CN104521003B - 太阳能电池的制造方法、以及通过该制造方法制造了的太阳能电池 - Google Patents

太阳能电池的制造方法、以及通过该制造方法制造了的太阳能电池 Download PDF

Info

Publication number
CN104521003B
CN104521003B CN201380042132.4A CN201380042132A CN104521003B CN 104521003 B CN104521003 B CN 104521003B CN 201380042132 A CN201380042132 A CN 201380042132A CN 104521003 B CN104521003 B CN 104521003B
Authority
CN
China
Prior art keywords
ammonia
plasma
flow
silicon nitride
solaode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201380042132.4A
Other languages
English (en)
Other versions
CN104521003A (zh
Inventor
高桥光人
渡部武纪
大塚宽之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Publication of CN104521003A publication Critical patent/CN104521003A/zh
Application granted granted Critical
Publication of CN104521003B publication Critical patent/CN104521003B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/452Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by activating reactive gas streams before their introduction into the reaction chamber, e.g. by ionisation or addition of reactive species
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • H01L21/205
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

一种生产率良好地形成钝化效果优良的由氮化硅构成的反射防止膜的太阳能电池的制造方法,其特征在于,使用具备成膜室(101)、具有使氨气激发的激发部(111a、112a)和对激发了的氨气导入硅烷气体而活性化的活性化反应部(111b、112b)的等离子体室(111、112)、以及针对每个等离子体室(111、112)调整氨气和硅烷气体的流量比的流量控制器(113)的远程等离子体CVD装置(100),在成膜室(101)中输送半导体基板(102)的同时,通过来自第一等离子体室(111)的等离子体流,在半导体基板(102)上形成第一氮化硅膜,接着通过来自导入了流量比与第一等离子体室(111)不同的氨气和硅烷气体的第二等离子体室(112)的等离子体流,形成组成与第一氮化硅膜不同的第二氮化硅膜。

Description

太阳能电池的制造方法、以及通过该制造方法制造了的太阳能电池
技术领域
本发明涉及使用了远程等离子体CVD装置的太阳能电池的制造方法、以及通过该制造方法制造了的太阳能电池。
背景技术
太阳能电池是将光能变换为电力的半导体元件,有p-n结型、pin型、肖特基型等,特别是p-n结型被广泛使用。另外,如果根据其基板材料来分类太阳能电池,则大致分成硅晶体类太阳能电池、非晶(非晶质)硅类太阳能电池、化合物半导体类太阳能电池这3种。硅晶体类太阳能电池进一步被分类为单晶类太阳能电池和多晶类太阳能电池。太阳能电池用硅晶体基板能够比较容易地制造,所以其生产规模当前最大,被认为今后也将进一步普及(例如,日本特开平8-073297号公报(专利文献1))。
关于太阳能电池的输出特性,一般,通过使用太阳模拟器测定输出电流电压曲线来评价。在该曲线上,将输出电流Imax与输出电压Vmax之积Imax×Vmax成为最大的点称为最大输出Pmax,将该Pmax除以入射到太阳能电池的总光能(S×I:S是元件面积、I是照射的光的强度)而得到的值:
η={Pmax/(S×I)}×100(%)
被定义为太阳能电池的变换效率η。
为了提高变换效率η,增大短路电流Isc(在电流电压曲线中V=0时的输出电流值)或者Voc(在电流电压曲线中I=0时的输出电压值),并且使输出电流电压曲线尽可能接近方形是重要的。另外,关于输出电流电压曲线的方形的程度,一般,能够通过用FF=Pmax/(Isc×Voc)定义的填充系数(曲线因子)来评价,意味着该FF的值越接近1,输出电流电压曲线越接近理想的方形,变换效率η也越高。
为了提高上述变换效率η,降低载流子的表面再结合是重要的。在硅晶体类太阳能电池中,利用阳光的入射光而光生成了的少数载流子在主要通过扩散到达p-n结面之后,从在受光面以及背面上安装了的电极作为多数载流子被取出到外部,成为电能。
此时,能够经由在电极面以外的基板表面存在的界面能级而作为原始电流取出了的载流子有时进行再结合而损失,导致变换效率η降低。
因此,在高效太阳能电池中,针对硅基板的受光面以及背面,除了与电极的接触部以外用绝缘膜保护,抑制硅基板和绝缘膜的界面上的载流子再结合,实现变换效率η的提高。作为这样的绝缘膜,氮化硅膜被用作有用的膜。其理由在于,氮化硅膜作为结晶类硅太阳能电池的反射防止膜发挥功能,同时硅基板表面以及内部的钝化效果也优秀。
氮化硅膜以往通过热CVD、等离子体CVD、催化剂CVD等CVD法(Chemical Vapor Deposition:化学气相蒸镀法)形成。在它们中最一般普及的是等离子体CVD法。图1是示意地示出一般称为直接等离子体CVD的平行平板型等离子体CVD装置的图。图1所示的CVD装置10具有构成成膜室1的真空腔10c,在该成膜室1中,配设了用于在规定位置载置半导体基板2的托盘3、用于将该托盘3保持为一定温度的加热器块4、以及控制加热器块4的温度的温度控制单元5。另外,在成膜室1中,具备将作为反应性气体的规定的成膜用气体导入到成膜室1内的成膜用气体导入路径6、对被导入了的气体提供能量来产生等离子体的高频电源7、以及排气装置8。
在通过上述CVD装置对绝缘膜进行成膜的情况下,在通过成膜用气体导入路径6将规定的成膜用气体以规定的流量导入到成膜室1内之后,使高频电源7动作来设定高频电场。通过该操作,产生高频放电而成膜用气体进行等离子体化,利用通过等离子体产生的反应,在半导体基板2的表面对绝缘膜进行成膜。例如,在对氮化硅膜进行成膜的情况下,作为成膜用气体,将硅烷和氨气的混合气体从成膜用气体导入路径6导入到成膜室1内,利用等离子体中的硅烷的分解反应等而对氮化硅膜进行成膜。
关于等离子体CVD法,即使在工艺温度为400℃左右的比较低的温度下仍具有高的成膜速度,所以在太阳能电池的绝缘膜形成工艺中广泛使用。但是,在等离子体中生成的高能量电荷粒子容易对成膜了的膜、硅基板表面造成损伤,所以所得到的氮化硅膜存在界面能级密度变多而得不到充分的钝化效果的问题。因此,为了提高钝化效果,需要实现利用氢等的悬空键(未结合键)的密封。
针对这样的问题,例如,在日本特开2005-217220号公报(专利文献2)中,作为抑制等离子体损伤的方法,提出了远程等离子体CVD法。图2是示意地示出该装置的一个例子的图。图2所示的远程等离子体CVD装置具备使被导入到内部的反应气体激发而等离子体化的筒状的激发室93、和在该激发室93的下方与该激发室93连通地设置了的反应室(处理室)98。另外,激发室93在其上部具备载流子气体91的导入口93a、在其中央部具备经由匹配装置94连接微波电源95的高频导入部(波导管)93c,对反应室98连接成膜用的反应气体97的供给管,并且在室内设置了支撑基板99a的基板支撑部99。在这样的结构的装置中,首先从微波电源95向激发室93导入微波而使载流子气体91激发,将其沿着气体的排气的流动而导入到反应室98,使导入到反应室98内的反应气体97活性化,与基板99a接触,从而能够在基板99a上成膜,例如,能够作为载流子气体91使用氨气,作为反应气体97使用硅烷气体而在基板99a上形成氮化硅膜。根据该远程等离子体CVD装置,由于是将基板配置于远离等离子体区域96的位置的结构,所以能够在某种程度上减轻基板的等离子体损伤。
另外,在日本特开2009-117569号公报(专利文献3)中,公开了在利用表面波等离子体的氮化硅膜的成膜前,作为前处理进行使用了氨气的等离子体处理,从而钝化效果提高。另外,在日本特开2009-130041号公报(专利文献4)中,公开了在氮化硅膜的成膜前,通过使用包含氢气和氨气的混合气体形成的等离子体来进行处理,从而钝化效果提高。
但是,在上述方法中,都需要与绝缘膜形成工艺不同的工艺,所以存在制造成本变高并且生产率难以提高这样的问题。
另外,如果使通过等离子体CVD法形成的氮化硅膜的膜组成在化学计量比上偏向硅过剩侧,形成正的固定电荷,则产生能带弯曲,在硅基板和氮化硅膜接触界面附近,形成在硅基板侧电子变得过剩的反转层,能够利用这一点来提高n区域侧的钝化效果。
在日本特开2002-270879号公报(专利文献5)中,公开了在作为第一电介体膜形成了高折射率的氮化硅膜之后,在其上作为第二电介体膜形成低折射率的氮化硅膜,而成为两层构造,从而变换效率提高。但是,在该方法中,高折射率和低折射率的氮化硅膜的形成工艺独立,例如首先形成高折射率的氮化硅膜,接下来进行氨气和硅烷气体的流量比等成膜气体的流量调整,之后,形成低折射率的氮化硅膜,所以制造成本变高,生产率提高困难。
发明内容
本发明是鉴于上述事情而完成的,其目的在于,提供一种生产率良好地形成钝化效果优良的由氮化硅构成的反射防止膜的太阳能电池的制造方法、以及通过该制造方法制造的太阳能电池。
本发明者为了达成上述目的而精心研究,其结果,发现在远程等离子体CVD装置中,作为成膜气体使用氨气以及硅烷气体,在半导体基板中,通过来自第一等离子体室的等离子体流、以及第二等离子体室中的基于流量比与第一等离子体室不同的氨气和硅烷气体的等离子体流,依次成膜而形成组成不同的两层以上的构造的氮化硅膜,特别在半导体基板侧形成硅过剩的氮化硅膜,从而在半导体基板和氮化硅膜接触界面附近,形成在半导体基板侧电子变得过剩的反转层,并且基板的等离子体损伤被减轻而钝化效果优良,完成本发明。
因此,本发明为了达成上述目的,提供以下太阳能电池的制造方法以及太阳能电池。
〔1〕一种太阳能电池的制造方法,具有使用远程等离子体CVD装置在半导体基板表面形成由氮化硅构成的反射防止膜的工序,其特征在于,
所述远程等离子体CVD装置具备:成膜室,以能够移动的方式配置半导体基板;以及多个等离子体室,在该成膜室的上方连通地设置,产生氨气的等离子体流,对该等离子体流导入硅烷气体,之后,向成膜室喷出该等离子体流,并且,所述多个等离子体室分别附设有调整被导入的氨气和硅烷气体的流量比的流量控制器,
所述半导体基板通过来自第一等离子体室的等离子体流形成第一氮化硅膜,进而移动到第二等离子体室的下方,通过基于流量比与第一等离子体室不同的氨气和硅烷气体的等离子体流,形成组成与所述第一氮化硅膜不同的第二氮化硅膜。
〔2〕根据〔1〕记载的太阳能电池的制造方法,其特征在于,所述第一等离子体室中的氨气和硅烷气体的流量比、即氨气流量/硅烷气体流量是0.1~1.0。
〔3〕根据〔2〕记载的太阳能电池的制造方法,其特征在于,所述第二等离子体室中的氨气和硅烷气体的流量比、即氨气流量/硅烷气体流量是1.5~3.0。
〔4〕根据〔1〕~〔3〕中的任意一个记载的太阳能电池的制造方法,其特征在于,关于所述半导体基板,在第一导电类型的硅基板的成为受光面的一侧的面,形成了与第一导电类型相反的导电类型的扩散层,在该扩散层上,形成反射防止膜。
〔5〕根据〔1〕~〔4〕中的任意一个记载的太阳能电池的制造方法,其特征在于,关于所述半导体基板,在第一导电类型的硅基板的成为与受光面相反的面的一侧的面的至少一部分,形成了与第一导电类型相同的导电类型的扩散层,在形成了该扩散层的面上,形成反射防止膜。
〔6〕一种通过〔1〕~〔5〕中的任意一个记载的太阳能电池的制造方法制造而成的太阳能电池。
根据本发明,通过远程等离子体CVD法来形成两层构造的氮化硅膜,所以能够形成钝化效果优良的反射防止膜,并且在固定了2个等离子体室各自中的氨气和硅烷气体的流量比的状态下,连续地成膜,所以能够提高太阳能电池的生产率,同时稳定地形成期望的组成比的两层构造的氮化硅膜。
附图说明
图1是示出平行平板型等离子体CVD装置的一个例子的概略图。
图2是示出以往的远程等离子体CVD装置的一个例子的概略图。
图3是示出本发明的太阳能电池的制造工序的一个例子的概略图。图3(A)示出基板,图3(B)示出在基板背面形成了n型扩散层的状态,图3(C)示出在基板表面形成了p型扩散层的状态,图3(D)示出在基板表面和背面形成了反射防止膜(氮化硅膜)的状态,图3(E)示出形成了指状电极以及背面电极的状态,图3(F)示出形成了母线电极的状态。
图4是示出本发明的太阳能电池的制造工序的其他例子的概略图。图4(A)示出基板,图4(B)示出在基板表面形成了n型扩散层的状态,图4(C)示出在基板表面形成了反射防止膜(氮化硅膜)的状态,图4(D)示出形成了指状电极、背面电极以及母线电极的状态。
图5是示出在本发明的太阳能电池的制造方法中使用的远程等离子体CVD装置的一个例子的概略图。
(符号说明)
1、101:成膜室;2、102:半导体基板;3、103:托盘;4、104:加热器块;5、105:温度控制单元;6:成膜用气体导入路径;7:高频电源;8、108:排气装置;10:CVD装置;10c、100c:真空腔;11:硅基板(n型或者p型);12:p型扩散层;13:n型扩散层;14:反射防止膜(氮化硅膜);15:指状电极;16:背面电极;17:母线电极;91、116:载流子气体;92:辅助排气;93:激发室;93a、111c、112c:载流子气体导入口;93b:辅助排气口;93c:高频导入部;94:匹配装置;95、115:微波电源;96、110:等离子体区域;97、117:反应气体;98:反应室;98a:主排气口;99:基板支撑部;99a:基板;100:远程等离子体CVD装置;100a、100b:等离子体隔壁部;111、112:等离子体室;111a、112a:激发部;111b、112b:活性化反应部;111d、112d:反应气体导入口;113:流量控制器。
具体实施方式
以下,参照附图,说明本发明的太阳能电池的制造方法,但本发明不限于此。
图3、图4是示出本发明的太阳能电池的制造方法中的一个实施方式的制造工序的概略图。以下,详细说明各工序。
(1)基板
如图3、图4所示,作为在本发明中使用的半导体基板的硅基板11既可以是n型也可以是p型,图3(A)示出n型硅基板,图4(A)示出p型硅基板。在硅单晶基板的情况下,可以通过提拉(CZ,Czochralski)法以及浮区(FZ,floating zone)法中的任意一个方法制作。关于硅基板11的电阻率,从制作高性能的太阳能电池的观点来看,优选为0.1~20Ω·cm、更优选为0.5~2.0Ω·cm。作为硅基板11,从得到比较高的寿命的观点来看,优选为磷掺杂n型单晶硅基板。磷掺杂的掺杂物浓度优选为1×1015~5×1016cm-3
(2)损伤蚀刻/纹理形成
例如,将硅基板11浸渍到氢氧化钠溶液,用蚀刻去除切片所致的损伤层。关于该基板的损伤去除,也可以使用氢氧化钾等强碱水溶液,即便是氢氟硝酸等酸溶液也能够达成同样的目的。
在进行了损伤蚀刻的基板11中,形成随机纹理。太阳能电池通常优选在表面(受光面)形成凹凸形状。其理由在于,为了降低可见光区域的反射率,需要在受光面上尽可能进行2次以上的反射。形成凹凸形状的每个峰的尺寸优选为1~20μm左右。作为代表性的表面凹凸构造,可以举出V槽、U槽。这些能够利用磨削机来形成。另外,为了制作随机的凹凸构造,除了浸渍到对氢氧化钠添加了异丙醇的水溶液的湿蚀刻以外,还能够使用酸蚀刻、反应离子蚀刻等。另外,在图3、图4中,在两面形成了的纹理构造很细微,所以省略。
(3)n型扩散层形成
如图3所示,在硅基板11是n型的情况下,在背面涂覆了包含掺杂物的涂覆剂之后进行热处理,从而在背面侧的至少一部分、特别是背面整个面形成n型扩散层13[图3(B)]。另外,如图4所示,在硅基板是p型的情况下,在受光面涂覆了包含掺杂物的涂覆剂之后,进行热处理,从而在受光面形成n型扩散层13[图4(B)]。掺杂物优选为磷。n型扩散层13的表面掺杂物浓度优选为1×1018~5×1020cm-3,更优选为5×1018~1×1020cm-3
在热处理后,对附着到硅基板11的玻璃成分通过玻璃蚀刻等来清洗。
(4)p型扩散层形成
如图3(C)所示,在受光面上进行与n型扩散层形成同样的处理,在整个受光面上形成p型扩散层12。或者,也可以使形成了n型扩散层13的背面彼此对齐,通过利用BBr3的气相扩散,在表面形成p型扩散层12。掺杂物优选为硼,并且,p型扩散层12的表面掺杂物浓度优选为1×1018~5×1020cm-3,更优选为5×1018~1×1020cm-3
(5)pn结分离
使用等离子体蚀刻器,进行pn结分离。在该工艺中,堆叠样品,以使等离子体、自由基不侵入受光面、背面,在该状态下将端面切削几微米。在结分离之后,附着到基板的玻璃成分、硅粉等通过玻璃蚀刻等被清洗。
(6)反射防止膜形成
接着,为了将阳光的光高效地引入到硅基板内,在硅基板表面以及背面这两者[图3(D)]或者受光面[图4(C)]上,形成作为反射防止膜的氮化硅膜14。该氮化硅膜还作为硅基板表面以及内部的钝化膜发挥功能。作为氮化硅膜的形成方法,通过使用了图5所示的远程等离子体CVD装置100的等离子体CVD法形成。
此处,在本发明中使用的远程等离子体CVD装置100如图5所示,具备:构成成膜室101的真空腔100c、在真空腔100c的上部与成膜室101连通地设置的构成2个等离子体室111、112的2个等离子体隔壁部100a、100b、以及对真空腔100c内部即成膜室101进行排气的排气装置108,并且,还具备针对等离子体室111、112的每一个独立地调整所导入的载流子气体116和反应气体117的流量比的流量控制器113。另外,等离子体隔壁部100a、100b具备未图示的辅助排气装置。
成膜室101具有:在室内可输送地支撑直到上述pn结分离为止的处理结束了的半导体基板102的托盘103、以及进行发热而经由托盘103对半导体基板102进行加热的加热器块104。另外,对加热器块104连接有控制该加热器块104的发热温度的温度控制单元105。
另外,等离子体室111、112分别是由使在其上游侧导入的载流子气体116激发(等离子体化)而生成反应活性种(自由基种)的激发部111a、112a、和在激发部111a、112a的下游侧对激发了的载流子气体116导入反应气体117而引起基于活性反应种的化学反应的活性化反应部111b、112b构成的筒状的等离子体发生室,在半导体基板102的输送方向上按照等离子体室111、112的顺序配置于成膜室101的上方,各自的端部开口部与成膜室101连通。另外,等离子体室111、112的端部开口部配置于半导体基板102的附近以能够进行成膜,但按照半导体基板102不直接接触到从该端部开口部喷出的等离子体流的程度、即半导体基板102不会受到等离子体损伤的程度,来与半导体基板102远离。
在激发部111a、112a的上部,设置了将载流子气体116导入到内部的载流子气体导入口111c、112c,在激发部111a、112a侧面,设置了对导入到内部的载流子气体照射2.45GHz的微波而使其放电的微波电源115。
另外,在活性化反应部111b、112b中,设置了将反应气体117导入到内部的反应气体导入口111d、112d。
在等离子体室111、112中,通过流量控制器113针对等离子体室111、112的每一个独立地调整载流子气体116和反应气体117的流量比之后,导入该载流子气体116以及反应气体117,在激发部111a、112a中从微波电源115照射微波而使载流子气体116激发(等离子体化),形成等离子体区域110,接下来在活性化反应部111b、112b中对激发了的载流子气体116导入反应气体117而使其活性化,在活性化反应部111b、112b内以及从活性化反应部111b、112b向成膜室101伸出的区域周边,引起载流子气体成分和反应气体成分的化学反应。另外,从等离子体室111、112的端部开口部,朝向配置于正下方的半导体基板102喷出上述等离子体流。如果在该状态下,将半导体基板102配置于等离子体室111、112的端部开口部的下方,则在半导体基板102上,形成与作为成膜气体的载流子气体116以及反应气体117的组成对应的被膜。
在本发明中,在成膜气体当中,作为载流子气体116使用氨气(NH3),作为反应气体117使用SiH4、Si2H6等硅烷气体,从而形成氮化硅膜。
在本工序中,按照接下来的步骤,进行成膜处理。即,在远程等离子体CVD装置100的成膜室101中,首先将半导体基板102配置于托盘103上并由排气装置108对室内进行真空排气,之后,加热到规定的温度,导入通过流量控制器113针对等离子体室111、112的每一个独立地调整了流量比的作为载流子气体116的氨气以及作为反应气体117的硅烷气体,如上所述,成为形成了等离子体区域110的状态。接下来,在托盘103上输送半导体基板102,同时在第一等离子体室111的端部开口部的下方,在半导体基板102上对第一氮化硅膜进行成膜,接下来,移动到导入了流量比与第一等离子体室111不同的载流子气体116(氨气)和反应气体117(硅烷气体)的第二等离子体室112的端部开口部的下方,在第一氮化硅膜上对组成与该第一氮化硅膜不同的第二氮化硅膜进行成膜,成为两层构造的氮化硅膜。
关于氮化硅膜的总膜厚,根据膜的反射率、半导体基板表面形状适当设定既可,优选为通常60~100nm左右、特别是70~90nm左右。另外,第一氮化硅膜的膜厚优选为30~70nm、更优选为35~55nm左右,第二氮化硅膜的膜厚优选为30~70nm、更优选为35~55nm左右。
此处,关于第一等离子体室111中的成膜气体条件(气体流量),根据成膜室101的形状、大小、以及半导体基板102的输送速度等适当设定既可,在将例如纵横尺寸10cm×10cm~15cm×15cm的硅基板连续地输送而在该硅基板的表面对氮化硅膜进行成膜的情况下,优选为氨气50~500sccm、甲硅烷300~1,000sccm,更优选为氨气250~350sccm、甲硅烷350~500sccm。
另外,第二等离子体室112中的成膜气体条件(气体流量)优选为氨气300~1,000sccm、甲硅烷10~500sccm,更优选为氨气450~500sccm、甲硅烷250~300sccm。
在第一等离子体室111、第二等离子体室112中的任意一个的情况下,如果气体流量少于上述范围,则有时无法形成均匀的氮化硅膜,如果多于上述范围,则有时成膜气体被浪费。
另外,第一等离子体室111中的氨气和硅烷气体的流量比(氨气流量/硅烷气体流量)优选小于第二等离子体室112中的氨气和硅烷气体的流量比(氨气流量/硅烷气体流量)。具体而言,第一等离子体室111中的氨气和硅烷气体的流量比(氨气流量/硅烷气体流量)优选为0.1~1.0、更优选为0.5~0.8。如果该流量比小于0.1,则有时不合适作为反射防止膜,如果超过1.0,则有可能得不到提高钝化效果的效果。另外,第二等离子体室112中的氨气和硅烷气体的流量比(氨气流量/硅烷气体流量)优选为1.5~3.0、更优选为1.5~2.0。如果该流量比小于1.5或者超过3.0,则有可能不合适作为反射防止膜。
另外,作为该情况下的成膜条件,优选为成膜室101内的压力10~100Pa、半导体基板102的温度250~600℃,托盘103的输送速度根据成膜气体的流量以及流量比等不同,但在形成的氮化硅膜的总膜厚是60~100nm的情况下,优选为90~150cm/min。
如以上那样,使用图5的远程等离子体CVD装置,在上述成膜条件下,形成两层构造的氮化硅膜,从而能够稳定地形成钝化效果优良的氮化硅膜。
(7)电极形成
使用网板印刷装置等,在受光面侧以及背面侧,在p型扩散层12以及n型扩散层13上印刷包含例如银的膏,按照梳形电极图案状(指状电极15以及背面电极16)涂覆并使其干燥[图3(E)、图4(D)]。特别是,在作为硅基板而使用p型的情况下,优选在背面侧对将铝(Al)粉末用有机粘合剂混合而得到的膏进行网板印刷,并使其干燥而形成背面电极16。接下来,在受光面以及背面这两者上[图3(F)]或者在受光面上[图4(D)],用银膏等通过网板印刷等来形成母线电极17。最后,在烧成炉中,在500~900℃下进行1~30分的烧成,形成与p型扩散层12或者n型扩散层13电连接的指状电极15、背面电极16、以及母线电极17。另外,在图3(F)中示出了指状电极15、背面电极16未与扩散层12、13连接,在图4(D)中示出了指状电极15未与扩散层13连接,但通过烧成被烧穿(fire through),实际上与扩散层连接。
实施例
以下,举出本发明的实施例以及比较例,进一步具体说明,但本发明不限于这些。
[实施例1]
如图3所示,将结晶面方位(100)、15.65cm见方、200μm厚、晶片切片(As-slice)电阻率2Ω·cm(掺杂物浓度7.2×1015cm-3)的磷掺杂n型单晶硅基板11浸渍到氢氧化钠溶液,用蚀刻去除损伤层,浸渍到对氢氧化钾水溶液加入了异丙醇的水溶液来实施碱蚀刻,从而进行纹理形成[图3(A)]。
在得到了的硅基板11的背面,涂覆了包含磷掺杂物的涂覆剂之后,在900℃下,进行1小时的热处理,在背面形成n型扩散层13[图3(B)]。在热处理后,将附着到基板的玻璃成分在通过高浓度氢氟酸溶液等被去除之后清洗。
接着,使形成了n型扩散层13的硅基板11的背面彼此对齐,进行利用BBr3的气相扩散,在整个受光面形成p型扩散层12[图3(C)]。
接下来,使用等离子体蚀刻器,进行pn结分离。在堆叠了对象以使得等离子体、自由基不侵入到受光面、背面的状态下,将端面切削几微米。之后,将附着到基板的玻璃成分通过高浓度氢氟酸溶液去除之后清洗。
接下来,使用图5所示的结构的远程等离子体CVD装置(类型名称SiNA1000、Roth&Rau公司制),并且作为载流子气体116使用氨气,作为反应气体117使用甲硅烷(SiH4),通过流量控制器113,使第一等离子体室111中的氨气和甲硅烷气体的流量比(氨气流量(sccm)/甲硅烷气体流量(sccm))成为0.5,使第二等离子体室112中的氨气和甲硅烷气体的流量比(氨气流量(sccm)/甲硅烷气体流量(sccm))成为2.0,分别在受光面侧的p型扩散层12、以及背面侧的n型扩散层13上,层叠作为电介体膜的两层构造的氮化硅膜14[图3(D)]。它们的膜厚是70nm。
最后,在受光面侧以及背面侧分别对银膏进行电极印刷并干燥之后,在750℃下进行3分的烧成,形成指状电极15、背面电极16以及母线电极17[图3(E)、(F)]。
[实施例2]
如图4所示,在与实施例1同样的硅基板11中,使用p型单晶硅基板,与实施例1同样地,浸渍到氢氧化钠溶液,通过蚀刻去除损伤层,浸渍到对氢氧化钾水溶液添加了异丙醇的水溶液而实施碱蚀刻,从而进行纹理形成[图4(A)]。
在得到了的硅基板11的受光面,涂覆包含磷掺杂物的涂覆剂之后,在800℃下,进行1小时的热处理,形成n型扩散层13[图4(B)]。在热处理之后,将附着到基板的玻璃成分通过高浓度氢氟酸溶液等去除之后清洗。
接下来,使用图5所示的结构的远程等离子体CVD装置(类型名称SiNA1000、Roth&Rau公司制),作为载流子气体116使用氨气,作为反应气体117使用甲硅烷(SiH4),通过流量控制器113,使第一等离子体室111中的氨气和甲硅烷气体的流量比(氨气流量(sccm)/甲硅烷气体流量(sccm))成为0.5,使第二等离子体室112中的氨气和甲硅烷气体的流量比(氨气流量(sccm)/甲硅烷气体流量(sccm))成为2.0,在受光面侧的n型扩散层13上,层叠作为电介体膜的两层构造的氮化硅膜14[图4(C)]。其膜厚是80nm。
接着,在受光面侧以及背面侧分别对银膏以及铝膏进行电极印刷并干燥之后,在750℃下,进行3分的烧成,形成指状电极15、背面电极16以及母线电极17[图4(D)]。
[比较例1]
在实施例1中,代替远程等离子体CVD装置100而使用图1所示的直接等离子体CVD装置,在受光面侧的p型扩散层12、以及背面侧的n型扩散层13上,形成膜厚70nm的氮化硅膜,除此以外,以与实施例1同样的条件,制作太阳能电池。
[比较例2]
在实施例2中,代替远程等离子体CVD装置100而使用图1所示的直接等离子体CVD装置,在受光面侧的n型扩散层13上,形成膜厚80nm的氮化硅膜,除此以外,以与实施例2同样的条件,制作太阳能电池。
针对在实施例1、2以及比较例1、2中得到了的太阳能电池,在25℃的气氛中,在太阳模拟器(光强度:1kW/m2、谱:AM1.5整体(spectrum AM1.5global))下,测定电流电压特性。表1示出结果。另外,表中的数字是在实施例1、2以及比较例1、2中制作了的各10个单元的平均值。
[表1]
在实施例1、2中,通过图5的远程等离子体CVD装置,在固定了2个等离子体室各自中的氨气和硅烷气体的流量比的状态下,连续地成膜,所以通过在硅基板表面侧形成富含正的固定电荷的氮化硅膜,稳定地形成钝化效果优良、并且生产率优良的氮化硅膜,从而呈现出高于比较例1、2的变换效率。
另外,此前以附图所示的实施方式来说明了本发明,但本发明不限于附图所示的实施方式,能够在本领域技术人员想到的范围内,实现其他实施方式、追加、变更、删除等,不论在哪一个方式中,只要起到本发明的作用效果,就包含于本发明的范围。

Claims (5)

1.一种太阳能电池的制造方法,具有使用远程等离子体CVD装置在半导体基板表面形成由氮化硅构成的反射防止膜的工序,其特征在于,
所述远程等离子体CVD装置具备:成膜室,以能够移动的方式配置半导体基板;以及多个等离子体室,在该成膜室的上方连通地设置,产生氨气的等离子体流,对该等离子体流导入硅烷气体,之后,向成膜室喷出该等离子体流,并且,所述多个等离子体室分别附设有调整被导入的氨气和硅烷气体的流量比的流量控制器,
所述半导体基板通过来自第一等离子体室的等离子体流形成第一氮化硅膜,进而移动到第二等离子体室的下方,通过基于流量比与第一等离子体室不同的氨气和硅烷气体的等离子体流,形成组成与所述第一氮化硅膜不同的第二氮化硅膜。
2.根据权利要求1所述的太阳能电池的制造方法,其特征在于,
所述第一等离子体室中的氨气和硅烷气体的流量比、即氨气流量/硅烷气体流量是0.1~1.0。
3.根据权利要求2所述的太阳能电池的制造方法,其特征在于,
所述第二等离子体室中的氨气和硅烷气体的流量比、即氨气流量/硅烷气体流量是1.5~3.0。
4.根据权利要求1~3中的任意一项所述的太阳能电池的制造方法,其特征在于,
关于所述半导体基板,在第一导电类型的硅基板的成为受光面的一侧的面,形成了与第一导电类型相反的导电类型的扩散层,在该扩散层上,形成反射防止膜。
5.根据权利要求1~3中的任意一项所述的太阳能电池的制造方法,其特征在于,
关于所述半导体基板,在第一导电类型的硅基板的成为与受光面相反的面的一侧的面的至少一部分,形成了与第一导电类型相同的导电类型的扩散层,在形成了该扩散层的面上,形成反射防止膜。
CN201380042132.4A 2012-08-09 2013-07-30 太阳能电池的制造方法、以及通过该制造方法制造了的太阳能电池 Active CN104521003B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012176907 2012-08-09
JP2012-176907 2012-08-09
PCT/JP2013/070564 WO2014024729A1 (ja) 2012-08-09 2013-07-30 太陽電池の製造方法、及びその製造方法により製造された太陽電池

Publications (2)

Publication Number Publication Date
CN104521003A CN104521003A (zh) 2015-04-15
CN104521003B true CN104521003B (zh) 2016-11-23

Family

ID=50067961

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380042132.4A Active CN104521003B (zh) 2012-08-09 2013-07-30 太阳能电池的制造方法、以及通过该制造方法制造了的太阳能电池

Country Status (10)

Country Link
US (1) US9559221B2 (zh)
EP (1) EP2884544B1 (zh)
JP (1) JP5884911B2 (zh)
KR (1) KR102097758B1 (zh)
CN (1) CN104521003B (zh)
IN (1) IN2015DN01821A (zh)
MY (1) MY170163A (zh)
RU (1) RU2635834C2 (zh)
TW (1) TWI622183B (zh)
WO (1) WO2014024729A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104521003B (zh) * 2012-08-09 2016-11-23 信越化学工业株式会社 太阳能电池的制造方法、以及通过该制造方法制造了的太阳能电池
JP6369680B2 (ja) * 2014-05-30 2018-08-08 パナソニックIpマネジメント株式会社 太陽電池
US9559236B2 (en) * 2014-09-24 2017-01-31 Sunpower Corporation Solar cell fabricated by simplified deposition process
CN106282965B (zh) * 2016-08-31 2019-09-20 东方日升新能源股份有限公司 太阳能电池硅片的等离子增强化学气相沉积法
US20210381107A1 (en) * 2020-06-03 2021-12-09 Micron Technology, Inc. Material deposition systems, and related methods and microelectronic devices

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5073804A (en) * 1977-12-05 1991-12-17 Plasma Physics Corp. Method of forming semiconductor materials and barriers
JP2808004B2 (ja) * 1989-01-30 1998-10-08 京セラ株式会社 太陽電池
JPH0873297A (ja) 1994-09-05 1996-03-19 Shin Etsu Chem Co Ltd 太陽電池用基板材料の製法とこれを用いた太陽電池
EP0994515B1 (en) * 1998-10-12 2007-08-22 Kaneka Corporation Method of manufacturing silicon-based thin-film photoelectric conversion device
JP2002270879A (ja) * 2001-03-14 2002-09-20 Mitsubishi Electric Corp 半導体装置
JP2003273034A (ja) * 2002-03-14 2003-09-26 Crystage Co Ltd 薄膜形成装置
JP4186827B2 (ja) 2004-01-30 2008-11-26 日立電線株式会社 半導体の製造方法
JP4540447B2 (ja) * 2004-10-27 2010-09-08 シャープ株式会社 太陽電池および太陽電池の製造方法
JP4767110B2 (ja) 2006-06-30 2011-09-07 シャープ株式会社 太陽電池、および太陽電池の製造方法
JP2009117569A (ja) 2007-11-06 2009-05-28 Shimadzu Corp 反射防止膜成膜方法および反射防止膜成膜装置
JP5173370B2 (ja) 2007-11-21 2013-04-03 シャープ株式会社 光電変換素子の製造方法
JP4573902B2 (ja) * 2008-03-28 2010-11-04 三菱電機株式会社 薄膜形成方法
RU2417481C2 (ru) * 2009-02-13 2011-04-27 Российская Академия сельскохозяйственных наук Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства (ГНУ ВИЭСХ РОССЕЛЬХОЗАКАДЕМИИ) Фотоэлектрический преобразователь (варианты) и способ его изготовления (варианты)
DE102010000002B4 (de) * 2010-01-04 2013-02-21 Roth & Rau Ag Verfahren zur Abscheidung von Mehrlagenschichten und/oder Gradientenschichten
US20110245957A1 (en) * 2010-04-06 2011-10-06 Applied Materials, Inc. Advanced platform for processing crystalline silicon solar cells
US20110272024A1 (en) * 2010-04-13 2011-11-10 Applied Materials, Inc. MULTI-LAYER SiN FOR FUNCTIONAL AND OPTICAL GRADED ARC LAYERS ON CRYSTALLINE SOLAR CELLS
KR101381305B1 (ko) * 2010-04-23 2014-04-07 솔렉셀, 인크. 고효율 태양 전지 극 저 표면 재결합 속도를 달성하기 위한 패시베이션 방법 및 장치
US20110262641A1 (en) * 2010-04-26 2011-10-27 Aventa Systems, Llc Inline chemical vapor deposition system
US20110272008A1 (en) * 2010-05-07 2011-11-10 Applied Materials, Inc. Oxide nitride stack for backside reflector of solar cell
KR101659451B1 (ko) * 2010-09-14 2016-09-23 신에쓰 가가꾸 고교 가부시끼가이샤 태양전지 및 그 제조 방법
US20120164784A1 (en) * 2010-12-23 2012-06-28 Primestar Solar, Inc. Integrated deposition of thin film layers in cadmium telluride based photovoltaic module manufacture
KR20140116120A (ko) * 2012-01-03 2014-10-01 어플라이드 머티어리얼스, 인코포레이티드 결정질 실리콘 태양 전지들을 패시베이팅하기 위한 진보된 플랫폼
CN104025304A (zh) * 2012-01-03 2014-09-03 应用材料公司 用于提高si太阳能电池的表面钝化的性能和稳定性的缓冲层
CN104521003B (zh) * 2012-08-09 2016-11-23 信越化学工业株式会社 太阳能电池的制造方法、以及通过该制造方法制造了的太阳能电池
US20140174532A1 (en) * 2012-12-21 2014-06-26 Michael P. Stewart Optimized anti-reflection coating layer for crystalline silicon solar cells

Also Published As

Publication number Publication date
JP5884911B2 (ja) 2016-03-15
IN2015DN01821A (zh) 2015-05-29
EP2884544A1 (en) 2015-06-17
EP2884544B1 (en) 2018-05-09
WO2014024729A1 (ja) 2014-02-13
US20150206990A1 (en) 2015-07-23
TW201428989A (zh) 2014-07-16
KR102097758B1 (ko) 2020-04-07
JPWO2014024729A1 (ja) 2016-07-25
KR20150041785A (ko) 2015-04-17
RU2635834C2 (ru) 2017-11-16
MY170163A (en) 2019-07-09
RU2015107986A (ru) 2016-09-27
CN104521003A (zh) 2015-04-15
TWI622183B (zh) 2018-04-21
US9559221B2 (en) 2017-01-31
EP2884544A4 (en) 2016-02-10

Similar Documents

Publication Publication Date Title
CN104521003B (zh) 太阳能电池的制造方法、以及通过该制造方法制造了的太阳能电池
US20080057220A1 (en) Silicon photovoltaic cell junction formed from thin film doping source
CN109346536A (zh) 一种接触钝化晶体硅太阳能电池结构及制备方法
US20100323503A1 (en) Integrated emitter formation and passivation
CN102870236A (zh) 用于结晶太阳能电池上的功能和光学渐变ARC层的多层SiN
KR100677374B1 (ko) 박판 실리콘 기판을 이용한 다공성 실리콘 태양전지 및 그제조방법
CN103247715B (zh) 太阳能电池及其制造方法
TWI673883B (zh) 太陽電池元件及太陽電池元件之製造方法
WO2015182503A1 (ja) 太陽電池素子およびその製造方法並びに太陽電池モジュール
CN102396079A (zh) 用于形成太阳能应用的微晶硅层的脉冲等离子体沉积
CN101971358A (zh) 太阳能电池的制造方法、太阳能电池的制造装置以及太阳能电池
US20170133545A1 (en) Passivated contacts for photovoltaic cells
US20150228810A1 (en) Solar cells and methods of fabrication thereof
US8735201B2 (en) Film-forming method for forming passivation film and manufacturing method for solar cell element
US8026157B2 (en) Gas mixing method realized by back diffusion in a PECVD system with showerhead
CN105405921A (zh) 制造晶体光伏电池的方法
Terry et al. All screen-printed 18% homogeneous emitter solar cells using high volume manufacturing equipment
El Amrani et al. Determination of the suitable refractive index of solar cells silicon nitride
JP6224513B2 (ja) 太陽電池素子の製造方法
CN107731961A (zh) Perc太阳能电池的镀膜方法、制备方法及perc太阳能电池
JP2011187858A (ja) 太陽電池の製造方法及び太陽電池
TW201340358A (zh) 雙面太陽能電池之製造方法
KR20200023301A (ko) 고효율 이면전극형 태양전지 및 그 제조방법
Tool et al. 17% mc-Si solar cell using full in-line processing
JP2011151235A (ja) 太陽電池の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant