CN105763093A - 电功率转换装置 - Google Patents
电功率转换装置 Download PDFInfo
- Publication number
- CN105763093A CN105763093A CN201610204820.1A CN201610204820A CN105763093A CN 105763093 A CN105763093 A CN 105763093A CN 201610204820 A CN201610204820 A CN 201610204820A CN 105763093 A CN105763093 A CN 105763093A
- Authority
- CN
- China
- Prior art keywords
- diode
- power conversion
- electric power
- switch element
- synchronous rectification
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003071 parasitic effect Effects 0.000 claims abstract description 43
- 230000001360 synchronised effect Effects 0.000 claims abstract description 39
- 230000005669 field effect Effects 0.000 claims description 44
- 238000006243 chemical reaction Methods 0.000 claims description 43
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 36
- 239000011159 matrix material Substances 0.000 claims description 6
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims description 4
- 229910003460 diamond Inorganic materials 0.000 claims description 4
- 239000010432 diamond Substances 0.000 claims description 4
- 229910002601 GaN Inorganic materials 0.000 claims description 2
- 239000004065 semiconductor Substances 0.000 abstract description 41
- 229910044991 metal oxide Inorganic materials 0.000 description 40
- 150000004706 metal oxides Chemical class 0.000 description 33
- 229920001296 polysiloxane Polymers 0.000 description 33
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 12
- 238000010438 heat treatment Methods 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 238000004134 energy conservation Methods 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical group N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/66—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
- H02M7/68—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
- H02M7/72—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/79—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/797—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M5/00—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
- H02M5/40—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
- H02M5/42—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
- H02M5/44—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
- H02M5/453—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
- H02M5/458—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
- H02M7/5387—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/42—Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
- H02M1/4208—Arrangements for improving power factor of AC input
- H02M1/4225—Arrangements for improving power factor of AC input using a non-isolated boost converter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M5/00—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
- H02M5/02—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
- H02M5/04—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
- H02M5/22—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M5/275—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M5/293—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M5/00—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
- H02M5/02—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
- H02M5/04—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
- H02M5/22—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M5/275—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M5/297—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal for conversion of frequency
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M5/00—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
- H02M5/40—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
- H02M5/42—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
- H02M5/44—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
- H02M5/453—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
- H02M5/458—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M5/4585—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/02—Conversion of ac power input into dc power output without possibility of reversal
- H02M7/04—Conversion of ac power input into dc power output without possibility of reversal by static converters
- H02M7/12—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/21—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/02—Conversion of ac power input into dc power output without possibility of reversal
- H02M7/04—Conversion of ac power input into dc power output without possibility of reversal by static converters
- H02M7/12—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/21—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/217—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M7/219—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/02—Conversion of ac power input into dc power output without possibility of reversal
- H02M7/04—Conversion of ac power input into dc power output without possibility of reversal by static converters
- H02M7/12—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/21—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/217—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M7/219—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
- H02M7/2195—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration the switches being synchronously commutated at the same frequency of the AC input voltage
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/08—Modifications for protecting switching circuit against overcurrent or overvoltage
- H03K17/081—Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit
- H03K17/0814—Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the output circuit
- H03K17/08142—Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the output circuit in field-effect transistor switches
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0048—Circuits or arrangements for reducing losses
- H02M1/0051—Diode reverse recovery losses
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Rectifiers (AREA)
- Inverter Devices (AREA)
- Dc-Dc Converters (AREA)
- Ac-Ac Conversion (AREA)
Abstract
本发明公开了一种电功率转换装置。直交流转换电路(120)构成为由六个开关元件(130)进行同步整流。所述开关元件(130)是由使用宽带隙半导体的单极元件(在此是碳化硅金属氧化物半导体场效应晶体管)构成。直交流转换电路(120)使用碳化硅金属氧化物半导体场效应晶体管(130)作为回流二极管,进行同步整流。
Description
本申请是申请号为200980103491.X的发明专利申请(国际申请号:PCT/JP2009/000205,申请日:2009年01月21日,发明名称:电功率转换装置)的分案申请。
技术领域
本发明涉及一种具有由使用宽带隙半导体的单极元件构成的开关元件的电功率转换装置。
背景技术
作为电功率转换装置开关元件的材料,现在广泛地使用硅。然而,用硅作为材料的开关元件的特性,越来越接近理论极限。超过硅的理论极限的材料碳化硅(SiC)、氮化镓(GaN)、金刚石等宽带隙半导体的开发正在进行。使用宽带隙半导体的电功率装置中具有超低损耗、高速高温动作的特点。这些宽带隙半导体中,作为功率装置最受注目的是氮化硅装置,作为电功率转换装置的开关元件,碳化硅金属氧化物半导体场效应晶体管(SiCMOSFET)被视为是最有前景的。
在驱动电感负载的直交流转换器中,是在开关元件上并联了二极管。这样的二极管被称作回流二极管,向相反方向流动电流。作为开关元件使用了碳化硅金属氧化物半导体场效应晶体管的直交流转换器上,并列于碳化硅金属氧化物半导体场效应晶体管连接了碳化硅肖脱基阻碍二极管(SiCSBD),将碳化硅肖脱基阻碍二极管作为回流二极管使用,这种构成正被研究。
专利文献1:日本公开专利公报特开平10-327585号公报
专利文献2:日本公开专利公报特开2007-129848号公报
非专利文献1:日刊工业新闻社《半导体碳化硅技术和应用》,松波弘之编著,2003
非专利文献2:欧姆社《碳化硅元件的基础和应用》,荒井和雄、吉田贞史共著,2003
发明内容
-发明所要解决的技术问题-
通过以上所述那样的构成可以使在回流二极管上的损耗降到最低,但是因为需要碳化硅肖脱基阻碍二极管而招致装置变大及成本增加的问题。
-为解决问题的技术方案-
根据本发明的电功率转换装置,是构成为由开关元件130进行同步整流的电功率转换装置,以所述开关元件130是由使用宽带隙半导体的单极元件构成,所述单极元件内的寄生二极管131作为回流二极管使用为特征的。
还有,以作为所述回流二极管用的寄生二极管131中流过逆向电流之际接通所述单极元件并在所述单极元件一侧流过逆向电流,由此进行同步整流为特征的。
这样通过使用寄生二极管131,不再需要另外设置回流二极管132,只由开关元件130就可构成,这样就降低了成本。还有,通过同步整流,开关元件130通电,就可以比寄生二极管131单体还要抑制通态损耗。
还有,以所述电功率转换装置是使用于空调机的装置为特征的。再有,以所述空调机的制热中间负载条件中所述开关元件130的电流实效值Irms和通态电阻Ron的关系为:Irms<0.9/Ron为特征的。
只要选定这样的开关元件130进行同步整流,在制热中间负载条件中,即便是不设置回流二极管132,也可以达到同等以上的效果,并且能够使降低成本和提高效率双方成立。
还有,以所述宽带隙半导体采用碳化硅(SiC)、氮化镓(GaN)、或金刚石中的任何一种为特征的。
还有,以所述单极元件是金属氧化物半导体场效应晶体管(MOSFET)为特征的。
还有,以包括构成为由所述开关元件130进行同步整流的直交流转换器120、交直流转换器110、矩阵交直流转换器700、升压斩波器111的至少一个为特征的。
本发明提供一种电功率转换装置,构成为由开关元件进行同步整流,其特征在于,所述开关元件由使用宽带隙半导体的单极元件构成,所述单极元件具有寄生二极管,所述同步整流时的所述单极元件的导通电压低于在假设将碳化硅肖脱基阻碍二极管用作回流二极管时的端子电压。
本发明提供一种电功率转换装置,构成为由开关元件进行同步整流,其特征在于,所述开关元件由使用宽带隙半导体的单极元件构成,所述单极元件具有寄生二极管,所述开关元件的电流实效值Irms与通态电阻Ron之间的关系为:Irms<Vf×(2×√2/π)/Ron,其中,Vf是在假设将碳化硅肖脱基阻碍二极管用作回流二极管时的端子电压。
本发明提供一种电功率转换装置,构成为由开关元件进行同步整流,其特征在于,所述开关元件由使用宽带隙半导体的单极元件构成,所述单极元件具有寄生二极管,所述开关元件的电流实效值Irms与通态电阻Ron之间的关系为:Irms<β×(2×√2/π)/(Ron-α),其中,α是将在假设将碳化硅肖脱基阻碍二极管用作回流二极管时的端子电压Vf进行一次近似而得的式子的斜率,β是进行该一次近似而得的式子的截距。
-发明的效果-
本发明的电功率转换装置,因为是将开关元件130的寄生二极管131用作回流二极管,所以不需要另外设置回流二极管132,抑制了成本的提高。还有,通过同步整流,在开关元件130中流过逆向电流,比起寄生二极管131单体还可以抑制通态损耗。
还有,只要选择空调机的制热中间负载条件中所述开关元件130的电流实效值Irms和通态电阻Ron的关系成为Irms<0.9/Ron的开关元件进行同步整流,在制热中间负载条件中,即便是不另外设置回流二极管132,也可以达成同等以上的效率,并且能够使降低成本和提高效率双方成立。
附图说明
图1是表示本发明第一实施方式的电功率转换装置构成的图。
图2是表示同步整流的基本概念的图,其中,(a)表示无同步整流的情况,(b)表示有同步整流的情况。
图3是表示在碳化硅金属氧化物半导体场效应晶体管上并联碳化硅肖脱基阻碍二极管作为回流二极管使用的构成的一例的图。
图4是表示碳化硅金属氧化物半导体场效应晶体管、碳化硅肖脱基阻碍二极管的寄生二极管,碳化硅肖脱基阻碍二极管132的电压-电流特性的概略图。
图5是表示本发明第二实施方式的电功率转换装置构成的图。
图6是表示本发明第三实施方式的电功率转换装置构成的图。
图7(a)是表示本发明第四实施方式的电功率转换装置构成的图;图7(b),是表示图7(a)所示的双向开关710的构成的图。
-符号说明-
10交流电源
20马达
100、500、600电功率转换装置
110交直流转换电路
111升压斩波电路(功率因素改善电路)
120直交流转换电路
130碳化硅金属氧化物半导体场效应晶体管(开关元件)
131寄生二极管
700矩阵交直流转换器
具体实施方式
以下,参照附图说明本发明的实施方式。另外,附图中相同或者相当的部分标注同样的参照符号并不重复它的说明。还有,以下优选的实施方式的说明,从本质上说不过是个示例,无意于限制本发明、本发明的适用物及其用途。
(第一实施方式)
本发明的第一实施方式的电功率转换装置构成由图1表示。这个电功率转换装置100,是由交直流转换电路110整流交流电源10,再由直交流转换电路120将该直流电转换为三相交流电供给马达20的装置。这个马达20设置在空调机的制冷剂回路中驱动压缩机。另外,图1中,交流电源10是单相交流,但也可以是三相交流。
直交流转换电路120构成为由六个开关元件130进行同步整流。所述开关元件130是由使用宽带隙半导体的单极元件(在此,是碳化硅金属氧化物半导体场效应晶体管)构成。直交流转换电路120将碳化硅金属氧化物半导体场效应晶体管130的寄生二极管131用作回流二极管,进行同步整流。另外,所谓的同步整流,如图2所示,是在回流二极管131中流过逆向电流之际导通碳化硅金属氧化物半导体场效应晶体管130并在金属氧化物半导体场效应晶体管一侧流过逆向电流的控制方法。由此可以降低流过逆向电流之际的通态损耗。
作为将寄生二极管用作回流二极管进行同步整流的现有技术,是将硅金属氧化物半导体场效应晶体管(SiMOSFET)的寄生二极管作为回流二极管使用的技术。然而,因为硅金属氧化物半导体场效应晶体管的寄生二极管的上升电压较低(约0.7V),所以,尽管进行同步整流,也马上使得寄生二极管导通。因此同步整流的效果小。对此,将本实施方式那样的碳化硅金属氧化物半导体场效应晶体管(SiCMOSFET)130的寄生二极管131作为回流二极管使用的情况下,碳化硅金属氧化物半导体场效应晶体管130的寄生二极管131的上升电压高(约3V),因此若进行同步整流,则电流不变大寄生二极管131就不导通。所以,如本实施方式那样将碳化硅金属氧化物半导体场效应晶体管130的寄生二极管131作为回流二极管使用,则比将硅金属氧化物半导体场效应晶体管的寄生二极管作为回流二极管使用的情况同步整流的效果更大。
还有,将硅金属氧化物半导体场效应晶体管的寄生二极管作为回流二极管使用进行同步整流的情况,由于寄生二极管而流过还原电流成为问题。为此,减慢开关速度减小还原电流,在电路构成上想办法使得不在寄生二极管上流过电流,增加电路减小还原电流的损耗(专利文献1、2)。
正如“背景技术”中所说明的,将碳化硅金属氧化物半导体场效应晶体管作为开关元件使用的情况下,如图3所示,研究在碳化硅金属氧化物半导体场效应晶体管130上并联碳化硅肖脱基阻碍二极管132作为回流二极管使用的构成。按照这个构成,由于碳化硅金属氧化物半导体场效应晶体管130的寄生二极管131的上升电压(约3V)和碳化硅肖脱基阻碍二极管132的上升电压(约1V)区别大,所以可以只使还原电流小的碳化硅肖脱基阻碍二极管132流过逆向电流,而使寄生二极管131上不流过逆向电流。碳化硅肖脱基阻碍二极管,可以大幅度降低还原电流和开关损耗之事已为所知,根据这样的碳化硅金属氧化物半导体场效应晶体管,与硅金属氧化物半导体场效应晶体管相比,简单地就可以实现还原电流的抑制。另外,硅金属氧化物半导体场效应晶体管中,能够并联作为回流二极管使用的二极管的上升电压,与硅金属氧化物半导体场效应晶体管的寄生二极管一样,无法使得寄生二极管上不流过逆向电流。
另一方面,与碳化硅金属氧化物半导体场效应晶体管130的寄生二极管131相同构造的碳化硅pn二极管的还原电流小,比硅pn二极管的开关损耗是不同数量级的小,所以本实施方式中就可以大幅度降低还原电流、开关损耗。
图3所示的构成中需要碳化硅肖脱基阻碍二极管132就会招致成本升高的问题,但是使用本实施方式的碳化硅金属氧化物半导体场效应晶体管130的寄生二极管131作为回流二极管使用进行同步整流,就可以不设置碳化硅肖脱基阻碍二极管132只由碳化硅金属氧化物半导体场效应晶体管130构成,抑制了成本的升高。还有,通过进行同步整流,金属氧化物半导体场效应晶体管一侧通电,就可以比寄生二极管131单体时抑制通态损耗。特别是低负载中,比使用碳化硅肖脱基阻碍二极管132更能够抑制损耗(有关这一点在后叙述)。
另外,对于图1中直交流转换电路120内的六个开关元件130的全部都是将寄生二极管131作为回流二极管使用进行同步整流适用的构成,但是只是一部分开关元件130适用也是可以的。
(开关元件的选定条件)
本实施方式的直交流转换电路120中在同步整流中碳化硅金属氧化物半导体场效应晶体管130通电,迄今为止的构成中(在碳化硅金属氧化物半导体场效应晶体管130上并联碳化硅肖脱基阻碍二极管132作为回流二极管使用的构成,参照图3)是碳化硅肖脱基阻碍二极管132通电。在此,碳化硅金属氧化物半导体场效应晶体管130、碳化硅金属氧化物半导体场效应晶体管130的寄生二极管131、碳化硅肖脱基阻碍二极管132的电压-电流特性的概略情况如图4所示。碳化硅金属氧化物半导体场效应晶体管130表示定电阻特性。碳化硅肖脱基阻碍二极管132的上升电压约1V,碳化硅金属氧化物半导体场效应晶体管130的寄生二极管131的上升电压约3V。另外,上升电压由物性值决定而无法任意设定。
比较本实施方式的构成和迄今为止的构成(图3)的特性进行考虑,端子电压若在碳化硅肖脱基阻碍二极管132的上升电压以下,则本实施方式的效果好。然而,进一步流过电流,迄今为止的构成效率好。为此,在定额条件、重负载,流动大电流的运转状态下适用碳化硅肖脱基阻碍二极管132的迄今为止的构成效率好。另一方面,轻负载下,碳化硅肖脱基阻碍二极管132的效果低,只由碳化硅金属氧化物半导体场效应晶体管130构成本实施方式效率好。
在此,作为电流,流过Irmssinθ时的本实施方式和迄今为止的构成(图3)损耗分别由以下的(式1)至(式3)表示。
·本实施方式
(式1)Ron×Irms2
·迄今为止的构成
(式2)Irms···其中Vf=const.
(式3)Irms···其中Vf(i)=αi+β
Irms是电流实效值,Ron是碳化硅金属氧化物半导体场效应晶体管130的通态电阻值,Vf是碳化硅肖脱基阻碍二极管132的端子电压。(式2)是Vf为一定值时的近似值,(式3)是Vf的一次近似值。
从图4以及以上的式子所知,额定负载以及重负载中本实施方式的损耗变大,但在轻负载中却是本实施方式的损耗小。与重视定额负载时的效率的一般负载不同,空调用途中轻负载的运转时间长。因此,为了节能提出了轻负载的运转效率的要求。在日本国内对实际节能最有影响的是,相对于制热额定能力输出1/2的能力的条件,被称作制热中间负载的运转条件。
若使制热中间负载中的电流实效值为Irms时,选定碳化硅金属氧化物半导体场效应晶体管130使得以下(式4)、(式5)所示的条件成立。
(式4)Vf/Ron···其中Vf=const.
(式5)β/Ron-α)···其中Vf=αi+β
只要这样地选定开关元件进行同步整流,在制热中间负载中,即便是不使用碳化硅肖脱基阻碍二极管132,也可以达成同等以上的效率,使得成本下降和高效双方都能成立。
再有,从碳化硅肖脱基阻碍二极管132的上升电压约1V这一点考虑,使Vf也为1V,则所述(式4)就可以简化为以下的(式6)。
(式6)Irms1<0.9/Ron
由此开关元件的选定更容易。
(第二实施方式)
本发明的第二实施方式的电功率转换装置构成表示在图5中。这个电功率转换装置500中,作为功率因数改善电路使用的升压斩波电路111的二极管使用了碳化硅金属氧化物半导体场效应晶体管130的寄生二极管131,进行同步整流。由这个同步整流,改善了特别是轻负载的效率。还有因为是使用了碳化硅装置,所以与硅装置相比显著地减小了开始电流,可以降低开关损耗。
(第三实施方式)
本发明的第三实施方式的电功率转换装置构成表示在图6中。这个电功率转换装置600中,作为交直流转换电路110的整流二极管使用了碳化硅金属氧化物半导体场效应晶体管130的寄生二极管131,进行同步整流。另外,图6中,是用商业用电源10作为单相交流,但是三相交流亦可。还有,只是交直流转换电路110的整流二极管的一部分作为碳化硅金属氧化物半导体场效应晶体管130的寄生二极管131,剩下的可以是一般的二极管。
(第四实施方式)
本发明的第四实施方式的电功率转换装置构成表示在图7(a)中。这个电功率转换装置700,是在各个三相交流电源30的电线和三相交流马达20的定子电线可能组合的九个接点上设置使用了开关元件的双向开关710的矩阵交直流转换器,将输入的交流电压不改变成直流电而是直接改变成交流电输出。因为矩阵交直流转换器通过电流的元件少,所以从原理上讲能够是小型高效的。因为使用于矩阵变频器的开关元件710有必要双向导通,所以本实施方式中如图7(b)所示,采用两个碳化硅金属氧化物半导体场效应晶体管130逆向串联构成开关元件710。
另外,所述各实施方式中使用宽带隙半导体的单极元件的一例碳化硅金属氧化物半导体场效应晶体管,但是也可以同样地考虑使用氮化镓以及金刚石等其它的宽带隙半导体的单极元件。
-产业上的实用性-
通过以上说明,本发明的电功率转换装置,适用于比起定额负载的效率轻负载的效率更重要的空调机等是有用的。
Claims (10)
1.一种电功率转换装置,构成为由开关元件(130)进行同步整流,其特征在于,
所述开关元件(130)由使用宽带隙半导体的单极元件构成,
所述单极元件具有寄生二极管(131),
所述同步整流时的所述单极元件的导通电压低于在假设将碳化硅肖脱基阻碍二极管用作回流二极管时的端子电压。
2.一种电功率转换装置,构成为由开关元件(130)进行同步整流,其特征在于,
所述开关元件(130)由使用宽带隙半导体的单极元件构成,
所述单极元件具有寄生二极管(131),
所述开关元件(130)的电流实效值(Irms)与通态电阻(Ron)之间的关系为:Irms<Vf×(2×√2/π)/Ron,其中,Vf是在假设将碳化硅肖脱基阻碍二极管用作回流二极管时的端子电压。
3.一种电功率转换装置,构成为由开关元件(130)进行同步整流,其特征在于,
所述开关元件(130)由使用宽带隙半导体的单极元件构成,
所述单极元件具有寄生二极管(131),
所述开关元件(130)的电流实效值(Irms)与通态电阻(Ron)之间的关系为:Irms<β×(2×√2/π)/(Ron-α),其中,α是对在假设将碳化硅肖脱基阻碍二极管用作回流二极管时的端子电压Vf进行一次近似而得的式子的斜率,β是进行该一次近似而得的式子的截距。
4.根据权利要求2或3所述的电功率转换装置,其特征在于,
所述电流实效值(Irms)是轻负载时的电流。
5.根据权利要求1至4中任一项所述的电功率转换装置,其特征在于,
所述单极元件内的寄生二极管(131)用作回流二极管。
6.根据权利要求1至5中任一项所述的电功率转换装置,其特征在于,
所述寄生二极管(131)中流过逆向电流之际接通所述单极元件,并在所述单极元件一侧流过逆向电流,由此进行同步整流。
7.根据权利要求1至6中任一项所述的电功率转换装置,其特征在于,
所述电功率转换装置是使用于空调机的装置。
8.根据权利要求1至7中任一项所述的电功率转换装置,其特征在于,
所述宽带隙半导体采用碳化硅、氮化镓、金刚石中的任何一种。
9.根据权利要求1至8中任一项所述的电功率转换装置,其特征在于,
所述单极元件是金属氧化物半导体场效应晶体管。
10.根据权利要求1至9中任一项所述的电功率转换装置,其特征在于,
具有构成为由所述开关元件(130)进行同步整流的直交流转换器(120)、交直流转换器(110)、矩阵交直流转换器(700)、升压斩波器(111)的至少一个。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008021759A JP5770412B2 (ja) | 2008-01-31 | 2008-01-31 | 電力変換装置 |
JPJP2008-021759 | 2008-01-31 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200980103491XA Division CN101933219A (zh) | 2008-01-31 | 2009-01-21 | 电功率转换装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105763093A true CN105763093A (zh) | 2016-07-13 |
Family
ID=40912515
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610204819.9A Pending CN105763092A (zh) | 2008-01-31 | 2009-01-21 | 电功率转换装置 |
CN201610204821.6A Pending CN105871222A (zh) | 2008-01-31 | 2009-01-21 | 电功率转换装置 |
CN201610204817.XA Pending CN105763072A (zh) | 2008-01-31 | 2009-01-21 | 电功率转换装置 |
CN201610204818.4A Pending CN105763091A (zh) | 2008-01-31 | 2009-01-21 | 电功率转换装置 |
CN201610204820.1A Pending CN105763093A (zh) | 2008-01-31 | 2009-01-21 | 电功率转换装置 |
CN200980103491XA Pending CN101933219A (zh) | 2008-01-31 | 2009-01-21 | 电功率转换装置 |
Family Applications Before (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610204819.9A Pending CN105763092A (zh) | 2008-01-31 | 2009-01-21 | 电功率转换装置 |
CN201610204821.6A Pending CN105871222A (zh) | 2008-01-31 | 2009-01-21 | 电功率转换装置 |
CN201610204817.XA Pending CN105763072A (zh) | 2008-01-31 | 2009-01-21 | 电功率转换装置 |
CN201610204818.4A Pending CN105763091A (zh) | 2008-01-31 | 2009-01-21 | 电功率转换装置 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200980103491XA Pending CN101933219A (zh) | 2008-01-31 | 2009-01-21 | 电功率转换装置 |
Country Status (7)
Country | Link |
---|---|
US (2) | US10148197B2 (zh) |
EP (1) | EP2237402A4 (zh) |
JP (1) | JP5770412B2 (zh) |
KR (2) | KR101175471B1 (zh) |
CN (6) | CN105763092A (zh) |
AU (1) | AU2009208567B2 (zh) |
WO (1) | WO2009096158A1 (zh) |
Families Citing this family (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5554140B2 (ja) * | 2009-09-04 | 2014-07-23 | 三菱電機株式会社 | 電力変換回路 |
CN102511123B (zh) * | 2009-09-16 | 2014-09-24 | 三菱电机株式会社 | 电力转换装置 |
JP2011072142A (ja) * | 2009-09-28 | 2011-04-07 | Daikin Industries Ltd | 電力変換装置 |
JP5440201B2 (ja) * | 2010-01-20 | 2014-03-12 | パナソニック株式会社 | 双方向スイッチのゲート駆動装置 |
JP5617267B2 (ja) * | 2010-02-12 | 2014-11-05 | 富士通株式会社 | 電源システム、及び、電源制御回路 |
JP5131304B2 (ja) * | 2010-04-13 | 2013-01-30 | 三菱電機株式会社 | モータ、換気扇、熱交換ユニット |
EP2566034A4 (en) * | 2010-04-28 | 2014-12-24 | Honda Motor Co Ltd | SWITCHING CIRCUIT |
JP5259016B2 (ja) * | 2010-05-21 | 2013-08-07 | 三菱電機株式会社 | パワー半導体モジュール |
JP5525917B2 (ja) | 2010-05-27 | 2014-06-18 | ローム株式会社 | 電子回路 |
WO2012007598A1 (es) * | 2010-07-14 | 2012-01-19 | Sepsa, Electronica De Potencia, S.L. | Conversor de tensión monofásica en trifásica |
US9054588B2 (en) | 2010-10-13 | 2015-06-09 | Mitsubishi Electric Corporation | Three-phase AC to DC converter and air conditioning apparatus using three-phase AC to DC converter |
JP2012120379A (ja) * | 2010-12-02 | 2012-06-21 | Panasonic Corp | 同期整流回路、および、それを用いたdc/dcコンバータ、ac/dcコンバータ |
WO2012104889A1 (ja) * | 2011-01-31 | 2012-08-09 | 三菱電機株式会社 | 逆流防止手段、電力変換装置及び冷凍空気調和装置 |
CN103354973B (zh) * | 2011-01-31 | 2016-08-10 | 三菱电机株式会社 | 功率转换装置 |
CN102751861A (zh) * | 2011-04-21 | 2012-10-24 | 艾默生网络能源系统北美公司 | 一种无桥功率因数校正电路 |
EP2717458B1 (en) * | 2011-05-26 | 2018-03-07 | Panasonic Corporation | Ac conversion circuit, ac conversion method, and recording medium |
JP5518004B2 (ja) * | 2011-06-29 | 2014-06-11 | 三菱電機株式会社 | 電力変換装置 |
EP2549638A1 (de) * | 2011-07-19 | 2013-01-23 | AEG Power Solutions B.V. | Stromversorgungsanordnung für einen Reaktor zur Polysiliciumherstellung mit einem Frequenzumrichter |
FI20115771L (fi) * | 2011-07-28 | 2013-01-29 | Kone Corp | Sähkönsyöttölaite sekä hissijärjestelmä |
DE102011080861A1 (de) * | 2011-08-12 | 2013-02-14 | Semikron Elektronik Gmbh & Co. Kg | Leistungselektronisches System mit einer Schalt- und einer Ansteuereinrichtung |
JP5822773B2 (ja) * | 2012-04-17 | 2015-11-24 | 三菱電機株式会社 | 電力変換装置 |
DE102012207689A1 (de) * | 2012-05-09 | 2013-11-14 | Infineon Technologies Ag | Steuereinheit für eine elektrische Maschine und Verfahren |
JP5755197B2 (ja) * | 2012-07-27 | 2015-07-29 | 三菱電機株式会社 | 電力変換装置 |
WO2014054096A1 (ja) * | 2012-10-01 | 2014-04-10 | 三菱電機株式会社 | モータ駆動回路、およびそれを内蔵した駆動回路内蔵モータならびに駆動回路内蔵ポンプモータ、およびそれらを搭載した空気調和機、換気扇、ヒートポンプ給湯機、ならびに内蔵冷温水循環式空調機 |
CN103855913A (zh) * | 2012-11-30 | 2014-06-11 | 通用电气公司 | 能量变换系统及其控制方法 |
US9252670B2 (en) * | 2012-12-19 | 2016-02-02 | General Electric Company | Multilevel converter |
US9172301B2 (en) | 2013-05-07 | 2015-10-27 | Hamilton Sundstrand Corporation | Synchronous rectification in the three-level inverter-converter topologies |
US9349715B2 (en) | 2013-06-21 | 2016-05-24 | Infineon Technologies Americas Corp. | Depletion mode group III-V transistor with high voltage group IV enable switch |
US9787212B2 (en) * | 2014-05-05 | 2017-10-10 | Rockwell Automation Technologies, Inc. | Motor drive with silicon carbide MOSFET switches |
JP6119778B2 (ja) * | 2015-02-24 | 2017-04-26 | トヨタ自動車株式会社 | インバータの制御装置 |
JP2016158344A (ja) * | 2015-02-24 | 2016-09-01 | 株式会社日立製作所 | 電力変換装置およびエレベータ |
EP3093978B1 (de) * | 2015-05-12 | 2021-06-30 | Siemens Aktiengesellschaft | Verfahren zum betrieb eines pulsstromrichters, pulsstromrichter und leistungshalbleitermodul für einen solchen |
US9595958B1 (en) | 2015-09-11 | 2017-03-14 | Fuji Electric Co., Ltd. | Semiconductor device and driving method for the same |
JP6490017B2 (ja) * | 2016-01-19 | 2019-03-27 | 三菱電機株式会社 | パワーモジュール、3相インバータシステム、およびパワーモジュールの検査方法 |
US10763740B2 (en) | 2016-04-15 | 2020-09-01 | Emerson Climate Technologies, Inc. | Switch off time control systems and methods |
US10770966B2 (en) | 2016-04-15 | 2020-09-08 | Emerson Climate Technologies, Inc. | Power factor correction circuit and method including dual bridge rectifiers |
US10284132B2 (en) | 2016-04-15 | 2019-05-07 | Emerson Climate Technologies, Inc. | Driver for high-frequency switching voltage converters |
US10305373B2 (en) | 2016-04-15 | 2019-05-28 | Emerson Climate Technologies, Inc. | Input reference signal generation systems and methods |
US9933842B2 (en) | 2016-04-15 | 2018-04-03 | Emerson Climate Technologies, Inc. | Microcontroller architecture for power factor correction converter |
US10277115B2 (en) | 2016-04-15 | 2019-04-30 | Emerson Climate Technologies, Inc. | Filtering systems and methods for voltage control |
US10656026B2 (en) | 2016-04-15 | 2020-05-19 | Emerson Climate Technologies, Inc. | Temperature sensing circuit for transmitting data across isolation barrier |
WO2017187606A1 (ja) * | 2016-04-28 | 2017-11-02 | 三菱電機株式会社 | 電力変換装置およびそれを備えた空気調和機 |
JP6157697B2 (ja) * | 2016-06-30 | 2017-07-05 | 三菱電機株式会社 | モータ駆動回路、およびそれを内蔵した駆動回路内蔵モータならびに駆動回路内蔵ポンプモータ、およびそれらを搭載した空気調和機、換気扇、ヒートポンプ給湯機、ならびに内蔵冷温水循環式空調機 |
JP6840985B2 (ja) * | 2016-10-21 | 2021-03-10 | 富士電機株式会社 | 3レベル整流器 |
JP2018099004A (ja) * | 2016-12-16 | 2018-06-21 | 富士電機株式会社 | 電力変換装置および電源装置 |
DE102017100530A1 (de) * | 2017-01-12 | 2018-07-12 | Danfoss Silicon Power Gmbh | Drei-Stufen-Leistungsmodul |
GB2567129A (en) * | 2017-07-25 | 2019-04-10 | Quepal Ltd | A power factor correction system |
CN107887332B (zh) * | 2017-09-25 | 2020-06-09 | 湖南大学 | 一种用于斩波电路的单片集成半导体芯片及其制备方法 |
JP7088041B2 (ja) * | 2019-01-18 | 2022-06-21 | 株式会社デンソー | 電力変換装置 |
US10716179B1 (en) * | 2019-05-15 | 2020-07-14 | Loong Yee Industrial Corp., Ltd. | Single fire-wire bi-directional power fetching and dimmer control system |
US12074226B2 (en) | 2021-09-14 | 2024-08-27 | Analog Power Conversion LLC | Schottky diode integrated with a semiconductor device |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09182440A (ja) * | 1995-12-28 | 1997-07-11 | Toshiba Corp | 電源装置 |
US5808327A (en) * | 1993-09-08 | 1998-09-15 | Siemens Aktiengesellschaft | AC controller |
JPH10262340A (ja) * | 1993-07-22 | 1998-09-29 | Sumitomo Wiring Syst Ltd | 電気自動車の充電用コネクタ及び電気自動車の充電制御方法 |
US6657475B1 (en) * | 2002-06-18 | 2003-12-02 | David L. Zahn | DC voltage bus clamp |
EP1677410A1 (en) * | 2004-12-28 | 2006-07-05 | Hitachi, Ltd. | Isolated bidirectional DC-DC Converter |
JP2006320134A (ja) * | 2005-05-13 | 2006-11-24 | Matsushita Electric Ind Co Ltd | モータ駆動回路、及びそれを搭載する電気洗濯機 |
JP2007082351A (ja) * | 2005-09-15 | 2007-03-29 | Toshiba Corp | 電力変換装置 |
JP2007129846A (ja) * | 2005-11-04 | 2007-05-24 | Toshiba Kyaria Kk | インバータ装置 |
US20070120540A1 (en) * | 2005-11-30 | 2007-05-31 | Takashi Sase | Marginal check voltage setting means built-in power-supply device |
US20070215903A1 (en) * | 2006-03-15 | 2007-09-20 | Kozo Sakamoto | Power semiconductor device |
CN101047338A (zh) * | 2007-04-29 | 2007-10-03 | 艾默生网络能源有限公司 | 一种dc/dc变换器同步整流电路 |
Family Cites Families (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4953068A (en) | 1989-11-08 | 1990-08-28 | Unisys Corporation | Full bridge power converter with multiple zero voltage resonant transition switching |
US5126931A (en) * | 1990-09-07 | 1992-06-30 | Itt Corporation | Fixed frequency single ended forward converter switching at zero voltage |
JP3458531B2 (ja) * | 1995-06-02 | 2003-10-20 | 株式会社デンソー | 交流発電機 |
US5682067A (en) * | 1996-06-21 | 1997-10-28 | Sierra Applied Sciences, Inc. | Circuit for reversing polarity on electrodes |
JP3605993B2 (ja) | 1997-03-17 | 2004-12-22 | 株式会社デンソー | 車両用発電装置 |
JPH10327585A (ja) | 1997-05-23 | 1998-12-08 | Toshiba Corp | 電力変換装置 |
US5845388A (en) * | 1997-11-19 | 1998-12-08 | Spenco, Inc. | Method for production of archery bow risers of various shapes |
EP1417757B1 (en) * | 2001-08-14 | 2008-07-16 | The Board Of Trustees Of The University Of Illinois | Systems and methods for pulse width modulation |
DE10146527A1 (de) * | 2001-09-21 | 2003-04-24 | Siemens Ag | Umrichter mit einem netz- und lastseitigen selbstgeführten Pulsstromrichter |
JP3742008B2 (ja) | 2001-12-27 | 2006-02-01 | コーセル株式会社 | スイッチング電源装置 |
DE10231198A1 (de) * | 2002-07-10 | 2004-01-29 | eupec Europäische Gesellschaft für Leistungshalbleiter mbH | Verfahren und Schaltungsanordnung zum Begrenzen einer Überspannung |
JP3905822B2 (ja) * | 2002-11-19 | 2007-04-18 | コーセル株式会社 | 同期整流式スイッチング電源装置 |
JP3929428B2 (ja) * | 2003-09-29 | 2007-06-13 | 三菱電機株式会社 | 電力制御装置 |
US7148660B2 (en) * | 2004-09-30 | 2006-12-12 | General Electric Company | System and method for power conversion using semiconductor switches having reverse voltage withstand capability |
US7218122B1 (en) * | 2005-02-28 | 2007-05-15 | Electric Power Research Institute | Power disturbance generator |
US7876064B2 (en) * | 2005-04-05 | 2011-01-25 | International Rectifier Corporation | Motor drive inverter that includes III-nitride based power semiconductor devices |
JP4185157B2 (ja) * | 2005-07-25 | 2008-11-26 | 松下電器産業株式会社 | 半導体素子及び電気機器 |
JP4300209B2 (ja) | 2005-11-04 | 2009-07-22 | 東芝キヤリア株式会社 | インバータ装置 |
EP1783910B1 (de) * | 2005-11-07 | 2012-10-31 | Bosch Rexroth AG | Schaltungsanordnung und ein Verfahren zur galvanisch getrennten Ansteuerung eines Halbleiterschalters |
JP2007181443A (ja) | 2006-01-10 | 2007-07-19 | Sumio Kayukawa | 麺帯折畳装置 |
JP2007215389A (ja) * | 2006-01-12 | 2007-08-23 | Hitachi Ltd | パワー半導体素子とこれを用いた半導体回路 |
JP5029078B2 (ja) * | 2006-03-15 | 2012-09-19 | 株式会社日立製作所 | 電力用半導体装置 |
JP2007312523A (ja) * | 2006-05-19 | 2007-11-29 | Sumitomo Electric Ind Ltd | パワーモジュール |
US7518895B2 (en) * | 2006-06-30 | 2009-04-14 | Fairchild Semiconductor Corporation | High-efficiency power converter system |
JP2008022642A (ja) * | 2006-07-13 | 2008-01-31 | Fujitsu Ltd | Dc−dcコンバータ |
DE102006050338B4 (de) * | 2006-10-25 | 2011-12-29 | Infineon Technologies Austria Ag | Halbleiterbauelement mit verbessertem Speicherladung zu Dioden-Softness Trade-off |
US20080173877A1 (en) * | 2007-01-09 | 2008-07-24 | Kabushiki Kaisha Y.Y.L. | Semiconductor apparatus |
US8120307B2 (en) * | 2007-08-24 | 2012-02-21 | The Powerwise Group, Inc. | System and method for providing constant loading in AC power applications |
JP2009159184A (ja) * | 2007-12-26 | 2009-07-16 | Hitachi Ltd | フリーホイールダイオードとを有する回路装置、及び、ダイオードを用いた回路装置とそれを用いた電力変換器 |
JP2009213220A (ja) * | 2008-03-03 | 2009-09-17 | Panasonic Corp | 逆流検出方法及び装置並びにモータ駆動方法及び装置 |
ES2356780B1 (es) * | 2009-01-20 | 2012-03-13 | Bsh Electrodomésticos España, S.A. | Campo de cocción con al menos una zona de calentamiento de varios elementos de calentamiento. |
-
2008
- 2008-01-31 JP JP2008021759A patent/JP5770412B2/ja active Active
-
2009
- 2009-01-21 CN CN201610204819.9A patent/CN105763092A/zh active Pending
- 2009-01-21 EP EP09706267.3A patent/EP2237402A4/en active Pending
- 2009-01-21 AU AU2009208567A patent/AU2009208567B2/en active Active
- 2009-01-21 CN CN201610204821.6A patent/CN105871222A/zh active Pending
- 2009-01-21 WO PCT/JP2009/000205 patent/WO2009096158A1/ja active Application Filing
- 2009-01-21 CN CN201610204817.XA patent/CN105763072A/zh active Pending
- 2009-01-21 CN CN201610204818.4A patent/CN105763091A/zh active Pending
- 2009-01-21 US US12/865,590 patent/US10148197B2/en active Active
- 2009-01-21 KR KR1020107018077A patent/KR101175471B1/ko active IP Right Grant
- 2009-01-21 CN CN201610204820.1A patent/CN105763093A/zh active Pending
- 2009-01-21 CN CN200980103491XA patent/CN101933219A/zh active Pending
- 2009-01-21 KR KR1020127015608A patent/KR101178965B1/ko active IP Right Grant
-
2018
- 2018-06-25 US US16/017,208 patent/US10931207B2/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10262340A (ja) * | 1993-07-22 | 1998-09-29 | Sumitomo Wiring Syst Ltd | 電気自動車の充電用コネクタ及び電気自動車の充電制御方法 |
US5808327A (en) * | 1993-09-08 | 1998-09-15 | Siemens Aktiengesellschaft | AC controller |
JPH09182440A (ja) * | 1995-12-28 | 1997-07-11 | Toshiba Corp | 電源装置 |
US6657475B1 (en) * | 2002-06-18 | 2003-12-02 | David L. Zahn | DC voltage bus clamp |
EP1677410A1 (en) * | 2004-12-28 | 2006-07-05 | Hitachi, Ltd. | Isolated bidirectional DC-DC Converter |
JP2006320134A (ja) * | 2005-05-13 | 2006-11-24 | Matsushita Electric Ind Co Ltd | モータ駆動回路、及びそれを搭載する電気洗濯機 |
JP2007082351A (ja) * | 2005-09-15 | 2007-03-29 | Toshiba Corp | 電力変換装置 |
JP2007129846A (ja) * | 2005-11-04 | 2007-05-24 | Toshiba Kyaria Kk | インバータ装置 |
US20070120540A1 (en) * | 2005-11-30 | 2007-05-31 | Takashi Sase | Marginal check voltage setting means built-in power-supply device |
US20070215903A1 (en) * | 2006-03-15 | 2007-09-20 | Kozo Sakamoto | Power semiconductor device |
CN101047338A (zh) * | 2007-04-29 | 2007-10-03 | 艾默生网络能源有限公司 | 一种dc/dc变换器同步整流电路 |
Also Published As
Publication number | Publication date |
---|---|
US10148197B2 (en) | 2018-12-04 |
KR101175471B1 (ko) | 2012-08-20 |
WO2009096158A1 (ja) | 2009-08-06 |
US20100309700A1 (en) | 2010-12-09 |
CN105763072A (zh) | 2016-07-13 |
US20180309390A1 (en) | 2018-10-25 |
AU2009208567B2 (en) | 2013-04-18 |
JP2009183115A (ja) | 2009-08-13 |
CN105763091A (zh) | 2016-07-13 |
JP5770412B2 (ja) | 2015-08-26 |
US10931207B2 (en) | 2021-02-23 |
CN105763092A (zh) | 2016-07-13 |
KR20100102221A (ko) | 2010-09-20 |
EP2237402A4 (en) | 2018-01-17 |
KR101178965B1 (ko) | 2012-08-31 |
EP2237402A1 (en) | 2010-10-06 |
CN101933219A (zh) | 2010-12-29 |
CN105871222A (zh) | 2016-08-17 |
AU2009208567A1 (en) | 2009-08-06 |
KR20120084796A (ko) | 2012-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105763093A (zh) | 电功率转换装置 | |
JP5212303B2 (ja) | 電力変換装置 | |
US8351231B2 (en) | Power conversion device | |
CN109962699A (zh) | 用于控制mosfet开关模块的方法和装置 | |
EP3664271B1 (en) | Power conversion device, motor drive device, and air conditioner | |
US10090761B2 (en) | Power conversion apparatus | |
US11101728B2 (en) | Power converting apparatus, motor drive control apparatus, blower, compressor, and air conditioner | |
EP2811632A1 (en) | Drive circuit for semiconductor switching element and power conversion circuit using same | |
EP3029821A1 (en) | Semiconductor device and power conversion device | |
EP2768131B1 (en) | Inverter device | |
Chowdhury et al. | Operating principles, design considerations, and experimental characteristics of high-voltage 4H-SiC bidirectional IGBTs | |
WO2014024596A1 (ja) | インバータ駆動回路 | |
Farag et al. | Elimination of reverse recovery effects associated with CoolMOS devices employing current source inverter topology | |
JP6455793B2 (ja) | 電力変換装置、及びそれを用いたパワーコンディショナ | |
JP5531490B2 (ja) | 電力変換装置 | |
US20190140553A1 (en) | Ac/dc converter, module, power conversion device, and air conditioning apparatus | |
Zabihi et al. | High voltage silicon carbide power devices for energy conversion applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20160713 |
|
RJ01 | Rejection of invention patent application after publication |