CN104659931A - 中继器系统及无线电力传输系统 - Google Patents

中继器系统及无线电力传输系统 Download PDF

Info

Publication number
CN104659931A
CN104659931A CN201510002202.4A CN201510002202A CN104659931A CN 104659931 A CN104659931 A CN 104659931A CN 201510002202 A CN201510002202 A CN 201510002202A CN 104659931 A CN104659931 A CN 104659931A
Authority
CN
China
Prior art keywords
repeater
induction coil
electromagnetic wave
circuit
amplification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510002202.4A
Other languages
English (en)
Other versions
CN104659931B (zh
Inventor
李炯周
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Andong National University Industry Academic Cooperation Foundation
JC Protek Co Ltd
Original Assignee
Andong National University Industry Academic Cooperation Foundation
JC Protek Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Andong National University Industry Academic Cooperation Foundation, JC Protek Co Ltd filed Critical Andong National University Industry Academic Cooperation Foundation
Publication of CN104659931A publication Critical patent/CN104659931A/zh
Application granted granted Critical
Publication of CN104659931B publication Critical patent/CN104659931B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • H04B5/79
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/50Circuit arrangements or systems for wireless supply or distribution of electric power using additional energy repeaters between transmitting devices and receiving devices
    • H02J50/502Circuit arrangements or systems for wireless supply or distribution of electric power using additional energy repeaters between transmitting devices and receiving devices the energy repeater being integrated together with the emitter or the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15528Control of operation parameters of a relay station to exploit the physical medium
    • H04B7/15535Control of relay amplifier gain
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Signal Processing (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Near-Field Transmission Systems (AREA)
  • Radio Relay Systems (AREA)

Abstract

一种中继器系统,其配置于用于产生电磁波的电磁波产生源与从所述电磁波产生源接收电力的接收机之间,其中,所述中继器系统包括:第一中继器,邻近所述电磁波产生源而配置;以及第二中继器,与所述第一中继器相隔开,所述第一中继器具备第一感应线圈以及连接于所述第一感应线圈的第一电容器来构成第一共振电路,所述第二中继器具备第二感应线圈以及连接于所述第二感应线圈的第二电容器来构成第二共振电路。

Description

中继器系统及无线电力传输系统
技术领域
本发明涉及一种放大中继器,其以这样的方式构造,即将铁氧体磁芯插入具有预定绕组数的线圈,以在与电磁波产生源相距预定距离的位置使用电磁波的时变磁场来增加由磁链增加所引起的感应电动势,以及将该线圈和用于感应共振的可变电容器相互连接起来,以加强和放大电磁波的磁场,并且与放大中继器相隔预定距离的使用电磁波的无线功率变换器将共振和阻抗匹配可变电容器与一个线圈连接起来,以将感应的功率有效地传输至负载,并使用二极管来整流和平滑化感应的功率,以将功率供应到充电电池或各种负载。
背景技术
使用法拉第定律从电磁波磁场的时间变化获得的感应电动势与感应线圈绕组数以及磁链的时间变化成比例地产生。但是,磁场的强度随着离电磁波产生源的距离增大而急剧减小。因而,在超过预定距离的位置,几乎无法将感应电动势感应到感应线圈,因此无法获得与无线功率变换相一致的能量。而且,在现有技术中,必须将感应线圈设置于离电磁波产生源极短距离的范围内,从而极大地限制了其安装位置,或者由于其外观不佳而无法进行安装。
发明内容
技术问题
因此,为了解决上述问题而提出了本发明,并且本发明的一个目的是提供一种电磁波放大中继器,其以这样的方式构造,即将铁氧体磁芯插入具有预定绕组数的线圈,以在与电磁波产生源相距预定距离的位置使用电磁波的时变磁场来增加由磁链增加所引起的感应电动势,将该感应线圈和用于感应共振的可变电容器相互连接起来,以构造放大中继器,其最大化电流,同时减小感应线圈中存在的阻抗成分,以加强和放大电磁波的磁场,且提供使用放大中继器的无线功率变换器,其包括:整流二极管,用于整流在共振和阻抗匹配可变电容器与一个线圈并联连接的结构中感应的电动势,以使用通过放大中继器放大的电磁波有效地传输感应电动势,该整流二极管与放大中继器相隔预定的距离;以及平流电容器,用于平滑化已整流的电压。
本发明的另一目的是提供一种放大中继器,其与电磁波产生源相隔极短的距离或附在无线功率变换器上,以加强和放大电磁波的磁场,以便无限制地安装放大中继器,并根据使用放大电磁波的无线功率变换以各种方式应用放大中继器和无线功率变换器。
技术方案
为了达到以上目的,根据本发明,提供了一种电磁波放大中继器,其能够放大和中继人工产生或从各种电磁波产生源产生的电磁波的磁场,包括:感应线圈,其通过以预定的绕组数缠绕具有预定厚度以及所需尺寸和形状的线圈;磁性物质,其具有预定的尺寸和形状,该磁性物质与感应线圈组合以增加磁通量;以及可变电容器,其与感应线圈连接,以构造共振电路。
根据本发明的一种中继器系统,其配置于用于产生电磁波的电磁波产生源与从所述电磁波产生源接收电力的接收机之间,其中,所述中继器系统,包括:第一中继器,邻近所述电磁波产生源而配置;以及第二中继器,与所述第一中继器相隔开,所述第一中继器具备第一感应线圈以及连接于所述第一感应线圈的第一电容器来构成第一共振电路,所述第二中继器具备第二感应线圈以及连接于所述第二感应线圈的第二电容器来构成第二共振电路。
优选地,进一步具备至少一个第三中继器,所述第三中继器具备第三感应线圈以及连接于所述第三感应线圈的第三电容器来构成第三共振电路。
优选地,所述至少一个第三中继器附设于所述第一中继器、所述第二中继器以及所述接收机中的至少一个。
优选地,所述电力从所述第一中继器无线传送到所述第二中继器。
优选地,所述第二增幅中继器的感应线圈与所述接收机的感应线圈形成在共同磁芯。
根据本发明的一种无线电力传输系统,其中,包括:电磁波产生源,用于产生电磁波;接收机,用于接收来自电磁波产生源的电力;以及中继器系统,配置于所述电磁波产生源与所述接收机之间,所述中继器系统,包括:第一中继器,邻近所述电磁波产生源而配置;以及第二中继器,与所述第一中继器相隔开,所述第一中继器具备第一感应线圈以及连接于所述第一感应线圈的第一电容器来构成第一共振电路,所述第二中继器具备第二感应线圈以及连接于所述第二感应线圈的第二电容器来构成第二共振电路。
优选地,所述接收机具备感应线圈及电容器,所述接收机通过所述中继器系统接收通过所述接收机的感应线圈及电容器的共振由所述电磁波产生的电力。
优选地,所述接收机将从所述中继器系统接收的电力供应给电池。
优选地,所述第二增幅中继器的感应线圈与所述接收机的感应线圈形成在共同磁芯。
根据本发明的一种无线电力中继方法,利用至少一个中继LC电路无线中继电力,其中,包括:通过所述至少一个中继LC电路无线接收来自传输LC电路的电力的步骤;以及通过所述至少一个中继LC电路将从所述传输LC电路接收的电力中继至接收LC电路的步骤,所述至少一个中继LC电路、所述传输LC电路以及接收LC电路分别具备感应线圈及连接于所述感应线圈的电容器来构成共振电路。
优选地,所述至少一个中继LC电路附设于所述传输LC电路或所述接收LC电路。
根据本发明的一种无线电力传输方法,其中,包括:通过电磁波产生源产生电力的步骤;通过第一中继器接收来自所述电磁波产生源的电力并将所接收的电力传输给第二中继器的步骤;以及通过第二中继器将由所述第一中继器接收的电力无线传输给接收机的步骤。
优选地,所述第一中继器具备第一感应线圈以及连接于所述第一感应线圈的第一电容器来构成第一共振电路,所述第二中继器具备第二感应线圈以及连接于所述第二感应线圈的第二电容器来构成第二共振电路。
优选地,所述第二增幅中继器的感应线圈与所述接收机的感应线圈形成在共同磁芯。
根据本发明的一种无线电力传输系统,其中,包括:第一增幅中继器,用于增幅在电磁波产生源产生的电磁波的磁场;第二增幅中继器,与所述第一增幅中继器相隔开,用于中继所述电磁波;以及接收机,附设于所述第二增幅中继器,从所述第二增幅中继器接收所述电磁波,所述第一增幅中继器、所述第二增幅中继器以及所述接收机分别具备感应线圈以及连接于所述感应线圈的电容器来构成共振电路。
优选地,所述电容器为执行阻抗匹配的可变电容器。
优选地,所述接收机利用所接收的电磁波向负载提供规定直流电压。
优选地,所述第二增幅中继器的感应线圈与所述接收机的感应线圈形成在共同磁芯。
根据本发明的一种增幅电磁波的磁场来变换无线电力的系统,其中,包括:第一电路,具备第一感应线圈及连接于所述第一感应线圈的第一电容器来构成第一共振电路;第二电路,具备第二感应线圈及连接于所述第二感应线圈的第二电容器来构成第二共振电路;第三电路,具备第三感应线圈及连接于所述第三感应线圈的第三电容器来构成第三共振电路,所述第一电路构成为将电磁波无线传输给所述第二电路,所述第二电路构成为与所述第一电路相隔开,从所述第一电路无线接收所述电磁波,并增幅所接收的电磁波的磁场,所述第三电路构成为与所述第二电路相隔开,从第二电路无线接收所述电磁波。
优选地,进一步包括第四电路,附设于所述第三电路,用于增幅从所述第二电路辐射的电磁波的磁场,所述第四电路具备第四感应线圈及连接于所述第四感应线圈的第四电容器来构成第四共振电路。
根据本发明的一种中继器系统,其配置于电磁波产生源与接收机之间,所述接收机接收来自所述电磁波产生源的电力,其中,所述中继器系统,包括:第一中继器,邻近所述电磁波产生源而配置,用于增幅由所述电磁波产生源产生的电磁波的磁场;以及第二中继器,与所述第一中继器相隔开,用于增幅从所述第一中继器辐射的电磁波的磁场,所述第一中继器具备第一感应线圈及连接于所述第一感应线圈的第一电容器来构成第一共振电路,所述第二中继器具备第二感应线圈及连接于所述第二感应线圈的第二电容器来构成第二共振电路。
优选地,进一步包括至少一个第三中继器,所述第三中继器具备第三感应线圈以及连接于所述第三感应线圈的第三电容器来构成第三共振电路。
优选地,所述第二增幅中继器的感应线圈与所述接收机的感应线圈形成在共同磁芯。
根据本发明的一种电池充电方法,其中,包括:在邻近电磁波产生源的位置增幅电磁波的磁场的步骤;在从所述电磁波产生源相隔开的位置再次增幅所述电磁波的磁场的步骤;通过整流由再次增幅磁场的电磁波而感应的电动势来产生直流电压的步骤;以及将所产生的直流电压提供给所述电池的步骤,所述增幅的步骤通过由感应线圈及连接于所述感应线圈的电容器而成的共振电路来执行。
根据本发明的一种向负载供应电力的方法,其中,包括:在邻近电磁波产生源的位置增幅电磁波的磁场的步骤;在从所述电磁波产生源相隔开的位置再次增幅所述电磁波的磁场的步骤;通过整流由再次增幅磁场的电磁波而感应的电动势来产生直流电压的步骤;以及将所产生的直流电压提供给所述负载的步骤,所述增幅的步骤通过由感应线圈及连接于所述感应线圈的电容器而成的共振电路来执行。
附图说明
通过以下结合附图所作的详细说明,可以更充分地理解本发明的其他目的和优点。所附图形包括:
图1说明了根据本发明的放大中继器的外观和构造;
图2说明了根据本发明的具有充电功能的无线功率变换器;
图3说明了仅使用无线功率变换器来测量充电电压、充电电流和充电功率而不使用放大中继器的构造;
图4说明了使用单个磁场放大中继器和一个无线功率变换器来测量充电电压、充电电流和充电功率的构造;
图5说明了使用两个磁场放大中继器和一个无线功率变换器(与其中一个放大中继器组合)来测量充电电压、充电电流和充电功率的构造;
图6说明了使用两个磁场放大中继器和一个无线功率变换器(独立)来测量充电电压、充电电流和充电功率的构造;
图7说明了使用磁场放大中继器、中继放大器和无线功率变换器(其相互组合)来测量充电电压、充电电流和充电功率的构造;
图8说明了发射线圈产生磁场并使用放大中继器、接收线圈和无线功率变换器来测量电压、电流和功率的构造;
图9说明了发射线圈产生磁场并在输出端使用放大中继器、缠绕在共同磁芯上部的接收线圈以及设置于共同磁芯下部的放大中继器来测量电压、电流和功率的构造;
图10说明了以将放大中继器和发射线圈或接收线圈缠绕在单个磁芯上的方式构造的发射机和接收机;
图11说明了将由螺旋形线圈组成的放大中继器附于螺旋形线圈上并在接收线圈的输出端测量电压、电流和功率的构造;
图12说明了由螺旋形线圈组成的放大中继器位于发射线圈和接收线圈之间并在输出端测量电压、电流和功率的构造;
图13说明了放大中继器位于发射线圈外部并在接收线圈的输出端测量电压、电流和功率的构造;
图14说明了放大中继器位于发射线圈和接收线圈每个的外部并在接收线圈的输出端测量电压、电流和功率的构造;
11:磁芯;12:感应线圈
20:交流发电机
21:电磁波产生源
22:接收机;23:输出部分
24:标尺
25、26、27、28、30、32、34:放大中继器
29:发射线圈
31:接收机1;33:接收线圈
51:螺旋形线圈型接收线圈
52:螺旋形线圈型放大中继器
53:螺旋形线圈型发射线圈
L1:接收线圈
C1:用于阻抗匹配的电容器
C2:平流电容器
1.3V:用于充电的电池电压
具体实施方式
现结合优选实施例并参照附图详细说明本发明。作为参考,不同附图中相同的参考符号表示对应的部件。
本发明提供了一种放大中继器,其以这样的方式构造,即将铁氧体磁芯插入具有预定绕组数的线圈,以在与电磁波产生源相距预定距离的位置利用法拉第定律使用电磁波的时变磁场来增加由磁链增加所引起的感应电动势,并将感应线圈和用于感应共振的可变电容器相互连接起来,以最大化感应电流,同时减小感应线圈中存在的阻抗成分,以放大电磁波的磁场。而且,本发明提供了一种与放大中继器相隔预定距离或附在放大中继器上的无线功率变换器。该无线功率变换器包括整流二极管,用于整流以下构造中感应的电动势,即将铁氧体磁芯等磁芯插入具有预定绕组数的感应线圈,以使用通过放大中继器放大的电磁波将最大感应功率传输到作为负载的充电电池上,并且将感应线圈连接到用于控制共振和阻抗匹配的可变电容器、用于平滑化整流电压的平流电容器以及具有预定直流电压和电流的接收线圈。
在使用法拉第定律接收电磁功率时,本发明使用放大中继器来放大电视接收机或监视器中产生的时变电磁波或通过将发射线圈连接到交流电源产生电路的负载而人工产生的电磁波的磁场,以在与电磁波产生源相距预定距离的位置使用感应线圈来获得感应电动势,并最大化所获得的感应电压和电流,从而提供用于接收电磁功率的磁场放大中继器(其实现了高效率的电能变换)以及使用该放大中继器的高效率无线功率变换器。
下面将说明用于放大电磁波的感应磁场的放大中继器的构造。
根据本发明的电磁波放大中继器使用从电磁波产生源产生的电磁波来获得感应电动势并将所获得的感应功率发射到空中。本发明在具有预定直径和尺寸(内径为10mm,外径为15mm)的绕线管上将线圈缠绕预定次数,并将铁氧体磁芯插入绕线管中,以制造感应线圈。设计感应线圈的直径和绕组数以及铁氧体磁芯的尺寸,以最大化感应电动势。感应线圈可以根据其电阻值来并联或串联构造。在本发明中,铁氧体磁芯的直径和长度分别为9mm和110mm,并将两个感应线圈(均具有0.3mm的直径和160的绕组数)相互并联连接。将感应线圈绕在上述绕线管上,将铁氧体磁芯插入绕线管,并将可变电容器与感应线圈并联连接,以构造共振电路来最大化感应功率并发射电磁波。
根据本发明的无线功率变换器与放大中继器相距预定的距离或附在放大中继器上,并包括直径为9mm且长度为110mm的铁氧体磁芯以及直径为0.3mm、绕组数为100且相互并联连接的两个感应线圈。将感应线圈绕在具有预定尺寸(内径为10mm,外径为15mm)的绕线管上,将铁氧体磁芯插入绕线管,并将可变电容器与感应线圈并联连接,以便与共振和负载电路进行阻抗匹配,以最大化感应电动势。该无线功率变换器进一步包括用于整流感应电动势的二极管以及用于平滑化已整流的电压的平流电容器。可将该无线功率变换器用作充电装置的电源,因为其产生具有特定电流的直流电压。
图1左边显示了根据本发明制造的电磁场放大中继器,而右边显示了构成放大中继器的电路。图2是为了使用通过放大中继器放大的电磁波来获得电能而构造的无线功率变换器的电路图。在图2中,L1表示接收线圈,C1表示用于共振阻抗匹配和最大功率传输的电容器,C2表示平流电容器,而1.3V表示充电电池电压。表1表示在不使用电磁场放大中继器的情况下,当图2的无线功率变换器如图3所示与电磁波产生源21相距预定距离时获得的充电电压、充电电流和充电功率。从表1可知,标尺24的距离超过4cm时,几乎不会感应充电电流和充电功率。
表1:使用图2的无线功率变换器的充电电压、充电电流和充电功率。
距离(cm) 充电电压(V) 充电电流(mA) 充电功率(mW)
0 1.3 27 35.1
1 1.3 18.4 23.9
2 1.3 10.7 13.9
3 1.3 4 5.2
4 1.3 0 0
图4说明了根据本发明设计和制造的单个电磁场放大中继器25邻近电磁波产生源21并使用根据本发明的接收机无线功率变换器在改变电磁场放大中继器和无线功率变换器之间距离的同时测量充电电压、充电电流和充电功率的构造。表2表示测量结果。参照表2,即使在标尺的距离约10cm的点也可以获得充电电流和充电功率。
表2:使用图4的无线功率变换器的充电电压、充电电流和充电功率。
距离(cm) 充电电压(V) 充电电流(mA) 充电功率(mW)
5 1.3 44.0 57.2
6 1.3 26.2 34.1
7 1.3 21.7 23.2
8 1.3 15.7 20.4
9 1.3 10.7 13.9
10 1.3 4.9 6.4
11 1.3 0 0
12 1.3 0 0
图5说明了使用根据本发明的两个电磁场放大中继器25和26的构造。其中一个放大中继器与电磁波产生源21相距预定的距离,而另一个放大中继器邻近接收机22和无线功率变换器而设置。这里,将放大中继器26和接收机22相互组合。表3表示在改变电磁波产生源和相互附着的放大中继器26和接收机22之间的距离时使用此构造测量的充电电压、充电电流和充电功率。参照表3,即使在与电磁波产生源21相距12cm的点也可以获得充电电流和充电功率。
表3:使用图5的无线功率变换器的充电电压、充电电流和充电功率。
距离(cm) 充电电压(V) 充电电流(mA) 充电功率(mW)
5 1.3 51.2 66.5
6 1.3 36.8 47.8
7 1.3 29.2 37.9
8 1.3 21.4 27.8
9 1.3 16.6 21.5
10 1.3 12.7 16.5
11 1.3 4.7 6.1
12 1.3 1.2 1.6
图6说明了使用根据本发明设计和制造的两个电磁场放大中继器25和27的构造。在此构造中,其中一个放大中继器与电磁波产生源21相距预定的距离,而另一个放大中继器与电磁波产生源相距5cm,并且在改变无线功率变换器和放大中继器之间的距离的同时使用无线功率变换器来测量充电电压、充电电流和充电功率。表4表示测量结果。参照表4,可以获得略微增加的充电功率,并且即使在与电磁波产生源21相距13cm的点也可以获得特定的充电电流和充电功率。
表4:使用图6的无线功率变换器的充电电压、充电电流和充电功率。
距离(cm) 充电电压(V) 充电电流(mA) 充电功率(mW)
10 1.3 34 44.2
11 1.3 22.3 29.0
12 1.3 6.3 8.2
13 1.3 1.7 2.2
图7说明了一种构造,其中,以这样的方式来制造电磁场放大中继器25,即以200的绕组数将直径与上述线圈相同的线圈绕在尺寸与上述绕线管相同的绕线管上,以将两个感应线圈并联连接起来,将铁氧体磁芯插入感应线圈,并将可变电容器与感应线圈并联连接起来,以构造共振电路,并且将放大中继器25与电磁波产生源21隔开预定的距离。另外,将与图3、4、5和6所示相同的另一放大中继器27放在与标尺5cm对应的点,并将放大中继器28和无线功率变换器相互附着,以在改变电磁波产生源和无线功率变换器之间的距离的同时测量充电电压、充电电流和充电功率。表5表示测得的充电电压、充电电流和充电功率。从表5可知,即使在与电磁波产生源21相距16cm的点也可以获得特定的充电电流和充电功率。
表5:使用图7的无线功率变换器的充电电压、充电电流和充电功率。
距离(cm) 充电电压(V) 充电电流(mA) 充电功率(mW)
10 1.3 41.0 53.3
11 1.3 29.8 38.7
12 1.3 20.2 26.2
13 1.3 15.8 20.5
14 1.3 10.7 13.9
15 1.3 3.2 4.1
16 1.3 1 1.3
如图3至7所示,使用如上设计和制造的电磁场放大中继器以及根据本发明的无线功率变换器来进行各种实验。如果只安装了无线功率变换器,而没有放大中继器,如图3所示,则当无线功率变换器与电磁波产生源相距4cm时几乎不会从感应线圈产生感应电动势,如表1所示。因而,充电电流不在作为负载的充电电池中流动,并且充电电池功率指示为零。如果如图4所示添加了放大中继器,则当无线功率变换器与电磁波产生源相距5cm时获得44mA的最大充电电流以及57.2mW的充电功率,而当无线功率变换器与电磁波产生源相距10cm时获得6.4mW的充电功率,如表2所示。
当如图5所示将无线功率变换器与放大中继器组合时,充电电流和充电功率高于相同距离下从图4的构造获得的值。如图6所示使用两个放大中继器时,与电磁波产生源相距10cm的点的充电功率为44.2mW,如表4所示,其大约为图4中仅使用一个放大中继器获得的6.4mW充电功率的七倍。而且,即使某个点与电磁波产生源的距离与标尺12cm相对应,也可以获得充电电流和充电功率。因而,可以知道,即使距离是使用无线功率变换器而不使用任何放大中继器时的四倍,也可以传输电磁功率并将其感应变换成电能以传输至负载。
在安装有两个不同的放大中继器25和27并将放大中继器28与接收线圈和无线功率变换器组合的构造中,如图7所示,在与图6的无放大中继器的构造相同的距离下测得增加的充电电流和充电功率,并且能够获得充电电流和充电功率的距离增加到16cm,如表5所示。
在本发明的另一实施例中,将发射线圈连接到电视接收机的交流电源产生电路的负载(其是人工电磁波产生源),以构造频率为130kHz的交流电源波形产生源,并且如表6所示,构造发射线圈、中继器以及第一和第二接收机中所用的线圈,以使用图2的无线功率变换器根据标尺距离来测量接收电压、接收电流和接收功率。
表6:发射线圈、中继器、接收机1、接收机2的线圈构造
在表6中,第一接收机由一般的螺线管线圈构成,其通过将线圈缠绕在磁芯上构造而成,并且第二接收机包括在共同磁芯的上部缠绕十次的接收线圈以及中继器,其构成在共同磁芯下部缠绕四十次的线圈和电容器的共振电路。
图10说明了通过将输出从电磁波产生源产生的功率的发射线圈或者接收电磁波的接收线圈缠绕在具有电磁波放大中继器的共同磁芯上而构成的发射机和接收机。这种构造可以获得很高的无线功率变换效率,因为其可以最大化放大中继器的共振电路中的电磁波产生和接收。
表7表示如图8所示安装如表6所示制造的发射线圈29、放大中继器30和接收机31时在接收机31的输出负载端(几十个并联LED)测得的电压、电流和功率。放大中继器邻近电磁波产生源。将接收机从电磁波产生源移到5cm、10cm和15cm的距离时,测量电压、电流和功率。
表7:接收机1的输出负载端测得的接收电压、电流和功率。
距离(cm) 接收电压(V) 接收电流(A) 接收功率(W)
5 3.9 1.900 7.410
10 2.6 1.000 2.600
15 1.4 0.200 0.280
表8表示如图9所示安装如表6所示制造的发射线圈29、放大中继器32以及接收机33和34时在接收机33和34的输出负载端测得的电压、电流和功率。放大中继器邻近电磁波产生源。将接收机从电磁波产生源移到5cm、10cm、15cm和20cm的距离时,测量电压、电流和功率。
表8:接收机2的输出负载端测得的接收电压、电流和功率。
距离(cm) 接收电压(V) 接收电流(A) 接收功率(W)
5 4.6 3.500 16.100
10 4.4 3.500 15.400
15 2.7 1.700 4.590
20 2.0 0.700 1.400
从表7和8可知,对于与距离对应的接收电压、接收电流和接收功率,使用仅将感应线圈缠绕于磁芯上而制成的接收机31所获得的值,比使用包括感应线圈和由共振电路构成的中继器(其附于单个共同磁芯上)的接收机33和34所获得的值,要大得多。
本发明的另一实施例通过考虑电磁波产生源的尺寸和规模而以不同的绕组数将具有各种直径的线圈缠绕在具有各种尺寸的绕线管上来构造感应线圈、将感应线圈串联或并联连接、插入具有适合绕线管内径的直径和长度的铁氧体磁芯,并将感应线圈连接到可变电容器上,以构造共振电路。以这样的方式,可以各种尺寸和形状构造电磁场放大中继器,并使用放大中继器和无线功率变换器来实现能够获得各种水平的充电电压、充电电流和充电功率的设备。
本发明的另一实施例使用本申请人申请的韩国专利申请第10-2004-0000528中所述的螺旋结构来构造发射线圈、中继器和接收机。在这种情况下,将电磁波产生源(其产生的交流220V和60Hz电压通过交流-交流适配器被变换成频率为120kHz的交流电压波形)以螺旋的形式连接到发射线圈,将接收线圈连接到充电电路,并测量接收到的充电电流和电压。发射线圈和接收线圈之间的距离为5cm。图11显示了放大中继器邻近发射线圈而位于发射线圈上的情况。表9表示螺旋发射线圈、中继器线圈和接收线圈的内径、外径、类型和绕组数。
表9:螺旋发射线圈、中继器线圈和接收线圈的内径、外径、类型和绕组数。
内径(mm) 外径(mm) 线圈规格 绕组数
接收线圈 30 80 0.2*9 24
中继器线圈 30 80 0.2*9 24
发射线圈 30 40 0.2*9 4
在图11中,通过电磁波产生源的发射线圈输出的传输功率为16W,通过图2的无线功率变换器测得的充电电压为1.4V,充电电流为0.36A,并且充电功率为0.50W。当放大中继器如图12所示位于发射线圈和接收机(其是具有表6所示的尺寸的螺旋形线圈)之间时,充电电压为1.4V,充电电流为0.4A,并且充电功率为0.56W。在这种情况下,可以获得比图11的情况所获得的值略高的电流和功率。作为参考,当仅使用发射线圈53和接收线圈51而不使用中继器并且发射线圈和接收线圈之间的距离为5cm时,充电电压为1.4V,充电电流为0.01A,并且充电功率为0.014W,这是很小的值。
图13显示了放大中继器围绕发射线圈的情况。这里,中继器并未通过导线连接到发射线圈。表10表示图13所示的构造中所用的螺旋发射线圈、中继器和接收机的内径、外径、类型和绕组数。
在图13中,通过电磁波产生源的发射线圈输出的传输功率为16W,通过图2的无线功率变换器测得的充电电压为1.4V,充电电流为0.9A,并且充电功率为1.26W。当放大中继器分别围绕发射和接收线圈(其是具有表10的尺寸的螺旋形线圈)时,如图14所示,充电电压为1.4V,充电电流为1.0A,并且充电功率为1.4W。也就是说,可以在使用螺旋形线圈的实验中获得最高的电流和功率。这里,发射线圈和接收线圈之间的距离为5cm。
表10:螺旋发射线圈、中继器线圈和接收线圈的内径、外径、类型和绕组数。
内径(mm) 外径(mm) 线圈规格 绕组数
接收线圈 30 80 0.2*9 24
中继器线圈 40 80 0.2*9 20
发射线圈 30 40 0.2*9 4
而且,通过以板的形式同时缠绕韩国专利申请第10-2004-0000528号中所述的螺旋形线圈的两根导线以使其垂直平行放置、将铁磁物质以环形的形状放在线圈上以增加每小时由磁链引起的磁通量并将可变电容器串联或并联连接到线圈上以构造共振电路,本发明可构造一种无线充电装置,其产生具有高频率的感应电压和电流,并使用整流二极管和平流电容器对充电器中的感应电压和电流进行充电。这里,可以通过使用螺旋板型线圈、环形铁磁物质和可变电容器构造共振电路来制造电磁场放大中继器。韩国专利申请第10-2004-0000528号中详细说明了一种制造电磁场放大中继器的方法。
本发明构造了一种用于在与电磁波产生源相距预定距离的位置放大磁场的磁场放大中继器,并将电磁波放大中继器和无线功率变换充电装置变换器放在与放大中继器相距预定距离的位置。该无线功率变换充电装置包括:整流二极管,其整流在以下结构中感应的电动势,即将共振和阻抗匹配可变电容器和线圈相互并联连接,以使用通过放大中继器放大的电磁波来感应最大功率,以将感应的功率传输至负载;以及平流电容器,其用于平滑化已整流的电压和无线功率。因此,本发明可以将功率中继到与电磁波产生源相距预定距离的位置,并变换电磁功率,以提高工业适用性。例如,本发明既可用于对非接触无线电池进行充电,也可在空中或小功率电子装置的绝缘体中短距离实时传输功率。
本发明可以将磁场放大中继器放在与电磁波产生源相距预定距离的位置,以安装使用电磁波的无线功率变换器,因而,可以自由地放置并以各种方式应用无线功率变换器。
尽管参照具体的说明性实施例对本发明进行了描述,但其不受这些实施例的限制,而仅受所附权利要求书的限制。本领域的技术人员应了解,可以在不超出本发明的范围及主旨的基础上对这些实施例进行改变或修改。

Claims (25)

1.一种中继器系统,其配置于用于产生电磁波的电磁波产生源与从所述电磁波产生源接收电力的接收机之间,其中,所述中继器系统,包括:
第一中继器,邻近所述电磁波产生源而配置;以及
第二中继器,与所述第一中继器相隔开,
所述第一中继器具备第一感应线圈以及连接于所述第一感应线圈的第一电容器来构成第一共振电路,
所述第二中继器具备第二感应线圈以及连接于所述第二感应线圈的第二电容器来构成第二共振电路。
2.根据权利要求1所述的中继器系统,其中,进一步具备至少一个第三中继器,所述第三中继器具备第三感应线圈以及连接于所述第三感应线圈的第三电容器来构成第三共振电路。
3.根据权利要求2所述的中继器系统,其中,所述至少一个第三中继器附设于所述第一中继器、所述第二中继器以及所述接收机中的至少一个。
4.根据权利要求1所述的中继器系统,其中,所述电力从所述第一中继器无线传送到所述第二中继器。
5.根据权利要求1所述的中继器系统,其中,所述第二增幅中继器的感应线圈与所述接收机的感应线圈形成在共同磁芯。
6.一种无线电力传输系统,其中,包括:
电磁波产生源,用于产生电磁波;
接收机,用于接收来自电磁波产生源的电力;以及
中继器系统,配置于所述电磁波产生源与所述接收机之间,
所述中继器系统,包括:
第一中继器,邻近所述电磁波产生源而配置;以及
第二中继器,与所述第一中继器相隔开,
所述第一中继器具备第一感应线圈以及连接于所述第一感应线圈的第一电容器来构成第一共振电路,
所述第二中继器具备第二感应线圈以及连接于所述第二感应线圈的第二电容器来构成第二共振电路。
7.根据权利要求6所述的无线电力传输系统,其中,所述接收机具备感应线圈及电容器,
所述接收机通过所述中继器系统接收通过所述接收机的感应线圈及电容器的共振由所述电磁波产生的电力。
8.根据权利要求6所述的无线电力传输系统,其中,所述接收机将从所述中继器系统接收的电力供应给电池。
9.根据权利要求6所述的无线电力传输系统,其中,所述第二增幅中继器的感应线圈与所述接收机的感应线圈形成在共同磁芯。
10.一种无线电力中继方法,利用至少一个中继LC电路无线中继电力,其中,包括:
通过所述至少一个中继LC电路无线接收来自传输LC电路的电力的步骤;以及
通过所述至少一个中继LC电路将从所述传输LC电路接收的电力中继至接收LC电路的步骤,
所述至少一个中继LC电路、所述传输LC电路以及接收LC电路分别具备感应线圈及连接于所述感应线圈的电容器来构成共振电路。
11.根据权利要求10所述的无线电力中继方法,其中,所述至少一个中继LC电路附设于所述传输LC电路或所述接收LC电路。
12.一种无线电力传输方法,其中,包括:
通过电磁波产生源产生电力的步骤;
通过第一中继器接收来自所述电磁波产生源的电力并将所接收的电力传输给第二中继器的步骤;以及
通过第二中继器将由所述第一中继器接收的电力无线传输给接收机的步骤。
13.根据权利要求12所述的无线电力传输方法,其中,所述第一中继器具备第一感应线圈以及连接于所述第一感应线圈的第一电容器来构成第一共振电路,所述第二中继器具备第二感应线圈以及连接于所述第二感应线圈的第二电容器来构成第二共振电路。
14.根据权利要求12所述的无线电力传输方法,其中,所述第二增幅中继器的感应线圈与所述接收机的感应线圈形成在共同磁芯。
15.一种无线电力传输系统,其中,包括:
第一增幅中继器,用于增幅在电磁波产生源产生的电磁波的磁场;
第二增幅中继器,与所述第一增幅中继器相隔开,用于中继所述电磁波;以及
接收机,附设于所述第二增幅中继器,从所述第二增幅中继器接收所述电磁波,
所述第一增幅中继器、所述第二增幅中继器以及所述接收机分别具备感应线圈以及连接于所述感应线圈的电容器来构成共振电路。
16.根据权利要求15所述的无线电力传输系统,其中,所述电容器为执行阻抗匹配的可变电容器。
17.根据权利要求15所述的无线电力传输系统,其中,所述接收机利用所接收的电磁波向负载提供规定直流电压。
18.根据权利要求15所述的无线电力传输系统,其中,所述第二增幅中继器的感应线圈与所述接收机的感应线圈形成在共同磁芯。
19.一种增幅电磁波的磁场来变换无线电力的系统,其中,包括:
第一电路,具备第一感应线圈及连接于所述第一感应线圈的第一电容器来构成第一共振电路;
第二电路,具备第二感应线圈及连接于所述第二感应线圈的第二电容器来构成第二共振电路;
第三电路,具备第三感应线圈及连接于所述第三感应线圈的第三电容器来构成第三共振电路,
所述第一电路构成为将电磁波无线传输给所述第二电路,
所述第二电路构成为与所述第一电路相隔开,从所述第一电路无线接收所述电磁波,并增幅所接收的电磁波的磁场,
所述第三电路构成为与所述第二电路相隔开,从第二电路无线接收所述电磁波。
20.根据权利要求19所述的系统,其中,进一步包括第四电路,附设于所述第三电路,用于增幅从所述第二电路辐射的电磁波的磁场,
所述第四电路具备第四感应线圈及连接于所述第四感应线圈的第四电容器来构成第四共振电路。
21.一种中继器系统,其配置于电磁波产生源与接收机之间,所述接收机接收来自所述电磁波产生源的电力,其中,所述中继器系统,包括:
第一中继器,邻近所述电磁波产生源而配置,用于增幅由所述电磁波产生源产生的电磁波的磁场;以及
第二中继器,与所述第一中继器相隔开,用于增幅从所述第一中继器辐射的电磁波的磁场,
所述第一中继器具备第一感应线圈及连接于所述第一感应线圈的第一电容器来构成第一共振电路,
所述第二中继器具备第二感应线圈及连接于所述第二感应线圈的第二电容器来构成第二共振电路。
22.根据权利要求21所述的中继器系统,其中,进一步包括至少一个第三中继器,所述第三中继器具备第三感应线圈以及连接于所述第三感应线圈的第三电容器来构成第三共振电路。
23.根据权利要求21所述的中继器系统,其中,所述第二增幅中继器的感应线圈与所述接收机的感应线圈形成在共同磁芯。
24.一种电池充电方法,其中,包括:
在邻近电磁波产生源的位置增幅电磁波的磁场的步骤;
在从所述电磁波产生源相隔开的位置再次增幅所述电磁波的磁场的步骤;
通过整流由再次增幅磁场的电磁波而感应的电动势来产生直流电压的步骤;以及
将所产生的直流电压提供给所述电池的步骤,
所述增幅的步骤通过由感应线圈及连接于所述感应线圈的电容器而成的共振电路来执行。
25.一种向负载供应电力的方法,其中,包括:
在邻近电磁波产生源的位置增幅电磁波的磁场的步骤;
在从所述电磁波产生源相隔开的位置再次增幅所述电磁波的磁场的步骤;
通过整流由再次增幅磁场的电磁波而感应的电动势来产生直流电压的步骤;以及
将所产生的直流电压提供给所述负载的步骤,
所述增幅的步骤通过由感应线圈及连接于所述感应线圈的电容器而成的共振电路来执行。
CN201510002202.4A 2004-07-29 2005-07-29 中继器系统及无线电力传输系统 Active CN104659931B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020040059562A KR20040072581A (ko) 2004-07-29 2004-07-29 전자기파 증폭중계기 및 이를 이용한 무선전력변환장치
KR10-2004-0059562 2004-07-29
CN200580025648.3A CN101023600B (zh) 2004-07-29 2005-07-29 一种电磁波放大中继装置及使用该装置的无线电电功率变换设备

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN200580025648.3A Division CN101023600B (zh) 2004-07-29 2005-07-29 一种电磁波放大中继装置及使用该装置的无线电电功率变换设备

Publications (2)

Publication Number Publication Date
CN104659931A true CN104659931A (zh) 2015-05-27
CN104659931B CN104659931B (zh) 2017-04-12

Family

ID=35786470

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201510002202.4A Active CN104659931B (zh) 2004-07-29 2005-07-29 中继器系统及无线电力传输系统
CN200580025648.3A Active CN101023600B (zh) 2004-07-29 2005-07-29 一种电磁波放大中继装置及使用该装置的无线电电功率变换设备

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN200580025648.3A Active CN101023600B (zh) 2004-07-29 2005-07-29 一种电磁波放大中继装置及使用该装置的无线电电功率变换设备

Country Status (6)

Country Link
US (4) US7885050B2 (zh)
EP (3) EP3404847A1 (zh)
JP (2) JP2008508842A (zh)
KR (1) KR20040072581A (zh)
CN (2) CN104659931B (zh)
WO (1) WO2006011769A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117060598A (zh) * 2023-10-09 2023-11-14 荣耀终端有限公司 无线充电系统及电子系统

Families Citing this family (250)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8412377B2 (en) 2000-01-24 2013-04-02 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US6956348B2 (en) 2004-01-28 2005-10-18 Irobot Corporation Debris sensor for cleaning apparatus
US7571511B2 (en) 2002-01-03 2009-08-11 Irobot Corporation Autonomous floor-cleaning robot
US6690134B1 (en) 2001-01-24 2004-02-10 Irobot Corporation Method and system for robot localization and confinement
US7429843B2 (en) 2001-06-12 2008-09-30 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8428778B2 (en) 2002-09-13 2013-04-23 Irobot Corporation Navigational control system for a robotic device
JP5695287B2 (ja) * 2002-10-02 2015-04-01 カリフォルニア インスティテュート オブ テクノロジー 微小流体の核酸解析
AU2002952691A0 (en) 2002-11-15 2002-11-28 Sunshine Heart Company Pty Ltd Heart assist device utilising aortic deformation
US20040182315A1 (en) * 2003-03-17 2004-09-23 Tokyo Electron Limited Reduced maintenance chemical oxide removal (COR) processing system
ES2561354T3 (es) 2003-10-31 2016-02-25 Sunshine Heart Company Pty Ltd Sistema de control de sincronización
US7955248B2 (en) 2003-11-11 2011-06-07 Sunshine Heart Company Pty Ltd Actuator for a heart assist device
US7332890B2 (en) 2004-01-21 2008-02-19 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
ATE536577T1 (de) 2004-06-24 2011-12-15 Irobot Corp Fernbediente ablaufsteuerung und verfahren für eine autonome robotervorrichtung
US7706917B1 (en) 2004-07-07 2010-04-27 Irobot Corporation Celestial navigation system for an autonomous robot
US8972052B2 (en) 2004-07-07 2015-03-03 Irobot Corporation Celestial navigation system for an autonomous vehicle
US11209833B2 (en) 2004-07-07 2021-12-28 Irobot Corporation Celestial navigation system for an autonomous vehicle
KR20040072581A (ko) 2004-07-29 2004-08-18 (주)제이씨 프로텍 전자기파 증폭중계기 및 이를 이용한 무선전력변환장치
KR100597869B1 (ko) * 2004-11-16 2006-07-06 (주)제이씨 프로텍 방사 전자기파 이용 무선충전장치 내장의 리모콘, 소형 전자기기 또는 장식품
ES2346343T3 (es) 2005-02-18 2010-10-14 Irobot Corporation Robot autonomo de limpieza de superficies para una limpieza en seco y en mojado.
US8392021B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US7620476B2 (en) 2005-02-18 2009-11-17 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
US8930023B2 (en) 2009-11-06 2015-01-06 Irobot Corporation Localization by learning of wave-signal distributions
KR100809457B1 (ko) * 2005-04-04 2008-03-06 (주)제이씨 프로텍 방사 무선전력을 이용한 무접점 전기발광장치
US7825543B2 (en) 2005-07-12 2010-11-02 Massachusetts Institute Of Technology Wireless energy transfer
JP4921466B2 (ja) 2005-07-12 2012-04-25 マサチューセッツ インスティテュート オブ テクノロジー 無線非放射型エネルギー転送
EP1969438B1 (en) 2005-12-02 2009-09-09 iRobot Corporation Modular robot
EP2466411B1 (en) 2005-12-02 2018-10-17 iRobot Corporation Robot system
ES2706727T3 (es) 2005-12-02 2019-04-01 Irobot Corp Sistema de robot
KR101214715B1 (ko) 2005-12-02 2012-12-21 아이로보트 코퍼레이션 커버리지 로봇 이동성
US8447234B2 (en) * 2006-01-18 2013-05-21 Qualcomm Incorporated Method and system for powering an electronic device via a wireless link
US9130602B2 (en) 2006-01-18 2015-09-08 Qualcomm Incorporated Method and apparatus for delivering energy to an electrical or electronic device via a wireless link
KR100809461B1 (ko) * 2006-01-19 2008-03-03 (주)제이씨 프로텍 전자파 수신용 소형수신모듈을 이용한 무선전광판 및무선발광장치
CN103078368B (zh) * 2006-03-15 2016-04-13 株式会社半导体能源研究所 电力供应系统和用于机动车的电力供应系统
EP2548492B1 (en) 2006-05-19 2016-04-20 iRobot Corporation Removing debris from cleaning robots
US8417383B2 (en) 2006-05-31 2013-04-09 Irobot Corporation Detecting robot stasis
US8378523B2 (en) * 2007-03-02 2013-02-19 Qualcomm Incorporated Transmitters and receivers for wireless energy transfer
US8378522B2 (en) 2007-03-02 2013-02-19 Qualcomm, Incorporated Maximizing power yield from wireless power magnetic resonators
US9774086B2 (en) 2007-03-02 2017-09-26 Qualcomm Incorporated Wireless power apparatus and methods
KR101288433B1 (ko) * 2007-03-27 2013-07-26 메사추세츠 인스티튜트 오브 테크놀로지 무선 에너지 전달
KR101301834B1 (ko) 2007-05-09 2013-08-29 아이로보트 코퍼레이션 소형 자율 커버리지 로봇
US8805530B2 (en) 2007-06-01 2014-08-12 Witricity Corporation Power generation for implantable devices
US9421388B2 (en) 2007-06-01 2016-08-23 Witricity Corporation Power generation for implantable devices
US9124120B2 (en) 2007-06-11 2015-09-01 Qualcomm Incorporated Wireless power system and proximity effects
US9634730B2 (en) * 2007-07-09 2017-04-25 Qualcomm Incorporated Wireless energy transfer using coupled antennas
WO2009023155A2 (en) 2007-08-09 2009-02-19 Nigelpower, Llc Increasing the q factor of a resonator
KR101159565B1 (ko) * 2007-08-13 2012-06-26 퀄컴 인코포레이티드 장거리 저주파 공진기 및 재료
GB0716679D0 (en) 2007-08-28 2007-10-03 Fells J Inductive power supply
US8766482B2 (en) * 2007-09-17 2014-07-01 Qualcomm Incorporated High efficiency and power transfer in wireless power magnetic resonators
CN101842963B (zh) 2007-10-11 2014-05-28 高通股份有限公司 使用磁机械系统的无线功率转移
JP2011505103A (ja) 2007-11-28 2011-02-17 クゥアルコム・インコーポレイテッド 無給電アンテナを使用する無線電力範囲増大
TWI361540B (en) * 2007-12-14 2012-04-01 Darfon Electronics Corp Energy transferring system and method thereof
US8855554B2 (en) * 2008-03-05 2014-10-07 Qualcomm Incorporated Packaging and details of a wireless power device
US8629576B2 (en) 2008-03-28 2014-01-14 Qualcomm Incorporated Tuning and gain control in electro-magnetic power systems
US20100038970A1 (en) 2008-04-21 2010-02-18 Nigel Power, Llc Short Range Efficient Wireless Power Transfer
EP2274837B1 (en) * 2008-04-28 2018-01-10 Cochlear Limited Magnetic inductive systems and devices
US20090273242A1 (en) * 2008-05-05 2009-11-05 Nigelpower, Llc Wireless Delivery of power to a Fixed-Geometry power part
US8629650B2 (en) 2008-05-13 2014-01-14 Qualcomm Incorporated Wireless power transfer using multiple transmit antennas
US8878393B2 (en) 2008-05-13 2014-11-04 Qualcomm Incorporated Wireless power transfer for vehicles
CN102099958B (zh) 2008-05-14 2013-12-25 麻省理工学院 包括干涉增强的无线能量传输
US20090299918A1 (en) * 2008-05-28 2009-12-03 Nigelpower, Llc Wireless delivery of power to a mobile powered device
JP5587304B2 (ja) * 2008-06-05 2014-09-10 クゥアルコム・インコーポレイテッド 無線パワー伝達のためのフェライトアンテナ
GB0812021D0 (en) * 2008-07-02 2008-08-06 Amway Europ Ltd Electromagnetic interference mitigation
US8482158B2 (en) 2008-09-27 2013-07-09 Witricity Corporation Wireless energy transfer using variable size resonators and system monitoring
US8723366B2 (en) 2008-09-27 2014-05-13 Witricity Corporation Wireless energy transfer resonator enclosures
US8772973B2 (en) 2008-09-27 2014-07-08 Witricity Corporation Integrated resonator-shield structures
US9318922B2 (en) 2008-09-27 2016-04-19 Witricity Corporation Mechanically removable wireless power vehicle seat assembly
US8933594B2 (en) 2008-09-27 2015-01-13 Witricity Corporation Wireless energy transfer for vehicles
US8471410B2 (en) 2008-09-27 2013-06-25 Witricity Corporation Wireless energy transfer over distance using field shaping to improve the coupling factor
US9093853B2 (en) 2008-09-27 2015-07-28 Witricity Corporation Flexible resonator attachment
US8928276B2 (en) 2008-09-27 2015-01-06 Witricity Corporation Integrated repeaters for cell phone applications
US8692410B2 (en) 2008-09-27 2014-04-08 Witricity Corporation Wireless energy transfer with frequency hopping
US8963488B2 (en) 2008-09-27 2015-02-24 Witricity Corporation Position insensitive wireless charging
US9105959B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Resonator enclosure
US9544683B2 (en) 2008-09-27 2017-01-10 Witricity Corporation Wirelessly powered audio devices
US8937408B2 (en) 2008-09-27 2015-01-20 Witricity Corporation Wireless energy transfer for medical applications
US8304935B2 (en) 2008-09-27 2012-11-06 Witricity Corporation Wireless energy transfer using field shaping to reduce loss
US8487480B1 (en) 2008-09-27 2013-07-16 Witricity Corporation Wireless energy transfer resonator kit
US8476788B2 (en) 2008-09-27 2013-07-02 Witricity Corporation Wireless energy transfer with high-Q resonators using field shaping to improve K
US9106203B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Secure wireless energy transfer in medical applications
US8947186B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Wireless energy transfer resonator thermal management
US9035499B2 (en) 2008-09-27 2015-05-19 Witricity Corporation Wireless energy transfer for photovoltaic panels
US9246336B2 (en) 2008-09-27 2016-01-26 Witricity Corporation Resonator optimizations for wireless energy transfer
US8901779B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with resonator arrays for medical applications
US8901778B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with variable size resonators for implanted medical devices
US9184595B2 (en) 2008-09-27 2015-11-10 Witricity Corporation Wireless energy transfer in lossy environments
US8569914B2 (en) 2008-09-27 2013-10-29 Witricity Corporation Wireless energy transfer using object positioning for improved k
US9160203B2 (en) 2008-09-27 2015-10-13 Witricity Corporation Wireless powered television
US9601266B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Multiple connected resonators with a single electronic circuit
US8957549B2 (en) 2008-09-27 2015-02-17 Witricity Corporation Tunable wireless energy transfer for in-vehicle applications
US9577436B2 (en) 2008-09-27 2017-02-21 Witricity Corporation Wireless energy transfer for implantable devices
US9601261B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Wireless energy transfer using repeater resonators
US8946938B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Safety systems for wireless energy transfer in vehicle applications
US8552592B2 (en) 2008-09-27 2013-10-08 Witricity Corporation Wireless energy transfer with feedback control for lighting applications
US8598743B2 (en) 2008-09-27 2013-12-03 Witricity Corporation Resonator arrays for wireless energy transfer
US9396867B2 (en) 2008-09-27 2016-07-19 Witricity Corporation Integrated resonator-shield structures
US8441154B2 (en) 2008-09-27 2013-05-14 Witricity Corporation Multi-resonator wireless energy transfer for exterior lighting
US8461720B2 (en) 2008-09-27 2013-06-11 Witricity Corporation Wireless energy transfer using conducting surfaces to shape fields and reduce loss
US9515494B2 (en) 2008-09-27 2016-12-06 Witricity Corporation Wireless power system including impedance matching network
US8410636B2 (en) 2008-09-27 2013-04-02 Witricity Corporation Low AC resistance conductor designs
US8912687B2 (en) 2008-09-27 2014-12-16 Witricity Corporation Secure wireless energy transfer for vehicle applications
US8587155B2 (en) 2008-09-27 2013-11-19 Witricity Corporation Wireless energy transfer using repeater resonators
US8461721B2 (en) 2008-09-27 2013-06-11 Witricity Corporation Wireless energy transfer using object positioning for low loss
US8497601B2 (en) 2008-09-27 2013-07-30 Witricity Corporation Wireless energy transfer converters
US8692412B2 (en) 2008-09-27 2014-04-08 Witricity Corporation Temperature compensation in a wireless transfer system
US8324759B2 (en) 2008-09-27 2012-12-04 Witricity Corporation Wireless energy transfer using magnetic materials to shape field and reduce loss
US8907531B2 (en) 2008-09-27 2014-12-09 Witricity Corporation Wireless energy transfer with variable size resonators for medical applications
US8643326B2 (en) 2008-09-27 2014-02-04 Witricity Corporation Tunable wireless energy transfer systems
US8461722B2 (en) 2008-09-27 2013-06-11 Witricity Corporation Wireless energy transfer using conducting surfaces to shape field and improve K
US9744858B2 (en) 2008-09-27 2017-08-29 Witricity Corporation System for wireless energy distribution in a vehicle
US20110074346A1 (en) * 2009-09-25 2011-03-31 Hall Katherine L Vehicle charger safety system and method
US20110043049A1 (en) * 2008-09-27 2011-02-24 Aristeidis Karalis Wireless energy transfer with high-q resonators using field shaping to improve k
US8686598B2 (en) 2008-09-27 2014-04-01 Witricity Corporation Wireless energy transfer for supplying power and heat to a device
US9065423B2 (en) 2008-09-27 2015-06-23 Witricity Corporation Wireless energy distribution system
US8587153B2 (en) 2008-09-27 2013-11-19 Witricity Corporation Wireless energy transfer using high Q resonators for lighting applications
US8466583B2 (en) 2008-09-27 2013-06-18 Witricity Corporation Tunable wireless energy transfer for outdoor lighting applications
US8922066B2 (en) 2008-09-27 2014-12-30 Witricity Corporation Wireless energy transfer with multi resonator arrays for vehicle applications
US8669676B2 (en) 2008-09-27 2014-03-11 Witricity Corporation Wireless energy transfer across variable distances using field shaping with magnetic materials to improve the coupling factor
US9601270B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Low AC resistance conductor designs
US8400017B2 (en) 2008-09-27 2013-03-19 Witricity Corporation Wireless energy transfer for computer peripheral applications
US8629578B2 (en) 2008-09-27 2014-01-14 Witricity Corporation Wireless energy transfer systems
EP3179640A1 (en) * 2008-09-27 2017-06-14 WiTricity Corporation Wireless energy transfer systems
EP2345100B1 (en) * 2008-10-01 2018-12-05 Massachusetts Institute of Technology Efficient near-field wireless energy transfer using adiabatic system variations
JP5515659B2 (ja) * 2008-12-01 2014-06-11 株式会社豊田自動織機 非接触電力伝送装置
JP5244578B2 (ja) * 2008-12-24 2013-07-24 株式会社日立製作所 非接触電力伝送システム
JP5135204B2 (ja) * 2008-12-26 2013-02-06 株式会社日立製作所 非接触電力伝送システム、および該非接触電力伝送システムにおける負荷装置
JP5437650B2 (ja) * 2009-01-30 2014-03-12 昭和飛行機工業株式会社 非接触給電装置
US8854224B2 (en) 2009-02-10 2014-10-07 Qualcomm Incorporated Conveying device information relating to wireless charging
US20100201201A1 (en) * 2009-02-10 2010-08-12 Qualcomm Incorporated Wireless power transfer in public places
US9312924B2 (en) 2009-02-10 2016-04-12 Qualcomm Incorporated Systems and methods relating to multi-dimensional wireless charging
US20100201312A1 (en) 2009-02-10 2010-08-12 Qualcomm Incorporated Wireless power transfer for portable enclosures
US20100201311A1 (en) * 2009-02-10 2010-08-12 Qualcomm Incorporated Wireless charging with separate process
US8963486B2 (en) * 2009-02-13 2015-02-24 Qualcomm Incorporated Wireless power from renewable energy
CN105291991A (zh) * 2009-03-17 2016-02-03 富士通株式会社 无线供电系统
CN102349214A (zh) 2009-03-17 2012-02-08 富士通株式会社 无线供电系统
JP5621203B2 (ja) 2009-03-30 2014-11-12 富士通株式会社 無線電力供給システム、無線電力供給方法
JP5533856B2 (ja) 2009-03-30 2014-06-25 富士通株式会社 無線電力供給システム、無線送電装置、および無線受電装置
US20100249552A1 (en) * 2009-03-31 2010-09-30 Nellcor Puritan Bennett Llc System And Method For Wirelessly Powering Medical Devices
JP5417942B2 (ja) * 2009-03-31 2014-02-19 富士通株式会社 送電装置、送受電装置および送電方法
JP5365306B2 (ja) 2009-03-31 2013-12-11 富士通株式会社 無線電力供給システム
JP5689587B2 (ja) 2009-03-31 2015-03-25 富士通株式会社 電力伝送装置
JP5353376B2 (ja) 2009-03-31 2013-11-27 富士通株式会社 無線電力装置、無線電力受信方法
JP5515368B2 (ja) 2009-03-31 2014-06-11 富士通株式会社 無線電力供給方法及び無線電力供給システム
JP5417941B2 (ja) 2009-03-31 2014-02-19 富士通株式会社 送電装置
US9013141B2 (en) * 2009-04-28 2015-04-21 Qualcomm Incorporated Parasitic devices for wireless power transfer
WO2010137495A1 (ja) * 2009-05-26 2010-12-02 有限会社日本テクモ 非接触電力供給装置
US8541974B2 (en) * 2009-09-17 2013-09-24 Qualcomm Incorporated Movable magnetically resonant antenna for wireless charging
US20110074342A1 (en) * 2009-09-30 2011-03-31 Nellcor Puritan Bennett Llc Wireless electricity for electronic devices
JP5506327B2 (ja) * 2009-10-27 2014-05-28 株式会社ヘッズ 非接触電力供給装置
KR101197579B1 (ko) * 2009-11-04 2012-11-06 한국전기연구원 감쇄파 공진을 이용한 공간 적응형 무선전력전송 시스템 및 방법
KR101706616B1 (ko) * 2009-11-09 2017-02-14 삼성전자주식회사 로드 임피던스 결정 장치, 무선 전력 전송 장치 및 그 방법
US9461505B2 (en) 2009-12-03 2016-10-04 Mitsubishi Electric Research Laboratories, Inc. Wireless energy transfer with negative index material
KR101383383B1 (ko) 2009-12-16 2014-04-08 후지쯔 가부시끼가이샤 자계 공명 송전 장치 및 자계 공명 수전 장치
JP5487944B2 (ja) * 2009-12-18 2014-05-14 日産自動車株式会社 非接触給電装置
US8213074B1 (en) 2011-03-16 2012-07-03 Soladigm, Inc. Onboard controller for multistate windows
US11342791B2 (en) 2009-12-22 2022-05-24 View, Inc. Wirelessly powered and powering electrochromic windows
US11732527B2 (en) 2009-12-22 2023-08-22 View, Inc. Wirelessly powered and powering electrochromic windows
US10303035B2 (en) 2009-12-22 2019-05-28 View, Inc. Self-contained EC IGU
EP2517332B1 (en) 2009-12-22 2018-09-26 View, Inc. Wireless powered electrochromic windows
JP5638382B2 (ja) * 2009-12-29 2014-12-10 ミツビシ・エレクトリック・リサーチ・ラボラトリーズ・インコーポレイテッド エネルギー中継器を用いた無線エネルギー伝達方法およびシステム
JP5526796B2 (ja) * 2010-01-15 2014-06-18 ソニー株式会社 ワイヤレス給電ラック
JP5573190B2 (ja) * 2010-01-21 2014-08-20 ソニー株式会社 ワイヤレス給電システム
EP2536002A4 (en) 2010-02-10 2017-03-29 Fujitsu Limited Resonance frequency control method, power transmission device, and power reception device for magnetic-resonant-coupling type power transmission system
CN106972642A (zh) * 2010-03-10 2017-07-21 无线电力公司 无线能量转移转换器
KR20110102758A (ko) * 2010-03-11 2011-09-19 삼성전자주식회사 3d 안경, 충전용 크래들, 3d 디스플레이 장치 및 3d 안경 무선 충전 시스템
EP2552509B1 (en) 2010-04-02 2020-11-04 Sunshine Heart Company Pty Ltd Combination heart assist systems
JP5524724B2 (ja) * 2010-06-08 2014-06-18 株式会社東海理化電機製作所 車両用給電装置
KR101817320B1 (ko) 2010-06-10 2018-01-11 액세스 비지니스 그룹 인터내셔날 엘엘씨 유도 전력 전달을 위한 코일 구성
JP2011258807A (ja) * 2010-06-10 2011-12-22 Showa Aircraft Ind Co Ltd 非接触給電装置
US20130088087A1 (en) * 2010-06-28 2013-04-11 Kitao YAMAMOTO Non-contact power feeding device
US8970070B2 (en) * 2010-07-02 2015-03-03 Panasonic Intellectual Property Management Co., Ltd. Wireless power transmission system
JP5640515B2 (ja) * 2010-07-15 2014-12-17 ソニー株式会社 電力伝送中継装置、電力伝送装置、及び、電力伝送中継装置の製造方法
KR200453596Y1 (ko) * 2010-08-10 2011-05-17 김주형 무선 전력전송을 이용한 수족관 및 조명장치
US9602168B2 (en) 2010-08-31 2017-03-21 Witricity Corporation Communication in wireless energy transfer systems
US9368273B2 (en) * 2011-03-11 2016-06-14 University Of Utah Research Foundation Apparatus, system, and method for multicoil telemetry
WO2012132841A1 (ja) * 2011-03-29 2012-10-04 ソニー株式会社 給電装置、給電システムおよび電子機器
KR20120116802A (ko) 2011-04-13 2012-10-23 엘지이노텍 주식회사 중계기를 이용한 무선 전력 전송 시스템 및 무선 전력 수신기
KR101833744B1 (ko) 2011-04-13 2018-03-02 엘지이노텍 주식회사 무선 전력 송수신용 코일 및 상기 코일을 사용한 송신기 및 수신기
KR101846180B1 (ko) 2011-04-13 2018-05-28 엘지이노텍 주식회사 솔레노이드 타입 코일
JP2012244763A (ja) * 2011-05-19 2012-12-10 Sony Corp 給電装置、給電システムおよび電子機器
NZ593946A (en) * 2011-07-07 2014-05-30 Powerbyproxi Ltd An inductively coupled power transfer receiver
WO2013009711A1 (en) * 2011-07-08 2013-01-17 Timler John P Insulator based upon one or more dielectric structures
US9948145B2 (en) 2011-07-08 2018-04-17 Witricity Corporation Wireless power transfer for a seat-vest-helmet system
US9384885B2 (en) 2011-08-04 2016-07-05 Witricity Corporation Tunable wireless power architectures
WO2013031025A1 (ja) * 2011-09-02 2013-03-07 富士通株式会社 電力中継器
EP2998153B1 (en) 2011-09-09 2023-11-01 WiTricity Corporation Foreign object detection in wireless energy transfer systems
US20130062966A1 (en) 2011-09-12 2013-03-14 Witricity Corporation Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems
KR101294465B1 (ko) * 2011-10-11 2013-08-07 엘지이노텍 주식회사 무선전력 중계 장치, 무선전력 중계기, 무선전력 전송 시스템 및 무선전력 전송 방법
US9318257B2 (en) 2011-10-18 2016-04-19 Witricity Corporation Wireless energy transfer for packaging
KR101868146B1 (ko) * 2011-10-19 2018-07-20 한국전자통신연구원 무선 전력 송수신을 위한 공진기
AU2012332131A1 (en) 2011-11-04 2014-05-22 Witricity Corporation Wireless energy transfer modeling tool
US9079043B2 (en) 2011-11-21 2015-07-14 Thoratec Corporation Transcutaneous power transmission utilizing non-planar resonators
JP5984106B2 (ja) * 2011-12-01 2016-09-06 パナソニックIpマネジメント株式会社 非接触式電力伝送装置
JP5984105B2 (ja) * 2011-12-01 2016-09-06 パナソニックIpマネジメント株式会社 非接触式電力伝送装置およびその受電装置
JP2015505239A (ja) 2012-01-24 2015-02-16 アクセス ビジネス グループ インターナショナル リミテッド ライアビリティ カンパニー 無線電力コントロール・システム
EP2807720A4 (en) 2012-01-26 2015-12-02 Witricity Corp WIRELESS ENERGY TRANSFER WITH REDUCED FIELDS
WO2013138451A1 (en) * 2012-03-13 2013-09-19 Sunshine Heart Company Pty Ltd Methods, systems, and devices relating to wireless power transfer
US9806565B2 (en) 2012-03-23 2017-10-31 Lg Innotek Co., Ltd. Wireless power receiver and method of manufacturing the same
CN107275763B (zh) 2012-03-23 2020-07-28 Lg 伊诺特有限公司 天线组件
WO2013141653A1 (en) * 2012-03-23 2013-09-26 Lg Innotek Co., Ltd. Wireless power apparatus
WO2013153736A1 (ja) * 2012-04-10 2013-10-17 パナソニック株式会社 無線電力伝送装置、送電装置、および受電装置
TW201401708A (zh) * 2012-05-14 2014-01-01 Hitachi Chemical Co Ltd 非接觸充電裝置用天線薄片及使用該薄片之充電裝置
US9343922B2 (en) 2012-06-27 2016-05-17 Witricity Corporation Wireless energy transfer for rechargeable batteries
US9287607B2 (en) 2012-07-31 2016-03-15 Witricity Corporation Resonator fine tuning
US9595378B2 (en) 2012-09-19 2017-03-14 Witricity Corporation Resonator enclosure
CN104885327B (zh) 2012-10-19 2019-03-29 无线电力公司 无线能量传输系统中的外来物检测
EP2912744B1 (en) 2012-10-29 2018-09-19 Apple Inc. A receiver for an inductive power transfer system and a method for controlling the receiver
US9842684B2 (en) 2012-11-16 2017-12-12 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
WO2014196424A1 (ja) * 2013-06-05 2014-12-11 株式会社村田製作所 電子装置およびワイヤレス電力伝送システム
JP6167413B2 (ja) * 2013-06-18 2017-07-26 パナソニックIpマネジメント株式会社 非接触電力伝送システム
US9601267B2 (en) 2013-07-03 2017-03-21 Qualcomm Incorporated Wireless power transmitter with a plurality of magnetic oscillators
KR101428408B1 (ko) 2013-08-12 2014-08-07 현대자동차주식회사 자기장 분포 제어 장치 및 이를 이용한 송신기
EP3039770B1 (en) 2013-08-14 2020-01-22 WiTricity Corporation Impedance tuning
US9780573B2 (en) 2014-02-03 2017-10-03 Witricity Corporation Wirelessly charged battery system
WO2015123614A2 (en) 2014-02-14 2015-08-20 Witricity Corporation Object detection for wireless energy transfer systems
KR101762778B1 (ko) 2014-03-04 2017-07-28 엘지이노텍 주식회사 무선 충전 및 통신 기판 그리고 무선 충전 및 통신 장치
EP3127209A1 (en) * 2014-04-02 2017-02-08 PowerbyProxi Limited Low power inductive power receiver
US9842687B2 (en) 2014-04-17 2017-12-12 Witricity Corporation Wireless power transfer systems with shaped magnetic components
US9892849B2 (en) 2014-04-17 2018-02-13 Witricity Corporation Wireless power transfer systems with shield openings
US9837860B2 (en) 2014-05-05 2017-12-05 Witricity Corporation Wireless power transmission systems for elevators
WO2015171910A1 (en) 2014-05-07 2015-11-12 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9954375B2 (en) 2014-06-20 2018-04-24 Witricity Corporation Wireless power transfer systems for surfaces
EP3167532B1 (en) 2014-07-08 2018-10-17 WiTricity Corporation Resonator balancing in wireless power transfer systems
US10574091B2 (en) 2014-07-08 2020-02-25 Witricity Corporation Enclosures for high power wireless power transfer systems
US9941708B2 (en) 2014-11-05 2018-04-10 Qualcomm Incorporated Systems, methods, and apparatus for integrated tuning capacitors in charging coil structure
WO2016072865A1 (en) 2014-11-05 2016-05-12 Powerbyproxi Limited An inductive power receiver
US9843217B2 (en) 2015-01-05 2017-12-12 Witricity Corporation Wireless energy transfer for wearables
WO2016114637A1 (ko) * 2015-01-16 2016-07-21 주식회사 한림포스텍 무선전력 전송 장치
EP3086154B1 (en) * 2015-04-24 2022-08-31 LG Innotek Co., Ltd. Lens moving apparatus and camera module and portable terminal including the same
US10224753B2 (en) 2015-05-27 2019-03-05 Qualcomm Incorporated Wireless power transfer using a field altering circuit
EP3313252B1 (en) * 2015-06-24 2021-03-03 AB Electrolux Vacuum cleaner system
WO2017062647A1 (en) 2015-10-06 2017-04-13 Witricity Corporation Rfid tag and transponder detection in wireless energy transfer systems
WO2017066322A2 (en) 2015-10-14 2017-04-20 Witricity Corporation Phase and amplitude detection in wireless energy transfer systems
US10063110B2 (en) 2015-10-19 2018-08-28 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10141788B2 (en) 2015-10-22 2018-11-27 Witricity Corporation Dynamic tuning in wireless energy transfer systems
US10075019B2 (en) 2015-11-20 2018-09-11 Witricity Corporation Voltage source isolation in wireless power transfer systems
US10714960B2 (en) * 2015-12-22 2020-07-14 Intel Corporation Uniform wireless charging device
KR20180101618A (ko) 2016-02-02 2018-09-12 위트리시티 코포레이션 무선 전력 전송 시스템 제어
CA3012697A1 (en) 2016-02-08 2017-08-17 Witricity Corporation Pwm capacitor control
US10097046B2 (en) 2016-03-18 2018-10-09 Global Energy Transmission, Co. Wireless power assembly
US9979239B2 (en) * 2016-03-18 2018-05-22 Global Energy Transmission, Co. Systems and methods for wireless power transferring
US10355532B2 (en) 2016-11-02 2019-07-16 Apple Inc. Inductive power transfer
US10447090B1 (en) 2016-11-17 2019-10-15 Apple Inc. Inductive power receiver
CN107093929B (zh) * 2017-03-24 2021-10-22 哈尔滨工业大学深圳研究生院 耦合谐振式水下无线充电装置及方法
CN111108662B (zh) 2017-06-29 2023-12-12 韦特里西提公司 无线电力系统的保护和控制
CN108011452A (zh) * 2017-12-01 2018-05-08 电子科技大学 一种高效可控的谐振式螺管线圈天线
RU2699024C1 (ru) * 2018-04-16 2019-09-03 Фолкуер Холдингс Лимитед Способ и устройство для беспроводной зарядки накопителя электроэнергии неподвижного или мобильного электропотребителя
US20200274398A1 (en) * 2018-05-01 2020-08-27 Global Energy Transmission, Co. Systems and methods for wireless power transferring
CN108988503B (zh) * 2018-08-22 2021-12-07 上海电力学院 用于双极无线充电系统的组合式中继线圈及其设计方法
JP7447457B2 (ja) * 2019-12-12 2024-03-12 株式会社デンソー 非接触給電システム
CN113820659B (zh) * 2021-11-22 2022-08-26 嘉兴温芯智能科技有限公司 无线定位方法、能量转换装置、无线定位系统和智能服装

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997049076A1 (en) * 1996-06-19 1997-12-24 Integrated Silicon Design Pty. Ltd. Enhanced range transponder system
US5959515A (en) * 1997-08-11 1999-09-28 Motorola, Inc. High Q integrated resonator structure
CN1447954A (zh) * 2000-08-15 2003-10-08 欧姆龙株式会社 非接触通信媒体和非接触通信系统
US6633155B1 (en) * 2002-05-06 2003-10-14 Hui-Pin Liang Wireless mouse induction power supply

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2611094A (en) * 1950-02-16 1952-09-16 Harold B Rex Inductance-capacitance resonance circuit
JPS56111326A (en) * 1980-02-08 1981-09-03 Hitachi Ltd Antenna circuit of am radio receiver
US4583099A (en) 1983-12-27 1986-04-15 Polyonics Corporation Resonant tag circuits useful in electronic security systems
US4800328A (en) * 1986-07-18 1989-01-24 Inductran Inc. Inductive power coupling with constant voltage output
JPH0398432A (ja) 1989-09-11 1991-04-24 Eito Denshi:Kk 電磁誘導による電力供給
KR960006848B1 (ko) 1990-05-31 1996-05-23 가부시끼가이샤 도시바 평면형 자기소자
US5225925A (en) 1991-01-23 1993-07-06 Amoco Corporation Sensitized erbium fiber optical amplifier and source
JP3021757B2 (ja) * 1991-05-02 2000-03-15 明星電気株式会社 コーン貫入試験機の双方向信号伝送方式及び信号中継器
NL9101590A (nl) * 1991-09-20 1993-04-16 Ericsson Radio Systems Bv Stelsel voor het laden van een oplaadbare accu van een draagbare eenheid in een rek.
US5157319A (en) * 1991-09-27 1992-10-20 Electric Power Research Institute Contactless battery charging system
JP3725599B2 (ja) 1995-09-07 2005-12-14 株式会社東芝 平面型磁気素子
JPH1023677A (ja) * 1996-07-03 1998-01-23 Uniden Corp 無接点充電装置、充電器、コードレス機器および無接点充電器
SG54559A1 (en) * 1996-09-13 1998-11-16 Hitachi Ltd Power transmission system ic card and information communication system using ic card
DE69630792T2 (de) 1996-11-22 2004-09-23 Montres Rado S.A. Zierelement insbesondere Bauteil einer Uhr
JPH10257697A (ja) 1997-03-12 1998-09-25 Hitachi Electron Service Co Ltd 空間浮遊電磁波・電波をエネルギー源とする電源装置
JPH10295043A (ja) 1997-04-16 1998-11-04 Fujiden Enji Kk 携帯型電子機器用電源装置
CA2288877A1 (en) * 1997-05-06 1998-11-12 Auckland Uniservices Limited Inductive power transfer across an extended gap
JPH11188113A (ja) 1997-12-26 1999-07-13 Nec Corp 電力伝送システムおよび電力伝送方法ならびにその電力伝送システムを備えた電気刺激装置
JP3343813B2 (ja) 1999-01-11 2002-11-11 ティーディーケイ株式会社 磁性フェライト材料、積層型チップフェライト部品および複合積層型部品
US7212414B2 (en) * 1999-06-21 2007-05-01 Access Business Group International, Llc Adaptive inductive power supply
US6650227B1 (en) 1999-12-08 2003-11-18 Hid Corporation Reader for a radio frequency identification system having automatic tuning capability
JP3488166B2 (ja) * 2000-02-24 2004-01-19 日本電信電話株式会社 非接触icカードシステムとそのリーダライタおよび非接触icカード
US6686832B2 (en) 2000-05-23 2004-02-03 Satius, Inc. High frequency network multiplexed communications over various lines
KR100440247B1 (ko) 2001-04-16 2004-07-12 (주)제이씨 프로텍 전자파를 이용한 에너지 변환장치
JP3905418B2 (ja) 2001-05-18 2007-04-18 セイコーインスツル株式会社 電源装置および電子機器
JP2003070187A (ja) * 2001-08-27 2003-03-07 Toshiba Eng Co Ltd 非接触データキャリア装置並びに内蔵二次電池の充電方法
TW535341B (en) 2001-09-07 2003-06-01 Primax Electronics Ltd Wireless peripherals charged by electromagnetic induction
US7860680B2 (en) * 2002-03-07 2010-12-28 Microstrain, Inc. Robotic system for powering and interrogating sensors
DE60326233D1 (de) 2002-05-13 2009-04-02 Jsp Corp Expandierbares polyproplyenharzteilchen und durch formen im formwerkzeug daraus erhaltene formkörper
KR20040000528A (ko) 2002-06-21 2004-01-07 현대자동차주식회사 자동차의 자동와이퍼 장치와 그 작동방법
CN100414989C (zh) 2002-11-11 2008-08-27 索尼株式会社 信息处理设备和方法
JP2004166384A (ja) * 2002-11-12 2004-06-10 Sharp Corp 非接触型給電システムにおける電磁結合特性調整方法、給電装置、および非接触型給電システム
KR20040059562A (ko) 2002-12-27 2004-07-06 유티스타콤코리아 유한회사 아이에스-2000 시스템에서 상이한 유토피아 레벨 정합장치
JP2005056202A (ja) * 2003-08-05 2005-03-03 Fuji Electric Holdings Co Ltd 情報処理装置、及びアンテナユニット
US7460001B2 (en) * 2003-09-25 2008-12-02 Qualcomm Incorporated Variable inductor for integrated circuit and printed circuit board
US6839035B1 (en) * 2003-10-07 2005-01-04 A.C.C. Systems Magnetically coupled antenna range extender
KR100541029B1 (ko) 2004-01-06 2006-01-12 (주)제이씨 프로텍 다양한 전자파를 이용한 무선 충전장치
US7199717B2 (en) * 2004-02-17 2007-04-03 Sensormatic Electronics Corporation Frequency-division marker for an electronic article surveillance system
US7164358B2 (en) * 2004-02-17 2007-01-16 Sensormatic Electronics Corporation Frequency divider with variable capacitance
KR20040033297A (ko) 2004-03-24 2004-04-21 권승태 복합변환 원자력 전지
KR100522914B1 (ko) 2004-05-12 2005-10-19 (주)제이씨 프로텍 전자기파 수신용 고효율 유도코일 및 이를 이용한 전력 변환 장치
KR20060005640A (ko) 2004-07-13 2006-01-18 엘지전자 주식회사 상변화 광 디스크의 기록 방법
KR20040072581A (ko) * 2004-07-29 2004-08-18 (주)제이씨 프로텍 전자기파 증폭중계기 및 이를 이용한 무선전력변환장치
KR100597869B1 (ko) 2004-11-16 2006-07-06 (주)제이씨 프로텍 방사 전자기파 이용 무선충전장치 내장의 리모콘, 소형 전자기기 또는 장식품
US20070014995A1 (en) 2005-07-12 2007-01-18 Jacob Chacko Thin rotary-fiberized glass insulation and process for producing same
KR20070041821A (ko) 2005-10-17 2007-04-20 기아자동차주식회사 차량의 헤드램프 조립체
KR20070041824A (ko) 2005-10-17 2007-04-20 주식회사 엘지화학 이차 전지용 전극 및 그 제조방법
KR20090038150A (ko) 2007-10-15 2009-04-20 주식회사 하이닉스반도체 반도체 소자의 제조방법
US8400017B2 (en) * 2008-09-27 2013-03-19 Witricity Corporation Wireless energy transfer for computer peripheral applications

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997049076A1 (en) * 1996-06-19 1997-12-24 Integrated Silicon Design Pty. Ltd. Enhanced range transponder system
US5959515A (en) * 1997-08-11 1999-09-28 Motorola, Inc. High Q integrated resonator structure
CN1447954A (zh) * 2000-08-15 2003-10-08 欧姆龙株式会社 非接触通信媒体和非接触通信系统
US6633155B1 (en) * 2002-05-06 2003-10-14 Hui-Pin Liang Wireless mouse induction power supply

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117060598A (zh) * 2023-10-09 2023-11-14 荣耀终端有限公司 无线充电系统及电子系统

Also Published As

Publication number Publication date
WO2006011769A1 (en) 2006-02-02
CN101023600B (zh) 2015-02-11
US8259429B2 (en) 2012-09-04
JP2011120470A (ja) 2011-06-16
EP3404847A1 (en) 2018-11-21
EP1779550A4 (en) 2011-08-17
US7885050B2 (en) 2011-02-08
CN101023600A (zh) 2007-08-22
US20080266748A1 (en) 2008-10-30
EP1779550A1 (en) 2007-05-02
JP5743613B2 (ja) 2015-07-01
EP2493093A1 (en) 2012-08-29
US8681465B2 (en) 2014-03-25
CN104659931B (zh) 2017-04-12
EP1779550B1 (en) 2017-07-12
USRE48475E1 (en) 2021-03-16
US20130099583A1 (en) 2013-04-25
JP2008508842A (ja) 2008-03-21
US20110176251A1 (en) 2011-07-21
EP2493093B1 (en) 2018-12-19
KR20040072581A (ko) 2004-08-18

Similar Documents

Publication Publication Date Title
CN101023600B (zh) 一种电磁波放大中继装置及使用该装置的无线电电功率变换设备
CN105706334B (zh) 无线电力发射装置、无线电力接收装置及线圈结构
Kim et al. Optimal design of a wireless power transfer system with multiple self-resonators for an LED TV
KR100937627B1 (ko) 소형전자기기의 무방향성 충전용기 및 무선전력충전세트
KR20070017804A (ko) 소형ㆍ경량의 무선 전력 송수신 장치
CN103683529A (zh) 用于感应耦合无线电能传输效率优化的负载阻抗匹配方法
KR100898059B1 (ko) 무선 전력을 이용한 무선마우스세트 및/또는소형전자기기세트
WO2018188268A1 (zh) 远距离无线充电系统
CN104753181B (zh) 一种带中继的无线电能传输装置
CN202014138U (zh) 无线电能传输装置
US11735955B2 (en) Resonant circuit for transmitting electric energy
CN103915916A (zh) 基于平面磁谐振耦合线圈结构的磁共振无线电能传输装置
KR20160082585A (ko) 무선 전력 송신 장치, 무선 전력 수신 장치 및 코일 구조물
CN105846551A (zh) 一种双功能可调的无线电能传输装置
CN207283767U (zh) 一种支持无线充电的头戴式耳机
KR20120116801A (ko) 무선 전력 전송 회로, 무선 전력 송신기 및 수신기
KR20170139319A (ko) 무선 전력 송신기 및 수신기
US20200313461A1 (en) Resonant circuit for transmitting electric energy without a power amplifier
Harshitha et al. Wireless Power Transfer to Charge Low Power Device
Fadel et al. Design of wireless battery charger using near-field induction method
KR20170082309A (ko) 무선 전력 전송 시스템에서 무선 전력 송신기 및 수신기
Choi et al. Equivalent circuit and coil design for spatial freedom of wireless charging
Zain et al. Development of a Resonant Inductive Coupling Wireless Battery Charger
Sambhe et al. New Method of Effective Power Transfer: Electro Magnetic power transmission

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant