WO2014024596A1 - インバータ駆動回路 - Google Patents

インバータ駆動回路 Download PDF

Info

Publication number
WO2014024596A1
WO2014024596A1 PCT/JP2013/067605 JP2013067605W WO2014024596A1 WO 2014024596 A1 WO2014024596 A1 WO 2014024596A1 JP 2013067605 W JP2013067605 W JP 2013067605W WO 2014024596 A1 WO2014024596 A1 WO 2014024596A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching element
voltage
terminal
driver circuit
control signal
Prior art date
Application number
PCT/JP2013/067605
Other languages
English (en)
French (fr)
Inventor
誠一郎 木原
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to EP13827584.7A priority Critical patent/EP2884649A1/en
Priority to JP2014529382A priority patent/JPWO2014024596A1/ja
Priority to US14/415,482 priority patent/US20150207428A1/en
Priority to CN201380041605.9A priority patent/CN104521122A/zh
Publication of WO2014024596A1 publication Critical patent/WO2014024596A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/38Means for preventing simultaneous conduction of switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0051Diode reverse recovery losses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to an inverter drive circuit that converts a voltage by driving a switching element.
  • an inverter system that can be controlled with a microcomputer is widely used as a control system for motors used in home appliances such as air conditioners and refrigerators.
  • an IGBT (Insulated Gate Bipolar Transistor) element is widely used as a switching element.
  • IPM Intelligent Power Module
  • IGBT and its driver IC are packaged in one package
  • air conditioners As wide bandgap semiconductor devices such as SiCFET [Silicon Carbide FET] and GaNFET [Gallium Nitride FET] are put into practical use, their incorporation into IPM is being studied in order to pursue efficiency improvements due to their low on-resistance and high-frequency characteristics. Yes.
  • the inverter driving circuit there is a three-phase inverter driving circuit configured by a driver circuit unit 30, IGBTs 41 to 46, and FWD [Free-Wheeling Diode] 51 to 56, as shown in FIG.
  • This inverter drive circuit converts DC power supplied from the DC power supply 7 into AC and outputs it to the motor 8 to drive the motor 8.
  • the IGBTs 41 to 43 are upper arm switching elements, and the IGBTs 44 to 46 are lower arm switching elements.
  • the driver circuit unit 30 has an upper arm driver circuit group 31 and a lower arm driver circuit group 32.
  • the driver circuit unit 30 also receives control signals for the upper arm (S-1u, S-1v, S-1w) and control signals for the lower arm (S-2u, S-2v, S-2w) Given by.
  • the driver circuit group 31 for the upper arm receives a control signal S-1u and outputs a gate signal to the IGBT 43, and a driver circuit receives a control signal S-1v and outputs a gate signal to the IGBT 42. 31b, and a driver circuit 31c that receives the control signal S-1w and outputs a gate signal to the IGBT 41 is included.
  • the driver circuit group 32 for the lower arm receives a control signal S-2u and outputs a gate signal to the IGBT 46.
  • a driver circuit 32a receives a control signal S-2v and outputs a gate signal to the IGBT 45.
  • Each driver circuit (31a to 31c, 32a to 32c) is constituted by a level shift circuit 47 and an output driver 48 as shown in FIG.
  • the level shift circuit 47 adjusts the voltage level of the input control signal to the input voltage level of the output driver 48.
  • the output driver 48 generates an output voltage (gate signal) to be applied to the gate of the IGBT according to the output of the level shift circuit 47.
  • the FWD 51 corresponds to the IGBT 41
  • the FWD 52 corresponds to the IGBT 42
  • the FWD 53 corresponds to the IGBT 43
  • the FWD 54 corresponds to the IGBT 44
  • the FWD 55 corresponds to the IGBT 45
  • the FWD 56 corresponds to the IGBT 46.
  • the collector and emitter terminals of each IGBT (41 to 46) are connected to the cathode and anode terminals of the corresponding FWDs 51 to 56, respectively.
  • the collector terminals of the IGBTs 41 to 43 on the upper arm are connected to the positive terminal of the DC power supply 7.
  • the emitter terminals of the lower arm IGBTs 44 to 46 are connected to the negative terminal of the DC power supply 7.
  • the emitter terminal of the IGBT 41 is connected to the collector terminal of the IGBT 44 and the W-phase terminal of the motor 8.
  • the emitter terminal of the IGBT 42 is connected to the collector terminal of the IGBT 45 and the V-phase terminal of the motor 8.
  • the emitter terminal of the IGBT 43 is connected to the collector terminal of the IGBT 46 and the U-phase terminal of the motor 8.
  • each control signal represents a rectangular wave drive signal of the motor 8.
  • the control signal S-1u is a PWM modulated signal in the 0 to 120 ° interval
  • the control signal S-1v is a PWM modulated signal in the 120 to 240 ° interval
  • the control signal S-1w is 240 to 0 °.
  • the signal is PWM-modulated in the section.
  • the control signal S-2u is a PWM modulated signal in the 180 to 300 ° interval
  • the control signal S-2v is a PWM modulated signal in the 300 to 60 ° interval
  • the control signal S-2w is 60 to 180. This is a signal that is PWM modulated in the interval.
  • a gate signal is generated in response to these control signals, and each of the IGBTs 41 to 46 performs a switching operation.
  • the U-phase voltage, the V-phase terminal, and the W-phase terminal of the motor 8 are respectively shown in FIG. , V-phase voltage, and W-phase voltage are output. Since the U-phase voltage, the V-phase voltage, and the W-phase voltage are each approximated to a sine waveform and output, the motor 8 can be driven.
  • a reflux current flows to the motor 8 via the FWD 56 in the 120 to 180 ° section.
  • a reflux current flows from the motor 8 via the FWD 53.
  • the flow of the reflux current is the same in the V phase and the W phase.
  • power loss corresponding to the product of the forward voltage VF and the return current ID of each FWD occurs. In the following description, such power loss is referred to as “first loss”.
  • the IGBT 42 is turned on, the current flows in order through the collector terminal and the emitter terminal of the IGBT 42, and further flows from the V-phase terminal of the motor 8 to the U-phase terminal.
  • the reverse saturation current flows from the cathode terminal to the anode terminal of the FWD 56, it becomes a short-circuit current from the upper arm to the lower arm.
  • a power loss corresponding to the product of the voltage across the DC power supply 7 and the short-circuit current occurs. In the following description, such a power loss is referred to as a “second loss”.
  • an SBD Schottky barrier diode having a low forward voltage VF may be used as the FWD.
  • an FRD First Recovery Diode
  • a device has been devised in which a reverse voltage application device is provided in each FWD and a small reverse voltage is applied to suppress a loss due to a reverse recovery current (see Patent Document 1).
  • MOSFET Metal Oxide Semiconductor FET
  • MOSFET Metal Oxide Semiconductor FET
  • an inverter drive circuit that drives an inductive load such as a motor
  • a motor circuit when switching a motor circuit to drive a switching element and convert a DC voltage into an AC voltage, a current generated in a coil flows backward through the switching element. Try to flow.
  • the switching element is a MOSFET, since the reverse recovery characteristic of the parasitic diode is poor, it is necessary to attach an FWD to the outside to release the current.
  • the switching element is an IGBT
  • current cannot flow in the reverse direction, so an external FWD is required.
  • the electric power generated in the FWD becomes the first loss described above in the inverter drive circuit.
  • the SBD is used as the FWD
  • the first loss is small because the forward voltage VF is low.
  • the reverse leakage current is larger than that of a general diode, the second loss described above becomes large. End up.
  • a reverse current flows through the FWD due to the reverse recovery characteristic of the FWD, and the power loss due to the short-circuit current at this time becomes the second loss of the inverter drive circuit.
  • the MOSFET with the improved reverse recovery characteristic of the built-in diode described above when used as a switching element, it is possible to omit FWD itself.
  • the switching elements that can be employed are very limited, and a general MOSFET or the like cannot be employed.
  • a MOSFET that improves the reverse recovery characteristics of the built-in diode and eliminates the need for FWD is more expensive than a general MOSFET, and the lineup is limited.
  • an object of the present invention is to provide an inverter drive circuit that can easily reduce the power loss by omitting the FWD while avoiding restrictions on the switching elements that can be employed as much as possible.
  • the inverter drive circuit is configured to switch on / off of the switching element according to each switching element of the upper and lower arms connected in series between a positive electrode and a negative electrode of a DC power source and a control signal given to each of the switching elements.
  • a driver circuit that controls the inverter, a load is connected to a connection point between the switching elements of the upper and lower arms, an inverter drive that converts the power of the DC power source into AC by the ON / OFF switching, and supplies the AC to the load
  • the driver circuit compares the voltages of the terminals at both ends of the switching element, and performs the control based on the comparison result and the control signal.
  • the driver circuit determines an on control period for each switching element based on the result of the comparison, and the on control period regardless of the content of the control signal.
  • the switching element may be turned on.
  • the driver circuit is configured such that, for the switching element of the upper arm, the voltage at the terminal connected to the load is higher than the voltage at the terminal connected to the positive electrode of the DC power supply. A large period may be determined as the on-control period.
  • the driver circuit is configured such that, with respect to the switching element of the lower arm, the voltage of the terminal connected to the negative electrode of the DC power supply is higher than the voltage of the terminal connected to the load. A large period may be determined as the on-control period.
  • the driver circuit controls the switching element to turn on when the control signal indicates on, and controls the switching element to turn off when the control signal indicates off.
  • the determination of the ON control period for one of the switching elements of the upper and lower arms may reflect the contents of the control signal for the other switching element of the upper and lower arms.
  • the driver circuit is configured such that, for the switching element of the upper arm, the voltage at the terminal connected to the load is higher than the voltage at the terminal connected to the positive electrode of the DC power supply. It is good also as a structure which determines the period when the said control signal with respect to the said switching element of a lower arm is OFF as the said ON control period.
  • the driver circuit is configured such that, with respect to the switching element of the lower arm, the voltage of the terminal connected to the negative electrode of the DC power supply is higher than the voltage of the terminal connected to the load. A large period in which the control signal for the switching element of the upper arm is off may be determined as the on control period.
  • the switching element may be an N-type MOSFET having a drain terminal and a source terminal as the terminals. More specifically, the switching element may be an N-type GaNFET having a drain terminal and a source terminal as the terminals.
  • the driver circuit includes a voltage comparison circuit that performs the comparison process, and performs logical operations using the control signal supplied from the outside and the output signal of the voltage comparison circuit as inputs. Based on this, the control may be performed.
  • the inverter drive circuit According to the inverter drive circuit according to the present invention, it is easy to realize reduction of power loss and the like by omitting FWD while avoiding restrictions on the switching elements that can be adopted as much as possible.
  • FIG. 1 is a configuration diagram of a three-phase inverter drive circuit INV-1 according to the first embodiment.
  • the inverter drive circuit INV-1 includes switching elements 1 to 6, a driver circuit unit 10, and the like.
  • the inverter drive circuit INV-1 is connected to the DC power source 7 and the motor 8, converts the DC voltage supplied from the DC power source 7 into AC and outputs it to the motor 8, and drives the motor 8.
  • the motor 8 is an inductive load having a coil, and generates a reflux current when a circuit connected to the motor 8 is switched.
  • Each of the switching circuits 1 to 6 is a normally-on N-type GaNFET, and is switched on / off according to a gate signal input to the gate terminal (switching between conduction / cutoff between the drain terminal and the source terminal). )I do.
  • the type of the switching circuits 1 to 6 is not limited to this, and may be an N-type MOSFET or the like.
  • FIG. 2 shows an example of the static characteristics of a normally-on type GaNFET. Due to the structure of the GaN FET, the drain and the source are switched in a region where the drain voltage is lower than the source voltage, and when the voltage is lower than the gate threshold voltage, the GaN FET is turned on in the reverse direction.
  • FIG. 3 shows an example of the static characteristics of the MOSFET. In the region where the drain voltage is lower than the source voltage, the MOSFET is turned on in the reverse direction when the voltage is lower than the forward voltage VF of the parasitic diode.
  • the switching element 3 is a U-phase upper arm switching element
  • the switching element 2 is a V-phase upper arm switching element
  • the switching element 1 is a W-phase upper arm switching element.
  • the switching element 6 is a U-phase lower arm switching element
  • the switching element 5 is a V-phase lower arm switching element
  • the switching element 4 is a W-phase lower arm switching element.
  • the switching element of the upper arm and the switching element of the lower arm are connected in series between the positive electrode and the negative electrode of the DC power source 7.
  • a motor 8 is connected between the switching element of the upper arm and the switching element of the lower arm.
  • the positive electrode of the DC power supply 7 is connected to the positive electrode line Lp, and the negative electrode of the DC power supply 7 is connected to the negative electrode line Ln.
  • the U-phase terminal of the motor 8 is connected to the U-phase line L-u, the V-phase terminal of the motor 8 is connected to the V-phase line Lv, and the W-phase terminal of the motor 8 is connected to the W-phase line L- -It is connected to w.
  • the drain terminal is connected to the positive electrode line Lp, and the source terminal is connected to the drain terminal of the switching element 6 and the U-phase line Lu.
  • the switching element 2 has a drain terminal connected to the positive line Lp and a source terminal connected to the drain terminal of the switching element 5 and the V-phase line Lv.
  • the drain terminal is connected to the positive electrode line Lp, and the source terminal is connected to the drain terminal of the switching element 4 and the W-phase line Lw.
  • the source terminals of the switching elements 4 to 6 are connected to the negative electrode line Ln.
  • the driver circuit unit 10 has a driver circuit group 11 for the upper arm and a driver circuit group 12 for the lower arm.
  • the driver circuit group 11 for the upper arm includes a driver circuit 11a that outputs a gate signal G-3 to the switching element 3, a driver circuit 11b that outputs a gate signal G-2 to the switching element 2, and A driver circuit 11c that outputs a gate signal G-1 is included.
  • the driver circuit group 12 for the lower arm includes a driver circuit 12a that outputs a gate signal G-6 to the switching element 6, a driver circuit 12b that outputs a gate signal G-5 to the switching element 5, and A driver circuit 12c that outputs a gate signal G-4 is included.
  • the driver circuit is provided so as to correspond to each switching element, and one driver circuit drives one switching element.
  • a control signal is input to each driver circuit from the outside (for example, from a higher-level control system in an electric device equipped with the inverter drive circuit INV-1).
  • a control signal S-1u used for controlling the switching element 3 of the upper arm of the U phase is input from the outside to the driver circuit 11a.
  • a control signal S-1v used for controlling the switching element 2 of the V-phase upper arm is input to the driver circuit 11b from the outside.
  • a control signal S-1w used for controlling the switching element 1 of the upper arm of the W phase is input from the outside to the driver circuit 11c.
  • a control signal S-2u used for controlling the switching element 6 of the U-phase lower arm is input to the driver circuit 12a from the outside.
  • a control signal S-2v used for controlling the switching element 5 of the lower arm of the V phase is input to the driver circuit 12b from the outside.
  • a control signal S-2w used for controlling the switching element 4 of the lower arm of the W phase is input to the driver circuit 12c from the outside.
  • the driver circuit unit 10 is connected to the positive line Lp and the negative line Ln, and the voltage Ep of the positive line Lp and the voltage En of the negative line Ln are input. It can be said that the voltage Ep is the voltage of the drain terminal in each of the switching elements 1 to 3 in the upper arm, and the voltage En is the voltage of the source terminal in each of the switching elements 4 to 6 in the lower arm.
  • the driver circuit unit 10 is connected to the lines of each phase, and the voltage Eu of the U-phase line Lu, the voltage Ev of the V-phase line Lv, and the voltage of the W-phase line Lw. Ew is input.
  • the voltage Eu is a voltage of the source terminal in the switching element 3 of the upper arm of the U phase and a voltage of the drain terminal of the switching element 6 of the lower arm of the U phase.
  • the voltage Ev can be said to be the voltage at the source terminal of the switching element 2 in the upper arm of the V phase and the voltage at the drain terminal of the switching element 5 in the lower arm of the V phase.
  • the voltage E ⁇ w is the voltage at the source terminal of the switching element 1 in the upper arm of the W phase and the voltage at the drain terminal of the switching element 4 in the lower arm of the W phase.
  • FIG. 4 is a more detailed configuration diagram of the driver circuit unit 10. As shown in the figure, each driver circuit (11a to 11c, 12a to 12c) includes a voltage comparison circuit A1, an OR circuit A2, a level shift circuit A3, and an output driver A4. Each driver circuit has three terminals (ac) to which signals and the like are input.
  • each driver circuit the voltage input to the terminal a is sent to the non-inverting input terminal of the voltage comparison circuit A1, and the voltage input to the terminal b is sent to the inverting input terminal of the voltage comparison circuit A1.
  • the voltage comparison circuit A1 outputs an H (High) level signal when the voltage at the non-inverting input terminal is larger than the voltage at the inverting input terminal, and outputs an L (Low) level signal at other times.
  • the OR circuit A2 has two input terminals.
  • the output signal of the voltage comparison circuit A1 is sent to one input terminal, and the signal input to the terminal c is sent to the other input terminal.
  • the OR circuit A2 outputs an H level signal when at least one of the signals input to each input terminal is at an H level, and outputs an L level signal at other times.
  • the level shift circuit A3 adjusts the voltage level of the output signal of the OR circuit A2 so as to match the input voltage level of the output driver A4.
  • the output driver A4 generates an output voltage (gate signal) to be applied to the gate of the switching element according to the output of the level shift circuit A3.
  • a gate signal is generated that turns on the switching element when the output signal of the OR circuit A2 is at the H level and turns off the switching element at other times.
  • the driver circuit generates the gate signal based on the logical operation that receives the control signal and the output signal of the voltage comparison circuit A1, and controls the switching element.
  • the voltage of the source terminal of the switching element corresponding to the driver circuit is input to the terminal a in each driver circuit.
  • the voltage at the drain terminal of the switching element corresponding to the driver circuit is input to the terminal b in each driver circuit.
  • a control signal corresponding to the driver circuit is input to a terminal c in each driver circuit.
  • the driver circuit 11c the voltage E-w is input to the terminal a, the voltage Ep is input to the terminal b, and the control signal S-1w is input to the terminal c.
  • the driver circuit 11b the voltage Ev is input to the terminal a, the voltage Ep is input to the terminal b, and the control signal S-1v is input to the terminal c.
  • the driver circuit 11a the voltage Eu is input to the terminal a, the voltage Ep is input to the terminal b, and the control signal S-1u is input to the terminal c.
  • the voltage En is input to the terminal a, the voltage Ew is input to the terminal b, and the control signal S-2w is input to the terminal c.
  • the driver circuit 12b the voltage En is input to the terminal a, the voltage Ev is input to the terminal b, and the control signal S-2v is input to the terminal c.
  • the driver circuit 12a the voltage En is input to the terminal a, the voltage Eu is input to the terminal b, and the control signal S-2u is input to the terminal c.
  • each control signal is a rectangular wave signal in which H level and L level appear alternately.
  • the H level indicates that the switching element is on (instruction to turn on), and the L level indicates that the switching element is off (instruction to turn off).
  • the driver circuits (11a to 11c, 12a to 12c) basically control the switching elements to turn on when the control signal indicates ON, and control the switching elements to OFF when the control signal indicates OFF.
  • the control signal S-1u is a PWM modulated signal in the 0 to 120 ° interval
  • the control signal S-1v is a PWM modulated signal in the 120 to 240 ° interval
  • the control signal S-1w is 240 to 0 °.
  • the signal is PWM-modulated in the section.
  • the control signal S-2u is a PWM modulated signal in the 180 to 300 ° interval
  • the control signal S-2v is a PWM modulated signal in the 300 to 60 ° interval
  • the control signal S-2w is 60 to 180. This is a signal that is PWM modulated in the interval.
  • Any control signal has an H level and an L level mixed according to the duty ratio in a section where PWM modulation is performed, and is always at an L level in a section where PWM modulation is not performed.
  • Gate signals are generated in response to these control signals, and the switching elements 1 to 6 are switched on / off.
  • the U-phase terminal, V-phase terminal, and W-phase terminal of the motor 8 are respectively connected to FIG.
  • a reflux current flows to the motor 8 through the U phase line Lu in a section of approximately 120 to 180 °.
  • the voltage of the drain terminal of the switch element 6 is lower than the voltage of the source terminal (the voltage of the U-phase line Lu is lowered to a voltage lower than the voltage of the negative terminal of the DC power supply 7).
  • the voltage comparison circuit A1 at 12a outputs an H level signal.
  • the gate signal G-6 of H level is output from the driver circuit 12a, and the switching element 6 is turned on.
  • the switching element 6 of the lower arm can flow a reflux current.
  • a reflux current flows from the motor 8 via the U-phase line Lu.
  • the driver circuit The voltage comparison circuit A1 of 11a outputs an H level signal.
  • the gate signal G-3 at H level is output from the driver circuit 11a, and the switching element 3 is turned on.
  • the switching element 3 of the upper arm can flow a reflux current.
  • a period during which the voltage comparison circuit A1 outputs an H level signal is the switching element regardless of the content of the control signal. It can be said that is a period during which ON is controlled (ON control period).
  • the switching elements of the lower arm and the upper arm can flow the reflux current as well in the V phase and the W phase.
  • the return current flows through the on-resistance of the switching element, and the voltage comparison circuit A1 operates with high sensitivity, so that the voltage at which the switching element is turned on can be kept low.
  • the inverter drive circuit INV-1 of the present embodiment it is possible to suppress the first loss described above as compared with the conventional inverter circuit in which the return current flows in the FWD.
  • the first loss can be significantly reduced.
  • reverse saturation current of MOSFET and GaNFET is smaller than FWD. Therefore, according to the inverter drive circuit INV-1 of the present embodiment, it is possible to suppress the second loss described above as compared with the conventional inverter drive circuit in which the reverse saturation current flows in the FWD. In particular, when a GaNFET or the like having good reverse recovery characteristics is employed, the second loss can be significantly reduced.
  • the second embodiment is basically the same as the first embodiment except for the portion related to the driver circuit unit.
  • emphasis is placed on the description of parts different from the first embodiment, and description of common parts may be omitted.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and the names and functions are also the same, so the same description will not be repeated. .
  • FIG. 6 is a configuration diagram of a three-phase inverter drive circuit INV-2 according to the second embodiment.
  • the inverter drive circuit INV-2 includes switching elements 1 to 6, a driver circuit unit 20, and the like.
  • the inverter drive circuit INV-2 is connected to the DC power supply 7 and the motor 8, converts the DC voltage supplied from the DC power supply 7 into AC and outputs it to the motor 8, and drives the motor 8.
  • the driver circuit unit 20 has a driver circuit group 21 for the upper arm and a driver circuit group 22 for the lower arm.
  • the driver circuit group 21 for the upper arm includes a driver circuit 21a that outputs a gate signal G-3 to the switching element 3, a driver circuit 21b that outputs a gate signal G-2 to the switching element 2, and A driver circuit 21c that outputs a gate signal G-1 is included.
  • the driver circuit group 22 for the lower arm includes a driver circuit 22a that outputs a gate signal G-6 to the switching element 6, a driver circuit 22b that outputs a gate signal G-5 to the switching element 5, and A driver circuit 22c that outputs a gate signal G-4 is included.
  • the driver circuit is provided so as to correspond to each switching element, and one driver circuit drives one switching element.
  • a control signal S-1u used for controlling the switching element 3 of the U-phase upper arm and a control signal used for controlling the switching element 6 of the U-phase lower arm Both signals of S-2u are input from the outside.
  • Each of the driver circuit 21b and the driver circuit 22b includes a control signal S-1v used for controlling the switching element 2 of the upper arm of the V phase and a control used for controlling the switching element 5 of the lower arm of the V phase. Both signals S-2v are input from the outside.
  • Each of the driver circuit 21c and the driver circuit 22c includes a control signal S-1w used for controlling the switching element 1 of the W-phase upper arm and a control used for controlling the switching element 4 of the W-phase lower arm. Both signals S-2w are input from the outside.
  • the driver circuit unit 20 is connected to the positive line Lp and the negative line Ln, and the voltage Ep of the positive line Lp and the voltage En of the negative line Ln are input.
  • the driver circuit unit 20 is connected to the lines of each phase, and the voltage Eu of the U-phase line Lu, the voltage Ev of the V-phase line Lv, and the voltage of the W-phase line Lw. Ew is input.
  • FIG. 7 is a more detailed configuration diagram of the driver circuit unit 20.
  • each driver circuit (21a to 21c, 22a to 22c) has a voltage comparison circuit A1, an OR circuit A2, a level shift circuit A3, an output driver A4, and an AND circuit A5.
  • Each driver circuit has four terminals (a to d) to which signals and the like are input.
  • each driver circuit the voltage input to the terminal a is sent to the non-inverting input terminal of the voltage comparison circuit A1, and the voltage input to the terminal b is sent to the inverting input terminal of the voltage comparison circuit A1.
  • the output signal of the voltage comparison circuit A1 is sent to one input terminal, and the signal input to the terminal c is sent to the other input terminal.
  • the AND circuit A5 has two input terminals.
  • the output signal of the OR circuit A2 is sent to one input terminal, and the signal input to the terminal d is sent to the other input terminal.
  • the terminal d is a negative logic input terminal. Therefore, the AND circuit A5 outputs an H level signal when the output signal of the OR circuit A2 is at the H level and the signal input to the terminal d is at the L level, and otherwise, the L level signal. Is output.
  • the level shift circuit A3 adjusts the voltage level of the output signal of the AND circuit A5 so as to match the input voltage level of the output driver A4.
  • the output driver A4 generates an output voltage (gate signal) to be applied to the gate of the switching element according to the output of the level shift circuit A3.
  • a gate signal is generated that turns on the switching element when the output signal of the AND circuit A5 is at the H level and turns off the switching element at other times.
  • the voltage of the source terminal of the corresponding switching element is input to the terminal a in each driver circuit.
  • the voltage at the drain terminal of the corresponding switching element is input to the terminal b in each driver circuit.
  • a control signal for the corresponding switching element is input to a terminal c in each driver circuit.
  • a control signal for the other switching element having the same phase as that of the corresponding switching element (upside down) is input to the terminal d in each driver circuit.
  • the voltage E-w is input to the terminal a
  • the voltage Ep is input to the terminal b
  • the control signal S-1w is input to the terminal c
  • the control signal is input to the terminal d.
  • S-2w is input.
  • the driver circuit 21b the voltage Ev is input to the terminal a
  • the voltage Ep is input to the terminal b
  • the control signal S-1v is input to the terminal c
  • the control signal S is input to the terminal d.
  • -2v is input.
  • the voltage Eu is input to the terminal a
  • the voltage Ep is input to the terminal b
  • the control signal S-1u is input to the terminal c
  • the control signal S is input to the terminal d.
  • -2u is input.
  • the voltage En is input to the terminal a, the voltage Ew is input to the terminal b, the control signal S-2w is input to the terminal c, and the control signal is input to the terminal d.
  • S-1w is input.
  • the driver circuit 22b the voltage En is input to the terminal a, the voltage Ev is input to the terminal b, the control signal S-2v is input to the terminal c, and the control signal S is input to the terminal d.
  • -1v is input.
  • the voltage En is input to the terminal a, the voltage Eu is input to the terminal b, the control signal S-2u is input to the terminal c, and the control signal S is input to the terminal d.
  • -1u is input.
  • the inverter drive circuit INV-2 is supplied with the control signals shown in FIG. 5, and can drive the motor 8 in the same manner as in the first embodiment.
  • the on / off switching of the switching element is controlled so that the reflux current and the reverse saturation current flow, and the first loss and the second loss can be suppressed as compared with the conventional inverter driving circuit. This is the same as in the case of the embodiment.
  • the control for causing the reflux current to flow through one switching element of the upper and lower arms is performed only when the control signal for the other switching element of the upper and lower arms indicates OFF. It is like that. Therefore, in the second embodiment, it is possible to prevent an arm short circuit due to an erroneous control signal or abnormal control waveform, and a safer inverter drive circuit and drive method are realized.
  • the switching element is on during the period in which the voltage comparison circuit A1 outputs an H level signal and the L level signal is input to the terminal d regardless of the content of the control signal. It can be said that this is the period controlled by (on control period).
  • the inverter drive circuit (INV-1, INV-2) of each embodiment is provided for each switching element of the upper and lower arms connected in series between the positive electrode and the negative electrode of the DC power source 7, and for each switching element. And a driver circuit that controls on / off switching of the switching element in accordance with a control signal.
  • the inverter drive circuit (INV-1, INV-2) of each embodiment has a three-phase specification, and each switching element (3, 6) of the upper and lower arms in the U phase and each of the upper and lower arms in the V phase. It has switching elements (2, 5) and switching elements (1, 4) of the upper and lower arms in the W phase.
  • the inverter drive circuit of the present invention is not limited to a three-phase inverter drive circuit, and can be implemented as, for example, a two-phase inverter drive circuit.
  • the motor 8 (load) is connected to the connection point between the switching elements of the upper and lower arms, and the power of the DC power supply 7 is switched to AC by switching on / off. To be supplied to the motor 8.
  • the driver circuit compares the voltages at the terminals at both ends of the switching element, and performs the control based on the comparison result and the control signal.
  • the comparison result of each terminal voltage at both ends of the switching element is related to whether or not a reflux current flows through the switching element. Therefore, according to the inverter drive circuit that controls the switching element based on the comparison result as well as the control signal, it is easy to allow the return current to flow through the switching element. As a result, the switching element is provided with the function of FWD and the FWD is omitted, and it becomes easy to realize a reduction in power loss and a reduction in the number of parts due to the return current and the like. Further, in order to omit the FWD, it is not always necessary to use a MOSFET with improved reverse recovery characteristics of the built-in diode, and the limitation of the switching element that can be adopted is avoided as much as possible.
  • the driver circuit determines an on control period for each switching element based on the result of the comparison, and this on control period In, regardless of the content of the control signal, the switching element is turned on. That is, the driver circuit gives priority to the control for turning on the switching element in the ON control period over the control according to the control signal.
  • the ON control period is determined corresponding to the period in which the return current flows, and it is easy to flow the return current through the switching element.
  • the driver circuits (11a to 11c) corresponding to the upper arm in the first embodiment are connected to the source terminals (terminals connected to the motor 8) of the switching elements (1 to 3) of the upper arm. Is determined as an on-control period during which the voltage of the first terminal is larger than the voltage of the drain terminal (terminal connected to the positive electrode of the DC power supply 7). Accordingly, it is possible to determine the ON control period without excess or deficiency as much as possible for the purpose of flowing the return current to the switching elements (1 to 3).
  • the driver circuit (12a to 12c) corresponding to the lower arm in the first embodiment is configured such that the voltage of the source terminal (the terminal connected to the negative electrode of the DC power supply 7) is applied to the switching elements (4 to 6) of the lower arm. Is larger than the voltage of the drain terminal (terminal on the side connected to the motor 8) is determined as the ON control period. Thus, it is possible to determine the ON control period without excess or deficiency as much as possible for the purpose of flowing the return current to the switching elements (4 to 6).
  • the driver circuit according to the second embodiment reflects the contents of the control signal for the other switching element of the upper and lower arms in the determination of the ON control period for the one switching element of the upper and lower arms.
  • the driver circuits (21a to 21c) corresponding to the upper arm in the second embodiment for the switching elements (1 to 3) of the upper arm, the voltage of the source terminal is larger than the voltage of the drain terminal, and The period in which the control signal for the lower arm switching element is OFF is determined as the ON control period. As a result, it is possible to prevent an arm short circuit due to an erroneous control signal, abnormal control waveform, or the like.
  • the driver circuit (22a to 22c) corresponding to the lower arm in the second embodiment for the switching elements (4 to 6) of the lower arm, the voltage of the source terminal is larger than the voltage of the drain terminal, and the switching of the upper arm is performed.
  • the period during which the control signal for the element is off is determined as the on control period.
  • the embodiment described above is an example of a preferred embodiment of the present invention.
  • the embodiment of the present invention is not limited to this, and various modifications can be made without departing from the gist of the present invention.
  • application of general techniques is considered as appropriate. For example, it is considered to provide a time difference (dead time) in the control signals for these switching elements so that the pair of switching elements constituting the upper and lower arms are not simultaneously turned on and short-circuited.
  • the present invention can be used for an inverter drive circuit for driving a two-phase or three-phase load.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

 直流電源の正極と負極の間に直列にされる上下アームの各スイッチング素子と、前記スイッチング素子ごとに与えられる制御信号に従って、前記スイッチング素子のオン/オフ切替の制御を行うドライバ回路と、を備え、上下アームの前記スイッチング素子同士の接続点に負荷が接続され、前記オン/オフ切替によって前記直流電源の電力を交流に変換し、前記負荷に供給するインバータ駆動回路であって、前記ドライバ回路は、前記スイッチング素子の両端における各端子の電圧を比較し、該比較の結果および前記制御信号に基づいて前記制御を行うインバータ駆動回路とする。

Description

インバータ駆動回路
 本発明は、スイッチング素子の駆動により電圧を変換するインバータ駆動回路に関する。
 エアコンや冷蔵庫などの家電製品に使用されるモータの制御方式として、省エネ性能を向上させるため、マイコンによる高度な制御が可能なインバータ方式が広く利用されている。この制御方式を実現するインバータ駆動回路には、スイッチング素子としてIGBT[Insulated Gate Bipolar Transistor:絶縁ゲート型バイポーラトランジスタ]素子が広く使用されている。
 またIGBTとそのドライバICを1パッケージ化したIPM[Intelligent Power Module]も、エアコンなどに広く使用されている。SiCFET[Silicon Carbide FET]やGaNFET[Gallium Nitride FET]などのワイドバンドギャップ半導体素子の実用化に伴い、その低オン抵抗や高周波特性による効率向上追求のため、これらのIPMへの内蔵が検討されている。
 インバータ駆動回路の例としては、図8に示すように、ドライバ回路ユニット30、IGBT41~46、およびFWD[Free-Wheeling Diode]51~56によって構成された3相インバータ駆動回路が挙げられる。このインバータ駆動回路は、直流電源7が供給する直流電力を交流に変換してモータ8に出力し、モータ8を駆動させるようになっている。なおIGBT41~43は上アームのスイッチング素子であり、IGBT44~46は下アームのスイッチング素子である。
 ドライバ回路ユニット30は、上アーム用のドライバ回路群31と下アーム用のドライバ回路群32を有している。またドライバ回路ユニット30には、上アーム用の制御信号(S-1u、S-1v、S-1w)および下アーム用の制御信号(S-2u、S-2v、S-2w)が、外部から与えられる。
 なお上アーム用のドライバ回路群31には、制御信号S-1uが入力されてIGBT43にゲート信号を出力するドライバ回路31a、制御信号S-1vが入力されてIGBT42にゲート信号を出力するドライバ回路31b、および、制御信号S-1wが入力されてIGBT41にゲート信号を出力するドライバ回路31cが含まれている。
 また下アーム用のドライバ回路群32には、制御信号S-2uが入力されてIGBT46にゲート信号を出力するドライバ回路32a、制御信号S-2vが入力されてIGBT45にゲート信号を出力するドライバ回路32b、および、制御信号S-2wが入力されてIGBT44にゲート信号を出力するドライバ回路32cが含まれている。
 またそれぞれのドライバ回路(31a~31c、32a~32c)は、図9に示すように、レベルシフト回路47および出力ドライバ48によって構成されている。レベルシフト回路47は、入力される制御信号の電圧レベルを、出力ドライバ48の入力電圧レベルに調整する。出力ドライバ48は、レベルシフト回路47の出力に応じて、IGBTのゲートに与える出力電圧(ゲート信号)を発生させる。
 またIGBT41にはFWD51が対応し、IGBT42にはFWD52が対応し、IGBT43にはFWD53が対応し、IGBT44にはFWD54が対応し、IGBT45にはFWD55が対応し、IGBT46にはFWD56が対応している。各IGBT(41~46)のコレクタおよびエミッタ端子は、それぞれ、対応するFWD51~56のカソードおよびアノード端子に接続されている。
 上アームのIGBT41~43のコレクタ端子は、直流電源7の正極端子に接続されている。下アームのIGBT44~46のエミッタ端子は、直流電源7の負極端子に接続されている。IGBT41のエミッタ端子は、IGBT44のコレクタ端子とモータ8のW相端子に接続されている。IGBT42のエミッタ端子は、IGBT45のコレクタ端子とモータ8のV相端子に接続されている。IGBT43のエミッタ端子は、IGBT46のコレクタ端子とモータ8のU相端子に接続されている。
 上述した構成のインバータ駆動回路では、IGBTがオフすると、モータ8に蓄えられたエネルギーが電流としてFWDを介して還流する。次に、上述したインバータ駆動回路の動作について、図5のタイミングチャートを参照して説明する。
 図5に示すように各制御信号は、モータ8の矩形波駆動信号を表わしている。制御信号S-1uは0~120°区間でPWM変調された信号であり、制御信号S-1vは120~240°区間でPWM変調された信号であり、制御信号S-1wは240~0°区間でPWM変調された信号である。また制御信号S-2uは180~300°区間でPWM変調された信号であり、制御信号S-2vは300~60°区間でPWM変調された信号であり、制御信号S-2wは60~180°区間でPWM変調された信号である。
 これらの制御信号に応じてゲート信号が生成され、各IGBT41~46がスイッチング動作を行う結果、モータ8のU相端子、V相端子、およびW相端子には、それぞれ図5に示すU相電圧、V相電圧、およびW相電圧が出力される。U相電圧、V相電圧、およびW相電圧は、それぞれがサイン波形に近似されて出力されることから、モータ8を駆動させることができる。
 ここで例えばU相に着目すると、120~180°区間では、FWD56を介してモータ8へ還流電流が流れる。また300~0°区間では、モータ8からFWD53を介して還流電流が流れる。このように還流電流が流れることは、V相およびW相においても同様である。このとき、それぞれのFWDの順方向電圧VFと還流電流IDの積に相当する電力の損失が生じる。以下の説明ではこのような電力の損失を「第1の損失」と称する。
 また例えばFWD56に順方向電流が流れた後にIGBT42がターンオンし、電流がIGBT42のコレクタ端子とエミッタ端子を順に介して流れ、更にモータ8のV相端子からU相端子に流れる局面がある。この局面では、逆方向飽和電流がFWD56のカソード端子からアノード端子に流れるため、上アームから下アームへの短絡電流となる。このような現象は各々のFWDについて生じることになり、それぞれにおいて、直流電源7の両端電圧と短絡電流の積に相当する電力の損失が生じる。以下の説明ではこのような電力の損失を「第2の損失」と称する。
 省電力等の観点から、上述した電力の損失は出来るだけ抑えられることが望ましい。そこで例えば第1の損失を削減するため、順方向電圧VFの低いSBD(ショットキーバリアダイオード)をFWDとして使用する場合がある。
 また例えば第2の損失を削減するため、逆回復特性に優れたFRD(First Recovery Diode)をFWDとして使用する場合がある。またそれぞれのFWDに逆電圧印加装置を設け、小さな逆電圧を印加することで、逆回復電流による損失を低く抑える装置が考案されている(特許文献1参照)。
 またIGBTに比べてオン抵抗が低いため、MOSFET[Metal Oxide Semiconductor FET]がスイッチング素子として使用されることがある。しかし一般的にMOSFETの寄生ダイオードの逆回復特性はあまり良好でないため、内蔵ダイオードより順方向電圧VFの低いFWDを使用して、寄生ダイオードが動作しないようにする必要があった。また内蔵ダイオードの逆回復特性を改良してFWDを必要としないMOSFETも開発されている。
特開平10-327585号公報
 モータのような誘導性負荷を駆動するインバータ駆動回路においては、スイッチング素子を駆動して直流電圧を交流電圧に変換するためモータの回路を切り替える際に、コイルに発生する電流がスイッチング素子を逆流して流れようとする。スイッチング素子がMOSFETの場合、寄生ダイオードの逆回復特性が悪いため、外部にFWDを付けてその電流を逃がす必要がある。
 またスイッチング素子がIGBTの場合、逆方向に電流を流すことができないため、外付けのFWDが必要である。このFWDに生じる電力が、インバータ駆動回路における先述した第1の損失となる。FWDとしてSBDを使用する場合は、順方向電圧VFが低いために第1の損失は少ないが、逆方向の漏れ電流が一般のダイオードに比べて大きいため、先述した第2の損失が大きくなってしまう。またFWDに上記電流が流れた後、FWDの逆回復特性によりFWDに逆電流が流れる現象が起き、このときの短絡電流による電力損失がインバータ駆動回路の第2の損失となる。
 上述した電力の損失は、一般的にFWDが用いられることにより大きくなってしまう。また上述した何れのスイッチング素子を用いてインバータ駆動回路を形成する場合にも、FWDは必要となる。そのため、このような電力の損失によるインバータ駆動回路の効率低下が問題である。またFWDを用いる場合には、その分、部品点数が多くなるため、製造コスト等の観点から望ましいとは言えない。
 また、先述した内蔵ダイオードの逆回復特性を改良したMOSFETをスイッチング素子として用いる場合には、FWDを省略すること自体は可能となる。しかしこの場合には、採用できるスイッチング素子が非常に制限されてしまい、一般的なMOSFET等を採用することが出来なくなる。なお、内蔵ダイオードの逆回復特性を改良してFWDを不要としたMOSFETは、一般的なMOSFET等に比べて高価であり、ラインナップも限られている。
 本発明は上述した問題に鑑み、採用できるスイッチング素子の制限を出来るだけ回避しつつ、FWDを省略して電力損失の低減等を実現させることが容易となるインバータ駆動回路の提供を目的とする。
 本発明に係るインバータ駆動回路は、直流電源の正極と負極の間に直列にされる上下アームの各スイッチング素子と、前記スイッチング素子ごとに与えられる制御信号に従って、前記スイッチング素子のオン/オフ切替の制御を行うドライバ回路と、を備え、上下アームの前記スイッチング素子同士の接続点に負荷が接続され、前記オン/オフ切替によって前記直流電源の電力を交流に変換し、前記負荷に供給するインバータ駆動回路であって、前記ドライバ回路は、前記スイッチング素子の両端における各端子の電圧を比較し、該比較の結果および前記制御信号に基づいて前記制御を行う構成とする。
 本構成によれば、採用できるスイッチング素子の制限を出来るだけ回避しつつ、FWDを省略して電力損失の低減等を実現させることが容易となる。
 また上記構成としてより具体的には、前記ドライバ回路は、前記スイッチング素子ごとに、前記比較の結果に基づいてオン制御期間を決定し、前記オン制御期間においては前記制御信号の内容に関わらず、当該スイッチング素子をオンにする構成としてもよい。
 また上記構成としてより具体的には、前記ドライバ回路は、上アームの前記スイッチング素子について、前記負荷に接続される側の端子の電圧が前記直流電源の正極に接続される側の端子の電圧より大きい期間を、前記オン制御期間として決定する構成としてもよい。
 また上記構成としてより具体的には、前記ドライバ回路は、下アームの前記スイッチング素子について、前記直流電源の負極に接続される側の端子の電圧が前記負荷に接続される側の端子の電圧より大きい期間を、前記オン制御期間として決定する構成としてもよい。
 また上記構成としてより具体的には、前記ドライバ回路は、前記制御信号がオンを示すときに前記スイッチング素子をオンに制御し、前記制御信号がオフを示すときに前記スイッチング素子をオフに制御するものであり、上下アームの一方の前記スイッチング素子に対する前記オン制御期間の決定に、該上下アームの他方の前記スイッチング素子に対する前記制御信号の内容を反映させる構成としてもよい。
 また上記構成としてより具体的には、前記ドライバ回路は、上アームの前記スイッチング素子について、前記負荷に接続される側の端子の電圧が前記直流電源の正極に接続される側の端子の電圧より大きく、かつ、下アームの前記スイッチング素子に対する前記制御信号がオフを示す期間を、前記オン制御期間として決定する構成としてもよい。
 また上記構成としてより具体的には、前記ドライバ回路は、下アームの前記スイッチング素子について、前記直流電源の負極に接続される側の端子の電圧が前記負荷に接続される側の端子の電圧より大きく、かつ、上アームの前記スイッチング素子に対する前記制御信号がオフを示す期間を、前記オン制御期間として決定する構成としてもよい。
 また上記構成としてより具体的には、前記スイッチング素子は、前記各端子としてドレイン端子とソース端子を有したN型のMOSFETである構成としてもよい。また上記構成としてより具体的には、前記スイッチング素子は、前記各端子としてドレイン端子とソース端子を有したN型のGaNFETである構成としてもよい。
 また上記構成としてより具体的には、前記ドライバ回路は、前記比較の処理を行う電圧比較回路を有し、外部から与えられる前記制御信号と前記電圧比較回路の出力信号を入力とする論理演算に基づいて、前記制御を行う構成としてもよい。
 本発明に係るインバータ駆動回路によれば、採用できるスイッチング素子の制限を出来るだけ回避しつつ、FWDを省略して電力損失の低減等を実現させることが容易となる。
第1実施形態に係るインバータ駆動回路の構成図である。 ノーマリーオン型のGaNFETの静特性に関するグラフである。 MOSFETの静特性に関するグラフである。 第1実施形態に係るドライバ回路ユニットの構成図である。 制御信号等に関するタイミングチャートである。 第2実施形態に係るインバータ駆動回路の構成図である。 第2実施形態に係るドライバ回路ユニットの構成図である。 従来例に係るインバータ駆動回路の構成図である。 従来例に係るドライバ回路の構成図である。
 本発明の実施形態について、第1実施形態および第2実施形態を例に挙げ、各図面を参照しながら以下に説明する。
〈第1実施形態〉
 まず本発明の第1実施形態について説明する。図1は、第1実施形態に係る3相のインバータ駆動回路INV-1の構成図である。図1に示すようにインバータ駆動回路INV-1は、各スイッチング素子1~6およびドライバ回路ユニット10等を備えている。
 インバータ駆動回路INV-1は、直流電源7およびモータ8が接続されており、直流電源7から供給される直流電圧を交流に変換してモータ8へ出力し、モータ8を駆動させる。なおモータ8はコイルを有する誘導性の負荷であり、モータ8に繋がる回路が切替えられる際に還流電流を発生させる。
 各スイッチング回路1~6は、ノーマリーオン型でN型のGaNFETであり、ゲート端子に入力されるゲート信号に応じたオン/オフの切替(ドレイン端子とソース端子の間の導通/遮断の切替)を行う。但しスイッチング回路1~6の種類はこれに限られるものではなく、N型のMOSFET等であっても良い。
 図2はノーマリーオン型のGaNFETの静特性の例を示している。GaNFETはその構造より、ドレイン電圧がソース電圧より低い領域ではドレインとソースが入れ替わり、その電圧がゲートのスレッシュ電圧より低い場合に逆方向にオンする。また図3はMOSFETの静特性の例を示している。MOSFETは、ドレイン電圧がソース電圧より低い領域では、その電圧が寄生ダイオードの順方向電圧VFより低い場合に逆方向にオンする。
 なおスイッチング素子3はU相の上アームのスイッチング素子であり、スイッチング素子2はV相の上アームのスイッチング素子であり、スイッチング素子1はW相の上アームのスイッチング素子である。またスイッチング素子6はU相の下アームのスイッチング素子であり、スイッチング素子5はV相の下アームのスイッチング素子であり、スイッチング素子4はW相の下アームのスイッチング素子である。
 上アームのスイッチング素子と下アームのスイッチング素子は、直流電源7の正極と負極の間において直列に接続されている。また上アームのスイッチング素子と下アームのスイッチング素子の間には、モータ8が接続されている。
 より具体的に説明すると、直流電源7の正極は正極ラインL-pに接続されており、直流電源7の負極は負極ラインL-nに接続されている。またモータ8のU相端子はU相ラインL-uに接続されており、モータ8のV相端子はV相ラインL-vに接続されており、モータ8のW相端子はW相ラインL-wに接続されている。
 そしてスイッチング素子3については、ドレイン端子は正極ラインL-pに接続され、ソース端子はスイッチング素子6のドレイン端子とU相ラインL-uに接続されている。またスイッチング素子2については、ドレイン端子は正極ラインL-pに接続され、ソース端子はスイッチング素子5のドレイン端子とV相ラインL-vに接続されている。またスイッチング素子1については、ドレイン端子は正極ラインL-pに接続され、ソース端子はスイッチング素子4のドレイン端子とW相ラインL-wに接続されている。またスイッチング素子4~6のソース端子は、負極ラインL-nに接続されている。
 ドライバ回路ユニット10は、上アーム用のドライバ回路群11と下アーム用のドライバ回路群12を有している。なお上アーム用のドライバ回路群11には、スイッチング素子3にゲート信号G-3を出力するドライバ回路11a、スイッチング素子2にゲート信号G-2を出力するドライバ回路11b、および、スイッチング素子1にゲート信号G-1を出力するドライバ回路11cが含まれている。
 また下アーム用のドライバ回路群12には、スイッチング素子6にゲート信号G-6を出力するドライバ回路12a、スイッチング素子5にゲート信号G-5を出力するドライバ回路12b、および、スイッチング素子4にゲート信号G-4を出力するドライバ回路12cが含まれている。このように、ドライバ回路はスイッチング素子ごとに対応するように設けられており、一つのドライバ回路が一つのスイッチング素子を駆動させるようになっている。
 また各ドライバ回路には、外部から(例えば、インバータ駆動回路INV-1を搭載した電気機器内における上位の制御システムから)制御信号が入力される。
 より具体的には、ドライバ回路11aには、U相の上アームのスイッチング素子3の制御に用いられる制御信号S-1uが、外部から入力される。ドライバ回路11bには、V相の上アームのスイッチング素子2の制御に用いられる制御信号S-1vが、外部から入力される。ドライバ回路11cには、W相の上アームのスイッチング素子1の制御に用いられる制御信号S-1wが、外部から入力される。
 またドライバ回路12aには、U相の下アームのスイッチング素子6の制御に用いられる制御信号S-2uが、外部から入力される。ドライバ回路12bには、V相の下アームのスイッチング素子5の制御に用いられる制御信号S-2vが、外部から入力される。ドライバ回路12cには、W相の下アームのスイッチング素子4の制御に用いられる制御信号S-2wが、外部から入力される。
 またドライバ回路ユニット10は、正極ラインL-pと負極ラインL-nに接続されており、正極ラインL-pの電圧E-pおよび負極ラインL-nの電圧E-nが入力される。なお電圧E-pは、上アームの各スイッチング素子1~3におけるドレイン端子の電圧であり、電圧E-nは、下アームの各スイッチング素子4~6におけるソース端子の電圧であると言える。
 またドライバ回路ユニット10は、各相のラインに接続されており、U相ラインL-uの電圧E-u、V相ラインL-vの電圧E-v、およびW相ラインL-wの電圧E-wが入力される。
 なお電圧E-uは、U相の上アームのスイッチング素子3におけるソース端子の電圧であるとともに、U相の下アームのスイッチング素子6におけるドレイン端子の電圧であると言える。また電圧E-vは、V相の上アームのスイッチング素子2におけるソース端子の電圧であるとともに、V相の下アームのスイッチング素子5におけるドレイン端子の電圧であると言える。また電圧E-wは、W相の上アームのスイッチング素子1におけるソース端子の電圧であるとともに、W相の下アームのスイッチング素子4におけるドレイン端子の電圧であると言える。
 図4は、ドライバ回路ユニット10のより詳細な構成図である。本図に示すように各ドライバ回路(11a~11c、12a~12c)は、電圧比較回路A1、OR回路A2、レベルシフト回路A3、および出力ドライバA4を有している。また各ドライバ回路は、信号等が入力される3個の端子(a~c)を有している。
 それぞれのドライバ回路において、端子aに入力された電圧は電圧比較回路A1の非反転入力端に送られ、端子bに入力された電圧は電圧比較回路A1の反転入力端に送られる。電圧比較回路A1は、非反転入力端の電圧が反転入力端の電圧より大きいときにH(High)レベルの信号を出力し、それ以外のときにはL(Low)レベルの信号を出力する。
 OR回路A2は2個の入力端を有し、一方の入力端には電圧比較回路A1の出力信号が送られ、他方の入力端には端子cに入力された信号が送られる。OR回路A2は、各入力端に入力された信号の少なくとも一方がHレベルのときにHレベルの信号を出力し、それ以外のときにはLレベルの信号を出力する。
 レベルシフト回路A3は、OR回路A2の出力信号の電圧レベルを、出力ドライバA4の入力電圧レベルに合うように調整する。出力ドライバA4は、レベルシフト回路A3の出力に応じて、スイッチング素子のゲートに与える出力電圧(ゲート信号)を発生させる。これにより、OR回路A2の出力信号がHレベルのときにスイッチング素子をオンとし、それ以外のときにスイッチング素子をオフとするゲート信号が生成される。上述したようにドライバ回路は、制御信号と電圧比較回路A1の出力信号を入力とする論理演算に基づいてゲート信号を生成し、スイッチング素子を制御するようになっている。
 また、各ドライバ回路における端子aには、そのドライバ回路に対応したスイッチング素子のソース端子の電圧が入力される。各ドライバ回路における端子bには、そのドライバ回路に対応したスイッチング素子のドレイン端子の電圧が入力される。各ドライバ回路における端子cには、そのドライバ回路に対応した制御信号が入力される。
 すなわちドライバ回路11cについては、端子aには電圧E-wが入力され、端子bには電圧E-pが入力され、端子cには制御信号S-1wが入力される。ドライバ回路11bについては、端子aには電圧E-vが入力され、端子bには電圧E-pが入力され、端子cには制御信号S-1vが入力される。ドライバ回路11aについては、端子aには電圧E-uが入力され、端子bには電圧E-pが入力され、端子cには制御信号S-1uが入力される。
 またドライバ回路12cについては、端子aには電圧E-nが入力され、端子bには電圧E-wが入力され、端子cには制御信号S-2wが入力される。ドライバ回路12bについては、端子aには電圧E-nが入力され、端子bには電圧E-vが入力され、端子cには制御信号S-2vが入力される。ドライバ回路12aについては、端子aには電圧E-nが入力され、端子bには電圧E-uが入力され、端子cには制御信号S-2uが入力される。
 次に、インバータ駆動回路INV-1の動作について、図5に示すタイミングチャートを参照して説明する。
 図5に示すように、各制御信号はHレベルとLレベルが交互に現れる矩形波信号となっている。Hレベルはスイッチング素子のオン(オンの状態とする指示)を示し、Lレベルはスイッチング素子のオフ(オフの状態とする指示)を示す。ドライバ回路(11a~11c、12a~12c)は、基本的には、制御信号がオンを示すときにスイッチング素子をオンに制御し、制御信号がオフを示すときにスイッチング素子をオフに制御する。
 制御信号S-1uは0~120°区間でPWM変調された信号であり、制御信号S-1vは120~240°区間でPWM変調された信号であり、制御信号S-1wは240~0°区間でPWM変調された信号である。また制御信号S-2uは180~300°区間でPWM変調された信号であり、制御信号S-2vは300~60°区間でPWM変調された信号であり、制御信号S-2wは60~180°区間でPWM変調された信号である。何れの制御信号も、PWM変調されている区間ではそのデューティ比に応じてHレベルとLレベルが混在しており、PWM変調されていない区間では常にLレベルとなっている。
 これらの制御信号に応じてゲート信号が生成され、各スイッチング素子1~6がオン/オフの切替を行う結果、モータ8のU相端子、V相端子、およびW相端子には、それぞれ図5に示すU相電圧、V相電圧、およびW相電圧が出力される。U相電圧、V相電圧、およびW相電圧は、それぞれがサイン波形に近似されて出力されることから、モータ8を駆動させることができる。
 ここで例えばU相に着目すると、概ね120~180°区間では、U相ラインL-uを介してモータ8へ還流電流が流れる状況となる。このとき、スイッチ素子6のドレイン端子の電圧はそのソース端子の電圧より低い(U相ラインL-uの電圧が直流電源7の負極端子の電圧よりも低い電圧に下がっている)ため、ドライバ回路12aの電圧比較回路A1がHレベルの信号を出力する。
 これにより制御信号S-2uの内容に関わらず、ドライバ回路12aからHレベルのゲート信号G-6が出力され、スイッチング素子6がオンの状態となる。その結果、下アームのスイッチング素子6は還流電流を流すことができる。
 また概ね300~0°区間では、モータ8からU相ラインL-uを介して還流電流が流れる状況となる。このとき、スイッチ素子3のソース端子の電圧はそのドレイン端子の電圧より高い(U相ラインL-uの電圧が直流電源7の正極端子の電圧よりも高い電圧に上がっている)ため、ドライバ回路11aの電圧比較回路A1がHレベルの信号を出力する。
 これにより制御信号S-1uの内容に関わらず、ドライバ回路11aからHレベルのゲート信号G-3が出力され、スイッチング素子3がオンの状態となる。その結果、上アームのスイッチング素子3は還流電流を流すことができる。なお、電圧比較回路A1がHレベルの信号を出力している期間(つまり、ドレイン端子とソース端子における電位の高低関係の逆転が検出されている期間)は、制御信号の内容に関わらずスイッチング素子がオンに制御される期間(オン制御期間)であると言える。
 このようにして下アームおよび上アームのスイッチング素子が還流電流を流すことができるのは、V相およびW相においても同様である。ここで、還流電流はスイッチング素子のオン抵抗を通して流れることになり、更に、電圧比較回路A1が感度良く動作することで、スイッチング素子がオンする電圧を低く抑えることができる。
 スイッチング素子のオン抵抗は十分に小さいため、このときにスイッチング素子で生じる電力の損失は、従来のインバータ駆動回路のようにFWDに還流電流が流れるときの電力の損失に比べて小さくなる。そのため本実施形態のインバータ駆動回路INV-1によれば、FWDに還流電流が流れる従来のインバータ回路に比べ、先述した第1の損失を小さく抑えることが可能である。特に低オン抵抗特性を有するGaNFET等が採用されている場合、第1の損失を著しく低減させることができる。
 またMOSFETやGaNFETの逆方向飽和電流は、FWDに比べ小さい。そのため本実施形態のインバータ駆動回路INV-1によれば、FWDに逆方向飽和電流が流れる従来のインバータ駆動回路に比べ、先述した第2の損失を小さく抑えることも可能である。特に良好な逆回復特性を有するGaNFET等が採用されている場合、第2の損失を著しく低減させることができる。
〈第2実施形態〉
 次に、本発明の第2実施形態について説明する。なお第2実施形態は、ドライバ回路ユニット関する部分を除き、基本的に第1実施形態と同様である。以下の説明では、第1実施形態と異なる部分の説明に重点をおき、共通する部分については説明を省略することがある。また第2実施形態の説明に用いる図面では、第1実施形態と同一の構成要素には同一の符号を付すこととし、また、名称及び機能も同一であるので、同様の説明を繰り返すことはしない。
 図6は、第2実施形態に係る3相のインバータ駆動回路INV-2の構成図である。図6に示すようにインバータ駆動回路INV-2は、各スイッチング素子1~6およびドライバ回路ユニット20等を備えている。インバータ駆動回路INV-2は、直流電源7およびモータ8が接続されており、直流電源7から供給される直流電圧を交流に変換してモータ8へ出力し、モータ8を駆動させる。
 ドライバ回路ユニット20は、上アーム用のドライバ回路群21と下アーム用のドライバ回路群22を有している。なお上アーム用のドライバ回路群21には、スイッチング素子3にゲート信号G-3を出力するドライバ回路21a、スイッチング素子2にゲート信号G-2を出力するドライバ回路21b、および、スイッチング素子1にゲート信号G-1を出力するドライバ回路21cが含まれている。
 また下アーム用のドライバ回路群22には、スイッチング素子6にゲート信号G-6を出力するドライバ回路22a、スイッチング素子5にゲート信号G-5を出力するドライバ回路22b、および、スイッチング素子4にゲート信号G-4を出力するドライバ回路22cが含まれている。このように、ドライバ回路はスイッチング素子ごとに対応するように設けられており、一つのドライバ回路が一つのスイッチング素子を駆動させるようになっている。
 ドライバ回路21aおよびドライバ回路22aの各々には、U相の上アームのスイッチング素子3の制御に用いられる制御信号S-1u、および、U相の下アームのスイッチング素子6の制御に用いられる制御信号S-2uの両方の信号が、外部から入力される。
 またドライバ回路21bおよびドライバ回路22bの各々には、V相の上アームのスイッチング素子2の制御に用いられる制御信号S-1v、および、V相の下アームのスイッチング素子5の制御に用いられる制御信号S-2vの両方の信号が、外部から入力される。
 またドライバ回路21cおよびドライバ回路22cの各々には、W相の上アームのスイッチング素子1の制御に用いられる制御信号S-1w、および、W相の下アームのスイッチング素子4の制御に用いられる制御信号S-2wの両方の信号が、外部から入力される。
 またドライバ回路ユニット20は、正極ラインL-pと負極ラインL-nに接続されており、正極ラインL-pの電圧E-pおよび負極ラインL-nの電圧E-nが入力される。またドライバ回路ユニット20は、各相のラインに接続されており、U相ラインL-uの電圧E-u、V相ラインL-vの電圧E-v、およびW相ラインL-wの電圧E-wが入力される。
 図7は、ドライバ回路ユニット20のより詳細な構成図である。本図に示すように各ドライバ回路(21a~21c、22a~22c)は、電圧比較回路A1、OR回路A2、レベルシフト回路A3、出力ドライバA4、およびAND回路A5を有している。また各ドライバ回路は、信号等が入力される4個の端子(a~d)を有している。
 それぞれのドライバ回路において、端子aに入力された電圧は電圧比較回路A1の非反転入力端に送られ、端子bに入力された電圧は電圧比較回路A1の反転入力端に送られる。OR回路A2は、一方の入力端には電圧比較回路A1の出力信号が送られ、他方の入力端には端子cに入力された信号が送られる。
 AND回路A5は2個の入力端を有し、一方の入力端にはOR回路A2の出力信号が送られ、他方の入力端には端子dに入力された信号が送られる。なお端子dは、負論理入力端子となっている。そのためAND回路A5は、OR回路A2の出力信号がHレベルであり、かつ、端子dに入力された信号がLレベルであるときにHレベルの信号を出力し、それ以外のときにはLレベルの信号を出力する。
 レベルシフト回路A3は、AND回路A5の出力信号の電圧レベルを、出力ドライバA4の入力電圧レベルに合うように調整する。出力ドライバA4は、レベルシフト回路A3の出力に応じて、スイッチング素子のゲートに与える出力電圧(ゲート信号)を発生させる。これにより、AND回路A5の出力信号がHレベルのときにスイッチング素子をオンとし、それ以外のときにスイッチング素子をオフとするゲート信号が生成される。
 また、各ドライバ回路における端子aには、対応するスイッチング素子のソース端子の電圧が入力される。各ドライバ回路における端子bには、対応するスイッチング素子のドレイン端子の電圧が入力される。各ドライバ回路における端子cには、対応するスイッチング素子に対する制御信号が入力される。各ドライバ回路における端子dには、対応するスイッチング素子と同相で他方の(上下が逆の)スイッチング素子に対する制御信号が入力される。
 すなわちドライバ回路21cについては、端子aには電圧E-wが入力され、端子bには電圧E-pが入力され、端子cには制御信号S-1wが入力され、端子dには制御信号S-2wが入力される。ドライバ回路21bについては、端子aには電圧E-vが入力され、端子bには電圧E-pが入力され、端子cには制御信号S-1vが入力され、端子dには制御信号S-2vが入力される。ドライバ回路21aについては、端子aには電圧E-uが入力され、端子bには電圧E-pが入力され、端子cには制御信号S-1uが入力され、端子dには制御信号S-2uが入力される。
 またドライバ回路22cについては、端子aには電圧E-nが入力され、端子bには電圧E-wが入力され、端子cには制御信号S-2wが入力され、端子dには制御信号S-1wが入力される。ドライバ回路22bについては、端子aには電圧E-nが入力され、端子bには電圧E-vが入力され、端子cには制御信号S-2vが入力され、端子dには制御信号S-1vが入力される。ドライバ回路22aについては、端子aには電圧E-nが入力され、端子bには電圧E-uが入力され、端子cには制御信号S-2uが入力され、端子dには制御信号S-1uが入力される。
 第2実施形態においても、インバータ駆動回路INV-2は図5に示す各制御信号が与えられ、第1実施形態の場合と同様にしてモータ8を駆動させることができる。また還流電流や逆方向飽和電流を流すようにスイッチング素子のオン/オフ切替が制御され、従来のインバータ駆動回路に比べて第1の損失や第2の損失を抑えることができる点も、第1実施形態の場合と同様である。
 そして更に第2実施形態では、各相について、上下アームの一方のスイッチング素子を還流電流を流すようにする制御は、当該上下アームの他方のスイッチング素子に対する制御信号がオフを示す場合に限り行われるようになっている。そのため第2実施形態では、誤った制御信号や制御波形の異常によるアーム短絡を防止することが可能であり、より安全なインバータ駆動回路及び駆動方法が実現される。
 なお第2実施形態では、電圧比較回路A1がHレベルの信号を出力しており、かつ、端子dにLレベルの信号が入力されている期間が、制御信号の内容に関わらずスイッチング素子がオンに制御される期間(オン制御期間)であると言える。
〈その他〉
 以上に説明した通り各実施形態のインバータ駆動回路(INV-1、INV-2)は、直流電源7の正極と負極の間に直列にされる上下アームの各スイッチング素子と、スイッチング素子ごとに与えられる制御信号に従って、スイッチング素子のオン/オフ切替の制御を行うドライバ回路と、を備えている。
 なお各実施形態のインバータ駆動回路(INV-1、INV-2)は3相の仕様となっており、U相における上下アームの各スイッチング素子(3、6)と、V相における上下アームの各スイッチング素子(2、5)と、W相における上下アームの各スイッチング素子(1、4)を有している。但し本発明のインバータ駆動回路は、3相のインバータ駆動回路には限られず、例えば2相のインバータ駆動回路としても実施可能である。
 また各実施形態のインバータ駆動回路(INV-1、INV-2)は、上下アームのスイッチング素子同士の接続点にモータ8(負荷)が接続され、オン/オフ切替によって直流電源7の電力を交流に変換してモータ8に供給する。またドライバ回路は、スイッチング素子の両端における各端子の電圧を比較し、該比較の結果および制御信号に基づいて前記制御を行う。
 スイッチング素子の両端における各端子電圧の比較結果は、そのスイッチング素子に還流電流が流れる状況であるか否かと関係している。そのため、制御信号だけでなく当該比較結果に基づいてスイッチング素子を制御するインバータ駆動回路によれば、スイッチング素子に還流電流が流れるようにすることが容易である。これにより、スイッチング素子にFWDの機能を併せ持たせてFWDを省略し、還流電流等に起因する電力損失の低減や部品点数の削減を実現させることが容易となる。またFWDを省略可能とするにあたって、必ずしも内蔵ダイオードの逆回復特性を改良したMOSFETを用いる必要は無く、採用できるスイッチング素子の制限は極力回避される。
 また各実施形態のインバータ駆動回路(INV-1、INV-2)においてより具体的には、ドライバ回路は、スイッチング素子ごとに前記比較の結果に基づいてオン制御期間を決定し、このオン制御期間においては制御信号の内容に関わらず、当該スイッチング素子をオンにする。つまりドライバ回路は、オン制御期間においてスイッチング素子をオンにする制御を、制御信号に従った制御よりも優先して行う。これにより、還流電流が流れる期間に対応してオン制御期間が決定されるようにし、スイッチング素子に還流電流を流すことが容易である。
 更に具体的には、第1実施形態における上アームに対応したドライバ回路(11a~11c)は、上アームのスイッチング素子(1~3)について、ソース端子(モータ8に接続される側の端子)の電圧がドレイン端子(直流電源7の正極に接続される側の端子)の電圧より大きい期間を、オン制御期間として決定する。これにより、スイッチング素子(1~3)に還流電流を流す目的で、出来るだけ過不足なくオン制御期間を決定することが可能である。
 また第1実施形態における下アームに対応したドライバ回路(12a~12c)は、下アームのスイッチング素子(4~6)について、ソース端子(直流電源7の負極に接続される側の端子)の電圧がドレイン端子(モータ8に接続される側の端子)の電圧より大きい期間を、オン制御期間として決定する。これにより、スイッチング素子(4~6)に還流電流を流す目的で、出来るだけ過不足なくオン制御期間を決定することが可能である。
 なお第2実施形態におけるドライバ回路は、上下アームの一方のスイッチング素子に対するオン制御期間の決定に、該上下アームの他方のスイッチング素子に対する制御信号の内容を反映させるようになっている。
 より具体的には、第2実施形態における上アームに対応したドライバ回路(21a~21c)は、上アームのスイッチング素子(1~3)について、ソース端子の電圧がドレイン端子の電圧より大きく、かつ、下アームのスイッチング素子に対する制御信号がオフを示す期間を、オン制御期間として決定する。これにより、誤った制御信号や制御波形の異常等によるアーム短絡を防止することが可能である。
 また第2実施形態における下アームに対応したドライバ回路(22a~22c)は、下アームのスイッチング素子(4~6)について、ソース端子の電圧がドレイン端子の電圧より大きく、かつ、上アームのスイッチング素子に対する制御信号がオフを示す期間を、オン制御期間として決定する。これにより、誤った制御信号や制御波形の異常等によるアーム短絡を防止することが可能である。
 なお以上に説明した実施形態は本発明の好適な実施形態の一例である。本発明の実施形態はこれに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変形実施が可能である。また本発明の実施に際しては、適宜、一般的な技術の適用が考慮される。例えば、上下アームを構成する一対のスイッチング素子が同時にオンして短絡状態にならないように、これらのスイッチング素子に対する制御信号に時間差(デッドタイム)を設けること等が考慮される。
 本発明は、2相ないし3相の負荷を駆動するインバータ駆動回路等に利用可能である。
1、2、3、4、5、6 スイッチング素子
7 直流電源
8 モータ(負荷)
10、20、30 ドライバ回路ユニット
11a、11b、11c 第1実施形態の上アームのドライバ回路
12a、12b、12c 第1実施形態の下アームのドライバ回路
21a、21b、21c 第2実施形態の上アームのドライバ回路
22a、22b、22c 第2実施形態の下アームのドライバ回路
31a、31b、31c 従来例の上アームのドライバ回路
32a、32b、32c 従来例の下アームのドライバ回路
41、42、43、44、45、46 IGBT
51、52、53、54、55、56 FWD
INV-1、INV-2 インバータ駆動回路
A1 電圧比較回路
A2 OR回路
A3、47 レベルシフト回路
A4、48 出力ドライバ
A5 AND回路
L-p 正極ライン
L-n 負極ライン
L-u U相ライン
L-v V相ライン
L-w W相ライン

Claims (10)

  1.  直流電源の正極と負極の間に直列にされる上下アームの各スイッチング素子と、
     前記スイッチング素子ごとに与えられる制御信号に従って、前記スイッチング素子のオン/オフ切替の制御を行うドライバ回路と、を備え、
     上下アームの前記スイッチング素子同士の接続点に負荷が接続され、
     前記オン/オフ切替によって前記直流電源の電力を交流に変換し、前記負荷に供給するインバータ駆動回路であって、
     前記ドライバ回路は、
     前記スイッチング素子の両端における各端子の電圧を比較し、該比較の結果および前記制御信号に基づいて前記制御を行うインバータ駆動回路。
  2.  前記ドライバ回路は、
     前記スイッチング素子ごとに、前記比較の結果に基づいてオン制御期間を決定し、
     前記オン制御期間においては前記制御信号の内容に関わらず、当該スイッチング素子をオンにする請求項1に記載のインバータ駆動回路。
  3.  前記ドライバ回路は、
     上アームの前記スイッチング素子について、
     前記負荷に接続される側の端子の電圧が前記直流電源の正極に接続される側の端子の電圧より大きい期間を、前記オン制御期間として決定する請求項2に記載のインバータ駆動回路。
  4.  前記ドライバ回路は、
     下アームの前記スイッチング素子について、
     前記直流電源の負極に接続される側の端子の電圧が前記負荷に接続される側の端子の電圧より大きい期間を、前記オン制御期間として決定する請求項2または請求項3に記載のインバータ駆動回路。
  5.  前記ドライバ回路は、
     前記制御信号がオンを示すときに前記スイッチング素子をオンに制御し、前記制御信号がオフを示すときに前記スイッチング素子をオフに制御するものであり、
     上下アームの一方の前記スイッチング素子に対する前記オン制御期間の決定に、該上下アームの他方の前記スイッチング素子に対する前記制御信号の内容を反映させる請求項2に記載のインバータ駆動回路。
  6.  前記ドライバ回路は、
     上アームの前記スイッチング素子について、
     前記負荷に接続される側の端子の電圧が前記直流電源の正極に接続される側の端子の電圧より大きく、かつ、下アームの前記スイッチング素子に対する前記制御信号がオフを示す期間を、前記オン制御期間として決定する請求項5に記載のインバータ駆動回路。
  7.  前記ドライバ回路は、
     下アームの前記スイッチング素子について、
     前記直流電源の負極に接続される側の端子の電圧が前記負荷に接続される側の端子の電圧より大きく、かつ、上アームの前記スイッチング素子に対する前記制御信号がオフを示す期間を、前記オン制御期間として決定する請求項5または請求項6に記載のインバータ駆動回路。
  8.  前記スイッチング素子は、前記各端子としてドレイン端子とソース端子を有したN型のMOSFETである請求項1から請求項7の何れかに記載のインバータ駆動回路。
  9.  前記スイッチング素子は、前記各端子としてドレイン端子とソース端子を有したN型のGaNFETである請求項1から請求項7の何れかに記載のインバータ駆動回路。
  10.  前記ドライバ回路は、
     前記比較の処理を行う電圧比較回路を有し、
     外部から与えられる前記制御信号と前記電圧比較回路の出力信号を入力とする論理演算に基づいて、前記制御を行う請求項1から請求項9の何れかに記載のインバータ駆動回路。
PCT/JP2013/067605 2012-08-08 2013-06-27 インバータ駆動回路 WO2014024596A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13827584.7A EP2884649A1 (en) 2012-08-08 2013-06-27 Inverter drive circuit
JP2014529382A JPWO2014024596A1 (ja) 2012-08-08 2013-06-27 インバータ駆動回路
US14/415,482 US20150207428A1 (en) 2012-08-08 2013-06-27 Inverter drive circuit
CN201380041605.9A CN104521122A (zh) 2012-08-08 2013-06-27 逆变驱动电路

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012175847 2012-08-08
JP2012-175847 2012-08-08

Publications (1)

Publication Number Publication Date
WO2014024596A1 true WO2014024596A1 (ja) 2014-02-13

Family

ID=50067837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/067605 WO2014024596A1 (ja) 2012-08-08 2013-06-27 インバータ駆動回路

Country Status (5)

Country Link
US (1) US20150207428A1 (ja)
EP (1) EP2884649A1 (ja)
JP (1) JPWO2014024596A1 (ja)
CN (1) CN104521122A (ja)
WO (1) WO2014024596A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3093978A1 (de) * 2015-05-12 2016-11-16 Siemens Aktiengesellschaft Verfahren zum betrieb eines pulsstromrichters, pulsstromrichter und leistungshalbleitermodul für einen solchen
JP2020167754A (ja) * 2019-03-28 2020-10-08 Tdk株式会社 電源回路

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105245125B (zh) * 2015-09-29 2017-11-24 广东美的制冷设备有限公司 智能功率模块和空调器
DE102019204429A1 (de) * 2019-03-29 2020-10-01 Robert Bosch Gmbh Schutzvorrichtung für eine Treiberschaltung und Verfahren zum Schutz einer Treiberschaltung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10327585A (ja) 1997-05-23 1998-12-08 Toshiba Corp 電力変換装置
JP2004242475A (ja) * 2003-02-07 2004-08-26 Kri Inc スイッチング素子の駆動方式
JP2005333314A (ja) * 2004-05-19 2005-12-02 Renesas Technology Corp スイッチング制御回路
JP2008211703A (ja) * 2007-02-28 2008-09-11 Hitachi Ltd 半導体回路
JP2011036020A (ja) * 2009-07-31 2011-02-17 Daikin Industries Ltd 電力変換装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5436819A (en) * 1991-07-25 1995-07-25 Mitsubishi Denki Kabushiki Kaisha Apparatus for and method of compensating for an output voltage error in an inverter output
EP1466779A3 (en) * 2003-04-10 2006-09-06 Hitachi, Ltd. Motor control device
JP2006203995A (ja) * 2005-01-19 2006-08-03 Hitachi Ltd Mos整流装置,mos整流装置の駆動方法,電動発電機及びそれを用いた電動車両
JP5368777B2 (ja) * 2008-11-17 2013-12-18 トヨタ自動車株式会社 交流電動機の制御装置
KR101067124B1 (ko) * 2009-09-08 2011-09-22 삼성전기주식회사 반도체 소자 및 그 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10327585A (ja) 1997-05-23 1998-12-08 Toshiba Corp 電力変換装置
JP2004242475A (ja) * 2003-02-07 2004-08-26 Kri Inc スイッチング素子の駆動方式
JP2005333314A (ja) * 2004-05-19 2005-12-02 Renesas Technology Corp スイッチング制御回路
JP2008211703A (ja) * 2007-02-28 2008-09-11 Hitachi Ltd 半導体回路
JP2011036020A (ja) * 2009-07-31 2011-02-17 Daikin Industries Ltd 電力変換装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3093978A1 (de) * 2015-05-12 2016-11-16 Siemens Aktiengesellschaft Verfahren zum betrieb eines pulsstromrichters, pulsstromrichter und leistungshalbleitermodul für einen solchen
JP2020167754A (ja) * 2019-03-28 2020-10-08 Tdk株式会社 電源回路
JP7283174B2 (ja) 2019-03-28 2023-05-30 Tdk株式会社 電源回路

Also Published As

Publication number Publication date
EP2884649A1 (en) 2015-06-17
CN104521122A (zh) 2015-04-15
JPWO2014024596A1 (ja) 2016-07-25
US20150207428A1 (en) 2015-07-23

Similar Documents

Publication Publication Date Title
US8351231B2 (en) Power conversion device
US8848405B2 (en) Highly efficient half-bridge DC-AC converter
US10404188B2 (en) Power conversion devices
US5107151A (en) Switching circuit employing electronic devices in series with an inductor to avoid commutation breakdown and extending the current range of switching circuits by using igbt devices in place of mosfets
AU2012254876B2 (en) Inverter device and air conditioner including the same
US10090778B2 (en) Multi-phase power device with two-phase modulation scheme
EP3029821B1 (en) Semiconductor device and power conversion device
US10439605B2 (en) Circuit arrangement for an electronic device
US10924024B2 (en) Regenerative power conversion system with inverter and converter
CN109962699A (zh) 用于控制mosfet开关模块的方法和装置
US20130307500A1 (en) Power conversion apparatus
US9143078B2 (en) Power inverter including SiC JFETs
JP6575230B2 (ja) 半導体素子の駆動装置
WO2014024596A1 (ja) インバータ駆動回路
WO2000072433A1 (fr) Circuit de commutation
US10651650B2 (en) Four segment AC MOSFET switch
US10439606B2 (en) Semiconductor module
JP5647558B2 (ja) インバータ装置
JP2017228912A (ja) 半導体装置
US12081143B2 (en) Converter device having a converter and having a control device
US20230261562A1 (en) Power conversion device and control method thereof
KR20080057970A (ko) 비대칭 pwm 방식을 위한 3상 비대칭 인버터회로
TW202349834A (zh) 馬達驅動裝置
JP2013135553A (ja) インバータ装置
CN118783778A (zh) 双有源桥电路和用于驱动双有源桥电路的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13827584

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014529382

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14415482

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013827584

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE