CZ20001405A3 - Composition of isoparaffinic lubricating starting substance - Google Patents

Composition of isoparaffinic lubricating starting substance Download PDF

Info

Publication number
CZ20001405A3
CZ20001405A3 CZ20001405A CZ20001405A CZ20001405A3 CZ 20001405 A3 CZ20001405 A3 CZ 20001405A3 CZ 20001405 A CZ20001405 A CZ 20001405A CZ 20001405 A CZ20001405 A CZ 20001405A CZ 20001405 A3 CZ20001405 A3 CZ 20001405A3
Authority
CZ
Czechia
Prior art keywords
composition
measured
liquid hydrocarbon
less
branching
Prior art date
Application number
CZ20001405A
Other languages
English (en)
Other versions
CZ299839B6 (cs
Inventor
Thomas R Forbus Jr
Zhaozhong Jiang
Randall D Partridge
Suzanne E Schramm
Jeffrey C Trewella
Original Assignee
Mobil Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mobil Oil Corp filed Critical Mobil Oil Corp
Publication of CZ20001405A3 publication Critical patent/CZ20001405A3/cs
Publication of CZ299839B6 publication Critical patent/CZ299839B6/cs

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M143/00Lubricating compositions characterised by the additive being a macromolecular hydrocarbon or such hydrocarbon modified by oxidation
    • C10M143/08Lubricating compositions characterised by the additive being a macromolecular hydrocarbon or such hydrocarbon modified by oxidation containing aliphatic monomer having more than 4 carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M111/00Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential
    • C10M111/04Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential at least one of them being a macromolecular organic compound
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C9/00Aliphatic saturated hydrocarbons
    • C07C9/22Aliphatic saturated hydrocarbons with more than fifteen carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/60Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
    • C10G45/62Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used containing platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/60Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
    • C10G45/64Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/02Well-defined hydrocarbons
    • C10M105/04Well-defined hydrocarbons aliphatic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/02Hydrocarbon polymers; Hydrocarbon polymers modified by oxidation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M127/00Lubricating compositions characterised by the additive being a non- macromolecular hydrocarbon
    • C10M127/02Lubricating compositions characterised by the additive being a non- macromolecular hydrocarbon well-defined aliphatic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/10Lubricating oil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/02Well-defined aliphatic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/02Well-defined aliphatic compounds
    • C10M2203/022Well-defined aliphatic compounds saturated
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/02Well-defined aliphatic compounds
    • C10M2203/024Well-defined aliphatic compounds unsaturated
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/04Well-defined cycloaliphatic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/06Well-defined aromatic compounds
    • C10M2203/065Well-defined aromatic compounds used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/1006Petroleum or coal fractions, e.g. tars, solvents, bitumen used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/0206Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/17Fisher Tropsch reaction products
    • C10M2205/173Fisher Tropsch reaction products used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/2805Esters used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/1033Polyethers, i.e. containing di- or higher polyoxyalkylene groups used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/011Cloud point
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/02Viscosity; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/065Saturated Compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/069Linear chain compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/071Branched chain compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/08Resistance to extreme temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/40Low content or no content compositions
    • C10N2030/43Sulfur free or low sulfur content compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2070/00Specific manufacturing methods for lubricant compositions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Lubricants (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

Oblast techniky
Tento vynález se týká mazivové kompozicez izoparafinové základní složky. Tato přihláška nárokuje prioritu podle 35 U.S.C. § 119 a US provizorní přihlášky č. 60/062 824.
Dosavadní stav techniky
Byly vyvinuty vysoce výkonné výchozí materiály (dále základní složky) mazacího oleje, které vykazují jedinečné charakteristické vlastnosti a které vzkazují lepší výkonnostní vlastnosti při nízkých teplotách.
Antioxidanty obsahující, vysoce výkonné základní složky maziv obvykle vykazují použitelné viskozity v širokém rozmezí teplot, mají zlepšený index viskozity a vykazují mazací schopnost, tepelnou a oxidační stálost a teplotu tuhnutí srovnatelné nebo lepší než běžné minerální oleje. Takové výhodné reologické a výkonnostní vlastnosti zlepšují jejich výkon v mazacích prostředcích ve srovnání s prostředky na bázi minerálních olejů, včetně širší oblasti pracovních teplot. Avšak antioxidanty obsahující základní složky maziv mají vyšší výrobní náklady než běžná maziva na bázi minerálního oleje.
Mnoho výzkumných pracovníků zkoumalo způsoby převedení poměrné málo hodnotných uhlovodíkových surovin, jako zemního plynu, na hodnotnější produkty, jako paliva a maziva. Dále se mnoho výzkumů vedlo na katalytické zušlechtění surovin na bázi parafínových uhlovodíků, které mají významné koncentrace parafínových složek s rovnými řetězci, na
-2• · ···· » · · 4« ·· * *' · » · ···
užitečnější produkty hydroizomerací a odparafínováním a způsoby které izomerují a krakují rovné řetězce parafínových voskových složek surovin.
Způsob výroby uhlovodíkových paliv a maziv ze syntézního plynu, směsi vodíku a oxidu uhelnatého, jsou již nějaký čas známé a z způsob Fischer-Tropschův a jeho pozoruhodnějších Encyklopedia of Chemical nich je pravděpodobně nej známější (FT) způsob. Výčet vývoje způsobu znaků je uveden v Kirk-Othmer, Technology, 3 vydání, John Wiley & Sons, New York, sv II, str. 473 až 478 (1980)
Při Fischer-Tropschově způsobu prochází syntézní plyn, obvykle vyráběný částečnou oxidací methanu, přes katalyzátor za zvýšené teploty a tlaku za vzniku množství redukčních produktů oxidu uhelnatého, včetně uhlovodíků, alkoholů, mastných kyselin a jiných kyslíkatých sloučenin. Za výhodných podmínek mohou okysličené materiály obsahovat méně než 1 % veškerých požadovaných kapalných produktů. Uhlovodíkové produkty jsou vysoce parafínové povahy a obvykle obsahují plynné uhlovodíky, lehké olefiny, benzín, lehké a těžké topné oleje a parafínové plynové oleje. Jelikož výševroucí frakce v produktu jsou obvykle příliš parafínové pro obecné použití, buď jako kapalná paliva nebo maziva, předtím než se mohou použít, buď jako takové nebo přidáním do společné jímky produktů, je obvykle nezbytné další zpracování nebo zušlechtění. Výhodně obsahují produkty z Fischer-Tropschova způsobu málo, pokud vůbec, typických ropných kontaminantů, jako aromatických sloučenin, cykloparafínových sloučenin (naftenů), sloučenin síry, a sloučenin dusíku, vzhledem k poměrně čisté povaze surovin vodíku a oxidu uhelnatého a hlavně methanu nebo zemnímu plynu.
US patent č. 4 500 417 popisuje převedení vysoce vroucích frakcí produktů z Fischer-Tropschova způsobu stykem s vysokokřemičitým zeolitem s velkými póry a hydrogenační složkou pro výrobu destilační frakce a mazivové frakce charakterizované vysokým indexem viskozity (IV) a nízkou teplotou tuhnutí. Katalyzátory obsahují zeolit Y, β-zeolit, mordenit, ZSM-3, ZSM-4, ZSM-18 a ZSM-20.
US patent č. 4 906 350 popisuje způsob přípravy základního mazivového oleje s vysokým indexem viskozity a nízkou teplotou tuhnutí katalytickým odparafínováním alespoň části hydrokrakátu frakce minerálního oleje obsahujícího parafín na zeolitovém katalyzátoru vybraném ze
ZSM-5, ZSM-11, ZSM-23, ZSM-35, ZSM-12, ZSM-38, ZSM-48, offretitu, ferrieritu, β-zeolitu, theta-zeolitu, a-zeolitu a jejich směsí.
US patent č. 4 943 672 popisuje hydroizomeraci Fischer-Tropschova parafínu pro výrobu mazacího oleje s vysokým indexem viskozity a nízkou teplotou tuhnutí nejprve hydrorafinací parafínu pod poměrně extrémními podmínkami a poté hydroizomeraci hydrorafinovaného parafínu v přítomnosti vodíku na katalyzátoru z částečně fluoridovaných kovů VIII skupiny na oxidu hlinitém.
US patent č. 5 059 299 popisuje způsob izomerace parafínového gáče získaného z minerálních olejů a parafínu pro tvorbu základní složky mazivového oleje s vysokým indexem viskozity a velmi nízkou teplotou tuhnutí izomerací na katalyzátoru z kovů skupiny VI až VIII na žáruvzdorném nosiči z halogenovaného oxidu kovu, následovanou odparafínováním rozpouštědlem.
-4US patenty č. 5 135 638 a 5 246 566 popisují způsoby izomerace parafínu pro výrobu mazacího oleje se znamenitou viskozitou, indexem viskozity a nízkou teplotou tuhnutí izomerací vsázky parafínové ropy na molekulovém sítu se zaručeným rozměrem pórů a alespoň jednom kovu ze skupiny VIII. Katalyzátory obsahují SAPO-11, SAPO-31, SAPO-41, ZSM-22, ZSM-23 a ZSM-35.
US patent č. 5 282 958 popisuje způsob odparafínování uhlovodíkové vsázky s parafíny s rovnými řetězci a slabě větvenými parafíny obsahujících 10 nebo více atomů uhlíku pro výrobu odparafínovaného mazacího oleje za použití katalyzátoru se specifickým uspořádáním pórů a obsahujícího alespoň jeden kov VIII. skupiny. Surovina se uvádí do styku s katalyzátorem v přítomnosti vodíku, příklady katalyzátorů zahrnují SSZ-32, ZSM-22 a ZSM-23.
US patent č. 5 306 860 popisuje způsob hydroizomerace parafínů pocházejících z Fischer-Tropschova způsobu na sadě katalyzátorů, včetně zeolitu Y, pro výrobu mazivových olejů s vysokým indexem viskozity a nízkou teplotou tuhnutí.
US patent č. 5 326 378 popisuje převedení těžkých konečných produktů z Fischer-Tropschova způsobu na katalyzátoru platina/bor-S-zeolit s nízkou a-aktivitou pro výrobu maziv se zvláště vysokým indexem viskozity, které se poté mohou odparafínovat běžným odparafínováním rozpouštědlem nebo zvýšením tvrdosti podmínek hydroizomeračního kroku.
Evropský patent č. 0 776 959 A2 popisuje způsob přípravy základního mazacího oleje s vysokým indexem viskozity alespoň 150 ze vsázky parafínů
-5z Fischer-Tropschova způsobu nejprve hydroizomerací na vhodném katalyzátoru v přítomnosti vodíku a poté buď rozpouštědlové nebo katalytické odparafínování meziproduktu frakce nad 390 °C.
a omezeným kombinací
Avšak žádný z odkazů nepojednává o výše zmiňované nebo navrhované přípravě kapalných uhlovodíků se zvláštním rozsahem kompozic s kteroukoli částečnou větvících vlastností, která vede k vysoce požadovaným mazacím vlastnostem včetně neočekávaného spojení vysokého indexu viskozity a nízké teploty tuhnutí. Ve skutečnosti žádný z uvedených odkazů ani nepopisuje, ani nenavrhuje měření indexu větvení (IB) nebo blízkosti větvení, jak se popisuje dále.
US patent č. 4 827 064 popisuje syntetickou kompozici maziva z poly-a-olefinů s vysokým indexem viskozity, u které se měří poměr větvení CH-^/Cí^.
Popisy US patentů popsaných výše se zde v souhrnu začleňují odkazem.
Hlavním předmětem tohoto vynálezu je výroba jedinečné kapalné uhlovodíkové kompozice, která se může použít jako základní složka mazacího oleje s výhodnou nízkou teplotou viskozimetrických vlastností.
Dalším předmětem tohoto vynálezu je poskytnutí odbytu málo hodnotného zemního plynu jeho převedením na zvláštní í hodnotné základní složky maziv spojením kroků Fis- · .
cher-Tropschovy syntézy, hydroizomerace a katalytického odparafínování. ;
-6Jedno provedení tohoto vynálezu je zaměřeno na kapalnou uhlovodíkovou kompozici parafínových uhlovodíkových složek, ve které jsou míra větvení, měřená jako procentní zastoupení methylenových vodíků (IB), a blízkost větvení (nebo-li vzdálenost větvení), měřená jako procentní zastoupení vyskytujících se methylenových uhlíků, kterými jsou čtyři nebo více atomů uhlíku odstraněných z koncové skupiny nebo bočního řetězce (CH2>4), tak, že:
(a) IB - 0,5.(CH2>4) > 15 a (b) IB + 0,85.(CH2>4) < 45, podle měření na kapalné uhlovodíkové kompozici jako celku.
Jiné provedení tohoto vynálezu je zaměřeno na kompozici základní složky mazacího oleje s parafínovými uhlovodíkovými složkami, ve které jsou míra větvení, měřená jako procentní zastoupení methylenových vodíků (IB), a blízkost větvení, měřená jako procentní zastoupení vyskytujících se methylenových uhlíků, kterými jsou čtyři nebo více atomů uhlíku odstraněných z koncové skupiny nebo bočního řetězce (CH2>4), tak, že:
(a) IB - 0,5.(CH2>4) > 15 a (b) IB + 0,85.(CH2>4) < 45, podle měření na kapalné uhlovodíkové kompozici jako celku.
V jiném provedení je tento vynález zaměřen na kompozici základní složky mazacího oleje s parafínovými uhlovodíkovými
-Ί ·· · · složkami, ve které jsou míra větvení, měřená jako procentní zastoupení methylenových vodíků (IB), a blízkost větvení, měřená jako procentní zastoupení vyskytujících se methylenových uhlíků, kterými jsou čtyři nebo více atomů uhlíku odstraněných z koncové skupiny nebo bočního řetězce
(CH2>4), tak, že:
(a) IB - 0,5. (CH2>4) > 15 a
(b) IB + 0,85.(CH2>4) < 45,
podle měření na kapalné uhlovodíkové kompozici jako celku
a případně k účinným množstvím aditiv, jako, ale bez omezení pouze na ně, antioxidantům, protiúnavovým aditivům, aditivům pro extrémní tlaky, modifikátorům napětí, látkám zvyšujícím index viskozity, látkám snižujícím teplotu tuhnutí, detergentům, dispergantům, inhibitorům koroze, deaktivátorům kovů, přísad těsnící kompatibility, demulátorům, látkám zabraňujícím tvorbě pěny a jejich směsím.
Výše uvedené a jiné předměty, znaky a výhody tohoto vynálezu se lépe porozumí v následujících podrobných popisech, uvedených v souvislostech s doprovodnými výkresy, z nichž všechny se uvádějí pouze jako ilustrace a nikoli omezení tohoto vynálezu.
Přehled obrázků na výkresech
Obrázek 1 je graf srovnávající nízkoteplotní viskozimetrické vlastnosti kapalných uhlovodíkových kompozic podle tohoto vynálezu s typickými základními složkami hydrorafinovaných maziv.
-8• · · · · · ·· • · · · • · · · · » · · · · ·
Obrázek 2 je graf matematicky ilustrující strukturní omezení IB a CH2>4, jak se dále uvádějí ve vzorcích (a) a (b), která dále určují meze zde popisovaných kompozic podle tohoto vynálezu.
Obrázek 3 je grafické srovnání dynamických viskozit (DV@-40 °C), měřených podle způsobu CCS z normy ASTM D5392 a kinematických viskozit (KV@100 °C) různých uhlovodíkových tekutin, včetně uhlovodíkových tekutin podle tohoto vynálezu.
Další oblasti použitelnosti tohoto vynálezu se stanou zřejmými z dále uvedeného podrobného popisu. Avšak mělo by se rozumět, že podrobný popis a zvláštní příklady,i když uvádějí výhodná provedení tohoto vynálezu, jsou uvedeny pouze jako objasnění, jelikož se odborníkovi v oboru stanou různé změny a úpravy v duchu a rozsahu tohoto vynálezu zřejmými z tohoto podrobného popisu.
Popis vynálezu
Jedno provedení tohoto vynálezu je zaměřeno na kapalnou uhlovodíkovou kompozici parafínových uhlovodíkových složek, ve které jsou míra větvení, měřená jako procentní zastoupení methylenových vodíků (IB), a blízkost větvení (nebo-li vzdálenost větvení), měřená jako procentní zastoupení vyskytujících se methylenových uhlíků, kterými jsou. čtyři nebo více atomů uhlíku odstraněných z koncové skupiny nebo bočního řetězce (CH2>4), tak, že:
(a) IB - 0,5.(CH2>4) > 15 a (b) IB + 0,85.(CH2>4) < 45,
-9podle měření na kapalné uhlovodíkové kompozici jako celku.
Uhlovodíkové tekutiny podle tohoto vynálezu výhodně mají IB větší než nebo roven 25,54 a blízkost větvení (CH2>4) menší než nebo rovnu 22,5, ačkoli se zamýšlí, že kterákoli kompozice splňující omezení vzorců (a) a (b) je v rozsahu tohoto vynálezu.
Měření charakteristik větvení kapalných uhlovodíků podle tohoto vynálezu se provádí analýzou pomocí nukleární magnetické rezonance (NMR) a podrobněji se popisuje níže.
vynálezu má uhlovodíků,
Kapalná uhlovodíková kompozice podle tohoto vynálezu může mít velmi nízké koncentrační úrovně typických kontaminantů, nalézaných v základních složkách mazacích olejů rafinovaných z přírodních minerálních olejů, v závislosti na povaze suroviny použité pro výrobu kapalných uhlovodíků. Kapalná uhlovodíková kompozice podle tohoto běžně méně než 0,1 % hmotnostního aromatických méně než 20 ppm hmotnostních sloučenin obsahujících dusík, méně než 20 ppm hmotnostních sloučenin obsahujících síru a nízké úrovně naftenových uhlovodíků, t.j. cykloparafínů. Předpokládá se, že úrovně těchto kontaminantů mohou být mnohem nižší, nebo že mohou zcela zmizet z kapalných uhlovodíků podle tohoto vynálezu. Koncentrační úrovně jak sloučenin síry, tak sloučenin dusíku v kapalných uhlovodíkových kompozicích podle tohoto vynálezu, pokud jsou odvozeny od vosků získaných
Fischer-Tropschovým způsobem, jsou tedy výhodně nižší než 10 ppm v každém případě a výhodně nižší než 1 ppm v každém případě.
-10······ ·· · ·· * · · ···· ·
Nízké úrovně sloučenin obsahujících síru a sloučenin obsahujících dusík jsou zejména důsledkem původu suroviny. Použití Fischer-Tropschových vosků, vznikajících z poměrně čistých směsí syntézního plynu, které mají málo, pokud vůbec nějaké, sloučenin obsahujících síru nebo dusík v plynné fázi, má za výsledek uhlovodíkové kapaliny s velmi nízkými koncentracemi typických kontaminantů. Naproti tomu, v přírodě se vyskytující minerální oleje mají významné koncentrace organických sloučenin dusíku a síry, které jsou nesnadno odstranitelné nebo neodstranitelné průmyslovými fyzikálními separačními způsoby, jako destilací.
Důvody pro nízké úrovně aromatických a naftenických sloučenin v kapalných uhlovodících podle tohoto vynálezu jsou dvojí: Za prvé, suroviny odvozené z Fischer-Tropschova způsobu mají vlastní nízký obsah molekul obsahujících kruh, jelikož způsob převedení vytváří především, a téměř výhradně, lineární uhlíkové řetězce, za druhé, důkladný výběr katalyzátorů pro převedení uhlovodíků a podmínek použitých při způsobu tvorby látek podle tohoto vynálezu výrazně snižuji tvorbu aromatických a naftenových sloučenin během hydroizomerace a katalytického odparafínování.
Zatímco je výhodné vyrábět kapalné uhlovodíky podle tohoto vynálezu z látek čerpaných z Fischer-Tropschova způsobu pro získání velmi nízkých úrovní kontaminantů ve výsledných kapalinách, jiné voskové uhlovodíkové látky, jako běžné voskové mazivové rafináty, parafínové gáče, spodní oleje a mazivové destilační hydrokrakáty se mohou použít pro tvorbu uhlovodíkových kompozic podle tohoto vynálezu.
Kompozice kapalných uhlovodíků podle tohoto vynálezu jsou parafínově uhlovodíkové složky mající v průměru méně
-11než 10 hexylových nebo delších větvení na 100 atomů uhlíku. Podobně, kompozice kapalných uhlovodíků podle tohoto vynálezu jsou parafínové uhlovodíkové složky mající v průměru více než 16 methylových rozvětvení na 100 atomů uhlíku. Hydrodeparafinační krok používaný k výrobě kapalných uhlovodíků podle tohoto vynálezu má za výsledek významné úrovně izomerace parafínů s dlouhými řetězci v parafínové surovině, výsledkem čehož jsou parafínové uhlovodíkové složky s množstvím větvení, jak se popisuje v rovnicích (a) a (b) .
Uhlovodíkové tekutiny podle tohoto vynálezu nacházejí použití jako základní složky mazacích olejů nebo jako složky formulovaných mazacích olejů, t.j. ve spojení s dalšími základními složkami mazacího oleje, jako například minerálními oleji, poly-a-olefiny, estery, polyalkyleny, alkylovanými aromáty, hydrokrakáty a základními složkami získanými rozpouštědlovou rafinací.
V jiném provedení je tento vynález zaměřen na kompozici základní složky mazacího oleje s parafínovými uhlovodíkovými složkami, ve které jsou míra větvení, měřená jako procentní zastoupení methylenových vodíků (IB), a blízkost větvení (nebo-li vzdálenost větvení), měřená jako procentní zastoupení vyskytujících se methylenových uhlíků, kterými jsou čtyři nebo více atomů uhlíku odstraněných z koncové skupiny nebo bočního řetězce (CH2>4), tak, že:
(a) IB - 0,5. (CH2>4) > 15 a (b) IB + 0,85. (CH2>4) < 45, podle měření na kapalné uhlovodíkové kompozici jako celku.
• · · · · · • · ·
Základní složky mazacího oleje podle tohoto vynálezu obsahují především izoparafínové složky se jmenovitou teplotou varu 370 °C a výše a jsou neobvyklé tím, že neočekávaně vykazují jedinečné spojení jak vysokých indexů viskozity, tak mimořádně nízkých teplot tuhnutí. Tyto dvě charakteristické vlastnosti jsou v oboru obvykle známé tím, že je mezi nimi přímá úměrnost, t.j. snižování teploty tuhnutí uhlovodíkové tekutiny má za následek snižování indexu viskozity, a proto je značně neobvyklé získat jak mimořádně nízkou teplotu tuhnutí, tak poměrně vysoký index viskozity u stejné tekutiny. Například běžné základní složky minerálního oleje, jako ve srovnávacích příkladech 3 až 5 zde uvedených, vykazují poměrně nízké hodnotyindexu viskozity, když se posunují do teploty tuhnutí v nízké oblasti (tabulka 1).
Avšak základní složky podle tohoto vynálezu se vyznačují mimořádně nízkými teplotami tuhnutí (TT) menšími než nebo rovnými -18 °C, výhodně menšími než nebo rovnými a výhodněji menšími než nebo rovnými °C
-40 °C, s kinetickými viskozitami (KV) do více nez
13.ΙΟ“6 m2.s_1, v rozmezí od 2,0.10 θ m2.s_1 výhodně od 4.10-6 m2.s_1 do
8.10 6 m2.s 1 při 100 °C a vysokým indexem viskozity (IV) od 130 do 165, výhodně od 140 do h'·
165 a výhodněji od 150 do 165 a také hodnotami IB a CHO>4 jak se uvedly v rovnicích (a) a (b) výše,
Výhodné produkty podle tohoto vynálezu jsou zejména základní složky mazacího oleje s kombinací indexu viskozity a teploty tuhnutí od indexu viskozity 130 při -66 °C do indexu viskozity 165 při -27 °C a výhodněji od indexu viskozity 144 při -40 °C do indexu viskozity 165 při -27 °C.
-13•» ···· ·· · • · · »**··· * · · »99 • · · · · · · • · · · · · » ·· ·· ·· ···
Katalyzátory pro převedení uhlovodíků výhodné pro převedení zde uvedené parafínové suroviny za vzniku uhlovodíkových složek podle tohoto vynálezu jsou zeolitové katalyzátory, jako ZSM-5, ZSM-11, ZSM-23, ZSM-35, ZSM-12, ZSM-38, ZSM-48, offretit, ferrierit, E-zeolit, thetazeolit, α-zeolit, jak se uvádějí v US patentu č. 4 906 350. Tyto katalyzátory se používají ve spojení s kovy VIII. skupiny, zejména palladiem nebo platinou. Kovy VIII. skupiny se mohou včlenit do zeolitových katalyzátorů běžnými způsoby, jako iontovou výměnou.
Způsob výroby základní složky mazacího oleje podle tohoto vynálezu se může charakterizovat jako hydrodeparafinační způsoby. Tento hydrodeparafinační způsob se může provádět na kombinaci katalyzátorů nebo na jednom katalyzátoru. Teploty pro převedeni mohou být v rozmezí od 200 °C do 500 °C za tlaků v rozmezí od 500 kPa do 20 MPa. Tento způsob probíhá za přítomnosti vodíku a parciální tlak vodíku bude běžně v rozmezí od 600 kPa do 6 MPa. Poměr vodíku k uhlovodíkové surovině (cirkulační poměr vodíku) bude běžně od 10 Nl.l-1 do 3500 Nl.l-1 (od 56 do 19,660 SCF/bbl) a prostorová rychlost suroviny bude běžně od 0,1 LHSV do 20 LHSV, výhodně od 0,1 do 10 LHSV.
Například se může převedení parafinové suroviny provádět na kombinaci katalyzátorů Pt/E-zeolit a Pt/ZSM-23 za přítomnosti vodíku. Případně může způsob výroby základní složky mazacího oleje podle tohoto vynálezu zahrnovat hydroizomeraci a odpáráfínování na jednom katalyzátoru, jako na Pt/ZSM-35. V jiném případě se může získat jedinečný produkt podle tohoto vynálezu.
•· ····
-1491 9 « 0 • · * * · · · • · » · · · • · 9 9 9 9 · • 9 · 9 9 9 9 ·· ·· 99 «··
V jiném provedení je tento vynález zaměřen na kompozici základní složky mazacího oleje s parafínovými uhlovodíkovými složkami, ve které jsou míra větvení, měřená jako procentní zastoupení methylenových vodíků (IB), a blízkost větvení (nebo-li vzdálenost větvení), měřená jako procentní zastoupení vyskytujících se methylenových uhlíků, kterými jsou čtyři nebo více atomů uhlíku odstraněných z koncové skupiny nebo bočního řetězce (CH2>4), tak, že:
(a) IB - 0,5.(CH2>4) > 15 a (b) IB + 0,85. (CH2>4) < 45, podle měření na kapalné uhlovodíkové kompozici jako celku a případně k účinným množstvím aditiv, jako, ale bez omezení pouze na ně, antioxidantům, protiúnavovým aditivům, aditivům pro extrémní tlaky, modifikátorům napětí, látkám zvyšujícím index viskozity, látkám snižujícím teplotu tuhnutí, detergentům, dispergantům, inhibitorům koroze, deaktivátorům kovů, přísad těsnící kompatibility, demulátorům, látkám zabraňujícím tvorbě pěny a jejich směsím.
Přehled běžných mazivových aditiv je poskytnut v Lubricating and Related Products, Dieter Klaman, kapitola 9, str. 177 až 217, Verlag Chemie GmbH (1984), kde se uvádí některé vhodné antioxidanty, jako aminy fenolů a aromátů, jako protikorozní aditiva benzotriazoly, deaktivátory kovů, jako ethylendiaminy a imidazoly, látky zvyšující index viskozity, jako polyizobuteny a polymethakryláty, látky snižující teplotu tuhnutí, jako alkylfenoly nebo dialkylarylestery kyseliny ftalové s dlouhými řetězci. Jako antidispersanty se uvádějí například polyalkylen-15sukcinimidy, jako detergenty se uvádějí sloučeniny jako sulfonáty, fenáty, sulfurizované fenáty, fosfáty a podobně. Uvádí se také používání protiúnavových činidel a aditiv pro extrémní tlaky, které mohou zahrnovat organické sulfidy, dithiokarbamáty kovů, chlorované parafíny a organofosforečné sloučeniny, jako dithiofosforečnany kovů, modifikátory napětí, jako mastné kyseliny s dlouhými řetězci, alifatické alkoholy a alifatické estery tuků, jako aditiva zabraňující tvorbě pěny jsou známé polydimethylsiloxany a estery a ethery polyethylenglykolu, jako sloučeniny přísad těsnící kompatability, jako aromáty, aldehydy, ketony a estery, jako deemulgátory jsou známé dinonylnaftalensulfonáty a jako inhibitory koroze jsou příkladem terciární aminy, amidy mastných kyselin, deriváty kyseliny fosforečné a sulfonové kyseliny. Odborník v oboru si bude vědom, že v oboru je známo mnoho jiných takových přídavných sloučenin a mohou být výhodné se základními oleji podle tohoto vynálezu.
Kompozice mazacího oleje podle tohoto vynálezu může obsahovat jiné základní složky mazacího oleje, jako minerální oleje, poly-a-olefiny, estery, polyalkyleny, alkylované aromáty, hydrokrakáty a základní složky získané rozpouštědlovou rafinací ve spojení se zde uvedenými parafínovými uhlovodíkovými složkami. Parafínové uhlovodíkové kompozice podle tohoto vynálezu se mohou používat jako většinový základní olej pro kompozici mazacího oleje s jinými, běžnějšími, základními složkami mazacího oleje k nim přidanými, nebo se mohou používat jako přísada ve spojení s většinovým množstvím jiné základní složky mazivového oleje. Avšak je výhodné, aby kapalné uhlovodíkové kompozice podle tohoto vynálezu byly přítomné v koncentračních úrovních alespoň 5 % hmotnostních celkové kompozice základní mazací složky.
• · · · · · • · ·
-16Příklady provedení vynálezu
V následujících příkladech se měnily reakční podmínky hydroizomerace a katalytického odparafínováni pro získání požadovaných produktů, přičemž se typické podmínky pohybovaly v rozmezí, bez omezení pouze na ně, od 200 do 370 °C, od 2,76 MPa do 19,79 MPa přetlaku, od 0,50 do 2,0 h-1 LHSV a od 451 do 1187 Nm3/m3 vodíku na vstupu do reaktoru.
Fyzikální vlastnosti základní složky maziva
Příklady 1 až 4
Hydrogenovaný vosk z Fischer-Tropschova způsobu (Paraflint 80) se odparafínoval za přítomnosti vodíku kombinací hydroizomeračnho směsného katalyzátoru
Pt/S-zeolit a selektivního odparafinovaciho katalyzátoru Pt/ZSM-23. Za zvýšeně tvrdých provozních podmínek se získaly čtyři odlišné uhlovodíkové tekutiny s hodnotami kinematické viskozity, indexu viskozity a teplopty tuhnutí uvedenými v tabulce 1. Příklad 4 je příkladem podle tohoto vynálezu.
Příklady 5 a 6
Hydrogenovaný a částečně izomerizovaný střední destilační rafinát syntézy parafínu (Shell MDS nebo SMDS) se hydrodeparafínoval za přítomnosti vodíku na kombinaci katalyzátorů použitých v příkladech 1 až 4. Za zvýšeně tvrdých provozních podmínek se získaly dvě odlišné uhlovodíkové tekutiny s hodnotami kinematické viskozity, indexu viskozity a teploty tuhnutí uvedenými v tabulce 1.
• · · · · · • · · » · ·
-1ΊPříklad 6 je příkladem podle tohoto vynálezu.
Příklady 7 až 9
Surovina Shell MDS z příkladů 5 a 6 se hydrodeparafinovalana syntetickém ferrieritu v přítomnosti vodíku za různě tvrdých podmínek, pro výrobu tří odlišných uhlovodíkových tekutin s různými hodnotami kinematické viskozity, indexu viskozity a teploty tuhnutí uvedenými v tabulce 1. Příklady 7 až 9 jsou všechny příklady podle tohoto vynálezu.
Příklad 10
Vosková surovina použitá v příkladech 1 až 4 se hydrodeparafinovala na Pt/ZSM-48 za přítomnosti vodíku za vzniku uhlovodíkové tekutiny s hodnotami kinematické viskozity, indexu viskozity a teploty tuhnutí uvedenými v tabulce 1. Příklad 10 je příkladem podle tohoto vynálezu.
Srovnávací příklady 1, 2 a 6
Průmyslově připravené poly-a-olefinové základní složky s KV 3,87.10-6 m2.s-1 a 5,51.10-6 m2.s-1 při 100 °C jsou charakterizovány teplotou tuhnutí <-65 °C a indexem viskozity 130 (srovnávací příklad 1) a 135 (srovnávací příklad 2). Zahrnuje se také průmyslový vysoce viskózní poly-a-olefin s kinematickou viskozitou 150.10-6 m2.s-1 při 100 °C (srovnávací příklad 6).
Srovnávací příklady 3 až 5
Hodnotilo se také několik průmyslově připravených
-18·· · 0 · 0 *« · ·· • 0 0 0·· · základních složek odvozených od frakcí hydrokrakované ropy. Tyto frakce zahrnovaly: základní složku Shell XHVI odvozenou od hydroizomerace parafinového gáče o teplotě tuhnutí -18 °C, hodnotě kinematické viskozity při 100 °C 5,1.10-6 m2.s-1, indexu viskozity 147, (srovnávací příklad 3), základní složku Yukong 100N o teplotě tuhnutí -15 °C, hodnotě kinematické viskozity při 100 °C 4,0.10-6 m2.s~l a indexu viskozity 114 (srovnávací příklad 4) a základní složku Chevron RLOP 240N o teplotě tuhnutí -15 °C, hodnotě kinematické viskozity při 100 °C 6,9.10-6 m2.s-1 a indexu viskozity 102 (srovnávací příklad 5) .
Typické fyzikální vlastnosti různých průmyslových základních složek maziva se srovnávají s fyzikálními vlastnostmi Fischer-Tropschových izomeráty s velmi nízkou teplotou tuhnutí (ULPP) podle tohoto vynálezu v tabulce 1 dále.
Tabulka 1
Fyzikální vlastnosti základních složek
Popis [10-6 Kinematická viskozita m2.s-1 při 100 °C] Index viskozity Teplota tuhnutí [°C]
Vosk Paraflint 80 (surovina) 9,42 - 83
Příklad 1 7,14 177 12
Příklad 2 6,52 171 -3
Přiklad 3 5,72 161 -24
• ♦ »
-19Tabulka 1 - pokračování
Fyzikální vlastnosti základních složek
Popis Kinematická Index viskozity Teplota tuhnutí t°C]
[10~6 m2 viskozita .s_l při 100 °C]
Příklad 4* 5,54 145 -63
SMDS voskový rafinát 5,07 39
(surovina)
Příklad 5 5,23 142 -24
Příklad 6* 5,11 130 -66
Příklad 7* 5,33 149 -18
Příklad 8* 5,23 136 -59
Příklad 9* 5,46 144 -40
Příklad 10* 7,9 157 -42
Srovnávací příklady
Srovnávací příklad 1 3,87 130 <-65
Srovnávací příklad 2 5,51 135 <-65
Srovnávací příklad 3 5,06 147 -18
Srovnávací příklad 4 4,00 114 -15
Srovnávací příklad 5 6,94 102 -15
Srovnávací příklad 6 150 214 -42
Příklady podle tohoto vynálezu
Obrázek 1 je grafickým srovnáním chování typické hydrorafinované základní složky uhlovodíkového maziva (XHVI) a dvou základních složek podle tohoto vynálezu při simulaci studeného startu (Cold Crank Simulation) (CCS). CCS testy se prováděly podle normy ASTM, způsobu D5392, který se používá
-20······ fc♦ « fcfc ♦ · · · · * · fc · • » · ♦ · · ·· pro měření zdánlivé viskozity motorových olejů. CCS viskozimetr měří dynamickou viskozitu tekutin za nízké teploty a malé rychlosti smyku a smykového napětí, čímž napodobuje tok oleje v klikové skříni motoru za podmínek startu (spouštění) při nízké teplotě. Údaje na obrázku 1 ukazují, že základní složky maziva podle tohoto vynálezu mají dokonalejší viskozimetrické vlastnosti při nízké teplotě.
Měření charakteristických vlastností větvení
Index větvení (IB)
Pro každou základní složku uvedenou v tabulce 1 se získala 1H NMR spektra při 359,88 MHz na spektrometru Bruker 360 MHz AMX za použití 10% roztoků základních složek v CDCl^. TMS byla použitá referenční látka pro vnitřní chemický posun. Rozpouštědlo CDC13 dává pík na 7,28. Všechna spektra se získala za kvantitativních podmínek za použití 90-stupňového impulsu (10,9 gs) při zpoždění impulsu 30 s, které je alespoň pětinásobkem nej delší spin-mřížkové relaxační doby (T^) vodíku a 120 snímcích pro zaručení dobrých odstupů signálu od šumu.
Druhy atomů vodíku se určily podle následujících oblastí:
9.2 až 6,2 ppm atomy vodíku na aromatických kruzích,
6.2 až 4,0 ppm atomy vodíku na olefinových atomech uhlíku,
4,0 až 2,1 ppm benzylové atomy vodíku na a-pozicích aromatického kruhu,
2,1 až 1,4 ppm atomy vodíku parafínové CH methinové skupiny,
-21« · · ·« « · *
1,4 až 1,05 ppm atomy vodíku skupiny,
1,05 až 0,5 ppm atomy vodíku skupiny.
parafínové methylenové parafínové methylové
Index větvení (IB) se vypočítal jako procentní poměr atomů vodíku na nebenzylových methylových skupinách v rozmezí od 0,5 do 1,05 ppm k celkovému počtu atomů vodíku ne nebenzylových alifatických skupinách v rozmezí od 0,5 do 2,1 ppm. Výsledky analýz -^H NMR jsou shrnuty níže v tabulce 2.
Tabulka 2
Procentní zastoupení odlišných typů atomů vodíku z NMR
Popis % ch3 % ch2 % CH IB
Vosk Paraflint 80 (surovina)
Příklad 1 19,4 78,5 2,1 19,4
Příklad 2 22,3 76 1,7 22,3
Příklad 3 25,6 71,8 2,6 25,6
Příklad 4* 27,6 68,1 4,3 27,6
SMDS voskový rafinát (surovina) 10,3 89,7 0 10,3
Příklad 5 23,6 70,1 6,3 23,6
Příklad 6* 29,8 67,8 2,4 29,8
Příklad 7* 26,2 71,2 2,6 26,2
Příklad 8* 30 67 3 30
Příklad 9* 27,9 69,9 2,2 27, 9
Tabulka 2 - pokračování
Procentní zastoupení odlišných typů atomů vodíku z 1H NMR
Popis % ch3 % ch2 % CH IB
Příklad 10* 27 70,8 2,2 27
Srovnávací příklady
Srovnávací příklad 1 22,7 74,8 2,5 22,7
Srovnávací příklad 2 23,4 74,3 2,3 23,4
Srovnávací příklad 3 26,9 69,4 3,7 26,9
Srovnávací příklad 4 30,0 61,9 8,1 30,0
Srovnávací příklad 5 31,5 55,3 13,2 31,5
Srovnávací příklad 6 19,4 78,7 1,9 19,4
* Příklady podle tohoto vynálezu
Blízkost větvení (CIL· >4)
Pro každou základní získala 90,5 MHz 13 složku uvedenou v tabulce 1 se C NMR s jediným pulsem a 135 deformační zvětšení polarizačním posunem (DEPT) NMR spektrometru Bruker 360 MHz AMX za použití v CDC13. TMS byla použitá referenční látka chemický posun. CDC13 dává triplet při 77,23 ppm ve spektru spektra na 10% roztoků pro vnitřní
C.
Všechna jednopulsní spektra se získala za kvantitativních podmínek při použití 45-stupňových pulsů (6,3 gs) při zpoždění impulsu 60 s, které je alespoň pětinásobkem nej delší spin-mřížkové relaxační doby (T-J uhlíku pro zaručení dobré relaxace vzorku a 200 snímcích pro zaručení dobrých odstupů signálu od šumu a protonovým
-23zrušením interakce spinů WALTZ-16.
Atomy uhlíku typu CH3, CH2 a CH se určovaly pomocí pokusu 135 DEPT 13C NMR. Většinová rezonance CH2 je ve všech spektrech 13C NMR při ~29,8 ppm následkem rovnocenných vyskytujících se methylenových uhlíků, kterými jsou čtyři nebo více atomů uhlíku odstraněných z koncové skupiny nebo bočního řetězce (CH2>4). Stanovily se typy bočních řetězců vztažené na 13C chemický posun pro methylové atomy uhlíku na konci větvení nebo methylenové atomy uhlíku odstraněné z methylu na větvení. Blízkost větvení určená CH2>4 a typy atomů uhlíku jsou shrnuty v tabulce 3.
Tabulka 3
Procentní zastoupení odlišných typů atomů uhlíku z 13C NMR
Popis % ch3 % ch2 % CH % CH4>4
Vosk Paraflint C80 (surovina)
Příklad 1 13,6 81,3 5,1 38,2
Příklad 2 15,7 78,6 5,7 28,8
Příklad 3 17,3 76,3 6,3 22,5
Příklad 4* 18 75,5 6,5 14,7
SMDS voskový rafinát (surovina) 6,2 93,8 0 58,8
Příklad 5 16,6 77,3 6 17,3
Příklad 6* 24,9 67,4 7,7 7,7
Příklad 7* 16,4 77,5 6,1 21,8
Příklad 8* 19,3 75,1 5,6 12,8
-24·· ···· ·· * · · • · · ··*« ··· « · ·· ·· ··· «· *
Tabulka 3 - pokračování
Procentní zastoupení odlišných typů atomů uhlíku z 13C NMR
Popis % ch3 % ch2 % CH % CH4>4
Příklad 9* 18,1 76,3 5,6 17,7
Příklad 10* 15,9 76,3 7,7 20,5
Srovnávací příklady
Srovnávací příklad 1 11,4 83,7 4,9 20,4
Srovnávací příklad 2 13,2 81 5,8 20,6
Srovnávací příklad 3 19 74,3 6,7 22,6
Srovnávací příklad 4 16,7 72,3 11 20,4
Srovnávací příklad 5 16,5 62 21,5 19,2
Srovnávací příklad 6 12,3 83,9 3,8 17,3
* Příklady podle tohoto vynálezu
Charakteristické vlastnosti větvení a teploty tuhnutí izoparafínových složek základních surovin sloužících jako příklad, jak se uvádějí v tabulkách 1 až 3, se srovnávají v následující tabulce 4.
-25Tabulka 4
Srovnání kompozic izoparafínových maziv
Popis IB % CH2>4 teplota tuhnutí [°C]
Vosk Paraflint C80 (surovina) 83
Příklad 1 19,4 38,2 12
Příklad 2 22,3 28,8 -3
Příklad 3 25,6 22,5 -24
Příklad 4* 27,6 14,7 -63
SMDS voskový rafinát (surovina) 10,3 58,8 39
Příklad 5 23,6 17,3 -24
Příklad 6* 29,8 7,7 -66
Příklad 7* 26,2 21,8 -18
Příklad 8* 30 12,8 -59
Příklad 9* 27,9 17,7 -40
Příklad 10* 27 20,5 -42
Srovnávací příklady
Srovnávací příklad 1 22,7 20,4 <-65
Srovnávací příklad 2 23,4 20,6 <-65
Srovnávací příklad 3 26,9 22,6 -18
Srovnávací příklad 4 30,0 20,4 -15
Srovnávací příklad 5 31,5 19,2 -15
Srovnávací příklad 6 19,4 17,3 -42
Příklady podle tohoto vynálezu
Základní složky podle tohoto vynálezu se mohou odlišovat od jiných uhlovodíkových základních složek mírou větvení určovanou IB a blízkostí větvení určovanou podle
-26CH2 > 4. Oblasti otisku prstů kompozic se zobrazily do grafu, aby se napomohlo určení jedinečných oblastí v tomto dvourozměrném složení prostoru, jak se uvádí na obrázku 2 (levý kvadrant).
Z obrázku 2 je jasné, že charakteristické vlastnosti větvení kompozic izoparafínové základní složky podle tohoto vynálezu jsou v jedinečné oblasti. Kompozice se může zvláště popsat jako kompozice obsahující směsi parafínových uhlovodíkových složek, ve které jsou míra větvení, měřená jako procentní zastoupení methylenových vodíků (IB), a blízkost větvení (nebo-li vzdálenost větvení) , měřená jako procentní zastoupení vyskytujících se methylenových uhlíků, kterými jsou čtyři nebo více atomů uhlíku odstraněných z koncové skupiny nebo bočního řetězce (CH2>4), tak, že:
(a) IB - 0,5.(CH2>4) > 15 a (b) IB + 0,85. (CH2>4) < 45.
Obrázek 3 je grafickým srovnáním dynamických viskozit (DV při -40 °C), měřených způsobem CCS, a kinematických viskozit (KV při 100 °C) různých uhlovodíkových tekutin, včetně tekutin podle tohoto vynálezu. Tekutiny podle tohoto vynálezu se označují jako FTVI (Fischer-Tropschův voskový izomerát), zatímco tekutiny běžné hydrokrakované suroviny se označují jako HDC. Zejména HDC údaje představují srovnávací příklady 3 až 5 v tomto popisu vynálezu.
Z dále uváděných souborů údajů v obrázku 3 je jasné, že FTVI tekutiny podle tohoto vynálezu mají významně zvýšené charakteristické vlastnosti při nízkých teplotách ve srovnání s charakteristickými vlastnostmi běžných HDC
tekutin z dosavadního stavu techniky. Poznamenává se, že všechny kapalné uhlovodíkové tekutiny podle tohoto vynálezu klesají v grafu pod tečkovanou čáru a proto se mohou popsat následující rovnicí:
(c) DV@ při -40 °C < 2900.(KV@ při 100 °C) - 7000
Je zřejmé, že tento může měnit mnoha způsoby, za odchylky od duchu a takové úpravy, zřejmé považovat za začleněné do vynález, který je takto popsán, se Takové změny se nebudou považovat rozsahu tohoto vynálezu a všechny odborníkovi v oboru, se budou rozsahu následujících nároků.

Claims (20)

  1. PATE NTOVE NÁROKY
    1. Kapalná uhlovodíková kompozice obsahující parafínové vyznačující se tím, že měřená jako procentní zastoupení (IB), a blízkost větvení (nebo-li jako procentní zastoupení uhlíků, kterými jsou čtyři uhlovodíkové složky, míra větvení (IB), methybasových vodíků vzdálenost větvení), merena vyskytujících se methylenových nebo více atomů uhlíku odstraněných z koncové skupiny nebo bočního řetězce (CH2>4), tak, že:
    (a) IB - 0,5.(CH2>4) > 15 (b) IB + 0,85.(CH2>4) < 45, podle měření na kapalné uhlovodíkové kompozici jako celku.
  2. 2. Kapalná uhlovodíková kompozice podle nároku 1, vyznačující se tím, že obsahuje méně než 0,1 % hmotnostního aromatických uhlovodíků, méně než 20 ppm hmotnostních sloučenin obsahujících dusík a méně než 20 ppm hmotnostních sloučenin obsahujících síru.
  3. 3. Kapalná uhlovodíková kompozice podle nároku 1, vyznačující se tím, že teplota tuhnutí této kompozice je nižší než -18 °C.
  4. 4. Kapalná uhlovodíková kompozice podle nároku 3, vyznačující se tím, že teplota tuhnutí této kompozice je nižší než -30 °C.
    -29podle nároku 1, v yuvedené parafínové 2 > 4) s 22,5.
  5. 5. Kapalná uhlovodíková kompozice značující se tím, že uhlovodíkové složky mají IB > 25,4 a (CH
  6. 6. Kapalná uhlovodíková kompozice podle nároku 1, vyznačující se tím, že uvedené parafínové uhlovodíkové složky mají jmenovitou teplotu varu 370 °C nebo více.
  7. 7. Kapalná uhlovodíková kompozice podle nároku 1, vyznačující se tím, že uvedené parafínové uhlovodíkové složky obsahují v průměru méně než 10 hexylových nebo delších větvení na 100 atomů uhlíku.
  8. 8. Kapalná uhlovodíková kompozice podle nároku 1, vyznačující se tím, že uvedené parafínové uhlovodíkové složky obsahují v průměru více než 16 methylových větvení na 100 atomů uhlíku.
  9. 9. Kapalná uhlovodíková kompozice podle nároku 1, v y-
    z n a č u jící se tím, že kombinaci dynamické viskozity , měřené podle CCS při 40 °C a kinematické viskozity tekutiny , měřené při 100 °C představovuje rovnice: uvedené kapalné uhlovodíkové (c) DV@ při -40 °C < 2900, •(KV@ při 100 °C) - 7000 10 . Kompozice základní složky maziva obsahuj ící
    parafínové uhlovodíkové složky vyznačující se tím, že míra větvení (IB), měřená jako procentní zastoupení methylenových vodíků (IB), a blízkost větvení (nebo-li vzdálenost větvení), měřená jako procentní
    -30zastoupení vyskytujících se methylenových uhlíků, kterými jsou čtyři nebo více atomů uhlíku odstraněných z koncové skupiny nebo bočního řetězce (CH2>4), tak, že:
    (a) IB - 0,5.(CH2>4) > 15 a (b) IB + 0,85. (CH2>4) < 45, podle měření na kapalné uhlovodíkové kompozici jako celku.
  10. 11. Základní složka maziva podle nároku 10, vyznačující se tím, že obsahuje méně než 0,1 % hmotnostního aromatických uhlovodíků, méně než 20 ppm hmotnostních sloučenin obsahujících dusík a méně než 20 ppm hmotnostních sloučenin obsahujících síru.
  11. 12. Základní složka maziva podle nároku 10, vyznačující se tím, že teplota tuhnutí této kompozice je nižší než -18 °C.
  12. 13. Základní složka maziva podle nároku 12, vy z n ačující se tím, že teplota tuhnutí této kompozice je nižší než -30 °C.
  13. 14. Základní složka maziva podle nároku 10, vy z n ačující se tím, že uvedené parafínové uhlovodíkové složky mají IB & 25,4 a (CH2 >4) s 22,5.
  14. 15. Základní složka maziva podle nároku 10, vy z n ačujicí se tím, že uvedené parafínové uhlovodíkové složky mají jmenovitou teplotu varu nad 370 °C nebo víše.
  15. 16. Základní složka maziva podle nároku 10, vyznačující se tím, že uvedené parafínové uhlovodíkové složky obsahují v průměru méně než 10 hexylových nebo delších větvení na 100 atomů uhlíku.
  16. 17. Základní složka maziva podle nároku 10, vyznačující se tím, že uvedené parafínové uhlovodíkové složky obsahují v průměru více než 16 methylových větvení na 100 atomů uhlíku.
  17. 18. Základní složka maziva podle nároku 10, vyznačující se tím, že kombinaci dynamické viskozity, měřené podle CCS při -40 °C a kinematické viskozity, měřené při 100 °C, pro uvedenou kapalnou uhlovodíkovou tekutinu představuje rovnice:
    (c) DV@ při -40 °C < 2900.(KV@ při 100 °C) - 7000
  18. 19. Kompozice mazacího oleje uhlovodíkovou kopmpozici se obsahující kapalnou směsí parafinových uhlovodíkových složek, vyznačující se tim, že míra větvení (IB) , methylenových vodíků vzdálenost větvení), vyskytujících se methylenových nebo více atomů uhlíku odstraněných z koncové skupiny nebo bočního řetězce (CH2>4), tak, že:
    měřená jako procentní zastoupení (IB), a blízkost větvení (nebo-li jako procentní zastoupení uhlíků, kterými jsou čtyři (a) IB - 0,5.(CH2>4) > 15
    -32(b) IB + 0,85. (CH2>4) < 45, podle měřeni na kapalné uhlovodíkové kompozici jako celku a případně k účinným množstvím aditiv, jako, ale bez omezení pouze na ně, antioxidantům, protiúnavovým aditivům, aditivům pro extrémní tlaky, modifikátorům napětí, látkám zvyšujícím index viskozity, látkám snižujícím teplotu tuhnutí, detergentům, dispergantům, inhibitorům koroze, deaktivátorům kovů, přísad těsnící kompatibility, demulátorům, látkám zabraňujícím tvorbě pěny a jejich směsím.
  19. 20. Kompozice mazacího oleje podle nároku 19, vyznačující se tím, že dále obsahuje základní složku mazacího oleje vybranou ze souboru obsahujícího minerální oleje, poly-a-olefiny, estery, polyalkyleny, alkylované aromáty, hydrokrakáty a základní složky rafinované rozpouštědlovou extrakcí.
  20. 21. Kompozice mazacího oleje podle nároku 20, vyznačující se tím, že uvedená kapalná uhlovodíková kompozice je přítomna v koncentrační úrovni alespoň 5 % hmotnostních z celkové kompozice základní složky maziva.
CZ20001405A 1997-10-20 1998-10-15 Kapalná uhlovodíková kompozice, kompozice základní složky maziva a kompozice mazacího oleje CZ299839B6 (cs)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US6282497P 1997-10-20 1997-10-20

Publications (2)

Publication Number Publication Date
CZ20001405A3 true CZ20001405A3 (en) 2001-05-16
CZ299839B6 CZ299839B6 (cs) 2008-12-10

Family

ID=22045061

Family Applications (1)

Application Number Title Priority Date Filing Date
CZ20001405A CZ299839B6 (cs) 1997-10-20 1998-10-15 Kapalná uhlovodíková kompozice, kompozice základní složky maziva a kompozice mazacího oleje

Country Status (31)

Country Link
US (1) US6090989A (cs)
EP (1) EP1029029B1 (cs)
JP (1) JP2001520302A (cs)
KR (1) KR100511581B1 (cs)
CN (1) CN1138848C (cs)
AR (1) AR013698A1 (cs)
AU (1) AU739549B2 (cs)
BG (1) BG64626B1 (cs)
BR (1) BR9813120B1 (cs)
CA (1) CA2306886C (cs)
CZ (1) CZ299839B6 (cs)
HK (1) HK1032794A1 (cs)
HR (1) HRP20000259A2 (cs)
HU (1) HUP0100005A3 (cs)
ID (1) ID25490A (cs)
IL (1) IL135740A (cs)
IS (1) IS5466A (cs)
MY (1) MY120553A (cs)
NO (1) NO20002010L (cs)
NZ (1) NZ504064A (cs)
PE (1) PE111499A1 (cs)
PL (1) PL190129B1 (cs)
RO (1) RO120713B1 (cs)
RS (1) RS50382B (cs)
RU (1) RU2198203C2 (cs)
SI (1) SI20333A (cs)
SK (1) SK286575B6 (cs)
TR (1) TR200001084T2 (cs)
UA (1) UA71557C2 (cs)
WO (1) WO1999020720A1 (cs)
ZA (1) ZA989526B (cs)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ303313B6 (cs) * 1999-04-29 2012-08-01 Institut Français du Pétrole Zpusob výroby oleju z uhlovodíkové suroviny

Families Citing this family (437)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1389635A1 (en) * 1995-12-08 2004-02-18 ExxonMobil Research and Engineering Company Biodegradable high performance hydrocarbon base oils
US6013171A (en) * 1998-02-03 2000-01-11 Exxon Research And Engineering Co. Catalytic dewaxing with trivalent rare earth metal ion exchanged ferrierite
US6663768B1 (en) * 1998-03-06 2003-12-16 Chevron U.S.A. Inc. Preparing a HGH viscosity index, low branch index dewaxed
US6025305A (en) * 1998-08-04 2000-02-15 Exxon Research And Engineering Co. Process for producing a lubricant base oil having improved oxidative stability
US6080301A (en) * 1998-09-04 2000-06-27 Exxonmobil Research And Engineering Company Premium synthetic lubricant base stock having at least 95% non-cyclic isoparaffins
US6103099A (en) * 1998-09-04 2000-08-15 Exxon Research And Engineering Company Production of synthetic lubricant and lubricant base stock without dewaxing
US6475960B1 (en) * 1998-09-04 2002-11-05 Exxonmobil Research And Engineering Co. Premium synthetic lubricants
US6165949A (en) * 1998-09-04 2000-12-26 Exxon Research And Engineering Company Premium wear resistant lubricant
US6179994B1 (en) 1998-09-04 2001-01-30 Exxon Research And Engineering Company Isoparaffinic base stocks by dewaxing fischer-tropsch wax hydroisomerate over Pt/H-mordenite
US7067049B1 (en) * 2000-02-04 2006-06-27 Exxonmobil Oil Corporation Formulated lubricant oils containing high-performance base oils derived from highly paraffinic hydrocarbons
MXPA03000964A (es) * 2000-08-02 2004-02-17 Mj Res & Dev L P Sistema de aceite lubricante y refrigerante.
DK1370633T3 (da) * 2001-02-13 2005-11-21 Shell Int Research Smöremiddelsammensætning
MY137259A (en) * 2001-03-05 2009-01-30 Shell Int Research Process to prepare a lubricating base oil and a gas oil.
MY139353A (en) * 2001-03-05 2009-09-30 Shell Int Research Process to prepare a lubricating base oil and a gas oil
AR032941A1 (es) * 2001-03-05 2003-12-03 Shell Int Research Un procedimiento para preparar un aceite base lubricante y aceite base obtenido, con sus diversas utilizaciones
US6627779B2 (en) * 2001-10-19 2003-09-30 Chevron U.S.A. Inc. Lube base oils with improved yield
US6602922B1 (en) 2002-02-19 2003-08-05 Chevron U.S.A. Inc. Process for producing C19 minus Fischer-Tropsch products having high olefinicity
US20030158272A1 (en) 2002-02-19 2003-08-21 Davis Burtron H. Process for the production of highly branched Fischer-Tropsch products and potassium promoted iron catalyst
DE60305016T3 (de) 2002-02-25 2012-02-09 Shell Internationale Research Maatschappij B.V. Verfahren zur herstellung eines katalytisch entparaffinierten gasöls oder einer katalytisch entparaffinierten gasölmischkomponente
US7354508B2 (en) * 2002-07-12 2008-04-08 Shell Oil Company Process to prepare a heavy and a light lubricating base oil
AU2003255058A1 (en) * 2002-07-18 2004-02-09 Shell Internationale Research Maatschappij B.V. Process to prepare a microcrystalline wax and a middle distillate fuel
KR20050021521A (ko) 2002-07-19 2005-03-07 쉘 인터내셔날 리써취 마트샤피지 비.브이. 신전유를 포함하는 규소 고무 및 상기 신전유의 제조방법
US20040014877A1 (en) * 2002-07-19 2004-01-22 Null Volker Klaus White oil as plasticizer in a polystyrene composition and process to prepare said oil
DE60332242D1 (de) 2002-07-19 2010-06-02 Shell Int Research Zusammensetzung enthaltend epdm und paraffin ol
US7998579B2 (en) 2002-08-12 2011-08-16 Exxonmobil Chemical Patents Inc. Polypropylene based fibers and nonwovens
US7531594B2 (en) 2002-08-12 2009-05-12 Exxonmobil Chemical Patents Inc. Articles from plasticized polyolefin compositions
US8003725B2 (en) 2002-08-12 2011-08-23 Exxonmobil Chemical Patents Inc. Plasticized hetero-phase polyolefin blends
US7271209B2 (en) 2002-08-12 2007-09-18 Exxonmobil Chemical Patents Inc. Fibers and nonwovens from plasticized polyolefin compositions
EP2083043B1 (en) 2002-08-12 2017-01-18 ExxonMobil Chemical Patents Inc. Plasticized polyolefin compositions
US6703353B1 (en) 2002-09-04 2004-03-09 Chevron U.S.A. Inc. Blending of low viscosity Fischer-Tropsch base oils to produce high quality lubricating base oils
US20040108245A1 (en) * 2002-10-08 2004-06-10 Zhaozhong Jiang Lube hydroisomerization system
US7344631B2 (en) * 2002-10-08 2008-03-18 Exxonmobil Research And Engineering Company Oxygenate treatment of dewaxing catalyst for greater yield of dewaxed product
US6951605B2 (en) * 2002-10-08 2005-10-04 Exxonmobil Research And Engineering Company Method for making lube basestocks
US20040129603A1 (en) * 2002-10-08 2004-07-08 Fyfe Kim Elizabeth High viscosity-index base stocks, base oils and lubricant compositions and methods for their production and use
US7132042B2 (en) * 2002-10-08 2006-11-07 Exxonmobil Research And Engineering Company Production of fuels and lube oils from fischer-tropsch wax
AU2003279225B2 (en) * 2002-10-08 2008-10-09 Exxonmobil Research And Engineering Company Heavy hydrocarbon composition with utility as a heavy lubricant base stock
US7087152B2 (en) * 2002-10-08 2006-08-08 Exxonmobil Research And Engineering Company Wax isomerate yield enhancement by oxygenate pretreatment of feed
US7125818B2 (en) * 2002-10-08 2006-10-24 Exxonmobil Research & Engineering Co. Catalyst for wax isomerate yield enhancement by oxygenate pretreatment
US7201838B2 (en) * 2002-10-08 2007-04-10 Exxonmobil Research And Engineering Company Oxygenate treatment of dewaxing catalyst for greater yield of dewaxed product
US7220350B2 (en) * 2002-10-08 2007-05-22 Exxonmobil Research And Engineering Company Wax isomerate yield enhancement by oxygenate pretreatment of catalyst
US20040065584A1 (en) * 2002-10-08 2004-04-08 Bishop Adeana Richelle Heavy lube oil from fischer- tropsch wax
US20040108250A1 (en) * 2002-10-08 2004-06-10 Murphy William J. Integrated process for catalytic dewaxing
US7704379B2 (en) * 2002-10-08 2010-04-27 Exxonmobil Research And Engineering Company Dual catalyst system for hydroisomerization of Fischer-Tropsch wax and waxy raffinate
US7282137B2 (en) * 2002-10-08 2007-10-16 Exxonmobil Research And Engineering Company Process for preparing basestocks having high VI
US6846778B2 (en) * 2002-10-08 2005-01-25 Exxonmobil Research And Engineering Company Synthetic isoparaffinic premium heavy lubricant base stock
US7077947B2 (en) * 2002-10-08 2006-07-18 Exxonmobil Research And Engineering Company Process for preparing basestocks having high VI using oxygenated dewaxing catalyst
US7144497B2 (en) * 2002-11-20 2006-12-05 Chevron U.S.A. Inc. Blending of low viscosity Fischer-Tropsch base oils with conventional base oils to produce high quality lubricating base oils
US20040154958A1 (en) * 2002-12-11 2004-08-12 Alexander Albert Gordon Functional fluids having low brookfield viscosity using high viscosity-index base stocks, base oils and lubricant compositions, and methods for their production and use
US20040119046A1 (en) * 2002-12-11 2004-06-24 Carey James Thomas Low-volatility functional fluid compositions useful under conditions of high thermal stress and methods for their production and use
US20040154957A1 (en) * 2002-12-11 2004-08-12 Keeney Angela J. High viscosity index wide-temperature functional fluid compositions and methods for their making and use
US20080029431A1 (en) * 2002-12-11 2008-02-07 Alexander Albert G Functional fluids having low brookfield viscosity using high viscosity-index base stocks, base oils and lubricant compositions, and methods for their production and use
US6962651B2 (en) * 2003-03-10 2005-11-08 Chevron U.S.A. Inc. Method for producing a plurality of lubricant base oils from paraffinic feedstock
US7198710B2 (en) * 2003-03-10 2007-04-03 Chevron U.S.A. Inc. Isomerization/dehazing process for base oils from Fischer-Tropsch wax
US7141157B2 (en) * 2003-03-11 2006-11-28 Chevron U.S.A. Inc. Blending of low viscosity Fischer-Tropsch base oils and Fischer-Tropsch derived bottoms or bright stock
CN1774393A (zh) 2003-04-15 2006-05-17 国际壳牌研究有限公司 进行蒸汽重整反应的反应器和制备合成气的方法
SG117798A1 (en) 2003-06-23 2008-02-29 Shell Int Research Process to prepare a lubricating base oil
CN100384965C (zh) 2003-07-04 2008-04-30 国际壳牌研究有限公司 制备费-托产品的方法
US7727378B2 (en) 2003-07-04 2010-06-01 Shell Oil Company Process to prepare a Fischer-Tropsch product
US20050016899A1 (en) * 2003-07-21 2005-01-27 Syntroleum Corporation Synthetic lubricant basestock and an integrated fischer-tropsch process for its production
US8192813B2 (en) 2003-08-12 2012-06-05 Exxonmobil Chemical Patents, Inc. Crosslinked polyethylene articles and processes to produce same
US7018525B2 (en) * 2003-10-14 2006-03-28 Chevron U.S.A. Inc. Processes for producing lubricant base oils with optimized branching
US20050077208A1 (en) * 2003-10-14 2005-04-14 Miller Stephen J. Lubricant base oils with optimized branching
JP5576437B2 (ja) * 2003-11-04 2014-08-20 出光興産株式会社 潤滑油基油及びその製造方法、並びに該基油を含有する潤滑油組成物
JP5108200B2 (ja) * 2003-11-04 2012-12-26 出光興産株式会社 潤滑油基油及びその製造方法、並びに該基油を含有する潤滑油組成物
US7053254B2 (en) * 2003-11-07 2006-05-30 Chevron U.S.A, Inc. Process for improving the lubricating properties of base oils using a Fischer-Tropsch derived bottoms
US7763161B2 (en) 2003-12-23 2010-07-27 Chevron U.S.A. Inc. Process for making lubricating base oils with high ratio of monocycloparaffins to multicycloparaffins
US7282134B2 (en) 2003-12-23 2007-10-16 Chevron Usa, Inc. Process for manufacturing lubricating base oil with high monocycloparaffins and low multicycloparaffins
US7083713B2 (en) 2003-12-23 2006-08-01 Chevron U.S.A. Inc. Composition of lubricating base oil with high monocycloparaffins and low multicycloparaffins
US7195706B2 (en) 2003-12-23 2007-03-27 Chevron U.S.A. Inc. Finished lubricating comprising lubricating base oil with high monocycloparaffins and low multicycloparaffins
EP1548088A1 (en) 2003-12-23 2005-06-29 Shell Internationale Researchmaatschappij B.V. Process to prepare a haze free base oil
US7655132B2 (en) * 2004-05-04 2010-02-02 Chevron U.S.A. Inc. Process for improving the lubricating properties of base oils using isomerized petroleum product
WO2005123887A1 (en) 2004-06-18 2005-12-29 Shell Internationale Research Maatschappij B.V. Lubricating oil composition
US20050284797A1 (en) * 2004-06-25 2005-12-29 Genetti William B Integrated plant process to produce high molecular weight basestocks from fischer-tropsch wax
ZA200700810B (en) * 2004-08-05 2008-10-29 Chevron Usa Inc Multigrade engine oil prepared from Fischer-Tropsch distillate base oil
WO2006037806A1 (en) 2004-10-08 2006-04-13 Shell Internationale Research Maatschappij B.V. Process to prepare lower olefins from a fischer-tropsch synthesis product
US20060100466A1 (en) * 2004-11-08 2006-05-11 Holmes Steven A Cycloalkane base oils, cycloalkane-base dielectric liquids made using cycloalkane base oils, and methods of making same
US7531083B2 (en) * 2004-11-08 2009-05-12 Shell Oil Company Cycloalkane base oils, cycloalkane-base dielectric liquids made using cycloalkane base oils, and methods of making same
JP2008520787A (ja) 2004-11-18 2008-06-19 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ ガス油の製造方法
AU2005305798B2 (en) 2004-11-18 2009-01-08 Shell Internationale Research Maatschappij B.V. Process to prepare a base oil
US7252753B2 (en) * 2004-12-01 2007-08-07 Chevron U.S.A. Inc. Dielectric fluids and processes for making same
US7510674B2 (en) * 2004-12-01 2009-03-31 Chevron U.S.A. Inc. Dielectric fluids and processes for making same
US20060129013A1 (en) * 2004-12-09 2006-06-15 Abazajian Armen N Specific functionalization and scission of linear hydrocarbon chains
US7550415B2 (en) 2004-12-10 2009-06-23 Shell Oil Company Lubricating oil composition
US8389615B2 (en) 2004-12-17 2013-03-05 Exxonmobil Chemical Patents Inc. Elastomeric compositions comprising vinylaromatic block copolymer, polypropylene, plastomer, and low molecular weight polyolefin
WO2006067104A1 (en) 2004-12-20 2006-06-29 Shell Internationale Research Maatschappij B.V. Gasoline cracking
US20070293408A1 (en) 2005-03-11 2007-12-20 Chevron Corporation Hydraulic Fluid Compositions and Preparation Thereof
US7674364B2 (en) 2005-03-11 2010-03-09 Chevron U.S.A. Inc. Hydraulic fluid compositions and preparation thereof
US7981270B2 (en) 2005-03-11 2011-07-19 Chevron U.S.A. Inc. Extra light hydrocarbon liquids
JP5339897B2 (ja) 2005-04-11 2013-11-13 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ 船舶上で鉱物誘導生成物とフィッシャー−トロプシュ誘導生成物とをブレンドする方法
US7578926B2 (en) * 2005-04-20 2009-08-25 Chevron U.S.A. Inc. Process to enhance oxidation stability of base oils by analysis of olefins using Â1H NMR
US7374658B2 (en) * 2005-04-29 2008-05-20 Chevron Corporation Medium speed diesel engine oil
WO2006122585A1 (en) 2005-05-19 2006-11-23 Shell Internationale Research Maatschappij B.V. Quenching fluid
CN101175812A (zh) 2005-05-20 2008-05-07 国际壳牌研究有限公司 费-托法得到的白油在食品接触应用中的用途
GB0511320D0 (en) 2005-06-03 2005-07-13 Exxonmobil Chem Patents Inc Elastomeric structures
US7851418B2 (en) 2005-06-03 2010-12-14 Exxonmobil Research And Engineering Company Ashless detergents and formulated lubricating oil containing same
GB0511319D0 (en) * 2005-06-03 2005-07-13 Exxonmobil Chem Patents Inc Polymeric compositions
WO2006136594A1 (en) 2005-06-23 2006-12-28 Shell Internationale Research Maatschappij B.V. Electrical oil formulation
EP1896542B1 (en) 2005-06-24 2018-06-20 ExxonMobil Chemical Patents Inc. Plasticized functionalized propylene copolymer adhesive composition
CN101218296B (zh) 2005-07-15 2010-12-08 埃克森美孚化学专利公司 弹性体组合物
EP1937792A1 (en) 2005-10-17 2008-07-02 Shell Internationale Research Maatschappij B.V. Lubricating oil composition
US20070093398A1 (en) 2005-10-21 2007-04-26 Habeeb Jacob J Two-stroke lubricating oils
US20070142242A1 (en) * 2005-12-15 2007-06-21 Gleeson James W Lubricant oil compositions containing GTL base stock(s) and/or base oil(s) and having improved resistance to the loss of viscosity and weight and a method for improving the resistance to loss of viscosity and weight of GTL base stock(s) and/or base oil(s) lubricant oil formulations
BRPI0707809B1 (pt) 2006-02-21 2016-07-05 Shell Int Research composição de óleo lubrificante, e, método de lubrificação de um motor de combustão interna
US20070232506A1 (en) 2006-03-28 2007-10-04 Gao Jason Z Blends of lubricant basestocks with polyol esters
US8299005B2 (en) 2006-05-09 2012-10-30 Exxonmobil Research And Engineering Company Lubricating oil composition
US8299007B2 (en) 2006-06-06 2012-10-30 Exxonmobil Research And Engineering Company Base stock lubricant blends
US8535514B2 (en) 2006-06-06 2013-09-17 Exxonmobil Research And Engineering Company High viscosity metallocene catalyst PAO novel base stock lubricant blends
US8834705B2 (en) 2006-06-06 2014-09-16 Exxonmobil Research And Engineering Company Gear oil compositions
US8921290B2 (en) 2006-06-06 2014-12-30 Exxonmobil Research And Engineering Company Gear oil compositions
US8501675B2 (en) 2006-06-06 2013-08-06 Exxonmobil Research And Engineering Company High viscosity novel base stock lubricant viscosity blends
US7863229B2 (en) 2006-06-23 2011-01-04 Exxonmobil Research And Engineering Company Lubricating compositions
US7662757B2 (en) * 2006-06-27 2010-02-16 Exxonmobil Research And Engineering Company Stable defoamant composition containing GTL fluid and/or hydrodewaxate and/or hydroisomerized/catalytic (and/or solvent) dewaxed fluid as diluent
JP5633997B2 (ja) * 2006-07-06 2014-12-03 Jx日鉱日石エネルギー株式会社 潤滑油基油及び潤滑油組成物
US20090209793A1 (en) * 2006-07-12 2009-08-20 Keith Selby Use of a paraffinic base oil for the reduction of nitrogen oxide emissions
KR101234479B1 (ko) 2006-08-01 2013-02-18 에스케이종합화학 주식회사 Pvc용 2차 가소제, 이를 함유하는 pvc졸 조성물 및이의 제품
US20080110797A1 (en) * 2006-10-27 2008-05-15 Fyfe Kim E Formulated lubricants meeting 0W and 5W low temperature performance specifications made from a mixture of base stocks obtained by different final wax processing routes
US7745544B2 (en) * 2006-11-30 2010-06-29 Exxonmobil Chemical Patents Inc. Catalytic epoxidation and hydroxylation of olefin/diene copolymers
US8747650B2 (en) 2006-12-21 2014-06-10 Chevron Oronite Technology B.V. Engine lubricant with enhanced thermal stability
JP5108315B2 (ja) 2007-02-01 2012-12-26 昭和シェル石油株式会社 有機モリブデン化合物よりなる摩擦調整剤およびそれを含む潤滑組成物
JP5108317B2 (ja) 2007-02-01 2012-12-26 昭和シェル石油株式会社 アルキルキサントゲン酸モリブデン、それよりなる摩擦調整剤およびそれを含む潤滑組成物
JP5108318B2 (ja) 2007-02-01 2012-12-26 昭和シェル石油株式会社 新規な有機モリブデン化合物
US7615589B2 (en) * 2007-02-02 2009-11-10 Exxonmobil Chemical Patents Inc. Properties of peroxide-cured elastomer compositions
US7888298B2 (en) 2007-03-20 2011-02-15 Exxonmobil Research And Engineering Company Lubricant compositions with improved properties
US8759266B2 (en) 2007-03-20 2014-06-24 Exxonmobil Research And Engineering Company Lubricant composition with improved electrical properties
US8603953B2 (en) * 2007-03-30 2013-12-10 Jx Nippon Oil & Energy Corporation Operating oil for buffer
JP5726397B2 (ja) * 2007-03-30 2015-06-03 Jx日鉱日石エネルギー株式会社 潤滑油基油及びその製造方法並びに潤滑油組成物
JP5690042B2 (ja) * 2007-03-30 2015-03-25 Jx日鉱日石エネルギー株式会社 潤滑油基油及びその製造方法並びに潤滑油組成物
SG179416A1 (en) * 2007-03-30 2012-04-27 Nippon Oil Corp Lubricant base oil, method for production thereof, and lubricant oil composition
US20080269085A1 (en) 2007-04-30 2008-10-30 Chevron U.S.A. Inc. Lubricating oil composition containing alkali metal borates with improved frictional properties
US20080306215A1 (en) * 2007-06-06 2008-12-11 Abhimanyu Onkar Patil Functionalization of olefin/diene copolymers
US8377859B2 (en) 2007-07-25 2013-02-19 Exxonmobil Research And Engineering Company Hydrocarbon fluids with improved pour point
US20090036338A1 (en) 2007-07-31 2009-02-05 Chevron U.S.A. Inc. Metalworking Fluid Compositions and Preparation Thereof
US20090036333A1 (en) 2007-07-31 2009-02-05 Chevron U.S.A. Inc. Metalworking Fluid Compositions and Preparation Thereof
CN101796170B (zh) * 2007-08-13 2014-07-02 国际壳牌研究有限公司 润滑基油共混物
US20090062166A1 (en) 2007-08-28 2009-03-05 Chevron U.S.A. Inc. Slideway Lubricant Compositions, Methods of Making and Using Thereof
AU2008313698B2 (en) 2007-10-19 2012-04-19 Shell Internationale Research Maatschappij B.V. Functional fluids for internal combustion engines
EP2071008A1 (en) 2007-12-04 2009-06-17 Shell Internationale Researchmaatschappij B.V. Lubricating composition comprising an imidazolidinethione and an imidazolidone
WO2009072524A1 (ja) * 2007-12-05 2009-06-11 Nippon Oil Corporation 潤滑油組成物
JP5342138B2 (ja) * 2007-12-28 2013-11-13 Jx日鉱日石エネルギー株式会社 潤滑油組成物
EP2222822A2 (en) * 2007-12-07 2010-09-01 Shell Internationale Research Maatschappij B.V. Base oil formulations
US7956018B2 (en) * 2007-12-10 2011-06-07 Chevron U.S.A. Inc. Lubricant composition
EP2075314A1 (en) 2007-12-11 2009-07-01 Shell Internationale Research Maatschappij B.V. Grease formulations
EP2072610A1 (en) 2007-12-11 2009-06-24 Shell Internationale Research Maatschappij B.V. Carrier oil composition
WO2009080672A1 (en) 2007-12-20 2009-07-02 Shell Internationale Research Maatschappij B.V. Fuel compositions
CN101998986B (zh) 2007-12-20 2014-12-10 国际壳牌研究有限公司 燃料组合物
EP2078743A1 (en) 2008-01-10 2009-07-15 Shell Internationale Researchmaatschappij B.V. Fuel composition
JP5483662B2 (ja) * 2008-01-15 2014-05-07 Jx日鉱日石エネルギー株式会社 潤滑油組成物
AR070686A1 (es) 2008-01-16 2010-04-28 Shell Int Research Un metodo para preparar una composicion de lubricante
JP2009227940A (ja) * 2008-03-25 2009-10-08 Nippon Oil Corp 潤滑油基油およびその製造方法ならびに潤滑油組成物
JP5690041B2 (ja) * 2008-03-25 2015-03-25 Jx日鉱日石エネルギー株式会社 潤滑油基油及びその製造方法並びに潤滑油組成物
JP5806794B2 (ja) * 2008-03-25 2015-11-10 Jx日鉱日石エネルギー株式会社 内燃機関用潤滑油組成物
US20090247438A1 (en) * 2008-03-31 2009-10-01 Exxonmobil Research And Engineering Company Hydraulic oil formulation and method to improve seal swell
BRPI0914229B1 (pt) 2008-06-19 2018-06-19 Shell Internationale Research Maatschappij B.V. Composição de graxa lubrificante
BRPI0914271A2 (pt) 2008-06-24 2015-11-03 Shell Int Research uso de uma composição lubrificante, e, método para melhorar propriedade de limpeza do pistão
US8633142B2 (en) 2008-07-31 2014-01-21 Shell Oil Company Poly (hydroxycarboxylic acid) amide salt derivative and lubricating composition containing it
JP5695815B2 (ja) * 2008-08-04 2015-04-08 Jx日鉱日石エネルギー株式会社 潤滑油組成物
US8394746B2 (en) 2008-08-22 2013-03-12 Exxonmobil Research And Engineering Company Low sulfur and low metal additive formulations for high performance industrial oils
EP2100946A1 (en) 2008-09-08 2009-09-16 Shell Internationale Researchmaatschappij B.V. Oil formulations
US8476205B2 (en) 2008-10-03 2013-07-02 Exxonmobil Research And Engineering Company Chromium HVI-PAO bi-modal lubricant compositions
JP2010090251A (ja) * 2008-10-07 2010-04-22 Nippon Oil Corp 潤滑油基油及びその製造方法、潤滑油組成物
US8563486B2 (en) * 2008-10-07 2013-10-22 Jx Nippon Oil & Energy Corporation Lubricant composition and method for producing same
US8648021B2 (en) * 2008-10-07 2014-02-11 Jx Nippon Oil & Energy Corporation Lubricant base oil and a process for producing the same, and lubricating oil composition
US20100105585A1 (en) * 2008-10-28 2010-04-29 Carey James T Low sulfur and ashless formulations for high performance industrial oils
US20100162693A1 (en) 2008-12-31 2010-07-01 Michael Paul W Method of reducing torque ripple in hydraulic motors
JP5684147B2 (ja) 2009-01-28 2015-03-11 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー 潤滑組成物
EP2186871A1 (en) 2009-02-11 2010-05-19 Shell Internationale Research Maatschappij B.V. Lubricating composition
JP5783913B2 (ja) 2009-02-18 2015-09-24 昭和シェル石油株式会社 炭化水素排出を低減するためのgtl基油を伴う潤滑油組成物の使用
FR2943070B1 (fr) * 2009-03-12 2012-12-21 Total Raffinage Marketing Fluide hydrocarbone hydrodeparaffine utilise dans la fabrication de fluides industriels, agricoles ou a usage domestique
WO2010125144A1 (en) * 2009-05-01 2010-11-04 Shell Internationale Research Maatschappij B.V. Functional fluid compositions with improved seal swell properties
EP2248878A1 (en) 2009-05-01 2010-11-10 Shell Internationale Research Maatschappij B.V. Lubricating composition
EP2712911A3 (en) 2009-06-04 2014-08-06 JX Nippon Oil & Energy Corporation Lubricant oil composition
CN103275800B (zh) 2009-06-04 2016-06-22 吉坤日矿日石能源株式会社 润滑油组合物
JP5829374B2 (ja) 2009-06-04 2015-12-09 Jx日鉱日石エネルギー株式会社 潤滑油組成物
US8999904B2 (en) 2009-06-04 2015-04-07 Jx Nippon Oil & Energy Corporation Lubricant oil composition and method for making the same
CN104017633A (zh) * 2009-06-12 2014-09-03 赢创罗曼克斯添加剂有限公司 具有改进的粘度指数的流体
US9222049B2 (en) 2009-06-24 2015-12-29 Shell Oil Company Lubricating composition
WO2010149712A1 (en) 2009-06-25 2010-12-29 Shell Internationale Research Maatschappij B.V. Lubricating composition
BR112012003581B1 (pt) 2009-08-18 2018-09-18 Shell Int Research uso de uma composição de graxa lubrificante
EP2470626A1 (en) 2009-08-28 2012-07-04 Shell Internationale Research Maatschappij B.V. Process oil composition
JP5689592B2 (ja) 2009-09-01 2015-03-25 Jx日鉱日石エネルギー株式会社 潤滑油組成物
US8349776B2 (en) 2009-09-29 2013-01-08 Chevron Oronite Company Llc Trunk piston engine lubricating oil compositions
US8716201B2 (en) 2009-10-02 2014-05-06 Exxonmobil Research And Engineering Company Alkylated naphtylene base stock lubricant formulations
US20120202728A1 (en) 2009-10-09 2012-08-09 Jose Luis Garcia Ojeda Lubricating composition
EP2159275A3 (en) 2009-10-14 2010-04-28 Shell Internationale Research Maatschappij B.V. Lubricating composition
EP2494014B1 (en) 2009-10-26 2015-12-16 Shell Internationale Research Maatschappij B.V. Lubricating composition
EP2189515A1 (en) 2009-11-05 2010-05-26 Shell Internationale Research Maatschappij B.V. Functional fluid composition
EP2186872A1 (en) 2009-12-16 2010-05-19 Shell Internationale Research Maatschappij B.V. Lubricating composition
EP2390279A1 (en) 2009-12-17 2011-11-30 ExxonMobil Chemical Patents Inc. Polypropylene composition with plasticiser for sterilisable films
BR112012015456A2 (pt) 2009-12-24 2016-03-15 Shell Int Research composição de combustível líquido, métodos para melhorar o desempenho da economia de combustível e do lubrificante de um motor de combustão interna, uso de uma composição de combustível líquido, e , composição de lubrificante
US20130000584A1 (en) 2009-12-29 2013-01-03 Shell International Research Maatschappij B.V. Liquid fuel compositions
US8598103B2 (en) 2010-02-01 2013-12-03 Exxonmobil Research And Engineering Company Method for improving the fuel efficiency of engine oil compositions for large low, medium and high speed engines by reducing the traction coefficient
US8728999B2 (en) 2010-02-01 2014-05-20 Exxonmobil Research And Engineering Company Method for improving the fuel efficiency of engine oil compositions for large low and medium speed engines by reducing the traction coefficient
US8642523B2 (en) 2010-02-01 2014-02-04 Exxonmobil Research And Engineering Company Method for improving the fuel efficiency of engine oil compositions for large low and medium speed engines by reducing the traction coefficient
SG182699A1 (en) 2010-02-01 2012-08-30 Exxonmobil Res & Eng Co Method for improving the fuel efficiency of engine oil compositions for large low, medium and high speed engines by reducing the traction coefficient
US8748362B2 (en) 2010-02-01 2014-06-10 Exxonmobile Research And Engineering Company Method for improving the fuel efficiency of engine oil compositions for large low and medium speed gas engines by reducing the traction coefficient
US8759267B2 (en) 2010-02-01 2014-06-24 Exxonmobil Research And Engineering Company Method for improving the fuel efficiency of engine oil compositions for large low and medium speed engines by reducing the traction coefficient
WO2011110551A1 (en) 2010-03-10 2011-09-15 Shell Internationale Research Maatschappij B.V. Method of reducing the toxicity of used lubricating compositions
BR112012023151A2 (pt) 2010-03-17 2018-06-26 Shell Int Research uso e composição de uma composição lubrificante para o resfriamento e/ou isolamento elétrico de uma bateria elétrica ou um motor elétrico.
EP2194114A3 (en) 2010-03-19 2010-10-27 Shell Internationale Research Maatschappij B.V. Lubricating composition
WO2011138313A1 (en) 2010-05-03 2011-11-10 Shell Internationale Research Maatschappij B.V. Used lubricating composition
EP2385097A1 (en) 2010-05-03 2011-11-09 Shell Internationale Research Maatschappij B.V. Lubricating composition
RU2564020C2 (ru) 2010-07-05 2015-09-27 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Способ получения композиции консистентной смазки
WO2012017023A1 (en) 2010-08-03 2012-02-09 Shell Internationale Research Maatschappij B.V. Lubricating composition
EP2441818A1 (en) 2010-10-12 2012-04-18 Shell Internationale Research Maatschappij B.V. Lubricating composition
US8455406B2 (en) 2010-10-28 2013-06-04 Chevron U.S.A. Inc. Compressor oils having improved oxidation resistance
US20120144887A1 (en) 2010-12-13 2012-06-14 Accelergy Corporation Integrated Coal To Liquids Process And System With Co2 Mitigation Using Algal Biomass
JP5898691B2 (ja) 2010-12-17 2016-04-06 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイShell Internationale Research Maatschappij Beslotenvennootshap 潤滑組成物
WO2012138733A2 (en) 2011-04-05 2012-10-11 Chevron Oronite Company Llc Low viscosity marine cylinder lubricating oil compositions
US20140128303A1 (en) 2011-05-05 2014-05-08 Shell Internationale Research Maatschappij B.V. Lubricating oil compositions comprising fischer-tropsch derived base oils
ES2797651T3 (es) * 2011-05-16 2020-12-03 Shanghai Chemrun Co Ltd Sistema catalítico para la preparación de alcano altamente ramificado a partir de olefinas
CN103360517B (zh) * 2012-04-05 2017-12-08 中国科学院上海有机化学研究所 高支化油状烷烃聚合物及其制法和应用
US20120304531A1 (en) 2011-05-30 2012-12-06 Shell Oil Company Liquid fuel compositions
EP2395068A1 (en) 2011-06-14 2011-12-14 Shell Internationale Research Maatschappij B.V. Lubricating composition
WO2013003405A1 (en) 2011-06-30 2013-01-03 Exxonmobil Research And Engineering Company Lubricating compositions containing polyalkylene glycol mono ethers
US8586520B2 (en) 2011-06-30 2013-11-19 Exxonmobil Research And Engineering Company Method of improving pour point of lubricating compositions containing polyalkylene glycol mono ethers
WO2013003394A1 (en) 2011-06-30 2013-01-03 Exxonmobil Research And Engineering Company Lubricating compositions containing polyetheramines
EP2726584B1 (en) 2011-06-30 2016-04-20 ExxonMobil Research and Engineering Company Method of improving pour point of lubricating compositions containing polyalkylene glycol mono ethers
US9206374B2 (en) 2011-12-16 2015-12-08 Chevron Oronite Sas Trunk piston engine lubricating oil compositions
EP2794753A1 (en) 2011-12-20 2014-10-29 Shell Internationale Research Maatschappij B.V. Adhesive compositions and methods of using the same
WO2013093103A1 (en) 2011-12-22 2013-06-27 Shell Internationale Research Maatschappij B.V. Lubricating composition
WO2013093080A1 (en) 2011-12-22 2013-06-27 Shell Internationale Research Maatschappij B.V. Improvements relating to high pressure compressor lubrication
EP2626405B1 (en) 2012-02-10 2015-05-27 Ab Nanol Technologies Oy Lubricant composition
EP2864456B1 (en) 2012-06-21 2018-10-31 Shell International Research Maatschappij B.V. Lubricating oil compositions comprising heavy fischer-tropsch derived base oils and alkylated aromatic base oil
EP2864459A1 (en) 2012-06-21 2015-04-29 Shell Internationale Research Maatschappij B.V. Lubricating composition
US10189975B2 (en) 2012-08-01 2019-01-29 Shell Oil Company Cable fill composition
US9359573B2 (en) 2012-08-06 2016-06-07 Exxonmobil Research And Engineering Company Migration of air release in lubricant base stocks
EP2695932A1 (en) 2012-08-08 2014-02-12 Ab Nanol Technologies Oy Grease composition
EP2746367A1 (en) 2012-12-18 2014-06-25 Shell Internationale Research Maatschappij B.V. Process to prepare base oil and gas oil
US20140194333A1 (en) 2013-01-04 2014-07-10 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency
JP5735017B2 (ja) * 2013-01-15 2015-06-17 Jx日鉱日石エネルギー株式会社 潤滑油基油及び潤滑油組成物
US9200230B2 (en) 2013-03-01 2015-12-01 VORA Inc. Lubricating compositions and methods of use thereof
US20140274849A1 (en) 2013-03-14 2014-09-18 Exxonmobil Research And Engineering Company Lubricating composition providing high wear resistance
EP2816097A1 (en) 2013-06-18 2014-12-24 Shell Internationale Research Maatschappij B.V. Lubricating oil composition
EP2816098A1 (en) 2013-06-18 2014-12-24 Shell Internationale Research Maatschappij B.V. Use of a sulfur compound for improving the oxidation stability of a lubricating oil composition
US20150099675A1 (en) 2013-10-03 2015-04-09 Exxonmobil Research And Engineering Company Compositions with improved varnish control properties
WO2015067724A1 (en) 2013-11-06 2015-05-14 Chevron Oronite Technology B.V. Marine diesel cylinder lubricant oil compositions
JP6509239B2 (ja) 2013-11-06 2019-05-08 シェブロン・オロナイト・テクノロジー・ビー.ブイ. 船舶用ディーゼルシリンダー潤滑油組成物
FR3013357B1 (fr) 2013-11-18 2016-09-16 Total Marketing Services Procede de production de fluides hydrocarbures a basse teneur en aromatiques
US20150175924A1 (en) 2013-12-23 2015-06-25 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency
US20150175923A1 (en) 2013-12-23 2015-06-25 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency
US9506008B2 (en) 2013-12-23 2016-11-29 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency
US10190072B2 (en) 2013-12-23 2019-01-29 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency
US9885004B2 (en) 2013-12-23 2018-02-06 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency
WO2015099820A1 (en) 2013-12-23 2015-07-02 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency
CN105849240A (zh) 2013-12-24 2016-08-10 国际壳牌研究有限公司 润滑组合物
JP2014080622A (ja) * 2014-01-07 2014-05-08 Jx Nippon Oil & Energy Corp 潤滑油基油及びその製造方法並びに潤滑油組成物
JP6228849B2 (ja) * 2014-01-07 2017-11-08 Jxtgエネルギー株式会社 潤滑油組成物
JP2014062271A (ja) * 2014-01-07 2014-04-10 Jx Nippon Oil & Energy Corp 潤滑油基油およびその製造方法ならびに潤滑油組成物
EP3124505A4 (en) 2014-03-28 2017-12-06 Mitsui Chemicals, Inc. Ethylene/alpha-olefin copolymer and lubricating oil
US8968592B1 (en) 2014-04-10 2015-03-03 Soilworks, LLC Dust suppression composition and method of controlling dust
US9068106B1 (en) 2014-04-10 2015-06-30 Soilworks, LLC Dust suppression composition and method of controlling dust
US9896634B2 (en) 2014-05-08 2018-02-20 Exxonmobil Research And Engineering Company Method for preventing or reducing engine knock and pre-ignition
US20150322369A1 (en) 2014-05-09 2015-11-12 Exxonmobil Research And Engineering Company Method for preventing or reducing low speed pre-ignition
US20150322367A1 (en) 2014-05-09 2015-11-12 Exxonmobil Research And Engineering Company Method for preventing or reducing low speed pre-ignition
US20150322368A1 (en) 2014-05-09 2015-11-12 Exxonmobil Research And Engineering Company Method for preventing or reducing low speed pre-ignition
US10519394B2 (en) 2014-05-09 2019-12-31 Exxonmobil Research And Engineering Company Method for preventing or reducing low speed pre-ignition while maintaining or improving cleanliness
WO2015172846A1 (en) 2014-05-16 2015-11-19 Ab Nanol Technologies Oy Additive composition for lubricants
US9506009B2 (en) 2014-05-29 2016-11-29 Exxonmobil Research And Engineering Company Lubricating oil compositions with engine wear protection
CN106414686A (zh) 2014-06-19 2017-02-15 国际壳牌研究有限公司 润滑组合物
US10689593B2 (en) 2014-08-15 2020-06-23 Exxonmobil Research And Engineering Company Low viscosity lubricating oil compositions for turbomachines
WO2016032782A1 (en) 2014-08-27 2016-03-03 Shell Oil Company Methods for lubricating a diamond-like carbon coated surface, associated lubricating oil compositions and associated screening methods
CN106795449B (zh) 2014-09-10 2020-08-07 三井化学株式会社 润滑油组合物
US9944877B2 (en) 2014-09-17 2018-04-17 Exxonmobil Research And Engineering Company Composition and method for preventing or reducing engine knock and pre-ignition in high compression spark ignition engines
JP5805286B2 (ja) * 2014-09-22 2015-11-04 Jx日鉱日石エネルギー株式会社 潤滑油基油及び潤滑油組成物
WO2016073149A1 (en) 2014-11-03 2016-05-12 Exxonmobil Research And Engineering Company Low transition temperature mixtures or deep eutectic solvents and processes for preparation thereof
BR112017009463A2 (pt) 2014-11-04 2017-12-19 Shell Int Research composição lubrificante
WO2016075166A1 (en) 2014-11-12 2016-05-19 Shell Internationale Research Maatschappij B.V. Fuel composition
EP3234077B1 (en) 2014-12-17 2018-10-10 Shell International Research Maatschappij B.V. Lubricating oil composition
SG11201702860WA (en) 2014-12-24 2017-07-28 Exxonmobil Res & Eng Co Methods for determining condition and quality of petroleum products
SG11201702851YA (en) 2014-12-24 2017-07-28 Exxonmobil Res & Eng Co Methods for authentication and identification of petroleum products
US10781397B2 (en) 2014-12-30 2020-09-22 Exxonmobil Research And Engineering Company Lubricating oil compositions with engine wear protection
US10066184B2 (en) 2014-12-30 2018-09-04 Exxonmobil Research And Engineering Company Lubricating oil compositions containing encapsulated microscale particles
WO2016109382A1 (en) 2014-12-30 2016-07-07 Exxonmobil Research And Engineering Company Lubricating oil compositions with engine wear protection
EP3240879A1 (en) 2014-12-30 2017-11-08 ExxonMobil Research and Engineering Company Lubricating oil compositions with engine wear protection
EP3040404A1 (en) 2014-12-31 2016-07-06 Shell Internationale Research Maatschappij B.V. Process for preparing naphtha and middle distillate fractions
US9926509B2 (en) 2015-01-19 2018-03-27 Exxonmobil Research And Engineering Company Lubricating oil compositions with engine wear protection and solubility
US10752859B2 (en) 2015-02-06 2020-08-25 Shell Oil Company Grease composition
WO2016135036A1 (en) 2015-02-27 2016-09-01 Shell Internationale Research Maatschappij B.V. Use of a lubricating composition
WO2016156328A1 (en) 2015-03-31 2016-10-06 Shell Internationale Research Maatschappij B.V. Use of a lubricating composition comprising a hindered amine light stabilizer for improved piston cleanliness in an internal combustion engine
WO2016166135A1 (en) 2015-04-15 2016-10-20 Shell Internationale Research Maatschappij B.V. Method for detecting the presence of hydrocarbons derived from methane in a mixture
WO2016184842A1 (en) 2015-05-18 2016-11-24 Shell Internationale Research Maatschappij B.V. Lubricating composition
EP3095842A1 (en) 2015-05-20 2016-11-23 Total Marketing Services Biodegradable hydrocarbon fluids based on syngas
US10119093B2 (en) 2015-05-28 2018-11-06 Exxonmobil Research And Engineering Company Composition and method for preventing or reducing engine knock and pre-ignition in high compression spark ignition engines
US10119090B2 (en) 2015-07-07 2018-11-06 Exxonmobil Research And Engineering Company Composition and method for preventing or reducing engine knock and pre-ignition in high compression spark ignition engines
KR102403745B1 (ko) 2015-07-22 2022-05-31 셰브런 오로나이트 테크놀로지 비.브이. 선박 디젤 실린더 윤활유 조성물
CN107533317A (zh) * 2015-07-31 2018-01-02 惠普深蓝有限责任公司 电子照相印刷
US9434881B1 (en) 2015-08-25 2016-09-06 Soilworks, LLC Synthetic fluids as compaction aids
JP2016014150A (ja) * 2015-09-18 2016-01-28 Jx日鉱日石エネルギー株式会社 潤滑油基油及びその製造方法並びに潤滑油組成物
EP3353270B1 (en) 2015-09-22 2022-08-10 Shell Internationale Research Maatschappij B.V. Fuel compositions
WO2017093203A1 (en) 2015-11-30 2017-06-08 Shell Internationale Research Maatschappij B.V. Fuel composition
EP3394216A1 (en) 2015-12-23 2018-10-31 Shell International Research Maatschappij B.V. Process for preparing a base oil having a reduced cloud point
US9951290B2 (en) 2016-03-31 2018-04-24 Exxonmobil Research And Engineering Company Lubricant compositions
EP3455266B1 (en) 2016-05-13 2020-10-28 Evonik Operations GmbH Graft copolymers based on polyolefin backbone and methacrylate side chains
US20180037841A1 (en) 2016-08-03 2018-02-08 Exxonmobil Research And Engineering Company Lubricating engine oil for improved wear protection and fuel efficiency
WO2018027227A1 (en) 2016-08-05 2018-02-08 Rutgers, The State University Of New Jersey Thermocleavable friction modifiers and methods thereof
RU2749905C2 (ru) 2016-08-15 2021-06-18 Эвоник Оперейшнс Гмбх Содержащие функциональные группы полиалкил(мет)акрилаты, обладающие улучшенной деэмульгирующей способностью
SG11201901623TA (en) 2016-08-31 2019-03-28 Evonik Oil Additives Gmbh Comb polymers for improving noack evaporation loss of engine oil formulations
US20180100118A1 (en) 2016-10-07 2018-04-12 Exxonmobil Research And Engineering Company Method for controlling electrical conductivity of lubricating oils in electric vehicle powertrains
US20180100117A1 (en) 2016-10-07 2018-04-12 Exxonmobil Research And Engineering Company Lubricating oil compositions for electric vehicle powertrains
US20180100120A1 (en) 2016-10-07 2018-04-12 Exxonmobil Research And Engineering Company Method for preventing or minimizing electrostatic discharge and dielectric breakdown in electric vehicle powertrains
EP3315586A1 (en) 2016-10-27 2018-05-02 Total Marketing Services Use of biodegradable hydrocarbon fluids as heat-transfer media
EP3315590A1 (en) 2016-10-27 2018-05-02 Total Marketing Services Use of hydrocarbon fluids in electric vehicles
EP3315592A1 (en) 2016-10-27 2018-05-02 Total Marketing Services Use of biodegradable hydrocarbon fluids as drilling fluids
EP3336162A1 (en) 2016-12-16 2018-06-20 Shell International Research Maatschappij B.V. Lubricating composition
EP3555243A1 (en) 2016-12-19 2019-10-23 ExxonMobil Research and Engineering Company Composition and method for preventing or reducing engine knock and pre-ignition in high compression spark ignition engines
EP3555245B1 (en) 2016-12-19 2020-10-28 Evonik Operations GmbH Lubricating oil composition comprising dispersant comb polymers
CN110088239B (zh) 2016-12-23 2022-04-05 国际壳牌研究有限公司 费-托原料衍生的无混浊基础油馏分
WO2018125956A1 (en) 2016-12-30 2018-07-05 Exxonmobil Research And Engineering Company Low viscosity lubricating oil compositions for turbomachines
US10647936B2 (en) 2016-12-30 2020-05-12 Exxonmobil Research And Engineering Company Method for improving lubricant antifoaming performance and filterability
EP3342842A1 (en) 2017-01-03 2018-07-04 Total Marketing Services Dewaxing and dearomating process of hydrocarbon in a slurry reactor
KR102208021B1 (ko) 2017-01-16 2021-01-26 미쓰이 가가쿠 가부시키가이샤 자동차 기어용 윤활유 조성물
WO2018144166A1 (en) 2017-02-01 2018-08-09 Exxonmobil Research And Engineering Company Lubricating engine oil and method for improving engine fuel efficiency
WO2018144301A1 (en) 2017-02-06 2018-08-09 Exxonmobil Chemical Patents Inc. Low transition temperature mixtures and lubricating oils containing the same
US10793801B2 (en) 2017-02-06 2020-10-06 Exxonmobil Chemical Patents Inc. Low transition temperature mixtures and lubricating oils containing the same
SG11201906384UA (en) 2017-02-21 2019-09-27 Exxonmobil Res & Eng Co Lubricating oil compositions and methods of use thereof
US10738258B2 (en) 2017-03-24 2020-08-11 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency and energy efficiency
US10876062B2 (en) 2017-03-24 2020-12-29 Exxonmobil Chemical Patents Inc. Cold cranking simulator viscosity boosting base stocks and lubricating oil formulations containing the same
US10858610B2 (en) 2017-03-24 2020-12-08 Exxonmobil Chemical Patents Inc. Cold cranking simulator viscosity boosting base stocks and lubricating oil formulations containing the same
US10808196B2 (en) 2017-03-28 2020-10-20 Exxonmobil Chemical Patents Inc. Cold cranking simulator viscosity reducing base stocks and lubricating oil formulations containing the same
US20180305633A1 (en) 2017-04-19 2018-10-25 Shell Oil Company Lubricating compositions comprising a volatility reducing additive
EP3615641B1 (en) 2017-04-27 2022-04-13 Shell Internationale Research Maatschappij B.V. Use of a dispersant in a lubricating composition
US10443008B2 (en) 2017-06-22 2019-10-15 Exxonmobil Research And Engineering Company Marine lubricating oils and method of making and use thereof
WO2019014092A1 (en) 2017-07-13 2019-01-17 Exxonmobil Research And Engineering Company CONTINUOUS PROCESS FOR FAT PRODUCTION
RU2020105739A (ru) 2017-07-14 2021-08-16 Эвоник Оперейшнс Гмбх Гребенчатые полимеры, содержащие имидные функциональные группы
EP3652280A4 (en) 2017-07-14 2021-07-07 Novvi LLC BASE OILS AND THEIR PREPARATION PROCESSES
WO2019018145A1 (en) 2017-07-21 2019-01-24 Exxonmobil Research And Engineering Company METHOD FOR IMPROVING DEPOSITION REGULATION AND CLEANING PERFORMANCE IN A LUBRICATED ENGINE WITH LUBRICATING OIL
WO2019040580A1 (en) 2017-08-25 2019-02-28 Exxonmobil Research And Engineering Company ASHless engine lubricants for high temperature applications
US20190062667A1 (en) 2017-08-25 2019-02-28 Exxonmobil Research And Engineering Company Ashless engine lubricants for high temperature applications
ES2847382T3 (es) 2017-09-04 2021-08-03 Evonik Operations Gmbh Nuevos mejoradores del índice de viscosidad con distribuciones de peso molecular definidas
US20190085256A1 (en) 2017-09-18 2019-03-21 Exxonmobil Research And Engineering Company Hydraulic oil compositions with improved hydrolytic and thermo-oxidative stability
US20190093040A1 (en) 2017-09-22 2019-03-28 Exxonmobil Research And Engineering Company Lubricating oil compositions with viscosity and deposit control
US20190127658A1 (en) 2017-10-30 2019-05-02 Exxonmobil Research And Engineering Company Lubricating oil compositions with engine wear protection
US20190136147A1 (en) 2017-11-03 2019-05-09 Exxonmobil Research And Engineering Company Lubricant compositions with improved performance and methods of preparing and using the same
WO2019094019A1 (en) 2017-11-09 2019-05-16 Exxonmobil Research And Engineering Company Method for preventing or reducing low speed pre-ignition while maintaining or improving cleanliness
WO2019103808A1 (en) 2017-11-22 2019-05-31 Exxonmobil Research And Engineering Company Lubricating oil compositions with oxidative stability in diesel engines
WO2019112711A1 (en) 2017-12-04 2019-06-13 Exxonmobil Research And Enginerring Company Method for preventing or reducing low speed pre-ignition
ES2801327T3 (es) 2017-12-13 2021-01-11 Evonik Operations Gmbh Mejorador del índice de viscosidad con resistencia al cizallamiento y solubilidad después del cizallamiento mejoradas
US20190185782A1 (en) 2017-12-15 2019-06-20 Exxonmobil Research And Engineering Company Lubricating oil compositions containing microencapsulated additives
US20190203137A1 (en) 2017-12-28 2019-07-04 Exxonmobil Research And Engineering Company Low traction/energy efficient liquid crystal base stocks
US10774286B2 (en) 2017-12-29 2020-09-15 Exxonmobil Research And Engineering Company Grease compositions with improved performance and methods of preparing and using the same
US20190203144A1 (en) 2017-12-29 2019-07-04 Exxonmobil Research And Engineering Company Lubrication of oxygenated diamond-like carbon surfaces
US20190203142A1 (en) 2017-12-29 2019-07-04 Exxonmobil Research And Engineering Company Lubricating oil compositions with wear and sludge control
WO2019145287A1 (en) 2018-01-23 2019-08-01 Evonik Oil Additives Gmbh Polymeric-inorganic nanoparticle compositions, manufacturing process thereof and their use as lubricant additives
JP7379343B2 (ja) 2018-01-23 2023-11-14 エボニック オペレーションズ ゲーエムベーハー 高分子無機ナノ粒子組成物、それらの製造方法、及び潤滑剤としてのそれらの使用
US11180712B2 (en) 2018-01-23 2021-11-23 Evonik Operations Gmbh Polymeric-inorganic nanoparticle compositions, manufacturing process thereof and their use as lubricant additives
CN112004918B (zh) 2018-04-26 2023-10-03 国际壳牌研究有限公司 润滑剂组合物及其作为管道涂料的用途
US11041133B2 (en) 2018-05-01 2021-06-22 Chevron U.S.A. Inc. Hydrocarbon mixture exhibiting unique branching structure
US20190345407A1 (en) 2018-05-11 2019-11-14 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency
US20190376000A1 (en) 2018-06-11 2019-12-12 Exxonmobil Research And Engineering Company Non-zinc-based antiwear compositions, hydraulic oil compositions, and methods of using the same
US20190382680A1 (en) 2018-06-18 2019-12-19 Exxonmobil Research And Engineering Company Formulation approach to extend the high temperature performance of lithium complex greases
WO2020007945A1 (en) 2018-07-05 2020-01-09 Shell Internationale Research Maatschappij B.V. Lubricating composition
EP3820974A1 (en) 2018-07-13 2021-05-19 Shell Internationale Research Maatschappij B.V. Lubricating composition
US20200024538A1 (en) 2018-07-23 2020-01-23 Exxonmobil Research And Engineering Company Lubricating oil compositions with oxidative stability in diesel engines using biodiesel fuel
WO2020023437A1 (en) 2018-07-24 2020-01-30 Exxonmobil Research And Engineering Company Lubricating oil compositions with engine corrosion protection
WO2020060590A1 (en) 2018-09-20 2020-03-26 Novvi Llc Process for preparing hydrocarbon mixture exhibiting unique branching structure
WO2020064619A1 (en) 2018-09-24 2020-04-02 Evonik Operations Gmbh Use of trialkoxysilane-based compounds for lubricants
WO2020068439A1 (en) 2018-09-27 2020-04-02 Exxonmobil Research And Engineering Company Low viscosity lubricating oils with improved oxidative stability and traction performance
US20200140775A1 (en) 2018-11-05 2020-05-07 Exxonmobil Research And Engineering Company Lubricating oil compositions having improved cleanliness and wear performance
JP7459087B2 (ja) 2018-11-13 2024-04-01 エボニック オペレーションズ ゲーエムベーハー 基油または潤滑剤添加剤として使用するためのランダムコポリマー
WO2020112338A1 (en) 2018-11-28 2020-06-04 Exxonmobil Research And Engineering Company Lubricating oil compositions with improved deposit resistance and methods thereof
US20200181525A1 (en) 2018-12-10 2020-06-11 Exxonmobil Research And Engineering Company Method for improving oxidation and deposit resistance of lubricating oils
WO2020131515A2 (en) 2018-12-19 2020-06-25 Exxonmobil Research And Engineering Company Lubricant compositions with improved wear control
WO2020132166A1 (en) 2018-12-19 2020-06-25 Exxonmobil Research And Engineering Company Lubricating oil compositions with antioxidant formation and dissipation control
EP3898907A1 (en) 2018-12-19 2021-10-27 Evonik Operations GmbH Use of associative triblockcopolymers as viscosity index improvers
US20200199481A1 (en) 2018-12-19 2020-06-25 Exxonmobil Research And Engineering Company Grease compositions having calcium sulfonate and polyurea thickeners
WO2020131439A1 (en) 2018-12-19 2020-06-25 Exxonmobil Research And Engineering Company Grease compositions having polyurea thickeners made with isocyanate terminated prepolymers
WO2020131310A1 (en) 2018-12-19 2020-06-25 Exxonmobil Research And Engineering Company Method for improving high temperature antifoaming performance of a lubricating oil
WO2020131441A1 (en) 2018-12-19 2020-06-25 Exxonmobil Research And Engineering Company Grease compositions having improved performance
WO2020126496A1 (en) 2018-12-19 2020-06-25 Evonik Operations Gmbh Viscosity index improvers based on block copolymers
US20200199483A1 (en) 2018-12-19 2020-06-25 Exxonmobil Research And Engineering Company Lubricating oil compositions with viscosity control
US11629308B2 (en) 2019-02-28 2023-04-18 ExxonMobil Technology and Engineering Company Low viscosity gear oil compositions for electric and hybrid vehicles
BR102020004711A2 (pt) 2019-03-11 2021-01-19 Evonik Operations Gmbh copolímeros com base em polialquil(met)acrilato, composição aditiva, método de manutenção da kv100 em uma dada hths150, composição de óleo lubrificante
EP3942003B1 (en) 2019-03-20 2022-12-14 Evonik Operations GmbH Polyalkyl(meth)acrylates for improving fuel economy, dispersancy and deposits performance
EP3942004A1 (en) 2019-03-20 2022-01-26 Basf Se Lubricant composition
WO2020194551A1 (ja) 2019-03-26 2020-10-01 三井化学株式会社 圧縮機油用潤滑油組成物およびその製造方法
KR20210139400A (ko) 2019-03-26 2021-11-22 미쓰이 가가쿠 가부시키가이샤 자동차 기어용 윤활유 조성물 및 그의 제조 방법
KR20210139404A (ko) 2019-03-26 2021-11-22 미쓰이 가가쿠 가부시키가이샤 내연 기관용 윤활유 조성물 및 그의 제조 방법
WO2020194550A1 (ja) 2019-03-26 2020-10-01 三井化学株式会社 グリース組成物およびその製造方法
KR20210139403A (ko) 2019-03-26 2021-11-22 미쓰이 가가쿠 가부시키가이샤 공업 기어용 윤활유 조성물 및 그의 제조 방법
CN113574150A (zh) 2019-03-26 2021-10-29 三井化学株式会社 汽车变速箱油用润滑油组合物及其制造方法
US20220186134A1 (en) 2019-03-26 2022-06-16 Mitsui Chemicals, Inc. Lubricating oil composition for internal combustion engines and method for producing the same
KR20210138717A (ko) 2019-03-26 2021-11-19 미쓰이 가가쿠 가부시키가이샤 작동유용 윤활유 조성물 및 그의 제조 방법
WO2020257374A1 (en) 2019-06-19 2020-12-24 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
WO2020257377A1 (en) 2019-06-19 2020-12-24 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
WO2020257370A1 (en) 2019-06-19 2020-12-24 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
WO2020257376A1 (en) 2019-06-19 2020-12-24 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
WO2020257378A1 (en) 2019-06-19 2020-12-24 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
WO2020257373A1 (en) 2019-06-19 2020-12-24 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
WO2020257379A1 (en) 2019-06-19 2020-12-24 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
US10712105B1 (en) 2019-06-19 2020-07-14 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
WO2020257371A1 (en) 2019-06-19 2020-12-24 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
WO2020257375A1 (en) 2019-06-19 2020-12-24 Exxonmobil Research And Engineering Company Heat transfer fluids and methods of use
WO2020264154A1 (en) 2019-06-27 2020-12-30 Exxonmobil Chemical Patents Inc. Heat transfer fluids comprising methyl paraffins derived from linear alpha olefin dimers and use thereof
WO2020264534A2 (en) 2019-06-27 2020-12-30 Exxonmobil Research And Engineering Company Method for reducing solubilized copper levels in wind turbine gear oils
EP3778839B1 (en) 2019-08-13 2021-08-04 Evonik Operations GmbH Viscosity index improver with improved shear-resistance
KR20220047299A (ko) 2019-08-14 2022-04-15 셰브런 유.에스.에이.인크. 재생가능 윤활유 조성물을 이용한 엔진 성능 개선 방법
CN112577987B (zh) * 2019-09-27 2024-04-02 中国石油化工股份有限公司 润滑油基础油的分子结构表征方法及润滑油基础油的优选方法
JP7408344B2 (ja) 2019-10-23 2024-01-05 シェルルブリカンツジャパン株式会社 潤滑油組成物
EP3816261A1 (en) 2019-10-31 2021-05-05 ExxonMobil Chemical Patents Inc. Heat transfer fluids comprising methyl paraffins derived from linear alpha olefin dimers and use thereof
EP4069805A1 (en) 2019-12-06 2022-10-12 ExxonMobil Chemical Patents Inc. Methylparaffins obtained through isomerization of linear olefins and use thereof in thermal management
US11976251B2 (en) 2019-12-18 2024-05-07 ExxonMobil Technology and Engineering Company Method for controlling lubrication of a rotary shaft seal
WO2021133583A1 (en) 2019-12-23 2021-07-01 Exxonmobil Research And Engineering Company Method and apparatus for the continuous production of polyurea grease
CN115605374A (zh) 2020-03-27 2023-01-13 埃克森美孚技术与工程公司(Us) 电气系统用传热流体的状况监测
JP2023520456A (ja) 2020-03-30 2023-05-17 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ 熱管理システム
EP4127116B1 (en) 2020-03-30 2024-04-10 Shell Internationale Research Maatschappij B.V. Managing thermal runaway
KR20230010201A (ko) 2020-04-10 2023-01-18 셰브런 오로나이트 컴퍼니 엘엘씨 바이오 기반 기유를 포함하는 윤활유 조성물
CA3172828A1 (en) 2020-04-30 2021-11-04 Evonik Operations Gmbh Process for the preparation of dispersant polyalkyl (meth)acrylate polymers
EP4143280B1 (en) 2020-04-30 2023-11-29 Evonik Operations GmbH Process for the preparation of polyalkyl (meth)acrylate polymers
PL3907269T3 (pl) 2020-05-05 2023-09-11 Evonik Operations Gmbh Uwodornione polidienowe kopolimery liniowe jako surowiec bazowy lub dodatki smarowe do kompozycji smarowych
EP4149979A1 (en) 2020-05-13 2023-03-22 ExxonMobil Chemical Patents Inc. Alkylated aromatic compounds for high viscosity applications
JP2023532930A (ja) 2020-07-03 2023-08-01 エボニック オペレーションズ ゲーエムベーハー 親油性ポリエステルをベースとする高粘度ベースフルード
JP2023532931A (ja) 2020-07-03 2023-08-01 エボニック オペレーションズ ゲーエムベーハー 長鎖エポキシドから製造された親油性ポリエステルをベースとする高粘度ベースフルード
CN116209738A (zh) 2020-09-01 2023-06-02 国际壳牌研究有限公司 发动机油组合物
US20240034855A1 (en) 2020-09-18 2024-02-01 Evonik Operations Gmbh Compositions comprising a graphene-based material as lubricant additives
US20230365850A1 (en) 2020-10-08 2023-11-16 Exxonmobil Chemical Patents Inc. Heat Transfer Fluids Comprising Isomeric Branched Paraffin Dimers Derived From Linear Alpha Olefins And Use Thereof
US20220127545A1 (en) 2020-10-28 2022-04-28 Chevron U.S.A. Inc. Lubricating oil composition with renewable base oil
JP2023550390A (ja) 2020-11-18 2023-12-01 エボニック オペレーションズ ゲーエムベーハー 高粘度指数を有する圧縮機油
CA3202022A1 (en) 2020-12-18 2022-06-23 Evonik Operations Gmbh Process for preparing homo- and copolymers of alkyl (meth)acrylates with low residual monomer content
US11760952B2 (en) 2021-01-12 2023-09-19 Ingevity South Carolina, Llc Lubricant thickener systems from modified tall oil fatty acids, lubricating compositions, and associated methods
EP4060009B1 (en) 2021-03-19 2023-05-03 Evonik Operations GmbH Viscosity index improver and lubricant compositions thereof
EP4334277A1 (en) 2021-05-07 2024-03-13 ExxonMobil Chemical Patents Inc. Functionalization of lightly branched olefin oligomers
WO2022233876A1 (en) 2021-05-07 2022-11-10 Exxonmobil Chemical Patents Inc. Enhanced production of lightly branched olefin oligomers through olefin oligomerization
WO2022233879A1 (en) 2021-05-07 2022-11-10 Exxonmobil Chemical Patents Inc. Functionalization of lightly branched olefin oligomers
WO2022233875A1 (en) 2021-05-07 2022-11-10 Exxonmobil Chemical Patents Inc. Enhanced production of lightly branched olefin oligomers through olefin oligomerization
ES2955513T3 (es) 2021-07-16 2023-12-04 Evonik Operations Gmbh Composición de aditivo de lubricante que contiene poli(metacrilatos de alquilo)
JPWO2023002947A1 (cs) 2021-07-20 2023-01-26
US20230092322A1 (en) 2021-09-09 2023-03-23 Chevron U.S.A. Inc. Renewable Based E-Drive Fluids
WO2023099631A1 (en) 2021-12-03 2023-06-08 Evonik Operations Gmbh Boronic ester modified polyalkyl(meth)acrylate polymers
WO2023099630A1 (en) 2021-12-03 2023-06-08 Evonik Operations Gmbh Boronic ester modified polyalkyl(meth)acrylate polymers
WO2023099634A1 (en) 2021-12-03 2023-06-08 Totalenergies Onetech Lubricant compositions
WO2023099635A1 (en) 2021-12-03 2023-06-08 Totalenergies Onetech Lubricant compositions
WO2023099637A1 (en) 2021-12-03 2023-06-08 Totalenergies Onetech Lubricant compositions
WO2023099632A1 (en) 2021-12-03 2023-06-08 Evonik Operations Gmbh Boronic ester modified polyalkyl(meth)acrylate polymers
WO2023222677A1 (en) 2022-05-19 2023-11-23 Shell Internationale Research Maatschappij B.V. Thermal management system
WO2024033156A1 (en) 2022-08-08 2024-02-15 Evonik Operations Gmbh Polyalkyl (meth)acrylate-based polymers with improved low temperature properties
EP4321602A1 (en) 2022-08-10 2024-02-14 Evonik Operations GmbH Sulfur free poly alkyl(meth)acrylate copolymers as viscosity index improvers in lubricants
WO2024120926A1 (en) 2022-12-07 2024-06-13 Evonik Operations Gmbh Sulfur-free dispersant polymers for industrial applications

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4500417A (en) * 1982-12-28 1985-02-19 Mobil Oil Corporation Conversion of Fischer-Tropsch products
JPS61106524A (ja) * 1984-10-29 1986-05-24 Kuraray Co Ltd パ−ヒドロリコペンの製造方法
US4919788A (en) 1984-12-21 1990-04-24 Mobil Oil Corporation Lubricant production process
CA1263498A (en) * 1985-03-26 1989-11-28 Mitsui Chemicals, Incorporated Liquid ethylene-type random copolymer, process for production thereof, and use thereof
AU603344B2 (en) * 1985-11-01 1990-11-15 Mobil Oil Corporation Two stage lubricant dewaxing process
US4827064A (en) * 1986-12-24 1989-05-02 Mobil Oil Corporation High viscosity index synthetic lubricant compositions
NO885605L (no) * 1987-12-18 1989-06-19 Exxon Research Engineering Co Fremgangsmaate for fremstilling av smoereolje.
US4943672A (en) * 1987-12-18 1990-07-24 Exxon Research And Engineering Company Process for the hydroisomerization of Fischer-Tropsch wax to produce lubricating oil (OP-3403)
US5059299A (en) * 1987-12-18 1991-10-22 Exxon Research And Engineering Company Method for isomerizing wax to lube base oils
FR2626005A1 (fr) * 1988-01-14 1989-07-21 Shell Int Research Procede de preparation d'une huile lubrifiante de base
ES2059829T3 (es) * 1988-06-23 1994-11-16 Mobil Oil Corp Oligomeros olefinicos que tienen propiedades lubricantes y procedimiento para preparar tales oligomeros.
US5015361A (en) * 1989-01-23 1991-05-14 Mobil Oil Corp. Catalytic dewaxing process employing surface acidity deactivated zeolite catalysts
JP2907543B2 (ja) * 1989-02-17 1999-06-21 シェブロン リサーチ アンド テクノロジー カンパニー シリコアルミノフオスフェイト・モレキュラーシープ触媒を用いるワックス状潤滑油および石油ワックスの異性化
US5246566A (en) * 1989-02-17 1993-09-21 Chevron Research And Technology Company Wax isomerization using catalyst of specific pore geometry
US5012020A (en) * 1989-05-01 1991-04-30 Mobil Oil Corporation Novel VI enhancing compositions and Newtonian lube blends
US5358628A (en) * 1990-07-05 1994-10-25 Mobil Oil Corporation Production of high viscosity index lubricants
US5282958A (en) * 1990-07-20 1994-02-01 Chevron Research And Technology Company Use of modified 5-7 a pore molecular sieves for isomerization of hydrocarbons
US5146022A (en) * 1990-08-23 1992-09-08 Mobil Oil Corporation High VI synthetic lubricants from cracked slack wax
US5136118A (en) * 1990-08-23 1992-08-04 Mobil Oil Corporation High VI synthetic lubricants from cracked refined wax
US5107054A (en) * 1990-08-23 1992-04-21 Mobil Oil Corporation Zeolite MCM-22 based catalyst for paraffin isomerization
FR2676749B1 (fr) * 1991-05-21 1993-08-20 Inst Francais Du Petrole Procede d'hydroisomerisation de paraffines issues du procede fischer-tropsch a l'aide de catalyseurs a base de zeolithe h-y.
US5210347A (en) * 1991-09-23 1993-05-11 Mobil Oil Corporation Process for the production of high cetane value clean fuels
JPH0689426A (ja) * 1992-07-22 1994-03-29 Toshiba Corp 磁気記録媒体
US5362378A (en) * 1992-12-17 1994-11-08 Mobil Oil Corporation Conversion of Fischer-Tropsch heavy end products with platinum/boron-zeolite beta catalyst having a low alpha value
EP0607553B1 (de) * 1993-01-09 1997-06-04 Hüls Aktiengesellschaft Verwendung von Polymethylalkanen als biologisch abbaubare Grundöle in Schmierstoffen und funktionellen Flüssigkeiten
US5643440A (en) 1993-02-12 1997-07-01 Mobil Oil Corporation Production of high viscosity index lubricants
US5613118A (en) * 1994-06-20 1997-03-18 International Business Machines Corporation Profile-based preprocessor for optimizing programs
CA2198213A1 (en) 1994-09-08 1996-03-14 Mobil Oil Corporation Wax hydroisomerization process
KR100289923B1 (ko) * 1994-10-27 2001-05-15 데니스 피. 산티니 왁스의 수첨 이성화 방법
JPH10508900A (ja) * 1995-09-06 1998-09-02 アンスティテュ フランセ デュ ペトロール モレキュラーシーブをベースとする触媒を用いる直鎖状および/または僅かに分枝状の長パラフィンの選択的水素化異性化方法
EP0776959B1 (en) * 1995-11-28 2004-10-06 Shell Internationale Researchmaatschappij B.V. Process for producing lubricating base oils
EP1389635A1 (en) * 1995-12-08 2004-02-18 ExxonMobil Research and Engineering Company Biodegradable high performance hydrocarbon base oils
US5833839A (en) * 1995-12-08 1998-11-10 Exxon Research And Engineering Company High purity paraffinic solvent compositions, and process for their manufacture
US6008164A (en) * 1998-08-04 1999-12-28 Exxon Research And Engineering Company Lubricant base oil having improved oxidative stability

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ303313B6 (cs) * 1999-04-29 2012-08-01 Institut Français du Pétrole Zpusob výroby oleju z uhlovodíkové suroviny

Also Published As

Publication number Publication date
PL340097A1 (en) 2001-01-15
AU739549B2 (en) 2001-10-18
MY120553A (en) 2005-11-30
HRP20000259A2 (en) 2000-12-31
IL135740A (en) 2003-03-12
NO20002010D0 (no) 2000-04-17
YU22200A (sh) 2002-09-19
PE111499A1 (es) 1999-11-09
JP2001520302A (ja) 2001-10-30
IS5466A (is) 2000-04-25
ZA989526B (en) 2000-04-19
NO20002010L (no) 2000-06-14
CZ299839B6 (cs) 2008-12-10
SK286575B6 (sk) 2009-01-07
CN1138848C (zh) 2004-02-18
AR013698A1 (es) 2001-01-10
CN1279708A (zh) 2001-01-10
BR9813120A (pt) 2000-08-15
AU1088699A (en) 1999-05-10
WO1999020720A1 (en) 1999-04-29
EP1029029A4 (en) 2001-06-20
CA2306886C (en) 2005-04-26
HUP0100005A3 (en) 2001-07-30
UA71557C2 (uk) 2004-12-15
US6090989A (en) 2000-07-18
EP1029029A1 (en) 2000-08-23
CA2306886A1 (en) 1999-04-29
SI20333A (sl) 2001-02-28
RO120713B1 (ro) 2006-06-30
RS50382B (sr) 2009-12-31
ID25490A (id) 2000-10-05
BG64626B1 (bg) 2005-09-30
KR20010031284A (ko) 2001-04-16
PL190129B1 (pl) 2005-11-30
TR200001084T2 (tr) 2000-09-21
EP1029029B1 (en) 2013-06-26
SK5802000A3 (en) 2001-06-11
RU2198203C2 (ru) 2003-02-10
BR9813120B1 (pt) 2009-12-01
BG104433A (en) 2001-01-31
NZ504064A (en) 2002-12-20
KR100511581B1 (ko) 2005-09-02
HUP0100005A2 (hu) 2001-05-28
HK1032794A1 (en) 2001-08-03
IL135740A0 (en) 2001-05-20

Similar Documents

Publication Publication Date Title
CZ20001405A3 (en) Composition of isoparaffinic lubricating starting substance
CN1726272B (zh) 低粘度费-托合成基础油与传统基础油的调合以生产高质量的润滑基础油
AU769075B2 (en) Novel hydrocarbon base oil for lubricants with very high viscosity index
AU2006242580B2 (en) Medium-speed diesel engine oil
US20050098476A1 (en) Process for improving the lubricating properties of base oils using a Fischer-Tropsch derived bottoms
JP2003517495A (ja) 改良された酸化安定性を有する潤滑剤基油
KR20090074269A (ko) 상이한 최종 왁스 공정 경로에 의해 수득된 기재 스톡의 혼합물로부터 제조된 0w 및 5w 저온 성능 스펙을 만족하는 제형화된 윤활제
RU2658914C2 (ru) Композиции смазочного масла, содержащие тяжелое базовое масло, полученное в синтезе фишера-тропша, и алкилированное ароматическое базовое масло
US8480879B2 (en) Process for improving lubricating qualities of lower quality base oil
US11352580B2 (en) Mineral base oil having high viscosity index and improved volatility and method of manufacturing same
EP1558711A1 (en) Heavy hydrocarbon composition with utility as a heavy lubricant base stock
CN101889070A (zh) 基础油配制剂
MXPA00003794A (en) Isoparaffinic lube basestock compositions
US20230132628A1 (en) Hydrocarbon compositions useful as lubricants for improved oxidation stability
CA2658630A1 (en) Improving lubricant air release rates
JP2000144166A (ja) 内燃機関用潤滑油組成物
JP2013014787A (ja) 潤滑油基油

Legal Events

Date Code Title Description
PD00 Pending as of 2000-06-30 in czech republic
MM4A Patent lapsed due to non-payment of fee

Effective date: 20111015