TWI622183B - Solar cell manufacturing method and solar cell manufactured by the manufacturing method - Google Patents

Solar cell manufacturing method and solar cell manufactured by the manufacturing method Download PDF

Info

Publication number
TWI622183B
TWI622183B TW102128462A TW102128462A TWI622183B TW I622183 B TWI622183 B TW I622183B TW 102128462 A TW102128462 A TW 102128462A TW 102128462 A TW102128462 A TW 102128462A TW I622183 B TWI622183 B TW I622183B
Authority
TW
Taiwan
Prior art keywords
plasma
film
gas
chamber
silicon nitride
Prior art date
Application number
TW102128462A
Other languages
English (en)
Other versions
TW201428989A (zh
Inventor
高橋光人
渡部武紀
大寛之
Original Assignee
信越化學工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化學工業股份有限公司 filed Critical 信越化學工業股份有限公司
Publication of TW201428989A publication Critical patent/TW201428989A/zh
Application granted granted Critical
Publication of TWI622183B publication Critical patent/TWI622183B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/452Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by activating reactive gas streams before their introduction into the reaction chamber, e.g. by ionisation or addition of reactive species
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • H01L21/205
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本發明之課題為提供一種太陽能電池之製造方法,其係可生產性良好地形成由鈍化效果為優異的氮化矽所組成的抗反射膜。
解決課題之技術手段為使用遠距離電漿CVD裝置(100)(其係具備有電漿室(111、112),與每電漿室(111、112)中調整氨氣與矽烷氣體之流量比的流量控制器(113),該電漿室(111、112)為具有:成膜室(101);激發氨氣的激發部(111a、112a);對已激發的氨氣導入矽烷氣體並使進行活化的活化反應部(111b、112b)),在成膜室(101)中搬送半導體基板(102)之同時,藉由來自第一電漿室(111)的電漿流於半導體基板(102)上形成第一氮化矽膜,接著,藉由導入的氨氣與矽烷氣體之流量比為與第一電漿室(111)相異的來自第二電漿室(112)的電漿流,以形成與第一氮化矽膜為組成相異的第二氮化矽膜。

Description

太陽能電池之製造方法及藉由該製造方法而製造的太陽能電池
本發明為關於使用遠距離電漿CVD裝置(remote plasma CVD device)的太陽能電池之製造方法,及藉由該製造方法所製造的太陽能電池。
太陽能電池為將光能轉換為電力的半導體元件,具有p-n接合型、pin型、Schottky型等,特別以p-n接合型廣為使用。又,將太陽能電池依該基板材料為基準進行分類時,大至可分類為矽結晶系太陽能電池、非晶(amorphous)矽系太陽能電池、化合物半導體系太陽能電池之3種類。矽結晶系太陽能電池又更可分類為單晶系太陽能電池與多晶系太陽能電池。由於太陽能電池用矽結晶基板可相對容易地製造,故該生產規模為現今最大,亦認為今後為更普及化者(例如,日本國特開平8-073297號公報(專利文獻1))。
太陽能電池之輸出特性,一般為使用太陽光模擬器(solar Simulator),藉由測定輸出電流電壓曲線而予 以評估。在此曲線上,將輸出電流Imax與輸出電壓Vmax之積,以Imax×Vmax成為最大點稱為最大輸出Pmax,將此Pmax除以入射於太陽能電池之總光能(S×I:S為元件面積,I為照射的光強度)後之值:η={Pmax/(S×I)}×100(%)
定義作為太陽能電池之轉換效率η。
為了提高轉換效率η,使短路電流Isc(以電流電壓曲線為V=0時之輸出電流值)或Voc(以電流電壓曲線為I=0時之輸出電壓值)加大,及使輸出電流電壓曲線以盡可能接近方形者為重要。尚,輸出電流電壓曲線之方形之程度,一般為藉由以
FF=Pmax/(Isc×Voc)
所定義的填充因子(曲線因子)而可評估,當此FF之值為越接近1時,輸出電流電壓曲線為越接近理想的方形,亦意味著轉換效率η為提高。
為了提升上述轉換效率η,降低載子(carrier)之表面再鍵結為重要。在矽結晶系太陽能電池中,因太陽光之入射光而光生成的少數載子,主要為藉由擴散而到達p-n接合面,之後從安裝於受光面及背面的電極,以作為多數載子而被取出至外部,成為電能。
此時,透過存在於電極面以外的基板表面之界面狀態(interface state),使本來可作為電流取出的載子再鍵結, 有消失之情形,與轉換效率η之降低有關。
在此,在高效率太陽能電池中,將矽基板的 受光面及背面(與電極之接觸部除外)以絕緣膜予以保護,而抑制在矽基板與絕緣膜之界面的載子再鍵結,試圖提升轉換效率η。如此般的絕緣膜方面,以作為有用的膜,係以使用氮化矽膜。該理由為,氮化矽膜具有作為結晶系矽太陽能電池之抗反射膜之機能之同時,矽基板表面及內部的鈍化效果亦為優異之故。
氮化矽膜,以往為藉由熱CVD、電漿CVD、 觸媒CVD等的CVD法(Chemical Vapor Deposition:化學氣相蒸鍍法)而形成。該等之中,最一般普及的為電漿CVD法。圖1為示意性展示一般被稱為直接式電漿CVD的平行平板型電漿CVD裝置(parallel plate type plasma CVD device)之圖。圖1中所示的CVD裝置10為具有構成成膜室1的真空反應室10c,該成膜室1為配置有:於指定位置用來載置半導體基板2的托盤3;用來將該托盤3保持在一定溫度的加熱塊4;及控制加熱塊4的溫度的溫度控制手段5。又,成膜室1中為具備有:使反應性氣體的指定成膜用氣體導入成膜室1內的成膜用氣體導入路徑6;賦予已導入的氣體能量,並使產生電漿的高頻電源7;及排氣裝置8。
藉由上述CVD裝置來成膜絕緣膜時,利用成 膜用氣體導入路徑6並以指定流量將指定成膜用氣體導入成膜室1內,之後,使高頻電源7作動並設定為高頻電場 。藉由該操作而產生高頻放電,成膜用氣體會電漿化,利用藉由電漿所產生的反應,於半導體基板2的表面成膜絕緣膜。例如,成膜氮化矽膜時,將作為成膜用氣體的矽烷與氨之混合氣體,從成膜用氣體導入路徑6導入成膜室1內,利用矽烷的於電漿中的分解反應等,而成膜氮化矽膜。
即使電漿CVD法之製程溫度為相對低溫的400℃左右,但由於具有高成膜速度,故大多使用於太陽能電池之絕緣膜形成製程。但,電漿中所生成的高能量荷電粒子容易造成已成膜的膜或矽基板表面損傷,故所得到的氮化矽膜的界面狀態密度會變多,具有無法得到充分鈍化效果之問題。因此,為了提升鈍化效果,必須試圖藉由氫等的懸鍵(未鍵結端)的密封。
對於如此般之問題,例如,日本國特開2005-217220號公報(專利文獻2)中,作為抑制電漿損傷之方法,提案著遠距離電漿CVD法。圖2為示意性展示該裝置之一例之圖。圖2中所示的遠距離電漿CVD裝置,其係具備有使已導入內部的反應氣體激發並使電漿化的筒狀激發室93,與設置於該激發室93下方並與該激發室93為連通的反應室(處理室)98。又,激發室93為具備有:在其上方部的載子氣體91的導入口93a;在其中央部的透過配對裝置94而與微波電源95連接的高頻導入部(導波管)93c。反應室98為與成膜用反應氣體97的供給管連接,並於室內設置有支撐基板99a的基板座99。如此般構成之裝置,首先,將微波從微波電源95導入於激發室93中 並使載子氣體91激發,使此隨著氣體之排氣流動而導入於反應室98,於反應室98內使已導入的反應氣體97活化,藉由使接觸於基板99a,而可於基板99a上進行成膜,例如,作為載子氣體91為使用氨氣,作為反應氣體97為使用矽烷氣體,可於基板99a上形成氮化矽膜。藉由該遠距離電漿CVD裝置,由於基板為配置於遠離電漿領域96之位置之構成,故可某程度減輕基板之電漿損傷。
又,日本國特開2009-117569號公報(專利文 獻3)中報告著,在藉由表面波電漿的氮化矽膜的成膜前,作為前處理以使用氨氣來進行電漿處理時,可提升鈍化效果。又,日本國特開2009-130041號公報(專利文獻4)中報告著,於氮化矽膜的成膜前,藉由使用包含氫氣與氨氣的混合氣體所形成的電漿來進行處理,可提升鈍化效果。
然而,由於上述方法中皆需要與絕緣膜形成製程為另外的製程,故製造成本會變高,又,具有所謂生產性難以提升之問題。
又,將藉由電漿CVD法所形成的氮化矽膜的膜組成,依化學計量比轉移至矽過剩側,並使形成正的固定電荷之方式,會產生能帶彎曲,在矽基板與氮化矽膜接觸界面附近,於矽基板側電子會變得過剩而形成反轉層,利用此反轉層可提高在n領域側的鈍化效果。
日本國特開2002-270879號公報(專利文獻5)中報告著,在形成高折射率的氮化矽膜來作為第一介電體膜後,於其上方形成低折射率的氮化矽膜來作為第二介電 體膜,藉由使成為二層構造以提升轉換效率。然而,該方法中高折射率與低折射率的氮化矽膜的形成製程為分別,例如,首先形成高折射率的氮化矽膜,接著,將氨氣與矽烷氣體之流量比等,進行成膜氣體之流量調整後,使低折射率的氮化矽膜形成之方式,因此,製造成本會變高,生產性之提升為困難。
[先前技術文獻]
[專利文獻]
[專利文獻1]日本國特開平8-073297號公報
[專利文獻2]日本國特開2005-217220號公報
[專利文獻3]日本國特開2009-117569號公報
[專利文獻4]日本國特開2009-130041號公報
[專利文獻5]日本國特開2002-270879號公報
本發明為有鑑於上述事情之發明,目的為提供一種太陽能電池之製造方法,其係可生產性良好地形成由鈍化效果為優異的氮化矽所組成的抗反射膜,以及提供藉由該製造方法而製造的太陽能電池。
本發明團隊為了達成上述目的,經深入研究 的結果發現:「在遠距離電漿CVD裝置中作為成膜氣體為使用氨及矽烷氣體,藉由來自第一電漿室的電漿流、及基於氨氣與矽烷氣體的流量比為與第一電漿室為相異的第二電漿室的電漿流,於半導體基板上依序進行成膜,而形成組成為相異的二層以上的構造的氮化矽膜,特別是,藉由於半導體基板側形成矽過剩的氮化矽膜,在半導體基板與氮化矽膜接觸界面附近,於半導體基板側電子會變得過剩而形成反轉層,且基板的電漿損傷為減輕並為鈍化效果優異者」,遂而完成本發明。
因此,本發明為了達成上述目的,提供下述太陽能電池之製造方法及太陽能電池。
[1]一種太陽能電池之製造方法,其係具有使用遠距離電漿CVD裝置於半導體基板表面形成由氮化矽所組成的抗反射膜的步驟,其特徵為
上述遠距離電漿CVD裝置具備有成膜室與複數個電漿室,且上述複數個電漿室附設有將分別導入的氨氣與矽烷氣體之流量比調整的流量控制器,該成膜室:以半導體基板為可移動而配置者;該複數個電漿室:設置與該成膜室之上方為連通,產生氨氣的電漿流,將矽烷氣體導入該電漿流並使該電漿流以朝向成膜室噴出者;上述半導體基板為藉由來自第一電漿室的電漿流而形成第一氮化矽膜,進而移動至第二電漿室的下方,藉由基 於氨氣與矽烷氣體的流量比為與第一電漿室為相異的電漿流,而形成組成為與上述第一氮化矽膜相異的第二氮化矽膜。
[2]如上述[1]之太陽能電池之製造方法,其中,上述第一電漿室的氨氣與矽烷氣體之流量比(氨氣流量/矽烷氣體流量)為0.1~1.0。
[3]如上述[2]之太陽能電池之製造方法,其中,上述第二電漿室的氨氣與矽烷氣體之流量比(氨氣流量/矽烷氣體流量)為1.5~3.0。
[4]如上述[1]~[3]中任一項的太陽能電池之製造方法,其中,上述半導體基板在成為第一導電型矽基板的受光面側之面,形成有與第一導電型為相反導電型的擴散層,於該擴散層上形成抗反射膜。
[5]如上述[1]~[4]中任一項的太陽能電池之製造方法,其中,上述半導體基板在與第一導電型矽基板的受光面成為相反面側之面之至少一部份,形成有與第一導電型為相同導電型的擴散層,於形成有該擴散層之面上形成抗反射膜。
[6]一種太陽能電池,其係藉由上述[1]~[5]中任一項的太陽能電池之製造方法製造而成。
藉由本發明,由於為以遠距離電漿CVD法來形成二層構造的氮化矽膜,故可形成鈍化效果為優異的抗 反射膜;又,由於是將分別2個電漿室的氨氣與矽烷氣體之流量比,以固定狀態下來連續進行成膜,故在謀求提升太陽能電池之生產性之同時,可安定形成所期望組成比的二層構造的氮化矽膜。
1、101‧‧‧成膜室
2、102‧‧‧半導體基板
3、103‧‧‧托盤
4、104‧‧‧加熱塊
5、105‧‧‧溫度控制手段
6‧‧‧成膜用氣體導入路徑
7‧‧‧高頻電源
8、108‧‧‧排氣裝置
10‧‧‧CVD裝置
10c、100c‧‧‧真空反應室
11‧‧‧矽基板(n型或,p型)
12‧‧‧p型擴散層
13‧‧‧n型擴散層
14‧‧‧抗反射膜(氮化矽膜)
15‧‧‧指狀電極
16‧‧‧背面電極
17‧‧‧匯流條電極
91、116‧‧‧載子氣體
92‧‧‧補助排氣
93‧‧‧激發室
93a、111c、112c‧‧‧載子氣體導入口
93b‧‧‧補助排氣口
93c‧‧‧高頻導入部
94‧‧‧配對裝置
95、115‧‧‧微波電源
96、110‧‧‧電漿領域
97、117‧‧‧反應氣體
98‧‧‧反應室
98a‧‧‧主排氣口
99‧‧‧基板座
99a‧‧‧基板
100‧‧‧遠距離電漿CVD裝置
100a、100b‧‧‧電漿隔壁部
111、112‧‧‧電漿室
111a、112a‧‧‧激發部
111b、112b‧‧‧活化反應部
111d、112d‧‧‧反應氣體導入口
113‧‧‧流量控制器
[圖1]表示平行平板型電漿CVD裝置之一例之概略圖。
[圖2]表示以往的遠距離電漿CVD裝置之一例之概略圖。
[圖3]表示本發明太陽能電池之製造步驟之一例之概略圖,分別示為:(A)基板,(B)於基板背面形成n型擴散層之狀態,(C)於基板表面形成p型擴散層之狀態,(D)於基板表背面形成抗反射膜(氮化矽膜)之狀態,(E)形成有指狀電極及背面電極之狀態,(F)形成有匯流條電極之狀態。
[圖4]表示本發明太陽能電池之製造步驟之其他例之概略圖,分別示為:(A)基板,(B)於基板表面形成n型擴散層之狀態,(C)於基板表面形成抗反射膜(氮化矽膜)之狀態,(D)形成有指狀電極、背面電極及匯流條電極之狀態。
[圖5]表示在本發明太陽能電池之製造方法中使用的遠距離電漿CVD裝置之一例之概略圖。
[實施發明之的最佳形態]
以下,將本發明之太陽能電池之製造方法以參考圖面來進行說明,但本發明並不限定於此。
圖3、圖4為表示在本發明之太陽能電池之製造方法中一實施形態之製造步驟之概略圖。以下,對於各步驟進行詳細說明。
(1)基板
如圖3、圖4所示般,本發明中所使用的半導體基板的矽基板11可為n型,亦可為p型,圖3(A)示為n型矽基板,圖4(A)示為p型矽基板。矽單晶基板之情形時,亦可藉由柴式長晶(CZ)法及懸浮帶區法(FZ)法中任一的方法予以製作。矽基板11之比電阻,就製作高性能太陽能電池之觀點而言,較佳為0.1~20Ω.cm,更佳為0.5~2.0Ω.cm。作為矽基板11,就可得到相對高的壽命(life time)的觀點而言,較佳為摻磷n型單晶矽基板。摻磷的摻雜劑濃度較佳為1×1015~5×1016cm-3
(2)損傷蝕刻/刻紋(texture)形成
例如,將矽基板11浸漬於氫氧化鈉水溶液中,以蝕刻來除去因切片所造成的損傷層。該基板之損傷除去,亦可使用氫氧化鉀等的強鹼水溶液,以氟硝酸等的酸水溶液亦可達成相同之目的。
對已進行損傷蝕刻的基板11,使形成無規則刻紋。 太陽能電池,一般較佳為在表面(受光面)形成有凹凸形狀。該理由為,為了降低可見光域之反射率,因而必須在受光面以盡可能進行2次以上之反射。形成凹凸形狀的一個一個的凸起的尺寸,較佳為1~20μm左右。作為代表性的表面凹凸構造,舉例如V溝、U溝。該等可利用研削機來予以形成。又,為了製作無規則的凹凸構造,如使浸漬於氫氧化鈉中添加有異丙醇的水溶液的濕式蝕刻,或其他可使用酸蝕刻或反應性.離子.蝕刻等。尚,由於在圖3、圖4中形成於雙面的刻紋構造細微,故予以省略。
(3)n型擴散層之形成
如圖3所示般,當矽基板11為n型時,於背面塗布包含摻雜劑的塗布劑後,藉由進行熱處理,可使n型擴散層13形成於背面側之至少一部份,尤其是形成於背面之全面[圖3(B)]。又,如圖4所示般,當矽基板為p型時,於受光面塗布包含摻雜劑的塗布劑後,藉由進行熱處理,可使n型擴散層13形成於受光面[圖4(B)]。摻雜劑,較佳為磷。n型擴散層13之表面摻雜劑濃度,較佳為1×1018~5×1020cm-3,更佳為5×1018~1×1020cm-3
熱處理後,藉由玻璃蝕刻等來將附著於矽基板11的玻璃成分予以洗淨。
(4)p型擴散層之形成
如圖3(C)所示般,在受光面進行與n型擴散層之形成 為相同之處理,使p型擴散層12形成於受光面整體。或是,亦可將形成有n型擴散層13的背面彼此進行貼合,藉由以BBr3的氣相擴散,於表面形成p型擴散層12。摻雜劑,較佳為硼;又,p型擴散層12之表面摻雜劑濃度,較佳為1×1018~5×1020cm-3,更佳為5×1018~1×1020cm-3
(5)pn接合分離
使用電漿蝕刻機台,來進行pn接合分離。該製程為不使電漿或自由基入侵至受光面或背面,將樣本堆疊,以該狀態下將端面削除數微米。接合分離後,藉由玻璃蝕刻等來將附著於基板的玻璃成分、矽粉等予以洗淨。
(6)抗反射膜之形成
接著,為了有效地將太陽光之光取入至矽基板內,係於矽基板表面及背面之雙方[圖3(D)],或於受光面[圖4(C)]以形成抗反射膜之氮化矽膜14。該氮化矽膜亦作用為矽基板表面及內部的鈍化膜之機能。作為氮化矽膜之形成方法,使用如圖5所示的遠距離電漿CVD裝置100,以藉由電漿CVD法來予以形成。
在此,在本發明所使用的遠距離電漿CVD裝置100,如圖5所示般,其係具備有:構成成膜室101的真空反應室100c;設置於真空反應室100c之上方部並與成膜室101為連通,以構成2個電漿室111、112的2個電漿隔 壁部100a、100b;將真空反應室100c內部,即,成膜室101進行排氣的排氣裝置108。而且每電漿室111、112為獨立具備有調整導入的載子氣體116與反應氣體117之流量比的流量控制器113。尚,電漿隔壁部100a、100b具備有未示圖的補助排氣裝置。
成膜室101為具有:可將在室內已結束上述pn 接合分離為止之處理的半導體基板102,進行搬送並支撐的托盤103;與發熱並透過托盤103來將半導體基板102進行加熱的加熱塊104。又,加熱塊104與控制該加熱塊104的發熱溫度之溫度控制手段105為連接。
又,電漿室111、112係分別由激發部111a、 112a與活化反應部111b、112b所組成的筒狀電漿發生室,該激發部:在該上流側將導入的載子氣體116激發(電漿化),使生成反應活性種(自由基種);
該活化反應部:在激發部111a、112a的下流側,對已激發的載子氣體116導入反應氣體117,並使引起藉由活性反應種的化學反應。
依半導體基板102的搬送方向,使電漿室111、112依序配置於成膜室101之上方,分別的端部開口部為與成膜室101連通。又,電漿室111、112之端部開口部為配置接近於可成膜於半導體基板102之距離,但從該端部開口部所噴出的電漿流為不會直接觸及半導體基板102之程度,即,以不使半導體基板102為受到電漿損傷之程度之方式,遠離半導體基板102。
於激發部111a、112a之上方部,設置使載子 氣體116導入於內部的載子氣體導入口111c、112c,並於激發部111a、112a側面設置微波電源115,其係對已導入於內部的載子氣體照射2.45GHz的微波並使放電者。
又,於活化反應部111b、112b設置使反應氣 體117導入於內部的反應氣體導入口111d、112d。
在電漿室111、112,藉由流量控制器113, 使每電漿室111、112獨立地調整載子氣體116與反應氣體117之流量比,之後導入該載子氣體116及反應氣體117,在激發部111a、112a中,照射來自於微波電源115之微波並使載子氣體116激發(電漿化),而形成電漿領域110,接著,在活化反應部111b、112b中,對已激發的載子氣體116導入反應氣體117並使活化,在活化反應部111b、112b內及從活化反應部111b、112b至超出成膜室101之領域附近,使引起載子氣體成分與反應氣體成分之化學反應。尚,從電漿室111、112之端部開口部,以朝向配置於正下方的半導體基板102,使上述電漿流噴出。 以該狀態,當半導體基板102為配置於電漿室111、112之端部開口部之下方時,可於半導體基板102上形成對應於成膜氣體之載子氣體116及反應氣體117之組成的皮膜。
在本發明中,成膜氣體之中作為載子氣體116 為使用氨(NH3),作為反應氣體117為使用SiH4、Si2H6等的矽烷氣體,藉此變得可形成氮化矽膜。
在本步驟為以下述順序來進行成膜處理。即,在遠距離電漿CVD裝置100之成膜室101中,首先,將半導體基板102載置於托盤103上,以排氣裝置108將室內真空排氣後,加熱至指定溫度,藉由流量控制器113,將流量比為已調整的載子氣體116之氨氣及反應氣體117之矽烷氣體獨立地導入於每電漿室111、112中,如上述般使成為形成有電漿領域110之狀態。接著,以在托盤103上一邊搬送半導體基板102,一邊在第一電漿室111之端部開口部之下方,將第一氮化矽膜成膜於半導體基板102上,接著,移動至導入的載子氣體116(氨氣)與反應氣體117(矽烷氣體)之流量比為與第一電漿室111相異的第二電漿室112之端部開口部之下方,將與該第一氮化矽膜為組成相異的第二氮化矽膜成膜於第一氮化矽膜上,使成為二層構造的氮化矽膜。
氮化矽膜之總膜厚,只要依據膜之反射率或半導體基板表面形狀而予以適當設定即可,一般為60~100nm左右,特佳為70~90nm左右。又,第一氮化矽膜之膜厚較佳為30~70nm,更佳為35~55nm左右;第二氮化矽膜之膜厚較佳為30~70nm,更佳為35~55nm左右。
在此,第一電漿室111之成膜氣體條件(氣體流量),只要依據成膜室101之形狀、大小、及半導體基板102之搬送速度等而予以適當設定即可,例如,連續搬送縱橫尺寸10cm×10cm~15cm×15cm的矽基板,並於該矽基板之表面成膜氮化矽膜時,較佳為:氨50~500sccm,單 矽烷300~1,000sccm;更佳為:氨250~350sccm,單矽烷350~500sccm。
又,第二電漿室112之成膜氣體條件(氣體流量),較佳為:氨300~1,000sccm,單矽烷10~500sccm;更佳為:氨450~500sccm,單矽烷250~300sccm。
不論是第一電漿室111或第二電漿室112,當氣體流量為較上述範圍少時,皆有無法形成均勻氮化矽膜之情形;當較上述範圍為多時,有浪費成膜氣體之情形。
又,第一電漿室111之氨氣與矽烷氣體之流量比(氨氣流量/矽烷氣體流量),較佳為較第二電漿室112之氨氣與矽烷氣體之流量比(氨氣流量/矽烷氣體流量)為小。具體而言,第一電漿室111之氨氣與矽烷氣體之流量比(氨氣流量/矽烷氣體流量)較佳為0.1~1.0,更佳為0.5~0.8。當此流量比變得未滿0.1時,有不適合作為抗反射膜之情形;當變得超過1.0時,有無法得到提高鈍化效果之效果之虞。又,第二電漿室112之氨氣與矽烷氣體之流量比(氨氣流量/矽烷氣體流量)較佳為1.5~3.0,更佳為1.5~2.0。當此流量比變得未滿1.5,或變得超過3.0時,有不適合作為抗反射膜之虞。
又,作為該情形時之成膜條件,較佳為成膜室101內之壓力為10~100Pa,半導體基板102之溫度為250~600℃,托盤103之搬送速度雖然會依照成膜氣體之流量及流量比等而相異,但當形成的氮化矽膜之總膜厚為60~100nm時,較佳為90~150cm/min。
如上述般地,使用圖5的遠距離電漿CVD裝 置,藉由以上述成膜條件來形成二層構造的氮化矽膜,可安定形成鈍化效果為優異的氮化矽膜。
(7)電極形成
使用網板印刷裝置等,於受光面側及背面側,將包含例如銀的糊料印刷於p型擴散層12及n型擴散層13上,塗布成梳形電極圖型狀(指狀電極15及背面電極16)並使乾燥[圖3(E)、圖4(D)]。特佳為,使用p型來作為矽基板時,於背面側網板印刷以有機黏合劑混合鋁(Al)粉末的糊料,使乾燥而形成背面電極16。接著,於受光面及背面之雙方[圖3(F)],或於受光面[圖4(D)],以銀糊料等藉由網板印刷等來形成匯流條電極17。最後,在燒成爐中,以500~900℃進行1~30分鐘之燒成,而形成與p型擴散層12或n型擴散層13電氣連接的指狀電極15、背面電極16、及匯流條電極17。尚,圖3(F)中雖示為指狀電極15、背面電極16為未與擴散層12、13連接,圖4(D)中雖示為指狀電極15為未與擴散層13連接,但藉由燒成會燒成貫通,實際上與擴散層為連接。
[實施例]
以下,舉例本發明之實施例及比較例,更具體說明本發明,但本發明並不限定於該等。
[實施例1]
如圖3所示般,將結晶面方位(100)、15.65cm方形、厚200μm、作為切片比電阻2Ω.cm(摻雜劑濃度7.2×1015cm-3)的摻磷n型單晶矽基板11浸漬於氫氧化鈉水溶液中,以蝕刻來除去損傷層,浸漬於氫氧化鉀水溶液中為添加有異丙醇的水溶液中,藉由鹼蝕刻來進行刻紋形成[圖3(A)]。
於所得到的矽基板11之背面,塗布包含磷摻雜劑的塗布劑,之後進行900℃、1小時的熱處理,於背面形成n型擴散層13[圖3(B)]。熱處理後,藉由高濃度氟酸溶液等來將附著於基板的玻璃成分予以除去後,進行洗淨。
接著,將形成有n型擴散層13的矽基板11的背面彼此進行貼合,進行藉由BBr3的氣相擴散,於受光面整體形成p型擴散層12[圖3(C)]。
接著,使用電漿蝕刻機台,進行pn接合分離。以不使電漿或自由基入侵至受光面或背面,將對象以堆疊的狀態下,將端面削除數微米。之後,藉由高濃度氟酸溶液來將附著於基板的玻璃成分予以除去後,進行洗淨。
接著,使用如圖5所示構成的遠距離電漿 CVD裝置(型名SiNA1000、Roth & Rau公司製),作為載子氣體116使用氨,作為反應氣體117使用單矽烷(SiH4),藉由流量控制器113,使第一電漿室111之氨氣與單矽烷氣體之流量比(氨氣流量(sccm)/單矽烷氣體流量(sccm)) 成為0.5,使第二電漿室112之氨氣與單矽烷氣體之流量比(氨氣流量(sccm)/單矽烷氣體流量(sccm))成為2.0,分別於受光面側的p型擴散層12、及背面側的n型擴散層13上,層合介電體膜之二層構造的氮化矽膜14[圖3(D)]。該等膜厚為70nm。
最後,將分別的銀糊料予以電極印刷於受光面側及背面側,乾燥後,以750℃進行3分鐘之燒成,而形成指狀電極15、背面電極16及匯流條電極17[圖3(E)、(F)]。
[實施例2]
如圖4所示般,使用與實施例1為相同的p型單晶矽基板來作為矽基板11,與實施例1相同地,浸漬於氫氧化鈉水溶液中,以蝕刻來除去損傷層,浸漬於氫氧化鉀水溶液中為添加有異丙醇的水溶液中,藉由鹼蝕刻來進行刻紋形成[圖4(A)]。於所得到的矽基板11之受光面,塗布包含磷摻雜劑的塗布劑,之後進行800℃、1小時的熱處理,形成n型擴散層13[圖4(B)]。熱處理後,藉由高濃度氟酸溶液等來將附著於基板的玻璃成分予以除去後,進行洗淨。
接著,使用如圖5所示構成的遠距離電漿 CVD裝置(型名SiNA1000、Roth & Rau公司製),作為載子氣體116使用氨,作為反應氣體117使用單矽烷(SiH4),藉由流量控制器113,使第一電漿室111之氨氣與單矽烷氣體之流量比(氨氣流量(sccm)/單矽烷氣體流量(sccm)) 成為0.5,使第二電漿室112之氨氣與單矽烷氣體之流量比(氨氣流量(sccm)/單矽烷氣體流量(sccm))成為2.0,於受光面側的n型擴散層13上,層合介電體膜之二層構造的氮化矽膜14[圖4(C)]。該膜厚為80nm。
接著,將分別的銀糊料及鋁糊料予以電極印刷於受光面側及背面側,乾燥後,以750℃進行3分鐘之燒成,而形成指狀電極15、背面電極16及匯流條電極17[圖4(D)]。
[比較例1]
實施例1中,除了使用如圖1所示的直接式電漿CVD裝置來取代遠距離電漿CVD裝置100,並於受光面側的p型擴散層12、及背面側的n型擴散層13上形成膜厚70nm的氮化矽膜以外,其他與實施例1為以相同之條件,來製作太陽能電池。
[比較例2]
實施例2中,除了使用如圖1所示的直接式電漿CVD裝置來取代遠距離電漿CVD裝置100,並於受光面側的n型擴散層13上形成膜厚80nm的氮化矽膜以外,其他與實施例2為以相同之條件,來製作太陽能電池。
將實施例1、2及比較例1、2所得到的太陽能電池,在25℃的環境中,以太陽光模擬器(光強度:1kW/m2,氣相層析質譜儀:AM1.5Global)來測定電流電壓特性。結果示於表1中。尚,表中的數字,係以實施例1 、2及比較例1、2所製作的電池各10片所得到的平均值。
由於實施例1、2為藉由如圖5的遠距離電漿 CVD裝置,並以2個電漿室的氨氣與矽烷氣體之流量比為分別固定之狀態下來連續進行成膜,故在矽基板表面側為形成富有正的固定電荷的氮化矽膜,因此,鈍化效果為優異,且可生產性優異地安定形成氮化矽膜,並展現出較比較例1、2為更高的轉換效率。
尚,至此雖已將本發明以圖面所示的實施形 態而予以說明,但本發明並不限定於圖面所示的實施形態,其他實施形態、追加、變更、削除等,在所屬技術領域中具有通常知識者所能思及之範圍下可予以變更,只要是能得到本發明之作用效果,任何的樣態皆包含於本發明之範圍內。

Claims (5)

  1. 一種太陽能電池之製造方法,其係具有使用遠距離電漿化學氣相蒸鍍(CVD)裝置於半導體基板表面形成由氮化矽所組成的抗反射膜的步驟,其特徵為上述遠距離電漿化學氣相蒸鍍(CVD)裝置具備有成膜室與複數個電漿室,且上述複數個電漿室附設有將分別導入的氨氣與矽烷氣體之流量比調整的流量控制器,該成膜室:以半導體基板為可移動而配置者;該複數個電漿室:設置與該成膜室之上方為連通,產生氨氣的電漿流,將矽烷氣體導入該電漿流並使該電漿流以朝向成膜室噴出者;上述半導體基板為藉由來自第一電漿室的電漿流而形成第一氮化矽膜,進而移動至第二電漿室的下方,藉由基於氨氣與矽烷氣體之流量比為與第一電漿室為相異的電漿流,而形成組成為與上述第一氮化矽膜相異的第二氮化矽膜。
  2. 如請求項1之太陽能電池之製造方法,其中,上述第一電漿室的氨氣與矽烷氣體之流量比(氨氣流量/矽烷氣體流量)為0.1~1.0。
  3. 如請求項2之太陽能電池之製造方法,其中,上述第二電漿室的氨氣與矽烷氣體之流量比(氨氣流量/矽烷氣體流量)為1.5~3.0。
  4. 如請求項1~3中任一項的太陽能電池之製造方法,其中,上述半導體基板在成為第一導電型矽基板的受光面側之面,形成有與第一導電型為相反導電型的擴散層,於該擴散層上形成抗反射膜。
  5. 請求項1~3中任一項的太陽能電池之製造方法,其中,上述半導體基板在與第一導電型矽基板的受光面成為相反面側之面之至少一部份,形成有與第一導電型為相同導電型的擴散層,於形成有該擴散層之面上形成抗反射膜。
TW102128462A 2012-08-09 2013-08-08 Solar cell manufacturing method and solar cell manufactured by the manufacturing method TWI622183B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012176907 2012-08-09

Publications (2)

Publication Number Publication Date
TW201428989A TW201428989A (zh) 2014-07-16
TWI622183B true TWI622183B (zh) 2018-04-21

Family

ID=50067961

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102128462A TWI622183B (zh) 2012-08-09 2013-08-08 Solar cell manufacturing method and solar cell manufactured by the manufacturing method

Country Status (10)

Country Link
US (1) US9559221B2 (zh)
EP (1) EP2884544B1 (zh)
JP (1) JP5884911B2 (zh)
KR (1) KR102097758B1 (zh)
CN (1) CN104521003B (zh)
IN (1) IN2015DN01821A (zh)
MY (1) MY170163A (zh)
RU (1) RU2635834C2 (zh)
TW (1) TWI622183B (zh)
WO (1) WO2014024729A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014024729A1 (ja) * 2012-08-09 2014-02-13 信越化学工業株式会社 太陽電池の製造方法、及びその製造方法により製造された太陽電池
JP6369680B2 (ja) * 2014-05-30 2018-08-08 パナソニックIpマネジメント株式会社 太陽電池
US9559236B2 (en) * 2014-09-24 2017-01-31 Sunpower Corporation Solar cell fabricated by simplified deposition process
CN106282965B (zh) * 2016-08-31 2019-09-20 东方日升新能源股份有限公司 太阳能电池硅片的等离子增强化学气相沉积法
US20210381107A1 (en) * 2020-06-03 2021-12-09 Micron Technology, Inc. Material deposition systems, and related methods and microelectronic devices

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02201972A (ja) * 1989-01-30 1990-08-10 Kyocera Corp 太陽電池
JP2002270879A (ja) * 2001-03-14 2002-09-20 Mitsubishi Electric Corp 半導体装置
JP2008010746A (ja) * 2006-06-30 2008-01-17 Sharp Corp 太陽電池、および太陽電池の製造方法
TW201232793A (en) * 2010-09-14 2012-08-01 Shinetsu Chemical Co Solar cell and manufacturing method thereof

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5073804A (en) * 1977-12-05 1991-12-17 Plasma Physics Corp. Method of forming semiconductor materials and barriers
JPH0873297A (ja) 1994-09-05 1996-03-19 Shin Etsu Chem Co Ltd 太陽電池用基板材料の製法とこれを用いた太陽電池
DE69936906T2 (de) * 1998-10-12 2008-05-21 Kaneka Corp. Verfahren zur Herstellung einer siliziumhaltigen photoelektrischen Dünnschicht-Umwandlungsanordnung
JP2003273034A (ja) * 2002-03-14 2003-09-26 Crystage Co Ltd 薄膜形成装置
JP4186827B2 (ja) 2004-01-30 2008-11-26 日立電線株式会社 半導体の製造方法
JP4540447B2 (ja) * 2004-10-27 2010-09-08 シャープ株式会社 太陽電池および太陽電池の製造方法
JP2009117569A (ja) 2007-11-06 2009-05-28 Shimadzu Corp 反射防止膜成膜方法および反射防止膜成膜装置
JP5173370B2 (ja) 2007-11-21 2013-04-03 シャープ株式会社 光電変換素子の製造方法
JP4573902B2 (ja) * 2008-03-28 2010-11-04 三菱電機株式会社 薄膜形成方法
RU2417481C2 (ru) * 2009-02-13 2011-04-27 Российская Академия сельскохозяйственных наук Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства (ГНУ ВИЭСХ РОССЕЛЬХОЗАКАДЕМИИ) Фотоэлектрический преобразователь (варианты) и способ его изготовления (варианты)
DE102010000002B4 (de) * 2010-01-04 2013-02-21 Roth & Rau Ag Verfahren zur Abscheidung von Mehrlagenschichten und/oder Gradientenschichten
US20110245957A1 (en) * 2010-04-06 2011-10-06 Applied Materials, Inc. Advanced platform for processing crystalline silicon solar cells
US20110272024A1 (en) * 2010-04-13 2011-11-10 Applied Materials, Inc. MULTI-LAYER SiN FOR FUNCTIONAL AND OPTICAL GRADED ARC LAYERS ON CRYSTALLINE SOLAR CELLS
WO2011133965A2 (en) * 2010-04-23 2011-10-27 Solexel, Inc. Passivation methods and apparatus for achieving ultra-low surface recombination velocities for high-efficiency solar cells
US20110262641A1 (en) * 2010-04-26 2011-10-27 Aventa Systems, Llc Inline chemical vapor deposition system
US20110272008A1 (en) * 2010-05-07 2011-11-10 Applied Materials, Inc. Oxide nitride stack for backside reflector of solar cell
US20120164784A1 (en) * 2010-12-23 2012-06-28 Primestar Solar, Inc. Integrated deposition of thin film layers in cadmium telluride based photovoltaic module manufacture
KR20140117420A (ko) * 2012-01-03 2014-10-07 어플라이드 머티어리얼스, 인코포레이티드 Si 태양 전지들의 표면 부동태화의 성능 및 안정성을 개선하기 위한 버퍼 층
KR20140116120A (ko) * 2012-01-03 2014-10-01 어플라이드 머티어리얼스, 인코포레이티드 결정질 실리콘 태양 전지들을 패시베이팅하기 위한 진보된 플랫폼
WO2014024729A1 (ja) * 2012-08-09 2014-02-13 信越化学工業株式会社 太陽電池の製造方法、及びその製造方法により製造された太陽電池
US20140174532A1 (en) * 2012-12-21 2014-06-26 Michael P. Stewart Optimized anti-reflection coating layer for crystalline silicon solar cells

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02201972A (ja) * 1989-01-30 1990-08-10 Kyocera Corp 太陽電池
JP2002270879A (ja) * 2001-03-14 2002-09-20 Mitsubishi Electric Corp 半導体装置
JP2008010746A (ja) * 2006-06-30 2008-01-17 Sharp Corp 太陽電池、および太陽電池の製造方法
TW201232793A (en) * 2010-09-14 2012-08-01 Shinetsu Chemical Co Solar cell and manufacturing method thereof

Also Published As

Publication number Publication date
KR102097758B1 (ko) 2020-04-07
EP2884544A4 (en) 2016-02-10
KR20150041785A (ko) 2015-04-17
EP2884544B1 (en) 2018-05-09
TW201428989A (zh) 2014-07-16
CN104521003B (zh) 2016-11-23
US20150206990A1 (en) 2015-07-23
MY170163A (en) 2019-07-09
IN2015DN01821A (zh) 2015-05-29
EP2884544A1 (en) 2015-06-17
WO2014024729A1 (ja) 2014-02-13
RU2015107986A (ru) 2016-09-27
US9559221B2 (en) 2017-01-31
RU2635834C2 (ru) 2017-11-16
JP5884911B2 (ja) 2016-03-15
CN104521003A (zh) 2015-04-15
JPWO2014024729A1 (ja) 2016-07-25

Similar Documents

Publication Publication Date Title
EP2782146B1 (en) Method for manufacturing a solar cell with reduced potential induced degradation
WO2012008061A1 (ja) ボロン拡散層を有するシリコン太陽電池セル及びその製造方法
JP6285545B2 (ja) 太陽電池素子および太陽電池モジュール
TWI622183B (zh) Solar cell manufacturing method and solar cell manufactured by the manufacturing method
KR102120147B1 (ko) 태양 전지의 제조 방법 및 태양 전지
JP6282635B2 (ja) 太陽電池の製造方法
JPWO2009131111A1 (ja) 太陽電池の製造方法,太陽電池の製造装置,及び太陽電池
JP5410714B2 (ja) 反射防止膜成膜方法および反射防止膜成膜装置
JP5477220B2 (ja) 太陽電池及びその製造方法
JP2016139762A (ja) 太陽電池素子の製造方法
JP4657630B2 (ja) 太陽電池、その製造方法および反射防止膜成膜装置
WO2013002285A1 (ja) アルミナ膜の形成方法および太陽電池素子
JP2006344883A (ja) 太陽電池の製造方法
US10651322B2 (en) Solar cell element and solar cell module
JP6224513B2 (ja) 太陽電池素子の製造方法
JP5754411B2 (ja) 太陽電池の製造方法
US11038078B2 (en) Method for manufacturing high efficiency solar cell
JP2011187858A (ja) 太陽電池の製造方法及び太陽電池
JP5516611B2 (ja) 太陽電池の製造方法及び太陽電池
KR20200023301A (ko) 고효율 이면전극형 태양전지 및 그 제조방법
JP6076814B2 (ja) 太陽電池の製造方法
JP2012160520A (ja) 太陽電池及びその製造方法