CN103650147A - 半导体装置 - Google Patents

半导体装置 Download PDF

Info

Publication number
CN103650147A
CN103650147A CN201180072134.9A CN201180072134A CN103650147A CN 103650147 A CN103650147 A CN 103650147A CN 201180072134 A CN201180072134 A CN 201180072134A CN 103650147 A CN103650147 A CN 103650147A
Authority
CN
China
Prior art keywords
type
layer
resilient coating
collector
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201180072134.9A
Other languages
English (en)
Other versions
CN103650147B (zh
Inventor
陈则
中村胜光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of CN103650147A publication Critical patent/CN103650147A/zh
Application granted granted Critical
Publication of CN103650147B publication Critical patent/CN103650147B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0821Collector regions of bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41708Emitter or collector electrodes for bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/083Anode or cathode regions of thyristors or gated bipolar-mode devices
    • H01L29/0834Anode regions of thyristors or gated bipolar-mode devices, e.g. supplementary regions surrounding anode regions

Abstract

在晶体管区域中设置有绝缘栅型双极晶体管,该绝缘栅型双极晶体管具有栅极电极(7)和发射极电极(9)。在晶体管区域的周围配置有末端区域。在晶体管区域中,在N型漂移层(1)的下方设置有第1N型缓冲层(18)。在第1N型缓冲层(18)的下方设置有P型集电极层(19)。在末端区域中,在N型漂移层(1)的下方设置有第2N型缓冲层(20)。P型集电极层(19)和第2N型缓冲层(20)与集电极电极(21)直接连接。越接近集电极电极(21),第2N型缓冲层(20)的杂质浓度越小。第2N型缓冲层(20)与集电极电极(21)不构成欧姆接触。

Description

半导体装置
技术领域
本发明涉及一种具有绝缘栅型双极晶体管(IGBT:InsulatedGate Bipolar Transistor)的半导体装置。
背景技术
作为高耐压(大于或等于600V)的功率设备,使用具有IGBT的半导体装置。在这种半导体装置中,在设置有IGBT的激活区域的周围配置有末端区域。
作为功率半导体的IGBT,与在LSI(Large Scale Integration)中使用的CMOS(Complementary Metal Oxide Semiconductor)晶体管等不同,除了要求低接通电压化、高速化以及电流驱动能力的提高以外,还要求断开动作时的电流切断能力等耐破坏量。在这里,所谓电流切断能力,是指在断开时不破坏半导体装置而能够切断的最大电流密度。
提出了一种半导体装置,其在末端区域中不存在P型集电极层,N型缓冲层与集电极电极直接连接(例如,参照专利文献1的图1)。由此,能够降低断开动作时的载流子浓度,因此容易耗尽,可以降低电场强度。因此,可以提高断开动作时的电流切断能力。
专利文献1:日本特开2009-176772号公报
发明内容
但是,在现有的半导体装置中,在IGBT反向耐压时(发射极为高电位,集电极为低电位),在激活区域的P型基极层和末端区域的N型缓冲层之间形成正向偏压二极管。因此,存在下述问题,即,IGBT的反向耐压量低,在反向耐压模式中产生泄漏电流。
本发明就是为了解决上述课题而提出的,其目的是得到一种半导体装置,该半导体装置可以抑制反向耐压模式中的泄漏电流。
本发明所涉及的半导体装置的特征在于,具有:晶体管区域,在该晶体管区域中设置有绝缘栅型双极晶体管,该绝缘栅型双极晶体管具有栅极电极和发射极电极;以及末端区域,其配置在所述晶体管区域的周围,在所述晶体管区域中,在N型漂移层的下方设置第1N型缓冲层,在所述第1N型缓冲层的下方设置P型集电极层,在所述末端区域中,在所述N型漂移层的下方设置第2N型缓冲层,所述P型集电极层和所述第2N型缓冲层与集电极电极直接连接,越接近所述集电极电极,所述第2N型缓冲层的杂质浓度越小,所述第2N型缓冲层与所述集电极电极不构成欧姆接触。
发明的效果
通过本发明可以抑制反向耐压模式中的泄漏电流。
附图说明
图1是表示本发明的实施方式1所涉及的半导体装置的俯视图。
图2是将图1的区域A放大的俯视图。
图3是沿图2的B-B′的剖面图。
图4是沿图3的C-C′以及D-D′的表示杂质浓度分布的图。
图5是表示在评价断开特性的实验中使用的电路的图。
图6是表示使用图5的电路获得的断开特性的评价结果的图。
图7是表示使用图5的电路进行的断开特性的评价结果的图。
图8是表示在评价耐压特性的实验中使用的电路的图。
图9是表示使用图8的电路获得的耐压特性的评价结果的图。
图10是表示与IGBT的断开切断能力相对的P集电极层的浓度依赖性的图。
图11是表示IGBT的断开切断时的安全动作区域的图。
图12是表示在评价反向耐压特性的实验中使用的电路的图。
图13是表示使用图12的电路获得的反向耐压特性的评价结果的图。
图14是将对比例1、2和实施方式1的断开切断能力JC(break)进行比较的图。
图15是将PN结区域的N型层和P型层的影响换算为电阻值而表示该值的容许范围的图。
图16是表示本发明的实施方式1所涉及的半导体装置的变形例1的剖面图。
图17是表示本发明的实施方式1所涉及的半导体装置的变形例2的剖面图。
图18是表示N型缓冲层的边界位置和断开特性的关系的图。
图19是表示N型缓冲层的边界位置和接通电压特性的关系的图。
图20是表示本发明的实施方式2所涉及的半导体装置的剖面图。
图21是沿图20的E-E′以及F-F′的表示杂质浓度分布的图。
图22是表示本发明的实施方式2所涉及的半导体装置的变形例1的剖面图。
图23是表示本发明的实施方式2所涉及的半导体装置的变形例2的剖面图。
具体实施方式
参照附图,对本发明的实施方式所涉及的半导体装置进行说明。对于相同或者对应的构成要素,有时标注相同的标号,省略重复的说明。
实施方式1
图1是表示本发明的实施方式1所涉及的半导体装置的俯视图。该半导体装置是具有IGBT的高耐压(大于或等于600V)功率设备。在激活区域的周围配置有末端区域。在激活区域中包含:设置有多个沟槽栅极型IGBT构造的晶体管区域、以及在晶体管区域和末端区域之间配置的提取区域。
在IGBT接通时,在激活区域中流动主电流,但在末端区域中不流动主电流。另外,如果在IGBT断开时向集电极·发射极之间施加电压,则在末端区域中耗尽层向设备横向延伸。因此,通过设置末端区域,可以保持耐压。
图2是将图1的区域A放大的俯视图。图3是沿图2的B-B′的剖面图。
在晶体管区域中,在N型漂移层1上设置N型电荷积蓄层2,在该N型电荷积蓄层2上设置有P型基极层3。在P型基极层3上的一部分上设置有P型接触层4和N型发射极层5。以贯穿N型发射极层5、P型基极层3以及N型电荷积蓄层2的方式设置沟槽,在该沟槽的内部经由栅极绝缘膜6而设置有栅极电极7。在栅极电极7上设置有层间绝缘膜8。在晶体管区域的整个面上设置发射极电极9,该发射极电极9与P型接触层4连接。
以贯穿P型基极层3以及N型电荷积蓄层2的方式设置伪沟槽,在该伪沟槽的内部经由栅极绝缘膜6而设置有栅极配线10。栅极配线10与发射极电极9连接。通过该结构,得到抑制短路时的振荡等的效果。
在PN结区域中,在N型漂移层1上设置有P型层11。在P型层11上经由绝缘膜12设置有栅极配线13。栅极配线13配置在晶体管区域外周,与栅极电极7连接。在P型层11上设置N型层14,在N型层14和发射极电极9之间设置有P型层15。N型层14经由P型层15与发射极电极9连接。该结构并不是作为MOS晶体管而动作,而是在断开动作时提取剩余的载流子(空穴)。此外,激活区域和末端区域的边界位于P型层11的外端。
在末端区域中,在N型漂移层1上的一部分上设置有P型层16。该P型层16是用于高耐压化的保护环。与保持的耐压相对应地设计P型层16的浓度、深度、数量等。在晶体管区域的一部分、PN结区域、以及末端区域中,表面保护膜17覆盖发射极电极9。
在晶体管区域和PN结区域中,在N型漂移层1的下方设置N型缓冲层18,在该N型缓冲层18的下方设置有P型集电极层19。在末端区域中,在N型漂移层1的下方设置有N型缓冲层20。P型集电极层19和N型缓冲层20与集电极电极21直接连接。
图4是沿图3的C-C′以及D-D′的表示杂质浓度分布的图。在本实施方式中,通过注入杂质而较深地形成N型缓冲层18、20。为了进行比较,还示出较浅地形成N型缓冲层18、20的情况。越接近集电极电极21,N型缓冲层20的杂质浓度越小。在本实施方式中,由于较深地形成N型缓冲层20,所以在与集电极电极21之间的界面附近,N型缓冲层20的杂质浓度充分地变小。因此,N型缓冲层20与集电极电极21不构成欧姆接触。
下面,与对比例1~3进行比较,说明实施方式1的效果。对比例1、2与实施方式1的不同点在于,在末端区域设置P型集电极层,并且在对比例1中,在PN结区域中不设置N型层14和P型层15。对比例3与实施方式1的不同点在于,较浅地形成N型缓冲层20,与集电极电极21构成欧姆接触。
在末端区域中设置有P型集电极层的对比例1、2的情况下,在激活区域和末端区域的边界处,在进行断开动作时发射极侧的载流子浓度不会降低,电场强度上升。并且,由于碰撞电离化的促进,发射极侧的电流密度增加。其结果,局部温度上升,发生热破坏,由此使电流切断能力降低。
与此相对,在实施方式1及对比例3中,在末端区域中省略P型集电极层而使N型缓冲层20与集电极电极21直接接触。由此,在进行IGBT的断开动作时,在末端区域的集电极构造中载流子的产生变少,因此,促进从P型层11向集电极侧的耗尽,使电场强度降低。其结果,可以提高IGBT的断开动作时的电流切断能力。
图5是表示在评价断开特性的实验中使用的电路的图。图6是表示使用图5的电路获得的断开特性的评价结果的图。在实验中,使用耐压4500V的IGBT构造的设备。电压Vcc为3400V,电感Ls为2.47μH,温度Tj为423K。将电流密度Jc从56A/cm2开始逐步升高至该值的1.5倍、2.0倍,直至设备破坏为止进行评价。图7是表示使用图5的电路进行的断开特性的评价结果的图。在实验中,使用耐压4500V的IGBT构造的设备。电压Vcc为3400V,电感Ls为2.47μH,温度Tj为398K,电流密度Jc为56A/cm2。在实施方式1中,由于电流冲击现象消失,所以断开损耗减少了12%。在接通IGBT时,抑制来自末端区域的集电极的空穴在PN结区域中集中,因此,缓和了断开时的载流子的移动。
图8是表示在评价耐压特性的实验中使用的电路的图。图9是表示使用图8的电路获得的耐压特性的评价结果的图。在实验中,使用耐压4500V的IGBT构造的设备。栅极电压VGE为0V,温度Tj为398K,是AC模式(Mode)。在实施方式1中,与对比例1相比泄漏电流减少了55%。其原因在于,末端区域的N型缓冲层20在IGBT的断开动作时抑制来自集电极侧的空穴注入。
图10是表示与IGBT的断开切断能力相对的P集电极层的浓度依赖性的图。电源电压Vcc为3400V,栅极电压VG为±15V,温度为423K。IGBT的接通电压及断开切断能力依赖于P型集电极层19的浓度。与此相对,在实施方式1中,即使P型集电极层19的浓度变化,也能够将断开时的切断能力维持得较高。图11是表示IGBT的断开切断时的安全动作区域的图。温度为423K。在实施方式1中,也可以将断开切断时的安全动作区域扩大。
另外,在本实施方式中,N型缓冲层20与集电极电极21不构成欧姆接触。由此,可以防止在IGBT反向耐压时(发射极为高电位,集电极为低电位),在激活区域的P型基极层3和末端区域的N型缓冲层20之间形成正向偏压二极管。其结果,提高IGBT的反向耐压量,可以抑制反向耐压模式中的泄漏电流。
图12是表示在评价反向耐压特性的实验中使用的电路的图。图13是表示使用图12的电路获得的反向耐压特性的评价结果的图。在实验中,使用耐压4500V的IGBT构造的设备。电压Vcc为-100V,栅极电压VGE为0V,温度Tj为298K,是AC模式(Mode)。与构成欧姆接触的对比例3相比,在N型缓冲层20与集电极电极21不构成欧姆接触的实施方式1中,泄漏电流减少至小于或等于10%。其原因在于,在IGBT反向耐压时防止在P型基极层3和N型缓冲层20之间形成正向偏压二极管,提高IGBT的反向耐压量,抑制了反向耐压模式中的泄漏电流。
另外,在实施方式1中,在PN结区域中设置有N型层14和P型层15。利用该电阻成分,可以抑制局部的高电场,可以抑制由高电场强度引起的离子碰撞现象。其结果,可以抑制局部的温度上升,提高IGBT的断开动作时的电流切断能力。
图14是将对比例1、2和实施方式1的电流切断能力JC(break)进行比较的图。从该图可知,在PN结区域中设置有N型层14和P型层15的对比例2的电流切断能力,是没有设置N型层14和P型层15的对比例1的2倍。另外,实施方式1的电流切断能力是对比例1的3.5倍。
图15是将PN结区域的N型层14和P型层15的影响换算为电阻值而表示该值的容许范围的图。纵轴是将在断开时不破坏设备而能够切断的最大电流密度JC(break),以对比例1的值JC(break)′为基准进行标准化后的值。对比例1仅具有额定电流密度的电流切断能力,如果考虑作为电流切断能力需要保证大于或等于额定电流密度的2倍,则纵轴的值需要大于或等于2.0。因此,需要将PN结区域的电阻值设为大于或等于300Ω。
图16是表示本发明的实施方式1所涉及的半导体装置的变形例1的剖面图。与实施方式1的不同点在于没有P型层15。在此情况下,也可以通过N型层14的电阻成分,抑制PN结区域中的局部的高电场,抑制由高电场强度引起的离子碰撞现象。其结果,可以抑制局部的温度上升,提高IGBT的断开动作时的电流切断能力。
图17是表示本发明的实施方式1所涉及的半导体装置的变形例2的剖面图。与实施方式1的不同点在于,没有N型层14和P型层15,没有P型层11和发射极电极9的接触。由此,在IGBT接通状态下的末端区域中载流子的产生变少,在断开时发射极侧的载流子浓度降低。另外,通过缓和PN结区域和末端区域的边界部的电场,从而可以促进向集电极侧的耗尽,抑制由局部的温度上升引起的热破坏,抑制PN结区域中的电流密度的增加。另外,通过延长PN结区域中的电流的流动路径,从而使电阻成分增加。由此,可以抑制PN结区域中的局部的高电场,抑制由高电场强度引起的离子碰撞现象。其结果,可以抑制局部的温度上升,提高IGBT的断开动作时的电流切断能力。
此外,在本实施方式中,N型缓冲层18和N型缓冲层20的边界位于PN结区域和末端区域的边界处。但是,并不限于此,该边界也可以位于PN结区域的内部、激活区域和PN结区域的边界、末端区域内部。
图18是表示N型缓冲层的边界位置和断开特性的关系的图。图19是表示N型缓冲层的边界位置和接通电压特性的关系的图。图18的纵轴是将在断开时不破坏设备而能够切断的最大的电流密度JC(break),以对比例1的值JC(break)′为基准进行标准化后的值。图19的纵轴是将接通电压VCE(sat)以对比例1的值VCE(sat)′为基准进行标准化后的值。横轴以PN结区域和末端区域的边界为原点0,将芯片端部设为+1,将芯片中心设为-1。为了在不会对IGBT的接通状态造成恶劣影响的状态下提高断开切断能力,必须将边界位置设为大于或等于-0.05。该位置是晶体管区域内的最外周的沟槽栅极的外端部。
实施方式2
图20是表示本发明的实施方式2所涉及的半导体装置的剖面图。在晶体管区域以及末端区域中,在N型漂移层1的下方设置有N型缓冲层22。在晶体管区域以及PN结区域中,在N型缓冲层22的下方设置有P型集电极层23。在末端区域中,在N型缓冲层22的下方设置有P型集电极层24。集电极电极21与P型集电极层23、24连接。其他结构与实施方式1相同。
图21是沿图20的E-E′以及F-F′的表示杂质浓度分布的图。P型集电极层24的峰值杂质浓度比N型漂移层1高,比N型缓冲层22低。P型集电极层24与集电极电极21不构成欧姆接触。
下面,对实施方式2的效果进行说明。在实施方式2中,在IGBT反向耐压时(发射极为高电位,集电极为低电位),P型集电极层24和N型缓冲层22构成PN结,因此可以反向耐压,提高IGBT的反向耐压量,抑制反向耐压模式中的泄漏电流。
另外,在实施方式2中,P型集电极层24的峰值杂质浓度比N型漂移层1高,比N型缓冲层22低。由此,在IGBT的接通状态时,在末端区域中,不会从集电极侧注入空穴,因此,可以抑制末端区域的载流子浓度的提高。其结果,可以抑制局部的温度上升,提高IGBT的断开动作时的电流切断能力。
图22是表示本发明的实施方式2所涉及的半导体装置的变形例1的剖面图。与实施方式2的不同点在于没有P型层15。在此情况下,也可以通过N型层14的电阻成分,抑制PN结区域中的局部的高电场,抑制由高电场强度引起的离子碰撞现象。其结果,可以抑制局部的温度上升,提高IGBT的断开动作时的电流切断能力。
图23是表示本发明的实施方式2所涉及的半导体装置的变形例2的剖面图。与实施方式2的不同点在于没有N型层14和P型层15,没有P型层11和发射极电极9的接触。由此,在IGBT接通状态下的末端区域中载流子的产生变少,在断开时发射极侧的载流子浓度降低。另外,通过缓和PN结区域和末端区域的边界部的电场,可以促进向集电极侧的耗尽,抑制由局部的温度上升引起的热破坏,抑制PN结区域中的电流密度的增加。另外,通过延长PN结区域中的电流的流动路径,使电阻成分增加。由此,可以抑制PN结区域中的局部的高电场,抑制由高电场强度引起的离子碰撞现象。其结果,可以抑制局部的温度上升,提高IGBT的断开动作时的电流切断能力。
此外,在上述的实施方式中,对4500V的高耐压的半导体装置进行了说明,但无论耐压如何,均可以得到上述效果。另外,在上述的实施方式中,对晶体管区域的IGBT为沟槽栅极构造的情况进行了说明,但在平面栅极构造的情况下,也可以得到上述效果。另外,对在末端区域形成有由P型层16构成的保护环的情况进行了说明,但对于保持耐压的其他构造,也可以得到上述效果。
另外,上述的实施方式所涉及的半导体装置,并不限于由硅形成的半导体装置,对于由带隙比硅大的宽带隙半导体形成的半导体装置,也可以得到本实施方式中记载的效果。宽带隙半导体是例如碳化硅、氮化镓类材料、或者金刚石。由这种宽带隙半导体形成的半导体装置耐电压性及容许电流密度高,因此可以实现小型化。通过使用该小型化的半导体装置,还可以使得组装有该元件的半导体模块小型化。另外,由于半导体装置的耐热性高,所以可以使得散热器的散热片小型化,可以将水冷部变更为空气冷却,因此,半导体模块可以进一步小型化。另外,由于半导体装置的功率损耗低,效率高,所以可以使半导体模块高效率化。
标号的说明
1N  型漂移层
7    栅极电极
9    发射极电极
11   P型层(第1P型层)
12   绝缘膜
13   栅极配线
14   N型层
15   P型层(第2P型层)
18   N型缓冲层(第1N型缓冲层)
19   P型集电极层
20   N型缓冲层(第2N型缓冲层)
21   集电极电极
22   N型缓冲层
23   P型集电极层(第1P型集电极层)
24   P型集电极层(第2P型集电极层)

Claims (5)

1.一种半导体装置,其特征在于,具有:
晶体管区域,在该晶体管区域中设置有绝缘栅型双极晶体管,该绝缘栅型双极晶体管具有栅极电极和发射极电极;以及
末端区域,其配置在所述晶体管区域的周围,
在所述晶体管区域中,在N型漂移层的下方设置第1N型缓冲层,
在所述第1N型缓冲层的下方设置P型集电极层,
在所述末端区域中,在所述N型漂移层的下方设置第2N型缓冲层,
所述P型集电极层和所述第2N型缓冲层与集电极电极直接连接,
越接近所述集电极电极,所述第2N型缓冲层的杂质浓度越小,
所述第2N型缓冲层与所述集电极电极不构成欧姆接触。
2.一种半导体装置,其特征在于,具有:
晶体管区域,在该晶体管区域中设置有绝缘栅型双极晶体管,该绝缘栅型双极晶体管具有栅极电极和发射极电极;以及
末端区域,其配置在所述晶体管区域的周围,
在所述晶体管区域以及所述末端区域中,在N型漂移层的下方设置N型缓冲层,
在所述晶体管区域中,在所述N型缓冲层的下方设置第1P型集电极层,
在所述末端区域中,在所述N型缓冲层的下方设置第2P型集电极层,
集电极电极与所述第1以及第2P型集电极层连接,
所述第2P型集电极层的峰值杂质浓度,比所述N型漂移层高而比所述N型缓冲层低。
3.根据权利要求1或2所述的半导体装置,其特征在于,
还具有PN结区域,该PN结区域配置在所述晶体管区域和所述末端区域之间,
在所述PN结区域中,在所述N型漂移层上设置第1P型层,
在所述第1P型层上经由绝缘膜设置栅极配线,
所述栅极配线与所述栅极电极连接。
4.根据权利要求3所述的半导体装置,其特征在于,
在所述第1P型层上设置N型层,
所述N型层与所述发射极电极连接。
5.根据权利要求4所述的半导体装置,其特征在于,
在所述N型层和所述发射极电极之间设置有第2P型层。
CN201180072134.9A 2011-07-05 2011-07-05 半导体装置 Active CN103650147B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/065374 WO2013005304A1 (ja) 2011-07-05 2011-07-05 半導体装置

Publications (2)

Publication Number Publication Date
CN103650147A true CN103650147A (zh) 2014-03-19
CN103650147B CN103650147B (zh) 2016-07-06

Family

ID=47436677

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180072134.9A Active CN103650147B (zh) 2011-07-05 2011-07-05 半导体装置

Country Status (6)

Country Link
US (2) US9041051B2 (zh)
JP (1) JP5708803B2 (zh)
KR (1) KR101534106B1 (zh)
CN (1) CN103650147B (zh)
DE (1) DE112011105411B4 (zh)
WO (1) WO2013005304A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107210321A (zh) * 2015-01-27 2017-09-26 三菱电机株式会社 半导体装置
CN107924940A (zh) * 2015-08-19 2018-04-17 三菱电机株式会社 半导体装置
CN108074977A (zh) * 2016-11-10 2018-05-25 三菱电机株式会社 半导体装置及其制造方法
CN108242464A (zh) * 2016-12-27 2018-07-03 三菱电机株式会社 半导体装置、电力转换装置及半导体装置的制造方法
CN108735737A (zh) * 2017-04-24 2018-11-02 三菱电机株式会社 半导体装置及半导体装置的制造方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103222057A (zh) * 2011-11-17 2013-07-24 富士电机株式会社 半导体器件以及半导体器件的制造方法
JP5644793B2 (ja) * 2012-03-02 2014-12-24 株式会社デンソー 半導体装置
CN104205334B (zh) 2012-03-05 2017-09-01 三菱电机株式会社 半导体装置
US9214546B2 (en) * 2013-05-29 2015-12-15 Panasonic Intellectual Property Management Co., Ltd. Silicon carbide switching device with novel overvoltage detection element for overvoltage control
CN105283962B (zh) * 2013-06-12 2018-01-19 三菱电机株式会社 半导体装置
US20150147850A1 (en) * 2013-11-25 2015-05-28 Infineon Technologies Ag Methods for processing a semiconductor workpiece
EP3075011B1 (en) * 2013-11-29 2018-02-28 ABB Schweiz AG Insulated gate bipolar transistor
KR101917485B1 (ko) * 2014-01-29 2018-11-09 미쓰비시덴키 가부시키가이샤 전력용 반도체 장치
DE112014006296T5 (de) * 2014-01-29 2017-03-16 Mitsubishi Electric Corporation Leistungshalbleitervorrichtung
US9775029B2 (en) 2014-08-22 2017-09-26 Visa International Service Association Embedding cloud-based functionalities in a communication device
JP2016100455A (ja) * 2014-11-21 2016-05-30 三菱電機株式会社 半導体装置及びその製造方法
JP6278048B2 (ja) * 2016-02-19 2018-02-14 トヨタ自動車株式会社 半導体装置
CN105679667A (zh) * 2016-03-09 2016-06-15 上海道之科技有限公司 一种沟槽igbt器件的终端结构制造方法
JP6565815B2 (ja) 2016-07-21 2019-08-28 株式会社デンソー 半導体装置
JP6565814B2 (ja) 2016-07-21 2019-08-28 株式会社デンソー 半導体装置
JP6624101B2 (ja) 2017-02-03 2019-12-25 株式会社デンソー 半導体装置
CN109524396B (zh) * 2017-09-20 2023-05-12 株式会社东芝 半导体装置
JP6964566B2 (ja) 2018-08-17 2021-11-10 三菱電機株式会社 半導体装置およびその製造方法
CN111370464A (zh) * 2018-12-26 2020-07-03 深圳尚阳通科技有限公司 沟槽栅功率器件及其制造方法
JP7233256B2 (ja) * 2019-03-12 2023-03-06 三菱電機株式会社 半導体装置及び半導体装置の製造方法
CN111682062A (zh) * 2020-06-24 2020-09-18 全球能源互联网研究院有限公司 一种igbt器件的背面结构及其制备方法、igbt器件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01276769A (ja) * 1988-04-28 1989-11-07 Fujitsu Ltd 絶縁ゲート型半導体装置
JPH02230774A (ja) * 1989-03-03 1990-09-13 Fujitsu Ltd 絶縁ゲート型半導体装置
CN101419970A (zh) * 2007-10-24 2009-04-29 富士电机电子技术株式会社 具有控制电路的半导体器件
JP2009176772A (ja) * 2008-01-21 2009-08-06 Denso Corp 半導体装置
CN101849288A (zh) * 2007-11-07 2010-09-29 丰田自动车株式会社 半导体装置
CN101908558A (zh) * 2009-06-04 2010-12-08 三菱电机株式会社 半导体装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08227999A (ja) * 1994-12-21 1996-09-03 Mitsubishi Electric Corp 絶縁ゲート型バイポーラトランジスタ及びその製造方法並びに半導体集積回路及びその製造方法
DE10330571B8 (de) * 2003-07-07 2007-03-08 Infineon Technologies Ag Vertikale Leistungshalbleiterbauelemente mit Injektionsdämpfungsmittel im Rand bereich und Herstellungsverfahren dafür
JP5261927B2 (ja) * 2006-12-11 2013-08-14 パナソニック株式会社 半導体装置
JP5286706B2 (ja) * 2007-07-10 2013-09-11 三菱電機株式会社 電力用半導体装置とその製造方法
JP5272410B2 (ja) * 2008-01-11 2013-08-28 富士電機株式会社 半導体装置およびその製造方法
US8159022B2 (en) 2008-09-30 2012-04-17 Infineon Technologies Austria Ag Robust semiconductor device with an emitter zone and a field stop zone
JP2010135526A (ja) 2008-12-04 2010-06-17 Toyota Central R&D Labs Inc 半導体装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01276769A (ja) * 1988-04-28 1989-11-07 Fujitsu Ltd 絶縁ゲート型半導体装置
JPH02230774A (ja) * 1989-03-03 1990-09-13 Fujitsu Ltd 絶縁ゲート型半導体装置
CN101419970A (zh) * 2007-10-24 2009-04-29 富士电机电子技术株式会社 具有控制电路的半导体器件
CN101849288A (zh) * 2007-11-07 2010-09-29 丰田自动车株式会社 半导体装置
JP2009176772A (ja) * 2008-01-21 2009-08-06 Denso Corp 半導体装置
CN101908558A (zh) * 2009-06-04 2010-12-08 三菱电机株式会社 半导体装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107210321A (zh) * 2015-01-27 2017-09-26 三菱电机株式会社 半导体装置
US10665677B2 (en) 2015-01-27 2020-05-26 Mitsubishi Electric Corporation Semiconductor device
CN107210321B (zh) * 2015-01-27 2020-09-29 三菱电机株式会社 半导体装置
CN107924940A (zh) * 2015-08-19 2018-04-17 三菱电机株式会社 半导体装置
CN107924940B (zh) * 2015-08-19 2021-02-05 三菱电机株式会社 半导体装置
CN108074977A (zh) * 2016-11-10 2018-05-25 三菱电机株式会社 半导体装置及其制造方法
CN108242464A (zh) * 2016-12-27 2018-07-03 三菱电机株式会社 半导体装置、电力转换装置及半导体装置的制造方法
CN108735737A (zh) * 2017-04-24 2018-11-02 三菱电机株式会社 半导体装置及半导体装置的制造方法
CN108735737B (zh) * 2017-04-24 2024-02-27 三菱电机株式会社 半导体装置及半导体装置的制造方法

Also Published As

Publication number Publication date
DE112011105411B4 (de) 2017-12-14
WO2013005304A1 (ja) 2013-01-10
KR101534106B1 (ko) 2015-07-06
US20140197451A1 (en) 2014-07-17
US9041051B2 (en) 2015-05-26
US20150243772A1 (en) 2015-08-27
JPWO2013005304A1 (ja) 2015-02-23
US9640643B2 (en) 2017-05-02
DE112011105411T5 (de) 2014-04-10
CN103650147B (zh) 2016-07-06
KR20140031982A (ko) 2014-03-13
JP5708803B2 (ja) 2015-04-30

Similar Documents

Publication Publication Date Title
CN103650147B (zh) 半导体装置
JP6119577B2 (ja) 半導体装置
TWI464830B (zh) 半導體裝置
JP6274318B2 (ja) 半導体素子
CN108417614B (zh) 半导体装置
JP6139312B2 (ja) 半導体装置
US20150187877A1 (en) Power semiconductor device
WO2016129041A1 (ja) 半導体装置
CN110310990B (zh) 半导体装置
JP6302767B2 (ja) 半導体装置及びそれを用いた電力変換装置
US20150144989A1 (en) Power semiconductor device and method of manufacturing the same
US9153678B2 (en) Power semiconductor device and method of manufacturing the same
KR20150076716A (ko) 전력 반도체 소자
US9105486B2 (en) Semiconductor device
US9209287B2 (en) Power semiconductor device
JP2007019558A (ja) 電力用半導体装置
KR20150061972A (ko) 전력 반도체 소자
KR20150031668A (ko) 전력 반도체 소자
JP2013187344A (ja) 半導体装置及びその製造方法
KR102013226B1 (ko) 절연 게이트 바이폴라 트랜지스터
JP2008218812A (ja) Igbt
KR20150076815A (ko) 전력 반도체 소자
KR20140073325A (ko) 전력 반도체 소자 및 그 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant