DE102009057167A1 - Elektronische Vorrichtung enthaltend Metallkomplexe - Google Patents

Elektronische Vorrichtung enthaltend Metallkomplexe Download PDF

Info

Publication number
DE102009057167A1
DE102009057167A1 DE102009057167A DE102009057167A DE102009057167A1 DE 102009057167 A1 DE102009057167 A1 DE 102009057167A1 DE 102009057167 A DE102009057167 A DE 102009057167A DE 102009057167 A DE102009057167 A DE 102009057167A DE 102009057167 A1 DE102009057167 A1 DE 102009057167A1
Authority
DE
Germany
Prior art keywords
group
substituted
aromatic
occurrence
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102009057167A
Other languages
English (en)
Inventor
Philipp Dr. Stößel
Dominik Dr. Joosten
Esther Dr. Breuning
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Patent GmbH
Original Assignee
Merck Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent GmbH filed Critical Merck Patent GmbH
Priority to DE102009057167A priority Critical patent/DE102009057167A1/de
Priority to US13/513,592 priority patent/US9634268B2/en
Priority to KR1020127017578A priority patent/KR20120091443A/ko
Priority to DE112010004687T priority patent/DE112010004687A5/de
Priority to JP2012541333A priority patent/JP5766712B2/ja
Priority to CN201080055085.3A priority patent/CN102648540B/zh
Priority to PCT/EP2010/006821 priority patent/WO2011066898A1/de
Priority to TW099141714A priority patent/TW201137083A/zh
Publication of DE102009057167A1 publication Critical patent/DE102009057167A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/331Metal complexes comprising an iron-series metal, e.g. Fe, Co, Ni
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/10Metal complexes of organic compounds not being dyes in uncomplexed form
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/30Doping active layers, e.g. electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/346Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising platinum
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/371Metal complexes comprising a group IB metal element, e.g. comprising copper, gold or silver
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/381Metal complexes comprising a group IIB metal element, e.g. comprising cadmium, mercury or zinc
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1033Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1037Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/187Metal complexes of the iron group metals, i.e. Fe, Co or Ni
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/188Metal complexes of other metals not provided for in one of the previous groups
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Abstract

Die vorliegende Erfindung betrifft elektronische Vorrichtungen, insbesondere organische Elektrolumineszenzvorrichtungen enthaltend Metallkomplexe gemäß der Formel (1) sowie die bevorzugten Metallkomplexe.

Description

  • Die vorliegende Anmeldung betrifft elektronische Vorrichtungen, insbesondere organische Elektrolumineszenzvorrichtungen, enthaltend Metallkomplexe sowie die für die Verwendung bevorzugten Metallkomplexe.
  • Der Aufbau organischer Elektrolumineszenzvorrichtungen (OLEDs), in denen organische Halbleiter als funktionelle Materialien eingesetzt werden, ist beispielsweise in US 4539507 , US 5151629 , EP 0676461 und WO 98/27136 beschrieben. Dabei werden als emittierende Materialien zunehmend metallorganische Komplexe eingesetzt, die Phosphoreszenz statt Fluoreszenz zeigen (M. A. Baldo et al., Appl. Phys. Lett. 1999, 75, 4– 6). Aus quantenmechanischen Gründen ist unter Verwendung metallorganischer Verbindungen als Phosphoreszenzemitter eine bis zu vierfache Energie- und Leistungseffizienz möglich. Generell gibt es bei OLEDs, die Triplettemission zeigen, jedoch immer noch Verbesserungsbedarf. So sind die physikalischen Eigenschaften von phosphoreszierenden OLEDs im Hinblick auf Effizienz, Betriebsspannung und Lebensdauer noch nicht ausreichend für die Verwendung von Triplettemittern in hochwertigen und langlebigen Elektrolumineszenzvorrichtungen. Dies gilt insbesondere für OLEDs, welche im kürzerwelligen Bereich, also grün und insbesondere blau, emittieren. So sind bislang keine blau emittierenden Triplettemitter bekannt, welche die technischen Anforderungen für eine industrielle Anwendung erfüllen.
  • Gemäß dem Stand der Technik werden in phosphoreszierenden OLEDs als Triplettemitter insbesondere Iridium- und Platinkomplexe eingesetzt. Diese haben jedoch den Nachteil, dass es sich dabei um Metalle mit einer sehr geringen Häufigkeit und daher auch entsprechend um teure Metalle handelt. Zur Schonung der natürlichen Ressourcen dieser Metalle wäre es daher wünschenswert, Emitter auf Basis anderer Metalle zur Verfügung zu haben. Ein weiterer Nachteil der üblicherweise verwendeten Iridium- und Platinkomplexe besteht darin, dass es sich üblicherweise um organometallische Komplexe mit Metall-Kohlenstoff-Bindungen handelt. Solche Metall-Kohlenstoff-Bindungen sind teilweise nur schwierig synthetisch zugänglich. Weiterhin weisen diese Komplexe teilweise nur eine geringe thermische Stabilität auf.
  • Aufgabe der vorliegenden Erfindung ist daher die Bereitstellung weiterer Metallkomplexe, welche sich als Emitter oder auch als Matrixmaterialien oder in anderen Funktionen für die Verwendung in OLEDs eignen und dort zu hohen Effizienzen und hohen Lebensdauern führen und welche synthetisch einfach zugänglich sind.
  • Überraschend wurde gefunden, dass bestimmte, unten näher beschriebene Metallchelatkomplexe diese Aufgabe lösen und sich sehr gut für die Verwendung in organischen Elektrolumineszenzvorrichtungen eignen, insbesondere bei der Verwendung als emittierendes Material. Dabei zeigen sie eine hohe Lebensdauer, eine hohe Effizienz und eine gute Stabilität gegenüber Temperaturbelastung. Weiterhin ist das Zentralatom dieser Komplexe nicht Iridium als seltenes Metall. Ein weiterer Vorteil dieser Komplexe ist, dass diese synthetisch einfach zugänglich sind. Organische Elektrolumineszenzvorrichtungen, welche diese Komplexe enthalten, sowie die bevorzugten Metallkomplexe sind daher der Gegenstand der vorliegenden Erfindung.
  • Gegenstand der vorliegenden Erfindung ist somit eine elektronische Vorrichtung enthaltend Anode, Kathode und mindestens eine Verbindung gemäß Formel (1),
    Figure 00020001
    Formel (1) enthaltend ein Metall M, koordiniert an einen Liganden L gemäß Formel (2),
    Figure 00030001
    Formel (2) wobei für die verwendeten Symbole und Indizes gilt:
    M ist ausgewählt aus Cu, Ag, Au, Zn, Sn, Pb, Ni, Pd oder Pt;
    V ist ausgewählt aus B, BR, CR, CO, SiR, N, NR+, P, PR+, P(=O), As, AsR+, As(=O), Sb, SbR+, Sb(=O) oder S+; oder V ist eine aliphatische, aromatische oder heteroaromatische cyclische Gruppe mit 3 bis 6 Ringatomen, die die Teilliganden L1, L2 und L3, gegebenenfalls über die Gruppe Y, kovalent miteinander verbindet und die durch einen oder mehrere Reste R substituiert sein kann;
    Y ist bei jedem Auftreten gleich oder verschieden eine bivalente Gruppe, ausgewählt aus CR2, BR, SiR2, NR, PR, P(=O)R, AsR, As(=O)R, SbR, Sb(=O)R, O, S, 1,2-Vinylen oder 1,2- oder 1,3-Phenylen, welches jeweils mit einem oder mehreren Resten R substituiert sein kann;
    a ist 0 oder 1;
    b ist 1, 2 oder 3, wobei für b 2 oder 3 der Index a = 1 ist;
    L1 ist eine heterocyclische Gruppe mit 1 bis 20 C-Atomen und mindestens einem N-Atom, welche durch einen oder mehrere Reste R substituiert sein kann und welche über ein neutrales oder anionisches Stickstoffatom oder über ein neutrales Kohlenstoffatom, welches jeweils Teil der heterocyclischen Gruppe ist, an M bindet; oder ist eine cyclische oder heterocyclische Gruppe mit 1 bis 20 C-Atomen, welche über ein exocyclisches Donoratom an M bindet und welche durch einen oder mehrere Reste R substituiert sein kann;
    L2, L3 sind gleich oder verschieden bei jedem Auftreten eine koordinierende Gruppe, welche durch einen oder mehrere Reste R substituiert sein kann und welche über Stickstoff, Phosphor, Schwefel oder ein neutrales Kohlenstoffatom an M bindet, wobei L2 und/oder L3 auch gleich oder verschieden L1 sein können;
    L4 ist ein beliebiger Ligand, welcher an das Metall M koordiniert und welcher durch einen oder mehrere Reste R substituiert sein kann; dabei kann L4 auch durch eine direkte Bindung oder durch eine bivalente Gruppe -(Y)n- mit einem oder mehreren der Teilliganden L1, L2 und/oder L3 verknüpft sein;
    n ist bei jedem Auftreten gleich oder verschieden 0, 1, 2 oder 3;
    R ist bei jedem Auftreten gleich oder verschieden H, D, F, Cl, Br, I, N(R1)2, CN, NO2, OH, Si(R1)3, B(OR1)2, C(=O)R1, P(=O)(R1)2, S(=O)R1, S(=O)2R1, OSO2R1, eine geradkettige Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 1 bis 40 C-Atomen oder eine verzweigte oder cyclische Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 3 bis 40 C-Atomen oder eine Alkenyl- oder Alkinylgruppe mit 2 bis 40 C-Atomen, die jeweils mit einem oder mehreren Resten R1 substituiert sein kann, wobei eine oder mehrere nicht benachbarte CH2-Gruppen durch R1C=CR1, C≡C, Si(R1)2, Ge(R1)2, Sn(R1)2, C=O, C=S, C=Se, C=NR1, P(=O)(R1), SO, SO2, NR1, O, S oder CONR1 ersetzt sein können und wobei ein oder mehrere H-Atome durch F, Cl, Br, I, CN oder NO2 ersetzt sein können, oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R1 substituiert sein kann, oder eine Aryloxy-, Heteroaryloxy-, Aralkyl- oder Heteroaralkylgruppe mit 5 bis 60 aromatischen Ringatomen, die durch einen oder mehrere Reste R1 substituiert sein kann, oder eine Diarylaminogruppe, Diheteroarylaminogruppe oder Arylheteroarylaminogruppe mit 10 bis 40 aromatischen Ringatomen, welche durch einen oder mehrere Reste R1 substituiert sein kann; dabei können zwei oder mehrere Substituenten R auch miteinander ein mono- oder polycyclisches, aliphatisches, aromatisches, heteroaromatisches und/oder benzoannelliertes Ringsystem bilden;
    R1 ist bei jedem Auftreten gleich oder verschieden H, D, F, Cl, Br, I, N(R2)2, CN, NO2, OH, Si(R2)3, B(OR2)2, C(=O)R2, P(=O)(R2)2, S(=O)R2, S(=O)2R2, OSO2R2, eine geradkettige Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 1 bis 40 C-Atomen oder eine verzweigte oder cyclische Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 3 bis 40 C-Atomen oder eine Alkenyl- oder Alkinylgruppe mit 2 bis 40 C-Atomen, die jeweils mit einem oder mehreren Resten R2 substituiert sein kann, wobei eine oder mehrere nicht benachbarte CH2-Gruppen durch R2C=CR2, C≡C, Si(R2)2, Ge(R2)2, Sn(R2)2, C=O, C=S, C=Se, C=NR2, P(=O)(R2), SO, SO2, NR2, O, S oder CONR2 ersetzt sein können und wobei ein oder mehrere H-Atome durch F, Cl, Br, I, CN oder NO2 ersetzt sein können, oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R2 substituiert sein kann, oder eine Aryloxy-, Heteroaryloxy-, Aralkyl- oder Heteroaralkylgruppe mit 5 bis 60 aromatischen Ringatomen, die durch einen oder mehrere Reste R2 substituiert sein kann, oder eine Diarylaminogruppe, Diheteroarylaminogruppe oder Arylheteroarylaminogruppe mit 10 bis 40 aromatischen Ringatomen, welche durch einen oder mehrere Reste R2 substituiert sein kann; dabei können zwei oder mehrere Substituenten R1 auch miteinander ein mono- oder polycyclisches, aliphatisches, aromatisches, heteroaromatisches und/oder benzoannelliertes Ringsystem bilden;
    R2 ist bei jedem Auftreten gleich oder verschieden H, D, F oder ein aliphatischer, aromatischer und/oder heteroaromatischer Kohlenwasserstoffrest mit 1 bis 20 C-Atomen, in dem auch ein oder mehrere H-Atome durch F ersetzt sein können; dabei können zwei oder mehrere Substituenten R2 auch miteinander ein mono- oder polycyclisches aliphatisches, aromatisches, heteroaromatisches und/oder benzoannelliertes Ringsystem bilden.
  • Unter einem Teilliganden im Sinne der vorliegenden Erfindung werden in dem Liganden der Formel (2) die Gruppen L1, L2 und L3 verstanden, also jeweils die einzelnen Arme des polypodalen Liganden, welche jeweils an das Metall M koordinieren und über den Brückenkopf V und gegebenenfalls über Y verknüpft werden.
  • In der Struktur der Formel (1) bedeutet ein Index b = 2 oder 3, dass jeweils 2 oder 3 der Metallkomplex-Einheiten über einen Liganden L4 verknüpft sind. Der Ligand L4 bindet dann entsprechend gleichzeitig an 2 oder 3 Metalle M.
  • Unter einem Donoratom im Sinne der vorliegenden Erfindung wird ein Atom verstanden, welches mindestens ein freies Elektronenpaar aufweist und dadurch in der Lage ist, an ein Metallatom bzw. Metallion zu binden. Dabei kann das Donoratom neutral oder negativ geladen sein.
  • Unter einem exocyclischen Donoratom im Sinne dieser Erfindung wird ein Donoratom verstanden, welches nicht Teil der cyclischen oder heterocyclischen Gruppe L1 ist, sondern welches als Substituent an L1 gebunden ist und welches mindestens ein freies Elektronenpaar aufweist und dadurch in der Lage ist, an ein Metallatom zu binden. Beispiele für exocyclische Donoratome sind Sauerstoff in Form eines Phenolats, Schwefel in Form eines Thiolats, Stickstoff in Form eines Amins, Imins, Amids oder Imids und Phosphor in Form eines Phosphins.
  • Eine Arylgruppe im Sinne dieser Erfindung enthält 6 bis 60 C-Atome; eine Heteroarylgruppe im Sinne dieser Erfindung enthält 2 bis 60 C-Atome und mindestens ein Heteroatom, mit der Maßgabe, dass die Summe aus C-Atomen und Heteroatomen mindestens 5 ergibt. Die Heteroatome sind bevorzugt ausgewählt aus N, O und/oder S. Dabei wird unter einer Arylgruppe bzw. Heteroarylgruppe entweder ein einfacher aromatischer Cyclus, also Benzol, bzw. ein einfacher heteroaromatischer Cyclus, beispielsweise Pyridin, Pyrimidin, Thiophen, etc., oder eine kondensierte Aryl- oder Heteroarylgruppe, beispielsweise Naphthalin, Anthracen, Phenanthren, Chinolin, Isochinolin, etc., verstanden. Ein cyclisches Carben im Sinne dieser Erfindung ist eine cyclische Gruppe, welche über ein neutrales C-Atom an das Metall bindet. Dabei kann die cyclische Gruppe gesättigt oder ungesättigt sein. Bevorzugt sind hierbei Arduengo-Carbene, also solche Carbene, bei welchen an das Carben-C-Atom zwei Stickstoffatome gebunden sind.
  • Ein aromatisches Ringsystem im Sinne dieser Erfindung enthält 6 bis 60 C-Atome im Ringsystem. Ein heteroaromatisches Ringsystem im Sinne dieser Erfindung enthält 2 bis 60 C-Atome und mindestens ein Heteroatom im Ringsystem, mit der Maßgabe, dass die Summe aus C-Atomen und Heteroatomen mindestens 5 ergibt. Die Heteroatome sind bevorzugt ausgewählt aus N, O und/oder S. Unter einem aromatischen oder heteroaromatischen Ringsystem im Sinne dieser Erfindung soll ein System verstanden werden, das nicht notwendigerweise nur Aryl- oder Heteroarylgruppen enthält, sondern in dem auch mehrere Aryl- oder Heteroarylgruppen durch eine nicht-aromatische Einheit (bevorzugt weniger als 10% der von H verschiedenen Atome), wie z. B. ein sp3-hybridisiertes C-, N- oder O-Atom, unterbrochen sein können. So sollen beispielsweise auch Systeme wie 9,9'-Spirobifluoren, 9,9-Diarylfluoren, Triarylamin, Diarylether, Stilben, etc. als aromatische Ringsysteme im Sinne dieser Erfindung verstanden werden, und ebenso Systeme, in denen zwei oder mehrere Arylgruppen beispielsweise durch eine lineare oder cyclische Alkylgruppe oder durch eine Silylgruppe unterbrochen sind.
  • Im Rahmen der vorliegenden Erfindung werden unter einer C1- bis C40-Alkylgruppe, in der auch einzelne H-Atome oder CH2-Gruppen durch die oben genannten Gruppen substituiert sein können, bevorzugt die Reste Methyl, Ethyl, n-Propyl, i-Propyl, n-Butyl, i-Butyl, s-Butyl, t-Butyl, 2-Methylbutyl, n-Pentyl, s-Pentyl, Cyclopentyl, n-Hexyl, Cyclohexyl, n-Heptyl, Cycloheptyl, n-Octyl, Cyclooctyl, 2-Ethylhexyl, Trifluormethyl, Pentafluorethyl und 2,2,2-Trifluorethyl verstanden. Unter einer Alkenylgruppe werden bevorzugt die Reste Ethenyl, Propenyl, Butenyl, Pentenyl, Cyclopentenyl, Hexenyl, Cyclohexenyl, Heptenyl, Cycloheptenyl, Octenyl und Cyclooctenyl verstanden. Unter einer Alkinylgruppe werden bevorzugt Ethinyl, Propinyl, Butinyl, Pentinyl, Hexinyl, Heptinyl und Octinyl verstanden. Unter einer C1- bis C40-Alkoxygruppe werden bevorzugt Methoxy, Trifluormethoxy, Ethoxy, n-Propoxy, i-Propoxy, n-Butoxy, i-Butoxy, s-Butoxy, t-Butoxy oder 2-Methylbutoxy verstanden. Unter einem aromatischen oder heteroaromatischen Ringsystem mit 5–60 aromatischen Ringatomen, welches noch jeweils mit den oben genannten Resten R substituiert sein kann und welches über beliebige Positionen am Aromaten bzw. Heteroaromaten verknüpft sein kann, werden insbesondere Gruppen verstanden, die abgeleitet sind von Benzol, Naphthalin, Anthracen, Phenanthren, Benzanthracen, Benzphenanthren, Pyren, Chrysen, Perylen, Fluoranthen, Naphthacen, Pentacen, Benzpyren, Biphenyl, Biphenylen, Terphenyl, Terphenylen, Fluoren, Spirobifluoren, Dihydrophenanthren, Dihydropyren, Tetrahydropyren, cis- oder trans-Indenofluoren, Truxen, Isotruxen, Spirotruxen, Spiroisotruxen, Furan, Benzofuran, Isobenzofuran, Dibenzofuran, Thiophen, Benzothiophen, Isobenzothiophen, Dibenzothiophen, Pyrrol, Indol, Isoindol, Carbazol, Pyridin, Chinolin, Isochinolin, Acridin, Phenanthridin, Benzo-5,6-chinolin, Benzo-6,7-chinolin, Benzo-7,8-chinolin, Phenothiazin, Phenoxazin, Pyrazol, Indazol, Imidazol, Benzimidazol, Naphthimidazol, Phenanthrimidazol, Pyridimidazol, Pyrazinimidazol, Chinoxalinimidazol, Oxazol, Benzoxazol, Naphthoxazol, Anthroxazol, Phenanthroxazol, Isoxazol, 1,2-Thiazol, 1,3-Thiazol, Benzothiazol, Pyridazin, Benzopyridazin, Pyrimidin, Benzpyrimidin, Chinoxalin, 1,5-Diazaanthracen, 2,7-Diazapyren, 2,3-Diazapyren, 1,6-Diazapyren, 1,8-Diazapyren, 4,5-Diazapyren, 4,5,9,10-Tetraazaperylen, Pyrazin, Phenazin, Phenoxazin, Phenothiazin, Fluorubin, Naphthyridin, Azacarbazol, Benzocarbolin, Phenanthrolin, 1,2,3-Triazol, 1,2,4-Triazol, Benzotriazol, 1,2,3-Oxadiazol, 1,2,4-Oxadiazol, 1,2,5-Oxadiazol, 1,3,4-Oxadiazol, 1,2,3-Thiadiazol, 1,2,4-Thiadiazol, 1,2,5-Thiadiazol, 1,3,4-Thiadiazol, 1,3,5-Triazin, 1,2,4-Triazin, 1,2,3-Triazin, Tetrazol, 1,2,4,5-Tetrazin, 1,2,3,4-Tetrazin, 1,2,3,5-Tetrazin, Purin, Pteridin, Indolizin und Benzothiadiazol.
  • Die Metallkomplexe gemäß Formel (1) können Komplexe polypodaler Liganden oder Kryptate sein, abhängig davon, ob der Ligand L4 mit den Teilliganden L1, L2 und L3 verknüpft ist oder nicht. Unter einem polypodalen Liganden im Sinne dieser Erfindung wird ein Ligand verstanden, in welchem drei koordinierende Teilliganden L1, L2 und L3 durch eine Gruppe V aneinander gebunden sind. Unter einem Kryptat im Sinne dieser Erfindung wird eine Verbindung zwischen einem Kryptanden und einem Metallion verstanden, in der das Metallion von den Brücken des komplexbildenden Kryptanden dreidimensional umgeben ist. Unter einem Kryptanden im Sinne dieser Erfindung wird ein makrocyclischer tripodaler Ligand verstanden. Dabei kann ein Kryptand entstehen, wenn der Ligand L4 mit zwei oder mit allen drei der Teilliganden L1, L2 und/oder L3 verknüpft ist.
  • Außerdem kann in Metallkomplexen gemäß Formel (1) auch die Gruppe V an M koordiniert sein, wenn die Gruppe V ein freies Elektronenpaar aufweist, wenn sie also beispielsweise N oder P darstellt.
  • In einer bevorzugten Ausführungsform der Erfindung ist a = 0 und die Gruppe V koordiniert an M. In einer weiteren bevorzugten Ausführungsform der Erfindung ist a = 1, d. h. es ist ein Ligand L4 vorhanden, und V koordiniert nicht an M. Wie oben definiert, ist der Teilligand L1 eine heterocyclische Gruppe mit mindestens einem N-Atom, welche über ein neutrales oder anionisches Stickstoffatom oder über ein neutrales Kohlenstoffatom, welches jeweils Teil der heterocyclischen Gruppe ist, an M bindet, oder es ist eine cyclische Gruppe mit einem exocyclischen Donoratom, welches an M bindet. Die Bindung über ein neutrales Kohlenstoffatom ist möglich in Form eines Carbens. Dabei weist die cyclische bzw. heterocyclische Gruppe mindestens 5 und maximal 20 Ringatome auf. Es kann sich dabei auch um eine kondensierte Gruppe handeln, also eine Gruppe, in der mehrere Ringe über eine gemeinsame Kante miteinander verknüpft sind. Die Gruppe L1 kann dabei gesättigt, ungesättigt oder aromatisch bzw. heteroaromatisch sein. In einer bevorzugten Ausführungsform der Erfindung handelt es sich bei L1 um eine bzw. Heteroarylgruppe bzw. um eine Arylgruppe mit einem exocyclischen Donoratom, oder es handelt sich um ein cyclisches, gesättigtes oder ungesättigtes Carben. In einer besonders bevorzugten Ausführungsform der Erfindung weist die Aryl- bzw. Heteroarylgruppe 5 bis 14 aromatische Ringatome auf, besonders bevorzugt 5 bis 10 aromatische Ringatome.
  • In einer bevorzugten Ausführungsform der Erfindung ist der Index b = 1.
  • Bevorzugt sind Verbindungen gemäß Formel (1), dadurch gekennzeichnet, dass diese nicht geladen, d. h. elektrisch neutral, sind. Dies wird dadurch erreicht, dass die Ladung der Teilliganden L1, L2 und L3 sowie des Liganden L4 und der verbrückenden Einheit V so gewählt wird, dass sie die Ladung des komplexierten Metallions M kompensieren.
  • Bevorzugt sind weiterhin Verbindungen gemäß Formel (1), dadurch gekennzeichnet, dass die Summe der Valenzelektronen, d. h. die Elektronen der äußersten Schale, um das Metallatom, wenn es sich um ein Übergangsmetall handelt, 18 beträgt. Diese Bevorzugung ist durch die besondere Stabilität dieser Metallkomplexe begründet.
  • Bei den Metallen M handelt es sich um die oben beschriebenen Metalle, wobei bevorzugt Cu als Cu(I), Ag als Ag(I), Au als Au(I), Zn als Zn(II), Sn als Sn(IV), Pb als Pb(IV), Ni als Ni(0), Pd als Pd(0) und Pt als Pt(0) vorliegt. Dabei bezeichnet der Wert in Klammern hinter dem Metall jeweils die Oxidationsstufe des Metalls. Bevorzugt sind die Metalle M ausgewählt aus der Gruppe bestehend aus Cu(I), Ag(I), Ni(0), Pd(0) und Pt(0), besonders bevorzugt Cu(I) und Ag(I), ganz besonders bevorzugt Cu(I).
  • In einer bevorzugten Ausführungsform der Erfindung ist L1 ausgewählt aus den Gruppen gemäß den Formeln (3) bis (30):
    Figure 00100001
    Figure 00110001
    wobei die verwendeten Symbole dieselbe Bedeutung haben, wie oben beschrieben, und weiterhin gilt:
    X steht bei jedem Auftreten gleich oder verschieden für CR oder N;
    D steht bei jedem Auftreten gleich oder verschieden für O, S, NR, PR, NR2, PR2, COO, SO3 , -C(=O)R, -CR(=NR) oder -N(=CR2).
  • Bevorzugt stehen maximal drei Symbole X in jeder Gruppe für N, besonders bevorzugt stehen maximal zwei Symbole X in jeder Gruppe für N, ganz besonders bevorzugt steht maximal ein Symbol X in jeder Gruppe für N. Insbesondere bevorzugt stehen alle Symbole X für C. Dabei koordinieren die Gruppen der Formeln (3) bis (30) an das Metall M über die durch * gekennzeichnete Position. Die durch # gekennzeichnete Position gibt die Position an, an der der Teilligand an Y bzw. an V gebunden ist. Die durch (#) gekennzeichnete Position gibt die Position an, an der der Teilligand gegebenenfalls an Y bzw. an L4 gebunden ist. Wenn eine solche weitere Bindung an Y bzw. an L4 vorhanden ist, steht das entsprechende Symbol X für C und in den Formeln (7), (8), (9), (21) und (23) ist keine Gruppe Ran den Stickstoff gebunden.
  • L2 und L3 sind definitionsgemäß koordinierende Gruppen, welche auch durch einen oder mehrere Reste R substituiert sein können und welche über Stickstoff, Phosphor, Schwefel, Sauerstoff oder ein neutrales Kohlenstoffatom an M binden, wobei L2 und L3 auch gleich oder verschieden L1 sein können. In einer bevorzugten Ausführungsform der Erfindung sind L2 und L3 gleich oder verschieden bei jedem Auftreten eine koordinierende Gruppe, welche über Stickstoff, Phosphor oder Schwefel an M bindet, oder sind gleich oder verschieden L1.
  • Bevorzugte koordinierende Gruppen, welche über Stickstoff an M binden, sind ausgewählt aus der Gruppe bestehend aus -NR2, -NR, -CR1=NR1 und -N=C(R1)2, wobei R und R1 die oben genannten Bedeutungen aufweisen. Besonders bevorzugt sind R und R1 gleich oder verschieden bei jedem Auftreten eine Alkylgruppe mit 1 bis 10 C-Atomen, welche mit einem oder mehreren Resten R1 bzw. R2 substituiert sein kann.
  • Bevorzugte koordinierende Gruppen, welche über Phosphor an M binden, sind ausgewählt aus der Gruppe bestehend aus -PR2, -PR(OR) und P(OR)2, wobei R die oben genannten Bedeutungen aufweist. Besonders bevorzugt ist R gleich oder verschieden bei jedem Auftreten ein aromatisches oder heteroaromatisches Ringsystem, welches mit einem oder mehreren Resten R1 substituiert sein kann.
  • Bevorzugte koordinierende Gruppen, welche über Schwefel an M binden, sind ausgewählt aus der Gruppe bestehend aus -S- oder -SR, wobei R die oben genannten Bedeutungen aufweist. Besonders bevorzugt ist R gleich oder verschieden bei jedem Auftreten eine Alkylgruppe mit 1 bis 10 C-Atomen, welche mit einem oder mehreren Resten R1 substituiert sein kann, oder ein aromatisches oder heteroaromatisches Ringsystem, welches mit einem oder mehreren Resten R1 substituiert sein kann.
  • Besonders bevorzugt sind Verbindungen gemäß Formel (1), dadurch gekennzeichnet, dass L2 gleich oder verschieden bei jedem Auftreten L1 ist. Ganz besonders bevorzugt sind Verbindungen gemäß Formel (1), dadurch gekennzeichnet, dass L2 und L3 gleich oder verschieden bei jedem Auftreten L1 sind.
  • In einer weiteren bevorzugten Ausführungsform der Erfindung ist Y gleich oder verschieden bei jedem Auftreten eine bivalente Gruppe, ausgewählt aus CR2, BR, SiR2, NR, PR, P(=O)R, O oder S, besonders bevorzugt CR2, SiR2, NR, O oder S, ganz besonders bevorzugt CR2.
  • In einer weiteren bevorzugten Ausführungsform der Erfindung ist der Index n gleich oder verschieden bei jedem Auftreten 0, 1 oder 2. Dabei ist der Index n = 0 oder 1, insbesondere 0, dann bevorzugt, wenn die Gruppe V nicht an M koordiniert. Weiterhin ist n = 1 oder 2 insbesondere dann bevorzugt, wenn die Gruppe V an M koordiniert.
  • Die verbrückende Einheit V kann neutral oder einfach negativ oder einfach positiv geladen sein. Dabei wird die Ladung von V bevorzugt so gewählt, dass insgesamt ein neutraler Komplex entsteht. So ist z. B. eine neutrale verbrückende Einheit V bevorzugt, wenn es sich um ein einwertiges Metallion M+ und drei neutrale und einen einfach negativen (Teil)Liganden L1, L2, L3 und L4 handelt. Weiterhin ist eine einfach negative verbrückende Einheit V bevorzugt, wenn es sich um ein einwertiges Metallion M+ und vier neutrale (Teil)Liganden L1, L2, L3 und L4 handelt. Weiterhin ist eine einfach positive verbrückende Einheit V bevorzugt, wenn es sich um ein einwertiges Metallion M+ und zwei einfach negative und zwei neutrale (Teil)Liganden L1, L2, L3 und L4 handelt. Entsprechendes gilt, wenn das Metallion eine andere Wertigkeit aufweist.
  • In einer weiteren bevorzugten Ausführungsform der Erfindung ist die verbrückende Einheit V ausgewählt aus B, BR, CR, CO, SiR, N, NR+, P oder P(=O); oder V ist eine cyclische Gruppe gemäß einer der Formeln (31) bis (34),
    Figure 00140001
    wobei die gestrichelten Bindungen jeweils die Bindung zu den Teilliganden L1, L2 und L3 bzw. zu Y andeuten.
  • In einer besonders bevorzugten Ausführungsform der Erfindung ist die verbrückende Einheit V ausgewählt aus CR, N, P oder P(=O); oder V ist eine cyclische Gruppe gemäß einer der oben genannten Formeln (31) bis (34).
  • In einer weiteren bevorzugten Ausführungsform der Erfindung ist L4 ausgewählt aus der Gruppe bestehend aus Kohlenmonoxid, Stickstoffmonoxid, Alkylcyaniden, wie z. B. Acetonitril, Arylcyaniden, wie z. B. Benzonitril, Alkylisocyaniden, wie z. B. Methylisonitril, Arylisocyaniden, wie z. B. Benzoisonitril, Aminen, wie z. B. Trimethylamin, Triethylamin, Morpholin, Phosphinen, insbesondere Halogenphosphine, Trialkylphosphine, Triarylphosphine oder Alkylarylphosphine, wie z. B. Trifluorphosphin, Trimethylphosphin, Tricyclohexylphosphin, Tri-tert-butylphosphin, Triphenylphosphin, Tris(pentafluorphenyl)phosphin, Phosphiten, wie z. B. Trimethylphosphit, Triethylphosphit, Arsinen, wie z. B. Trifluorarsin, Trimethylarsin, Tricyclohexylarsin, Tri-tert-butylarsin, Triphenylarsin, Tris(pentafluorphenyl)arsin, Stibinen, wie z. B. Trifluorstibin, Trimethylstibin, Tricyclohexylstibin, Tri-tert-butylstibin, Triphenylstibin, Tris(pentafluorphenyl)stibin, stickstoffhaltigen Heterocyclen, wie z. B. Pyridin, Pyridazin, Pyrazin, Pyrimidin, Triazin, Carbenen, insbesondere Arduengo Carbenen, Hydrid, Deuterid, den Halogeniden F, Cl, Br und I, Alkylacetyliden, wie z. B. Methyl-C≡C, tert-Butyl-C≡C, Arylacetyliden, wie z. B. Phenyl-C≡C, Cyanid, Cyanat, Isocyanat, Thiocyanat, Isothiocyanat, aliphatischen oder aromatischen Alkoholaten, wie z. B. Methanolat, Ethanolat, Propanolat, iso-Propanolat, tert-Butylat, Phenolat, aliphatischen oder aromatischen Thioalkoholaten, wie z. B. Methanthiolat, Ethanthiolat, Propanthiolat, iso-Propanthiolat, tert-Thiobutylat, Thiophenolat, Amiden, wie z. B. Dimethylamid, Diethylamid, Di-iso-propylamid, Morpholid, Carboxylaten, wie z. B. Acetat, Trifluoracetat, Propionat, Benzoat, anionischen, stickstoffhaltigen Heterocyclen, wie Pyrrolid, Imidazolid, Pyrazolid. Dabei sind die Alkylgruppen in diesen Gruppen bevorzugt C1-C20-Alkylgruppen, besonders bevorzugt C1-C10-Alkylgruppen, ganz besonders bevorzugt C1-C4-Alkylgruppen. Unter einer Arylgruppe werden auch Heteroarylgruppen verstanden. Diese Gruppen sind wie oben definiert.
  • Bevorzugte Liganden L4 sind weiterhin die Liganden der folgenden Formeln (35) bis (61),
    Figure 00150001
    Figure 00160001
    Figure 00170001
    wobei die verwendeten Symbole und Indizes die oben genannten Bedeutungen haben und * die Position der Koordination an M andeutet. Die durch (#) gekennzeichnete Position gibt die Position an, an der L4, gegebenenfalls über -(Y)n-, an einen der Teilliganden L1, L2 oder L3 gebunden sein kann. Wenn eine solche Bindung an Y bzw. an L1, L2 oder L3 vorhanden ist, steht das entsprechende Symbol X für C und in den Formeln (38), (39), (40) und (55) ist keine Gruppe R an den Stickstoff gebunden.
  • Bevorzugte Strukturen gemäß Formel (1) sind Strukturen, in denen die oben genannten Bevorzugungen gleichzeitig auftreten, also Strukturen, in denen gilt:
    L1 ist ausgewählt aus den oben genannten Gruppen gemäß den Formeln (3) bis (30);
    L2, L3 sind gleich oder verschieden bei jedem Auftreten ausgewählt aus der Gruppe bestehend aus -NR2, -NR, -N=C(R1)2, -PR2, -PR(OR), P(OR)2, -S und -SR oder L1;
    Y ist gleich oder verschieden bei jedem Auftreten eine bivalente Gruppe, ausgewählt aus CR2, BR, SiR2, NR, PR, P(=O)R, O oder S,;
    n ist gleich oder verschieden bei jedem Auftreten 0, 1 oder 2;
    V ist ausgewählt aus B, BR, CR, CO, SiR, N, NR+, P oder P(=O); oder V ist eine cyclische Gruppe gemäß einer der oben genannten Formeln (31) bis (34);
    L4 ist ausgewählt aus der Gruppe bestehend aus Kohlenmonoxid, Stickstoffmonoxid, Alkylcyaniden, Arylcyaniden, Alkylisocyaniden, Arylisocyaniden, Aminen, Halogenphosphinen, Trialkylphosphinen, Triarylphosphinen, Alkylarylphosphine, Phosphiten, Arsinen, Stibinen, neutralen oder anionischen stickstoffhaltigen Heterocyclen, Carbenen, Hydrid, Deuterid, F, Cl, Br und I, Alkylacetyliden, Arylacetyliden, Cyanid, Cyanat, Isocyanat, Thiocyanat, Isothiocyanat, aliphatischen oder aromatischen Alkoholaten, aliphatischen oder aromatischen Thioalkoholaten, Amiden, Carboxylaten oder Liganden der oben genannten Formeln (35) bis (61);
    b ist gleich 1.
  • Besonders bevorzugte Strukturen gemäß Formel (1) sind Strukturen, in denen gilt:
    L1 ist ausgewählt aus den oben genannten Gruppen gemäß den Formeln (3) bis (30);
    L2, L3 sind gleich oder verschieden bei jedem Auftreten L1;
    Y ist gleich oder verschieden bei jedem Auftreten eine bivalente Gruppe, ausgewählt aus CR2, SiR2, NR, O oder S, bevorzugt CR2;
    n ist gleich oder verschieden bei jedem Auftreten 0 oder 1;
    V ist ausgewählt aus CR, CO, N, NR+, P oder P(=O); oder V ist eine cyclische Gruppe gemäß einer der oben genannten Formeln (31) bis (34);
    L4 ist ausgewählt aus der Gruppe bestehend aus Kohlenmonoxid, Stickstoffmonoxid, Alkylcyaniden, Arylcyaniden, Alkylisocyaniden, Arylisocyaniden, Aminen, Halogenphosphinen, Trialkylphosphinen, Triarylphosphinen, Alkylarylphosphine, Phosphiten, Arsinen, Stibinen, neutralen oder anionischen stickstoffhaltigen Heterocyclen, Carbenen, Hydrid, Deuterid, F, Cl, Br und I, Alkylacetyliden, Arylacetyliden, Cyanid, Cyanat, Isocyanat, Thiocyanat, Isothiocyanat, aliphatischen oder aromatischen Alkoholaten, aliphatischen oder aromatischen Thioalkoholaten, Amiden, Carboxylaten oder Liganden der oben genannten Formeln (35) bis (61);
    b ist gleich 1.
  • Die weiteren verwendeten Symbole und Indizes haben jeweils die oben genannten Bedeutungen.
  • In einer bevorzugten Ausführungsform der Erfindung ist der Ligand L4 über eine direkte Bindung oder über eine Gruppe -(Y)n- mit mindestens einem der Teilliganden L1, L2 und/oder L3 verknüpft. Dadurch weist der Ligand L eine Struktur gemäß einer der Formeln (62) bis (66) auf, wobei die verwendeten Symbole und Indizes die oben genannten Bedeutungen haben:
    Figure 00190001
  • Dabei gelten für die oben genannten Strukturen der Formel (62) bis (66) dieselben Bevorzugungen, wie oben für Strukturen der Formel (1) genannt.
  • Besonders bevorzugt ist der Teilligand L4 in Strukturen der Formel (62) oder (63) gleich oder verschieden definiert wie die obige Definition der Teilliganden L1 bis L3 bzw. wie oben die Strukturen (35) bis (61).
  • Besonders bevorzugt ist der Teilligand L4 in Strukturen der Formel (64) oder (65) ausgewählt aus der Gruppe bestehend aus -NR-, -N-, -PR-, -P(OR)-, -S- oder Teilliganden der folgenden Formeln (67) bis (90),
    Figure 00200001
    Figure 00210001
    wobei die verwendeten Symbole dieselben Bedeutungen haben, wie oben beschrieben.
  • Besonders bevorzugt ist der Teilligand L4 in Strukturen der Formel (66) N oder P.
  • Bevorzugt sind weiterhin Verbindungen gemäß Formel (1) bzw. gemäß Formel (62) bis (66) bzw. gemäß den oben aufgeführten bevorzugten Ausführungsformen, in denen R bei jedem Auftreten gleich oder verschieden für H, D, F, CN, eine geradkettige Alkyl- oder Alkoxygruppe mit 1 bis 6 C-Atomen oder eine verzweigte oder cyclische Alkyl- oder Alkoxygruppe mit 3 bis 6 C-Atomen, die jeweils mit einem oder mehreren Resten R1 substituiert sein kann, wobei eine oder mehrere nicht benachbarte CH2-Gruppen durch R1C=CR1, O oder S ersetzt sein können und ein oder mehrere H-Atome durch D oder F ersetzt sein können, oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 18 aromatischen Ringatomen, welche jeweils durch einen oder mehrere Reste R1 substituiert sein kann, oder eine Diarylaminogruppe mit 10 bis 20 aromatischen Ringatomen, welche durch einen oder mehrere Reste R1 substituiert sein kann, oder eine Kombination dieser Systeme steht; dabei können zwei oder mehrere Substituenten R auch miteinander ein mono- oder polycyclisches aliphatisches, aromatisches und/oder benzoannelliertes Ringsystem bilden. Besonders bevorzugt steht das Symbol R in diesen Verbindungen, gleich oder verschieden bei jedem Auftreten, für H, D, F, eine geradkettige Alkylgruppe mit 1 bis 4 C-Atomen oder eine verzweigte Alkylgruppe mit 3 oder 4 C-Atomen, die jeweils mit einem oder mehreren Resten R1 substituiert sein kann, wobei ein oder mehrere H-Atome durch F ersetzt sein können, oder eine Arylgruppe mit 6 bis 10 aromatischen Ringatomen oder ein aromatisches Ringsystem mit 12 bis 18 aromatischen Ringatomen, welche jeweils durch einen oder mehrere Reste R1 substituiert sein kann; dabei können zwei oder mehrere Substituenten R auch miteinander ein mono- oder polycyclisches aliphatisches, aromatisches und/oder benzoannelliertes Ringsystem bilden.
  • Weiterhin bevorzugt sind symmetrische Verbindungen, insbesondere Verbindungen, in denen die Teilliganden L1 und L2 gleich sind und auch gleich substituiert sind oder in denen die Teilliganden L1, L2 und L3 gleich sind und auch gleich substituiert sind.
  • Die Komplexe gemäß Formel (1) bzw. gemäß Formel (62) bis (66) bzw. gemäß den oben aufgeführten bevorzugten Ausführungsformen sind prinzipiell durch verschiedene Verfahren herstellbar, wobei sich jedoch die im Folgenden beschriebenen Verfahren als besonders gut geeignet herausgestellt haben.
  • Daher ist ein weiterer Gegenstand der vorliegenden Erfindung ein Verfahren zur Herstellung der Komplexe gemäß Formel (1) durch Umsetzung der Liganden L gemäß Formel (2) mit Metallsalzen bzw. Metallkomplexen des entsprechenden Metalls M. Beispiele für geeignete Kupferverbindungen sind CuF, CuCi, CuBr, Cul, Cu(OAc), Cu2(CO3) oder Cu(CH3CN)PF6. Beispiele für geeignete Goldverbindungen sind AuHal·SR2, wobei Hal für ein Halogenid steht und R für eine Alkylgruppe mit 1 bis 5 C-Atomen.
  • Die Synthese kann auch thermisch, photochemisch oder durch Mikrowellenstrahlung aktiviert werden. Durch diese Verfahren lassen sich die Komplexe in hoher Reinheit, bevorzugt in einer Reinheit von > 99% nach 1H-NMR oder HPLC, erhalten.
  • Beispiele für bevorzugte Verbindungen gemäß Formel (1) sind die im Folgenden abgebildeten Verbindungen. Diese Komplexe lassen sich unter anderem mit den oben erläuterten Synthesemethoden herstellen.
  • Figure 00230001
  • Figure 00240001
  • Figure 00250001
  • Figure 00260001
  • Figure 00270001
  • Figure 00280001
  • Figure 00290001
  • Die oben beschriebenen Komplexe werden erfindungsgemäß als aktive Komponente in elektronischen Vorrichtungen verwendet, wie z. B. organischen Elektrolumineszenzvorrichtungen (= organische Leuchtdioden, OLEDs, PLEDs), organischen integrierten Schaltungen (O-ICs), organischen Feld-Effekt-Transistoren (O-FETs), organischen Dünnfilmtransistoren (O-TFTs), organischen lichtemittierenden Transistoren (O-LETs), organischen Solarzellen (O-SCs), organischen optischen Detektoren, organischen Photorezeptoren, organischen Feld-Quench-Devices (O-FQDs), lichtemittierenden elektrochemischen Zellen (LECs) oder auch organischen Laserdioden (O-Laser).
  • Aktive Komponenten sind beispielsweise Ladungsinjektions-, Ladungstransport- oder Ladungsblockiermaterialien, insbesondere aber Emissionsmaterialien und Matrixmaterialien. Für diese Funktionen zeigen die Verbindungen gemäß Formel (1) bzw. die oben genannten bevorzugten Ausführungsformen besonders gute Eigenschaften, insbesondere als Emissionsmaterial, wie vorne schon erläutert und im Folgenden noch näher ausgeführt wird.
  • In einer bevorzugten Ausführungsform der Erfindung ist die elektronische Vorrichtung daher ausgewählt aus der Gruppe bestehend aus organischen integrierten Schaltungen (O-ICs), organischen Feld-Effekt-Transistoren (O-FETs), organischen Dünnfilmtransistoren (O-TFTs), organischen lichtemittierenden Transistoren (O-LETs), organischen Solarzellen (O-SCs), organischen optischen Detektoren, organischen Photorezeptoren, organischen Feld-Quench-Devices (O-FQDs), lichtemittierenden elektrochemischen Zellen (LECs) oder organischen Laserdioden (O-Laser), insbesondere aber organischen Elektrolumineszenzvorrichtungen (OLEDs, PLEDs), enthaltend eine oder mehrere Verbindungen gemäß Formel (1). Bevorzugt sind elektronische Vorrichtungen, enthaltend eine oder mehrere Verbindungen der Formel (1) bzw. die oben genannten bevorzugten Ausführungsformen.
  • Die organische Elektrolumineszenzvorrichtung enthält Kathode, Anode und mindestens eine emittierende Schicht. Außer diesen Schichten kann sie noch weitere Schichten enthalten, beispielsweise jeweils eine oder mehrere Lochinjektionsschichten, Lochtransportschichten, Lochblockierschichten, Elektronentransportschichten, Elektroneninjektionsschichten, Exzitonenblockierschichten, Elektronenblockierschichten und/oder Ladungserzeugungsschichten (Charge-Generation Layer). Ebenso können zwischen zwei emittierende Schichten Interlayers eingebracht sein, welche. beispielsweise eine Exzitonen-blockierende Funktion aufweisen. Es sei aber darauf hingewiesen, dass nicht notwendigerweise jede dieser Schichten vorhanden sein muss.
  • In einer bevorzugten Ausführungsform der Erfindung wird die Verbindung gemäß Formel (1) bzw. die oben genannten bevorzugten Ausführungsformen als emittierende Verbindung in einer emittierenden Schicht eingesetzt. Dabei kann die organische Elektrolumineszenzvorrichtung eine emittierende Schicht enthalten, oder sie kann mehrere emittierende Schichten enthalten, wobei mindestens eine emittierende Schicht mindestens eine Verbindung gemäß Formel (1) bzw. die oben genannten bevorzugten Ausführungsformen enthält. Wenn mehrere Emissionsschichten vorhanden sind, weisen diese bevorzugt insgesamt mehrere Emissionsmaxima zwischen 380 nm und 750 nm auf, so dass insgesamt weiße Emission resultiert, d. h. in den emittierenden Schichten werden verschiedene emittierende Verbindungen verwendet, die fluoreszieren oder phosphoreszieren können. Insbesondere bevorzugt sind Dreischichtsysteme (drei emittierende Schichten), wobei die drei Schichten blaue, grüne und orange oder rote Emission zeigen (für den prinzipiellen Aufbau siehe z. B. WO 05/011013 ).
  • Wenn die Verbindung gemäß Formel (1) bzw. die oben genannten bevorzugten Ausführungsformen als emittierende Verbindung in einer emittierenden Schicht eingesetzt wird, wird sie bevorzugt in Kombination mit einem oder mehreren Matrixmaterialien eingesetzt. Die Mischung aus der Verbindung gemäß Formel (1) bzw. den oben genannten bevorzugten Ausführungsformen und dem Matrixmaterial enthält zwischen 1 und 99 Gew.-%, vorzugsweise zwischen 2 und 90 Gew.-%, besonders bevorzugt zwischen 3 und 40 Gew.-%, insbesondere zwischen 5 und 15 Gew.-% der Verbindung gemäß Formel (1) bzw. den oben genannten bevorzugten Ausführungsformen bezogen auf die Gesamtmischung aus Emitter und Matrixmaterial. Entsprechend enthält die Mischung zwischen 99 und 1 Gew.-%, vorzugsweise zwischen 98 und 10 Gew.-%, besonders bevorzugt zwischen 97 und 60 Gew.-%, insbesondere zwischen 95 und 85 Gew.-% des Matrixmaterials bezogen auf die Gesamtmischung aus Emitter und Matrixmaterial.
  • Geeignete Matrixmaterialien für die erfindungsgemäßen Verbindungen, welche einzeln oder als Mischung von zwei oder mehr dieser Materialien eingesetzt werden können, sind Ketone, Phosphinoxide, Sulfoxide und Sulfone, z. B. gemäß WO 04/013080 , WO 04/093207 , WO 06/005627 oder der nicht offen gelegten Anmeldung DE 10 2008 033 943.1 , Triarylamine, Carbazolderivate, z. B. CBP (N,N-Biscarbazolylbiphenyl) oder die in WO 05/039246 , US 2005/0069729 , JP 2004/288381 , EP 1205527 oder WO 08/086851 offenbarten Carbazolderivate, Indolocarbazolderivate, z. B. gemäß WO 07/063754 oder WO 08/056746 , Indenocarbazolderivate, z. B. gemäß den nicht offen gelegten Anmeldungen DE 10 2009 023 155.2 und DE 10 2009 031 021.5 , Azacarbazole, z. B. gemäß EP 1617710 , EP 1617711 , EP 1731584 , JP 2005/347160 , bipolare Matrixmaterialien, z. B. gemäß WO 07/137725 , Silane, z. B. gemäß WO 05/111172 , Azaborole oder Boronester, z. B. gemäß WO 06/117052 , Triazinderivate, z. B. gemäß den nicht offen gelegten Anmeldungen DE 10 2008 036 982.9 und DE 10 2009 048 791.3 , WO 07/063754 oder WO 08/056746 , Zinkkomplexe, z. B. gemäß EP 652273 oder gemäß WO 09/062578 , Diaza- oder Tetraazasilolderivate, z. B. gemäß der nicht offen gelegten Anmeldung DE 10 2008 056 688.8 , oder Diazaphospholderivate, z. B. gemäß der nicht offen gelegten Anmeldung DE 10 2009 022 858.6 .
  • Es können auch zwei oder mehr lumineszierende Metallkomplexe eingesetzt werden, wobei der kürzerwellig emittierende Metallkomplex als Co-Host für den längerwellig emittierenden Metallkomplex dient.
  • Es kann weiterhin auch bevorzugt sein, ein ladungstransportierendes Hostmaterial zusammen mit einem Hostmaterial, welches nicht am Ladungstransport beteiligt ist, einzusetzen, z. B. gemäß der nicht offen gelegten Anmeldung DE 10 2009 014 513.3 .
  • In einer weiteren bevorzugten Ausführungsform der Erfindung wird die Verbindung gemäß Formel (1) bzw. die oben genannten bevorzugten Ausführungsformen als Matrixmaterial für eine emittierende Verbindung in einer emittierenden Schicht eingesetzt. Dabei kann die organische Elektrolumineszenzvorrichtung eine emittierende Schicht enthalten, oder sie kann mehrere emittierende Schichten enthalten, wobei mindestens eine emittierende Schicht mindestens eine Verbindung gemäß Formel (1) bzw. die oben genannten bevorzugten Ausführungsformen als Matrixmaterial enthält. Wenn mehrere Emissionsschichten vorhanden sind, gilt hierfür das oben ausgeführte. Wenn die Verbindung gemäß Formel (1) bzw. die oben genannten bevorzugten Ausführungsformen als Matrixmaterial für eine emittierende Verbindung in einer emittierenden Schicht eingesetzt wird, wird sie bevorzugt in Kombination mit einem oder mehreren fluoreszierenden oder phosphoreszierenden Materialien eingesetzt.
  • In einer weiteren bevorzugten Ausführungsform der Erfindung wird die Verbindung gemäß Formel (1) bzw. die oben genannten bevorzugten Ausführungsformen als Lochblockiermaterial in einer Lochblockierschicht und/oder als Elektronentransportmaterial in einer Elektronentransportschicht eingesetzt. Dabei kann die emittierende Schicht fluoreszierend oder phosphoreszierend sein.
  • In einer weiteren bevorzugten Ausführungsform der Erfindung wird die Verbindung gemäß Formel (1) bzw. die oben genannten bevorzugten Ausführungsformen als Lochtransportmaterial in einer Lochtransport- bzw. -injektionsschicht und/oder als Elektronenblockiermaterial in einer Elektronenblockierschicht eingesetzt. Dabei kann die emittierende Schicht fluoreszierend oder phosphoreszierend sein.
  • Weiterhin bevorzugt ist eine organische Elektrolumineszenzvorrichtung, dadurch gekennzeichnet, dass eine oder mehrere Schichten mit einem Sublimationsverfahren beschichtet werden. Dabei werden die Materialien in Vakuum-Sublimationsanlagen bei einem Anfangsdruck von üblicherweise kleiner 10–5 mbar, bevorzugt kleiner 10–6 mbar aufgedampft. Es ist aber auch möglich, dass der Anfangsdruck noch geringer ist, beispielsweise kleiner 10–7 mbar.
  • Bevorzugt ist ebenfalls eine organische Elektrolumineszenzvorrichtung, dadurch gekennzeichnet, dass eine oder mehrere Schichten mit dem OVPD (Organic Vapour Phase Deposition) Verfahren oder mit Hilfe einer Trägergassublimation beschichtet werden. Dabei werden die Materialien bei einem Druck zwischen 10–5 mbar und 1 bar aufgebracht. Ein Spezialfall dieses Verfahrens ist das OVJP (Organic Vapour Jet Printing) Verfahren, bei dem die Materialien direkt durch eine Düse aufgebracht und so strukturiert werden (z. B. M. S. Arnold et al., Appl. Phys. Lett. 2008, 92, 053301).
  • Weiterhin bevorzugt ist eine organische Elektrolumineszenzvorrichtung, dadurch gekennzeichnet, dass eine oder mehrere Schichten aus Lösung, wie z. B. durch Spincoating, oder mit einem beliebigen Druckverfahren, wie z. B. Siebdruck, Flexodruck oder Offsetdruck, besonders bevorzugt aber LITI (Light Induced Thermal Imaging, Thermotransferdruck) oder Ink-Jet Druck (Tintenstrahldruck), hergestellt werden. Hierfür sind lösliche Verbindungen nötig, welche beispielsweise durch geeignete Substitution erhalten werden.
  • Ebenso möglich sind Hybridverfahren, bei denen beispielsweise eine oder mehrere Schichten aus Lösung aufgebracht werden und eine oder mehrere andere Schichten aufgedampft werden.
  • Diese Verfahren sind dem Fachmann generell bekannt und können von ihm ohne Probleme auf elektronische Vorrichtungen enthaltend Verbindungen gemäß Formel (1) bzw. die oben genannten bevorzugten Ausführungsformen angewandt werden.
  • Die oben genannten bevorzugten Verbindungen, in denen der Ligand L4 mit mindestens einem der Teilliganden L1, L2 und/oder L3 verknüpft ist, sind neu und sind daher ein weiterer Gegenstand der vorliegenden Erfindung.
  • Ein weiterer Gegenstand der Erfindung ist daher eine Verbindung gemäß einer der Formeln (62) bis (66),
    Figure 00350001
    wobei die verwendeten Symbole und Indizes die oben genannten Bedeutungen aufweisen. Bevorzugte Ausführungsformen sind dabei die bereits oben aufgeführten Ausführungsformen der Erfindung.
  • Ein weiterer Gegenstand der Erfindung ist die Verwendung einer Verbindung gemäß einer der Formeln (62) bis (66) in einer elektronischen Vorrichtung.
  • Die erfindungsgemäßen organischen Elektrolumineszenzvorrichtungen und die erfindungsgemäßen Verbindungen zeichnen sich durch folgende überraschende Vorteile gegenüber dem Stand der Technik aus:
    • 1. Im Gegensatz zu vielen Metallkomplexen gemäß dem Stand der Technik, die der teilweisen oder vollständigen pyrolytischen Zersetzung bei Sublimation unterliegen, weisen die erfindungsgemäßen Verbindungen eine hohe thermische Stabilität auf.
    • 2. Organische Elektrolumineszenzvorrichtungen enthaltend Verbindungen gemäß Formel (1) als emittierende Materialien weisen eine hohe Lebensdauer auf.
    • 3. Es sind blau lumineszierende Komplexe zugänglich, welche bei Verwendung in organischen Elektrolumineszenzvorrichtungen eine hohe Lebensdauer aufweisen. Dies ist ein deutlicher Fortschritt gegenüber dem Stand der Technik, da bislang blau lumineszierende Metallkomplexe nur mit schlechten Farbkoordinaten und insbesondere einer sehr schlechten Lebensdauer zugänglich waren.
    • 4. Die erfindungsgemäßen Verbindungen, eingesetzt in organischen Elektrolumineszenzvorrichtungen, führen zu hohen Effizienzen und zu steilen Strom-Spannungs-Kurven.
    • 5. Die Verbindungen gemäß Formel (1) basieren nicht auf dem seltenen Metall Iridium, was zur Ressourcenschonung dieses Metalls beiträgt.
    • 6. Da es sich nicht um ortho-metallierte Komplexe handelt, sind die Komplexe gemäß Formel (1) bzw. gemäß der oben aufgeführten bevorzugten Ausführungsformen gut und in hohen Ausbeuten und hohen Reinheiten synthetisch zugänglich.
  • Die oben genannten Vorteile gehen nicht mit einer Verschlechterung der weiteren elektronischen Eigenschaften einher.
  • Die Erfindung wird durch die nachfolgenden Beispiele näher erläutert, ohne sie dadurch einschränken zu wollen. Der Fachmann kann aus den Schilderungen ohne erfinderisches Zutun weitere erfindungsgemäße Komplexe herstellen und diese in organischen elektronischen Vorrichtungen verwenden bzw. das erfindungsgemäße Verfahren anwenden und so die Erfindung im gesamten beanspruchten Bereich ausführen.
  • Beispiele:
  • Die nachfolgenden Synthesen werden, sofern nicht anders angegeben, unter einer Schutzgasatmosphäre in getrockneten Lösungsmitteln durchgeführt. Die Lösungsmittel und Reagenzien können von ALDRICH bzw. ABCR bezogen werden. Beispiel 1: Cu-Komplex 1
    Figure 00370001
    A): Tris(6-phenyl-pyridin-2-yl)fluormethan
    Figure 00370002
  • Eine Mischung von 50.2 g (100 mmol) Tris(6-brom-pyridin-2-yl)fluormethan [760177-68-2], 61.0 g (500 mmol) Phenylboronsäure, 58.1 g (1 mol) Kaliumfluorid, wasserfrei in 1000 ml THF wird mit 809 mg (4 mmol) Tris-tert-butyl-phosphin und dann 674 mg (3 mmol) Palladium(II)acetat versetzt und anschließend 5 h unter Rückfluss gerührt. Nach Erkalten wird die Reaktionsmischung mit 300 ml Wasser versetzt, die wässrige Phase wird abgetrennt, die organische Phase wird über Celite filtriert und zur Trockene eingeengt. Der so erhaltene Feststoff wird zweimal aus Chloroform (ca. 50 ml) unter Zusatz von Ethanol (ca. 200 ml) umkristallisiert. Ausbeute: 38.5 g (78 mmol), 78%, 99.0%ig nach 1H-NMR.
  • B): Cu-Komplex 1
  • Eine Mischung von 4.9 g (10 mmol) Tris(6-phenyl-pyridin-2-yl)fluormethan, 1.0 g (10 mmol) Kupfer(I)chlorid in 50 ml THF wird 24 h bei 60°C gerührt. Man engt die Reaktionsmischung im Vakuum auf ein Volumen von 5 ml ein, gibt 20 ml Methanol zu, saugt vom ausgefallenen Feststoff ab, wäscht diesen dreimal mit je 10 ml Methanol und trocknet im Vakuum. Ausbeute: 3.9 g (6.6 mmol), 66%, 99.5%-ig nach 1H-NMR.
  • Analog werden durch Einsatz der entsprechenden Cu-Salze folgende Verbindungen erhalten (Tabelle).
    Figure 00380001
    Figure 00390001
    Beispiel 7: Cu-Komplex 7
    Figure 00390002
    A): (6-Brom-pyridin-2-yl)-bis-(6-methyl-pyridin-2-yl)methanol
    Figure 00390003
  • Eine auf –78°C gekühlte Suspension von 26.1 g (110 mmol) 2,6-Dibrompyridin in 150 ml Diethylether wird tropfenweise mit 40.0 ml (100 mmol) n-Butyllithium (2.5 N) versetzt und so lange bei –78°C gerührt, bis eine gelbe Lösung entsteht. Diese Lösung wird tropfenweise mit 200 ml Diethylether verdünnt und dann unter gutem Rühren auf ein Mal mit einer Lösung von 23.3 g (110 mmol) Bis(6-methyl-2-pyridinyl)-methanon in 80 ml THF versetzt. Nach Erwärmen auf 0°C gibt man tropfenweise ein Gemisch aus 50 ml Wasser und 6 ml Eisessig zu, saugt dann vom ausgefallenen Feststoff ab, wäscht diesen einmal mit 25 ml Diethylether und einmal mit 25 ml Ethanol und trocknet im Vakuum. Ausbeute: 17.8 g (48 mmol), 48%, 98%ig nach 1H-NMR. B): (6-Brom-pyridin-2-yl)-bis-(6-methyl-pyridin-2-yl)methoxy-methan
    Figure 00400001
  • Eine Suspension von 1.4 g (60 mmol) Natriumhydrid in 50 ml DMF wird bei 40°C mit einer Lösung von 18.5 g (50 mmol) (6-Brom-pyridin-2-yl)-bis-(6-methyl-pyridin-2-yl)methanol in 50 ml DMF versetzt und 30 min. nachgerührt. Dann gibt man ein Gemisch von 8.5 g (60 mmol) Methyliodid und 10 ml DMF zu, rührt 20 h bei Raumtemperatur nach, gibt tropfenweise 5 ml Ethanol zu, verdünnt mit 500 ml Dichlormethan, wäscht die org. Phase fünfmal mit je 300 ml Wasser, trocknet die organische Phase über Magnesiumsulfat und zieht dann das Lösungsmittel im Vakuum komplett ab. Der Rückstand wird aus Ethanol unter Zusatz von wenig Essigsäureethylester umkristallisiert. Ausbeute: 16.5 g (43 mmol), 86%-ig nach 1H-NMR. C): (6-(Phenyl-2-thiol)-pyridin-2-yl)-bis-(6-methyl-pyridin-2-yl)methoxymethan
    Figure 00400002
  • Eine Mischung von 38.4 g (100 mmol) (6-Brom-pyridin-2-yl)-bis-(6-methyl-pyridin-2-yl)methoxy-methan, 41.9 g (130 mmol) [2-Tetrahyro-2H-pyran-2-yl]thio]phenyl-boronsäure-di-iso-proplylester [620988-03-6], 19.2 g (330 mol) Kaliumfluorid (wasserfrei) in 500 ml THF wird mit 405 mg (2 mmol) Tris-tert-butyl-phosphin und dann mit 337 mg (1.5 mmol) Palladium(II)acetat versetzt und anschließend 5 h unter Rückfluss gerührt. Nach Erkalten wird die Reaktionsmischung mit 300 ml Wasser und 15 ml Eisessig versetzt, die Mischung wird 2 h bei 50°C gerührt, die wässrige Phase wird abgetrennt, die organische Phase wird über Celite filtriert und zur Trockene eingeengt. Der so erhaltene Feststoff wird aus Aceton (20 ml) unter Zusatz von Ethanol (150 ml) umkristallisiert. Ausbeute: 27.3 g (66 mmol), 66%, 99.0%ig nach 1H-NMR.
  • D): Cu-Komplex 7
  • Eine Lösung von 4.1 g (10 mmol) (6-(Phenyl-2-thiol)-pyridin-2-yl)-bis-(6-methyl-pyridin-2-yl)methoxy-methan in 50 ml THF wird mit 10.0 ml (10 mmol) Natriummethanolat-Lösung, 1 N in Methanol, versetzt und 1 h bei 40°C gerührt. Dann gibt man 1.0 g (10 mmol) Kupfer(I)chlorid fest zu und rührt weitere 24 h nach. Man engt die Reaktionsmischung im Vakuum auf ein Volumen von 5 ml ein, gibt 50 ml Methanol zu, saugt vom ausgefallenen Feststoff ab, wäscht diesen dreimal mit je 10 ml Methanol und trocknet im Vakuum. Nach zweimaliger Umkristallisation aus DMSO/iso-Propanol wird im Hochvakuum (p = 1 × 10–6 mbar, T = 320°C) sublimiert. Ausbeute: 3.4 g (7.0 mmol), 71%, 99.8%ig nach HPLC. Beispiel 8: Cu-Komplex 8
    Figure 00410001
    A): (6-Brom-pyridin-2-yl)-bis-(6-methl-pyridin2-yl)fluormethan
    Figure 00420001
  • Eine Lösung von 37.0 g (100 mmol) (6-Brom-pyridin-2-yl)-bis-(6-methyl-pyridin2-yl)methanol in 300 ml Chloroform wird unter Rühren mit 46.6 g (350 mmol) Dimethylaminoschwefeltrifluorid versetzt und dann 1 h unter Rückfluss gerührt. Nach Erkalten und Abkühlen der Reaktionsmischung auf + 5°C gibt man eine Lösung von 65 g Natriumhydroxid in 500 ml Wasser zu langsam (Achtung: exotherm!), rührt 30 min. nach, trennt die wässrige Phase ab und trocknet die organische Phase über Calciumchlorid. Nach Entfernen des Lösungsmittels im Vakuum nimmt man das Öl in 100 ml heißem Methanol auf, saugt nach Erkalten vom farblosen Feststoff ab, wäscht diesen einmal mit 30 ml Methanol und trocknet im Vakuum. Ausbeute: 33.1 g (8.9 mmol), 89%, 97%-ig nach 1H-NMR. B): (6-Formyl-pyridin-2-yl)-bis-(6-methyl-pyridin2-yl)fluormethan
    Figure 00420002
  • Eine auf –78°C gekühlte Lösung von 16.6 g (50 mmol) 6-Brom-pyridin-2-yl)-bis-(6-methyl-pyridin2-yl)fluormethan in 200 ml THF wird zügig mit 20 ml (50 mmol) n-Butyllithium (2.5 N in Hexan) versetzt und 10 min. bei –78°C gerührt. Dann gibt man 4.4 g (60 mmol) DMF in 10 ml THF auf ein Mal zu, rührt 30 min. nach und lässt dann auf Raumtemperatur erwärmen. Man gibt 55 ml 1 N Salzsäure zu, rührt 1 h nach und engt im Vakuum zur Trockene ein. Man nimmt den Rückstand in 500 ml Dichlormnethan auf, wäscht mit 100 ml 1 N Natronlauge und dann mit 100 ml Wasser, trocknet die organische Phase über Magnesiumsulfat, engt die organische Phase im Vakuum auf ca. 30 ml ein, gibt 100 ml iso-Propanol zu, rührt 1 h nach, saugt vom ausgefallenen Feststoff ab, wäscht diesen mit Methanol und trocknet im Vakuum. Ausbeute: 10.3 g (32 mmol), 64%, 95.0%-ig nach 1H-NMR. C): (6-(Benzimidazol-2-yl)-pyridin-2-yl)-bis-(6-methyl-pyridin-2-yl)fluormethan
    Figure 00430001
  • Eine Suspension von 12.0 g Kieselgel in 50 ml Dichlormethan wird tropfenweise mit 3.0 ml Thionylchlirid versetzt und dann 1 h bei Raumtemperatur gerührt. Anschließend tropft man eine Lösung von 6.4 g (20 mmol) (6-Formyl-pyridin-2-yl)-bis-(6-methyl-pyridin2-yl)fluormethan und 2.4 g (22 mmol) o-Phenylendiamin zu und rührt 6 h bei nach. Man versetzt mit 50 ml Dichlormethan und 50 ml Ethanol, saugt über Kieselgel ab, wäscht dieses mit Dichlormethan nach, engt die organische Phase im Vakuum ein und kristallisiert den Rückstand aus ca. 50 ml Ethanol unter Zusatz von 5 ml Triethylamin um. Ausbeute: 4.9 g (12 mmol), 60%, 99.0%-ig nach 1H-NMR.
  • D): Cu-Komplex 8
  • Eine Mischung von 4.1 g (10 mmol) (6-(Benzimidazol-2-yl)-pyridin-2-yl)-bis-(6-methyl-pyridin-2-yl)fluormethan und 1.0 g (10 mmol) Kupfer(I)chlorid in 50 ml THF wird mit 1.3 g (10 mmol) Diisopropylethylamin versetzt und 24 h bei 40°C gerührt. Man engt die Reaktionsmischung im Vakuum auf ein Volumen von 5 ml ein, gibt 30 ml Methanol zu, saugt vom ausgefallenen Feststoff ab, wäscht diesen dreimal mit je 10 ml Methanol und trocknet im Vakuum. Nach zweimaliger Umkristallisation aus Acetonitril wird im Hochvakuum (p = 1 × 10–6 mbar, T = 310°C) sublimiert. Ausbeute: 3.3 g (7.0 mmol), 70%, 99.9%-ig nach HPLC. Beispiel 9: Cu-Komplex 9
    Figure 00440001
    A): 2-(1-Methoxymethyl-1H-imidazol-2-yl)-pyridin
    Figure 00440002
  • Zu einer Lösung von 400.0 g (10 mol) Natruimhydroxid in 400 ml Wasser gibt man unter gutem Rühren bei Raumtemperatur 600 ml Toluol, 84.2 g (580 mmol) 1H-Imidazol-2-yl-pyridin [18653-75-3] und 14.8 g (40 mmol) Tetrabutylammoniumbromid zu, tropft dann ein Gemisch von 50.0 g (621 mmol) Chiormethyl-methyl-ether und 100 ml Toluol langsam zu, und rührt 16 h bei Raumtemperatur nach. Man erweitert die Reaktionsmischung mit 800 ml Toluol und 800 ml Wasser, trennt die organische Phase ab, trocknet diese über Magnesiumsulfat und entfernt das Lösungsmittel im Vakuum. Ausbeute: 99.0 g (90 mmol), 98%, 96%-ig nach 1H-NMR. B): Bis-(6-methyl-pyridin-2-yl)-(1-methoxymethyl-2-pyridin-2-yl-3H-imidazol-4-yl)methanol
    Figure 00440003
  • Eine auf –78°C gekühlte Lösung von 18.9 g (100 mmol) 2-(1-Methoxymethyl-1H-imidazol-2-yl)-pyridin in 500 ml THF wird tropfenweise mit 40 ml (100 mmol) n-Butyllithium (2.5 M in Hexan) versetzt und 30 min. nachgerührt. Anschließend gibt man eine Lösung von 21.2 g (100 mmol) Bis(6-methyl-2-pyridinyl)-methanon in 50 ml THF auf ein Mal zu und lässt die Reaktionsmischung auf Raumtemperatur erwärmen. Nach Zugabe eines Gemischs von 100 ml Wasser und 6.0 ml Eisessig rührt man 1 h nach, trennt dann die organische Phase ab, trocknet diese über Kaliumcarbonat und engt dann im Vakuum zur Trockene ein. Ausbeute: 23.0 g (57 mmol), 57%, 95.0%-ig nach 1H-NMR. C): Bis-(6-methyl-pyridin-2-yl)-(2-pyridin-2-yl-3H-imidazol-4-yl)methan
    Figure 00450001
  • 20.1 g (50 mmol) Bis-(6-methyl-pyridin-2-yl)-(1-methoxymethyl-2-pyridin-2-yl-3H-imidazol-4-yl)methan werden in 300 ml Eisessig suspendiert. Man versetzt die Suspension mit 20 ml wässriger hypophosphoriger Säure (50 Gew.-%ig) und 40 ml wässriger Iodwasserstoffsäure (57 Gew.-%ig) und rührt die Reaktionsmischung 24 h bei 80°C. Nach Erkalten saugt man vom ausgefallenen Feststoff ab, wäscht diesen einmal mit 20 ml Eisessig und dreimal mit je 20 ml Methanol. Man suspendiert den Feststoff in 300 ml Dichlormethan, gibt 100 ml gesättigte Ammoniumchlorid-Lösung und dann 50 ml Ammoniaklösung zu, rührt, bis sich der Feststoff gelöst hat, trennt die organische Phase ab, wäscht diese mit gesättigter Kochsalzlösung, trocknet die organische Phase über Magnesiumsulfat und engt dann im Vakuum ein. Der Rückstand wird zweimal aus Essigsäureethylester umkristallisiert. Ausbeute: 10.9 g (32 mmol), 64%, 99.0%-ig nach 1H-NMR.
  • D): Cu-Komplex 9
  • Eine Mischung von 3.4 g (10 mmol) Bis-(6-methyl-pyridin-2-yl)-(2-pyridin-2-yl-3H-imidazol-4-yl)methan und 1.0 g (10 mmol) Kupfer(I)chlorid in 50 ml THF wird mit 1.3 g (10 mmol) Diisopropylethylamin versetzt und 24 h bei 40°C gerührt. Man engt die Reaktionsmischung im Vakuum auf ein Volumen von 5 ml ein, gibt 30 ml Methanol zu, saugt vom ausgefallenen Feststoff ab, wäscht diesen dreimal mit je 10 ml Methanol und trocknet im Vakuum. Nach zweimaliger Umkristallisation aus DMF/EtOH wird im Hochvakuum (p = 1 × 10–6 mbar, T = 320°C) sublimiert. Ausbeute: 2.1 g (5.2 mmol), 52%, 99.8%-ig nach HPLC. Beispiel 10: Cu-Komplex 10
    Figure 00460001
    A): Tris(6-phenyl-pyridin-2-yl)phosphinoxid
    Figure 00460002
  • Eine Mischung von 51.8 g (100 mmol) Tris(6-brom-pyridin-2-yl)phosphinoxid [197776-47-9], 61.0 g (500 mmol) Phenylboronsäure, 58.1 g (1 mol) Kaliumfluorid (wasserfrei) in 1000 ml THF wird mit 809 mg (4 mmol) Tris-tert-butyl-phosphin und dann 674 g (3 mmol) Palladium(II)acetat versetzt und anschließend 5 h unter Rückfluss gerührt. Nach Erkalten wird die Reaktionsmischung mit 300 ml Wasser versetzt, die wässrige Phase wird abgetrennt, die organische Phase wird über Celite filtriert und zur Trockene eingeengt. Der so erhaltene Feststoff wird aus Chloroform (50 ml) unter Zusatz von Ethanol (250 ml) umkristallisiert. Ausbeute: 38.4 g (75 mmol), 75%, 99.0%-ig nach 1H-NMR.
  • B): Cu-Komplex 10
  • Eine Mischung von 5.1 g (10 mmol) Tris(6-phenyl-pyridin-2-yl)phosphinoxid und 891 mg (10 mmol) Kupfer(I)cyanid in 50 ml THF wird 24 h bei 60°C gerührt. Man engt die Reaktionsmischung im Vakuum auf ein Volumen von 5 ml ein, gibt 20 ml Methanol zu, saugt vom ausgefallenen Feststoff ab, wäscht diesen dreimal mit je 10 ml Methanol und trocknet im Vakuum. Ausbeute: 3.7 g (6.2 mmol), 62%, 99.0%-ig nach 1H-NMR.
  • Beispiel 11: Herstellung und Charakterisierung von organischen Elektrolumineszenzvorrichtungen aus der Gasphase
  • Erfindungsgemäße Elektrolumineszenzvorrichtungen können, wie beispielsweise in WO 05/003253 beschrieben, dargestellt werden. Hier werden die Ergebnisse verschiedener OLEDs gegenübergestellt. Der grundlegende Aufbau, die verwendeten Materialien, der Dotierungsgrad und ihre Schichtdicken sind zur besseren Vergleichbarkeit identisch.
  • Dabei wird der folgende Device-Aufbau verwendet:
    Lochinjektionsschicht (HIL) 20 nm 2,2',7,7'-Tetrakis(di-para-tolylamino)spiro-9,9'-bifluoren
    Lochtransportschicht (HTL1) 5 nm NPB (N-Naphthyl-N-phenyl-4,4'-diaminobiphenyl)
    Elektronenblockierschicht (EBL) EBL1, 10 nm oder EBL2, 10 nm
    Emissionsschicht (EML) Matrix M1, M2, M3 oder M4 oder Kombinationen davon, 40 nm; Emitter: 10 Vol.-% Dotierung; Verbindungen: s. Tabelle 1.
    Elektronenleiter (ETL) 20 nm BAlq
    Kathode 1 nm LiF, darauf 100 nm Al.
  • Die Strukturen von EBL, M und TEB sind der Übersichtlichkeit halber im Folgenden abgebildet.
  • Figure 00480001
  • Diese noch nicht optimierten OLEDs werden standardmäßig charakterisiert; hierfür werden die Elektrolumineszenzspektren, die externe Quanteneffizienz (gemessen in %) in Abhängigkeit von der Helligkeit, berechnet aus Strom-Spannungs-Helligkeit-Kennlinien (IUL-Kennlinien) bestimmt. Tabelle 1: Device-Ergebnisse
    Bsp. EBL Matrix Emitter EQE bei 100 cd/m2 [%] Spannung bei 100 cd/m2 [V] CIE x/y
    12 EBL1 M3 Cu-Komplex 7 7.8 6.3 0.24/0.62
    13 EBL1 M1 (40%) M3 (50%) Cu-Komplex 7 6.8 5.7 0.25/0.59
    14 EBL2 M3 Cu-Komplex 8 9.5 5.5 0.17/0.46
    15 EBL2 M3 (50%) M4 (40%) Cu-Komplex 8 8.9 5.8 0.19/0.48
    16 EBL2 M3 Bsp. 27 Cu-Komplex 9 7.5 6.1 0,17/0.39
    17 EBL1 M2 Cu-Komplex 9 8.3 7.4 0.17/0.38
  • Beispiel 18: Herstellung und Charakterisierung von organischen Elektrolumineszenzvorrichtungen aus Lösung
  • Die Herstellung von LEDs erfolgt nach dem im Folgenden skizzierten allgemeinen Verfahren. Dieses muss natürlich im Einzelfall auf die jeweiligen Gegebenheiten (z. B. Schichtdickenvariation, um optimale Effizienz bzw. Farbe zu erreichen) angepasst werden.
  • Allgemeines Verfahren zur Herstellung der OLEDs:
  • Die Herstellung solcher Bauteile lehnt sich an die Herstellung polymerer Leuchtdioden (PLEDs) an, die in der Literatur bereits vielfach beschrieben ist (z. B. in der WO 2004/037887 A2 ). Im vorliegenden Fall werden die erfindungsgemäßen Verbindungen zusammen mit den auf geführten Matrixmaterialien oder Matrixmareialkombinationen in Toluol, Chlorbenzol oder DMF gelöst. Der typische Feststoffgehalt solcher Lösungen liegt zwischen 10 und 25 g/L, wenn, wie hier, die für eine Device typische Schichtdicke von 80 nm mittels Spincoating erzielt werden soll.
  • Analog dem o. g. allgemeinen Verfahren werden OLEDs mit folgendem Aufbau erzeugt:
    PEDOT 20 nm (aus Wasser aufgeschleudert; PEDOT bezogen von BAYER AG; Poly-[3,4-ethylendioxy-2,5-thiophen]
    Matrix + Emitter 80 nm, 5 Gew.-% Emitterkonzentration (aus Toluol, Chlorbenzol oder DMF aufgeschleudert),
    Ba/Ag 10 nm Ba/150 nm Ag als Kathode.
  • Strukturierte ITO-Substrate und das Material für die sogenannte Pufferschicht (PEDOT, eigentlich PEDOT:PSS) sind käuflich erhältlich (ITO von Technoprint und anderen, PEDOT:PPS als wässrige Dispersion Clevios Baytron P von H. C. Starck). Die Emissionsschicht wird in einer Inertgasatmosphäre, im vorliegenden Fall. Argon, aufgeschleudert und 10 min bei 120°C ausgeheizt. Zuletzt wird eine Kathode aus Barium und Aluminium im Vakuum aufgedampft. Die lösungsprozessierten Devices werden standardmäßig charakterisiert, die genannten OLED-Beispiele sind noch nicht optimiert. In Tabelle 2 sind die Effizienz und die Spannung bei 100 cd/m2 sowie die Farbe aufgeführt. Tabelle 2: Device-Ergebnisse
    Bsp. Matrix Emitter EQE bei 100 cd/m2 [%] Spannung bei 100 cd/m2 [V] CIE x/y
    19 M1 (30%) M4 (60%) Cu-Komplex 1 2,1 8,9 0.35/0.61
    20 M3 (45%) M4 (45%) Cu-Komplex 6 3.4 6.2 0.17/0.55
    21 M1 (30%) M4 (60%) Cu-Komplex 10 4.9 7.7 0.30/0.42
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • US 4539507 [0002]
    • US 5151629 [0002]
    • EP 0676461 [0002]
    • WO 98/27136 [0002]
    • WO 05/011013 [0053]
    • WO 04/013080 [0055]
    • WO 04/093207 [0055]
    • WO 06/005627 [0055]
    • DE 102008033943 [0055]
    • WO 05/039246 [0055]
    • US 2005/0069729 [0055]
    • JP 2004/288381 [0055]
    • EP 1205527 [0055]
    • WO 08/086851 [0055]
    • WO 07/063754 [0055, 0055]
    • WO 08/056746 [0055, 0055]
    • DE 102009023155 [0055]
    • DE 102009031021 [0055]
    • EP 1617710 [0055]
    • EP 1617711 [0055]
    • EP 1731584 [0055]
    • JP 2005/347160 [0055]
    • WO 07/137725 [0055]
    • WO 05/111172 [0055]
    • WO 06/117052 [0055]
    • DE 102008036982 [0055]
    • DE 102009048791 [0055]
    • EP 652273 [0055]
    • WO 09/062578 [0055]
    • DE 102008056688 [0055]
    • DE 102009022858 [0055]
    • DE 102009014513 [0057]
    • WO 05/003253 [0090]
    • WO 2004/037887 A2 [0095]
  • Zitierte Nicht-Patentliteratur
    • M. A. Baldo et al., Appl. Phys. Lett. 1999, 75, 4– 6 [0002]
    • M. S. Arnold et al., Appl. Phys. Lett. 2008, 92, 053301 [0062]

Claims (16)

  1. Elektronische Vorrichtung enthaltend Anode, Kathode und mindestens eine Verbindung gemäß Formel (1),
    Figure 00510001
    Formel (1) enthaltend ein Metall M, koordiniert an einen Liganden L gemäß Formel (2),
    Figure 00510002
    Formel (2) wobei für die verwendeten Symbole und Indizes gilt: M ist ausgewählt aus Cu, Ag, Au, Zn, Sn, Pb, Ni, Pd oder Pt; V ist ausgewählt aus B, BR, CR, CO, SiR, N, NR+, P, PR+, P(=O), As, AsR+, As(=O), Sb, SbR+, Sb(=O) oder S+; oder V ist eine aliphatische, aromatische oder heteroaromatische cyclische Gruppe mit 3 bis 6 Ringatomen, die die Teilliganden L1, L2 und L3, gegebenenfalls über die Gruppe Y, kovalent miteinander verbindet und die durch einen oder mehrere Reste R substituiert sein kann; Y ist bei jedem Auftreten gleich oder verschieden eine bivalente Gruppe, ausgewählt aus CR2, BR, SiR2, NR, PR, P(=O)R, AsR, As(=O)R, SbR, Sb(=O)R, O, S, 1,2-Vinylen oder 1,2- oder 1,3-Phenylen, welches jeweils mit einem oder mehreren Resten R substituiert sein kann; a ist 0 oder 1; b ist 1, 2 oder 3, wobei für b = 2 oder 3 der Index a = 1 ist; L1 ist eine heterocyclische Gruppe mit 1 bis 20 C-Atomen und mindestens einem N-Atom, welche durch einen oder mehrere Reste R substituiert sein kann und welche über ein neutrales oder anionisches Stickstoffatom oder über ein neutrales Kohlenstoffatom, welches jeweils Teil der heterocyclischen Gruppe ist, an M bindet; oder ist eine cyclische oder heterocyclische Gruppe mit 1 bis 20 C-Atomen, welche über ein exocyclisches Donoratom an M bindet und welche durch einen oder mehrere Reste R substituiert sein kann; L2, L3 sind gleich oder verschieden bei jedem Auftreten eine koordinierende Gruppe, welche durch einen oder mehrere Reste R substituiert sein kann und welche über Stickstoff, Phosphor, Schwefel oder ein neutrales Kohlenstoffatom an M bindet, wobei L2 und/oder L3 auch gleich oder verschieden L1 sein können; L4 ist ein beliebiger Ligand, welcher an das Metall M koordiniert und welcher durch einen oder mehrere Reste R substituiert sein kann; dabei kann L4 auch durch eine direkte Bindung oder durch eine bivalente Gruppe -(Y)n- mit einem oder mehreren der Teilliganden L1, L2 und/oder L3 verknüpft sein; n ist bei jedem Auftreten gleich oder verschieden 0, 1, 2 oder 3; R ist bei jedem Auftreten gleich oder verschieden H, D, F, Cl, Br, I, N(R1)2, CN, NO2, OH, Si(R1)3, B(OR1)2, C(=O)R1, P(=O)(R1)2, S(=O)R1, S(=O)2R1, OSO2R1, eine geradkettige Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 1 bis 40 C-Atomen oder eine verzweigte oder cyclische Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 3 bis 40 C-Atomen oder eine Alkenyl- oder Alkinylgruppe mit 2 bis 40 C-Atomeng die jeweils mit einem oder mehreren Resten R1 substituiert sein kann, wobei eine oder mehrere nicht benachbarte CH2-Gruppen durch R1C=CR1, C≡C, Si(R1)2, Ge(R1)2, Sn(R1)2, C=O, C=S, C=Se, C=NR1, P(=O)(R1), SO, SO2, NR1, O, S oder CONR1 ersetzt sein können und wobei ein oder mehrere H-Atome durch F, Cl, Br, I, CN oder NO2 ersetzt sein können, oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R1 substituiert sein kann, oder eine Aryloxy-, Heteroaryloxy-, Aralkyl- oder Heteroaralkylgruppe mit 5 bis 60 aromatischen Ringatomen, die durch einen oder mehrere Reste R1 substituiert sein kann, oder eine Diarylaminogruppe, Diheteroarylaminogruppe oder Arylheteroarylaminogruppe mit 10 bis 40 aromatischen Ringatomen, welche durch einen oder mehrere Reste R1 substituiert sein kann; dabei können zwei oder mehrere Substituenten R auch miteinander ein mono- oder polycyclisches, aliphatisches, aromatisches, heteroaromatisches und/oder benzoannelliertes Ringsystem bilden; R1 ist bei jedem Auftreten gleich oder verschieden H, D, F, Cl, Br, I, N(R2)2, CN, NO2, OH, Si(R2)3, B(OR2)2, C(=O)R2, P(=O)(R2)2, S(=O)R2, S(=O)2R2, OSO2R2, eine geradkettige Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 1 bis 40 C-Atomen oder eine verzweigte oder cyclische Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 3 bis 40 C-Atomen oder eine Alkenyl- oder Alkinylgruppe mit 2 bis 40 C-Atomen, die jeweils mit einem oder mehreren Resten R2 substituiert sein kann, wobei eine oder mehrere nicht benachbarte CH2-Gruppen durch R2C=CR2, C≡C, Si(R2)2, Ge(R2)2, Sn(R2)2, C=O, C=S, C=Se, C=NR2, P(=O)(R2), SO, SO2, NR2, O, S oder CONR2 ersetzt sein können und wobei ein oder mehrere H-Atome durch F, Cl, Br, I, CN oder NO2 ersetzt sein können, oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R2 substituiert sein kann, oder eine Aryloxy-, Heteroaryloxy-, Aralkyl- oder Heteroaralkylgruppe mit 5 bis 60 aromatischen Ringatomen, die durch einen oder mehrere Reste R2 substituiert sein kann, oder eine Diarylaminogruppe, Diheteroarylaminogruppe oder Arylheteroarylaminogruppe mit 10 bis 40 aromatischen Ringatomen, welche durch einen oder mehrere Reste R2 substituiert sein kann; dabei können zwei oder mehrere Substituenten R1 auch miteinander ein mono- oder polycyclisches, aliphatisches, aromatisches, heteroaromatisches und/oder benzoannelliertes Ringsystem bilden; R2 ist bei jedem Auftreten gleich oder verschieden H, D, F oder ein aliphatischer, aromatischer und/oder heteroaromatischer Kohlenwasserstoffrest mit 1 bis 20 C-Atomen, in dem auch ein oder mehrere H-Atome durch F ersetzt sein können; dabei können zwei oder mehrere Substituenten R2 auch miteinander ein mono- oder polycyclisches aliphatisches oder aromatisches Ringsystem bilden.
  2. Elektronische Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass L1 eine Heteroarylgruppe ist oder eine Aryl- bzw. Heteroarylgruppe mit einem exocyclischen Donoratom oder ein cyclisches, gesättigtes oder ungesättigtes Carben, wobei diese Gruppen jeweils mit einem oder mehreren Resten R substituiert sein können.
  3. Elektronische Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass L1 ausgewählt ist aus den Gruppen gemäß den Formeln (3) bis (30):
    Figure 00550001
    Figure 00560001
    wobei die verwendeten Symbole dieselbe Bedeutung haben, wie in Anspruch 1 beschrieben, und weiterhin gilt: X steht bei jedem Auftreten gleich oder verschieden für CR oder N; D steht bei jedem Auftreten gleich oder verschieden für O, S, NR, PR, NR2, PR2, COO, SO3 , -C(=O)R, -CR(=NR) oder -N(=CR2); dabei koordinieren die Gruppen an das Metall M über die durch * gekennzeichnete Position, die durch # gekennzeichnete Position gibt die Position an, an der der Teilligand an Y bzw. an V gebunden ist, und die durch (#) gekennzeichnete Position gibt die Position an, an der der Teilligand gegebenenfalls an Y bzw. an L4 gebunden ist.
  4. Elektronische Vorrichtung nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass L2 und L3 koordinierende Gruppen sind, welche auch durch einen oder mehrere Reste R substituiert sein können und welche über Stickstoff, Phosphor oder Schwefel an M bindet oder welche gleich oder verschieden L1 sind.
  5. Elektronische Vorrichtung nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass Y gleich oder verschieden bei jedem Auftreten eine bivalente Gruppe ist, ausgewählt aus CR2, BR, SiR2, NR, PR, P(=O)R, O oder S.
  6. Elektronische Vorrichtung nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass V ausgewählt aus B, BR, CR, CO, SiR, N, NR+, P oder P(=O); oder V ist eine cyclische Gruppe gemäß einer der Formeln (31) bis (34),
    Figure 00570001
    wobei die gestrichelten Bindungen jeweils die Bindung zu den Teilliganden L1, L2 und L3 bzw. zu Y andeuten und R wie in Anspruch 1 definiert ist.
  7. Elektronische Vorrichtung nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass L4 ausgewählt ist aus der Gruppe bestehend aus Kohlenmonoxid, Stickstoffmonoxid, Alkyl cyaniden, Arylcyaniden, Alkylisocyaniden, Arylisocyaniden, Aminen, Phosphinen, Phosphiten, Arsinen, Stibinen, stickstoffhaltigen Heterocyclen, Carbenen, Hydrid, Deuterid, den Halogeniden F, Cl, Br und I, Alkylacetyliden, Arylacetyliden, Cyanid, Cyanat, Isocyanat, Thiocyanat, Isothiocyanat, aliphatischen oder aromatischen Alkoholaten, aliphatischen oder aromatischen Thioalkoholaten, Amiden, Carboxylaten oder Gruppen der folgenden Formeln (35) bis (61),
    Figure 00570002
    Figure 00580001
    wobei die verwendeten Symbole und Indizes die in Anspruch 1 und 3 genannten Bedeutungen haben, * die Position der Koordination an M andeutet und die durch (#) gekennzeichnete Position die Position angibt, an der L4, gegebenenfalls über -(Y)n-, an einen der Teilliganden L1, L2 oder L3 gebunden sein kann.
  8. Elektronische Vorrichtung nach einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass für die verwendeten Symbole und Indizes gilt: L1 ist ausgewählt aus den oben genannten Gruppen gemäß den Formeln (3) bis (30) gemäß Anspruch 3; L2, L3 sind gleich oder verschieden bei jedem Auftreten ausgewählt aus der Gruppe bestehend aus -NR2, -NR, -N=C(R1)2, -PR2, -PR(OR), P(OR)2, -S und -SR oder L1; Y ist gleich oder verschieden bei jedem Auftreten eine bivalente Gruppe, ausgewählt aus CR2, BR, SiR2, NR, PR, P(O)R, O oder S; n ist gleich oder verschieden bei jedem Auftreten 0, 1 oder 2; V ist ausgewählt aus B, BR, CR, CO, SiR, N, NR+, P oder P(=O); oder V ist eine cyclische Gruppe gemäß einer der Formeln (31) bis (34) gemäß Anspruch 6; L4 ist ausgewählt aus der Gruppe bestehend aus Kohlenmonoxid, Stickstoffmonoxid, Alkylcyaniden, Arylcyaniden, Alkylisocyaniden, Arylisocyaniden, Aminen, Halogenphosphinen, Trialkylphosphinen, Triarylphosphinen, Alkylarylphosphine, Phosphiten, Arsinen, Stibinen, neutralen oder anionischen stickstoffhaltigen Heterocyclen, Carbenen, Hydrid, Deuterid, F, Cl, Br und I, Alkylacetyliden, Arylacetyliden, Cyanid, Cyanat, Isocyanat, Thiocyanat, Isothiocyanat, aliphatischen oder aromatischen Alkoholaten, aliphatischen oder aromatischen Thioalkoholaten, Amiden, Carboxylaten oder Liganden der oben genannten Formeln (35) bis (61) gemäß Anspruch 7; b ist gleich 1; die weiteren verwendeten Symbole und Indizes haben die in Anspruch 1 genannten Bedeutungen.
  9. Elektronische Vorrichtung nach einem oder mehreren der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der Ligand L eine Struktur gemäß einer der Formeln (62) bis (66) aufweist, wobei die verwendeten Symbole und Indizes die in Anspruch 1 genannten Bedeutungen haben:
    Figure 00600001
  10. Elektronische Vorrichtung gemäß einem oder mehreren der Ansprüche 1 bis 9, ausgewählt aus der Gruppe bestehend aus organischen Elektrolumineszenzvorrichtungen (= organische Leuchtdioden, OLEDs, PLEDs), organischen integrierten Schaltungen (O-ICs), organischen Feld-Effekt-Transistoren (O-FETs), organischen Dünnfilmtransistoren (O-TFTs), organischen lichtemittierenden Transistoren (O-LETs), organischen Solarzellen (O-SCs), organischen optischen Detektoren, organischen Photorezeptoren, organischen Feld-Quench-Devices (O-FQDs), lichtemittierenden elektrochemischen Zellen (LECs) und organischen Laserdioden (O-Laser).
  11. Organische Elektrolumineszenzvorrichtung nach einem oder mehreren der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Verbindung gemäß Formel (1) als emittierende Verbindung in einer emittierenden Schicht eingesetzt wird.
  12. Organische Elektrolumineszenzvorrichtungnach Anspruch 11, dadurch gekennzeichnet, dass die Verbindung gemäß Formel (1) im Kombination mit einem oder mehreren Matrixmaterialien eingesetzt werden, welche ausgewählt sind aus der Gruppe bestehend aus Ketonen, Phosphinoxiden, Sulfoxiden, Sulfonen, Triarylaminen, Carbazolderivaten, Indolocarbazolderivaten, Indenocarbazolderivaten, Azacarbazolen, bipolaren Matrixmaterialien, Silanen, Azaborolen, Boronestern, Triazinderivaten, Zinkkomplexen, Diaza- oder Tetraazasilolderivate oder Diazaphospholderivate.
  13. Organische Elektrolumineszenzvorrichtung nach Anspruch 11 oder 12, dadurch gekennzeichnet, dass die Verbindung gemäß Formel (1) als Matrixmaterial für eine emittierende Verbindung in einer emittierenden Schicht eingesetzt wird und/oder als Lochblockiermaterial in einer Lochblockierschicht und/oder als Elektronentransportmaterial in einer Elektronentransportschicht und/oder als Lochtransportmaterial in einer Lochtransport- bzw. -injektionsschicht und/oder als Elektronenblockiermaterial in einer Elektronenblockierschicht.
  14. Verbindung gemäß einer der Formeln (62) bis (66),
    Figure 00620001
    wobei die verwendeten Symbole und Indizes die in Anspruch 1 genannten Bedeutungen aufweisen.
  15. Verwendung einer Verbindung nach Anspruch 14 in einer elektronischen Vorrichtung.
  16. Verfahren zur Herstellung einer Verbindung nach Anspruch 14, dadurch gekennzeichnet, dass die entsprechenden freien Liganden mit Metallsalzen bzw. Metallkomplexen des entsprechenden Metalls M umgesetzt werden.
DE102009057167A 2009-12-05 2009-12-05 Elektronische Vorrichtung enthaltend Metallkomplexe Withdrawn DE102009057167A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
DE102009057167A DE102009057167A1 (de) 2009-12-05 2009-12-05 Elektronische Vorrichtung enthaltend Metallkomplexe
US13/513,592 US9634268B2 (en) 2009-12-05 2010-11-09 Electronic device comprising metal complexes
KR1020127017578A KR20120091443A (ko) 2009-12-05 2010-11-09 금속 착물을 포함하는 전자 소자
DE112010004687T DE112010004687A5 (de) 2009-12-05 2010-11-09 Elektronische vorrichtung enthaltend metallkomplexe
JP2012541333A JP5766712B2 (ja) 2009-12-05 2010-11-09 金属錯体を含む電子素子
CN201080055085.3A CN102648540B (zh) 2009-12-05 2010-11-09 包含金属络合物的电子器件
PCT/EP2010/006821 WO2011066898A1 (de) 2009-12-05 2010-11-09 Elektronische vorrichtung enthaltend metallkomplexe
TW099141714A TW201137083A (en) 2009-12-05 2010-12-01 Electronic device comprising metal complexes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102009057167A DE102009057167A1 (de) 2009-12-05 2009-12-05 Elektronische Vorrichtung enthaltend Metallkomplexe

Publications (1)

Publication Number Publication Date
DE102009057167A1 true DE102009057167A1 (de) 2011-06-09

Family

ID=43501416

Family Applications (2)

Application Number Title Priority Date Filing Date
DE102009057167A Withdrawn DE102009057167A1 (de) 2009-12-05 2009-12-05 Elektronische Vorrichtung enthaltend Metallkomplexe
DE112010004687T Withdrawn DE112010004687A5 (de) 2009-12-05 2010-11-09 Elektronische vorrichtung enthaltend metallkomplexe

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE112010004687T Withdrawn DE112010004687A5 (de) 2009-12-05 2010-11-09 Elektronische vorrichtung enthaltend metallkomplexe

Country Status (7)

Country Link
US (1) US9634268B2 (de)
JP (1) JP5766712B2 (de)
KR (1) KR20120091443A (de)
CN (1) CN102648540B (de)
DE (2) DE102009057167A1 (de)
TW (1) TW201137083A (de)
WO (1) WO2011066898A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012143080A2 (de) 2011-04-18 2012-10-26 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
US9799840B2 (en) 2011-10-17 2017-10-24 Osram Oled Gmbh Organic electronic component with dopant, use of a dopant and method for the production of the dopant

Families Citing this family (160)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5980796B2 (ja) 2010-11-24 2016-08-31 メルク パテント ゲーエムベーハー 有機エレクトロルミネッセンス素子のための材料
JP6092195B2 (ja) 2011-06-03 2017-03-08 メルク パテント ゲーエムベーハー 有機エレクトロルミネッセンス素子
EP2758372B1 (de) 2011-09-21 2017-05-17 Merck Patent GmbH Carbazolderivate für organische elektrolumineszenzvorrichtungen
WO2013056776A1 (de) 2011-10-20 2013-04-25 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
US9231218B2 (en) * 2012-07-10 2016-01-05 Universal Display Corporation Phosphorescent emitters containing dibenzo[1,4]azaborinine structure
WO2014008967A2 (de) 2012-07-10 2014-01-16 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
EP2875019B1 (de) 2012-07-23 2017-03-29 Merck Patent GmbH Materialien für organische elektrolumineszenzvorrichtungen
DE102012020167A1 (de) * 2012-10-13 2014-04-17 Eberhard Karls Universität Tübingen Metallkomplexe
DE102012021650A1 (de) 2012-11-03 2014-05-08 Eberhard Karls Universität Tübingen Metallkomplexe
KR20150132438A (ko) * 2013-03-16 2015-11-25 메르크 파텐트 게엠베하 Oled 로서의 사용을 위한, 통상적인 질소 또는 인 원자로 상호연결된 폴리포달 리간드를 갖는 금속 착물
DE102013215342B4 (de) * 2013-08-05 2023-05-04 Novaled Gmbh Verfahren zur Herstellung organisch phosphoreszenter Schichten unter Zusatz schwerer Hauptgruppenmetallkomplexe, damit hergestellte Schicht, deren Verwendung und organisches Halbleiterbauelement diese umfassend
WO2015169412A1 (de) 2014-05-05 2015-11-12 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
DE102014114224A1 (de) * 2014-09-30 2016-03-31 Osram Oled Gmbh Organisches elektronisches Bauteil, Verwendung eines Zinkkomplexes als p-Dotierungsmittel für organische elektronische Matrixmaterialien
EP3204463B1 (de) 2014-10-08 2019-04-17 cynora GmbH Metall-komplexe mit tridentaten liganden für optoelektronische anwendungen
PT3209655T (pt) 2014-10-24 2020-11-13 Landos Biopharma Inc Produtos terapêuticos à base da lancl2
US10934292B2 (en) 2015-08-13 2021-03-02 Merck Patent Gmbh Hexamethylindanes
JP6044695B2 (ja) * 2015-11-16 2016-12-14 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、それが具備された表示装置及び照明装置
EP3423542B1 (de) 2016-03-03 2020-07-22 Merck Patent GmbH Materialien für organische elektrolumineszenzvorrichtungen
TWI745361B (zh) 2016-03-17 2021-11-11 德商麥克專利有限公司 具有螺聯茀結構之化合物
JP7444607B2 (ja) 2016-04-11 2024-03-06 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング ジベンゾフランおよび/またはジベンゾチオフェン構造を有する複素環式化合物
US11643414B2 (en) 2016-04-29 2023-05-09 Merck Patent Gmbh Materials for organic electroluminescent devices
CN109415344B (zh) * 2016-07-14 2022-06-03 默克专利有限公司 金属络合物
WO2018050584A1 (de) 2016-09-14 2018-03-22 Merck Patent Gmbh Verbindungen mit spirobifluoren-strukturen
EP3512848B1 (de) 2016-09-14 2020-11-18 Merck Patent GmbH Verbindungen mit carbazol-strukturen
TWI766884B (zh) 2016-09-30 2022-06-11 德商麥克專利有限公司 具有二氮雜二苯并呋喃或二氮雜二苯并噻吩結構的化合物、其製法及其用途
US20200028091A1 (en) 2016-09-30 2020-01-23 Merck Patent Gmbh Carbazoles with diazadibenzofurane or diazadibenzothiophene structures
WO2018087022A1 (de) 2016-11-09 2018-05-17 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
TWI756292B (zh) 2016-11-14 2022-03-01 德商麥克專利有限公司 具有受體基團與供體基團之化合物
KR102580980B1 (ko) 2016-11-17 2023-09-20 메르크 파텐트 게엠베하 유기 전계발광 소자용 재료
US11713319B2 (en) 2016-11-30 2023-08-01 Merck Patent Gmbh Compounds having valerolactam structures
TW201831468A (zh) 2016-12-05 2018-09-01 德商麥克專利有限公司 含氮的雜環化合物
WO2018104193A1 (de) 2016-12-05 2018-06-14 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
US11466021B2 (en) 2016-12-05 2022-10-11 Merck Patent Gmbh Materials for organic electroluminescent devices
US20200098996A1 (en) 2016-12-22 2020-03-26 Merck Patent Gmbh Mixtures comprising at least two organofunctional compounds
US11495751B2 (en) 2017-01-04 2022-11-08 Merck Patent Gmbh Materials for organic electroluminescent devices
CN110198936B (zh) 2017-01-25 2024-03-12 默克专利有限公司 咔唑衍生物
CN110167940A (zh) 2017-01-30 2019-08-23 默克专利有限公司 用于有机电致发光器件的材料
TW201835075A (zh) 2017-02-14 2018-10-01 德商麥克專利有限公司 用於有機電致發光裝置之材料
TW201843143A (zh) 2017-03-13 2018-12-16 德商麥克專利有限公司 含有芳基胺結構之化合物
EP3596066B1 (de) 2017-03-15 2022-05-18 Merck Patent GmbH Materialien für organische elektrolumineszenzvorrichtungen
KR102395784B1 (ko) 2017-03-27 2022-05-10 삼성전자주식회사 유기금속 화합물 및 이를 포함한 유기 발광 소자
WO2018189134A1 (de) 2017-04-13 2018-10-18 Merck Patent Gmbh Zusammensetzung für organische elektronische vorrichtungen
US11731990B2 (en) 2017-05-11 2023-08-22 Merck Patent Gmbh Carbazole-based Bodipys for organic electroluminescent devices
US11056656B2 (en) 2017-05-11 2021-07-06 Merck Patent Gmbh Organoboron complexes and their use in organic electroluminescent devices
EP3642185B1 (de) 2017-06-23 2024-04-03 Merck Patent GmbH Materialien für organische elektrolumineszenzvorrichtungen
EP3649213B1 (de) 2017-07-05 2021-06-23 Merck Patent GmbH Zusammensetzung für organische elektronische vorrichtungen
CN110785415A (zh) 2017-07-05 2020-02-11 默克专利有限公司 用于有机电子器件的组合物
WO2019052933A1 (de) 2017-09-12 2019-03-21 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
EP3692043B1 (de) 2017-10-06 2022-11-02 Merck Patent GmbH Materialien für organische elektrolumineszente vorrichtungen
CN111225919A (zh) 2017-10-24 2020-06-02 默克专利有限公司 用于有机电致发光器件的材料
TWI785142B (zh) 2017-11-14 2022-12-01 德商麥克專利有限公司 用於有機電子裝置之組成物
WO2019108418A1 (en) 2017-11-30 2019-06-06 Landos Biopharma, Inc. Therapies with lanthionine c-like protein 2 ligands and cells prepared therewith
TW201938562A (zh) 2017-12-19 2019-10-01 德商麥克專利有限公司 雜環化合物
TWI811290B (zh) 2018-01-25 2023-08-11 德商麥克專利有限公司 用於有機電致發光裝置的材料
CN111819167A (zh) 2018-03-16 2020-10-23 默克专利有限公司 用于有机电致发光器件的材料
CN112166112A (zh) 2018-05-30 2021-01-01 默克专利有限公司 用于有机电子器件的组合物
WO2019233904A1 (de) 2018-06-07 2019-12-12 Merck Patent Gmbh Organische elektrolumineszenzvorrichtungen
US11581497B2 (en) 2018-07-09 2023-02-14 Merck Patent Gmbh Materials for organic electroluminescent devices
EP3823958B1 (de) 2018-07-20 2023-08-23 Merck Patent GmbH Materialien für organische elektrolumineszente vorrichtungen
TWI826522B (zh) 2018-09-12 2023-12-21 德商麥克專利有限公司 電致發光裝置
JP7459065B2 (ja) 2018-09-12 2024-04-01 メルク パテント ゲーエムベーハー 有機エレクトロルミネッセンスデバイス用の材料
TW202030902A (zh) 2018-09-12 2020-08-16 德商麥克專利有限公司 電致發光裝置
JP2022501400A (ja) 2018-09-27 2022-01-06 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung 立体障害窒素含有ヘテロ芳香族化合物を製造する方法
CN112739795A (zh) 2018-09-27 2021-04-30 默克专利有限公司 可用作有机电子器件中的活性化合物的化合物
CN112955437A (zh) 2018-11-05 2021-06-11 默克专利有限公司 可用于有机电子器件中的化合物
KR20210089205A (ko) 2018-11-06 2021-07-15 메르크 파텐트 게엠베하 Oled 용 유기 전계 발광 재료로서 5,6-디페닐-5,6-디히드로디벤즈[c,e][1,2]아자포스포린 및 6-페닐-6h-디벤조[c,e][1,2]티아진-5,5-디옥사이드 유도체 및 유사한 화합물
US20220006018A1 (en) 2018-11-14 2022-01-06 Merck Patent Gmbh Compounds that can be used for producing an organic electronic device
KR20210091762A (ko) 2018-11-15 2021-07-22 메르크 파텐트 게엠베하 유기 전계발광 디바이스용 재료
TW202039493A (zh) 2018-12-19 2020-11-01 德商麥克專利有限公司 用於有機電致發光裝置之材料
WO2020148243A1 (en) 2019-01-16 2020-07-23 Merck Patent Gmbh Materials for organic electroluminescent devices
TW202035345A (zh) 2019-01-17 2020-10-01 德商麥克專利有限公司 用於有機電致發光裝置之材料
JP2022520284A (ja) 2019-02-18 2022-03-29 メルク パテント ゲーエムベーハー 有機電子デバイス用の組成物
US20200274080A1 (en) * 2019-02-22 2020-08-27 Matrix Sensors, Inc. Crystalline film and lighting-emitting device having oriented luminescent emitters
US20220127286A1 (en) 2019-03-04 2022-04-28 Merck Patent Gmbh Ligands for nano-sized materials
WO2020182779A1 (de) 2019-03-12 2020-09-17 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
US20220177478A1 (en) 2019-03-20 2022-06-09 Merck Patent Gmbh Materials for organic electroluminescent devices
CN113614082A (zh) 2019-03-25 2021-11-05 默克专利有限公司 用于有机电致发光器件的材料
WO2020208051A1 (en) 2019-04-11 2020-10-15 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2021013775A1 (de) 2019-07-22 2021-01-28 Merck Patent Gmbh Verfahren zur herstellung ortho-metallierter metallverbindungen
EP4021903A1 (de) 2019-08-26 2022-07-06 Merck Patent GmbH Materialien für organische elektrolumineszenzvorrichtungen
WO2021043703A1 (de) 2019-09-02 2021-03-11 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
TW202122558A (zh) 2019-09-03 2021-06-16 德商麥克專利有限公司 用於有機電致發光裝置之材料
CN114450286A (zh) 2019-09-16 2022-05-06 默克专利有限公司 有机电致发光器件的材料
KR20220065801A (ko) 2019-09-19 2022-05-20 메르크 파텐트 게엠베하 유기 전계 발광 디바이스
EP4031549A1 (de) 2019-09-20 2022-07-27 Merck Patent GmbH Peri-kondensierte heterozyklische verbindungen als materialien für elektronische vorrichtungen
WO2021078710A1 (en) 2019-10-22 2021-04-29 Merck Patent Gmbh Materials for organic electroluminescent devices
EP4048675A1 (de) 2019-10-25 2022-08-31 Merck Patent GmbH In einer organischen elektronischen vorrichtung einsetzbare verbindungen
TW202130783A (zh) 2019-11-04 2021-08-16 德商麥克專利有限公司 有機電致發光裝置
WO2021089450A1 (en) 2019-11-04 2021-05-14 Merck Patent Gmbh Materials for organic electroluminescent devices
TW202134252A (zh) 2019-11-12 2021-09-16 德商麥克專利有限公司 有機電致發光裝置用材料
TW202136181A (zh) 2019-12-04 2021-10-01 德商麥克專利有限公司 有機電致發光裝置用的材料
TW202136471A (zh) 2019-12-17 2021-10-01 德商麥克專利有限公司 有機電致發光裝置用的材料
CN114787169A (zh) 2019-12-18 2022-07-22 默克专利有限公司 用于有机电致发光器件的芳族化合物
JP2023506570A (ja) 2019-12-19 2023-02-16 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 有機エレクトロルミネッセンス素子のための多環式化合物
WO2021127472A1 (en) 2019-12-20 2021-06-24 Landos Biopharma, Inc. Lanthionine c-like protein 2 ligands, cells prepared therewith, and therapies using same
KR20220133937A (ko) 2020-01-29 2022-10-05 메르크 파텐트 게엠베하 벤즈이미다졸 유도체
EP4110884A1 (de) 2020-02-25 2023-01-04 Merck Patent GmbH Verwendung von heterocyclischen verbindungen in einer organischen elektronischen vorrichtung
CN115244728A (zh) 2020-03-02 2022-10-25 默克专利有限公司 砜化合物在有机电子器件中的用途
KR20220151192A (ko) 2020-03-11 2022-11-14 메르크 파텐트 게엠베하 유기 전계 발광 장치
CN115280538A (zh) 2020-03-11 2022-11-01 默克专利有限公司 有机电致发光器件
CN115298847A (zh) 2020-03-17 2022-11-04 默克专利有限公司 用于有机电致发光器件的杂环化合物
CN115298187A (zh) 2020-03-17 2022-11-04 默克专利有限公司 用于有机电致发光器件的杂芳族化合物
KR20220157456A (ko) 2020-03-23 2022-11-29 메르크 파텐트 게엠베하 유기 전계 발광 디바이스용 재료
KR20220158017A (ko) 2020-03-24 2022-11-29 메르크 파텐트 게엠베하 전자 디바이스용 재료
EP4126880A1 (de) 2020-03-26 2023-02-08 Merck Patent GmbH Cyclische verbindungen für organische elektrolumineszenzvorrichtungen
KR20220162156A (ko) 2020-04-02 2022-12-07 메르크 파텐트 게엠베하 유기 전계 발광 디바이스용 재료
US20230183269A1 (en) 2020-04-06 2023-06-15 Merck Patent Gmbh Polycyclic compounds for organic electroluminescent devices
TW202210606A (zh) 2020-05-29 2022-03-16 德商麥克專利有限公司 有機電致發光裝置
WO2021254984A1 (de) 2020-06-18 2021-12-23 Merck Patent Gmbh Indenoazanaphthaline
EP4169082A1 (de) 2020-06-23 2023-04-26 Merck Patent GmbH Verfahren zur herstellung einer mischung
CN115916794A (zh) 2020-06-29 2023-04-04 默克专利有限公司 用于有机电致发光器件的杂环化合物
EP4172164A1 (de) 2020-06-29 2023-05-03 Merck Patent GmbH Heteroaromatische verbindungen für organische elektrolumineszenzvorrichtungen
CN116157402A (zh) 2020-08-06 2023-05-23 默克专利有限公司 用于有机电致发光器件的材料
CN116134113A (zh) 2020-08-13 2023-05-16 默克专利有限公司 金属络合物
KR20230053629A (ko) 2020-08-18 2023-04-21 메르크 파텐트 게엠베하 유기 전계 발광 디바이스용 재료
JP2023539825A (ja) 2020-08-19 2023-09-20 メルク パテント ゲーエムベーハー 有機エレクトロルミネッセントデバイスのための材料
JP2023542908A (ja) 2020-09-18 2023-10-12 シャンハイ ファーマシューティカルズ ホールディング カンパニー,リミティド カルボニル複素環系化合物及びその使用
TW202222748A (zh) 2020-09-30 2022-06-16 德商麥克專利有限公司 用於結構化有機電致發光裝置的功能層之化合物
TW202229215A (zh) 2020-09-30 2022-08-01 德商麥克專利有限公司 用於有機電致發光裝置功能層之結構化的化合物
KR20230088748A (ko) 2020-10-16 2023-06-20 메르크 파텐트 게엠베하 유기 전계 발광 디바이스용 헤테로원자를 포함하는 화합물
KR20230088415A (ko) 2020-10-16 2023-06-19 메르크 파텐트 게엠베하 유기 전계 발광 디바이스용 복소환 화합물
CN112209916B (zh) * 2020-10-23 2021-06-01 河北师范大学 一种钌配合物、制备方法和催化用途
WO2022101171A1 (de) 2020-11-10 2022-05-19 Merck Patent Gmbh Schwefelhaltige verbindungen für organische elektrolumineszenzvorrichtungen
US20230416264A1 (en) 2020-12-02 2023-12-28 Merck Patent Gmbh Heterocyclic compounds for organic electroluminescent devices
WO2022122682A2 (de) 2020-12-10 2022-06-16 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
KR20230122094A (ko) 2020-12-18 2023-08-22 메르크 파텐트 게엠베하 Oled에 사용하기 위한 청색 형광 방출체로서의 인돌로[3.2.1-jk]카르바졸-6-카르보니트릴유도체
EP4263543A1 (de) 2020-12-18 2023-10-25 Merck Patent GmbH Stickstoffhaltige verbindungen für organische elektrolumineszenzvorrichtungen
TW202241900A (zh) 2020-12-18 2022-11-01 德商麥克專利有限公司 用於有機電致發光裝置之含氮雜芳烴
KR20230129470A (ko) 2021-01-05 2023-09-08 메르크 파텐트 게엠베하 유기 전계발광 디바이스용 재료
CN116710454A (zh) 2021-01-25 2023-09-05 默克专利有限公司 用于有机电致发光器件的含氮化合物
WO2022184601A1 (de) 2021-03-02 2022-09-09 Merck Patent Gmbh Verbindungen für organische elektrolumineszenzvorrichtungen
EP4308664A1 (de) 2021-03-18 2024-01-24 Merck Patent GmbH Heteroaromatische verbindungen für organische elektrolumineszenzvorrichtungen
KR20240005806A (ko) 2021-04-29 2024-01-12 메르크 파텐트 게엠베하 유기 전계발광 디바이스용 재료
CN117203191A (zh) 2021-04-29 2023-12-08 默克专利有限公司 用于有机电致发光器件的材料
KR20240005791A (ko) 2021-04-30 2024-01-12 메르크 파텐트 게엠베하 유기 전계 발광 디바이스용 질소 함유 복소환 화합물
CN117355364A (zh) 2021-05-21 2024-01-05 默克专利有限公司 用于连续纯化至少一种功能材料的方法和用于连续纯化至少一种功能材料的装置
WO2022200638A1 (de) 2021-07-06 2022-09-29 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
CN117917983A (zh) 2021-09-13 2024-04-23 默克专利有限公司 有机电致发光器件的材料
WO2023041454A1 (de) 2021-09-14 2023-03-23 Merck Patent Gmbh Borhaltige, heterocyclische verbindungen für organische elektrolumineszenzvorrichtungen
WO2023052313A1 (de) 2021-09-28 2023-04-06 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2023052272A1 (de) 2021-09-28 2023-04-06 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2023052314A1 (de) 2021-09-28 2023-04-06 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2023052275A1 (de) 2021-09-28 2023-04-06 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2023072799A1 (de) 2021-10-27 2023-05-04 Merck Patent Gmbh Bor- und stickstoffhaltige, heterocyclische verbindungen für organische elektrolumineszenzvorrichtungen
WO2023094412A1 (de) 2021-11-25 2023-06-01 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2023099543A1 (en) 2021-11-30 2023-06-08 Merck Patent Gmbh Compounds having fluorene structures
WO2023110742A1 (de) 2021-12-13 2023-06-22 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2023117837A1 (de) 2021-12-21 2023-06-29 Merck Patent Gmbh Verfahren zur herstellung von deuterierten organischen verbindungen
WO2023152063A1 (de) 2022-02-09 2023-08-17 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2023152346A1 (de) 2022-02-14 2023-08-17 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2023161168A1 (de) 2022-02-23 2023-08-31 Merck Patent Gmbh Aromatische heterocyclen für organische elektrolumineszenzvorrichtungen
WO2023161167A1 (de) 2022-02-23 2023-08-31 Merck Patent Gmbh Stickstoffhaltige heterocyclen für organische elektrolumineszenzvorrichtungen
WO2023213837A1 (de) 2022-05-06 2023-11-09 Merck Patent Gmbh Cyclische verbindungen für organische elektrolumineszenzvorrichtungen
WO2023222559A1 (de) 2022-05-18 2023-11-23 Merck Patent Gmbh Verfahren zur herstellung von deuterierten organischen verbindungen
WO2023247662A1 (de) 2022-06-24 2023-12-28 Merck Patent Gmbh Zusammensetzung für organische elektronische vorrichtungen
WO2023247663A1 (de) 2022-06-24 2023-12-28 Merck Patent Gmbh Zusammensetzung für organische elektronische vorrichtungen
WO2024013004A1 (de) 2022-07-11 2024-01-18 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2024033282A1 (en) 2022-08-09 2024-02-15 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2024061942A1 (de) 2022-09-22 2024-03-28 Merck Patent Gmbh Stickstoffenthaltende verbindungen für organische elektrolumineszenzvorrichtungen
WO2024061948A1 (de) 2022-09-22 2024-03-28 Merck Patent Gmbh Stickstoffenthaltende heterocyclen für organische elektrolumineszenzvorrichtungen

Citations (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4539507A (en) 1983-03-25 1985-09-03 Eastman Kodak Company Organic electroluminescent devices having improved power conversion efficiencies
US5151629A (en) 1991-08-01 1992-09-29 Eastman Kodak Company Blue emitting internal junction organic electroluminescent device (I)
EP0652273A1 (de) 1993-11-09 1995-05-10 Shinko Electric Industries Co. Ltd. Organisches Material für elektrolumineszente Vorrichtung und elektrolumineszente Vorrichtung
EP0676461A2 (de) 1994-04-07 1995-10-11 Hoechst Aktiengesellschaft Spiroverbindungen und ihre Verwendung als Elektrolumineszenzmaterialien
WO1998027136A1 (de) 1996-12-16 1998-06-25 Aventis Research & Technologies Gmbh & Co Kg ARYLSUBSTITUIERTE POLY(p-ARYLENVINYLENE), VERFAHREN ZUR HERSTELLUNG UND DEREN VERWENDUNG IN ELEKTROLUMINESZENZBAUELEMENTEN
EP1205527A1 (de) 2000-03-27 2002-05-15 Idemitsu Kosan Co., Ltd. Organische elektrolumineszierende vorrichtung
WO2004013080A1 (en) 2002-08-01 2004-02-12 Covion Organic Semiconductors Gmbh Spirobifluorene derivatives, their preparation and uses thereof
WO2004037887A2 (de) 2002-10-25 2004-05-06 Covion Organic Semiconductors Gmbh Arylamin-einheiten enthaltende konjugierte polymere, deren darstellung und verwendung
JP2004288381A (ja) 2003-03-19 2004-10-14 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子
WO2004093207A2 (de) 2003-04-15 2004-10-28 Covion Organic Semiconductors Gmbh Mischungen von organischen zur emission befähigten halbleitern und matrixmaterialien, deren verwendung und elektronikbauteile enthaltend diese mischungen
WO2005003253A2 (de) 2003-07-07 2005-01-13 Covion Organic Semiconductors Gmbh Mischungen von organischen zur emission befähigten halbleitern und matrixmaterialen, deren verwendung und elektronikbauteile enthaltend diese
WO2005011013A1 (de) 2003-07-21 2005-02-03 Covion Organic Semiconductors Gmbh Organisches elektrolumineszenzelement
US20050069729A1 (en) 2003-09-30 2005-03-31 Konica Minolta Holdings, Inc. Organic electroluminescent element, illuminator, display and compound
WO2005111172A2 (de) 2004-05-11 2005-11-24 Merck Patent Gmbh Neue materialmischungen für die elektrolumineszenz
JP2005347160A (ja) 2004-06-04 2005-12-15 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、照明装置及び表示装置
EP1617711A1 (de) 2003-04-23 2006-01-18 Konica Minolta Holdings, Inc. Organisches elektrolumineszenzbauelement und anzeige
WO2006005627A1 (en) 2004-07-15 2006-01-19 Merck Patent Gmbh Oligomeric derivatives of spirobifluorene, their preparation and use
WO2006117052A1 (de) 2005-05-03 2006-11-09 Merck Patent Gmbh Organische elektrolumineszenzvorrichtung und in deren herstellung verwendete boronsäure- und borinsäure-derivate
EP1731584A1 (de) 2004-03-31 2006-12-13 Konica Minolta Holdings, Inc. Organischer elektrolumineszenzvorrichtungsstoff, organische elektrolumineszenzvorrichtung, display und beleuchtungsvorrichtung
WO2007063754A1 (ja) 2005-12-01 2007-06-07 Nippon Steel Chemical Co., Ltd. 有機電界発光素子用化合物及び有機電界発光素子
WO2007137725A1 (de) 2006-05-31 2007-12-06 Merck Patent Gmbh Neue materialien für organische elektrolumineszenzvorrichtungen
WO2008056746A1 (fr) 2006-11-09 2008-05-15 Nippon Steel Chemical Co., Ltd. Composé pour un dispositif électroluminescent organique et dispositif électroluminescent organique
WO2008086851A1 (de) 2007-01-18 2008-07-24 Merck Patent Gmbh Carbazol-derivate für organische elektrolumineszenzvorrichtungen
WO2009062578A1 (de) 2007-11-12 2009-05-22 Merck Patent Gmbh Organische elektrolumineszenzvorrichtungen enthaltend azomethin-metall-komplexe
DE102008033943A1 (de) 2008-07-18 2010-01-21 Merck Patent Gmbh Neue Materialien für organische Elektrolumineszenzvorrichtungen
DE102008036982A1 (de) 2008-08-08 2010-02-11 Merck Patent Gmbh Organische Elektrolumineszenzvorrichtung
DE102008056688A1 (de) 2008-11-11 2010-05-12 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
DE102009014513A1 (de) 2009-03-23 2010-09-30 Merck Patent Gmbh Organische Elektrolumineszenzvorrichtung
DE102009023155A1 (de) 2009-05-29 2010-12-02 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
DE102009031021A1 (de) 2009-06-30 2011-01-05 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
DE102009048791A1 (de) 2009-10-08 2011-04-14 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4409942B2 (ja) * 2001-08-29 2010-02-03 ザ トラスティーズ オブ プリンストン ユニバーシテイ 金属錯体を含むキャリア輸送層を有する有機発光デバイス
DE10310887A1 (de) 2003-03-11 2004-09-30 Covion Organic Semiconductors Gmbh Matallkomplexe
DE102004046665A1 (de) 2004-09-24 2006-07-27 Basf Ag Verwendung von Kupfer(I)-Komplexen in organischen lichtemittierenden Dioden
US20060073360A1 (en) * 2004-09-28 2006-04-06 Fuji Photo Film Co., Ltd. Organic electroluminescent device
JP5080729B2 (ja) * 2004-09-28 2012-11-21 富士フイルム株式会社 有機電界発光素子
JP2006310479A (ja) * 2005-04-27 2006-11-09 Fuji Photo Film Co Ltd 有機電界発光素子
DE102008015526B4 (de) * 2008-03-25 2021-11-11 Merck Patent Gmbh Metallkomplexe
US8865321B2 (en) 2008-11-11 2014-10-21 Merck Patent Gmbh Organic electroluminescent devices

Patent Citations (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4539507A (en) 1983-03-25 1985-09-03 Eastman Kodak Company Organic electroluminescent devices having improved power conversion efficiencies
US5151629A (en) 1991-08-01 1992-09-29 Eastman Kodak Company Blue emitting internal junction organic electroluminescent device (I)
EP0652273A1 (de) 1993-11-09 1995-05-10 Shinko Electric Industries Co. Ltd. Organisches Material für elektrolumineszente Vorrichtung und elektrolumineszente Vorrichtung
EP0676461A2 (de) 1994-04-07 1995-10-11 Hoechst Aktiengesellschaft Spiroverbindungen und ihre Verwendung als Elektrolumineszenzmaterialien
WO1998027136A1 (de) 1996-12-16 1998-06-25 Aventis Research & Technologies Gmbh & Co Kg ARYLSUBSTITUIERTE POLY(p-ARYLENVINYLENE), VERFAHREN ZUR HERSTELLUNG UND DEREN VERWENDUNG IN ELEKTROLUMINESZENZBAUELEMENTEN
EP1205527A1 (de) 2000-03-27 2002-05-15 Idemitsu Kosan Co., Ltd. Organische elektrolumineszierende vorrichtung
WO2004013080A1 (en) 2002-08-01 2004-02-12 Covion Organic Semiconductors Gmbh Spirobifluorene derivatives, their preparation and uses thereof
WO2004037887A2 (de) 2002-10-25 2004-05-06 Covion Organic Semiconductors Gmbh Arylamin-einheiten enthaltende konjugierte polymere, deren darstellung und verwendung
JP2004288381A (ja) 2003-03-19 2004-10-14 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子
WO2004093207A2 (de) 2003-04-15 2004-10-28 Covion Organic Semiconductors Gmbh Mischungen von organischen zur emission befähigten halbleitern und matrixmaterialien, deren verwendung und elektronikbauteile enthaltend diese mischungen
EP1617711A1 (de) 2003-04-23 2006-01-18 Konica Minolta Holdings, Inc. Organisches elektrolumineszenzbauelement und anzeige
EP1617710A1 (de) 2003-04-23 2006-01-18 Konica Minolta Holdings, Inc. Material für ein organisches elektrolumineszenzgerät, organisches elektrolumineszenzgerät, beleuchtungsvorrichtung und anzeige
WO2005003253A2 (de) 2003-07-07 2005-01-13 Covion Organic Semiconductors Gmbh Mischungen von organischen zur emission befähigten halbleitern und matrixmaterialen, deren verwendung und elektronikbauteile enthaltend diese
WO2005011013A1 (de) 2003-07-21 2005-02-03 Covion Organic Semiconductors Gmbh Organisches elektrolumineszenzelement
US20050069729A1 (en) 2003-09-30 2005-03-31 Konica Minolta Holdings, Inc. Organic electroluminescent element, illuminator, display and compound
WO2005039246A1 (ja) 2003-09-30 2005-04-28 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、照明装置、表示装置
EP1731584A1 (de) 2004-03-31 2006-12-13 Konica Minolta Holdings, Inc. Organischer elektrolumineszenzvorrichtungsstoff, organische elektrolumineszenzvorrichtung, display und beleuchtungsvorrichtung
WO2005111172A2 (de) 2004-05-11 2005-11-24 Merck Patent Gmbh Neue materialmischungen für die elektrolumineszenz
JP2005347160A (ja) 2004-06-04 2005-12-15 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、照明装置及び表示装置
WO2006005627A1 (en) 2004-07-15 2006-01-19 Merck Patent Gmbh Oligomeric derivatives of spirobifluorene, their preparation and use
WO2006117052A1 (de) 2005-05-03 2006-11-09 Merck Patent Gmbh Organische elektrolumineszenzvorrichtung und in deren herstellung verwendete boronsäure- und borinsäure-derivate
WO2007063754A1 (ja) 2005-12-01 2007-06-07 Nippon Steel Chemical Co., Ltd. 有機電界発光素子用化合物及び有機電界発光素子
WO2007137725A1 (de) 2006-05-31 2007-12-06 Merck Patent Gmbh Neue materialien für organische elektrolumineszenzvorrichtungen
WO2008056746A1 (fr) 2006-11-09 2008-05-15 Nippon Steel Chemical Co., Ltd. Composé pour un dispositif électroluminescent organique et dispositif électroluminescent organique
WO2008086851A1 (de) 2007-01-18 2008-07-24 Merck Patent Gmbh Carbazol-derivate für organische elektrolumineszenzvorrichtungen
WO2009062578A1 (de) 2007-11-12 2009-05-22 Merck Patent Gmbh Organische elektrolumineszenzvorrichtungen enthaltend azomethin-metall-komplexe
DE102008033943A1 (de) 2008-07-18 2010-01-21 Merck Patent Gmbh Neue Materialien für organische Elektrolumineszenzvorrichtungen
DE102008036982A1 (de) 2008-08-08 2010-02-11 Merck Patent Gmbh Organische Elektrolumineszenzvorrichtung
DE102008056688A1 (de) 2008-11-11 2010-05-12 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
DE102009014513A1 (de) 2009-03-23 2010-09-30 Merck Patent Gmbh Organische Elektrolumineszenzvorrichtung
DE102009023155A1 (de) 2009-05-29 2010-12-02 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
DE102009031021A1 (de) 2009-06-30 2011-01-05 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
DE102009048791A1 (de) 2009-10-08 2011-04-14 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
M. A. Baldo et al., Appl. Phys. Lett. 1999, 75, 4- 6
M. S. Arnold et al., Appl. Phys. Lett. 2008, 92, 053301

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012143080A2 (de) 2011-04-18 2012-10-26 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
US9799840B2 (en) 2011-10-17 2017-10-24 Osram Oled Gmbh Organic electronic component with dopant, use of a dopant and method for the production of the dopant
US10158092B2 (en) 2011-10-17 2018-12-18 Osram Oled Gmbh Organic electronic component with dopant, use of a dopant and method for the production of the dopant

Also Published As

Publication number Publication date
DE112010004687A5 (de) 2012-09-20
JP5766712B2 (ja) 2015-08-19
US9634268B2 (en) 2017-04-25
CN102648540A (zh) 2012-08-22
JP2013513225A (ja) 2013-04-18
US20120286254A1 (en) 2012-11-15
TW201137083A (en) 2011-11-01
KR20120091443A (ko) 2012-08-17
CN102648540B (zh) 2016-03-16
WO2011066898A1 (de) 2011-06-09

Similar Documents

Publication Publication Date Title
DE102008015526B4 (de) Metallkomplexe
DE102009057167A1 (de) Elektronische Vorrichtung enthaltend Metallkomplexe
EP2742054B1 (de) Metallkomplexe
EP2344609B1 (de) Materialien für organische elektrolumineszenzvorrichtungen
EP2294160B1 (de) Elektronische vorrichtung enthaltend metallkomplexe
DE102008057051B4 (de) Materialien für organische Elektrolumineszenzvorrichtungen
DE102008057050B4 (de) Materialien für organische Elektrolumineszenzvorrichtungen
EP2344607B1 (de) Organische elektrolumineszenzvorrichtungen
EP2726490B1 (de) Metallkomplexe
DE102009053645A1 (de) Materialien für organische Elektrolumineszenzvorrichtung
WO2012163471A1 (de) Metallkomplexe
DE102010012738A1 (de) Materialien für organische Elektrolumineszenzvorrichtungen
DE102009022858A1 (de) Organische Elektrolumineszenzvorrichtungen
DE102009048791A1 (de) Materialien für organische Elektrolumineszenzvorrichtungen
DE102010027317A1 (de) Metallkomplexe
WO2010099852A1 (de) Metallkomplexe mit azaborol-liganden und elektronische vorrichtung damit
WO2011160757A1 (de) Materialien für elektronische vorrichtungen
DE102007002714A1 (de) Neue Materialien für organische Elektrolumineszenzvorrichtungen
DE102010019306A1 (de) Organische Elektrolumineszenzvorrichtungen
DE102010048608A1 (de) Materialien für organische Elektrolumineszenzvorrichtungen
WO2013139431A1 (de) 9,9'-spirobixanthenderivate für elektrolumineszenzvorrichtungen
DE102012020167A1 (de) Metallkomplexe
WO2022029096A1 (de) Materialien für organische elektrolumineszenzvorrichtungen
WO2022122682A2 (de) Materialien für organische elektrolumineszenzvorrichtungen

Legal Events

Date Code Title Description
R118 Application deemed withdrawn due to claim for domestic priority

Effective date: 20120605