WO2018188268A1 - 远距离无线充电系统 - Google Patents

远距离无线充电系统 Download PDF

Info

Publication number
WO2018188268A1
WO2018188268A1 PCT/CN2017/101983 CN2017101983W WO2018188268A1 WO 2018188268 A1 WO2018188268 A1 WO 2018188268A1 CN 2017101983 W CN2017101983 W CN 2017101983W WO 2018188268 A1 WO2018188268 A1 WO 2018188268A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
diode
capacitor
module
wireless charging
Prior art date
Application number
PCT/CN2017/101983
Other languages
English (en)
French (fr)
Inventor
刘丽
蔡晨威
郑名洋
邓力
李书芳
张贯京
葛新科
高伟明
张红治
Original Assignee
深圳市景程信息科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市景程信息科技有限公司 filed Critical 深圳市景程信息科技有限公司
Publication of WO2018188268A1 publication Critical patent/WO2018188268A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a remote wireless charging system.
  • the existing wireless charging scheme for electronic devices is mainly a coil scheme, and the coil scheme utilizes magnetic induction coupling for energy transfer, that is, the planar primary coil generates a sinusoidal magnetic field and generates an induced voltage in the secondary coil, thereby realizing energy transmission. Accordingly, an electronic device (for example, a mobile phone) using such a wireless charging technology must be placed on a wireless charging pad, and it is not possible to remotely charge an electronic device.
  • the main object of the present invention is to provide a long-distance wireless charging system, which aims to solve the technical problem that the remote device cannot be remotely charged in the prior art.
  • the present invention provides a remote wireless charging system, the remote wireless charging system comprising a transmitting end and a receiving end, wherein:
  • the transmitting end includes a voltage controlled oscillator, a primary amplifier, a secondary amplifier and a transmitting antenna, and an output end of the voltage controlled oscillator is connected to an input end of the primary amplifier, and the primary amplifier is An output end is connected to an input end of the secondary amplifier, and an output end of the secondary amplifier is connected to an input end of the transmit antenna;
  • the receiving end includes a receiving antenna, a frequency selecting circuit, a rectifying circuit and a current output end, the receiving antenna is connected in series with the frequency selecting circuit, the frequency selecting circuit is connected in series with a rectifying circuit, and the rectifying circuit and the Said current output terminal in series; and
  • the output end of the transmitting antenna of the transmitting end is wirelessly connected with the input end of the receiving antenna of the receiving end, and the transmitting end is used for generating a signal and transmitting to the air through a transmitting antenna, and receiving antenna receiving at the receiving end
  • the signal transmitted by the transmitting antenna converts the signal into a current.
  • a power source is further disposed on the transmitting end, wherein the power source and the voltage controlled oscillator, one level The amplifier and the secondary amplifier are electrically connected.
  • the transmitting end further includes a first voltage regulating module and a first voltage stabilizing module, wherein the first voltage regulating module is connected to the first voltage stabilizing module and the voltage controlled oscillator, and the power source and the first The voltage regulating module and the first voltage stabilizing module are electrically connected, the power source is used to supply power to the voltage controlled oscillator, and the first voltage regulating module is configured to control the voltage controlled oscillator to generate signals of different frequencies by voltage regulation.
  • the first voltage stabilizing module is configured to regulate the voltage of the power source and input a stable voltage to the first voltage regulating module.
  • the transmitting end further includes a second voltage regulating module and a second voltage stabilizing module, wherein the second voltage regulating module is electrically connected to the second voltage stabilizing module and the first stage amplifier, and the power source and the second The voltage regulating module and the second voltage stabilizing module are electrically connected, the power source is used to supply power to the first stage amplifier, and the second voltage regulating module is configured to amplify the signal in the first stage amplifier by voltage adjustment, the second stable The voltage module is used to regulate the voltage of the power supply and input a stable voltage to the second voltage regulation module.
  • the transmitting end further includes a third voltage regulating module and a third voltage stabilizing module, wherein the third voltage regulating module is electrically connected to the third voltage stabilizing module and the second level amplifier, and the power source and the third The voltage regulating module and the third voltage stabilizing module are electrically connected, the power source is used to supply power to the secondary amplifier, and the third voltage regulating module is configured to amplify the signal in the secondary amplifier by voltage regulation, the third stable The voltage module is used to regulate the voltage of the power supply and input a stable voltage to the third voltage regulation module.
  • the frequency selection circuit is composed of a first capacitor and a first inductor connected in series.
  • the receiving end further includes a second capacitor, wherein the frequency selecting circuit is connected in series with the rectifier circuit through the second capacitor.
  • the rectifier circuit includes a first diode, a second diode, a third diode, a fourth diode, a fifth diode, a sixth diode, and a third capacitor a fourth capacitor, a fifth capacitor, and a sixth capacitor, wherein the first diode, the second diode, the third diode, the fourth diode, and the fifth diode are connected in parallel
  • the anode of the first diode is connected to the cathode of the second diode through a third capacitor
  • the anode of the second diode is connected to the cathode of the third diode through a fourth capacitor.
  • the anode of the third diode is connected to the cathode of the fourth diode through a fifth capacitor, and the anode of the fourth diode is connected to the cathode of the fifth diode through a sixth capacitor.
  • Forming the first diode, the second diode, the third diode, the fourth diode, the fifth diode, the third capacitor, the fourth capacitor, the fifth capacitor, and the sixth capacitor a parallel circuit in series with the sixth diode, wherein the The three capacitors are grounded and the anode of the first diode is grounded.
  • the sixth diode is connected in series with the current output end.
  • the current output end includes a charging port and a seventh capacitor, wherein the charging port is connected in parallel with the seventh capacitor, and one end of the seventh capacitor is grounded.
  • the present invention adopts the above technical solution, and brings the technical effects as follows:
  • the present invention amplifies the radio frequency signal to the high frequency signal step by step through the transmitting end, and transmits the high frequency signal by using the transmitting antenna, and then the receiving end receives the received signal through the receiving signal.
  • the high frequency signal is converted into a current by a frequency selection circuit and a rectifier circuit, and the converted current is input to the electronic device through the current output terminal for charging, thereby achieving long-distance charging in the air, thereby avoiding wireless of the electronic device.
  • the charging cassette must be placed on the coil unit to increase the flexibility of wireless charging.
  • FIG. 1 is a schematic structural view of a long-distance wireless charging system of the present invention
  • FIG. 2 is a schematic structural view of a preferred embodiment of a voltage controlled oscillator in a remote wireless charging system according to the present invention
  • FIG. 3 is a schematic structural view of a preferred embodiment of a primary amplifier in a remote wireless charging system of the present invention
  • 4 is a schematic structural diagram of a preferred embodiment of a secondary amplifier in the remote wireless charging system of the present invention
  • FIG. 5 is a circuit diagram showing a preferred embodiment of a receiving end in the remote wireless charging system of the present invention.
  • FIG. 1 is a schematic structural diagram of a long-distance wireless charging system of the present invention.
  • the remote wireless charging system 1 of the present invention includes a transmitting end 10 and a receiving end 20.
  • the transmitting end 10 includes a voltage controlled oscillator 100, a primary amplifier 110, a secondary amplifier 120, and a transmitting antenna 130.
  • the output end of the voltage controlled oscillator 100 is connected to an input end of the primary amplifier 110.
  • An output of the primary amplifier 110 is coupled to an input of the secondary amplifier 120, and an output of the secondary amplifier 120 is coupled to an input of the transmit antenna 130.
  • the receiving end 20 includes a receiving antenna 210, a frequency selecting circuit 220, a rectifying circuit 230, and a current output end 240.
  • the output end of the receiving circuit 210 is connected to the input end of the frequency selecting circuit 220, the output end of the frequency selecting circuit 220 is connected to the input end of the rectifier circuit 230, and the output end of the rectifier circuit 230 is also The input of the current output 240 is connected.
  • the output end of the transmitting antenna 130 of the transmitting end 10 is wirelessly connected with the input end of the receiving antenna 210 of the receiving end 20.
  • the transmitting end 10 is configured to generate a high energy signal and transmit to the air through the transmitting antenna 130, and the receiving antenna 210 of the receiving end 20 receives the high energy signal of the transmitting antenna 130 and generates power for power supply.
  • Current the transmitting antenna 130 and the transmitting antenna 210 are both Yagi antennas, and the transmitting frequencies of the transmitting antenna 130 and the transmitting antenna 210 are both between 340 and 570 MHz.
  • the remote wireless charging system using a charging efficiency of the free space propagation model using a charging efficiency of the free space propagation model:, wherein, to transmit power P_T, P_ r is the received power, g_f booster antenna 130 to transmit, receive antenna gain G_r 200, d For the distance between the transmitting antenna 130 and the receiving antenna 210, L is a system loss factor independent of propagation.
  • the transmitting end 10 generates a signal through the voltage controlled oscillator 100, and the RF power of the signal is amplified by the primary amplifier 110 and the secondary amplifier 120, for example, a power signal of 6 dBm.
  • the power is amplified to an adjustable power signal (up to 60 W) and transmitted through the transmitting antenna 130 into the air.
  • the greater the transmit power of the transmit antenna 130 the further the distance that can be wirelessly charged.
  • the long-distance wireless charging system 1 can generate electric energy by generating a small-amplitude radio frequency signal and amplifying it step by step, and transmitting it by the transmitting antenna 130 (that is, converting 14V DC electric energy into a high-frequency signal of about 440 MHz) into the air. Propagation in the air medium.
  • the voltage controlled oscillator 100 is used to generate a signal to the primary amplifier 110.
  • the primary amplifier 110 is configured to amplify the signal to a first predetermined frequency (eg, 150 MHz) and input a signal of the first predetermined frequency to the secondary amplifier 120.
  • the secondary amplifier 120 is configured to send a letter of a first preset frequency The number is amplified to a second preset frequency (for example, 440 MHz), and a signal of the second preset frequency is input to the transmitting antenna 130.
  • the transmitting antenna 130 is configured to transmit the signal of the second preset frequency into the air.
  • the receiving end 20 receives the signal transmitted by the transmitting antenna 130 through the receiving antenna 210, converts the signal into a current through the frequency selecting circuit 220 and the rectifying circuit 230, and then outputs the current to the electronic device to be charged through the current output terminal (for example, other electronic devices such as mobile phones).
  • the electronic device For example, other electronic devices such as mobile phones.
  • the transmitting end 10 further includes a power source 104, a first voltage regulating module 102, a second voltage regulating module 112, a third voltage regulating module 122, and a first voltage regulator.
  • the device 100, the primary amplifier 110 and the secondary amplifier 120 are electrically connected.
  • the first voltage adjustment module 102, the second voltage adjustment module 112, the third voltage adjustment module 122, the first voltage stabilization module 103, the second voltage regulation module 113, and the third voltage regulation module 12 3 Can be omitted.
  • the first voltage regulating module 102 is connected to the first voltage stabilizing module 103 and the voltage controlled oscillator 100.
  • the power source 104 is used to provide power to the voltage controlled oscillator 100, wherein the power source 104 is a DC power source (e.g., a 14 volt DC power source).
  • the first voltage regulation module 102 is configured to control the voltage controlled oscillator 100 to generate signals of different frequencies by voltage regulation.
  • the first voltage stabilizing module 103 is configured to regulate the voltage of the power source 104 and input a stable voltage to the first voltage regulating module 102 to prevent the voltage fluctuation of the power source 104 from affecting the first voltage regulating module 102.
  • the first voltage adjustment module 102 can be, but is not limited to, a potentiometer or a sliding varistor.
  • the first voltage stabilizing module 103 is a voltage regulator. It should be noted that the connecting wire between the power source 104 and the voltage controlled oscillator 100 in FIG. 2 does not form a cross path with the connecting wire between the first voltage regulating module 102 and the first voltage stabilizing module 103, but only It is convenient for the display of Fig. 2.
  • the second voltage adjustment module 112 is connected to the second voltage stabilization module 113 and the primary amplifier 110.
  • the power source 104 is used to provide electrical energy to the primary amplifier 110.
  • the second voltage adjustment module 112 is configured to amplify (ie, signal gain) the signal in the primary amplifier 110 (ie, the signal transmitted by the voltage controlled oscillator 100) by voltage adjustment, for example, the voltage controlled oscillator 100.
  • the signal is amplified (for example, two to five times magnification).
  • the second voltage stabilizing module 113 is configured to regulate the voltage of the power source 104 and A stable voltage is input to the second voltage regulation module 112 to prevent voltage fluctuations of the power source 104 from affecting the second voltage regulation module 112.
  • the second voltage adjustment module 113 may be, but not limited to, a potentiometer or a sliding varistor.
  • the second voltage stabilizing module 113 is a voltage regulator. It should be noted that the connecting wire between the power source 104 and the first-stage amplifier 110 in FIG. 3 does not form a cross path with the connecting wire between the second voltage regulating module 112 and the second voltage stabilizing module 113, but only for The display of Figure 3 is convenient.
  • the third voltage adjustment module 122 is connected to the third voltage regulator module 123 and the secondary amplifier 120.
  • the power source 104 is used to provide power to the secondary amplifier 120.
  • the third voltage adjustment module 122 is configured to amplify (ie, signal gain) the secondary amplifier 120 (ie, the signal transmitted by the primary amplifier 110) by voltage regulation, for example, to amplify the signal transmitted by the primary amplifier 110 (eg, , zoom in two to five times).
  • the third voltage stabilizing module 123 is configured to regulate the voltage of the power source 104 and input a stable voltage to the third voltage regulating module 122 to prevent the voltage fluctuation of the power source 104 from affecting the third voltage regulating module 122.
  • the third voltage adjustment module 123 may be, but not limited to, a potentiometer or a sliding varistor.
  • the third voltage stabilizing module 123 is a voltage regulator.
  • the third voltage stabilizing module 123 is a voltage regulator. It should be noted that the connecting wire between the power source 104 and the secondary amplifier 120 in FIG. 4 does not form a cross path with the connecting wire between the third voltage regulating module 122 and the third voltage stabilizing module 123, but only for the purpose of FIG. The display of 4 is convenient.
  • the receiving antenna 210 is connected in series with the frequency selecting circuit 220, the frequency selecting circuit 220 is connected in series with the rectifier circuit 230, and the rectifier circuit 230 and the current output terminal 240 are connected. In series.
  • the receiving antenna 210 is configured to receive a signal of a preset frequency (for example, a frequency above 440 MHz) from the air and transmit the signal to the frequency selecting circuit 220, where the frequency selecting circuit 220 is configured to use a budget frequency
  • the signal is filtered and filtered (eg, filtering a signal below a frequency of 440 MHz), and the rectifying circuit 230 is configured to convert the filtered filtered signal into a charging current and output to the current output port 240.
  • the frequency selection circuit 220 is composed of a first capacitor C1 and a first inductor L1 in series, wherein the first capacitor C1 is preferably 100pf, the first inductor L1 is preferably 1300pH, and the resonant frequency of the first inductor L1 is about It is 440 M. Wherein one end of the inductor L1 is grounded.
  • the frequency selection circuit 220 selects an alternating current signal of about 440M, and isolates the direct current through the second capacitor C2, and supplies the same to the rectifier circuit 230. That is, the frequency selection circuit 220 passes through the second capacitor C2 and the rectifier circuit 2 30 series.
  • the rectifier circuit 230 includes six diodes (ie, a first diode, a second diode, a third diode, a fourth diode, a fifth diode, and a sixth diode) And four capacitors (ie, a third capacitor, a fourth capacitor, a fifth capacitor, and a sixth capacitor), wherein the first diode D1, the second diode D2, the third diode D3, and the fourth The diode D4 and the fifth diode D5 are connected in parallel, and the anode of the first diode D1 and the cathode of the second diode D2 are connected by a third capacitor C3, the second diode The anode of the tube D2 is connected to the cathode of the third diode D3 via a fourth capacitor C4, and the anode of the third diode D3 is connected to the cathode of the fourth diode D4 via a fifth capacitor C5.
  • six diodes ie, a first
  • the anode of the fourth diode D4 and the cathode of the fifth diode D5 are connected by a sixth capacitor C6, the first diode D1, the second diode D2, and the third diode D3.
  • the fourth diode D4, the fifth diode D5, the third capacitor C3, the fourth capacitor C4, the fifth capacitor C5, and the sixth capacitor C6 The formed parallel circuit is further connected in series with the sixth diode D6, wherein the third capacitor C3 is grounded and the anode of the first diode D1 is grounded.
  • the current output terminal 240 includes a charging port (ie, CON1 in FIG. 5) and a seventh capacitor C7, wherein the charging port is connected in parallel with the seventh capacitor C7. The one end of the seventh capacitor C7 is grounded.
  • the charging port is coupled to the electronic device to charge the electronic device.
  • the rectifying circuit 230 is a five-fold voltage rectifying circuit, and can change a lower AC voltage to a higher DC voltage.
  • the output voltage of the rectifier circuit 230 is five times the input voltage.
  • the sixth diode D6 is used to isolate the alternating current, and the voltage is applied to the seventh capacitor C7 of the current output terminal 240.
  • the two ends of the electronic device (for example, the mobile phone) are connected in parallel to the seventh capacitor C7 of the current output terminal 240. Rechargeable to charge electronic devices.
  • Cl, C2, C3, C4, C5, C6, and C7 are preferably capacitors of a size of 100 pf.
  • LI is preferably an inductor of 1300 pH; Dl, D2, D3, D4, D5, and D6 are diodes.
  • the long-distance wireless charging system 1 generates a small-amplitude radio frequency signal and amplifies it step by step, and transmits a high-frequency signal (that is, converts 14V DC electric energy into a high-frequency signal of about 440 MHz) by the transmitting antenna 130, and then The receiving signal receives the high frequency signal, and converts the high frequency signal into a current through the frequency selecting circuit 220 and the rectifying circuit 230, and the converted current is input to the electronic device through the current output terminal 240 for charging.
  • a high-frequency signal that is, converts 14V DC electric energy into a high-frequency signal of about 440 MHz
  • the remote wireless charging system 1 converts 14V DC power of the power source into high frequency signal energy. And use the Yagi antenna to radiate it out.
  • the output power of the antenna is 8W, in a typical indoor condition, a smart phone is continuously charged at a distance of 3 meters. In the same environment, as the adjustable output power increases, the charging distance also increases.
  • the present invention adopts the above technical solution, and brings the technical effects as follows:
  • the present invention amplifies the radio frequency signal to the high frequency signal step by step through the transmitting end, and transmits the high frequency signal by using the transmitting antenna, and then the receiving end receives the received signal through the receiving signal.
  • the high frequency signal is converted into a current by a frequency selection circuit and a rectifier circuit, and the converted current is input to the electronic device through the current output terminal for charging, thereby achieving long-distance charging in the air, thereby avoiding wireless of the electronic device.
  • the charging cassette must be placed on the coil unit to increase the flexibility of wireless charging.

Abstract

一种远距离无线充电系统(1),所述远距离无线充电系统(1)包括发射端(10)及接收端(20),所述发射端(10)的发射天线(130)的输出端与所述接收端的接收天线(210)的输入端之间无线连接,所述发射端(10)用于产生信号并通过发射天线(130)发射至空中,所述接收端(20)的接收天线(210)接收所述发射天线(130)的信号并将信号转换成电流。上述充电系统(1)可以为电子设备进行远距离充电,提高了无线充电的灵活性。

Description

远距离无线充电系统 技术领域
[0001] 本发明涉及通信技术领域, 尤其涉及一种远距离无线充电系统。
背景技术
[0002] 现有的电子设备无线充电方案主要是线圈方案, 线圈方案是利用磁感应耦合进 行能量传递, 即平面初级线圈产生吋变磁场并在次级线圈中产生感应电压, 从 而实现能量的传输。 相应的, 使用这种无线充电技术的电子设备 (例如, 手机 ) 必须放置在无线充电板上, 不能实现为电子设备进行远距离充电。
技术问题
[0003] 本发明的主要目的在于提供一种远距离无线充电系统, 旨在解决现有技术中无 法实现为电子设备进行远距离充电的技术问题。
问题的解决方案
技术解决方案
[0004] 为实现上述目的, 本发明提供了一种远距离无线充电系统, 所述远距离无线充 电系统包括发射端及接收端, 其中:
[0005] 所述发射端包括压控振荡器、 一级放大器、 二级放大器及发射天线, 所述压控 振荡器的输出端与所述一级放大器的输入端连接, 所述一级放大器的输出端与 所述二级放大器的输入端连接, 所述二级放大器的输出端与所述发射天线的输 入端连接;
[0006] 所述接收端包括接收天线、 选频电路、 整流电路及电流输出端, 所述接收天线 与所述选频电路串联, 所述选频电路与整流电路串联, 所述整流电路与所述电 流输出端串联; 及
[0007] 所述发射端的发射天线的输出端与所述接收端的接收天线的输入端之间无线连 接, 所述发射端用于产生信号并通过发射天线发射至空中, 所述接收端的接收 天线接收所述发射天线发射的信号并将所述信号转换成电流。
[0008] 优选的, 所述发射端上还设置电源, 其中, 所述电源与所述压控振荡器、 一级 放大器及二级放大器电连接。
[0009] 优选的, 所述发射端还包括第一电压调节模块及第一稳压模块, 所述第一电压 调节模块与第一稳压模块及压控振荡器连接, 所述电源与第一电压调节模块及 第一稳压模块电连接,所述电源用于为压控振荡器提供电能, 所述第一电压调节 模块用于通过电压调节以控制压控振荡器产生不同频率的信号, 所述第一稳压 模块用于对电源的电压进行稳压并将稳定的电压输入至第一电压调节模块。
[0010] 优选的, 所述发射端还包括第二电压调节模块及第二稳压模块, 所述第二电压 调节模块与第二稳压模块及一级放大器电连接, 所述电源与第二电压调节模块 及第二稳压模块电连接, 所述电源用于为一级放大器提供电能, 所述第二电压 调节模块用于通过电压调节对一级放大器中的信号放大, 所述第二稳压模块用 于对电源的电压进行稳压并将稳定的电压输入至第二电压调节模块。
[0011] 优选的, 所述发射端还包括第三电压调节模块及第三稳压模块, 所述第三电压 调节模块与第三稳压模块及二级放大器电连接, 所述电源与第三电压调节模块 及第三稳压模块电连接, 所述电源用于为二级放大器提供电能, 所述第三电压 调节模块用于通过电压调节对二级放大器中的信号放大, 所述第三稳压模块用 于对电源的电压进行稳压并将稳定的电压输入至第三电压调节模块。
[0012] 优选的, 所述选频电路由第一电容和第一电感串联组成。
[0013] 优选的, 所述接收端还包括第二电容, 其中, 所述选频电路通过所述第二电容 与所述整流电路串联。
[0014] 优选的, 所述整流电路包括第一二极管、 第二二极管、 第三二极管、 第四二极 管、 第五二极管、 第六二极管、 第三电容、 第四电容、 第五电容及第六电容, 其中, 所述第一二极管、 第二二极管、 第三二极管、 第四二极管、 第五二极管 之间并联连接, 所述第一二极管的阳极与第二二极管的阴极之间通过第三电容 连接, 所述第二二极管的阳极与第三二极管的阴极之间通过第四电容连接, 所 述第三二极管的阳极与第四二极管的阴极之间通过第五电容连接, 所述第四二 极管的阳极与第五二极管的阴极之间通过第六电容连接, 所述第一二极管、 第 二二极管、 第三二极管、 第四二极管、 第五二极管、 第三电容、 第四电容、 第 五电容及第六电容所形成的并联电路再与所述第六二极管串联, 其中, 所述第 三电容接地且所述第一二极管的阳极接地。
[0015] 优选的, 所述第六二极管与所述电流输出端串联。
[0016] 优选的, 所述电流输出端包括充电端口及第七电容, 其中, 所述充电端口与所 述第七电容并联, 所述第七电容的一端接地。
发明的有益效果
有益效果
[0017] 本发明采用上述技术方案, 带来的技术效果为: 本发明通过发射端将射频信号 逐级放大至高频信号, 用发射天线发射高频信号, 之后接收端通过所述接收信 号接收所述高频信号, 并通过选频电路及整流电路将高频信号转换成电流, 转 换后的电流通过电流输出端输入至电子设备以进行充电, 从而实现空中远距离 充电, 避免了电子设备无线充电吋必须放置于线圈装置上, 提高了无线充电的 灵活性。
对附图的简要说明
附图说明
[0018] 图 1是本发明远距离无线充电系统的结构示意图;
[0019] 图 2是本发明远距离无线充电系统中压控振荡器的优选实施例的结构示意图; [0020] 图 3是本发明远距离无线充电系统中一级放大器的优选实施例的结构示意图; [0021] 图 4是本发明远距离无线充电系统中二级放大器的优选实施例的结构示意图; [0022] 图 5是本发明远距离无线充电系统中接收端的优选实施例的电路结构示意图。
[0023] 本发明目的实现、 功能特点及优点将结合实施例, 参照附图做进一步说明。
实施该发明的最佳实施例
本发明的最佳实施方式
[0024] 为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效, 以下结 合附图及较佳实施例, 对本发明的具体实施方式、 结构、 特征及其功效, 详细 说明如下。 应当理解, 此处所描述的具体实施例仅仅用以解释本发明, 并不用 于限定本发明。
[0025] 参照图 1所示, 图 1是本发明远距离无线充电系统的结构示意图。 [0026] 本发明所述远距离无线充电系统 1包括发射端 10及接收端 20。 其中, 所述发射 端 10包括压控振荡器 100、 一级放大器 110、 二级放大器 120及发射天线 130, 所 述压控振荡器 100的输出端与所述一级放大器 110的输入端连接, 所述一级放大 器 110的输出端与所述二级放大器 120的输入端连接, 所述二级放大器 120的输出 端与所述发射天线 130的输入端连接。 所述接收端 20包括接收天线 210、 选频电 路 220、 整流电路 230及电流输出端 240。 所述接收天线 210的输出端与所述选频 电路 220的输入端连接, 所述选频电路 220的输出端与所述整流电路 230的输入端 连接, 所述整流电路 230的输出端还与所述电流输出端 240的输入端连接。
[0027] 所述发射端 10的发射天线 130的输出端与所述接收端 20的接收天线 210的输入端 之间无线连接。 具体地说, 所述发射端 10用于产生高能量信号并通过发射天线 1 30发射至空中, 所述接收端 20的接收天线 210接收所述发射天线 130的高能量信 号并产生用于供电的电流。 在本实施例中, 所述发射天线 130及所述发射天线 21 0均为八木天线, 其中发射天线 130及所述发射天线 210的发射频率均在 340至 570 MHz之间。
[0028] 所述远距离无线充电系统 1充电效率采用自由空间传播模型: , 其中, P_t为发 射功率, P_r为接收功率, G_f为发射天线 130的增益, G_r为接收天线 200的增益 , d为发射天线 130与接收天线 210之间的距离, L为与传播无关的系统损耗因子
[0029] 在本实施例中, 所述发射端 10通过压控振荡器 100产生一个信号, 通过一级放 大器 110及二级放大器 120将所述信号的射频功率放大, 例如, 将 6dBm的功率信 号放大到可调节的功率信号 (最大为 60W) , 并通过发射天线 130发射至空气中 。 所述发射天线 130的发射功率越大, 可以无线充电的距离就越远。 所述远距离 无线充电系统 1通过产生小幅度的射频信号, 并将其逐级放大, 并用发射天线 13 0发射 (即将 14V直流电能转化为 440MHz左右的高频信号) 至空中, 可以实现电 能在空气介质中传播。
[0030] 所述压控振荡器 100用于产生信号至一级放大器 110。 所述一级放大器 110用于 将所述信号放大至第一预设频率 (例如, 150MHz) , 并将所述第一预设频率的 信号输入至所述二级放大器 120。 所述二级放大器 120用于将第一预设频率的信 号放大至第二预设频率 (例如, 440MHz) , 并将第二预设频率的信号输入至发 射天线 130。 所述发射天线 130用于将所述第二预设频率的信号发射至空中。
[0031] 所述接收端 20通过接收天线 210接收发射天线 130发射出来的信号, 并通过选频 电路 220及整流电路 230将信号转换成电流, 之后通过电流输出端输出至待充电 的电子设备 (例如, 手机等其它电子设备) 。
[0032] 进一步地, 如图 2至 4所示, 所述发射端 10上还设置电源 104、 第一电压调节模 块 102、 第二电压调节模块 112、 第三电压调节模块 122、 第一稳压模块 103、 第 二稳压模块 113、 第三稳压模块 123。 其中, 电源 104与第一电压调节模块 102、 第二电压调节模块 112、 第三电压调节模块 122、 第一稳压模块 103、 第二稳压模 块 113、 第三稳压模块 123、 压控振荡器 100、 一级放大器 110及二级放大器 120电 连接。 在其它实施例中, 所述第一电压调节模块 102、 第二电压调节模块 112、 第三电压调节模块 122、 第一稳压模块 103、 第二稳压模块 113、 第三稳压模块 12 3可以省略。
[0033] 具体地, 如图 2所示, 所述第一电压调节模块 102与第一稳压模块 103及压控振 荡器 100连接。 所述电源 104用于为压控振荡器 100提供电能, 其中, 该电源 104 为直流电源 (例如, 14伏特的直流电源) 。 所述第一电压调节模块 102用于通过 电压调节以控制压控振荡器 100产生不同频率的信号。 所述第一稳压模块 103用 于对电源 104的电压进行稳压并将稳定的电压输入至第一电压调节模块 102, 以 防止电源 104的电压波动而影响所述第一电压调节模块 102。 在本实施例中, 所 述第一电压调节模块 102可以是, 但不限于, 电位器或滑动变阻器。 所述第一稳 压模块 103为稳压器。 需要说明的是, 图 2中电源 104与压控振荡器 100之间的连 接导线并不会和第一电压调节模块 102与第一稳压模块 103之间的连接导线形成 十字的通路, 而只是为了图 2的显示便利。
[0034] 如图 3所示, 所述第二电压调节模块 112与第二稳压模块 113及一级放大器 110连 接。 所述电源 104用于为一级放大器 110提供电能。 所述第二电压调节模块 112用 于通过电压调节以对一级放大器 110中的信号 (即压控振荡器 100传输过来的信 号) 进行放大 (即信号增益) , 例如, 将压控振荡器 100传输过来信号放大 (例 如, 放大二至五倍) 。 所述第二稳压模块 113用于对电源 104的电压进行稳压并 将稳定的电压输入至第二电压调节模块 112, 以防止电源 104的电压波动而影响 所述第二电压调节模块 112。 在本实施例中, 所述第二电压调节模块 113可以是 , 但不限于, 电位器或滑动变阻器。 所述第二稳压模块 113为稳压器。 需要说明 的是, 图 3中电源 104与一级放大器 110之间的连接导线并不会和第二电压调节模 块 112与第二稳压模块 113之间的连接导线形成十字的通路, 而只是为了图 3的显 示便利。
[0035] 如图 4所示, 所述第三电压调节模块 122与第三稳压模块 123及二级放大器 120连 接。 所述电源 104用于为二级放大器 120提供电能。 所述第三电压调节模块 122用 于通过电压调节以对二级放大器 120 (即一级放大器 110传输过来信号) 进行放 大 (即信号增益) , 例如, 将一级放大器 110传输过来信号放大 (例如, 放大二 至五倍) 。 所述第三稳压模块 123用于对电源 104的电压进行稳压并将稳定的电 压输入至第三电压调节模块 122, 以防止电源 104的电压波动而影响所述第三电 压调节模块 122。 在本实施例中, 所述第三电压调节模块 123可以是, 但不限于 , 电位器或滑动变阻器。 所述第三稳压模块 123为稳压器。 所述第三稳压模块 12 3为稳压器。 需要说明的是, 图 4中电源 104与二级放大器 120之间的连接导线不 会和第三电压调节模块 122与第三稳压模块 123之间的连接导线形成十字的通路 , 而只是为了图 4的显示便利。
[0036] 进一步地, 如图 5所述, 所述接收天线 210与所述选频电路 220串联, 所述选频 电路 220与整流电路 230串联, 所述整流电路 230与所述电流输出端 240串联。
[0037] 所述接收天线 210用于从空中接收预设频率 (例如, 440MHz以上的频率) 的信 号并将信号传输给所述选频电路 220, 所述选频电路 220用于将预算频率的信号 进行滤波过滤 (例如, 过滤低于 440MHz频率的信号) , 所述整流电路 230用于 将所述滤波过滤后的信号转换为充电电流并输出至电流输出端口 240。
[0038] 其中, 所述选频电路 220由第一电容 C1和第一电感 L1串联组成, 其中, 第一电 容 C1优选为 100pf, 第一电感 L1优选为 1300pH, 第一电感 L1的谐振频率约为 440 M。 其中, 电感 L1的一端接地。
[0039] 优选的, 所述选频电路 220选出 440M左右的交流电信号, 经过第二电容 C2隔绝 直流电, 输送给整流电路 230。 即所述选频电路 220通过第二电容 C2与整流电路 2 30串联。
[0040] 所述整流电路 230包括六个二极管 (即第一二极管、 第二二极管、 第三二极管 、 第四二极管、 第五二极管、 第六二极管) 及四个电容 (即第三电容、 第四电 容、 第五电容及第六电容) , 其中, 所述第一二极管 Dl、 第二二极管 D2、 第三 二极管 D3、 第四二极管 D4、 第五二极管 D5之间并联连接, 所述第一二极管 D1的 阳极与第二二极管 D2的阴极之间通过第三电容 C3连接, 所述第二二极管 D2的阳 极与第三二极管 D3的阴极之间通过第四电容 C4连接, 所述第三二极管 D3的阳极 与第四二极管 D4的阴极之间通过第五电容 C5连接, 所述第四二极管 D4的阳极与 第五二极管 D5的阴极之间通过第六电容 C6连接, 所述第一二极管 Dl、 第二二极 管 D2、 第三二极管 D3、 第四二极管 D4、 第五二极管 D5、 第三电容 C3、 第四电 容 C4、 第五电容 C5及第六电容 C6所形成的并联电路再与所述第六二极管 D6串联 , 其中, 所述第三电容 C3接地且所述第一二极管 D1的阳极接地。
[0041] 所述电流输出端 240包括充电端口 (即图 5中的 CON1) 及第七电容 C7, 其中充 电端口与所述第七电容 C7并联连接。 其中, 所述第七电容 C7的一端接地。 所述 充电端口与电子设备连接以对电子设备充电。
[0042] 在本实施例中, 所述整流电路 230为五倍压整流电路, 可以把较低的交流电压 变为较高的直流电压。 其中, 所述整流电路 230的输出电压为输入电压的 5倍大 小。 然后经过第六二极管 D6隔绝交流电, 将电压加载到电流输出端 240的电容第 七电容 C7上, 电子设备 (例如手机) 的两端并联到电流输出端 240的电容第七电 容 C7上即可充电为电子设备充电。
[0043] 需要说明的是, 图 5中 Cl、 C2、 C3、 C4、 C5、 C6、 C7优选为 lOOpf大小的电容
, LI优选为 1300pH大小的电感; Dl、 D2、 D3、 D4、 D5、 D6为二极管。
[0044] 所述远距离无线充电系统 1通过产生小幅度的射频信号, 并将其逐级放大, 并 用发射天线 130发射高频信号 (即将 14V直流电能转化为 440MHz左右的高频信号 ) , 之后所述接收信号接收所述高频信号, 并通过选频电路 220及整流电路 230 将高频信号转换成电流, 转换后的电流通过电流输出端 240输入至电子设备以进 行充电。
[0045] 具体地说, 此远距离无线充电系统 1将电源的 14V直流电转换为高频信号能量, 并用八木天线将其辐射出去。 当天线辐射的输出功率为 8W吋, 在一般的室内条 件下, 距离 3米成功为一部智能手机持续充电。 在相同环境中, 随着可调节输出 功率的增大, 充电距离也随之增大。
[0046] 以上仅为本发明的优选实施例, 并非因此限制本发明的专利范围, 凡是利用本 发明说明书及附图内容所作的等效结构或等效流程变换, 或之间或间接运用在 其他相关的技术领域, 均同理包括在本发明的专利保护范围内。
工业实用性
[0047] 本发明采用上述技术方案, 带来的技术效果为: 本发明通过发射端将射频信号 逐级放大至高频信号, 用发射天线发射高频信号, 之后接收端通过所述接收信 号接收所述高频信号, 并通过选频电路及整流电路将高频信号转换成电流, 转 换后的电流通过电流输出端输入至电子设备以进行充电, 从而实现空中远距离 充电, 避免了电子设备无线充电吋必须放置于线圈装置上, 提高了无线充电的 灵活性。

Claims

权利要求书
[权利要求 1] 一种远距离无线充电系统, 其特征在于, 所述远距离无线充电系统包 括发射端及接收端, 其中: 所述发射端包括压控振荡器、 一级放大器 、 二级放大器及发射天线, 所述压控振荡器的输出端与所述一级放大 器的输入端连接, 所述一级放大器的输出端与所述二级放大器的输入 端连接, 所述二级放大器的输出端与所述发射天线的输入端连接; 所 述接收端包括接收天线、 选频电路、 整流电路及电流输出端, 所述接 收天线与所述选频电路串联, 所述选频电路与整流电路串联, 所述整 流电路与所述电流输出端串联; 及所述发射端的发射天线的输出端与 所述接收端的接收天线的输入端之间无线连接, 所述发射端用于产生 信号并通过发射天线发射至空中, 所述接收端的接收天线接收所述发 射天线发射的信号并将所述信号转换成电流。
[权利要求 2] 如权利要求 1所述的远距离无线充电系统, 其特征在于, 所述发射端 上还设置电源, 其中, 所述电源与所述压控振荡器、 一级放大器及二 级放大器电连接。
[权利要求 3] 如权利要求 2所述的远距离无线充电系统, 其特征在于, 所述发射端 还包括第一电压调节模块及第一稳压模块, 所述第一电压调节模块与 第一稳压模块及压控振荡器连接, 所述电源与第一电压调节模块及第 一稳压模块电连接,所述电源用于为压控振荡器提供电能, 所述第一 电压调节模块用于通过电压调节以控制压控振荡器产生不同频率的信 号, 所述第一稳压模块用于对电源的电压进行稳压并将稳定的电压输 入至第一电压调节模块。
[权利要求 4] 如权利要求 2所述的远距离无线充电系统, 其特征在于, 所述发射端 还包括第二电压调节模块及第二稳压模块, 所述第二电压调节模块与 第二稳压模块及一级放大器电连接, 所述电源与第二电压调节模块及 第二稳压模块电连接, 所述电源用于为一级放大器提供电能, 所述第 二电压调节模块用于通过电压调节对一级放大器中的信号放大, 所述 第二稳压模块用于对电源的电压进行稳压并将稳定的电压输入至第二 电压调节模块。
如权利要求 2所述的远距离无线充电系统, 其特征在于, 所述发射端 还包括第三电压调节模块及第三稳压模块, 所述第三电压调节模块与 第三稳压模块及二级放大器电连接, 所述电源与第三电压调节模块及 第三稳压模块电连接, 所述电源用于为二级放大器提供电能, 所述第 三电压调节模块用于通过电压调节对二级放大器中的信号放大, 所述 第三稳压模块用于对电源的电压进行稳压并将稳定的电压输入至第三 电压调节模块。
如权利要求 1所述的远距离无线充电系统, 其特征在于, 所述选频电 路由第一电容和第一电感串联组成。
如权利要求 6所述的远距离无线充电系统, 其特征在于, 所述接收端 还包括第二电容, 其中, 所述选频电路通过所述第二电容与所述整流 电路串联。
如权利要求 7所述的远距离无线充电系统, 其特征在于, 所述整流电 路包括第一二极管、 第二二极管、 第三二极管、 第四二极管、 第五二 极管、 第六二极管、 第三电容、 第四电容、 第五电容及第六电容, 其 中, 所述第一二极管、 第二二极管、 第三二极管、 第四二极管、 第五 二极管之间并联连接, 所述第一二极管的阳极与第二二极管的阴极之 间通过第三电容连接, 所述第二二极管的阳极与第三二极管的阴极之 间通过第四电容连接, 所述第三二极管的阳极与第四二极管的阴极之 间通过第五电容连接, 所述第四二极管的阳极与第五二极管的阴极之 间通过第六电容连接, 所述第一二极管、 第二二极管、 第三二极管、 第四二极管、 第五二极管、 第三电容、 第四电容、 第五电容及第六电 容所形成的并联电路再与所述第六二极管串联, 其中, 所述第三电容 接地且所述第一二极管的阳极接地。
如权利要求 8所述的远距离无线充电系统, 其特征在于, 所述第六二 极管与所述电流输出端串联。
如权利要求 9所述的远距离无线充电系统, 其特征在于, 所述电流输 出端包括充电端口及第七电容, 其中, 所述充电端口与所述第七电容 并联, 所述第七电容的一端接地。
PCT/CN2017/101983 2017-04-09 2017-09-16 远距离无线充电系统 WO2018188268A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710226415.4 2017-04-09
CN201710226415.4A CN107069992A (zh) 2017-04-09 2017-04-09 远距离无线充电系统

Publications (1)

Publication Number Publication Date
WO2018188268A1 true WO2018188268A1 (zh) 2018-10-18

Family

ID=59602146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/101983 WO2018188268A1 (zh) 2017-04-09 2017-09-16 远距离无线充电系统

Country Status (2)

Country Link
CN (1) CN107069992A (zh)
WO (1) WO2018188268A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107069992A (zh) * 2017-04-09 2017-08-18 深圳市景程信息科技有限公司 远距离无线充电系统
CN107196680A (zh) * 2017-04-09 2017-09-22 深圳市景程信息科技有限公司 电能无线发射装置
CN109802498B (zh) * 2019-02-22 2022-03-25 上海桁壹高科技有限公司 一种基于射频电磁波能量收集的供电系统、方法及装置
CN111667036A (zh) * 2020-06-23 2020-09-15 深圳市佳维思科技有限公司 电子标签远程空中无线充电的方法及充电系统和电子标签

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101908781A (zh) * 2009-05-27 2010-12-08 富港电子(东莞)有限公司 无线供电装置
CN103730932A (zh) * 2013-12-20 2014-04-16 深圳市文鼎创数据科技有限公司 无线充电系统
CN104901439A (zh) * 2015-06-30 2015-09-09 京东方科技集团股份有限公司 磁共振式无线充电电路
CN105162227A (zh) * 2015-10-09 2015-12-16 宁波力芯科信息科技有限公司 一种具有无线充放电功能的无线移动电源、装置
CN105162230A (zh) * 2015-10-09 2015-12-16 宁波力芯科信息科技有限公司 一种用于无线充电的电子电路、装置
CN107069992A (zh) * 2017-04-09 2017-08-18 深圳市景程信息科技有限公司 远距离无线充电系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101908781A (zh) * 2009-05-27 2010-12-08 富港电子(东莞)有限公司 无线供电装置
CN103730932A (zh) * 2013-12-20 2014-04-16 深圳市文鼎创数据科技有限公司 无线充电系统
CN104901439A (zh) * 2015-06-30 2015-09-09 京东方科技集团股份有限公司 磁共振式无线充电电路
CN105162227A (zh) * 2015-10-09 2015-12-16 宁波力芯科信息科技有限公司 一种具有无线充放电功能的无线移动电源、装置
CN105162230A (zh) * 2015-10-09 2015-12-16 宁波力芯科信息科技有限公司 一种用于无线充电的电子电路、装置
CN107069992A (zh) * 2017-04-09 2017-08-18 深圳市景程信息科技有限公司 远距离无线充电系统

Also Published As

Publication number Publication date
CN107069992A (zh) 2017-08-18

Similar Documents

Publication Publication Date Title
CN101023600B (zh) 一种电磁波放大中继装置及使用该装置的无线电电功率变换设备
KR101817194B1 (ko) 태양전지 모듈을 이용한 무선 전력 전송 시스템
WO2018188268A1 (zh) 远距离无线充电系统
CN102396132B (zh) 无线电力发射中的自适应阻抗调谐
US10326315B2 (en) Wireless power transmission apparatus
KR20140064325A (ko) 무선 전력 수신기
KR20130023618A (ko) 무선 전력 전송 시스템 및 그의 제어방법
JP2011211896A (ja) 電力受信装置及び無線電力送受信システム
KR20130042992A (ko) 무선 전력의 크기를 조정하는 무선 전력 수신기
KR20120011956A (ko) 무선 전력 송신기, 무선 전력 수신기, 및 그것들을 이용한 무선 전력 전송 방법
JP2011050140A (ja) 非接触給電装置、非接触受電装置、非接触給電方法、非接触受電方法および非接触給電システム
CN103312048B (zh) 一种频率可调式无线电能传输装置
WO2015035924A1 (zh) 无线充电装置与方法以及使用该装置的移动终端
KR101241495B1 (ko) 무선 전력 송신 장치 및 그의 무선 전력 송신 방법
CN201365144Y (zh) 感应式供电装置
CN104993613A (zh) 一种利用单电容实现电场共振的无线电能传输装置
JP2011004479A (ja) ワイヤレス電源装置
CN107040050A (zh) 一种无线电能传输装置及传输方法
CN203827014U (zh) 智能电视和机顶盒遥控器无线充电电路
US10277061B1 (en) Wireless device
CN201663493U (zh) 无线充电的发射及接收装置、无线充电系统、电子终端
WO2018188267A1 (zh) 基于无线接收的电能转换装置
KR102042020B1 (ko) 무선 전력 수신기
KR102115459B1 (ko) 무선 충전 장치 및 방법
CN206945740U (zh) 有源电子式互感器中高压侧电路的供电系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17905864

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17905864

Country of ref document: EP

Kind code of ref document: A1