CN1155107C - 具有自对准局域深扩散发射极的太阳能电池及其制造方法 - Google Patents

具有自对准局域深扩散发射极的太阳能电池及其制造方法 Download PDF

Info

Publication number
CN1155107C
CN1155107C CNB96197446XA CN96197446A CN1155107C CN 1155107 C CN1155107 C CN 1155107C CN B96197446X A CNB96197446X A CN B96197446XA CN 96197446 A CN96197446 A CN 96197446A CN 1155107 C CN1155107 C CN 1155107C
Authority
CN
China
Prior art keywords
solar cell
layer
emitter
aluminium
impurity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB96197446XA
Other languages
English (en)
Other versions
CN1198841A (zh
Inventor
贾拉尔·萨拉米
ϣ
艾基奥·希巴塔
��L����Ү
丹尼尔·L·迈耶
��L�����濨
埃德加·L·科奇卡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suniwei Co Ltd
Original Assignee
Ebara Solar Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Solar Inc filed Critical Ebara Solar Inc
Publication of CN1198841A publication Critical patent/CN1198841A/zh
Application granted granted Critical
Publication of CN1155107C publication Critical patent/CN1155107C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

太阳能电池(10),具有自对准金属电极(14)和下面的相对深的发射极区(21)以及在不被电极覆盖的表面下的相对浅的发射极区(22),该太阳能电池在半导体衬底(12)中以下述方法形成:分别在硅半导体衬底(12)的前后表面上形成相对浅的p+和n+扩散区,以所希望的电极图形将铝丝网印刷到衬底的正面,热处理所制造的太阳能电池以形成在电极图形下的相对深的p+型发射极区(21),同时在衬底表面未覆盖区上生长氧化物钝化层(18),对未被电极所覆盖区域的正面施加抗反射涂层(19),以及在太阳能电池的前后表面的电极上丝网印刷银(20)。

Description

具有自对准局域深扩散发射极的太阳能电池及其制造方法
本发明涉及用于将太阳能转换为电能的太阳能电池领域。本发明尤其涉及具有前后电极的太阳能电池。
本申请要求基于1995年10月5日申请的序列号为60/004833的临时申请的优先权,名称为自对准局部深扩散发射极(SALDE)太阳能电池的结构和制造方法。
由使用将太阳能转变为电能的光电效应的半导体器件构成的太阳能电池长期已被熟知。典型的太阳能电池包括在衬底的一个或更多表面上提供有金属电极的半导体衬底和在表面与衬底电连接的电极。绝大多数太阳能电池设计为在半导体衬底内为响应太阳光的入射而将半导体衬底体内产生的电子和空穴分离的pn结。金属电极的特性或作为用于收集空穴的p型电极或作为用于收集电子的n型电极。在单面太阳能电池中,两种类型的电极都位于衬底的单个主表面上。在双面太阳能电池中一种类型的电极位于衬底的一个主表面上同时另一种类型的电极位于衬底的另一个主表面上。公共双面电池结构在电池的背面上提供单个的公共电极,在电池的正面上提供多个电极。该多个电极由基本上通过汇流条欧姆互连的多个金属条制成。用于正面电极的一般材料为银,通过丝网印刷工艺涂敷,该材料也可以为钛、钯和银的连续层,用蒸铝工艺涂敷。少数情况下,用铝作为正面电极材料,并且铝与硅合金。形成铝条的已知工艺包括使用图形化掩模将铝蒸至电池表面上,将液态铝施加于电池表面并将铝和玻璃料的混合物以条形丝网印刷到电池表面。该最后一步工艺(丝网印刷)尽管方便,但有在电极内引入高电阻的缺陷,因为玻璃料是优良的电绝缘体。当玻璃料在衬底材料(一般为硅)和铝合金接触电极之间的界面处积累时该问题尤为严重。形成电极后玻璃料的实际定位依赖于所使用的工艺,该工艺一般需要满足温度一时间之间的关系以获得有效的合金而不会过度将玻璃料聚集于界面处。这种需要增加了电极形成工艺的复杂性,是不期望的。通常使用某种类型的热氧化物,例如硅氧化物中的一种,将电池上金属条之间的非接触表面钝化。
电子和空穴可以在半导体衬底的照射表面或在材料体内部复合。任何这种电子和空穴的复合都会导致太阳能电池转换效率的降低,因此是极不期望的。半导体衬底照射表面的复合既可以在金属-电极接触区中发生,也可以在不被金属电极所覆盖的区域中发生。
对减少照射半导体表面处电子空穴复合的发生已经进行了仔细的研究。对于金属接触区域,金属电极下p-n结的发射极杂质区域最好为1×1019cm-3~1×1021cm-3,但杂质区域为1×1019cm-3~5×1021cm-3时器件即可工作(此处称为至少中度掺杂)并且结在衬底内部较深(如≥2μm)。相反,对于钝化表面下的金属电极间的非接触区域,p-n结的发射极部分的掺杂浓度应不超过约5×1018cm-3(称为轻掺杂)并且结在衬底内部应当相对较浅(例如约为0.2微米)。不幸的是,这两种技术在太阳能电池的照射表面附近区对掺杂的要求相互抵触。虽然可以实现这两种相反的要求,但所需的工艺昂贵并且复杂,将会导致每一个所制造的太阳能电池相当高的成本和可接受的太阳能电池有效工作时较低的成品率。例如,对高效太阳能电池,为解决这两种复合技术的抵触要求,提出了在电极接触区域之下提供第二杂质区。虽然这种方法是有效的,但它需要两步光刻工艺,用于发射极区的两个分离的扩散条件,以及为了将电极栅格图形和深扩散结自对准而增加的额外的光刻步骤,以上这些都增加了制造工艺中的实际成本。因此,这一解决方法对许多应用来说不符合制造硅太阳能电池的低成本要求。
除了电子空穴复合现象所带来的这些问题以外,另一个影响掺杂工艺的问题包括硅表面钝化,特别是,由于所观察表面的复合速度随着表面掺杂浓度的增加而增加,因此有效的硅表面钝化需要轻掺杂发射区。为提供有效减少了电子空穴复合的低成本太阳能电池,迄今为止所作出的努力没有获得成功。
本发明包括减少了电子空穴复合现象的太阳能电池,具有相对较高的效率,包括较低的电极电阻,可以用简化的制造工艺以低成本来制作,因而具有相当高的成品率。
以装置的观点,本发明包括一种自对准局域深扩散发射极太阳能电池,包括:具有正面和背面的半导体衬底;以小于5×1018cm-3的掺杂浓度、小于0.2μm的深度形成于所述正面和背面之一中的p+型的多个第一发射极区;在形成有所述第一发射极区的半导体衬底表面上形成的比多个第一发射极区更深具有比多个第一发射极区更高的杂质浓度的p+型的多个第二发射极区,所述多个第一和第二发射极区交替形成;在所述正面和背面的另一个中形成n+型的杂质区;形成于所述杂质区之上的欧姆接触;以及包含在多个第二发射极区上形成的铝的第一图形化欧姆电极层。半导体衬底最好由n型掺杂硅构成,多个第一发射极区最好用p+型杂质形成,例如硼。多个第二发射极区最好由p+型杂质形成,这种材料既包括纯铝又包括铝和硅的合金。在另一个衬底表面中形成的杂质区最好用n+型杂质形成,例如磷。
浅发射极区深度最好不要超过约0.2微米,杂质浓度最好不要超过约5×1018cm-3。多个第二深发射极区的最小深度约为2微米,杂质浓度最好不要小于约1×1019cm-3
电池最好提供有在第一图形化欧姆电极层上有可焊接欧姆材料例如银构成的第二图形化层。钝化层最好在第一图形化欧姆接触层之间区域的第一和第二表面之一上形成。抗反射层最好在钝化层上形成。
从工艺的观点来看,本发明包括制造具有自对准局域深扩散发射极的太阳能电池的方法,该方法包括以下步骤:(a)提供具有第一和第二表面的n型半导体衬底;(b)在第一和第二表面的一个表面中形成第一导电类型的、深度小于0.2μm的浅发射极区;(c)在第一和第二表面的另一个表面中形成第二导电类型的半导体层;(d)在形成有浅发射极区的半导体衬底表面上提供含铝图形化层;(e)加热衬底在图形化层之下的衬底区中形成第一导电类型的、深度比所述浅发射极区深的多个深发射极区;以及(f)提供与第一和第二表面的另一个表面的欧姆接触。
相对浅的发射极区最好用p+型杂质形成,而相对浅的场区最好用n+型杂质形成。
形成相对浅的发射极区的步骤最好执行为所提供的发射极区的深度不超过约0.2微米并且杂质浓度不大于约5×1018cm-3。加热衬底的步骤最好执行为所提供的发射极区的最小深度约为2微米并且杂质浓度约为1×1018cm-3~5×1021cm-3
提供含铝图形化层的步骤可或者以纯铝或者以铝和硅的混合物的丝网印刷膏剂来进行以控制深扩散发射极区的深度。该方法可以选择性地执行为在含铝图形化层上提供由可焊接材料例如银构成的欧姆图形化层;在第一和第二表面之一的未被图形化层所覆盖的区域上形成钝化层,以及在钝化层上形成抗反射层。
本发明提供了现有太阳能电池所不具备大量优点。在电极下所提供的深的、至少中度掺杂的发射极区以及在暴露的非接触区下提供的浅的、轻掺杂发射区可起到使太阳能电池工作时空穴和电子的复合达到最小的作用。使用纯铝(如蒸发铝)或带有或不带有玻璃料的铝作为丝网印刷膏剂可以提供正接触欧姆电极材料以及提供可除去杂质和增强体寿命的吸气剂,所有这些都可在一个单一的工艺步骤中完成。与深扩散发射极区的欧姆金属接触在热处理工艺步骤中是自对准的,这样可以消除已知器件中以前所需要的任何附加的光刻步骤。未熔化的铝可消除使用铝和玻璃料的混合物的现有技术器件中所遇到的较高电阻的问题。接触电极上的可焊接材料的应用便于将多个电池互连到一起。本发明还提供了可容忍非均匀发射极的太阳能电池,因为铝电极将下面的硅掺杂成为p-型。
为了更完整地理解本发明的性质和优点,下面参照附图对本发明进行详细描述。
图1是本发明优选实施例的透视图;
图2是图1实施例的底平面图;
图3是示出了结的图1实施例的放大截面图;以及
图4A-4F的截面图示出了制造图1实施例的步骤。
现在来看附图,图1是本发明单个太阳能电池10的透视图。从图中可以看出,该太阳能电池包括由合适的半导体材料例如掺Sb的n型硅构成的衬底12。在衬底12的顶面即前照射表面上配置的电极结构包括通过汇流条15沿一端欧姆互连的多个独立的条或指14。如上所述,条14和汇流条15最好由外敷可焊接欧姆材料例如银制造。沿衬底12的底面即背面配置的是背电极17(图2中详细示出),最好由银构成。通过汇流条15和背电极17与电池10进行电连接。由合适的氧化物材料,例如二氧化硅构成的钝化层18在沿着衬底12顶表面的条14之间区域中形成。钝化层也延伸到衬底12顶表面和底表面之间区域中的周边区。
位于钝化层18顶部的是由合适的抗反射材料,例如钛氧化物构成的涂层19。银层20为了与外部电路提供更好的欧姆接触位于金属条14和汇流条15的顶部。
参考图3,太阳能电池的发射极结构包括金属电极条14下面的相对深的发射极区21和衬底12表面不被电极条14所覆盖的区域之下以及钝化层18之下相对浅的发射极区22。在优选实施例当中,发射区21、22为形成在n型衬底12中的p+区,因而沿着发射极区21,22和衬底12之间的边界形成p-n结。相对深的区21最好为用铝作为杂质的中度掺杂(约为1018cm-3)的p型,最好从顶表面延伸的深度约为2至10微米。相对深的区域21的杂质浓度约为1×1018cm-3~5×1021cm-3。相对浅的发射极区22相对轻掺杂(即不超过约5×1018cm-3)并且从衬底12的顶表面延伸的深度不超过约0.2微米。
图4A至4F示出了制造图1至3中所说的太阳能电池的工艺。参照图4A,首先提供n型硅衬底12,最好是用锑掺杂为n型的枝网(dendriticweb)硅。接着如图4B所示,p+和n+层分别扩散至衬底12的顶部和底部表面。p+和n+扩散层用任一已知工艺来形成,例如使用快速热处理从液体掺杂源同时进行前后扩散。p+杂质最好为硼,而n+型杂质最好为磷。p+层制成电池的发射极,n+层制成后表面场25将欧姆接触中的空穴排斥到基底。后n+层也促进了与负接触金属电极17的欧姆接触。
接着,在图1图形的表面区上丝网印刷非熔融的铝,形成条14和汇流条15,条14一般宽100微米,间距约为1000微米。非熔融的铝可以包括纯铝,也可以包括铝/硅合金,其中的硅浓度低于形成共熔化合物所需的浓度。图4C示出了该丝网印刷步骤的结果。
接着在约750度到1000度的温度范围内对该电池进行热处理。在该关键的热处理步骤中,铝和硅(液相)合金到某一深度,该深度根据已知的铝/硅相图由通常所淀积的铝的厚度来确定。然后降低温度,用液相外延再生长硅直到达到共熔温度(577度)。用浓度约为1018cm-3的铝将再生长的硅掺杂为p型。随着铝浓度超过初始硅当中的施主浓度形成了所需要的p-n结,并且共熔合金(重量比为88.7%的铝和11.3%的硅)保留在表面上作为与p型硅的接触。如果在氧气氛中进行热处理,在衬底12的前面生长厚度约100埃的二氧化硅薄层18以钝化表面,从而减少表面复合。在不存在氧气的气氛中,可独立提供钝化层。图4D示出了热处理工艺的结果。这一工艺步骤在栅格下制造了深发射极,与深扩散发射极的接触,以及暴露的发射极表面和电池侧面的氧化物钝化,知道这一点是重要的。
下面,使用例如大气压化学汽相淀积的工艺在所开发的电池的前面上施加如钛氧化物的合适的抗反射(AR)涂层19。图4E中示出了该工艺步骤的结果。
然后,丝网印刷欧姆导电金属层17并烧制到背面以形成底电极并且丝网印刷用如银等的可焊接材料构成的覆盖层20并烧制到前面的铝电极图形14、15的顶上。图4F示出了最终完成的电池的截面。
根据本发明的指教制造的太阳能电池提供了大量的优点。首先,电极下面的深的中度掺杂的发射极区和暴露的非接触区下面的浅的轻掺杂的发射极区结合在一起起到了在太阳能电池的使用过程中空穴和电子的复合减小到最小的作用。而且,使用非熔融的铝可形成相对深的发射极区,提供了正接触欧姆电极材料并且提供了用以除去杂质和增强体寿命的吸气剂,而所有这些优点都可以在单一的工艺步骤中完成。重要的是,与深扩散发射极区的欧姆金属接触在热处理工艺步骤中是自对准的,从而消除了现有工艺中电极对准所需要的任何附加的光刻步骤。而且,通过使用未熔化的铝,完全消除了使用铝和玻璃料的混合物的现有技术工艺中所遇到的低电阻的问题,从而简化了热处理工艺步骤。另外,铝合金接触电极14,15上的可焊接金属(例如,银层20)的应用便于将多个电池互连到一起,以获得较高的发电能力。最后,因为铝电极将下面的硅掺杂为p-型,故本发明可容忍非均匀发射极。甚至发射极可以在p型区中具有n型岛,而不会带来有害的效应。
虽然深发射极区域21边界处的p-n结可以相当深(即约2至10微米),但由于该结只在电极14之下,可以将太阳能电池基底和接触金属分离开,因而是有益的。
当使用丝网印刷材料代替纯铝时,可以用铝/硅合金来控制合金结的深度。通常,随着这种合金中硅的浓度朝着共熔组合物增加,所印刷的铝当中可溶解的硅的数量降低。结果最终降低了结的深度。
此外,随着晶体生长过程中抑制的点缺陷在该工艺的热处理步骤中被退火,网硅中少数载流子寿命将增加。因为与铝-硅合金工艺有关的杂质吸气现象的存在,在不是枝网硅的其他形式的硅当中少数载流子寿命也将增加。在紧临相对浅的p+区22附近具有相对深的p+区21的结构提供了在栅格下具有深的中度掺杂的发射极和在钝化层18下浅的轻掺杂的发射极的优点。
以下是根据本发明的指教制造太阳能电池的一个特定的实例。在快速热处理系统中使用杂质(在网条的相对侧为磷和硼)以后同时扩散10厘米长、2.5厘米宽、100微米厚的枝网硅条。将不含玻璃料的铝膏印制到网条的发射极上15微米厚并在空气气氛中在带状炉里以800℃烧制60秒。铝膏下p+扩散层的SEM相片示出的结深为2.4至5微米。所制造的太阳能电池具有单个钛氧化物抗反射涂层。测量最好的电池(面积为25cm2)的参数显示出短路电流为27.46mA/cm2,开路电压为0.586V,填充系数为.756,以及能量转换效率为12.17%。虽然该工艺没有优化到获得高效率,但对丝网印刷太阳能电池来说,0.756的填充系数相当好。
尽管上面完整地公开了本发明的优选实施例,但可以按照需要作出各种改进,替换结构及等效变换。例如,尽管本发明描述了矩形结构,也可按要求使用例如圆形的其他形状。此外,尽管指出了特定的氧化物和抗反射涂层,但也可以使用其他的抗反射物质和其他的氧化物。因此,上述描述和解释并不构成对本发明范围的限制,本发明的范围应由所附的权利要求书来限定。

Claims (24)

1.自对准局域深扩散发射极太阳能电池,包括:
具有正面和背面的半导体衬底;
以小于5×1018cm-3的掺杂浓度、小于0.2μm的深度形成于所述正面和背面之一中的p+型的多个第一发射极区;
在形成有所述第一发射极区的半导体衬底表面上形成的比多个第一发射极区更深具有比多个第一发射极区更高的杂质浓度的p+型的多个第二发射极区,所述多个第一和第二发射极区交替形成;
在所述正面和背面的另一个中形成n+型的杂质区;
形成于所述杂质区之上的欧姆接触;以及
包含在多个第二发射极区上形成的铝的第一图形化欧姆电极层。
2.权利要求1的太阳能电池,其特征在于:所述半导体衬底为n型掺杂硅。
3.权利要求1的太阳能电池,其特征在于:所述杂质为硼。
4.权利要求1的太阳能电池,其特征在于:所述杂质为铝。
5.权利要求1的太阳能电池,其特征在于:所述杂质为铝和硅的合金。
6.权利要求1的太阳能电池,其特征在于:所述杂质为磷。
7.权利要求1的太阳能电池,其特征在于:所述多个第二发射极区的最小深度为2微米。
8.权利要求1的太阳能电池,其特征在于:所述多个第二发射极区的浓度不低于1×1019cm-3
9.权利要求1的太阳能电池,其特征在于:所述欧姆接触用银形成。
10.权利要求1的太阳能电池,其特征在于还包括在所述第一图形化欧姆电极层上由可焊接欧姆材料形成的第二图形化层。
11.权利要求10的太阳能电池,其特征在于:所述可焊接的材料为银。
12.权利要求1的太阳能电池,其特征在于还包括在形成有所述第二发射极区的半导体衬底的表面上,在所述第一图形化欧姆接触层之间的区域中形成的钝化层。
13.权利要求12的太阳能电池,其特征在于还包括在所述钝化层上形成的抗反射层。
14.制造具有自对准局域深扩散发射极的太阳能电池的方法,该方法包括以下步骤:
(a)提供具有第一和第二表面的n型半导体衬底;
(b)在第一和第二表面的一个表面中形成第一导电类型的、深度小于0.2μm的浅发射极区;
(c)在第一和第二表面的另一个表面中形成第二导电类型的半导体层;
(d)在形成有浅发射极区的半导体衬底表面上提供含铝图形化层;
(e)加热衬底在图形化层之下的衬底区中形成第一导电类型的、深度比所述浅发射极区深的多个深发射极区;以及
(f)提供与第一和第二表面的另一个表面的欧姆接触。
15.权利要求14的方法,其特征在于:所述浅发射极区用p+型杂质形成。
16.权利要求14的方法,其特征在于:所述半导体层用n+型杂质形成。
17.权利要求14的方法,其特征在于还包括在所述的含铝图形化层上施加欧姆图形化层的步骤。
18.权利要求14的方法,其特征在于还包括在形成有浅发射极区的半导体衬底表面中不被所述图形化层覆盖的区域上形成钝化层的步骤。
19.权利要求14的方法,其特征在于还包括在所述钝化层上形成抗反射材料层的步骤。
20.权利要求14的方法,其特征在于:所述(b)的形成步骤执行为所提供的发射极区的杂质浓度不大于5×1018cm-3
21.权利要求14的方法,其特征在于:所述(e)的加热步骤执行为所提供的发射极区的最小深度为2微米。
22.权利要求14的方法,其特征在于:所述(e)的加热步骤执行为所提供的相对深的发射极区的杂质浓度不低于1×1019cm-3
23.权利要求14的方法,其特征在于:用纯铝执行所述(d)的提供步骤。
24.权利要求14的方法,其特征在于:用铝和硅的合金执行所述(d)的提供步骤,其中硅的浓度低于形成共熔化合物所需的浓度。
CNB96197446XA 1995-10-05 1996-10-01 具有自对准局域深扩散发射极的太阳能电池及其制造方法 Expired - Lifetime CN1155107C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US483395P 1995-10-05 1995-10-05
US60/004,833 1995-10-05

Publications (2)

Publication Number Publication Date
CN1198841A CN1198841A (zh) 1998-11-11
CN1155107C true CN1155107C (zh) 2004-06-23

Family

ID=21712748

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB96197446XA Expired - Lifetime CN1155107C (zh) 1995-10-05 1996-10-01 具有自对准局域深扩散发射极的太阳能电池及其制造方法

Country Status (10)

Country Link
US (1) US5928438A (zh)
EP (1) EP0853822A4 (zh)
JP (1) JPH11512886A (zh)
KR (1) KR19990063990A (zh)
CN (1) CN1155107C (zh)
AU (1) AU701213B2 (zh)
BR (1) BR9610739A (zh)
CA (1) CA2232857C (zh)
TW (1) TW332345B (zh)
WO (1) WO1997013280A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI688109B (zh) * 2018-10-26 2020-03-11 財團法人工業技術研究院 太陽能電池

Families Citing this family (142)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3722326B2 (ja) * 1996-12-20 2005-11-30 三菱電機株式会社 太陽電池の製造方法
US6180869B1 (en) 1997-05-06 2001-01-30 Ebara Solar, Inc. Method and apparatus for self-doping negative and positive electrodes for silicon solar cells and other devices
US6339013B1 (en) 1997-05-13 2002-01-15 The Board Of Trustees Of The University Of Arkansas Method of doping silicon, metal doped silicon, method of making solar cells, and solar cells
AUPP437598A0 (en) * 1998-06-29 1998-07-23 Unisearch Limited A self aligning method for forming a selective emitter and metallization in a solar cell
AU749022B2 (en) * 1998-06-29 2002-06-13 Unisearch Limited A self aligning method for forming a selective emitter and metallization in a solar cell
US6262359B1 (en) * 1999-03-17 2001-07-17 Ebara Solar, Inc. Aluminum alloy back junction solar cell and a process for fabrication thereof
TW419833B (en) * 1999-07-23 2001-01-21 Ind Tech Res Inst Manufacturing method of solar cell
TW419834B (en) * 1999-09-01 2001-01-21 Opto Tech Corp Photovoltaic generator
US6482261B2 (en) 2000-12-29 2002-11-19 Ebara Solar, Inc. Magnetic field furnace
KR100366349B1 (ko) * 2001-01-03 2002-12-31 삼성에스디아이 주식회사 태양 전지 및 그의 제조 방법
KR100420030B1 (ko) * 2001-04-23 2004-02-25 삼성에스디아이 주식회사 태양 전지의 제조 방법
US7880258B2 (en) * 2003-05-05 2011-02-01 Udt Sensors, Inc. Thin wafer detectors with improved radiation damage and crosstalk characteristics
US7057254B2 (en) * 2003-05-05 2006-06-06 Udt Sensors, Inc. Front illuminated back side contact thin wafer detectors
US7576369B2 (en) * 2005-10-25 2009-08-18 Udt Sensors, Inc. Deep diffused thin photodiodes
US7709921B2 (en) * 2008-08-27 2010-05-04 Udt Sensors, Inc. Photodiode and photodiode array with improved performance characteristics
US7656001B2 (en) 2006-11-01 2010-02-02 Udt Sensors, Inc. Front-side illuminated, back-side contact double-sided PN-junction photodiode arrays
US7655999B2 (en) 2006-09-15 2010-02-02 Udt Sensors, Inc. High density photodiodes
US8519503B2 (en) * 2006-06-05 2013-08-27 Osi Optoelectronics, Inc. High speed backside illuminated, front side contact photodiode array
US8035183B2 (en) * 2003-05-05 2011-10-11 Udt Sensors, Inc. Photodiodes with PN junction on both front and back sides
US8120023B2 (en) * 2006-06-05 2012-02-21 Udt Sensors, Inc. Low crosstalk, front-side illuminated, back-side contact photodiode array
US8686529B2 (en) 2010-01-19 2014-04-01 Osi Optoelectronics, Inc. Wavelength sensitive sensor photodiodes
US7256470B2 (en) * 2005-03-16 2007-08-14 Udt Sensors, Inc. Photodiode with controlled current leakage
US7279731B1 (en) * 2006-05-15 2007-10-09 Udt Sensors, Inc. Edge illuminated photodiodes
US8164151B2 (en) * 2007-05-07 2012-04-24 Osi Optoelectronics, Inc. Thin active layer fishbone photodiode and method of manufacturing the same
US7170001B2 (en) * 2003-06-26 2007-01-30 Advent Solar, Inc. Fabrication of back-contacted silicon solar cells using thermomigration to create conductive vias
US7649141B2 (en) * 2003-06-30 2010-01-19 Advent Solar, Inc. Emitter wrap-through back contact solar cells on thin silicon wafers
US7285720B2 (en) * 2003-07-21 2007-10-23 The Boeing Company, Inc. Solar cell with high-temperature front electrical contact, and its fabrication
US20050189015A1 (en) * 2003-10-30 2005-09-01 Ajeet Rohatgi Silicon solar cells and methods of fabrication
JP4549655B2 (ja) * 2003-11-18 2010-09-22 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 機能性塗料
US20050172996A1 (en) * 2004-02-05 2005-08-11 Advent Solar, Inc. Contact fabrication of emitter wrap-through back contact silicon solar cells
US20060060238A1 (en) * 2004-02-05 2006-03-23 Advent Solar, Inc. Process and fabrication methods for emitter wrap through back contact solar cells
US7144751B2 (en) * 2004-02-05 2006-12-05 Advent Solar, Inc. Back-contact solar cells and methods for fabrication
US7335555B2 (en) * 2004-02-05 2008-02-26 Advent Solar, Inc. Buried-contact solar cells with self-doping contacts
DE102004050269A1 (de) * 2004-10-14 2006-04-20 Institut Für Solarenergieforschung Gmbh Verfahren zur Kontakttrennung elektrisch leitfähiger Schichten auf rückkontaktierten Solarzellen und Solarzelle
US8637340B2 (en) 2004-11-30 2014-01-28 Solexel, Inc. Patterning of silicon oxide layers using pulsed laser ablation
US8420435B2 (en) * 2009-05-05 2013-04-16 Solexel, Inc. Ion implantation fabrication process for thin-film crystalline silicon solar cells
US9508886B2 (en) 2007-10-06 2016-11-29 Solexel, Inc. Method for making a crystalline silicon solar cell substrate utilizing flat top laser beam
US8399331B2 (en) 2007-10-06 2013-03-19 Solexel Laser processing for high-efficiency thin crystalline silicon solar cell fabrication
US7790574B2 (en) 2004-12-20 2010-09-07 Georgia Tech Research Corporation Boron diffusion in silicon devices
EP1732142A1 (en) * 2005-06-09 2006-12-13 Shell Solar GmbH Si solar cell and its manufacturing method
US20090071535A1 (en) * 2005-11-02 2009-03-19 Centrotherm Photovoltaics Ag Antireflective coating on solar cells and method for the production of such an antireflective coating
US8575474B2 (en) * 2006-03-20 2013-11-05 Heracus Precious Metals North America Conshohocken LLC Solar cell contacts containing aluminum and at least one of boron, titanium, nickel, tin, silver, gallium, zinc, indium and copper
US8076570B2 (en) 2006-03-20 2011-12-13 Ferro Corporation Aluminum-boron solar cell contacts
US20080145633A1 (en) * 2006-06-19 2008-06-19 Cabot Corporation Photovoltaic conductive features and processes for forming same
TWI487124B (zh) * 2006-08-25 2015-06-01 Sanyo Electric Co 太陽電池模組及太陽電池模組的製造方法
US20100304521A1 (en) * 2006-10-09 2010-12-02 Solexel, Inc. Shadow Mask Methods For Manufacturing Three-Dimensional Thin-Film Solar Cells
US7999174B2 (en) 2006-10-09 2011-08-16 Solexel, Inc. Solar module structures and assembly methods for three-dimensional thin-film solar cells
US8168465B2 (en) * 2008-11-13 2012-05-01 Solexel, Inc. Three-dimensional semiconductor template for making high efficiency thin-film solar cells
US8035028B2 (en) * 2006-10-09 2011-10-11 Solexel, Inc. Pyramidal three-dimensional thin-film solar cells
US8193076B2 (en) 2006-10-09 2012-06-05 Solexel, Inc. Method for releasing a thin semiconductor substrate from a reusable template
US8035027B2 (en) * 2006-10-09 2011-10-11 Solexel, Inc. Solar module structures and assembly methods for pyramidal three-dimensional thin-film solar cells
US20080264477A1 (en) * 2006-10-09 2008-10-30 Soltaix, Inc. Methods for manufacturing three-dimensional thin-film solar cells
US8293558B2 (en) * 2006-10-09 2012-10-23 Solexel, Inc. Method for releasing a thin-film substrate
US9178092B2 (en) 2006-11-01 2015-11-03 Osi Optoelectronics, Inc. Front-side illuminated, back-side contact double-sided PN-junction photodiode arrays
CA2568136C (en) * 2006-11-30 2008-07-29 Tenxc Wireless Inc. Butler matrix implementation
US20080216887A1 (en) * 2006-12-22 2008-09-11 Advent Solar, Inc. Interconnect Technologies for Back Contact Solar Cells and Modules
KR101346896B1 (ko) * 2007-03-26 2013-12-31 엘지전자 주식회사 Ibc형 태양전지의 제조방법 및 ibc형 태양전지
JP5530920B2 (ja) * 2007-04-25 2014-06-25 ヘレウス プレシャス メタルズ ノース アメリカ コンショホーケン エルエルシー 銀及びニッケル、もしくは、銀及びニッケル合金からなる厚膜導電体形成、及びそれから作られる太陽電池
WO2008137174A1 (en) * 2007-05-07 2008-11-13 Georgia Tech Research Corporation Formation of high quality back contact with screen-printed local back surface field
WO2009026240A1 (en) * 2007-08-17 2009-02-26 Solexel, Inc. Methods for liquid transfer coating of three-dimensional substrates
US8309844B2 (en) * 2007-08-29 2012-11-13 Ferro Corporation Thick film pastes for fire through applications in solar cells
US9455362B2 (en) * 2007-10-06 2016-09-27 Solexel, Inc. Laser irradiation aluminum doping for monocrystalline silicon substrates
US20090126786A1 (en) * 2007-11-13 2009-05-21 Advent Solar, Inc. Selective Emitter and Texture Processes for Back Contact Solar Cells
US20100053802A1 (en) * 2008-08-27 2010-03-04 Masaki Yamashita Low Power Disk-Drive Motor Driver
JPWO2009110403A1 (ja) * 2008-03-07 2011-07-14 国立大学法人東北大学 光電変換素子構造及び太陽電池
US20090223549A1 (en) * 2008-03-10 2009-09-10 Calisolar, Inc. solar cell and fabrication method using crystalline silicon based on lower grade feedstock materials
US20090239363A1 (en) * 2008-03-24 2009-09-24 Honeywell International, Inc. Methods for forming doped regions in semiconductor substrates using non-contact printing processes and dopant-comprising inks for forming such doped regions using non-contact printing processes
DE102008017647A1 (de) 2008-04-04 2009-10-29 Centrotherm Photovoltaics Technology Gmbh Verfahren zur Herstellung einer Solarzelle mit einer zweistufigen Dotierung
DE102008019402A1 (de) * 2008-04-14 2009-10-15 Gebr. Schmid Gmbh & Co. Verfahren zur selektiven Dotierung von Silizium sowie damit behandeltes Silizium-Substrat
US20100012172A1 (en) * 2008-04-29 2010-01-21 Advent Solar, Inc. Photovoltaic Modules Manufactured Using Monolithic Module Assembly Techniques
US20090286349A1 (en) * 2008-05-13 2009-11-19 Georgia Tech Research Corporation Solar cell spin-on based process for simultaneous diffusion and passivation
US20100144080A1 (en) * 2008-06-02 2010-06-10 Solexel, Inc. Method and apparatus to transfer coat uneven surface
DE102008027851A1 (de) 2008-06-11 2009-12-24 Centrotherm Photovoltaics Technology Gmbh Verfahren zur Herstellung einer Solarzelle mit einer zweistufigen Dotierung
US20100035422A1 (en) * 2008-08-06 2010-02-11 Honeywell International, Inc. Methods for forming doped regions in a semiconductor material
US8852465B2 (en) 2008-08-07 2014-10-07 Kyoto Elex Co., Ltd. Electro-conductive paste for forming an electrode of a solar cell device, a solar cell device and method for producing the solar cell device
US7897434B2 (en) * 2008-08-12 2011-03-01 International Business Machines Corporation Methods of fabricating solar cell chips
US8053867B2 (en) * 2008-08-20 2011-11-08 Honeywell International Inc. Phosphorous-comprising dopants and methods for forming phosphorous-doped regions in semiconductor substrates using phosphorous-comprising dopants
GB2476019B (en) * 2008-09-15 2013-03-13 Osi Optoelectronics Inc Thin active layer fishbone photodiode with a shallow N+ layer and method of manufacturing the same
US7951696B2 (en) * 2008-09-30 2011-05-31 Honeywell International Inc. Methods for simultaneously forming N-type and P-type doped regions using non-contact printing processes
KR100997669B1 (ko) 2008-11-04 2010-12-02 엘지전자 주식회사 스크린 인쇄법을 이용한 실리콘 태양전지 및 그 제조방법
US8288195B2 (en) * 2008-11-13 2012-10-16 Solexel, Inc. Method for fabricating a three-dimensional thin-film semiconductor substrate from a template
JP2010123859A (ja) * 2008-11-21 2010-06-03 Kyocera Corp 太陽電池素子および太陽電池素子の製造方法
WO2010063003A1 (en) * 2008-11-26 2010-06-03 Solexel, Inc. Truncated pyramid structures for see-through solar cells
US8518170B2 (en) * 2008-12-29 2013-08-27 Honeywell International Inc. Boron-comprising inks for forming boron-doped regions in semiconductor substrates using non-contact printing processes and methods for fabricating such boron-comprising inks
US8999058B2 (en) 2009-05-05 2015-04-07 Solexel, Inc. High-productivity porous semiconductor manufacturing equipment
US9076642B2 (en) 2009-01-15 2015-07-07 Solexel, Inc. High-Throughput batch porous silicon manufacturing equipment design and processing methods
US8906218B2 (en) 2010-05-05 2014-12-09 Solexel, Inc. Apparatus and methods for uniformly forming porous semiconductor on a substrate
MY170119A (en) * 2009-01-15 2019-07-05 Trutag Tech Inc Porous silicon electro-etching system and method
MY162405A (en) * 2009-02-06 2017-06-15 Solexel Inc Trench Formation Method For Releasing A Thin-Film Substrate From A Reusable Semiconductor Template
US8828517B2 (en) 2009-03-23 2014-09-09 Solexel, Inc. Structure and method for improving solar cell efficiency and mechanical strength
CN102427971B (zh) * 2009-04-14 2015-01-07 速力斯公司 高效外延化学气相沉积(cvd)反应器
US9099584B2 (en) * 2009-04-24 2015-08-04 Solexel, Inc. Integrated three-dimensional and planar metallization structure for thin film solar cells
US9318644B2 (en) 2009-05-05 2016-04-19 Solexel, Inc. Ion implantation and annealing for thin film crystalline solar cells
US8399909B2 (en) 2009-05-12 2013-03-19 Osi Optoelectronics, Inc. Tetra-lateral position sensing detector
US8445314B2 (en) * 2009-05-22 2013-05-21 Solexel, Inc. Method of creating reusable template for detachable thin film substrate
US8551866B2 (en) * 2009-05-29 2013-10-08 Solexel, Inc. Three-dimensional thin-film semiconductor substrate with through-holes and methods of manufacturing
KR101225978B1 (ko) * 2009-06-25 2013-01-24 엘지전자 주식회사 태양전지 및 그 제조방법
US8324089B2 (en) * 2009-07-23 2012-12-04 Honeywell International Inc. Compositions for forming doped regions in semiconductor substrates, methods for fabricating such compositions, and methods for forming doped regions using such compositions
JP2013511839A (ja) * 2009-11-18 2013-04-04 ソーラー ウィンド テクノロジーズ, インコーポレイテッド 光起電力セルの製造方法、それによって製造された光起電力セル、およびその用途
KR101146733B1 (ko) * 2009-12-07 2012-05-17 엘지전자 주식회사 태양 전지
CN102763226B (zh) 2009-12-09 2016-01-27 速力斯公司 使用薄平面半导体的高效光伏背触点太阳能电池结构和制造方法
KR101038967B1 (ko) * 2009-12-21 2011-06-07 엘지전자 주식회사 태양 전지 및 그 제조 방법
CN102844883B (zh) 2010-02-12 2016-01-20 速力斯公司 用于制造光电池和微电子器件的半导体衬底的双面可重复使用的模板
KR101046219B1 (ko) * 2010-04-02 2011-07-04 엘지전자 주식회사 선택적 에미터를 갖는 태양전지
US8859889B2 (en) 2010-04-20 2014-10-14 Kyocera Corporation Solar cell elements and solar cell module using same
WO2011156657A2 (en) 2010-06-09 2011-12-15 Solexel, Inc. High productivity thin film deposition method and system
EP2398071B1 (en) 2010-06-17 2013-01-16 Imec Method for forming a doped region in a semiconductor layer of a substrate and use of such method
KR101203623B1 (ko) * 2010-06-18 2012-11-21 엘지전자 주식회사 태양 전지 및 그 제조 방법
EP2595196B1 (en) * 2010-06-25 2020-06-03 Kyocera Corporation Solar cell element
EP2601687A4 (en) 2010-08-05 2018-03-07 Solexel, Inc. Backplane reinforcement and interconnects for solar cells
KR101135584B1 (ko) * 2010-08-13 2012-04-17 엘지전자 주식회사 태양 전지 및 그 제조 방법
KR101196793B1 (ko) 2010-08-25 2012-11-05 엘지전자 주식회사 태양 전지 및 그 제조 방법
CN101950780B (zh) * 2010-09-09 2012-08-08 百力达太阳能股份有限公司 选择性发射极太阳电池的制备方法
JP2012060080A (ja) * 2010-09-13 2012-03-22 Ulvac Japan Ltd 結晶太陽電池及びその製造方法
SG191045A1 (en) * 2010-12-06 2013-08-30 Shinetsu Chemical Co Solar cell and solar-cell module
MY170106A (en) 2010-12-06 2019-07-05 Shinetsu Chemical Co Method for manufacturing solar cell, solar cell and solar-cell module
US9368655B2 (en) 2010-12-27 2016-06-14 Lg Electronics Inc. Solar cell and method for manufacturing the same
TWI493740B (zh) * 2010-12-31 2015-07-21 Motech Ind Inc 太陽能電池結構與其製造方法
US20120174975A1 (en) * 2011-01-10 2012-07-12 Shin Myungjun Solar cell and method for manufacturing the same
US20140102523A1 (en) * 2011-04-07 2014-04-17 Newsouth Innovations Pty Limited Hybrid solar cell contact
EP2710639A4 (en) 2011-05-20 2015-11-25 Solexel Inc SELF-ACTIVATED FRONT SURFACE POLARIZATION FOR A SOLAR CELL
KR101258938B1 (ko) * 2011-07-25 2013-05-07 엘지전자 주식회사 태양 전지
US8629294B2 (en) 2011-08-25 2014-01-14 Honeywell International Inc. Borate esters, boron-comprising dopants, and methods of fabricating boron-comprising dopants
US8975170B2 (en) 2011-10-24 2015-03-10 Honeywell International Inc. Dopant ink compositions for forming doped regions in semiconductor substrates, and methods for fabricating dopant ink compositions
AU2012362505B2 (en) 2011-12-26 2015-08-20 Solexel, Inc. Systems and methods for enhanced light trapping in solar cells
TWI624958B (zh) * 2012-01-06 2018-05-21 日商日立化成股份有限公司 帶有鈍化膜的半導體基板及其製造方法、以及太陽電池元件及其製造方法
KR101315407B1 (ko) * 2012-06-04 2013-10-07 한화케미칼 주식회사 에미터 랩 스루 태양 전지 및 이의 제조 방법
US9379258B2 (en) 2012-11-05 2016-06-28 Solexel, Inc. Fabrication methods for monolithically isled back contact back junction solar cells
NL2010116C2 (en) 2013-01-11 2014-07-15 Stichting Energie Method of providing a boron doped region in a substrate and a solar cell using such a substrate.
US8735204B1 (en) 2013-01-17 2014-05-27 Alliance For Sustainable Energy, Llc Contact formation and gettering of precipitated impurities by multiple firing during semiconductor device fabrication
US8912615B2 (en) 2013-01-24 2014-12-16 Osi Optoelectronics, Inc. Shallow junction photodiode for detecting short wavelength light
US20140238478A1 (en) * 2013-02-28 2014-08-28 Suniva, Inc. Back junction solar cell with enhanced emitter layer
US8895416B2 (en) 2013-03-11 2014-11-25 Alliance For Sustainable Energy, Llc Semiconductor device PN junction fabrication using optical processing of amorphous semiconductor material
US9577134B2 (en) * 2013-12-09 2017-02-21 Sunpower Corporation Solar cell emitter region fabrication using self-aligned implant and cap
JP2015130406A (ja) * 2014-01-07 2015-07-16 三菱電機株式会社 光起電力装置およびその製造方法、光起電力モジュール
CN103956410A (zh) * 2014-05-09 2014-07-30 苏州阿特斯阳光电力科技有限公司 一种n型背结太阳能电池的制备方法
CN104393095B (zh) * 2014-09-25 2016-09-07 锦州华昌光伏科技有限公司 n型硅太阳电池、其制备方法及铝蒸发扩散装置
TWI615987B (zh) * 2015-12-16 2018-02-21 茂迪股份有限公司 太陽能電池及其製造方法
CN106328731A (zh) * 2016-11-08 2017-01-11 刘锋 一种高转换效率的太阳能电池
CN109888058B (zh) * 2019-03-04 2021-01-22 浙江正泰太阳能科技有限公司 一种太阳能电池及其制造方法
CN113206169A (zh) * 2021-04-18 2021-08-03 安徽华晟新能源科技有限公司 一种铝吸杂方法和铝吸杂设备
CN115249750B (zh) * 2021-04-26 2023-08-11 浙江晶科能源有限公司 光伏电池及其制作方法、光伏组件

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2841860A (en) * 1952-08-08 1958-07-08 Sylvania Electric Prod Semiconductor devices and methods
US2854363A (en) * 1953-04-02 1958-09-30 Int Standard Electric Corp Method of producing semiconductor crystals containing p-n junctions
NL270665A (zh) * 1960-10-31 1900-01-01
US4070689A (en) * 1975-12-31 1978-01-24 Motorola Inc. Semiconductor solar energy device
DE2914506A1 (de) * 1979-04-10 1980-10-16 Siemens Ag Verfahren zum herstellen von grossflaechigen, plattenfoermigen siliziumkristallen mit kolumnarstruktur
DE3049376A1 (de) * 1980-12-29 1982-07-29 Heliotronic Forschungs- und Entwicklungsgesellschaft für Solarzellen-Grundstoffe mbH, 8263 Burghausen Verfahren zur herstellung vertikaler pn-uebergaenge beim ziehen von siliciumscheiben aus einer siliciumschmelze
JPS57132372A (en) * 1981-02-09 1982-08-16 Univ Tohoku Manufacture of p-n junction type thin silicon band
FR2505556B1 (fr) * 1981-05-11 1986-07-25 Labo Electronique Physique Procede de fabrication de cellules solaires en silicium et cellules solaires ainsi obtenues
JPS6215864A (ja) * 1985-07-15 1987-01-24 Hitachi Ltd 太陽電池の製造方法
US4665277A (en) * 1986-03-11 1987-05-12 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Floating emitter solar cell
US4703553A (en) * 1986-06-16 1987-11-03 Spectrolab, Inc. Drive through doping process for manufacturing low back surface recombination solar cells
US5156978A (en) * 1988-11-15 1992-10-20 Mobil Solar Energy Corporation Method of fabricating solar cells
US5118362A (en) * 1990-09-24 1992-06-02 Mobil Solar Energy Corporation Electrical contacts and methods of manufacturing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI688109B (zh) * 2018-10-26 2020-03-11 財團法人工業技術研究院 太陽能電池

Also Published As

Publication number Publication date
TW332345B (en) 1998-05-21
KR19990063990A (ko) 1999-07-26
WO1997013280A1 (en) 1997-04-10
BR9610739A (pt) 1999-07-13
AU701213B2 (en) 1999-01-21
EP0853822A1 (en) 1998-07-22
MX9802174A (es) 1998-08-30
AU7203996A (en) 1997-04-28
US5928438A (en) 1999-07-27
CA2232857A1 (en) 1997-04-10
CA2232857C (en) 2003-05-13
JPH11512886A (ja) 1999-11-02
EP0853822A4 (en) 1999-08-18
CN1198841A (zh) 1998-11-11

Similar Documents

Publication Publication Date Title
CN1155107C (zh) 具有自对准局域深扩散发射极的太阳能电池及其制造方法
US6180869B1 (en) Method and apparatus for self-doping negative and positive electrodes for silicon solar cells and other devices
US4703553A (en) Drive through doping process for manufacturing low back surface recombination solar cells
CN1260830C (zh) 一种与半导体形成欧姆接触的方法
JP2744847B2 (ja) 改良された太陽電池及びその製造方法
CN103762270B (zh) 太阳能电池及其制造方法
US20080092944A1 (en) Semiconductor structure and process for forming ohmic connections to a semiconductor structure
JPH11504762A (ja) バックサーフィスフィールドを有するソーラーセル及びその製造方法
JPH03502627A (ja) 太陽電池用接点製作の改良された方法
JPH05110122A (ja) 光電変換装置及びその製造方法
JP3070912B2 (ja) 太陽電池
JP3841790B2 (ja) 光電変換素子及びその製造方法
JP3676954B2 (ja) 光電変換素子およびその製造方法
JP2928433B2 (ja) 光電変換素子の製造方法
JP3847188B2 (ja) 太陽電池素子
KR101597825B1 (ko) 태양전지, 태양전지의 제조방법 및 열확산용 열처리 장치
AU766063B2 (en) Method and apparatus for self-doping negative and positive electrodes for silicon solar cells and other devices
JP3253449B2 (ja) 光起電力装置の製造方法
Salami et al. Self-aligned locally diffused emitter (SALDE) silicon solar cell
CN113823704A (zh) 一种p基硅背接触太阳能电池及其制备方法
JPS59189682A (ja) GaAs太陽電池
MXPA98002174A (en) Process of manufacturing and structure for solar cell (eldaa) issuer, locally divided to depth, which is auto ali

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1015951

Country of ref document: HK

ASS Succession or assignment of patent right

Owner name: EBARA CORPORATION

Free format text: FORMER OWNER: EBARA SOLAR, INC.

Effective date: 20070622

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20070622

Address after: Tokyo, Japan

Patentee after: Ebara Corp.

Address before: American Pennsylvania

Patentee before: Ebara Solar, Inc.

ASS Succession or assignment of patent right

Owner name: SUNIWI CO.,LTD.

Free format text: FORMER OWNER: EBARA CORP.

Effective date: 20100810

C41 Transfer of patent application or patent right or utility model
COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: JAPAN TOKYO TO: GEOGIA STATE, USA

TR01 Transfer of patent right

Effective date of registration: 20100810

Address after: Georgia, USA

Patentee after: Suniwei Co., Ltd.

Address before: Tokyo, Japan

Patentee before: Ebara Corp.

CX01 Expiry of patent term

Granted publication date: 20040623

EXPY Termination of patent right or utility model