sulfates, sulfate ether sulfates, sulfate ether sulfates, sulfate ether sulfates, sulfate ether sulfates, sulfate ether sulfates, sulfate ether sulfates, sulfate ether sulfates, sulfate ether sulf
  • anionic surfactants contain polyglycol ether chains, they can have a conventional, but preferably a narrow, homolog distribution.
  • Particularly preferred anionic surfactants are alkylbenzenesulfonates, alkyl and / or Alkenyl sulfates and / or alkyl ether sulfates and especially alkyl benzene sulfonates and / or alkyl and / or alkenyl sulfates.
  • Preferred alkylbenzenesulfonates preferably follow the formula (III)
  • R stands for a branched, but preferably linear alkyl radical having 10 to 18 carbon atoms
  • Ph for a phenyl radical
  • X for an alkali and / or alkaline earth metal, ammonium, alkylammonium, alkanolammonium or glucammonium.
  • dodecylbenzenesulfonates, tetradecylbenzenesulfonates, hexadecylbenzenesulfonates and their technical mixtures in the form of the sodium salts are particularly suitable.
  • Alkyl and / or alkenyl sulfates which are also often referred to as fatty alcohol sulfates, are to be understood as meaning the sulfation products of primary and / or secondary alcohols, which preferably follow the formula (IV)
  • R 3 represents a linear or branched, aliphatic alkyl and / or alkenyl radical having 6 to 22, preferably 12 to 18 carbon atoms and Y represents an alkali and / or alkaline earth metal, ammonium, alkylammonium, alkanolammonium or glucammonium.
  • alkyl sulfates which can be used in the context of the invention are the sulfation products of capron alcohol, caprylic alcohol, capric alcohol, 2-ethylhexyl alcohol, lauryl alcohol, myristic alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, arachselyl alcohol, elaidyl alcohol, elaidyl alcohol alcohol, gadoleyl alcohol, behenyl alcohol and erucyl alcohol and their technical mixtures, which are obtained by high pressure hydrogenation of technical methyl ester fractions or aldehydes from Roelen's oxosynthesis.
  • the sulfation products can preferably be used in the form of their alkali salts and in particular their sodium salts.
  • Alkyl sulfates based on Ci6 / 18 tallow fatty alcohols or vegetable fatty alcohols of comparable carbon chain distribution in the form of their sodium salts are particularly preferred.
  • these are oxo alcohols, as are obtainable, for example, by converting carbon monoxide and hydrogen to alpha-olefins using the shop process.
  • Such alcohol mixtures are commercially available under the trade names Dobanol® or Neodol®. Suitable alcohol mixtures are Dobanol 91®, 23®, 25®, 45®.
  • oxo alcohols such as those obtained after the classic Enichema or Condea oxo process by adding carbon monoxide and hydrogen to olefins.
  • These alcohol mixtures are a mixture of strongly branched alcohols. to fetch.
  • Such alcohol mixtures are commercially available under the trade name Lial®.
  • Suitable alcohol mixtures are Lial 91®, 111®, 123®, 125®, 145®.
  • ether sulfates are known anionic surfactants which are produced on an industrial scale by SO3 or chlorosulfonic acid (CSA) sulfation of fatty alcohol or oxo alcohol polyglycol ethers and subsequent neutralization.
  • CSA chlorosulfonic acid
  • ether sulfates come into consideration, which preferably follow the formula (V)
  • R 4 is a linear or branched alkyl and / or alkenyl radical having 6 to 22 carbon atoms
  • m is a number from 1 to 10
  • Z is an alkali and / or alkaline earth metal, ammonium, alkylammonium, alkanolammonium or glucammonium.
  • Typical examples are the sulfates of adducts of an average of 1 to 10 and in particular 2 to 5 moles of ethylene oxide with capronalcohol, caprylic alcohol, 2-ethylhexyl alcohol, capric alcohol, lauryl alcohol, isotridecyl alcohol, myristyl alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, oleostyl alcohol Elaidyl alcohol, petrotinyl alcohol, arachyl alcohol, gadoleyl alcohol, behenyl alcohol, erucyl alcohol and brassidyl alcohol and their technical mixtures in the form of their sodium and / or magnesium salts.
  • the ether sulfates can have both a conventional and a narrow homolog distribution. It is particularly preferred to use ether sulfates based on adducts of an average of 2 to 3 mol ethylene oxide with technical C12 / 14 or C1218 coconut oil alcohol fractions in the form of their sodium and / or magnesium salts.
  • the laundry detergents contain a nonionic surfactant mixture which necessarily contains the nonionic surfactants of the formulas (I) and (II).
  • the nonionic surfactant mixture can contain other customary nonionic surfactants if necessary, for example alkylphenol polyglycol ethers, fatty acid polyglycol esters, fatty acid amide polyglycol ethers, fatty amine polyglycol ethers, alkoxylated triglycerides, mixed ethers or mixed formals, optionally partially oxidized alk (en) yl oligoglycosidic acid derivatives or glucoroxamides, and glucoroxamides , Protein hydrolysates (especially vegetable products based on wheat), polyol fatty acid reesters, sugar esters, sorbitan esters, polysorbates and amine oxides.
  • nonionic surfactants contain polyglycol ether chains, they can have a conventional or a narrow homolog distribution.
  • the further customary nonionic surfactants are preferably present in minor amounts, generally up to ximal 40% by weight, preferably up to a maximum of 20% by weight and in particular in amounts of 0 to 10% by weight, based on the nonionic surfactant mixture.
  • the nonionic surfactant mixture consists exclusively of the nonionic surfactants of the formula (I) and (II).
  • the nonionic surfactants of the formula (I) are ethoxylates of unbranched or slightly branched saturated and / or unsaturated alcohols. If ethoxylates of linear, unbranched alcohols are concerned, R 1 in formula (I) represents an alkyl radical which is derived 100% by weight from a linear saturated and / or unsaturated alcohol having 8 to 22 carbon atoms.
  • Suitable linear alcohols from which the nonionic surfactants of the formula (I) can be derived, are capro alcohol, caprylic alcohol, capric alcohol, lauryl alcohol, myristyl alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, oleyl alcohol, elaidyl alcohol, petroselinyl alcohol, gadole alcohol alcohol, arachyl alcohol Behenyl alcohol, erucyl alcohol and brassidyl alcohol and their technical mixtures.
  • R 1 in formula (I) stands for linear alkyl radicals with 12 to 22 carbon atoms
  • R 1 in formula (I) stands for linear alkyl radicals with 16 to 22 carbon atoms
  • the nonionic surfactants of the formula (I) can also be ethoxylates of slightly branched saturated and / or unsaturated alcohols. Such slightly branched alcohols represent an alcohol mixture
  • alcohol mixtures are particularly suitable in which the proportion of methyl-branched alcohols makes up at least 80% by weight, preferably at least 90% by weight, of the total branched alcohols present.
  • Such alcohol mixtures are accessible through a special oxosynthesis known from the prior art by reacting carbon monoxide and hydrogen with ⁇ -standing olefins according to the SHOP.
  • Such alcohol mixtures are commercially available under the trade names Dobanol® or Neodol®.
  • Suitable alcohol mixtures are Dobanol 91®, 23®, 25®, 45® or Neodol 91®, 1®, 23®, 25®, 45®.
  • Alcohol mixtures of the type described which are derived from alcohols having a total of 12 to 15 carbon atoms, the carbon atoms of the branches being counted in the total carbon number, are particularly suitable.
  • R 1 in formula (I) is in particular alkyl radicals of an alcohol mixture
  • nonionic surfactants of the formula (I) are those in which R 1 represents exclusively linear alkyl radicals having 16 to 22 carbon atoms.
  • the number of moles of ethylene oxide (x) attached is in the range from 1 to 20, preferably from 2 to 15 and particularly preferably from 5 to 12, it being clear to the person skilled in the art that this is a statistical number.
  • the nonionic surfactants of the formula (II) are ethoxylates of strongly branched alcohol mixtures, such as those obtained by the classic oxi process of Eni or Condea by addition of carbon monoxide and hydrogen onto olefins, which do not exclusively carry terminal double bonds.
  • These strongly branched alcohol mixtures are preferably alcohols
  • Such alcohol mixtures are commercially available under the trade name Lial®. Suitable alcohol mixtures are the types Lial 91®, Lial 111®, Lial 123®, Lial 125®, Lial 145®.
  • the number of moles of ethylene oxide (y) added is in the range from 1 to 20, preferably from 2 to 10, it being clear to the person skilled in the art that this is a statistical number. It has proven particularly advantageous in the context of the invention if the nonionic surfactants of the formulas (I) and (II) have the same (statistical) degree of ethoxylation, i.e. x and y represent the same number.
  • the nonionic surfactant mixture can contain the nonionic surfactants of the formula (I) in amounts of 10 to 90% by weight and those of the formula (II) in amounts of 10 to 90% by weight, based on the nonionic surfactant mixture.
  • the nonionic surfactant mixture preferably contains 10 to 60% by weight of nonionic surfactants of the formula (I) and 40 to 90% by weight of nonionic surfactants of the formula (II).
  • the ratio of anionic surfactants to the nonionic surfactant mixture is not critical in the context of the invention, since even high proportions of nonionic surfactants in the detergents can be handled without problems within the scope of the invention.
  • the weight ratio of anionic surfactants to nonionic surfactant mixture is preferably in the range from 20:80 to 90:10, in particular from 30:70 to 80:20.
  • the solid detergents according to the invention generally contain 5 to 40% by weight of surfactants, where here the total surfactant content is meant.
  • the detergents according to the invention preferably contain the defoamers, based on the detergent, in a total amount of from 0.5 to 10% by weight, preferably from 1 to 5 and in particular from 1 to 3% by weight.
  • only wax-like defoamer compounds are contained as defoamers.
  • Compounds which have a melting point at atmospheric pressure above 25 ° C. (room temperature) are understood to be “waxy”. preferably have above 50 ° C and in particular above 70 ° C.
  • the wax-like defoamer substances which may be present according to the invention are practically insoluble in water, ie at 20 ° C. they have a solubility of less than 0.1% by weight in 100 g of water.
  • wax-like defoamer substances known from the prior art can be contained.
  • Suitable waxy compounds are, for example, bisamides, fatty alcohols, fatty acids, carboxylic acid esters of mono- and polyhydric alcohols, and paraffin waxes or mixtures thereof.
  • Suitable paraffin waxes generally represent a complex mixture of substances without a sharp melting point. For characterization, one usually determines its melting range by differential thermal analysis (DTA), as described in "The Analyst” 87 (1962), 420, and / or its solidification point , This is the temperature at which the paraffin changes from the liquid to the solid state by slow cooling. Paraffins which are completely liquid at room temperature, that is to say those having a solidification point below 25 ° C., cannot be used according to the invention. For example, the paraffin wax mixtures known from EP 0309931 A1 of, for example, 26% by weight to 49% by weight of microcrystalline paraffin wax with a solidification point of 62 ° C.
  • paraffin waxes which can be used according to the invention, this liquid fraction is as low as possible and is preferably absent entirely.
  • Particularly preferred paraffin wax mixtures at 30 ° C have a liquid fraction of less than 10% by weight, in particular from 2% by weight to 5% by weight, at 40 ° C a liquid fraction of less than 30% by weight, preferably of 5 % By weight to 25% by weight and in particular from 5% by weight to 15% by weight, at 60 ° C. a liquid fraction of 30% by weight to 60% by weight, in particular 40% by weight % to 55% by weight, at 80 ° C a liquid content of 80% by weight to 100% by weight, and at 90 ° C a liquid content of 100% by weight.
  • the temperature at which a liquid content of 100% by weight of the paraffin wax is reached is still below 85 ° C., in particular at 75 ° C. to 82 ° C., in particularly preferred paraffin wax mixtures.
  • the paraffin waxes can be petrolatum, microcrystalline waxes or hydrogenated or partially hydrogenated paraffin waxes.
  • Suitable bisamides as defoamers are those derived from saturated fatty acids with 12 to 22, preferably 14 to 18, carbon atoms and from alkylenediamines with 2 to 7 carbon atoms.
  • Suitable fatty acids are lauric acid, myristic acid, stearic acid, arachic acid and behenic acid and mixtures thereof, as can be obtained from natural fats or hydrogenated oils, such as tallow or hydrogenated palm oil.
  • Suitable diamines are, for example, ethylene diamine, 1,3-propylene diamine, tetramethylene diamine, pentamethylene diamine, hexamethylene diamine, p-phenylene diamine and tolylene diamine.
  • diamines Before- pulled diamines are ethylenediamine and hexamethylenediamine.
  • Particularly preferred bisamides are bismyristoylethylene diamine, bispalmitoylethylene diamine, bisstearoylethylene diamine and mixtures thereof and the corresponding derivatives of hexamethylene diamine.
  • Suitable carboxylic acid esters as defoamers are derived from carboxylic acids with 12 to 28 carbon atoms.
  • these are esters of behenic acid, stearic acid, hydroxystearic acid, oleic acid, palmitic acid, myristic acid and / or lauric acid.
  • the alcohol part of the carboxylic acid ester contains a mono- or polyhydric alcohol with 1 to 28 carbon atoms in the hydrocarbon chain.
  • suitable alcohols are behenyl alcohol, arachidyl alcohol, coconut alcohol, 12-hydroxystearyl alcohol, oleyl alcohol and lauryl alcohol as well as ethylene glycol, glycerin, polyvinyl alcohol, sucrose, erythritol, pentaerythritol, sorbitan and / or sorbitol.
  • Preferred esters are those of ethylene glycol, glycerol and sorbitan, the acid part of the ester being selected in particular from behenic acid, stearic acid, oleic acid, palmitic acid or myristic acid.
  • Suitable esters of polyvalent alcohols include xylitol monopalmitate, Pentarythritmonostearat, glycerol monostearate, ethylene glycol and sorbitan laurate, sorbitan palmitate, sorbitan, Sorbitandilaurat, sorbitan, sorbitan dioleate, and kylsorbitanmono- mixed Talgal- and diesters.
  • Glycerol esters which can be used are the mono-, di- or triesters of glycerol and the carboxylic acids mentioned, the mono- or diesters being preferred.
  • Glycerol monostearate, glycerol monooleate, glycerol monopalmitate, glycerol monobehenate and glycerol distearate are examples of this.
  • suitable natural esters as defoamers are beeswax, which mainly consists of the esters CH 3 (CH2) 24COO (CH 2 ) 27CH3 and CH3 (CH 2 ) 26COO (CH 2 ) 25CH3, and carnauba wax, which is a mixture of alkylamides of camauba acid , often in combination with small amounts of free camauba acid, other long-chain acids, high-molecular alcohols and hydrocarbons.
  • Suitable carboxylic acids as a further defoamer compound are, in particular, behenic acid, stearic acid, oleic acid, palmitic acid, myristic acid and lauric acid and mixtures thereof, as can be obtained from natural fats or optionally hardened oils, such as tallow or hydrogenated palm oil. Saturated fatty acids with 12 to 22, in particular 18 to 22, carbon atoms are preferred.
  • Suitable fatty alcohols as a further defoamer compound are the hydrogenated products of the fatty acids described.
  • Dialkyl ethers may also be present as defoamers.
  • the ethers can be constructed asymmetrically or symmetrically, ie contain two identical or different alkyl chains, preferably with 8 to 18 carbon atoms.
  • Typical examples are di-n-octyl ether, di-i- Octyl ether and di-n-stearyl ether, dialkyl ethers which have a melting point above 25 ° C., in particular above 40 ° C., are particularly suitable.
  • Suitable defoamer compounds are fatty ketones of the formula (VI),
  • ketones are known substances that can be obtained by the relevant methods of preparative organic chemistry. For their preparation, one starts, for example, from carboxylic acid magnesium salts which are pyrolyzed at temperatures above 300 ° C. with the elimination of carbon dioxide and water, for example according to the German laid-open specification DE 2553900 OS.
  • Suitable fatty ketones are those which are prepared by pyrolysis of the magnesium salts of lauric acid, myristic acid, palmitic acid, palmitoleic acid, stearic acid, oleic acid, elaidic acid, petroselinic acid, arachic acid, gadoleic acid, behenic acid or erucic acid.
  • Hentriacontanon-16 (R 5 and R 6 stands for an alkyl radical with 15 carbon atoms), tritriacontanone-17 (R 5 and R 6 stands for an alkyl radical with 16 carbon atoms), stearone (pentatriacontanone-18; R 5 and R 6 stands for an alkyl radical with 17 carbon atoms), heptatriacontanone-19 (R 5 and R 6 stands for an alkyl radical with 18 carbon atoms), arachinone (nonatriacontanone-20; R 5 and R 6 stands for an alkyl radical with 19 carbon atoms), hentetracontanone-21 (R 5 and R 6 stands for an alkyl radical with 20 carbon atoms) and / or Behenon (triatetracontanone-22; R 5 and R 6 stands for an alkyl radical with 21 carbon atoms).
  • Suitable defoamers are fatty acid polyethylene glycol esters of the formula (VII),
  • R 7 CO is a linear or branched, aliphatic, saturated and / or unsaturated acyl radical having 6 to 22 carbon atoms and n is a number from 0.5 to 1.5.
  • Fatty acid polyethyleneglycol esters of this type are preferably obtained by addition of ethylene oxide onto fatty acids which is homogeneously catalyzed in a basic manner; in particular, ethylene oxide is added to the fatty acids in the presence of alkanolamines as catalysts.
  • alkanolamines especially triethanolamin, leads to an extremely selective ethoxylation of the fatty acids, especially when it comes to producing low-ethoxylated compounds.
  • fatty acid polyethylene glycol esters of the formula (VII) in which R 7 represents a linear alkyl radical having 12 to 18 carbon atoms and n represents the number 1. Is particularly suitable with 1 mol of ethylene oxide ethoxylated lauric acid. Within the group of fatty acid polyethylene glycol esters, preference is given to those which have a melting point above 25 ° C., in particular above 40 ° C.
  • the paraffin waxes described are particularly preferably used alone as wax-like defoamers or in a mixture with one of the other wax-like defoamers, the proportion of paraffin waxes in the mixture preferably making up more than 50% by weight, based on the wax-like defoamer mixture.
  • the paraffin waxes can be applied to carriers if necessary. All known inorganic and / or organic carrier materials are suitable as carrier materials. Examples of typical inorganic carrier materials are alkali carbonates, aluminosilicates, water-soluble sheet silicates, alkali silicates, alkali sulfates, for example sodium sulfate, and alkali phosphates.
  • the alkali silicates are preferably a compound with a molar ratio of alkali oxide to SiO ⁇ of 1: 1.5 to 1: 3.5.
  • the use of such silicates results in particularly good grain properties, in particular high abrasion stability and nevertheless a high rate of dissolution in water.
  • the aluminosilicates referred to as carrier material include, in particular, the zeolites, for example zeolite NaA and NaX.
  • the compounds referred to as water-soluble layered silicates include, for example, amorphous or crystalline water glass. Silicates which are commercially available under the name Aerosil® or Sipernat® can also be used.
  • suitable organic carrier materials are film-forming polymers, for example polyvinyl alcohols, polyvinyl pyrrolidones, poly (meth) acrylates, polycarboxylates, cellulose derivatives and starch.
  • Usable cellulose ethers are, in particular, alkali carboxymethyl cellulose, methyl cellulose, ethyl cellulose, hydroxyethyl cellulose and so-called cellulose mixed ethers, such as, for example, methyl hydroxyethyl cellulose and methyl hydroxypropyl cellulose, and mixtures thereof.
  • Particularly suitable mixtures are composed of sodium carboxymethyl cellulose and methyl cellulose, the carboxymethyl cellulose usually having a degree of substitution of 0.5 to 0.8 carboxymethyl groups per anhydroglucose unit and the methyl cellulose having a degree of substitution of 1.2 to 2 methyl groups per anhydroglucose unit.
  • the mixtures preferably contain alkali carboxymethyl cellulose and nonionic cellulose ethers in weight ratios from 80:20 to 40:60, in particular from 75:25 to 50:50.
  • native starch which is composed of amylose and amylopectin. Starch is referred to as native starch as it is available as an extract from natural sources, for example from rice, potatoes, corn and wheat.
  • Carrier materials which can be used individually or more than one of the abovementioned compounds, in particular selected from the group of alkali metal carbonates, alkali metal sulfates, alkali metal phosphates, zeolites, water-soluble sheet silicates, alkali metal silicates, polycarboxylates, cellulose ethers, polyacrylate / polymethacrylate and starch.
  • alkali carbonates in particular sodium carbonate, alkali silicates, in particular sodium silicate, alkali sulfates, in particular sodium sulfate and zeolites are particularly suitable.
  • a mixture of at least one wax-like defoamer, preferably a paraffin wax, and a defoaming silicone compound is used as the defoamer.
  • suitable silicones are conventional organopolysiloxanes which can have a content of finely divided silica, which in turn can also be silanated. Such organopolysiloxanes are described, for example, in European patent application EP 0496510 A1. Polydiorganosiloxanes which are known from the prior art are particularly preferred. Suitable polydiorganosiloxanes can have an almost linear chain and are identified by the following formula (VIII),
  • R 8 can independently represent an alkyl or an aryl radical and z can stand for numbers in the range from 40 to 1,500.
  • suitable substituents R 8 are methyl, ethyl, propyl, isobutyl, tert. Butyl and phenyl.
  • compounds crosslinked via siloxane can also be used, as are known to the person skilled in the art under the name silicone resins.
  • the polydiorganosiloxanes contain finely divided silica, which can also be silanized. Silica-containing dimethylpolysiloxanes are particularly suitable.
  • the polydiorganosiloxanes advantageously have a Brookfield viscosity at 25 ° C.
  • the silicones are preferably applied to carrier materials. Suitable carrier materials have already been described in connection with the paraffins.
  • the carrier materials are generally present in amounts of 40 to 90% by weight, preferably in amounts of 45 to 75% by weight, based on defoamers.
  • the content of silicone in the mixtures with the wax-like defoamers - based on the active substance content of the defoamers - is a maximum of 50% by weight, preferably a maximum of 30% by weight ,
  • solid detergents are inorganic and organic builder substances, zeolites, crystalline phyllosilicates and amorphous silicates with builder properties and, where permissible, also phosphates such as tri- polyphosphates are used.
  • the builder substances are preferably contained in the detergents according to the invention in amounts of 10 to 60% by weight, based on the detergent.
  • the fine crystalline, synthetic and bound water-containing zeolite which is frequently used as a detergent builder is preferably zeolite A and / or P.
  • zeolite P for example, zeolite MA R
  • zeolite X and mixtures of A, X and / or P and Y are also suitable.
  • a cocrystallized sodium / kaiium aluminum silicate composed of zeolite A and zeolite X, which as VEGOBOND AX ® (commercial product of the company Condea Augusta SpA) is commercially available.
  • the zeolite can be used as a spray-dried powder or as an undried stabilized suspension that is still moist from its manufacture.
  • the zeolite can contain small additions of nonionic surfactants as stabilizers, for example 1 to 3% by weight, based on zeolite, of ethoxylated Ci2-C ⁇ -fatty alcohols with 2 to 5 ethylene oxide groups, Ci2 -C ⁇ 4 fatty alcohols with 4 to 5 ethylene oxide groups or ethoxylated isotridecanols.
  • Suitable zeolites have an average particle size of less than 10 ⁇ m (volume distribution; measurement method: Coulter Counter) and preferably contain 18 to 22% by weight, in particular 20 to 22% by weight, of bound water.
  • Suitable substitutes or partial substitutes for phosphates and zeolites are crystalline, layered sodium silicates of the general formula NaMSixO ⁇ x + ryH ⁇ O, where M is sodium or hydrogen, x is a number from 1, 9 to 4 and y is a number from 0 to 20 and preferred values for x are 2, 3 or 4.
  • Such crystalline layered silicates are described, for example, in European patent application EP 0164514 A1.
  • Preferred crystalline layered silicates of the formula given are those in which M represents sodium and x assumes the values 2 or 3.
  • both ⁇ - and ⁇ -sodium disilicate Na ⁇ Si ⁇ Os-y ⁇ O are preferred, wherein ⁇ -sodium disilicate can be obtained, for example, by the method described in international patent application WO 91/08171.
  • Further suitable layered silicates are known, for example, from patent applications DE 2334899 A1, EP 0026529 A1 and DE 3526405 A1. Their usability is not limited to a special composition or structural formula. However, smectites, in particular bentonites, are preferred here.
  • Suitable layer silicates, which belong to the group of water-swellable smectites, are e.g. those of the general formulas
  • the layered silicates can contain hydrogen, alkali, alkaline earth ions, in particular Na and Ca 2+ .
  • the amount of water of hydration is usually in the range of 8 to 20% by weight and depends on the swelling condition or the type of processing.
  • Useful layer silicates are known, for example, from US 3,966,629, US 4,062,647, EP 0026529 A1 and EP 0028432 A1. Layer silicates are preferably used which are largely free of calcium ions and strongly coloring iron ions due to an alkali treatment.
  • the preferred builder substances also include amorphous sodium silicates with a Na ⁇ O: Si0 2 modulus of 1: 2 to 1: 3.3, preferably 1: 2 to 1: 2.8 and in particular 1: 2 to 1: 2, 6, which are delayed release and have secondary washing properties.
  • the delay in dissolution compared to conventional amorphous sodium silicates can be caused in various ways, for example by surface treatment, compounding, compacting / compression or by overdrying.
  • the term “amorphous” is also understood to mean “X-ray amorphous”.
  • silicates in X-ray diffraction experiments do not provide sharp X-ray reflections, as are typical for crystalline substances, but at most one or more maxima of the scattered X-rays, which have a width of several degree units of the diffraction angle.
  • it can very well lead to particularly good builder properties if the silicate particles deliver washed-out or even sharp diffraction maxima in electron diffraction experiments.
  • This is to be integrated in such a way that the products have microcrystalline areas of size 10 to a few hundred nm, values up to max. 50 nm and in particular up to max. 20 nm are preferred.
  • Such so-called X-ray silicates which also have a delay in dissolution compared to conventional water glasses, are described, for example, in German patent application DE 4400024 A1. Particularly preferred are compressed / compacted amorphous silicates, compounded amorphous silicates and over-dried X-ray silicates.
  • phosphates As builders, provided that such use should not be avoided for ecological reasons.
  • the sodium salts of orthophosphates, pyrophosphates and in particular tripolyphosphates are particularly suitable. Their content is generally not more than 25% by weight, preferably not more than 20% by weight, in each case based on the finished composition. In some cases, it has been shown that tripolyphosphates in particular, even in small amounts up to a maximum of 10% by weight, based on the finished agent, in combination with other builder substances lead to a synergistic improvement in the secondary washing ability.
  • Usable organic builders are, for example, the polycarboxylic acids which can be used in the form of their sodium salts, such as citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, sugar acids, aminocarboxylic acids, nitrilotriacetic acid (NTA), provided that such use is not objectionable for ecological reasons, and mixtures of these.
  • Preferred salts are the salts of polycarboxylic acids such as citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, sugar acids and mixtures of these. The acids themselves can also be used.
  • the acids typically also have the property of an acidifying component and thus also serve to set a lower and milder pH value of detergents or cleaning agents.
  • Citric acid, succinic acid, glutaric acid, adipic acid, gluconic acid and any mixtures thereof can be mentioned in particular.
  • Suitable organic builder substances are dextrins, for example oligomers or polymers of carbohydrates, which can be obtained by partial hydrolysis of starches.
  • the hydrolysis can be carried out by customary processes, for example acid-catalyzed or enzyme-catalyzed. They are preferably hydrolysis products with average molar masses in the range from 400 to 500,000.
  • DE dextrose equivalent
  • Both maltodextrins with a DE between 3 and 20 and dry glucose syrups with a DE between 20 and 37 as well as so-called yellow dextrins and white dextrins with higher molar masses in the range from 2,000 to 30,000 can be used.
  • a preferred dextrin is described in British patent application GB 9419091 A1 ,
  • the oxidized derivatives of such dextrins are their reaction products with oxidizing agents which are capable of oxidizing at least one alcohol function of the saccharide ring to the carboxylic acid function.
  • Such oxidized dextrins and processes for their preparation are known, for example, from European patent applications EP 0232202 A1, EP 0427349 A1, EP 0472042 A1 and EP 0542496 A1 as well as from international patent applications WO 92/18542, WO 93/08251, WO 93/16110, WO 94 / 28030, WO 95/07303, WO 95/12619 and WO 95/20608 are known.
  • An oxidized oligosaccharide according to German patent application DE 19600018 AI is also suitable.
  • a product oxidized at C ⁇ of the saccharide ring can be particularly advantageous.
  • Suitable cobuilders are oxydisuccinates and other derivatives of disuccinates, preferably ethylenediamine disuccinate.
  • glycerol disuccinates and glycerol trisuccinates are also particularly preferred, as are described, for example, in US Pat. Nos. 4,524,009, 4,639,325, European Patent Application EP 0150930 A1 and Japanese Patent Application JP 93/339896.
  • Suitable amounts used in formulations containing zeolite and / or silicate are 3 to 15% by weight.
  • organic cobuilders are, for example, acetylated hydroxycarboxylic acids or their salts, which may also be in lactone form and which contain at least 4 carbon atoms and at least one hydroxyl group and a maximum of two acid groups.
  • Such cobuilders are described, for example, in international patent application WO 95/20029.
  • Suitable polymeric polycarboxylates are, for example, the sodium salts of polyacrylic acid or polymethacrylic acid, for example those with a relative molecular weight of 800 to 150,000 (based on acid and measured in each case against polystyrene sulfonic acid).
  • Suitable copolymeric polycarboxylates are, in particular, those of acrylic acid with methacrylic acid and of acrylic acid or methacrylic acid with maleic acid. Copolymers of acrylic acid with maleic acid which contain 50 to 90% by weight of acrylic acid and 50 to 10% by weight of maleic acid have proven to be particularly suitable.
  • the relative molecular weight, based on free acids, is generally 5,000 to 200,000, preferably 10,000 to 120,000 and in particular 50,000 to 100,000 (measured in each case against polystyrene sulfonic acid).
  • the (co) polymeric polycarboxylates can be used either as a powder or as an aqueous solution, with 20 to 55% by weight aqueous solutions being preferred.
  • Granular polymers are usually subsequently mixed into one or more basic granules.
  • biodegradable polymers composed of more than two different monomer units, for example those which, according to DE 4300772 A1, are salts of acrylic acid and maleic acid as well as vinyl alcohol or vinyl alcohol derivatives or DE 4221381 C2 as monomer salts of acrylic acid and the 2-alkylallylsulfonic acid and sugar derivatives.
  • Further preferred copolymers are those which are described in German patent applications DE 4303320 A1 and DE 4417734 A1 and which preferably contain acrolein and acrylic acid / acrylic acid salts or acrolein and vinyl acetate as monomers.
  • polymeric aminodicarboxylic acids are also to be mentioned as further preferred builder substances. Polyaspartic acids or their salts and derivatives are particularly preferred.
  • polyacetals which can be obtained by reacting dialdehydes with polyolcarboxylic acids which have 5 to 7 carbon atoms and at least 3 hydroxyl groups, for example as described in European patent application EP 0280223 A1.
  • Preferred polyacetals are obtained from dialdehydes such as glyoxal, glutaraldehyde, terephthalaldehyde and their mixtures and from polyol carboxylic acids such as gluconic acid and / or glucoheptonic acid.
  • the agents can also contain components which have a positive influence on the oil and fat washability from textiles.
  • the preferred oil and fat dissolving components include for example non-ionic cellulose ethers such as methyl cellulose and methyl hydroxypropyl cellulose with a proportion of methoxyl groups of 15 to 30% by weight and of hydroxypropoxyl groups of 1 to 15% by weight, based in each case on the nonionic cellulose ether, and those from the prior art known polymers of phthalic acid and / or terephthalic acid or of their derivatives, in particular polymers of ethylene terephthalates and / or polyethylene glycol terephthalates or anionically and / or nonionically modified derivatives thereof.
  • the sulfonated derivatives of phthalic acid and terephthalic acid polymers are particularly preferred.
  • Suitable ingredients of the agents are water-soluble inorganic salts such as bicarbonates, carbonates, amorphous silicates, normal water glasses, which have no outstanding builder properties, or mixtures of these; in particular, alkali carbonate and / or amorphous alkali silicate, especially sodium silicate with a molar ratio Na 2 0: Si0 2 of 1: 1 to 1: 4.5, preferably 1: 2 to 1: 3.5, are used.
  • the sodium carbonate content in the detergents according to the invention is preferably up to 40% by weight, advantageously between 2 and 35% by weight.
  • the content of sodium silicate in the agents (without special builder properties) is generally up to 10% by weight and preferably between 1 and 8% by weight.
  • the detergents can contain other known additives which are commonly used in detergents, for example salts of polyphosphonic acids, optical brighteners, enzymes, enzyme stabilizers, small amounts of neutral filler salts and colorants and fragrances, opacifiers or pearlescent agents.
  • sodium perborate tetrahydrate and sodium perborate monohydrate are of particular importance.
  • Other usable bleaching agents are, for example, sodium percarbonate, peroxypyrophosphates, citrate perhydrates and H2O2-delivering peracidic salts or peracids, such as perbenzoates, peroxophthalates, diperazelaic acid, phthaloiminoperic acid or diperdodecanedioic acid.
  • the bleaching agent content of the agents is preferably 5 to 35% by weight and in particular up to 30% by weight, advantageously using boron monohydrate or percarbonate.
  • Bleach activators which can be used are compounds which, under perhydrolysis conditions, give aliphatic peroxocarboxylic acids having preferably 1 to 10 C atoms, in particular 2 to 4 C atoms, and / or optionally substituted perbenzoic acid. Suitable substances are those which carry O- and / or N-acyl groups of the number of carbon atoms mentioned and / or optionally substituted benzoyl groups.
  • hydrophilically substituted acylacetals known from German patent application DE 19616769 A1 and the acyl lactams described in German patent application DE 196 16 770 and international patent application WO 95/14075 are also preferably used.
  • the combinations of conventional bleach activators known from German patent application DE 4443177 A1 can also be used. Bleach activators of this type are present in the customary quantitative range, preferably in amounts of 1% by weight to 10% by weight, in particular 2% by weight to 8% by weight, based on the total agent.
  • the sulfonimines and / or bleach-enhancing transition metal salts or transition metal complexes known from European patents EP 0446982 B1 and EP 0453 003 B1 can also be present as so-called bleaching catalysts.
  • the transition metal compounds in question include in particular the manganese, iron, cobalt, ruthenium or molybdenum salen complexes known from German patent application DE 19529905 A1 and their N-analog compounds known from German patent application DE 19620267 A1, which are known from German Patent application DE 19536082 A1 known manganese, iron, cobalt, ruthenium or molybdenum carbonyl complexes, the manganese, iron, cobalt, ruthenium, molybdenum, titanium, vanadium described in German patent application DE 196 05 688 and copper complexes with nitrogen-containing tripod ligands, the cobalt, iron, copper and ruthenium amine complexes known from German patent application DE 19620411 A1, the manganese, copper and cobalt described in German patent application DE 4416438 A1.
  • Bleach-enhancing transition metal complexes in particular with the central atoms Mn, Fe, Co, Cu, Mo, V, Ti and / or Ru, are in usual amounts, preferably in an amount up to 1 wt .-%, in particular from 0.0025 wt .-% to 0.25 wt .-% and particularly preferably from 0.01 wt .-% to 0, 1% by weight, based in each case on the total average.
  • Particularly suitable enzymes are those from the class of hydrolases, such as proteases, esterases, lipases or lipolytically active enzymes, amylases, cellulases or other glycosyl hydrolases and mixtures of the enzymes mentioned. All of these hydrolases contribute to the removal of stains, such as stains containing protein, fat or starch, and graying in the laundry. By removing pilling and microfibrils, cellulases and other glycosyl hydrolases can help maintain color and increase the softness of the textile. Oxidoreductases can also be used for bleaching or for inhibiting color transfer.
  • hydrolases such as proteases, esterases, lipases or lipolytically active enzymes, amylases, cellulases or other glycosyl hydrolases and mixtures of the enzymes mentioned. All of these hydrolases contribute to the removal of stains, such as stains containing protein, fat or starch, and graying in the laundry. By removing pilling and micro
  • Enzymes obtained from bacterial strains or fungi such as Bacillus subtilis, Bacillus licheniformis, Streptomyces griseus and Humicola insolens are particularly suitable.
  • Proteases of the subtilisin type and in particular proteases which are obtained from Bacillus lentus are preferably used.
  • Enzyme mixtures for example, from protease and amylase or protease and lipase or lipolytically active enzymes or protease and cellulase or from cellulase and lipase or lipolytically active enzymes or from protease, amylase and lipase or lipolytically active enzymes or protease, lipase or lipolytically active enzymes and cellulase, in particular, however, mixtures containing protease and / or lipase or mixtures with lipolytically active enzymes of particular interest.
  • Known cutinases are examples of such lipolytically active enzymes.
  • Peroxidases or oxidases have also proven to be suitable in some cases.
  • Suitable amylases include in particular ⁇ -amylases, iso-amylases, pululanases and pectinases.
  • Cellobiohydrolases, endoglucanases and ⁇ -glucosidases, which are also called cellobiases, or mixtures thereof, are preferably used as cellulases. Since the different cellulase types differ in their CMCase and avicelase activities, the desired activities can be set by targeted mixtures of the cellulases.
  • the enzymes can be adsorbed on carriers and / or embedded in coating substances in order to protect them against premature decomposition.
  • the proportion of the enzymes, enzyme mixtures or enzyme granules can be, for example, about 0.1 to 5% by weight, preferably 0.1 to about 2% by weight.
  • the agents can contain further enzyme stabilizers.
  • enzyme stabilizers For example, 0.5 to 1% by weight sodium formate can be used. It is also possible to use proteases which are stabilized with soluble calcium salts and a calcium content of preferably about 1.2% by weight, based on the enzyme.
  • calcium salts magnesium salts also serve as stabilizers.
  • boron compounds for example boric acid, boron oxide, borax and other alkali metal borates, such as the salts of orthoboric acid (H3BO3), metaboric acid (HBO2) and pyroboric acid (tetraboric acid H2B4O7), is particularly advantageous.
  • Graying inhibitors have the task of keeping the dirt detached from the fiber suspended in the liquor and thus preventing the dirt from being re-absorbed.
  • Water-soluble colloids of mostly organic nature are suitable for this purpose, for example the water-soluble salts of polymeric carboxylic acids, glue, gelatin, salts of ether carboxylic acids or ether sulfonic acids of starch or cellulose or salts of acidic sulfuric acid esters of cellulose or starch.
  • Water-soluble polyamides containing acidic groups are also suitable for this purpose. Soluble starch preparations and starch products other than those mentioned above can also be used, for example degraded starch, aldehyde starches, etc. Polyvinylpyrrolidone can also be used.
  • cellulose ethers such as carboxymethyl cellulose (sodium salt), methyl cellulose, hydroxyalkyl cellulose and mixed ethers, such as methyl hydroxyethyl cellulose, methyl hydroxypropyl cellulose, methyl carboxymethyl cellulose and mixtures thereof, and also polyvinylpyrrolidone, for example in amounts of 0.1 to 5% by weight, based on the Means used.
  • the agents can contain derivatives of diaminostilbenedisulfonic acid or its alkali metal salts. Suitable are, for example, salts of 4,4'-bis (2-anilino-4-mo ⁇ holino-1, 3,5-triazinyl-6-amino) stilbene-2,2'-disulfonic acid or compounds of similar structure which instead of the Mo ⁇ ho linino group carry a diethanolamino group, a methylamino group, an amino group or a 2-methoxyethylamino group.
  • Brighteners of the substituted diphenylstyrene type may also be present, for example the alkali salts of 4,4'-bis (2-sulfostyryl) diphenyl, 4,4'-bis (4-chloro-3-sulfostyryl) diphenyl , or 4- (4-chlorostyryl) -4 '- (2-sulfostyryl) diphenyl. Mixtures of the aforementioned brighteners can also be used.
  • Uniformly white granules are obtained if, in addition to the usual brighteners, the agents are present in customary amounts, for example between 0.1 and 0.5% by weight, preferably between 0.1 and 0.3% by weight, and also in small amounts, for example Contain 10- 6 to 10 3 wt .-%, preferably by 10- 5 wt .-%, of a blue dye.
  • a particularly preferred dye is Tinolux® (commercial product from Ciba-Geigy).
  • Soil repellants are substances which preferably contain ethylene terephthalate and / or polyethylene glycol terephthalate groups, the molar ratio of ethylene terephthalate to polyethylene glycol terephthalate being in the range from 50:50 to 90:10.
  • the molecular weight of the linking polyethylene glycol units is in particular in the range from 750 to 5000, ie the degree of ethoxylation of the polymers containing polyethylene glycol groups can be approximately 15 to 100.
  • the polymers are distinguished by an average molecular weight of approximately 5000 to 200,000 and can have a block, but preferably a random structure
  • Preferred polymers are those with molar ratios of ethylene terephthalate / polyethylene glycol terephthalate of from about 65:35 to about 90:10, preferably from about 70:30 to 80:20.
  • those polymers which combine linking polyethylene glycol units with a have a molecular weight of from 750 to 5000, preferably from 1000 to about 3000 and a molecular weight of the polymer from about 10,000 to about 50,000.
  • Examples of commercially available polymers are the products Milease® T (ICI) or Repelotex® SRP 3 (Rh ⁇ ne-Poulenc).
  • fragrance compounds e.g. the synthetic products of the ester, ether, aldehyde, ketone, alcohol and hydrocarbon type are used.
  • Fragrance compounds of the ester type are e.g. Benzyl acetate, phenoxyethyl isobutyrate, p-tert-butylcyclohexyl acetate, linalyl acetate, dimethylbenzylcarbinylacetate, phenylethyl acetate, linalylbenzoate, benzyl formate, ethylmethylphenylglycinate, allylcyclohexylpropionate, styrallylpropionate and benzylsa- licate and benzylsa-.
  • the ethers include, for example, benzyl ethyl ether, the aldehydes e.g. the linear alkanals with 8-18 C atoms, citral, citronellal, citronellyloxyacetaldehyde, cyclamenaldehyde, hydroxycitronellal, lilial and bourgeonal, to the ketones e.g.
  • perfume oils can also contain natural fragrance mixtures as are available from plant sources, e.g. Pine, citrus, jasmine, patchouly, rose or ylang-ylang oil.
  • muscatel sage oil, chamomile oil, clove oil, lemon balm oil, mint oil, cinnamon leaf oil, linden blossom oil, juniper berry oil, vetiver oil, olibanumol, galbanum oil and labdanum oil as well as orange blossom oil, neroliol, orange peel oil and sandalwood oil.
  • the fragrances can be incorporated directly into the agents according to the invention, but it can also be advantageous to apply the fragrances to carriers which increase the adhesion of the perfume to the laundry and ensure a long-lasting fragrance of the textiles due to a slower fragrance release.
  • Cyclodextrins for example, have proven useful as such carrier materials, and the cyclodextrin-perfume complexes can additionally be coated with further auxiliaries.
  • the detergents according to the invention can also contain inorganic salts as fillers or fillers, such as sodium sulfate, which is preferably present in amounts of 0 to 10, in particular 1 to 5% by weight, based on the composition.
  • inorganic salts such as sodium sulfate, which is preferably present in amounts of 0 to 10, in particular 1 to 5% by weight, based on the composition.
  • the detergents according to the invention can be produced or used in the form of powders, extrudates, granules or tablets.
  • the corresponding methods known from the prior art are suitable for producing such agents.
  • the means are preferably produced thereby provides that various particulate components containing detergent ingredients are mixed together.
  • the particulate components can be produced by spray drying, simple mixing or complex granulation processes, for example fluidized bed granulation. It is particularly preferred that at least one surfactant-containing component is produced by fluidized bed granulation. Furthermore, it can be particularly preferred if aqueous preparations of the alkali silicate and the alkali carbonate are sprayed together with other detergent ingredients in a drying device, and granulation can take place simultaneously with the drying.
  • the drying device into which the aqueous preparation is sprayed can be any drying apparatus.
  • the drying is carried out as spray drying in a drying tower.
  • the aqueous preparations are exposed to a drying gas stream in finely divided form in a known manner.
  • the applicant describes an embodiment of spray drying with superheated steam in a number of published documents. The working principle disclosed there is hereby expressly made the subject of the present disclosure of the invention.
  • the mixtures are then subjected to a compacting step, further ingredients being added to the agents only after the compacting step.
  • the ingredients are compacted in a press agglomeration process.
  • the press agglomeration process to which the solid premix (dried basic detergent) is subjected can be carried out in various apparatuses. Different press agglomeration processes are distinguished depending on the type of agglomerator used.
  • the four most common press agglomeration processes preferred in the context of the present invention are extrusion, roll pressing or compacting, hole pressing (pelletizing) and tableting, so that preferred press agglomeration processes in the context of the present invention are extrusion, roll compacting, pelletizing - or tableting processes.
  • All processes have in common that the premix is compressed and plasticized under pressure and the individual particles are pressed together and the porosity is reduced and adhere to one another.
  • the tools can be used in all processes (with tableting with restrictions) heat to higher temperatures or cool to dissipate the heat generated by shear forces.
  • binders can be used as an aid to compaction.
  • a binder is used which is already completely present as a melt at temperatures of up to 130 ° C., preferably up to 100 ° C. and in particular up to 90 ° C.
  • the binder must therefore be selected depending on the process and process conditions, or the process conditions, in particular the process temperature, must - if a particular binder is desired - be adapted to the binder.
  • the actual compression process preferably takes place at processing temperatures which, at least in the compression step, correspond at least to the temperature of the softening point, if not even the temperature of the melting point of the binder.
  • the process temperature is significantly above the melting point or above the temperature at which the binder is in the form of a melt.
  • the process temperature in the compression step is not more than 20 ° C. above the melting temperature or the upper limit of the melting range of the binder. It is technically possible to set even higher temperatures; However, it has been shown that a temperature difference of 20 ° C. from the melting temperature or softening temperature of the binder is generally sufficient and even higher temperatures do not bring any additional advantages.
  • thermoly sensitive raw materials for example peroxy bleaching agents such as perborate and / or percarbonate, but also enzymes, can increasingly be processed without serious loss of active substance.
  • peroxy bleaching agents such as perborate and / or percarbonate, but also enzymes.
  • the possibility of precise temperature control of the binder in particular in the decisive step of compaction, i.e. between the mixing / homogenization of the premix and the shaping, permits an energetically very economical and extremely gentle process control for the temperature-sensitive components of the premix, since the premix only lasts for a short time exposed to higher temperatures.
  • the work tools of the press agglomerator (the screw (s) of the extruder, the roller (s) of the roller compactor and the press roller (s) of the pellet press) have a temperature of at most 150 ° C., preferably at most 100 ° C. and in particular to a maximum of 75 ° C and the process temperature is 30 ° C and in particular a maximum of 20 ° C above the melting temperature or the upper temperature limit of the melting range of the binder.
  • the duration is preferably
  • the temperature effect in the compression range of the press agglomerators is a maximum of 2 minutes and is in particular in a range between 30 seconds and 1 minute.
  • Preferred binders which can be used alone or in a mixture with other binders are polyethylene glycols, 1,2-polypropylene glycols and modified polyethylene glycols and polypropylene glycols.
  • the modified polyalkylene glycols include in particular the sulfates and / or the disulfates of polyethylene glycols or polypropylene glycols with a relative molecular weight between 600 and 12,000 and in particular between 1,000 and 4,000.
  • Another group consists of mono- and / or disuccinates of the polyalkylene glycols, which again have relative molecular weights between 600 and 6,000, preferably between 1,000 and 4,000.
  • polyethylene glycols include those polymers which, in addition to ethylene glycol, also employ C3-Cs glycols and glycerol and mixtures thereof as starting molecules. Ethoxylated derivatives such as trimethylolpropane with 5 to 30 EO are also included.
  • the polyethylene glycols preferably used can have a linear or branched structure, linear polyethylene glycols being particularly preferred.
  • the particularly preferred polyethylene glycols include those with relative molecular weights between 2,000 and 12,000, advantageously around 4,000, polyethylene glycols with relative molecular weights below 3,500 and above 5,000, in particular in combination with polyethylene glycols with a relative molecular weight of around 4,000, and can be used Such combinations advantageously have more than 50% by weight, based on the total amount of polyethylene glycols, of polyethylene glycols with a relative molecular weight between 3,500 and 5,000.
  • polyethylene glycols can also be used as binders, which are per se in liquid state at room temperature and a pressure of 1 bar; here we are mainly talking about polyethylene glycol with a relative molecular mass of 200, 400 and 600.
  • these per se liquid polyethylene glycols should only be used in a mixture with at least one further binder, this mixture again having to meet the requirements according to the invention, that is to say having a melting point or softening point of at least above 45 ° C.
  • suitable as binders are low molecular weight polyvinylpyrrolidones and derivatives thereof with relative molecular weights of up to a maximum of 30,000. Relative molecular weight ranges between 3,000 and 30,000, for example around 10,000 are preferred.
  • Polyvinylpyrrolidones are preferably not used as sole binders but in combination with other used in particular in combination with polyethylene glycols.
  • the compressed material preferably has temperatures not above 90 ° C. immediately after it leaves the production apparatus, temperatures between 35 and 85 ° C. being particularly preferred. are moving. It has been found that exit temperatures - especially in the extrusion process - from 40 to 80 ° C, for example up to 70 ° C, are particularly advantageous.
  • the detergent according to the invention is produced by means of an extrusion, as described, for example, in European patent EP 0486592 B1 or international patent applications WO 93/02176 and WO 94/09111 or WO 98/12299.
  • a solid premix is pressed in the form of a strand under pressure and the strand is cut to the predeterminable size of the granulate after it has emerged from the hole shape by means of a cutting device.
  • the homogeneous and solid premix contains a plasticizer and / or lubricant, which causes the premix to become plastically softened and extrudable under the pressure or under the entry of specific work.
  • Preferred plasticizers and / or lubricants are surfactants and / or polymers.
  • the premix is preferably fed to a planetary roller extruder or a 2-shaft extruder or 2-screw extruder with co-rotating or counter-rotating screw guidance, the housing and the extruder pelletizing head of which can be heated to the predetermined extrusion temperature.
  • the premix is compressed, plasticized, extruded in the form of fine strands through the perforated die plate in the extruder head and finally, under pressure, which is preferably at least 25 bar, but can also be lower at extremely high throughputs depending on the apparatus used the extrudate is preferably reduced to approximately spherical to cylindrical granules by means of a rotating knife.
  • the hole diameter of the perforated nozzle plate and the strand cut length are matched to the selected granulate dimension. In this way, granules of an essentially uniformly predeterminable particle size can be produced, and in particular the absolute particle sizes can be adapted to the intended use. In general, particle diameters up to at most 0.8 cm are preferred.
  • Important embodiments provide for the production of uniform granules in the millimeter range, for example in the range from 0.5 to 5 mm and in particular in the range from approximately 0.8 to 3 mm.
  • the length / diameter ratio of the chopped-off primary granules is preferably in the range from about 1: 1 to about 3: 1. It is also preferred to feed the still plastic primary granules to a further shaping processing step; edges present on the crude extrudate are rounded off, so that ultimately spherical to approximately spherical extrudate grains can be obtained.
  • small amounts of dry powder for example zeolite powder such as zeolite NaA powder, can also be used in this step. This shape can be done in standard rounding machines.
  • extrusions / pressings can also be carried out in low-pressure extruders, in the Kahl press (from Amandus Kahl) or in the Bepex extruder.
  • the temperature control in the transition region of the screw, the pre-distributor and the nozzle plate is preferably designed such that the melting temperature of the binder or the upper limit of the melting range of the binder is at least reached, but preferably exceeded.
  • the duration of the temperature influence in the compression range of the extrusion is preferably less than 2 minutes and in particular in a range between 30 seconds and 1 minute.
  • the detergents according to the invention can also be produced by means of a roller compacting.
  • the premix is metered in between two smooth rollers or with recesses of a defined shape and rolled out under pressure between the two rollers to form a sheet-like compact, the so-called Schülpe.
  • the rollers exert a high line pressure on the premix and can be additionally heated or cooled as required.
  • smooth rollers smooth, unstructured sliver belts are obtained, while by using structured rollers, correspondingly structured slugs can be produced in which, for example, certain shapes of the later detergent particles can be specified.
  • the sliver belt is subsequently broken up into smaller pieces by a knocking-off and crushing process and can be processed into granules in this way, which can be refined by further known surface treatment processes, in particular in an approximately spherical shape.
  • the temperature of the pressing tools that is to say the rollers, is preferably at most 150 ° C., preferably at most 100 ° C. and in particular at a maximum of 75 ° C.
  • Particularly preferred manufacturing processes work in the compacting of rollers with process temperatures which are 10 ° C., in particular a maximum of 5 ° C. above the melting temperature or the upper temperature limit of the melting range of the binder.
  • the duration of the temperature effect in the compression area of the smooth rollers or with depressions of a defined shape is a maximum of 2 minutes and is in particular in a range between 30 seconds and 1 minute.
  • the detergent according to the invention can also be produced by pelleting.
  • the premix is applied to a perforated surface and pressed through the holes by means of a pressure-producing body with plasticization.
  • the premix is compressed under pressure, plasticized, pressed through a perforated surface by means of a rotating roller in the form of fine strands and finally comminuted into granules using a knock-off device.
  • the most varied configurations of the pressure roller and perforated die are conceivable here. For example, flat perforated plates are used as well as concave or convex ring matrices through which the material can be pressed using one or more pressure rollers is pressed through.
  • the press rolls can also be conical in the plate devices, in the ring-shaped devices dies and press roll (s) can have the same or opposite direction of rotation.
  • An apparatus suitable for carrying out the method is described, for example, in German laid-open specification DE 3816842 A1.
  • the ring die press disclosed in this document consists of a rotating ring die interspersed with press channels and at least one press roller which is operatively connected to its inner surface and which presses the material supplied to the die space through the press channels into a material discharge.
  • the ring die and the press roller can be driven in the same direction, which means that a reduced shear stress and thus a lower temperature increase in the premix can be achieved.
  • the temperature of the pressing tools is preferably at most 150 ° C., preferably at most 100 ° C. and in particular at most 75 ° C.
  • Particularly preferred manufacturing processes work in the compacting of rollers with process temperatures which are 10 ° C., in particular a maximum of 5 ° C. above the melting temperature or the upper temperature limit of the melting range of the binder.
  • Another pressing agglomeration process that can be used to produce the detergents according to the invention is tableting. Because of the size of the molded body produced, it may be useful for tableting to add conventional disintegration aids, for example cellulose and its derivatives, in particular in coarser form, or crosslinked PVP in addition to the binder described above, which facilitate the disintegration of the compacts in the wash liquor.
  • the particulate press agglomerates obtained can either be used directly as detergents or aftertreated and / or prepared beforehand by customary methods.
  • the usual aftertreatments include, for example, powdering with finely divided ingredients from detergents or cleaning agents, which generally further increases the bulk density.
  • a preferred aftertreatment is also the procedure according to German patent applications DE 19524287 A1 and DE 19547457 A1, in which dusty or at least finely divided ingredients (the so-called fine fractions) are adhered to the particulate end products of the process, which serve as the core, and thus give rise to agents , which have these so-called fines as an outer shell.
  • this advantageously takes place by melting agglomeration.
  • the solid detergents are in tablet form, these tablets preferably having rounded corners and edges, in particular for storage and transport reasons.
  • the base of these tablets can be circular or rectangular, for example.
  • Multi-layer tablets in particular tablets with 2 or 3 layers, which can also have different colors, are particularly preferred. Blue- white or green-white or blue-green-white tablets are particularly preferred.
  • Detergent tablets generally contain a disintegrant which is intended to bring about the rapid dissolution of the tablet or the rapid disintegration of the tablet in the aqueous liquor.
  • a disintegrant which is intended to bring about the rapid dissolution of the tablet or the rapid disintegration of the tablet in the aqueous liquor.
  • German patent applications DE 19709991 A1 and DE 19710254 A1 in which preferred cellulose-based disintegrant granules are described.
  • the solid detergents according to the invention are distinguished by a reliably controlled foam behavior, even in the case of the detergents which are particularly difficult to defoam and have high proportions of nonionic, highly branched surfactants.
  • the solid detergents can also be checked in their foam without the addition of silicones, usually only by adding wax-like defoamers, which are considerably cheaper, especially since they only have to be used in relatively small amounts.
  • the presence of the linear or only slightly branched nonionic surfactants of the formula (I) appears to be essential for this effect.
  • Another object of the present invention therefore relates to the use of nonionic surfactants of the formula (I) as a foam-reducing compound for solid detergents containing anionic surfactants, nonionic surfactants of the formula (II) and optionally defoamers.
  • the powder detergents were examined for their foaming behavior. For this purpose, 5 kg of laundry was washed in a Miele washing machine at a temperature of 90 ° C. The foam formed during the washing process was observed and rated with notes after a washing period of 30 min. The following grades were awarded:
  • Lial® 125 is a C11-15 alcohol mixture consisting of 43.5% by weight saturated linear alcohols, 15.5% by weight methyl-branched alcohols and 41% by weight alcohols branched with alkyl groups with at least 2 C atoms.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)

Abstract

L'invention concerne les détergents solides destinés notamment au lavage domestique de textiles, et plus particulièrement les détergents solides à mousse contrôlée contenant des tensioactifs anioniques, un mélange tensioactif non ionique spécial et des agents antimoussant. L'invention concerne également l'utilisation d'éthoxylats d'alcool à faible ramification comme composé contrôlant la mousse dans ces détergents.
PCT/EP2000/005499 1999-06-24 2000-06-15 Detergent solide a mousse controlee WO2001000763A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19928923.9 1999-06-24
DE1999128923 DE19928923A1 (de) 1999-06-24 1999-06-24 Schaumkontrollierte feste Waschmittel

Publications (1)

Publication Number Publication Date
WO2001000763A1 true WO2001000763A1 (fr) 2001-01-04

Family

ID=7912366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/005499 WO2001000763A1 (fr) 1999-06-24 2000-06-15 Detergent solide a mousse controlee

Country Status (2)

Country Link
DE (1) DE19928923A1 (fr)
WO (1) WO2001000763A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11366392B2 (en) 2018-01-25 2022-06-21 Merck Patent Gmbh Photoresist remover compositions
US11994803B2 (en) 2019-07-11 2024-05-28 Merck Patent Gmbh Photoresist remover compositions

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022043042A1 (fr) * 2020-08-28 2022-03-03 Unilever Ip Holdings B.V. Composition détergente

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0309931A2 (fr) * 1987-09-30 1989-04-05 Henkel Kommanditgesellschaft auf Aktien Antimousse régulatrice apte à l'utilisation dans les lessives et les détergents
DE4111335A1 (de) * 1991-04-08 1992-10-15 Henkel Kgaa Waschmittel auf basis von alkylglykosid und aniontensiden
DE19703364A1 (de) * 1997-01-30 1998-08-06 Henkel Ecolab Gmbh & Co Ohg Pastenförmiges Wasch- und Reinigungsmittel

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO121968C (fr) * 1966-06-23 1977-06-13 Mo Och Domsjoe Ab
GB1492938A (en) * 1974-01-11 1977-11-23 Procter & Gamble Ltd Low sudsing detergent compositions
GB1572605A (en) * 1976-03-08 1980-07-30 Procter & Gamble Liqid enzyme containing detergent composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0309931A2 (fr) * 1987-09-30 1989-04-05 Henkel Kommanditgesellschaft auf Aktien Antimousse régulatrice apte à l'utilisation dans les lessives et les détergents
DE4111335A1 (de) * 1991-04-08 1992-10-15 Henkel Kgaa Waschmittel auf basis von alkylglykosid und aniontensiden
DE19703364A1 (de) * 1997-01-30 1998-08-06 Henkel Ecolab Gmbh & Co Ohg Pastenförmiges Wasch- und Reinigungsmittel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11366392B2 (en) 2018-01-25 2022-06-21 Merck Patent Gmbh Photoresist remover compositions
US11994803B2 (en) 2019-07-11 2024-05-28 Merck Patent Gmbh Photoresist remover compositions

Also Published As

Publication number Publication date
DE19928923A1 (de) 2000-12-28

Similar Documents

Publication Publication Date Title
EP1235897B1 (fr) Pastilles de detergent
EP1106675B1 (fr) Utilisation de polyglycolethers de glycerides partiels
EP1232242B1 (fr) Granules d'agent tensio-actif a vitesse de decomposition amelioree
EP1188817A2 (fr) Composition Detergente
EP1191094A2 (fr) Composition Detergente
WO2001034761A1 (fr) Granules de tensioactifs presentant une vitesse de dissolution amelioree
EP1250412B1 (fr) Procede de production de granules tensioactifs
EP1081219B1 (fr) Détergents sous forme solide
EP1214389B1 (fr) Melanges de tensioactifs
WO2001018164A1 (fr) Detergents
WO2001000763A1 (fr) Detergent solide a mousse controlee
EP1081217A2 (fr) Additif detergent solide
WO2001034756A1 (fr) Pastilles de detergent
EP1081213A1 (fr) Agents de lavage solides à mousse contrôlée
WO2001014508A1 (fr) Detergents solides a mousse controlee
EP1090979A1 (fr) Granulés anti-mousse
EP1078979A1 (fr) Agents de lavage solides à mousse contrôlée
WO2001000761A1 (fr) Detergents solides a mousse controlee
WO2001000762A1 (fr) Detergents solides a mousse controlee
EP1090978A1 (fr) Agent de lavage, de rinçage et nettoyage solide contenant des granulats antimousse
DE10162645A1 (de) Tensidgranulate mit verbesserter Auflösegeschwindigkeit durch Zusatz von modifizierten Polyacrylsäure-Salzen
DE10002009A1 (de) Tensidgranulate
EP1083215A1 (fr) Composition détergente

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase