CN102427971B - 高效外延化学气相沉积(cvd)反应器 - Google Patents
高效外延化学气相沉积(cvd)反应器 Download PDFInfo
- Publication number
- CN102427971B CN102427971B CN201080021690.9A CN201080021690A CN102427971B CN 102427971 B CN102427971 B CN 102427971B CN 201080021690 A CN201080021690 A CN 201080021690A CN 102427971 B CN102427971 B CN 102427971B
- Authority
- CN
- China
- Prior art keywords
- wafer
- compound
- port
- reactor
- bilateral
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45502—Flow conditions in reaction chamber
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45517—Confinement of gases to vicinity of substrate
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45587—Mechanical means for changing the gas flow
- C23C16/45591—Fixed means, e.g. wings, baffles
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/458—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
- C23C16/4582—Rigid and flat substrates, e.g. plates or discs
- C23C16/4583—Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/48—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
- C23C16/481—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation by radiant heating of the substrate
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/12—Substrate holders or susceptors
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/14—Feed and outlet means for the gases; Modifying the flow of the reactive gases
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
本发明公开了一种化学气相沉积反应器,其具有改善的化合物利用率和成本效益。本公开的晶片基座可以以堆叠结构用于同时加工多个晶片。本公开的反应器可为逆流耗尽型反应器,其具有均一的膜厚度以及高的化合物利用率。
Description
相关申请的交叉引用
本申请要求美国专利申请US 12/759,820和美国临时专利申请US 61/169,139的优先权,两份申请均通过引用整体结合到本文中。
技术领域
本公开涉及外延沉积。更具体地说,本公开涉及硅或其它半导体材料的外延沉积。
背景技术
单晶硅是光电应用中占主导地位的材料。单晶硅太阳能电池的高效率以及材料的丰富性吸引了连续不断的使用和改进。但是晶体硅材料高的加工成本限制了这些太阳能模块的广泛使用。目前,“晶片”(wafering)硅或晶化硅和切割晶片的成本占成品太阳能电池的约40%。如果可能有更直接的制备晶片的方法,那么太阳能电池的成本的降低可取得很大的进展。
现在有各种不同的使单晶硅生长和释放或转移已生长晶片的方法。但不管方法如何,采用的都是外延沉积工艺的成本较低的。
人们最初发展硅外延(epi)沉积用于半导体工业。半导体工业在膜性能和成本方面的要求与太阳能领域的要求几乎是对立的两极。例如,半导体epi膜厚度通常小于5μm(1μm=10-6米)。为了达到太阳能工业中的经济性,每瓦特硅的成本必须保持在$0.25/瓦特或大约$1.00/晶片(假设电池4瓦特)。
用于epi的前体化合物主要是三氯甲硅烷(TCS),不过也可以使用更薄的硅烷(SiH4)膜。每种化合物的外延淀积对设备结构及处理条件都有特殊的要求和需要。基于低成本和丰富度的要求,TCS是太阳能工业首选的化合物。本公开内容将主要针对TCS进行描述,但本领域技术人员将意识到其对硅烷和其它前体化合物的应用。
为了达到太阳能应用需要的经济性,人们研究了工艺成本模型以确定和优化设备的性能。三类成本构成了总成本图:固定成本(FC)、经常成本(RC)和产量成本(YC)(yield cost)。FC由设备采购价格、安装成本和机器人或自动化成本等项目构成。RC大部分由电、气、化合物、操作薪金和维护技师支持构成。YC可理解为生产过程中损失部分的总价值。
为控制太阳能领域所要求的所得到(CoO)数目,必须优化成本图的所有方面。低成本工艺的特征是(按优先的顺序):1)高生产率,2)高产量,3)低RC以及4)低FC。
设计高生产率设备需要对工艺要求具有良好的理解并将这些要求反应在结构中。高产量需要稳定的工艺和可靠的设备。低RC在成本模型中证明是主要的组成。基于例如当地电力成本或大宗化合物可获得性,RC会影响工厂地址的选择。FC尽管重要,但是其重要性被设备生产率冲淡了。
综上所述,低成本太阳能电池的生产的关键在于高生产率、可靠、高效的反应器。
发明内容
因此,本公开的目的是提供一种CVD反应器,其具有改进的化合物利用率和高产量,并因此降低了成本,提高了效率。
实现低RC需要有效利用化合物。在致力使用较大部分的TCS时,本公开将描述较长的沉积区域。设置较长的沉积区域可使较高比例的TCS沉积。以这种方式,可实现化合物的更高的利用率。通过选择最佳参数(化合物浓度、气体速度、反应维数等),可优化生产率和化合物利用率。本公开的另一个目的是最小化表面而非晶片上的沉积,这对有效化合物利用率也是很重要的。本公开的反应器具有高的晶片面积/反应器表面积比率,这可以使附加损失最小化。
本公开主题的这些和其它优点,以及其他的新特征将通过本文提供的描述变得显而易见。本发明内容并不用于总括本发明的主题,而是简要概述一些本发明主题的功能性。通过研究下面的附图和具体实施方式后,本领域技术人员将清楚了解本文提供的其它系统、方法、特征和优点。本说明书包括的所有这种其它系统、方法、特征和优点均落入权利要求的范围内。
附图说明
将具体实施方式与附图结合,本公开主题的特征、性质和优点将变得更加清楚,在附图中,相同的附图标记表示相同的特征,其中:
图1显示了晶片基座(susceptor)实施方案的俯视图;
图2A和2B分布显示了晶片基座实施方案的侧视图和放大侧视图;
图3显示了具有两套晶片基座的反应器的实施方案的侧视图;
图4显示了分批堆栈反应器(BSR)实施方案的俯视图;
图5A和5B分别显示了双侧沉积(DSD)基座设置实施方案的侧视图和放大的侧视图;
图6显示了包括基座阵列的实施方案的俯视图;
图7显示了双侧沉积反应器实施方案的侧视图。
具体实施方式
尽管本公开参考具体的实施方案进行描述,但是本领域的技术人员不需要进行不必要的实验就可以将本文的原理应用到其它地方和/或实施方案中。
本公开所指“模板”可视为与“晶片”等同。在本公开的一个实施方案中,在外延附生后,模板可重复使用,用来生长和释放晶硅片。但是外延沉积后模板或晶片的使用在本公开范围以外。在不违背本公开精神的情况下,技术人员应该明白所述模板可以进行的很多的应用。
本公开反应器的创新方面在于晶片基座的设置(晶片是利用其吸收电磁能量并将该能量以热的形式传递给晶片的能力的材料)。虽然基座可经电磁加热,但是灯具和电阻加热也是有效的。
本公开的基座可以是堆叠式的,但是它们不依靠堆叠来提供整体反应器的“构件模块”(building blocks)。本公开的反应器可以是或不是耗尽型(depletion mode)反应器(DMR)。“耗尽型”是指沿气流方向消耗或利用化合物。如图1所示,该方向可以是相反的, 以从一端到另一端使膜的厚度平均。在方向为非反向的实施方案中,可以防止较多化合物沉积在最接近源端口区域中。在前向流动(即从左到右)模式中,端口10包括源端口,端口12包括排放端口;在反向流动模式中,与上述相反。由于该种原因,端口10可称为“源/排放端口10”,端口12可称为“排放/源端口12”。图1、2A和2B分别显示了相同基座设置的不同视图:俯视图、侧视图和细节侧视图。如图2A和2B所示,端口10和12的设计适合用于本公开的具有可堆叠性质的晶片基座。
图1、2A和2B中显示了挡板通道15。这些挡板通道包括TCS或其它种类化合物流过的部分路径。仅在图1中显示的针孔16在外延沉积过程中用于模板提升。
在这些图中,所示的模板20(在图2B中显示)插入插袋18(在图1中显示)中。
在不违背本发明精神的情况下,技术人员可改变所示反应器的各种维数。
在该示范性实施方案中,插袋18的厚度为大约6 mm,整个组件的长度为大约50 cm。端口10和12的直径大约为15 mm。
图3显示了反应器30,其包括两套堆叠的基座板,与前面三幅附图中显示的基板类似。图3的反应器为耗尽型反应器。
反应器30包括源/消耗端口40和消耗/源端口42。反应器30的主体(maid body)封闭在石英罩35内。如所显示,反应器30使用灯具36来加热基座板。
在TCS与氢气反应(或还原)过程中产生盐酸(HCl气体)。事实上,如果反应加入额外的H2并能够在较长的区域或时间上扩展,HCl的浓度会继续上升超过反应抑制点并开始蚀刻硅模板。而这通常是要避免的状态,但是硅的蚀刻可用来清理下游消耗通道。在效果上,通过建立足够的HCl水平,可以以自维护模式通过使产生的HCl气体蚀刻不需要的沉积硅操作本公开的反应器。
图4显示了反应器50,其为本公开的分批堆栈反应器(BSR)的一个实施方案。在结构上,基座板堆叠以增加分批负载至几百个晶片(在某些实施方案中)。通过用H2气体冲洗基座外部,保护石英钟罩免于硅沉积。大多数已知的钟罩反应器都不能免受TCS的作用并且需要周期性的清理HCl以除去不需要的沉积硅。该过程会中断生产,从而对每片晶片(即CoO)的成本造成不利影响。
石英钟罩52包围反应器50。在所示实施方案中,反应器50包括用于TCS和H2的独立端口(尽管这不是本公开的必要特征);在其它实施方案中,TCS和H2可以预混合,并通过相同的端口进料。如图所示,H2源/消耗端口54和TCS源/消耗端口55在反应器的一端,H2消耗/源端口56和TCS消耗/源端口57在另一端。仅在作为源端口时,这些端口有差别。当利用给定端口的抽气能力时,其可以排放出已在反应器内混合的气体。
当气体在合适温度下混合时, H2能够还原TCS。图4显示了分离前体直到每个基座处于使用的点的设置。该方法还可以扩大化合物的利用率并延长运行时间,有利于进一步提高CoO。
在图5A和5B所示的设置中,每块模板的两侧均暴露于工业气体中。该特征可以使两侧均发生沉积,这具有增加化合物利用率和降低每片晶片的epi成本的综合效果。
图5A和5B所示的基座使用时大致类似于图2A和2B中所示的那些,并且可以并入不同类型的反应器构造中。
双侧基座是可堆叠的(如图3实施方案所示),但是它们也可如图6所示设置成矩阵。
图7显示了使用图5A和5B双侧基座的耗尽型反应器的侧视图。其结构大致类似于图3所示的反应器,除了堆叠的基座由双侧基座取代。
本领域技术人员将意识到,除了上述那些特定的实施例,公开的实施方案与各种领域相关。特别是,本领域技术人员不需要进行不必要的实验就可以将任何公开的基座放入任何公开的反应器设置中。
前面示范性实施方案的描述用于使本领域技术人员能够制造或使用要求保护的主题。但是本领域技术人员可以容易的对这些实施方案进行不同改进,并且本文指出的通用原理不需要创新就可应用于其它实施方案中。因此,本公开要求保护的主题并不限制于本文所示的实施方案,而是具有符合本文公开的原理和新特征的最大范围。
本说明书包括的所有这类其它的系统、方法、特征和优点均落入权利要求的范围内。
Claims (22)
1.一种用于将化合物沉积于晶片上的反应器,其中所述反应器为耗尽型,所述反应器根据化学气相沉积处理同时地将一化合物沉积到多个晶片的第一表面,所述反应器包括:
双向的第一端口,其位于晶片的第一表面的第一侧并设置为供给或排放化合物;
多个第一挡板通道,每一第一挡板通道连接到所述第一端口,且化合物通过每一第一挡板通道流动至晶片插袋;
多个垂直堆叠的基座板,每一基座板包括将晶片的第一表面暴露于所述化合物的晶片插袋,每一晶片插袋连接到第一挡板通道和一第二挡板通道;所述垂直堆叠的基座板为跨越每一晶片的第一表面的化合物提供一流动路径;
多个第二挡板通道,每一第二挡板通道连接到双向的第二端口,且化合物通过每一第二挡板通道流动至晶片插袋;以及
双向的第二端口,其位于晶片的第一表面的第二侧并设置为供给或排放化合物;
所述双向的第一端口、双向的第二端口、第一挡板通道、第二挡板通道,以及多个垂直堆叠的基座板提供一化合物流动路径;
其中双向的第一端口和双向的第二端口能够以供给模式或排气模式操作,以改变跨越晶片第一表面的化合物的流动。
2.根据权利要求1所述的反应器,进一步包括加热灯具。
3.根据权利要求2所述的反应器,进一步包括石英罩。
4.根据权利要求1所述的反应器,进一步包括石英罩。
5.根据权利要求1所述的反应器,其中所述反应器为分批堆栈反应器且所述垂直堆叠的基座板的每一个包括多个以水平矩阵布置的晶片插袋。
6.根据权利要求1所述的反应器,其中所述双向的第一端口包括具有至少一个TCS源端口和至少一个氢气源端口的多个双向的第一端口,且所述双向的第二端口包括具有至少一个TCS源端口和至少一个氢气源端口的多个双向的第二端口。
7.根据权利要求1-6任一项所述的反应器,其中所述的第一挡板通道、垂直堆叠的基座板、第二挡板通道的数量分别为两个。
8.一种用于将化合物沉积于晶片两个表面上的反应器,其中所述反应器为耗尽型,所述反应器根据化学气相沉积处理同时地将一化合物沉积到多个晶片的第一主表面和第二主表面,所述反应器包括:
双向的第一端口,其位于晶片的第一主表面和第二主表面的第一侧并设置为供给或排放化合物;
多个第一双侧挡板通道,每一第一双侧挡板通道连接到所述第一端口,且化合物通过每一第一双侧挡板通道流动至晶片插袋;
多个垂直堆叠的双侧基座板,其每一个包括将所述晶片的第一主表面和第二主表面暴露于所述化合物的晶片插袋,每一晶片插袋连接到所述第一双侧挡板通道和一第二双侧挡板通道;所述垂直堆叠的双侧基座板为跨越每一晶片的第一主表面的化合物提供一流动路径;
多个第二双侧挡板通道,每一第二双侧挡板通道连接到一双向的第二端口,且化合物通过每一第二双侧挡板通道流动至晶片插袋;以及
双向的第二端口,其位于晶片的第一主表面和第二主表面的第二侧并设置为供给或排放化合物;
所述双向的第一端口、双向的第二端口、第一双侧挡板通道、第二双侧挡板通道,以及多个垂直堆叠的双侧基座板提供一化合物流动路径;
其中双向的第一端口和双向的第二端口能够以供给模式或排气模式操作,以改变跨越晶片第一主表面和第二主表面的化合物的流动。
9.根据权利要求8所述的反应器,进一步包括加热灯具。
10.根据权利要求9所述的反应器,进一步包括石英罩。
11.根据权利要求8所述的反应器,进一步包括石英罩。
12.根据权利要求8所述的反应器,其中所述反应器为分批堆栈反应器且所述垂直堆叠的双侧基座板的每一个包括多个以水平矩阵布置的晶片插袋。
13.根据权利要求8所述的反应器,其中所述双向的第一端口包括具有至少一个TCS源端口和至少一个氢气源端口的多个双向的第一端口,且所述双向的第二端口包括具有至少一个TCS源端口和至少一个氢气源端口的多个双向的第二端口。
14.根据权利要求8-13任一项所述的反应器,其中所述的第一双侧挡板通道、垂直堆叠的双侧基座板、第二双侧挡板通道的数量分别为两个。
15.一种用于晶片表面上硅的耗尽型沉积的方法,包括步骤:
将多个晶片的每一个插入一晶片插袋,所述晶片插袋设置在多个垂直堆叠的基座内,所述基座收纳于一罩内;
加热所述的多个晶片;
使第一化合物沿第一方向流过所述晶片的至少一个表面,以将硅沉积到晶片的该表面直至第一化合物沿化合物流动的方向耗尽,第一化合物从第一端口提供并流过在所述垂直堆叠的基座之间形成的空间,第一化合物跨越流过所述晶片的该至少一个表面并通过第二端口排放;以及
使第二化合物沿第二方向流过所述晶片的至少一个表面,以将硅沉积到晶片的该表面直到第二化合物沿化合物流动的方向耗尽,第二化合物从第二端口提供并流过在所述垂直堆叠的基座之间形成的空间,第二化合物跨越所述晶片的该至少一个表面并通过第一端口排放,所述第二方向与所述第一方向相差180度,以及
在硅沉积期间用氢气冲洗基座外部。
16.根据权利要求15所述的方法,其中加热所述晶片的步骤包括使用加热灯具。
17.根据权利要求15所述的方法,其中加热所述晶片的步骤包括使用电阻加热。
18.根据权利要求15所述的方法,其中所述至少一个表面包括第一主表面和与第一主表面相对的第二主表面。
19.根据权利要求15所述的方法,其中所述化合物包括三氯硅烷。
20.根据权利要求16所述的方法,其中所述所述化合物包括三氯硅烷和氢气。
21.根据权利要求15所述的方法,其中所述方法在石英罩内部进行。
22.根据权利要求15-21任一项所述的方法,其中所述的垂直堆叠的基座的数量为两个。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16913909P | 2009-04-14 | 2009-04-14 | |
US61/169,139 | 2009-04-14 | ||
US12/759,820 US8656860B2 (en) | 2009-04-14 | 2010-04-14 | High efficiency epitaxial chemical vapor deposition (CVD) reactor |
PCT/US2010/030991 WO2010120850A1 (en) | 2009-04-14 | 2010-04-14 | High efficiency epitaxial chemical vapor deposition (cvd) reactor |
US12/759,820 | 2010-04-14 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102427971A CN102427971A (zh) | 2012-04-25 |
CN102427971B true CN102427971B (zh) | 2015-01-07 |
Family
ID=42981324
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201080021690.9A Expired - Fee Related CN102427971B (zh) | 2009-04-14 | 2010-04-14 | 高效外延化学气相沉积(cvd)反应器 |
Country Status (4)
Country | Link |
---|---|
US (1) | US8656860B2 (zh) |
EP (1) | EP2419306B1 (zh) |
CN (1) | CN102427971B (zh) |
WO (1) | WO2010120850A1 (zh) |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8399331B2 (en) | 2007-10-06 | 2013-03-19 | Solexel | Laser processing for high-efficiency thin crystalline silicon solar cell fabrication |
US9508886B2 (en) | 2007-10-06 | 2016-11-29 | Solexel, Inc. | Method for making a crystalline silicon solar cell substrate utilizing flat top laser beam |
US8193076B2 (en) | 2006-10-09 | 2012-06-05 | Solexel, Inc. | Method for releasing a thin semiconductor substrate from a reusable template |
US8035027B2 (en) | 2006-10-09 | 2011-10-11 | Solexel, Inc. | Solar module structures and assembly methods for pyramidal three-dimensional thin-film solar cells |
WO2010057060A2 (en) | 2008-11-13 | 2010-05-20 | Solexel, Inc. | Methods and systems for manufacturing thin-film solar cells |
US9076642B2 (en) | 2009-01-15 | 2015-07-07 | Solexel, Inc. | High-Throughput batch porous silicon manufacturing equipment design and processing methods |
US8906218B2 (en) | 2010-05-05 | 2014-12-09 | Solexel, Inc. | Apparatus and methods for uniformly forming porous semiconductor on a substrate |
US8673081B2 (en) | 2009-02-25 | 2014-03-18 | Crystal Solar, Inc. | High throughput multi-wafer epitaxial reactor |
US8298629B2 (en) | 2009-02-25 | 2012-10-30 | Crystal Solar Incorporated | High throughput multi-wafer epitaxial reactor |
US9318644B2 (en) | 2009-05-05 | 2016-04-19 | Solexel, Inc. | Ion implantation and annealing for thin film crystalline solar cells |
US20130167915A1 (en) | 2009-12-09 | 2013-07-04 | Solexel, Inc. | High-efficiency photovoltaic back-contact solar cell structures and manufacturing methods using three-dimensional semiconductor absorbers |
CN102844883B (zh) | 2010-02-12 | 2016-01-20 | 速力斯公司 | 用于制造光电池和微电子器件的半导体衬底的双面可重复使用的模板 |
US9870937B2 (en) | 2010-06-09 | 2018-01-16 | Ob Realty, Llc | High productivity deposition reactor comprising a gas flow chamber having a tapered gas flow space |
CN103154929A (zh) | 2010-06-14 | 2013-06-12 | 特鲁塔格科技公司 | 用于生产具有标识符的包装物品的系统 |
KR101313262B1 (ko) | 2010-07-12 | 2013-09-30 | 삼성전자주식회사 | 화학 기상 증착 장치 및 이를 이용한 반도체 에피 박막의 제조 방법 |
US8946547B2 (en) | 2010-08-05 | 2015-02-03 | Solexel, Inc. | Backplane reinforcement and interconnects for solar cells |
WO2012099700A1 (en) * | 2010-12-31 | 2012-07-26 | Solexel, Inc. | Deposition systems and processes |
EP2710639A4 (en) | 2011-05-20 | 2015-11-25 | Solexel Inc | SELF-ACTIVATED FRONT SURFACE POLARIZATION FOR A SOLAR CELL |
US9255346B2 (en) | 2011-05-27 | 2016-02-09 | Crystal Solar, Incorporated | Silicon wafers by epitaxial deposition |
US11414759B2 (en) * | 2013-11-29 | 2022-08-16 | Taiwan Semiconductor Manufacturing Co., Ltd | Mechanisms for supplying process gas into wafer process apparatus |
EP2950269A1 (en) * | 2014-05-27 | 2015-12-02 | Thomson Licensing | Method and apparatus for improving estimation of disparity in a stereo image pair using a hybrid recursive matching processing |
WO2015192105A1 (en) * | 2014-06-12 | 2015-12-17 | Crystal Solar, Inc. | Cvd epitaxial reactor chamber with resistive heating, three channel substrate carrier and gas preheat structure |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5899360A (en) * | 1995-06-09 | 1999-05-04 | Colgate - Palmolive Company | Multi-chamber refillable dispenser |
CN1441464A (zh) * | 2002-02-25 | 2003-09-10 | 联华电子股份有限公司 | 气相流体运送系统的流体加热注入装置 |
CN1538505A (zh) * | 2003-04-18 | 2004-10-20 | 矽统科技股份有限公司 | 改善晶圆表面平坦度的方法 |
Family Cites Families (108)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4082570A (en) * | 1976-02-09 | 1978-04-04 | Semicon, Inc. | High intensity solar energy converter |
US4070206A (en) * | 1976-05-20 | 1978-01-24 | Rca Corporation | Polycrystalline or amorphous semiconductor photovoltaic device having improved collection efficiency |
US4043894A (en) * | 1976-05-20 | 1977-08-23 | Burroughs Corporation | Electrochemical anodization fixture for semiconductor wafers |
US4165252A (en) * | 1976-08-30 | 1979-08-21 | Burroughs Corporation | Method for chemically treating a single side of a workpiece |
US4348254A (en) * | 1978-12-27 | 1982-09-07 | Solarex Corporation | Method of making solar cell |
US4251679A (en) * | 1979-03-16 | 1981-02-17 | E-Cel Corporation | Electromagnetic radiation transducer |
US4249959A (en) * | 1979-11-28 | 1981-02-10 | Rca Corporation | Solar cell construction |
US4361950A (en) * | 1980-03-24 | 1982-12-07 | Exxon Research & Engineering Co. | Method of making solar cell with wrap-around electrode |
US4427839A (en) * | 1981-11-09 | 1984-01-24 | General Electric Company | Faceted low absorptance solar cell |
US4479847A (en) * | 1981-12-30 | 1984-10-30 | California Institute Of Technology | Equilibrium crystal growth from substrate confined liquid |
US4409423A (en) * | 1982-03-09 | 1983-10-11 | The United States Of America As Represented By The Secretary Of The Air Force | Hole matrix vertical junction solar cell |
US4468283A (en) * | 1982-12-17 | 1984-08-28 | Irfan Ahmed | Method for etching and controlled chemical vapor deposition |
US4461922A (en) * | 1983-02-14 | 1984-07-24 | Atlantic Richfield Company | Solar cell module |
US4626613A (en) * | 1983-12-23 | 1986-12-02 | Unisearch Limited | Laser grooved solar cell |
US4672023A (en) * | 1985-10-21 | 1987-06-09 | Avantek, Inc. | Method for planarizing wafers |
US5024953A (en) * | 1988-03-22 | 1991-06-18 | Hitachi, Ltd. | Method for producing opto-electric transducing element |
US4922277A (en) * | 1988-11-28 | 1990-05-01 | The United States Of America As Represented By The Secretary Of The Air Force | Silicon wafer photoresist developer |
US5208068A (en) * | 1989-04-17 | 1993-05-04 | International Business Machines Corporation | Lamination method for coating the sidewall or filling a cavity in a substrate |
GB8927709D0 (en) * | 1989-12-07 | 1990-02-07 | Secretary Of The State For Def | Silicon quantum wires |
US5073230A (en) * | 1990-04-17 | 1991-12-17 | Arizona Board Of Regents Acting On Behalf Of Arizona State University | Means and methods of lifting and relocating an epitaxial device layer |
US5420067A (en) * | 1990-09-28 | 1995-05-30 | The United States Of America As Represented By The Secretary Of The Navy | Method of fabricatring sub-half-micron trenches and holes |
US5248621A (en) * | 1990-10-23 | 1993-09-28 | Canon Kabushiki Kaisha | Method for producing solar cell devices of crystalline material |
US5112453A (en) * | 1990-10-31 | 1992-05-12 | Behr Omri M | Method and apparatus for producing etched plates for graphic printing |
JPH0690014A (ja) * | 1992-07-22 | 1994-03-29 | Mitsubishi Electric Corp | 薄型太陽電池及びその製造方法,エッチング方法及び自動エッチング装置,並びに半導体装置の製造方法 |
US5316593A (en) * | 1992-11-16 | 1994-05-31 | Midwest Research Institute | Heterojunction solar cell with passivated emitter surface |
DE4310206C2 (de) * | 1993-03-29 | 1995-03-09 | Siemens Ag | Verfahren zur Herstellung einer Solarzelle aus einer Substratscheibe |
US5660680A (en) * | 1994-03-07 | 1997-08-26 | The Regents Of The University Of California | Method for fabrication of high vertical aspect ratio thin film structures |
US5645684A (en) * | 1994-03-07 | 1997-07-08 | The Regents Of The University Of California | Multilayer high vertical aspect ratio thin film structures |
US5538564A (en) * | 1994-03-18 | 1996-07-23 | Regents Of The University Of California | Three dimensional amorphous silicon/microcrystalline silicon solar cells |
US5882988A (en) * | 1995-08-16 | 1999-03-16 | Philips Electronics North America Corporation | Semiconductor chip-making without scribing |
CA2232857C (en) * | 1995-10-05 | 2003-05-13 | Jalal Salami | Structure and fabrication process for self-aligned locally deep-diffused emitter (salde) solar cell |
US5681392A (en) * | 1995-12-21 | 1997-10-28 | Xerox Corporation | Fluid reservoir containing panels for reducing rate of fluid flow |
US5935653A (en) * | 1996-01-18 | 1999-08-10 | Micron Technology, Inc. | Methods for coating a substrate |
US6399143B1 (en) * | 1996-04-09 | 2002-06-04 | Delsys Pharmaceutical Corporation | Method for clamping and electrostatically coating a substrate |
US6091021A (en) * | 1996-11-01 | 2000-07-18 | Sandia Corporation | Silicon cells made by self-aligned selective-emitter plasma-etchback process |
AUPO347196A0 (en) * | 1996-11-06 | 1996-12-05 | Pacific Solar Pty Limited | Improved method of forming polycrystalline-silicon films on glass |
US6756289B1 (en) * | 1996-12-27 | 2004-06-29 | Canon Kabushiki Kaisha | Method of producing semiconductor member and method of producing solar cell |
US20030039843A1 (en) * | 1997-03-14 | 2003-02-27 | Christopher Johnson | Photoactive coating, coated article, and method of making same |
US7176111B2 (en) * | 1997-03-28 | 2007-02-13 | Interuniversitair Microelektronica Centrum (Imec) | Method for depositing polycrystalline SiGe suitable for micromachining and devices obtained thereof |
FR2763964B1 (fr) * | 1997-05-28 | 1999-08-13 | Sgs Thomson Microelectronics | Amelioration du flux gazeux dans un reacteur d'epitaxie |
JP3740251B2 (ja) * | 1997-06-09 | 2006-02-01 | キヤノン株式会社 | 太陽電池モジュールの製造方法 |
WO1999001893A2 (de) * | 1997-06-30 | 1999-01-14 | MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. | Verfahren zur herstellung von schichtartigen gebilden auf einem substrat, substrat sowie mittels des verfahrens hergestellte halbleiterbauelemente |
US6114046A (en) * | 1997-07-24 | 2000-09-05 | Evergreen Solar, Inc. | Encapsulant material for solar cell module and laminated glass applications |
EP1062689B1 (de) * | 1998-03-13 | 2009-09-09 | Peter Dr. Fath | Solarzellenanordnung und verfahren zur herstellung einer solarzellenanordnung |
US6416647B1 (en) * | 1998-04-21 | 2002-07-09 | Applied Materials, Inc. | Electro-chemical deposition cell for face-up processing of single semiconductor substrates |
US6331208B1 (en) | 1998-05-15 | 2001-12-18 | Canon Kabushiki Kaisha | Process for producing solar cell, process for producing thin-film semiconductor, process for separating thin-film semiconductor, and process for forming semiconductor |
AUPP437598A0 (en) * | 1998-06-29 | 1998-07-23 | Unisearch Limited | A self aligning method for forming a selective emitter and metallization in a solar cell |
JP2000022185A (ja) * | 1998-07-03 | 2000-01-21 | Sharp Corp | 太陽電池セル及びその製造方法 |
US6096229A (en) * | 1998-07-30 | 2000-08-01 | Lucent Technologies Inc. | Method of making alignment grooves in an optical connector support member |
US6555443B1 (en) * | 1998-11-11 | 2003-04-29 | Robert Bosch Gmbh | Method for production of a thin film and a thin-film solar cell, in particular, on a carrier substrate |
US6461932B1 (en) * | 1998-12-14 | 2002-10-08 | National Semiconductor Corporation | Semiconductor trench isolation process that utilizes smoothening layer |
US6881644B2 (en) * | 1999-04-21 | 2005-04-19 | Silicon Genesis Corporation | Smoothing method for cleaved films made using a release layer |
JP3619053B2 (ja) * | 1999-05-21 | 2005-02-09 | キヤノン株式会社 | 光電変換装置の製造方法 |
US6664169B1 (en) | 1999-06-08 | 2003-12-16 | Canon Kabushiki Kaisha | Process for producing semiconductor member, process for producing solar cell, and anodizing apparatus |
JP2001007362A (ja) * | 1999-06-17 | 2001-01-12 | Canon Inc | 半導体基材および太陽電池の製造方法 |
JP5079959B2 (ja) * | 1999-08-26 | 2012-11-21 | ブルーワー サイエンス アイ エヌ シー. | デュアル・ダマシンプロセス用の改良された充填物質 |
US6602767B2 (en) * | 2000-01-27 | 2003-08-05 | Canon Kabushiki Kaisha | Method for transferring porous layer, method for making semiconductor devices, and method for making solar battery |
US6964732B2 (en) * | 2000-03-09 | 2005-11-15 | Interuniversitair Microelektronica Centrum (Imec) | Method and apparatus for continuous formation and lift-off of porous silicon layers |
AU781761B2 (en) * | 2000-03-09 | 2005-06-09 | Interuniversitair Micro-Elektronica Centrum (Imec) | Method for the formation and lift-off of porous silicon layers |
US6294725B1 (en) * | 2000-03-31 | 2001-09-25 | Trw Inc. | Wireless solar cell array electrical interconnection scheme |
JP2001284622A (ja) * | 2000-03-31 | 2001-10-12 | Canon Inc | 半導体部材の製造方法及び太陽電池の製造方法 |
US6518172B1 (en) * | 2000-08-29 | 2003-02-11 | Micron Technology, Inc. | Method for applying uniform pressurized film across wafer |
NL1016779C2 (nl) * | 2000-12-02 | 2002-06-04 | Cornelis Johannes Maria V Rijn | Matrijs, werkwijze voor het vervaardigen van precisieproducten met behulp van een matrijs, alsmede precisieproducten, in het bijzonder microzeven en membraanfilters, vervaardigd met een dergelijke matrijs. |
JP4716558B2 (ja) * | 2000-12-12 | 2011-07-06 | 株式会社デンソー | 炭化珪素基板 |
US6602760B2 (en) * | 2000-12-21 | 2003-08-05 | Interuniversitair Microelektronica Centrum (Imec) | Method of producing a semiconductor layer on a substrate |
US6969472B2 (en) * | 2001-04-19 | 2005-11-29 | Lsi Logic Corporation | Method of fabricating sub-micron hemispherical and hemicylidrical structures from non-spherically shaped templates |
US6524880B2 (en) * | 2001-04-23 | 2003-02-25 | Samsung Sdi Co., Ltd. | Solar cell and method for fabricating the same |
JP2002353423A (ja) * | 2001-05-25 | 2002-12-06 | Canon Inc | 板部材の分離装置及び処理方法 |
JP2003052185A (ja) | 2001-05-30 | 2003-02-21 | Canon Inc | 電力変換器およびそれを用いる光起電力素子モジュール並びに発電装置 |
EP2223895A1 (en) | 2001-10-30 | 2010-09-01 | JGC Catalysts and Chemicals Ltd. | Tubular titanium oxide particles and use of the same |
JP2004055803A (ja) * | 2002-07-19 | 2004-02-19 | Renesas Technology Corp | 半導体装置 |
US6995032B2 (en) * | 2002-07-19 | 2006-02-07 | Cree, Inc. | Trench cut light emitting diodes and methods of fabricating same |
EP1385199A1 (en) * | 2002-07-24 | 2004-01-28 | IMEC vzw, Interuniversitair Microelectronica Centrum vzw | Method for making thin film devices intended for solar cells or SOI application |
EP1529317A2 (en) * | 2002-08-06 | 2005-05-11 | Avecia Limited | Organic electronic devices |
WO2004038811A1 (ja) | 2002-10-25 | 2004-05-06 | Nakajima Glass Co., Inc. | 太陽電池モジュールの製造方法 |
GB0227902D0 (en) | 2002-11-29 | 2003-01-08 | Ingenia Holdings Ltd | Template |
NL1022155C2 (nl) * | 2002-12-12 | 2004-06-22 | Otb Group Bv | Werkwijze, alsmede inrichting voor het behandelen van een oppervlak van ten minste één substraat. |
US7312440B2 (en) * | 2003-01-14 | 2007-12-25 | Georgia Tech Research Corporation | Integrated micro fuel processor and flow delivery infrastructure |
US7402448B2 (en) | 2003-01-31 | 2008-07-22 | Bp Corporation North America Inc. | Photovoltaic cell and production thereof |
US6911379B2 (en) * | 2003-03-05 | 2005-06-28 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method of forming strained silicon on insulator substrate |
US20040175893A1 (en) * | 2003-03-07 | 2004-09-09 | Applied Materials, Inc. | Apparatuses and methods for forming a substantially facet-free epitaxial film |
JP4761706B2 (ja) * | 2003-12-25 | 2011-08-31 | 京セラ株式会社 | 光電変換装置の製造方法 |
JP3982502B2 (ja) * | 2004-01-15 | 2007-09-26 | セイコーエプソン株式会社 | 描画装置 |
EP1560272B1 (en) * | 2004-01-29 | 2016-04-27 | Panasonic Intellectual Property Management Co., Ltd. | Solar cell module |
US7335555B2 (en) * | 2004-02-05 | 2008-02-26 | Advent Solar, Inc. | Buried-contact solar cells with self-doping contacts |
US7144751B2 (en) * | 2004-02-05 | 2006-12-05 | Advent Solar, Inc. | Back-contact solar cells and methods for fabrication |
WO2006015185A2 (en) * | 2004-07-30 | 2006-02-09 | Aonex Technologies, Inc. | GaInP/GaAs/Si TRIPLE JUNCTION SOLAR CELL ENABLED BY WAFER BONDING AND LAYER TRANSFER |
WO2006031798A2 (en) * | 2004-09-10 | 2006-03-23 | Jx Crystals Inc. | Solar photovoltaic mirror modules |
JP4464240B2 (ja) * | 2004-10-06 | 2010-05-19 | キヤノン株式会社 | 部材の処理装置及び処理方法 |
US8129822B2 (en) * | 2006-10-09 | 2012-03-06 | Solexel, Inc. | Template for three-dimensional thin-film solar cell manufacturing and methods of use |
JP4340246B2 (ja) * | 2005-03-07 | 2009-10-07 | シャープ株式会社 | 薄膜太陽電池およびその製造方法 |
US7402523B2 (en) * | 2005-03-31 | 2008-07-22 | Tokyo Electron Limited | Etching method |
JP2006303152A (ja) * | 2005-04-20 | 2006-11-02 | Fuji Electric Holdings Co Ltd | エピタキシャル成膜装置およびエピタキシャル成膜方法 |
GB0510051D0 (en) | 2005-05-17 | 2005-06-22 | Forticrete Ltd | Interlocking roof tiles |
US20060266916A1 (en) * | 2005-05-25 | 2006-11-30 | Molecular Imprints, Inc. | Imprint lithography template having a coating to reflect and/or absorb actinic energy |
US20070095386A1 (en) | 2005-06-06 | 2007-05-03 | Solaria Corporation | Method and system for integrated solar cell using a plurality of photovoltaic regions |
US7648927B2 (en) * | 2005-06-21 | 2010-01-19 | Applied Materials, Inc. | Method for forming silicon-containing materials during a photoexcitation deposition process |
US20070077763A1 (en) * | 2005-09-30 | 2007-04-05 | Molecular Imprints, Inc. | Deposition technique to planarize a multi-layer structure |
KR100699348B1 (ko) * | 2005-10-11 | 2007-03-23 | 삼성전자주식회사 | 포토레지스트 용액을 효율적으로 사용하는 분사식포토레지스트 코팅 장치 및 방법 |
US7786376B2 (en) * | 2006-08-22 | 2010-08-31 | Solexel, Inc. | High efficiency solar cells and manufacturing methods |
US7745313B2 (en) * | 2008-05-28 | 2010-06-29 | Solexel, Inc. | Substrate release methods and apparatuses |
US8035027B2 (en) * | 2006-10-09 | 2011-10-11 | Solexel, Inc. | Solar module structures and assembly methods for pyramidal three-dimensional thin-film solar cells |
US20080264477A1 (en) * | 2006-10-09 | 2008-10-30 | Soltaix, Inc. | Methods for manufacturing three-dimensional thin-film solar cells |
US8512581B2 (en) * | 2006-10-09 | 2013-08-20 | Solexel, Inc. | Methods for liquid transfer coating of three-dimensional substrates |
US8035028B2 (en) * | 2006-10-09 | 2011-10-11 | Solexel, Inc. | Pyramidal three-dimensional thin-film solar cells |
US8053665B2 (en) * | 2008-11-26 | 2011-11-08 | Solexel, Inc. | Truncated pyramid structures for see-through solar cells |
US7999174B2 (en) | 2006-10-09 | 2011-08-16 | Solexel, Inc. | Solar module structures and assembly methods for three-dimensional thin-film solar cells |
US20080241384A1 (en) * | 2007-04-02 | 2008-10-02 | Asm Genitech Korea Ltd. | Lateral flow deposition apparatus and method of depositing film by using the apparatus |
-
2010
- 2010-04-14 US US12/759,820 patent/US8656860B2/en not_active Expired - Fee Related
- 2010-04-14 EP EP10765064.0A patent/EP2419306B1/en not_active Not-in-force
- 2010-04-14 WO PCT/US2010/030991 patent/WO2010120850A1/en active Application Filing
- 2010-04-14 CN CN201080021690.9A patent/CN102427971B/zh not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5899360A (en) * | 1995-06-09 | 1999-05-04 | Colgate - Palmolive Company | Multi-chamber refillable dispenser |
CN1441464A (zh) * | 2002-02-25 | 2003-09-10 | 联华电子股份有限公司 | 气相流体运送系统的流体加热注入装置 |
CN1538505A (zh) * | 2003-04-18 | 2004-10-20 | 矽统科技股份有限公司 | 改善晶圆表面平坦度的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN102427971A (zh) | 2012-04-25 |
EP2419306B1 (en) | 2016-03-30 |
US20100267245A1 (en) | 2010-10-21 |
WO2010120850A1 (en) | 2010-10-21 |
EP2419306A4 (en) | 2013-01-02 |
US8656860B2 (en) | 2014-02-25 |
EP2419306A1 (en) | 2012-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102427971B (zh) | 高效外延化学气相沉积(cvd)反应器 | |
JP5555241B2 (ja) | 材料蒸着のための装置、材料蒸着のためのシステムおよび材料蒸着のための方法 | |
US9441295B2 (en) | Multi-channel gas-delivery system | |
US8652259B2 (en) | Scalable, high-throughput, multi-chamber epitaxial reactor for silicon deposition | |
CN101322251B (zh) | 沉积光伏器件用的微晶硅层的方法与设备 | |
KR101368598B1 (ko) | 증착 시스템 및 공정 | |
US8968473B2 (en) | Stackable multi-port gas nozzles | |
JP2010529682A (ja) | 均一なシリコン膜を堆積させる装置及びそれを製造する方法 | |
CN101736317A (zh) | 原子层沉积设备 | |
CN109545893A (zh) | 一种n型太阳能电池多步硼扩散工艺 | |
US8562745B2 (en) | Stable wafer-carrier system | |
CN105839074A (zh) | 用于太阳能电池的金属有机化学气相沉积设备 | |
CN104521003B (zh) | 太阳能电池的制造方法、以及通过该制造方法制造了的太阳能电池 | |
CN100470726C (zh) | 淀积高质量微晶半导体材料的方法 | |
CN102304698B (zh) | Htcvd法碳化硅晶体生长装置 | |
CN102834546B (zh) | 用于在光伏应用中沉积微晶材料的方法和设备 | |
CN220999956U (zh) | 匀流组件及扩散设备 | |
CN213925126U (zh) | 环形mocvd反应器结构及iii-v族化合物半导体材料生产系统 | |
KR100990687B1 (ko) | 벌크 실리콘 솔라셀 제조장치 및 그 제조방법 | |
CN205092230U (zh) | 用于led外延生长的石墨承载盘及外延设备 | |
JP6743727B2 (ja) | 半導体ウェハの熱処理方法および太陽電池の製造方法 | |
Fu et al. | A high-throughput silicon epitaxy system for photovoltaic application | |
Rozenzon et al. | Multi-channel gas-delivery system | |
CN102231416A (zh) | 化学气相沉积反应设备 | |
Kunz et al. | Spatial Uniformity of Large-Area Silicon Layers (43× 43 cm2) Grown by Convection-Assisted Chemical Vapor Deposition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150107 Termination date: 20190414 |