CN102160167A - 静电吸盘组件 - Google Patents
静电吸盘组件 Download PDFInfo
- Publication number
- CN102160167A CN102160167A CN200980136614XA CN200980136614A CN102160167A CN 102160167 A CN102160167 A CN 102160167A CN 200980136614X A CN200980136614X A CN 200980136614XA CN 200980136614 A CN200980136614 A CN 200980136614A CN 102160167 A CN102160167 A CN 102160167A
- Authority
- CN
- China
- Prior art keywords
- positioning disk
- electrostatic chuck
- coldplate
- chuck assembly
- location
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 claims abstract description 51
- 239000011156 metal matrix composite Substances 0.000 claims abstract description 27
- 239000000758 substrate Substances 0.000 claims description 107
- 239000012530 fluid Substances 0.000 claims description 30
- 238000001816 cooling Methods 0.000 claims description 16
- 238000010438 heat treatment Methods 0.000 claims description 15
- 238000009413 insulation Methods 0.000 claims description 15
- 229910052751 metal Inorganic materials 0.000 claims description 15
- 239000002184 metal Substances 0.000 claims description 15
- 229910052782 aluminium Inorganic materials 0.000 claims description 13
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 13
- 239000004411 aluminium Substances 0.000 claims description 11
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 9
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 8
- 239000010703 silicon Substances 0.000 claims description 8
- 229910052710 silicon Inorganic materials 0.000 claims description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 7
- 229910052799 carbon Inorganic materials 0.000 claims description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 6
- 238000004891 communication Methods 0.000 claims description 6
- 239000002131 composite material Substances 0.000 claims description 6
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 5
- 230000008602 contraction Effects 0.000 claims description 4
- 238000002955 isolation Methods 0.000 claims description 4
- 239000011777 magnesium Substances 0.000 claims description 4
- 239000010936 titanium Substances 0.000 claims description 4
- 229910052582 BN Inorganic materials 0.000 claims description 3
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 2
- 239000010941 cobalt Substances 0.000 claims description 2
- 229910017052 cobalt Inorganic materials 0.000 claims description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 2
- 229910052749 magnesium Inorganic materials 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- 241000237858 Gastropoda Species 0.000 claims 1
- 241001074085 Scophthalmus aquosus Species 0.000 claims 1
- 230000000930 thermomechanical effect Effects 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 70
- 210000002381 plasma Anatomy 0.000 description 29
- 239000004020 conductor Substances 0.000 description 18
- 230000035882 stress Effects 0.000 description 16
- 230000008878 coupling Effects 0.000 description 15
- 238000010168 coupling process Methods 0.000 description 15
- 238000005859 coupling reaction Methods 0.000 description 15
- 238000000034 method Methods 0.000 description 15
- 230000008569 process Effects 0.000 description 10
- 230000005540 biological transmission Effects 0.000 description 9
- 239000002826 coolant Substances 0.000 description 9
- 238000009792 diffusion process Methods 0.000 description 9
- -1 for example Substances 0.000 description 9
- 238000012545 processing Methods 0.000 description 9
- 230000037361 pathway Effects 0.000 description 8
- 239000005030 aluminium foil Substances 0.000 description 7
- 239000003989 dielectric material Substances 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 239000000919 ceramic Substances 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 230000003028 elevating effect Effects 0.000 description 6
- 239000011148 porous material Substances 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000005240 physical vapour deposition Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 229910017083 AlN Inorganic materials 0.000 description 3
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000010891 electric arc Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 229910001092 metal group alloy Inorganic materials 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 239000011733 molybdenum Substances 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 238000000992 sputter etching Methods 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000005219 brazing Methods 0.000 description 2
- 229910010293 ceramic material Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 235000019628 coolness Nutrition 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 230000008646 thermal stress Effects 0.000 description 2
- 229910021341 titanium silicide Inorganic materials 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- KMWBBMXGHHLDKL-UHFFFAOYSA-N [AlH3].[Si] Chemical compound [AlH3].[Si] KMWBBMXGHHLDKL-UHFFFAOYSA-N 0.000 description 1
- CYKMNKXPYXUVPR-UHFFFAOYSA-N [C].[Ti] Chemical compound [C].[Ti] CYKMNKXPYXUVPR-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- ZGDWHDKHJKZZIQ-UHFFFAOYSA-N cobalt nickel Chemical compound [Co].[Ni].[Ni].[Ni] ZGDWHDKHJKZZIQ-UHFFFAOYSA-N 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000011796 hollow space material Substances 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000000752 ionisation method Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000000191 radiation effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/687—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/6831—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
- H01L21/6833—Details of electrostatic chucks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q3/00—Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
- B23Q3/15—Devices for holding work using magnetic or electric force acting directly on the work
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67098—Apparatus for thermal treatment
- H01L21/67103—Apparatus for thermal treatment mainly by conduction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67098—Apparatus for thermal treatment
- H01L21/67109—Apparatus for thermal treatment mainly by convection
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/68—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/6831—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/687—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
- H01L21/68714—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
- H01L21/68785—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by the mechanical construction of the susceptor, stage or support
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N13/00—Clutches or holding devices using electrostatic attraction, e.g. using Johnson-Rahbek effect
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Power Engineering (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Mechanical Engineering (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
- Drying Of Semiconductors (AREA)
Abstract
本发明的实施方式提供具有成本效益的静电吸盘组件,其能够在超高真空环境中在宽温度范围内操作,同时使静电吸盘组件内部的热机械应力最小化。在一实施方式中,该静电吸盘组件包含一介电主体,其具有夹持电极,该夹持电极包含一金属基质复合材料,该材料的热膨胀系数(CTE)与该介电主体的CTE匹配。
Description
发明背景
发明领域
本发明的实施方式大体上是关于用在制造微电子装置的处理腔室中的基板支撑件,更具体而言,是关于用在等离子体处理腔室中的静电吸盘。
现有技术的描述
在用于不同应用,例如,物理气相沉积、蚀刻或化学气相沉积的处理腔室中处理基板的期间,静电吸盘广泛用于固持基板,例如,半导体晶片。静电吸盘典型包含一或多个电极,其嵌入单一吸盘主体内部,该主体包含一介电或半导体陶瓷材料,以在整个主体上产生一静电夹钳场(electrostatic clamping field)。举例来说,半导体陶瓷材料,例如,掺有金属氧化物的氮化铝、氮化硼或氧化铝,可用来产生Johnsen-Rahbek(迥斯热背)型或非库仑型的静电夹钳场。
在单极电极吸盘中,吸盘包含单一电极,且相对于基板施加电压来电偏压该单一电极。将等离子体引入处理腔室,以在吸盘和基板中感应生成相反的静电电荷,而产生可将基板静电固持至吸盘上的吸引静电力。在双极电极吸盘中,吸盘包含两个电极,相对彼此的方式电偏压该两电极,以提供将基板固持至吸盘的静电力。不同于单极电极吸盘,双极吸盘不需要等离子体存在以产生静电夹钳力。
静电吸盘提供数个胜过机械夹钳装置和真空吸盘的优点。举例来说,静电吸盘减少因机械夹钳的应力所造成的裂痕,允许暴露较大面积的基板以用于处理(排除极小部分或未排除边缘),并可用在低压或高真空环境中。此外,静电吸盘可更均匀地将基板固持于夹持表面,以允许更大程度地控制基板温度。此控制可进一步使用在吸盘和基板之间提供热耦合的传热气体来增强。
用在集成电路制造中的不同工艺可能需要高温和宽温度范围,以用于基板处理。这类温度范围可从约20℃至约150℃,对某些工艺可能高达300℃至500℃或更高。因此常期望能有可在宽温度范围下操作的静电吸盘。
为了利用静电吸盘的优点,静电吸盘典型形成基板支撑组件的一部分,该基板支撑组件亦包含不同部件以用于加热和冷却基板,以及用于将功率传递至夹持电极。另外,基板支撑组件亦可包含用于提供基板偏压与提供等离子体功率的部件。结果,静电吸盘的陶瓷主体可包含额外电极和其它部件,举几个例子,例如,加热元件、气体槽道(channel)和冷却剂槽道。同样地,静电吸盘可附接至金属制成的支撑部件。
不过,要将金属部件附接至陶瓷吸盘主体或将金属部件(例如,电极)嵌入陶瓷吸盘主体内部是有困难的,因为陶瓷和金属的热膨胀系数(CTE)差异会导致产生热机械应力,热机械应力在热循环期间可能导致陶瓷断裂或剥落(chip)。此外,CTE的差异可能随温度增加,导致高温下产生更大的热机械应力。为了补偿这些应力,陶瓷吸盘主体可制造得较厚,以提供较大强度并防止断裂,但此做法常会增加吸盘主体的成本。
此外,气体导管(conduit)与电接线(electrical line)常通过提供真空密封的接口(interface)或馈通件(feedthrough)耦合至静电吸盘。馈通件可藉由聚合物O形环加以密封。不过,聚合物O形环在高温下常丧失顺应性(compliance)和回弹性,而可能导致真空密封失效。同样地,由于CTE差异导致热机械应力而造成的任何陶瓷吸盘断裂可能导致密封失效以及真空泄漏。
在某些应用中,可能需要施加偏压至基板及/或藉由在静电吸盘的电极上耦合射频(RF)功率来产生等离子体。射频功率的传输效率部分取决于吸盘主体的各种性质,例如,介于电极和基板之间的介电层的厚度与介电常数。举例来说,对于以宽范围频率(例如,介于约50kHz至约60MHz之间)施加射频功率的应用而言,可能需要一种静电吸盘,其可以具有成本效益的方式针对宽带率范围的有效射频功率传输进行最佳化。
因此,需要一种具成本效益且可在高真空环境中在高温和宽温度范围下操作而不失效的静电吸盘。此外,亦需要一种具成本效益且可在宽带率范围内有效耦合射频功率的静电吸盘。
发明概述
本发明的实施方式提供一种具成本效益的静电吸盘,其能:在高真空环境中于宽温度范围内操作,并在宽带率范围内有效耦合射频功率,以用于基板偏压及/或等离子体形成。
在一实施方式中,一静电吸盘组件包含一支撑基底(support base)和一定位盘(puck),该定位盘包含一前表面(frontside surface)、一电绝缘定位盘基底、配置在该前表面上的一或多个夹持电极,其中该一或多个夹持电极包含一导电金属基质复合材料(metal matrix composite material);及一介电层,该介电层配置在该前表面上并覆盖该一或多个夹持电极。
在另一实施方式中,一静电吸盘组件包含一支撑外壳;一定位盘,其具有一电绝缘上部定位盘板,该上部定位盘板具有一或多个夹持电极与一或多个加热元件;一下部定位盘板,其在包含一凸起部分的接合区域内接合至该上部定位盘板;及一间隙,其在该接合区域的外侧将该上部定位盘板与该下部定位盘板分隔开;一或多个O形环,配置在该下部定位盘板和该支撑外壳之间;及一冷却板,其包含一或多个冷却槽道,且该冷却板配置在该接合区域和该一或多个O形环之间,其中该冷却板耦合至该下部定位盘板并与之热连通。
在又另一实施方式中,一静电吸盘组件包含一折箱组件(bellowsassembly);一定位盘,其具有一前表面、一或多个夹持电极及多个定位盘螺栓孔;一冷却板,其包含一或多个中心开口,每一开口具有一中心开口容积;一或多个外部阶梯和内部阶梯,每个阶梯各自具有一支撑表面用来支撑该定位盘;及一或多个排气孔,其形成在该冷却板中,该一或多个排气孔各自形成在该冷却板中,每一排气孔包含一槽道,以在一形成在该中心开口容积的侧壁中的第一孔和一配置在该冷却板的表面上的第二孔之间提供流体连通;及一间隙,其配置在该定位盘和该冷却板之间,其中该定位盘可从该冷却板拆离。
附图简要说明
参照某些绘示于附图中的实施方式来提供于上文扼要总结的本发明更具体叙述,以详细了解本发明的上述特征结构。不过,须注意附图仅绘示此发明的典型实施方式,因此不应视为对本发明范围的限制,因为本发明可容许其它等效实施方式。
图1为根据本发明一实施方式的等离子体处理腔室的概略剖面图。
图2绘示图1所示静电吸盘组件的一实施方式的分解图。
图3A为根据本发明一实施方式的图1所示静电吸盘组件的概略剖面图。
图3B为根据本发明一实施方式的图3A所示静电吸盘组件的概略剖面详图。
图4A为根据本发明另一实施方式的图1所示静电吸盘组件的概略剖面图。
图4B为根据本发明一实施方式的图4A所示静电吸盘组件的概略剖面详图。
图5A为根据本发明另一实施方式的图1所示静电吸盘组件的概略剖面图。
图5B为根据本发明一实施方式的图5A所示静电吸盘组件的概略剖面图。
图6A为根据本发明另一实施方式的图1所示静电吸盘组件的透视图。
图6B为根据本发明一实施方式的图6A所示静电吸盘组件的概略剖面图。
图6C为根据本发明一实施方式的图6B所示排气孔的概略剖面详图。
图6D为根据本发明另一实施方式的图6B所示螺栓孔的概略剖面详图。
图6E绘示图6A所示静电吸盘组件的一实施方式的分解图。
为了帮助了解,已尽可能地使用相同元件符号来标明各图中共享的相同元件。预期一实施方式的特征结构可在无需进一步详述的情况下并入其它实施方式中。
具体描述
本发明大体上提供一种坚固、具成本效益的静电吸盘,其能够在超高真空环境中于宽温度范围内操作。本发明的实施方式包含一静电吸盘组件,其提供用于基板偏压及/或等离子体形成的有效射频耦合。
图1为根据本发明一实施方式的等离子体处理腔室的概略剖面图。在一实施方式中,该等离子体处理腔室为一溅射蚀刻处理腔室。不过,举例来说,其它类型的处理腔室,例如,物理气相沉积(亦即,溅射)腔室,亦可用来实行本发明。
腔室100为一真空腔室,其适于在基板处理期间于腔室内容积120内部维持次大气压(sub-atmospheric pressure)。腔室100包含腔室主体106,其由圆顶104覆盖,圆顶104圈出位于腔室内容积120的上半部的处理容积119。腔室100亦可包含一或多个屏蔽件(shield)105,其划界不同腔室部件,以防止这类部件和离子化工艺材料间发生不必要的反应。腔室主体106和圆顶104可以金属制成,例如,铝。
在腔室内容积120内部配置有静电吸盘组件124,用于支撑并夹持基板“S”,例如,半导体晶片。静电吸盘组件124包含定位盘(puck)150,在其上搁放基板“S”;冷却板151;及支撑基底152。支撑基底152包含支撑外壳149、折箱组件110和中空支撑轴112。支撑轴112耦合至升降机构113,其提供静电吸盘组件124在上部处理位置(如图1所示)和下部传送位置(未显示)之间的垂直移动。折箱组件110绕支撑轴112配置,并耦合在支撑基底152和腔室100的底表面126之间,以提供允许静电吸盘组件124垂直运动的挠性密封,同时防止真空从腔室100内部损失。折箱组件110亦包含下部折箱凸缘164,其与O形环165接触,O形环165接触底表面126以帮助防止腔室真空损失。
定位盘150包含电绝缘定位盘基底162,其具有两个嵌入其中的夹持电极159,且两个夹持电极159电气连接至夹持功率源140,例如,直流功率源。在另一实例中,定位盘150可包含一个夹持电极159或超过两个的夹持电极159,以用于夹持基板。对两个电极的实例而言,夹持电极159可各自为薄半圆或“D”形板,且每一夹持电极159各自附接至直流功率源的一个接头。对单一电极而言,夹持电极159可为一薄盘,其附接至直流功率源的一个接头(另一直流接头附接至接地电位)。不过,一或多个夹持电极159可具有任何适当形状,其可包含环形、楔形、带状等。夹持电极159可以任何适当的导电材料制成,例如,金属或金属合金。
两个夹持电极159通过一或多个RF匹配(RF match)116耦合至射频(RF)等离子体功率源117A与射频偏压功率源117B。射频等离子体功率源117A提供功率以形成等离子体102,而射频偏压功率源117B施加射频偏压至基板“S”。在另一实施方式中,射频功率源并未耦合至静电吸盘组件124。
定位盘150包含第一凸缘153和第二凸缘155。第一凸缘153可用来支撑一边缘环(未显示),以在基板蚀刻期间降低边缘效应,而第二凸缘155可用来将定位盘150耦合至支撑基底152。在另一实施方式中,定位盘150仅包含第一凸缘153而无第二凸缘155。
定位盘150亦包含多个支撑基板“S”的突出(protrusion)或台面(mesa)157,且在该些台面157之间为气体沟槽158,其与气源141流体连通。气源141提供一传热气体在基板“S”背侧和定位盘150之间流动,以帮助调节定位盘150和基板“S”之间的热传速率。在一实例中,传热气体可包含一惰性气体,例如,氩。传热气体可透过定位盘150中与一或多个气体沟槽158流体连通的一或多个孔(未显示)输送至气体沟槽158。定位盘150亦可具有外部周围环161,其在接近边缘处接触基板“S”,且可帮助控制从基板“S”后方逸出的传热气体量。
基板“S”的温度调节进一步受到多个配置在冷却板151中的冷却槽道160的帮助,且冷却槽道160耦合至流体源142并与之流体连通,流体源142提供一冷却剂流体,例如,水,但也可使用任何适当的冷却剂流体、气体或液体。在另一实施方式中,定位盘150亦可包含加热元件(见图5A的502),其配置在夹持电极159和冷却板151之间。此外,定位盘150、冷却板151及/或静电吸盘组件124的其它部件的温度可使用一或多个温度传感器(未显示)来监控,例如,热电耦等,且温度传感器耦合至一或多个温度监视器。在一实例中,定位盘150耦合至至少一个用于温度监控的热电耦。
静电吸盘组件124包含冷却板151,其使用螺栓(未显示)或其它适合的紧固装置耦合至定位盘150。冷却板151可在定位盘150内部部分凹陷,以提供与定位盘150和基板”S”更佳的热耦合。亦可在定位盘150和冷却板151之间设置一导热材料,以进一步改善定位盘150和冷却板151之间的热耦合。在另一实施方式中,使用接合剂接合冷却板151和定位盘150。
定位盘150使用多个围绕着定位盘150的第二凸缘155配置的螺栓(未显示)来耦合至支撑基底152的支撑外壳149。一或多个O形环154位于定位盘150和支撑外壳149之间的O形环沟槽(见图5A)内,以提供介于腔室内容积120和静电吸盘组件124内部的内容积156之间的真空密封。内容积156包含支撑外壳149内部以及中空支撑轴112内部用于设置导管与接线的开放空间,且内容积156与腔室100外部的大气压力流体连通。在本实施方式中,定位盘150可从支撑外壳149拆离,以便可在不更换支撑外壳149和支撑基底152的情况下更换定位盘150。在另一实施方式中,定位盘150和支撑外壳149接合在一起以形成一整合单元。
支撑轴112和折箱组件110耦合至支撑外壳149以形成支撑基底152。在一实施方式中,将支撑轴112和折箱组件110焊接至支撑外壳149。在另一实施方式中,支撑轴112和折箱组件110可形成一分开的组件,其以螺栓拴紧至支撑外壳149。在又另一实施方式中,静电吸盘组件124可经调适,以便支撑轴112和折箱组件110直接耦合至冷却板151,而不使用支撑外壳149。
基板升降件130(substrate lift)包含升降销109,其装配在连接至轴111的平台108上,轴111耦合至用于举起与降下基板升降件130的第二升降机构132,以便基板“S”可放置在定位盘150上或从定位盘150移除。静电吸盘组件124包含通孔(见图2的204),以容纳升降销109。折箱组件131耦合在基板升降件130和底表面126之间,以提供挠性密封,其在基板升降件130的垂直运动期间维持腔室真空。
腔室100耦合至真空系统114并与之流体连通,真空系统114包含一节流阀(未显示)和真空泵(未显示),用于排空腔室100。腔室100内的压力可藉由调整节流阀及/或真空泵而获得调节。腔室100亦耦合至工艺气源118并与之流体连通,工艺气源118可供应一或多种工艺气体,例如,氩,给腔室100以用于蚀刻处理。
为了产生用于溅射蚀刻基板“S”的等离子体102,夹持电极159通过一或多个射频匹配116耦合至射频等离子体功率源117A和射频偏压功率源117B,以在腔室100内部形成等离子体102以及施加偏压至基板“S”。夹持电极159作用如一射频阴极,其与腔室主体106和圆顶104电绝缘,且腔室主体106和圆顶104两者连接至地115。工艺气体,例如,氩,从工艺气源118引入腔室100,并调整气体压力至用于等离子体点燃的预设值(preset value)。当射频功率从射频等离子体功率源117A输送至夹持电极159时,通过电容耦合在处理容积119中点燃等离子体102。射频匹配116可调整或预设,以改善从射频等离子体功率源117A至等离子体102的功率传递效率。射频偏压功率源117B施加偏压至夹持电极159,使得等离子体102中的正电荷离子加速至基板“S”的表面,并溅射蚀刻基板表面。
射频等离子体功率源117A和射频偏压功率源117B可以位于约.5MHz至约60MHz的范围内,或更优选地,以接近约2MHz和约13.56MHz的频率提供功率。较低频率可用于驱动偏压从而提供离子能量,而较高频率可用于驱动等离子体102。
图2绘示图1所示静电吸盘组件124的一实施方式的分解图。为了清楚起见,并未显示在支撑轴112中通过轴通孔210的电接线和流体运送导管。支撑外壳149包含凸缘202,其具有与升降销孔204对准的凸缘通孔203,以便升降销109可从定位盘150的前表面206举起或降下基板。O形环154配置在凸缘202上的一O形环沟槽(未显示)内,以便在定位盘150耦合至支撑外壳149时,可形成真空密封。
外部周围环161划界出该前表面206,并可包含多个由相交气体沟槽158所定义的凸起的楔形台面157,气体沟槽158如上述般分配传热气体。气体沟槽158包含径向槽道214,其与圆形槽道212相交。气体沟槽158可包含多个槽道,其以直角相交,以形成网格状图案。或者,径向图案可与网格(gridpattem)和圆形图案(circular pattem)结合,但其它几何形状亦可用于气体沟槽158的图案。
一或多个配置在相交气体沟槽158之间的台面157可包含正方形或矩形块、圆锥、楔形、角锥、柱、圆柱墩(cylindrical mound)、或其它不同尺寸的突出或其组合,其从定位盘150向上延伸并支撑基板。在一实施方式中,台面157的高度范围可从约50微米至约700微米,且台面157的宽度(或直径)范围可从约500微米至约5000微米。在另一实例中,定位盘150可包含前表面206,其具有多个形成在其中的气体沟槽158(例如,径向槽道214),且不包含台面157。
定位盘基底162可包含氧化铝、氮化铝、氧化硅、碳化硅、氮化硅、氧化钛、氧化锆的其中至少一种,尽管亦可使用其它材料。定位盘基底162可为单一整块的陶瓷,其藉由热压和烧结陶瓷粉末,然后切削该烧结体以形成定位盘150的最终形状而制成。
图3A为根据本发明一实施方式的图1所示静电吸盘组件124的概略剖面详图。两个夹持电极159在定位盘150的前表面206上部分嵌入电绝缘的定位盘基底162。为了清楚起见,并未显示基板“S”。在此上下文中,“部分嵌入”意指夹持电极159未完全被定位盘基底162的材料环绕或包围,且每一夹持电极159的一侧形成部分的前表面206,其可以介电材料涂布。在另一实施方式中,可使用一个夹持电极159。在尚有另一实施方式中,定位盘150可包含超过两个的夹持电极159。
定位盘基底162提供用于使夹持电极159彼此电绝缘以及和基板“S”电绝缘的装置,亦提供用于夹持电极159和定位盘150的其它部件的导热路径与机械支撑。定位盘基底162具有介于夹持电极159和冷却板151之间的厚度“D”。
用于夹持电极159的材料可适当选择,以便电极材料的热膨胀系数(CTE)实质上与电绝缘定位盘基底162材料的CTE匹配,以使CTE差异最小化,并避免在热循环期间产生可能损坏定位盘150的热机械应力。在一实施方式中,将一导电金属基质复合(MMC)材料用于夹持电极159。MMC材料包含一金属基质和一补强材料(reinforcing material),补强材料嵌入并分散在基质各处。金属基质可包含单一金属、二或多种金属、或金属合金。可使用的金属包含,但不受限于,铝(Al)、镁(Mg)、钛(Ti)、钴(Co)、钴镍合金(CoNi)、镍(Ni)、铬(Cr)、金(Au)、银(Ag)或其不同组合。补强材料可选择为提供MMC所需的结构强度,且亦可选择为提供MMC的其它性质,例如,导热性和CTE所需的值。可使用的补强材料的实例包含硅(Si)、碳(C)、或碳化硅(SiC),但亦可使用其它材料。
用于夹持电极159的MMC材料较佳地选择为提供所需的导电性,且在静电吸盘组件124的操作温度范围间提供实质上匹配定位盘基底162材料的CTE。在一实施方式中,温度范围可从约摄氏20°至约摄氏400°。在一实施方式中,匹配CTE包含选择MMC材料,使得MMC材料包含至少一种同样用在定位盘基底162材料中的材料。在一实施方式中,定位盘基底162包含氧化铝(Al2O3)。在一实施方式中,MMC材料包含铝(Al)和硅(Si)。在一实施方式中,MMC成分包含约13wt%的铝(重量百分比组成)和约87wt%的硅。在另一实施方式中,MMC成分包含约50wt%的铝和约50wt%的硅。在尚有另一实施方式中,MMC成分包含约30wt%的铝和约70wt%的硅。在另一实施方式中,举例来说,MMC可包含至少三种材料,例如,碳硅化铝(AlSiC)或碳硅化钛(TiSiC)。
MMC的组成材料和成分百分比可选择为提供满足所需设计目标的工程材料。举例来说,藉由适当选择MMC材料以密切匹配夹持电极159和定位盘基底162的CTE,定位盘基底162内部的热机械应力会降低,其可允许使用质量较小或较薄的定位盘基底162,因为基底厚度TP有部分是由防止定位盘基底162在正规温度循环期间产生裂痕或断裂所需的结构强度来决定。减少定位盘基底162的厚度可降低定位盘150的成本。此外,MMC材料在使用上可比用于某些应用的其它材料更为价廉。举例来说,当定位盘基底162包含Al2O3时,钼可用于夹持电极159,因为钼所具有的CTE可提供Al2O3的CTE可接受的匹配,但钼显然在使用上比提供等效或更接近的CTE匹配的MMC材料更为昂贵。
参照图3A,每一夹持电极159的电极底表面300接合至定位盘基底162。可使用扩散接合做为接合方法,但亦可使用其它接合方法。在一实施方式中,将近乎50微米厚的铝箔(未显示)放置在电极底表面300和定位盘基底162之间,并施加压力与热以形成铝箔和铝硅MMC夹持电极159之间以及铝箔和Al2O3定位盘基底162之间的扩散接合。在另一实施方式中,夹持电极159使用直接扩散接合直接与定位盘基底162接合,直接扩散接合不需要使用中间层材料,例如,铝箔。
在接合夹持电极159与定位盘基底162之后,夹持电极159和定位盘基底162可切削以在前表面206形成台面157、气体沟槽158、外部周围环161及/或其它定位盘150的特征结构,尽管亦可在电极接合前,切削出某些前文所提及的特征结构。在一实施方式中,台面157和气体沟槽158是在前表面206上形成于夹持电极159中,如图3A所示,且台面高度MH的范围从约200微米至约1000微米。每一台面157亦可具有小突出或凸块(未显示),以最小化台面157和基板之间的总接触面积。
图3B为根据本发明一实施方式的图3A所示静电吸盘组件124的概略剖面详图。定位盘基底162使夹持电极159彼此电气隔离。为了产生基板的静电夹持作用,夹持电极159亦与基板电气隔离。在一实施方式中,夹持电极159与形成在其上的特征结构在前表面206上经过表面处理或涂布,以在夹持电极159和基板(未显示)之间提供电绝缘的介电层301。在另一实施方式中,介电层301包含一介电材料,其具有实质上与用于夹持电极159的MMC材料的CTE相匹配的CTE,且介电材料经过适当选择,以提供至夹持电极159和定位盘基底162的良好黏着。在一实施方式中,介电层301包含一材料,其CTE实质上匹配定位盘基底162的CTE。
介电材料共形地沉积在夹持电极159上,以形成薄而均匀的介电层301,或在夹持电极159以及形成在其上的特征结构,例如,台面157和气体沟槽158上方形成涂层。涂布的介电材料如同一毯覆涂层覆盖在定位盘150的前表面206上的夹持电极159和部分的定位盘基底162。在另一实施方式中,介电层301包含两或更多层,每一层以一毯覆涂层相继沉积。
介电层301可包含氮化硼、氧化铝(Al2O3)、类钻碳(DLC)、DLC基质复合材料、或其组合的其中一种,尽管可使用其它类型的介电材料。在另一实施方式中,介电层301提供介于约10Gpa(千兆帕斯卡)至约25Gpa之间的硬度。在一实施方式中,介电层301所具有的静摩擦系数的范围从约0.15至约5.0。在另一实施方式中,介电层301所具有的静摩擦系数的范围从约0.05至约0.2。介电层301可藉由电弧喷涂、化学气相沉积(CVD)、溅射或等离子体辅助CVD来沉积,但亦可使用其它沉积方法。
介电层301具有厚度“d”,其范围可从约10微米至约1000微米,但可使用其它厚度。在一实施方式中,厚度“d”的范围从约200微米至约800微米。在另一实施方式中,厚度“d”的范围从约1微米至约10微米。电极厚度TE可经过适当选择,以提供足够厚度来用于切削出特征结构,例如,台面157和气体沟槽158,以及用于在沉积介电层301后,提供所需的台面高度MH。在一实施方式中,电极厚度TE大于约500微米。
在一实施方式中,夹持电极159耦合至射频等离子体功率源117A,以驱动等离子体102(见图1)。为了有效驱动等离子体102,需要使引导朝向等离子体102的顺向射频能量(forward RF enenry)350的传输最大化,并使远离等离子体102的方向的反向射频能量(backward RF energy)351的传输最小化。定位盘基底162在夹持电极159下方具有厚度“D”。优先朝等离子体102传输射频能量可藉由相对于定位盘基底162降低通过介电层301的射频传输的电容阻抗而获得帮助。举例来说,藉由减少厚度比“d”/“D”,顺向射频能量350可增加,而反向射频能量351则减少。对固定的厚度比“d”/“D”而言,可藉由相对于定位盘基底162材料的介电常数增加介电层301的介电常数来达成类似的射频传输效果,因为电容阻抗可能与传输媒介的介电常数成反向相关。在一实施方式中,定位盘基底162具有厚度“D”,其远大于介电层301的厚度“d”。
在夹持电极159上方施用介电层301的一个优点在于可更容易控制膜层性质。举例来说,定位盘基底162可使用烧结工艺制造,烧结工艺可能导致在整个定位盘基底162中的介电常数变异。使用沉积介电层301覆盖住在前表面206上的夹持电极159可提供层厚度和介电常数的较小变异,转而可在顺向射频能量350的传输上提供较大控制。此外,使用独立的介电层301覆盖夹持电极159允许选择介电层301的材料与厚度,使得定位盘设计可进行“微调(tuned)”,而得以采用具成本效益的方式在宽范围的频率内提供有效的射频功率输送。在一实施方式中,静电吸盘组件124可在约0.5MHz至约60MHz的频率范围内以最小射频功率损耗有效地输送射频(RF)功率。
图4A为根据本发明另一实施方式的图3A所示静电吸盘组件的概略剖面详图。如上文所述,两个夹持电极159部分嵌入定位盘基底162。夹持电极159和定位盘基底162形成定位盘150的前表面206。将介电材料沉积至夹持电极159和定位盘基底162上,以在前表面206上形成介电层301。介电层301的厚度经过适当选择,以便于在介电层301中切削出特征结构,例如,台面157和气体沟槽158。
图4B为根据本发明一实施方式的图4A所示静电吸盘组件的概略剖面详图。选择介电层301的最大厚度“dMAX”,使得在介电层301中切削出特征结构之后,介电层301所需的最小厚度“dMIN”保持覆盖住前表面206上的夹持电极159和定位盘基底162。在一实施方式中,最小厚度“dMIN”的范围从约10微米至约300微米。已在此处叙述可用于介电层301的介电材料与沉积技术。
图5A为根据本发明另一实施方式的图1所示静电吸盘组件的概略剖面详图。定位盘150包含前表面206、上部定位盘板550A和下部定位盘板550B,上部定位盘板550A和下部定位盘板550B在凸起部分503处接合在一起,凸起部分503配置于位在定位盘150中心上的接合区域504中。上部定位盘板550A包含夹持电极159和一或多个加热元件502,该一或多个加热元件502电气连接至加热器功率源501,以用于加热上部定位盘板550A。下部定位盘板550B耦合至冷却板505,并与之热连通,冷却板505具有一或多个冷却槽道506,该一或多个冷却槽道506与流体源142流体连通。冷却板505配置为近接一或多个O形环154,O形环154位于下部定位盘板550B和支撑外壳149之间,以提供腔室内容积120和静电吸盘组件124内部的内容积156之间的真空密封。下部定位盘板550B及/或支撑外壳149可包含用于O形环154的O形环沟槽508。
上部定位盘板550A可包含此处所述用于定位盘基底162的电绝缘材料。在一实施方式中,上部定位盘板550A包含一或多种导热材料,以便加热元件502所产生的热可更有效地输送至基板。下部定位盘板550B和上部定位盘板550A可包含相同材料。在一实施方式中,下部定位盘板550B包含的材料与用于上部定位盘板550A的材料相异。在一实施方式中,下部定位盘板550B包含一金属基质复合材料。在一实施态样中,该金属基质复合材料包含铝和硅。在一实施态样中,上部定位盘板550A包含氮化铝,且下部定位盘板550B包含碳硅化铝的复合材料。在尚有另一实施态样中,下部定位盘板550B包含金属或金属合金。
参照图5A,当上部定位盘板550A和下部定位盘板550B接合在一起以形成定位盘150时,会形成具有厚度“TG”的间隙“G”。在一实施方式中,使用扩散接合作为接合方法,但亦可使用其它接合方法。在一实施方式中,上部定位盘板550A和下部定位盘板550B所包含的材料含有铝,且凸起部分503包含一铝箔“中间层”,其放置在介于上部定位盘板550A和下部定位盘板550B之间的接合区域504中,并施加压力和热以形成介于铝箔与上部定位盘板550A之间以及介于铝箔与下部定位盘板550B之间的扩散接合。在另一实施方式中,扩散接合可使用其它中间层材料形成,这些材料是依据用于上部定位盘板550A和下部定位盘板550B的材料来选择。在另一实施方式中,上部定位盘板550A可使用直接扩散接合(direct diffusion bonding)直接接合至下部定位盘板550B,其中并未使用中间层来形成接合。
凸起部分503可包含一中间层材料、或一黏着剂、或一部分的上部定位盘板550A、及/或一部分的下部定位盘板550B或其组合。凸起部分503形成具有厚度“TG”的间隙“G”。在一实施方式中,厚度“TG”的范围从约20微米至约1000微米。间隙“G”使上部定位盘板550A和下部定位盘板550B之间的接触面积最小化,从而使因任何存在于上部定位盘板550A和下部定位盘板550B间的温度差或CTE差所造成的热机械应力减至最小。上部定位盘板550A和下部定位盘板550B能在热循环期间独立地在接合区域504(见图5B)外侧自由膨胀或收缩。
此外,接合区域504可藉由限制从已加热的上部定位盘板550A至未加热的下部定位盘板550B的导热路径而使得接合区域504的作用如同一热扼流器(thermal choke)。在一真空环境中,除非设置传导媒介,否则热传递主要为辐射方式。由于在基板处理期间,定位盘150可能配置在真空环境中,加热元件502所产生的热可藉由通过接合区域504的传导作用而比藉由整个间隙“G”的辐射作用更能有效地传递。因此,藉由调整接合区域504的尺寸,可控制从上部定位盘板550A流动至下部定位盘板550B的热通量,且接合区域504作用如同一热扼流器。为了提供有效的基板加热,较佳限制从上部定位盘板550A传导出且通过接合区域504的热能的量。另一方面,跨越整个接合区域504的大温度差可能导致在接合区域504处产生令人无法接受的热机械应力。因此,接合区域504的面积较佳地经过选择,以在不让接合区域504处产生无法接受的热机械应力的情况下提供有效的基板加热。
由接合区域504所形成的热扼流器亦可帮助引导以及加长导热路径(thermal conduction path),以使一或多个用来形成真空密封的O形环154上的热应力减至最小。举例来说,导热路径“ABC”可始于上部定位盘板550A中的点“A”、继续通过接合区域504至下部定位盘板550B中的点“B”、继续通过冷却板505、并接着终止在接近O形环154的点“C”。藉由增加O形环154离接合区域504的距离,从上部定位盘板550A中的任何点到O形环154的导热路径的长度亦随之增加,由于沿着导热路径“ABC”可能发生传导以及辐射热损耗,导致从点“A”至点“C”的显著的温度下降。此外,冷却板505是放置在接合区域504和O形环154之间,以帮助保持O形环154冷却。
图5B为根据本发明一实施方式的图5A所示静电吸盘组件的概略剖面图。接合区域504包含凸起部分503,凸起部分503配置在一具有内部半径R1和外部半径R2的环形区域中。中心区域507位于内部半径R1内部,并可包含气体导管与电接线(未显示)。冷却板505为环形,并具有宽度“W”,以及位于半径距离R3且距离接合区域504为d23=R3-R2处。O形环154邻接冷却板505并位于半径距离R4处,而可被冷却板505冷却。较佳地,半径距离R4选择一大数值,以提供从上部定位盘板550A至一或多个O形环154的长导热路径“ABC”,从而帮助一或多个O形环154保持冷却。在一实施方式中,一或多个O形环154的位置近接下部定位盘板550B的下部板周围552。此外,半径距离R3较佳地经过选择,使得冷却板505近接一或多个O形环154。
藉由调整接合区域504的内部半径R1和外部半径R2,以及藉由调整半径距离R3和R4,通过接合区域504的热通量和O形环154的温度可受控用于上部定位盘板550A的操作温度范围。在一实施方式中,上部定位盘板550A的操作温度范围从约250摄氏度(℃)至约450摄氏度(℃)。
导热路径示于图5B。热从上部定位盘板550A中的点“A”传导至位于接合区域504的外部半径R2处的周长附近的点“B”,并接着至下部定位盘板550B,然后至下部定位盘板550B中的点“C”。从点“A”到点“C”的虚线箭头指示热无法直接从点“A”传导至点“C”,因为间隙“G”将这两个点分隔开来,如图5A所示。
图6A为根据本发明又另一实施方式的图1所示静电吸盘组件124的透视图。静电吸盘组件124包含定位盘150、冷却板601及折箱组件110,折箱组件110包含支撑轴112。定位盘150耦合至冷却板601,且冷却板601耦合至折箱组件110。静电吸盘组件124经调适,使其可拆卸,以便定位盘150可从冷却板601拆离,且冷却板601可从折箱组件110拆离(见图6E)。
定位盘150包含电绝缘定位盘基底162及前表面206,前表面206包含气体沟槽158、台面157、外部周围环161、升降销孔204和第一凸缘153,第一凸缘153可支撑一边缘环(未显示)。此处叙述用于定位盘150特征结构的上述特征结构和材料的不同实施方式。定位盘150亦包含定位盘螺栓孔602,其容纳用于将定位盘150紧固至冷却板601的螺栓(见图6B)。虽然在图6A中仅显示三个定位盘螺栓孔602,但可使用任何数目的定位盘螺栓孔602,且该定位盘螺栓孔602各自可配置在定位盘150上的任何位置。每一定位盘螺栓孔602亦可包含一扩孔(counterbore)(图6D),使得每一螺栓头与定位盘150的表面齐平或从该处凹下。
图6B为根据本发明一实施方式的图6A所示静电吸盘组件的概略剖面图。在图6B中已加上基板“S”且未显示台面157,以阐明气流图案。利用外部周围环161和台面157将基板“S”支撑在定位盘150的前表面206上。冷却板601藉由板装配螺栓615装配至折箱组件110,螺栓615通过冷却板601中的孔,并容纳在配置于折箱装配凸缘614中的螺纹孔。虽然在图6B的剖面中仅显示两个板装配螺栓615,可使用任何数目的板装配螺栓615来将冷却板601紧固至折箱装配凸缘614。定位盘150藉由位在定位盘螺栓孔602中的定位盘装配螺栓616装配至冷却板601。
折箱组件110包含折箱装配凸缘614、支撑轴112、折箱焊接件611、上部折箱凸缘613和下部折箱凸缘164。支撑轴112和上部折箱凸缘613连接至折箱装配凸缘614,且折箱焊接件611连接至上部折箱凸缘613以及下部折箱凸缘164。所使用的连接方法(例如,焊接、铜焊)经过适当选择以及控制,使得当静电吸盘组件124装配至腔室100(见图1)时,在内容积156(其可为大气压力)和腔室内容积120(在基板处理期间为次大气压)之间形成真空密封。下部折箱凸缘164使用多个螺栓(未显示)装配至腔室100的底部,且O形环165配置在下部折箱凸缘164和腔室100的底表面126之间,以使腔室内容积120和静电吸盘组件124的内容积156隔离开来。下部折箱凸缘164并未连接至支撑轴112,所以支撑轴112可相对于下部折箱凸缘164自由移动。
折箱装配凸缘614包含用于O形环619的凸缘O形环沟槽623,O形环619提供真空密封,以便腔室内容积120不与静电吸盘组件124的内容积156流体连通。在另一实施方式中,仅冷却板601具有O形环沟槽,且折箱装配凸缘614不具有凸缘O形环沟槽623。在又另一实施方式中,使用多于一个的凸缘O形环沟槽623和O形环619,以提供真空密封。
冷却板601包含一或多个板608、多个冷却槽道160、二或更多个冷却剂流体导管628和气体导管604。冷却槽道160形成一或多个冷却回路(coolingloop)或环路(circuit),并且与提供冷却剂流体的流体源142流体连通。冷却槽道160可具有正方形、矩形、圆形或其它形状的截面。二或更多个冷却剂流体导管628耦合至板608,并与冷却槽道160流体连通。冷却剂流体导管628从冷却板601延伸,并通过支撑轴112的中空内部空间。冷却剂流体导管628使用任何适当的密封耦合装置631耦合至流体源142。
在一实施方式中,冷却剂流体导管628包含一管的末端,该管经过成环(looped)且成形(shaped)以形成冷却槽道160。将成形的管接合(例如,藉由焊接或铜焊)至板608,以将该管热耦合至板608。在另一实施方式中,冷却槽道160包含形成(例如,藉由切削)在板608中的多个槽道。板608可包含任何导热材料,例如,铝、铜、黄铜、不锈钢或其它适当材料。
气体导管604提供从气源141输送传热气体603至基板“S”的背表面606的装置。气体导管604耦合至冷却板601,使得腔室内容积120保持与静电吸盘组件124的内容积156隔离开来。在一实施方式中,气体导管604包含一管,其焊接或铜焊至板608,以形成板608和管外表面之间的真空密封。气体导管604从冷却板601延伸通过支撑轴112,并使用任何适当的气体管线耦合装置633耦合至气源141。
冷却板601亦包含一或多个中心开口639、多个第一螺栓孔634、第二螺栓孔637和升降销孔635,其延伸通过冷却板601。一或多个中心开口639包含多个接近冷却板601中心的孔,以便来自定位盘150的电接线及/或其它元件(例如,热电耦)可通过冷却板601和静电吸盘组件124的支撑轴112。第一螺栓孔634容纳板装配螺栓615,且第一螺栓孔634可包含扩孔,使得每一个板装配螺栓615与板608的表面636齐平或从板608的表面636凹下。冷却板601的升降销孔635与定位盘150的升降销孔204对准,以便升降销109(见图1)可在不接触定位盘150或冷却板601的情况下移动通过该些孔。冷却板601的第二螺栓孔637允许定位盘150使用定位盘装配螺栓616紧固至冷却板601。
冷却板601包含凸起部分,其从冷却板601的表面636向上延伸。该凸起部分包含一或多个外部阶梯609和内部阶梯610,且各自具有用来支撑定位盘150的顶表面638。一或多个外部阶梯609配置为接近冷却板601的周围(periphery),且内部阶梯610相对于该一或多个外部阶梯609而位于内侧。在一实施方式中,外部阶梯609包含一凸起环形环,其设置为接近冷却板601的周围,且内部阶梯610包含多个凸起环形环,其环绕每个中心开口639、升降销孔635和第二螺栓孔637(见图6E)。
每一个外部阶梯609和内部阶梯610具有阶梯高度HS,其范围从约30微米至约1000微米。在一实施方式中,阶梯高度HS的范围从约200微米至约400微米。当定位盘150装配至冷却板601时,气体传导间隙632形成在定位盘150和冷却板601之间。气体传导间隙632具有均匀的间隙高度,且几乎等于阶梯高度HS。
如在下文更详细叙述,气体传导间隙632藉由限制零件之间的接触来帮助使定位盘150和冷却板601之间的热机械应力最小化。气体传导间隙632亦使用传热气体603来达成定位盘150和冷却板601之间的热耦合。定位盘150和冷却板601之间的热耦合可藉由一或多个方式来调整,其可包含改变压力、流速及/或用于传热气体603的气体类型。传热气体603从气体导管604传导至气体传导间隙632以及至在定位盘150中的多个气孔605,并从气孔605流至气体沟槽158,其输送气体至基板“S”的背表面606。
参照图6B,定位盘150包含加热元件502和两个夹持电极159。在其它实施方式中,定位盘150可包含一个夹持电极159或多于两个的夹持电极159。定位盘150亦包含一或多个气孔605,其延伸通过定位盘150,以便传热气体603可从气体传导间隙632流到气体沟槽158。在一实施方式中,气孔605的直径可近乎等于或小于气体沟槽158的宽度。气孔605亦可配置在任何位置,并以任何图案分布在前表面206上。
加热元件502电气连接至第一对馈通导体(feedthrough conductor)625,第一对馈通导体625在电连接640B处电气连接至加热器功率导体629。加热器功率导体629接着在电连接640A处连接至加热器功率源501。同样地,夹持电极159通过第二对馈通导体625与夹持功率导体630电气连接至夹持功率源140。加热器功率导体629和夹持功率导体630可包含电绝缘接线,其部分绕经支撑轴112内部。馈通导体625的长度经过放大以利于清楚显示,且电连接640B可位于支撑轴112内部。在另一实施方式中,除了夹持功率源140之外,一或多个射频功率源也电气连接至夹持电极159。
馈通导体625包含导电元件(例如,金属杆及/或接线),其形成部分的真空馈通件(vacuum feedthrough)622。真空馈通件622亦包含馈通凸缘621,其在中心开口639上方藉由多个螺栓(未显示)而装配至冷却板601。馈通O形环620提供馈通凸缘621和冷却板601之间的真空密封。真空馈通件622经调适,以便真空密封亦形成在每一个馈通导体625和馈通凸缘621之间,从而允许馈通导体625通过馈通凸缘621,同时使内容积156与中心开口639的容积隔离开来。此外,当导体通过凸缘,真空馈通件622保持馈通导体625彼此电气隔离,并与馈通凸缘621(其可以金属制成)电气隔离。
在其它实施方式中,真空馈通件622可包含少于或多于四个的馈通导体625,举例来说,取决于定位盘150中的夹持电极159和加热元件502的数目。在又另一实施方式中,冷却板601包含多于一个的中心开口639,且真空馈通件622装配在每一个中心开口639中。举例来说,第二中心开口639和真空馈通件622可用于一或多个耦合至定位盘150的温度传感器(例如,热电耦)。真空馈通件622可针对特定应用而设计,或可使用商业上可购得的馈通件以减少部件成本。
内部阶梯610和外部阶梯609的顶表面638接触定位盘150,但可不与定位盘150形成流体密封,因为定位盘150仅是以定位盘装配螺栓616的力量按压紧靠顶表面638。因此,传热气体603可能“泄漏”至阶梯顶表面638和定位盘150之间,并流入腔室内容积120。举例来说,传热气体603亦可流入升降销孔635、第二螺栓孔637和中心开口639,接着再进入腔室内容积120。不过,泄漏至中心开口639中的传热气体603无法流过真空馈通件622的馈通O形环620。因此,在基板处理期间,传热气体603在中心开口639内的压力可增加到超过腔室内容积120中的气体压力的值。气体压力的增加和载流馈通导体625的存在,可能导致中心开口639内发生电弧。为了防止这类电弧,排气孔627形成在冷却板601内部,以便中心开口639内的气体可排放至腔室内容积120。
图6C为根据本发明一实施方式的图6B所示排气孔627的详图。排气孔627包含排气孔槽道641,其将中心开口639的侧壁642中的第一孔643连接至位于冷却板601的底表面607的第二孔644,以便中心开口639的中心开口容积645与腔室内容积120流体连通。第二孔644配置在O形环619的外部直径的外侧,以便第二孔644配置在与腔室内容积120流体连通的冷却板601的表面上。排气孔627可包含任何槽道配置,其提供中心开口容积645和腔室内容积120之间的流体连通,使得各容积的压力可均等化。在另一实施方式中,冷却板601包含多于一个的中心开口639,且每一个中心开口639具有排气孔627。
中心开口容积645和气体传导间隙632在静电吸盘组件124内部可包含至少两个压力区域。第一压力区域包含中心开口容积645,且藉由排气孔627使其压力近乎等于腔室内容积120的压力。第二压力区域包含气体传导间隙632,其所具有的压力部分由气体导管604供应的传热气体603的气体压力以及通过定位盘150中的气孔605的流导(flow conductance)来决定。
参照图6B,使用定位盘装配螺栓616将定位盘150紧固至冷却板601,定位盘装配螺栓616通过第二螺栓孔637并螺纹旋入冷却板601中。随着定位盘150和冷却板601经历基板处理期间的温度循环,定位盘150和冷却板601会膨胀与收缩。定位盘150和冷却板601可以不同材料制成,并具有不同的CTE,且因此每个零件的尺寸膨胀与收缩亦可能不同。为了防止因CTE不匹配造成过多机械应力而可损坏定位盘150及/或冷却板601,允许定位盘150和冷却板601相对彼此移动。如上文所述,定位盘150仅搁放在内部阶梯610与外部阶梯609之上,所以定位盘150可“自由”地在阶梯的顶表面638上移动。运动的自由度受限于定位盘装配螺栓616,因此冷却板601经调适以允许定位盘装配螺栓616在近乎平行于顶表面638的方向上微动,以提供定位盘150相对于顶表面638的所需移动,从而防止定位盘150中产生不受欢迎的机械应力。冷却板601亦经调适,以藉由定位盘装配螺栓616使定位盘150在温度循环期间保持对准并牢牢地紧固至冷却板601。
在一实施方式中,每一个定位盘装配螺栓616螺纹旋入位于插件凹部(insert recess)618的插件617中。插件凹部618经过调适,以允许插件617和定位盘装配螺栓616在近乎平行于顶表面638的方向上微动。第二螺栓孔637的孔直径经过适当选择,以允许定位盘装配螺栓616在该孔内部微动。在一实施方式中,插件凹部618可包含多个狭槽,其沿着冷却板601的半径对齐。在另一实施方式中,插件617为浮动插件,其被插件凹部618抓住。
上述实施方式允许将相对薄的定位盘150用于静电吸盘组件124。使用传热气体603将定位盘150热耦合至冷却板601可防止定位盘150内部骤变的温度梯度与不受欢迎的热应力。此外,定位盘150独立于冷却板601以近乎平行顶表面638的方向膨胀和收缩的能力可减少定位盘150内部的机械应力,且由于定位盘150由冷却板601支撑,定位盘150具有最小负载。热机械应力减少与最小负载允许降低定位盘150所需的材料强度,且因此定位盘150可制作得更薄以降低成本。
图6D绘示根据本发明另一实施方式的图6B所示螺栓孔的详图。定位盘螺栓孔602包含形成在电绝缘定位盘基底162中的螺栓通孔651、第一扩孔649和第二扩孔650。定位盘装配螺栓616包含螺栓头646,其位于第一扩孔649内部,且第二扩孔650带有螺纹,以容纳具有插塞螺纹648的插塞(plug)647。插塞647以电绝缘材料制成,以将定位盘装配螺栓616与定位盘150的前表面206电气隔离开来。在一实施方式中,插塞647是用和定位盘基底162相同的材料制成。插塞647经过调适,以便其可移除与重新安装,而使定位盘装配螺栓616得以进出。在另一实施方式中,插塞647和第二扩孔650不带螺纹,并使用其它装置来移除以及再安装插塞647。当施加电偏压至静电吸盘组件124时,可将电绝缘插塞647用于定位盘螺栓孔602。
图6E绘示图6A和6B所示静电吸盘组件的一实施方式的分解图。为了清楚起见,已省略基板“S”、电线、导管、螺栓和真空馈通件622。折箱组件110包含折箱装配凸缘614和支撑轴112,支撑轴112具有支撑轴孔653,其中导管和电绕线通过支撑轴孔653(见图6B)。折箱凸缘614包含多个装配凸缘孔652,该些装配凸缘孔652带有螺纹,并容纳位于第一螺栓孔634中的板装配螺栓615。虽然仅显示四个装配凸缘孔652,折箱凸缘614可具有任何数目的装配凸缘孔652,以匹配第一螺栓孔634的数目。
冷却板601具有中心开口639,其具有环绕的内部阶梯610及顶表面638。显示额外的内部阶梯610用于升降销孔635和第二螺栓孔637。环形外部阶梯609围绕着冷却板601的周围延伸。板表面636形成气体传导间隙632(见图6B)的一侧,且当定位盘150装配至冷却板601时,定位盘150形成该间隙的另一侧。
虽然以上内容已揭示本发明的数个实施方式,但可在不偏离本发明基本范围的情况下做出本发明的其它及进一步实施方式,且本发明范围当由后附申请专利范围决定。
Claims (15)
1.一种静电吸盘组件,其包含:
一支撑基底;及
一定位盘,其耦合至该支撑基底,该定位盘包含:
一前表面;
一电绝缘定位盘基底;
一或多个夹持电极,配置在该前表面上,其中该一或多个夹持电极包含一导电金属基质复合材料;及
一介电层,配置在该前表面上,并覆盖该一或多个夹持电极。
2.根据权利要求1所述的静电吸盘组件,其中该金属基质复合材料包含铝(Al)、钛(Ti)、镁(Mg)、钴(Co)、镍(Ni)、硅(Si)、碳(C)和碳化硅(SiC)的其中至少两者。
3.根据权利要求1所述的静电吸盘组件,其中该金属基质复合材料包含铝(Al)和硅(Si)。
4.根据权利要求1所述的静电吸盘组件,其中该定位盘基底包含一材料,且该金属基质复合材料具有一热膨胀系数(CTE),其实质上匹配该定位盘基底材料的CTE。
5.根据权利要求1所述的静电吸盘组件,其中该介电层材料具有一热膨胀系数(CTE),其实质上匹配该金属基质复合材料的CTE。
6.根据权利要求1所述的静电吸盘组件,其中该介电层包含氧化铝、氮化硼、类钻碳(DLC)和类钻碳复合材料的其中至少一者。
7.一种静电吸盘组件,其包含:
一支撑外壳;
一定位盘,其包含:
一电绝缘上部定位盘板,其具有一或多个夹持电极和一或多个加热元件;
一下部定位盘板,其在一接合区域内接合至该上部定位盘板,该接合区域包含一凸起部分;及
一间隙,其在该接合区域外侧将该上部定位盘板与该下部定位盘板分隔开;
一或多个O形环,配置在该下部定位盘板和该支撑外壳之间;及
一冷却板,其包含一或多个冷却槽道,并且配置在该接合区域和该一或多个O形环之间,该冷却板耦合至该下部定位盘板并与之热连通。
8.根据权利要求7所述的静电吸盘组件,其中该一或多个O形环的位置近接该下部定位盘板的周围,且该冷却板的位置近接该一或多个O形环。
9.根据权利要求7所述的静电吸盘组件,其中该间隙厚度介于约20微米至约1000微米之间。
10.根据权利要求7所述的静电吸盘组件,其中该上部定位盘板和该下部定位盘板在热循环期间能独立地在该接合区域外侧自由膨胀与收缩。
11.一种静电吸盘组件,其包含:
一定位盘,其包含:
一前表面;
一或多个夹持电极;及
多个定位盘螺栓孔;
一冷却板,其包含:
一或多个中心开口,其各自具有一中心开口容积;
一或多个外部阶梯和内部阶梯,其各自具有一支撑表面,用于支撑该定位盘;及
一或多个排气孔,形成在该冷却板中,每一排气孔包含一槽道,该槽道提供介于一形成在该中心开口容积的侧壁中的第一孔和一配置在该冷却板的表面上的第二孔之间的流体连通;及
一间隙,配置在该定位盘和该冷却板之间,其中该定位盘可从该冷却板拆离。
12.根据权利要求11所述的静电吸盘组件,其中该第二孔是配置在该冷却板的一底表面上。
13.根据权利要求11所述的静电吸盘组件,其中该间隙具有一介于约30微米至约1000微米之间的高度。
14.根据权利要求11所述的静电吸盘组件,其中在热循环期间,该定位盘可独立于该冷却板以近乎平行于该外部阶梯和该内部阶梯的该支撑表面的方向膨胀和收缩。
15.根据权利要求11所述的静电吸盘组件,更包含多个定位盘装配螺栓,每一该螺栓配置在一定位盘螺栓孔中,其中该多个定位盘螺栓孔各自包含至少一个扩孔和一配置在该孔中的电绝缘插塞,以将该定位盘装配螺栓与该定位盘的该前表面电气隔离开来。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US8828908P | 2008-08-12 | 2008-08-12 | |
US61/088,289 | 2008-08-12 | ||
PCT/US2009/052917 WO2010019430A2 (en) | 2008-08-12 | 2009-08-06 | Electrostatic chuck assembly |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102160167A true CN102160167A (zh) | 2011-08-17 |
CN102160167B CN102160167B (zh) | 2013-12-04 |
Family
ID=41669579
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200980136614XA Active CN102160167B (zh) | 2008-08-12 | 2009-08-06 | 静电吸盘组件 |
Country Status (7)
Country | Link |
---|---|
US (1) | US8390980B2 (zh) |
EP (1) | EP2321846A4 (zh) |
JP (2) | JP2011530833A (zh) |
KR (1) | KR101582785B1 (zh) |
CN (1) | CN102160167B (zh) |
TW (1) | TWI473199B (zh) |
WO (1) | WO2010019430A2 (zh) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102632408A (zh) * | 2012-05-05 | 2012-08-15 | 山东大学 | 一种加速钻削过程中工件传热的热管夹具及方法 |
CN105706351A (zh) * | 2013-11-22 | 2016-06-22 | 应用材料公司 | 用于静电卡盘表面的垫设计 |
CN105742148A (zh) * | 2014-12-25 | 2016-07-06 | 东京毅力科创株式会社 | 蚀刻处理方法和蚀刻处理装置 |
CN106663647A (zh) * | 2014-10-17 | 2017-05-10 | 应用材料公司 | 用于高温处理的静电夹盘组件 |
CN106716608A (zh) * | 2014-08-01 | 2017-05-24 | 应用材料公司 | 具有独立隔离的加热器区域的晶片载体 |
CN104488074B (zh) * | 2012-07-03 | 2017-07-11 | 华特隆电器制造公司 | 用于层状加热器的复合衬底 |
CN107002222A (zh) * | 2014-12-11 | 2017-08-01 | 应用材料公司 | 用于氮化铝(aln)pvd工艺的气冷的最小接触面积(mca)的静电吸盘(esc) |
CN107208261A (zh) * | 2015-02-06 | 2017-09-26 | 应用材料公司 | 用于静电卡盘表面的径向向外的垫设计 |
CN107265400A (zh) * | 2012-05-25 | 2017-10-20 | 苹果公司 | 具有硅电极的微型器件转移头部 |
CN107533945A (zh) * | 2015-02-03 | 2018-01-02 | 应用材料公司 | 用于等离子体处理系统的低温夹具 |
CN108701630A (zh) * | 2017-01-31 | 2018-10-23 | 应用材料公司 | 基板载体和处理基板的方法 |
CN108701642A (zh) * | 2016-03-04 | 2018-10-23 | 应用材料公司 | 用于高温工艺的基板支撑组件 |
CN109254501A (zh) * | 2012-02-03 | 2019-01-22 | Asml荷兰有限公司 | 衬底支架、光刻装置、器件制造方法和制造衬底保持器的方法 |
CN111212930A (zh) * | 2018-07-26 | 2020-05-29 | 应用材料公司 | 用以支撑真空腔室中载体或部件的支撑装置、用以支撑真空腔室中载体或部件的支撑装置的使用、用以处理真空腔室中载体的设备、及真空沉积系统 |
CN111448646A (zh) * | 2017-12-11 | 2020-07-24 | 应用材料公司 | 低温冷却的可旋转静电卡盘 |
CN111564405A (zh) * | 2014-08-26 | 2020-08-21 | 应用材料公司 | 用于处理基板的方法 |
CN112166497A (zh) * | 2018-06-22 | 2021-01-01 | 应用材料公司 | 半导体晶片处理中最小化晶片背侧损伤的方法 |
CN112582330A (zh) * | 2021-02-22 | 2021-03-30 | 北京中硅泰克精密技术有限公司 | 半导体工艺设备及其静电卡盘组件 |
CN112970100A (zh) * | 2018-12-11 | 2021-06-15 | 应用材料公司 | 低温静电吸盘 |
CN113169111A (zh) * | 2018-12-07 | 2021-07-23 | 应用材料公司 | 具有改良的热耦合以用于热敏感处理的静电吸盘 |
WO2022051377A1 (en) * | 2020-09-01 | 2022-03-10 | Applied Materials, Inc. | Dynamic electrical and fluid delivery system with indexing motion for batch processing chambers |
CN114695048A (zh) * | 2020-12-30 | 2022-07-01 | 中微半导体设备(上海)股份有限公司 | 下电极组件和包含下电极组件的等离子体处理装置 |
Families Citing this family (235)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8226769B2 (en) * | 2006-04-27 | 2012-07-24 | Applied Materials, Inc. | Substrate support with electrostatic chuck having dual temperature zones |
KR100867191B1 (ko) * | 2006-11-02 | 2008-11-06 | 주식회사 유진테크 | 기판처리장치 및 기판처리방법 |
US20100247804A1 (en) * | 2009-03-24 | 2010-09-30 | Applied Materials, Inc. | Biasable cooling pedestal |
DE102009018434B4 (de) * | 2009-04-22 | 2023-11-30 | Ev Group Gmbh | Aufnahmeeinrichtung zur Aufnahme von Halbleitersubstraten |
US10896842B2 (en) * | 2009-10-20 | 2021-01-19 | Tokyo Electron Limited | Manufacturing method of sample table |
US8501631B2 (en) * | 2009-11-19 | 2013-08-06 | Lam Research Corporation | Plasma processing system control based on RF voltage |
US9324576B2 (en) | 2010-05-27 | 2016-04-26 | Applied Materials, Inc. | Selective etch for silicon films |
WO2011150311A1 (en) | 2010-05-28 | 2011-12-01 | Praxair Technology, Inc. | Substrate supports for semiconductor applications |
KR101892911B1 (ko) * | 2010-08-06 | 2018-08-29 | 어플라이드 머티어리얼스, 인코포레이티드 | 정전 척 및 정전 척의 사용 방법들 |
US20120037068A1 (en) * | 2010-08-11 | 2012-02-16 | Applied Materials, Inc. | Composite substrates for direct heating and increased temperature uniformity |
US8580693B2 (en) * | 2010-08-27 | 2013-11-12 | Applied Materials, Inc. | Temperature enhanced electrostatic chucking in plasma processing apparatus |
US9969022B2 (en) * | 2010-09-28 | 2018-05-15 | Applied Materials, Inc. | Vacuum process chamber component and methods of making |
JP5129848B2 (ja) * | 2010-10-18 | 2013-01-30 | 東京エレクトロン株式会社 | 接合装置及び接合方法 |
US10283321B2 (en) | 2011-01-18 | 2019-05-07 | Applied Materials, Inc. | Semiconductor processing system and methods using capacitively coupled plasma |
US20120196242A1 (en) * | 2011-01-27 | 2012-08-02 | Applied Materials, Inc. | Substrate support with heater and rapid temperature change |
US8999856B2 (en) | 2011-03-14 | 2015-04-07 | Applied Materials, Inc. | Methods for etch of sin films |
US9064815B2 (en) | 2011-03-14 | 2015-06-23 | Applied Materials, Inc. | Methods for etch of metal and metal-oxide films |
JP5869899B2 (ja) * | 2011-04-01 | 2016-02-24 | 株式会社日立国際電気 | 基板処理装置、半導体装置の製造方法、基板処理方法及びサセプタカバー |
US20120281333A1 (en) * | 2011-05-06 | 2012-11-08 | Advanced Ion Beam Technology, Inc. | Temperature-controllable electrostatic chuck |
US9337067B2 (en) | 2011-05-13 | 2016-05-10 | Novellus Systems, Inc. | High temperature electrostatic chuck with radial thermal chokes |
US10242890B2 (en) * | 2011-08-08 | 2019-03-26 | Applied Materials, Inc. | Substrate support with heater |
JP6223983B2 (ja) | 2011-09-30 | 2017-11-01 | アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated | 温度制御付き静電チャック |
TW202418889A (zh) * | 2011-10-05 | 2024-05-01 | 美商應用材料股份有限公司 | 包括對稱電漿處理腔室的電漿處理設備與用於此設備的蓋組件 |
US9076831B2 (en) * | 2011-11-04 | 2015-07-07 | Lam Research Corporation | Substrate clamping system and method for operating the same |
JP5973731B2 (ja) * | 2012-01-13 | 2016-08-23 | 東京エレクトロン株式会社 | プラズマ処理装置及びヒータの温度制御方法 |
US9034199B2 (en) | 2012-02-21 | 2015-05-19 | Applied Materials, Inc. | Ceramic article with reduced surface defect density and process for producing a ceramic article |
JP5905735B2 (ja) * | 2012-02-21 | 2016-04-20 | 東京エレクトロン株式会社 | 基板処理装置、基板処理方法及び基板温度の設定可能帯域の変更方法 |
US9114666B2 (en) | 2012-02-22 | 2015-08-25 | Lam Research Corporation | Methods and apparatus for controlling plasma in a plasma processing system |
US10157729B2 (en) | 2012-02-22 | 2018-12-18 | Lam Research Corporation | Soft pulsing |
US9295148B2 (en) | 2012-12-14 | 2016-03-22 | Lam Research Corporation | Computation of statistics for statistical data decimation |
US9320126B2 (en) | 2012-12-17 | 2016-04-19 | Lam Research Corporation | Determining a value of a variable on an RF transmission model |
US9462672B2 (en) | 2012-02-22 | 2016-10-04 | Lam Research Corporation | Adjustment of power and frequency based on three or more states |
US9842725B2 (en) | 2013-01-31 | 2017-12-12 | Lam Research Corporation | Using modeling to determine ion energy associated with a plasma system |
US10128090B2 (en) | 2012-02-22 | 2018-11-13 | Lam Research Corporation | RF impedance model based fault detection |
US9197196B2 (en) | 2012-02-22 | 2015-11-24 | Lam Research Corporation | State-based adjustment of power and frequency |
US9212099B2 (en) | 2012-02-22 | 2015-12-15 | Applied Materials, Inc. | Heat treated ceramic substrate having ceramic coating and heat treatment for coated ceramics |
JP5903930B2 (ja) * | 2012-02-27 | 2016-04-13 | 日新イオン機器株式会社 | 基板搬送装置及び当該基板搬送装置を用いた半導体製造装置 |
TWI455244B (zh) * | 2012-03-19 | 2014-10-01 | Wistron Corp | 用於重工製程之夾持治具及設備 |
US9070536B2 (en) * | 2012-04-24 | 2015-06-30 | Applied Materials, Inc. | Plasma reactor electrostatic chuck with cooled process ring and heated workpiece support surface |
US9105492B2 (en) | 2012-05-08 | 2015-08-11 | LuxVue Technology Corporation | Compliant micro device transfer head |
US9034754B2 (en) * | 2012-05-25 | 2015-05-19 | LuxVue Technology Corporation | Method of forming a micro device transfer head with silicon electrode |
US9404176B2 (en) | 2012-06-05 | 2016-08-02 | Applied Materials, Inc. | Substrate support with radio frequency (RF) return path |
JP5977592B2 (ja) | 2012-06-20 | 2016-08-24 | 東京応化工業株式会社 | 貼付装置 |
US8415767B1 (en) | 2012-07-06 | 2013-04-09 | LuxVue Technology Corporation | Compliant bipolar micro device transfer head with silicon electrodes |
US8569115B1 (en) | 2012-07-06 | 2013-10-29 | LuxVue Technology Corporation | Method of forming a compliant bipolar micro device transfer head with silicon electrodes |
US8415768B1 (en) | 2012-07-06 | 2013-04-09 | LuxVue Technology Corporation | Compliant monopolar micro device transfer head with silicon electrode |
US9267739B2 (en) | 2012-07-18 | 2016-02-23 | Applied Materials, Inc. | Pedestal with multi-zone temperature control and multiple purge capabilities |
US9373517B2 (en) | 2012-08-02 | 2016-06-21 | Applied Materials, Inc. | Semiconductor processing with DC assisted RF power for improved control |
US8791530B2 (en) | 2012-09-06 | 2014-07-29 | LuxVue Technology Corporation | Compliant micro device transfer head with integrated electrode leads |
JP5441021B1 (ja) * | 2012-09-12 | 2014-03-12 | Toto株式会社 | 静電チャック |
WO2014046840A1 (en) * | 2012-09-19 | 2014-03-27 | Applied Materials, Inc. | Methods for bonding substrates |
US9132436B2 (en) | 2012-09-21 | 2015-09-15 | Applied Materials, Inc. | Chemical control features in wafer process equipment |
US9916998B2 (en) * | 2012-12-04 | 2018-03-13 | Applied Materials, Inc. | Substrate support assembly having a plasma resistant protective layer |
US9236815B2 (en) * | 2012-12-10 | 2016-01-12 | LuxVue Technology Corporation | Compliant micro device transfer head array with metal electrodes |
US9255001B2 (en) | 2012-12-10 | 2016-02-09 | LuxVue Technology Corporation | Micro device transfer head array with metal electrodes |
US10324121B2 (en) * | 2012-12-28 | 2019-06-18 | Axcelis Technologies, Inc. | Charge integration based electrostatic clamp health monitor |
CN103904014B (zh) * | 2012-12-31 | 2016-12-28 | 北京北方微电子基地设备工艺研究中心有限责任公司 | 静电卡盘和反应腔室 |
US9155182B2 (en) | 2013-01-11 | 2015-10-06 | Lam Research Corporation | Tuning a parameter associated with plasma impedance |
JP6022373B2 (ja) * | 2013-02-04 | 2016-11-09 | 株式会社アルバック | 薄型基板処理装置 |
JP6022372B2 (ja) * | 2013-02-04 | 2016-11-09 | 株式会社アルバック | 薄型基板処理装置 |
TWI582256B (zh) | 2013-02-04 | 2017-05-11 | 愛發科股份有限公司 | 薄型基板處理裝置 |
US10256079B2 (en) | 2013-02-08 | 2019-04-09 | Applied Materials, Inc. | Semiconductor processing systems having multiple plasma configurations |
US9362130B2 (en) | 2013-03-01 | 2016-06-07 | Applied Materials, Inc. | Enhanced etching processes using remote plasma sources |
US9669653B2 (en) * | 2013-03-14 | 2017-06-06 | Applied Materials, Inc. | Electrostatic chuck refurbishment |
US20140271097A1 (en) | 2013-03-15 | 2014-09-18 | Applied Materials, Inc. | Processing systems and methods for halide scavenging |
JP6075185B2 (ja) * | 2013-04-26 | 2017-02-08 | 住友電気工業株式会社 | 炭化珪素半導体装置の製造方法 |
US20160329173A1 (en) | 2013-06-12 | 2016-11-10 | Rohinni, LLC | Keyboard backlighting with deposited light-generating sources |
US9850568B2 (en) * | 2013-06-20 | 2017-12-26 | Applied Materials, Inc. | Plasma erosion resistant rare-earth oxide based thin film coatings |
US9773648B2 (en) | 2013-08-30 | 2017-09-26 | Applied Materials, Inc. | Dual discharge modes operation for remote plasma |
US9245767B2 (en) * | 2013-09-12 | 2016-01-26 | Applied Materials, Inc. | Anneal module for semiconductor wafers |
JP6235293B2 (ja) * | 2013-10-02 | 2017-11-22 | 株式会社日立ハイテクノロジーズ | プラズマ処理装置 |
US9576809B2 (en) | 2013-11-04 | 2017-02-21 | Applied Materials, Inc. | Etch suppression with germanium |
US10236202B2 (en) * | 2013-11-11 | 2019-03-19 | Diablo Capital, Inc. | System and method for adhering a semiconductive wafer to a mobile electrostatic carrier through a vacuum |
TW201518538A (zh) * | 2013-11-11 | 2015-05-16 | Applied Materials Inc | 像素化冷卻溫度控制的基板支撐組件 |
US9520303B2 (en) | 2013-11-12 | 2016-12-13 | Applied Materials, Inc. | Aluminum selective etch |
CN104681380B (zh) * | 2013-11-29 | 2017-07-07 | 中微半导体设备(上海)有限公司 | 一种静电卡盘及其等离子体处理室 |
US10391526B2 (en) * | 2013-12-12 | 2019-08-27 | Lam Research Corporation | Electrostatic chuck cleaning fixture |
US9101038B2 (en) | 2013-12-20 | 2015-08-04 | Lam Research Corporation | Electrostatic chuck including declamping electrode and method of declamping |
US9594105B2 (en) | 2014-01-10 | 2017-03-14 | Lam Research Corporation | Cable power loss determination for virtual metrology |
JP6303592B2 (ja) * | 2014-02-25 | 2018-04-04 | 東京エレクトロン株式会社 | 基板処理装置 |
US9299537B2 (en) | 2014-03-20 | 2016-03-29 | Applied Materials, Inc. | Radial waveguide systems and methods for post-match control of microwaves |
US9903020B2 (en) | 2014-03-31 | 2018-02-27 | Applied Materials, Inc. | Generation of compact alumina passivation layers on aluminum plasma equipment components |
US9355776B2 (en) | 2014-04-09 | 2016-05-31 | Applied Materials, Inc. | Capacitor assemblies for coupling radio frequency (RF) and direct current (DC) energy to one or more common electrodes |
US10950421B2 (en) | 2014-04-21 | 2021-03-16 | Lam Research Corporation | Using modeling for identifying a location of a fault in an RF transmission system for a plasma system |
US9530682B2 (en) * | 2014-05-12 | 2016-12-27 | Varian Semiconductor Equipment Associates, Inc. | System and apparatus for holding a substrate over wide temperature range |
JP6219227B2 (ja) * | 2014-05-12 | 2017-10-25 | 東京エレクトロン株式会社 | ヒータ給電機構及びステージの温度制御方法 |
JP6219229B2 (ja) * | 2014-05-19 | 2017-10-25 | 東京エレクトロン株式会社 | ヒータ給電機構 |
US9309598B2 (en) | 2014-05-28 | 2016-04-12 | Applied Materials, Inc. | Oxide and metal removal |
DE102014008031B4 (de) * | 2014-05-28 | 2020-06-25 | Berliner Glas Kgaa Herbert Kubatz Gmbh & Co. | Elektrostatische Haltevorrichtung mit einer Keramik-Elektrode und Verfahren zur Herstellung einer solchen Haltevorrichtung |
DE102014008029B4 (de) | 2014-05-28 | 2023-05-17 | Asml Netherlands B.V. | Elektrostatische Haltevorrichtung mit einer Elektroden-Trägerscheibe und Verfahren zur Herstellung der Haltevorrichtung |
DE102014007903A1 (de) | 2014-05-28 | 2015-12-03 | Berliner Glas Kgaa Herbert Kubatz Gmbh & Co. | Elektrostatische Haltevorrichtung mit Noppen-Elektroden und Verfahren zu deren Herstellung |
DE102014008030A1 (de) | 2014-05-28 | 2015-12-03 | Berliner Glas Kgaa Herbert Kubatz Gmbh & Co | Verfahren zur Herstellung einer elektrostatischen Haltevorrichtung |
US9496167B2 (en) | 2014-07-31 | 2016-11-15 | Applied Materials, Inc. | Integrated bit-line airgap formation and gate stack post clean |
US9659753B2 (en) | 2014-08-07 | 2017-05-23 | Applied Materials, Inc. | Grooved insulator to reduce leakage current |
US9553102B2 (en) | 2014-08-19 | 2017-01-24 | Applied Materials, Inc. | Tungsten separation |
US9613822B2 (en) | 2014-09-25 | 2017-04-04 | Applied Materials, Inc. | Oxide etch selectivity enhancement |
US9966240B2 (en) | 2014-10-14 | 2018-05-08 | Applied Materials, Inc. | Systems and methods for internal surface conditioning assessment in plasma processing equipment |
US9355922B2 (en) | 2014-10-14 | 2016-05-31 | Applied Materials, Inc. | Systems and methods for internal surface conditioning in plasma processing equipment |
US10002782B2 (en) | 2014-10-17 | 2018-06-19 | Lam Research Corporation | ESC assembly including an electrically conductive gasket for uniform RF power delivery therethrough |
US11637002B2 (en) | 2014-11-26 | 2023-04-25 | Applied Materials, Inc. | Methods and systems to enhance process uniformity |
US10224210B2 (en) | 2014-12-09 | 2019-03-05 | Applied Materials, Inc. | Plasma processing system with direct outlet toroidal plasma source |
US10573496B2 (en) | 2014-12-09 | 2020-02-25 | Applied Materials, Inc. | Direct outlet toroidal plasma source |
JP6796066B2 (ja) * | 2014-12-11 | 2020-12-02 | アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated | 高温rf用途のための静電チャック |
US11257693B2 (en) | 2015-01-09 | 2022-02-22 | Applied Materials, Inc. | Methods and systems to improve pedestal temperature control |
US9728437B2 (en) | 2015-02-03 | 2017-08-08 | Applied Materials, Inc. | High temperature chuck for plasma processing systems |
US9881805B2 (en) | 2015-03-02 | 2018-01-30 | Applied Materials, Inc. | Silicon selective removal |
US10237917B2 (en) * | 2015-03-09 | 2019-03-19 | Nuflare Technology, Inc. | Heater and apparatus for manufacturing semiconductor device using heater |
US10186444B2 (en) * | 2015-03-20 | 2019-01-22 | Applied Materials, Inc. | Gas flow for condensation reduction with a substrate processing chuck |
US10008399B2 (en) | 2015-05-19 | 2018-06-26 | Applied Materials, Inc. | Electrostatic puck assembly with metal bonded backing plate for high temperature processes |
US9741593B2 (en) | 2015-08-06 | 2017-08-22 | Applied Materials, Inc. | Thermal management systems and methods for wafer processing systems |
TWI808334B (zh) * | 2015-08-06 | 2023-07-11 | 美商應用材料股份有限公司 | 工件握持器 |
US9691645B2 (en) | 2015-08-06 | 2017-06-27 | Applied Materials, Inc. | Bolted wafer chuck thermal management systems and methods for wafer processing systems |
US10950477B2 (en) | 2015-08-07 | 2021-03-16 | Applied Materials, Inc. | Ceramic heater and esc with enhanced wafer edge performance |
US9349605B1 (en) | 2015-08-07 | 2016-05-24 | Applied Materials, Inc. | Oxide etch selectivity systems and methods |
US10256131B2 (en) * | 2015-08-27 | 2019-04-09 | Sumitomo Osaka Cement Co., Ltd. | Electrostatic chuck device |
US10504700B2 (en) | 2015-08-27 | 2019-12-10 | Applied Materials, Inc. | Plasma etching systems and methods with secondary plasma injection |
US9805963B2 (en) | 2015-10-05 | 2017-10-31 | Lam Research Corporation | Electrostatic chuck with thermal choke |
US9929029B2 (en) | 2015-10-15 | 2018-03-27 | Applied Materials, Inc. | Substrate carrier system |
US11024528B2 (en) * | 2015-10-21 | 2021-06-01 | Sumitomo Osaka Cement Co., Ltd. | Electrostatic chuck device having focus ring |
JP2017092156A (ja) | 2015-11-03 | 2017-05-25 | ナショナル チュン−シャン インスティテュート オブ サイエンス アンド テクノロジー | 高密度のプラズマ及び高温の半導体製造プロセスに用いられる窒化アルミニウムの静電チャンク |
US10020218B2 (en) | 2015-11-17 | 2018-07-10 | Applied Materials, Inc. | Substrate support assembly with deposited surface features |
WO2017100136A1 (en) * | 2015-12-07 | 2017-06-15 | Applied Materials, Inc. | Method and apparatus for clamping and declamping substrates using electrostatic chucks |
WO2017100132A1 (en) * | 2015-12-10 | 2017-06-15 | Ioneer, Llc | Apparatus and method for determining parameters of process operation |
US10499461B2 (en) * | 2015-12-21 | 2019-12-03 | Intel Corporation | Thermal head with a thermal barrier for integrated circuit die processing |
JP6959697B2 (ja) | 2016-01-15 | 2021-11-05 | ロヒンニ リミテッド ライアビリティ カンパニー | 装置上のカバーを介してバックライトで照らす装置及び方法 |
KR20180112794A (ko) * | 2016-01-22 | 2018-10-12 | 어플라이드 머티어리얼스, 인코포레이티드 | 전도성 층들이 매립된 세라믹 샤워헤드 |
KR102377658B1 (ko) * | 2016-03-23 | 2022-03-24 | 엔지케이 인슐레이터 엘티디 | 코디어라이트질 소결체, 그 제법 및 복합 기판 |
US10340171B2 (en) | 2016-05-18 | 2019-07-02 | Lam Research Corporation | Permanent secondary erosion containment for electrostatic chuck bonds |
US10504754B2 (en) | 2016-05-19 | 2019-12-10 | Applied Materials, Inc. | Systems and methods for improved semiconductor etching and component protection |
US10522371B2 (en) | 2016-05-19 | 2019-12-31 | Applied Materials, Inc. | Systems and methods for improved semiconductor etching and component protection |
US9865484B1 (en) | 2016-06-29 | 2018-01-09 | Applied Materials, Inc. | Selective etch using material modification and RF pulsing |
US11069553B2 (en) * | 2016-07-07 | 2021-07-20 | Lam Research Corporation | Electrostatic chuck with features for preventing electrical arcing and light-up and improving process uniformity |
KR20180129976A (ko) * | 2016-07-13 | 2018-12-05 | 어플라이드 머티어리얼스, 인코포레이티드 | 개선된 기판 지지부 |
US10629473B2 (en) | 2016-09-09 | 2020-04-21 | Applied Materials, Inc. | Footing removal for nitride spacer |
US10062575B2 (en) | 2016-09-09 | 2018-08-28 | Applied Materials, Inc. | Poly directional etch by oxidation |
US9721789B1 (en) | 2016-10-04 | 2017-08-01 | Applied Materials, Inc. | Saving ion-damaged spacers |
US9934942B1 (en) | 2016-10-04 | 2018-04-03 | Applied Materials, Inc. | Chamber with flow-through source |
US10062585B2 (en) | 2016-10-04 | 2018-08-28 | Applied Materials, Inc. | Oxygen compatible plasma source |
US10546729B2 (en) | 2016-10-04 | 2020-01-28 | Applied Materials, Inc. | Dual-channel showerhead with improved profile |
US10062579B2 (en) | 2016-10-07 | 2018-08-28 | Applied Materials, Inc. | Selective SiN lateral recess |
US9947549B1 (en) | 2016-10-10 | 2018-04-17 | Applied Materials, Inc. | Cobalt-containing material removal |
US9768034B1 (en) | 2016-11-11 | 2017-09-19 | Applied Materials, Inc. | Removal methods for high aspect ratio structures |
US10163696B2 (en) | 2016-11-11 | 2018-12-25 | Applied Materials, Inc. | Selective cobalt removal for bottom up gapfill |
US10242908B2 (en) | 2016-11-14 | 2019-03-26 | Applied Materials, Inc. | Airgap formation with damage-free copper |
US10026621B2 (en) | 2016-11-14 | 2018-07-17 | Applied Materials, Inc. | SiN spacer profile patterning |
US10784139B2 (en) * | 2016-12-16 | 2020-09-22 | Applied Materials, Inc. | Rotatable electrostatic chuck having backside gas supply |
US10566206B2 (en) | 2016-12-27 | 2020-02-18 | Applied Materials, Inc. | Systems and methods for anisotropic material breakthrough |
US10910195B2 (en) | 2017-01-05 | 2021-02-02 | Lam Research Corporation | Substrate support with improved process uniformity |
JP6829087B2 (ja) * | 2017-01-27 | 2021-02-10 | 京セラ株式会社 | 試料保持具 |
US10431429B2 (en) | 2017-02-03 | 2019-10-01 | Applied Materials, Inc. | Systems and methods for radial and azimuthal control of plasma uniformity |
US10403507B2 (en) | 2017-02-03 | 2019-09-03 | Applied Materials, Inc. | Shaped etch profile with oxidation |
US10043684B1 (en) | 2017-02-06 | 2018-08-07 | Applied Materials, Inc. | Self-limiting atomic thermal etching systems and methods |
US10319739B2 (en) | 2017-02-08 | 2019-06-11 | Applied Materials, Inc. | Accommodating imperfectly aligned memory holes |
US10943834B2 (en) | 2017-03-13 | 2021-03-09 | Applied Materials, Inc. | Replacement contact process |
US10319649B2 (en) | 2017-04-11 | 2019-06-11 | Applied Materials, Inc. | Optical emission spectroscopy (OES) for remote plasma monitoring |
US11011355B2 (en) * | 2017-05-12 | 2021-05-18 | Lam Research Corporation | Temperature-tuned substrate support for substrate processing systems |
US11276590B2 (en) | 2017-05-17 | 2022-03-15 | Applied Materials, Inc. | Multi-zone semiconductor substrate supports |
US11276559B2 (en) | 2017-05-17 | 2022-03-15 | Applied Materials, Inc. | Semiconductor processing chamber for multiple precursor flow |
US10049891B1 (en) | 2017-05-31 | 2018-08-14 | Applied Materials, Inc. | Selective in situ cobalt residue removal |
US10497579B2 (en) | 2017-05-31 | 2019-12-03 | Applied Materials, Inc. | Water-free etching methods |
US11289355B2 (en) | 2017-06-02 | 2022-03-29 | Lam Research Corporation | Electrostatic chuck for use in semiconductor processing |
CN108987323B (zh) * | 2017-06-05 | 2020-03-31 | 北京北方华创微电子装备有限公司 | 一种承载装置及半导体加工设备 |
US10920320B2 (en) | 2017-06-16 | 2021-02-16 | Applied Materials, Inc. | Plasma health determination in semiconductor substrate processing reactors |
TWI801390B (zh) * | 2017-06-19 | 2023-05-11 | 美商應用材料股份有限公司 | 用於高溫處理腔室的靜電吸座及其形成方法 |
JP2020524898A (ja) * | 2017-06-22 | 2020-08-20 | アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated | ダイ結合用途のための静電キャリア |
KR20200019235A (ko) * | 2017-06-23 | 2020-02-21 | 와틀로 일렉트릭 매뉴팩츄어링 컴파니 | 고온 가열판 받침대 |
US10541246B2 (en) | 2017-06-26 | 2020-01-21 | Applied Materials, Inc. | 3D flash memory cells which discourage cross-cell electrical tunneling |
US10727080B2 (en) | 2017-07-07 | 2020-07-28 | Applied Materials, Inc. | Tantalum-containing material removal |
US10541184B2 (en) | 2017-07-11 | 2020-01-21 | Applied Materials, Inc. | Optical emission spectroscopic techniques for monitoring etching |
US10354889B2 (en) | 2017-07-17 | 2019-07-16 | Applied Materials, Inc. | Non-halogen etching of silicon-containing materials |
US10170336B1 (en) | 2017-08-04 | 2019-01-01 | Applied Materials, Inc. | Methods for anisotropic control of selective silicon removal |
US10043674B1 (en) | 2017-08-04 | 2018-08-07 | Applied Materials, Inc. | Germanium etching systems and methods |
US10297458B2 (en) | 2017-08-07 | 2019-05-21 | Applied Materials, Inc. | Process window widening using coated parts in plasma etch processes |
US11955362B2 (en) * | 2017-09-13 | 2024-04-09 | Applied Materials, Inc. | Substrate support for reduced damage substrate backside |
JP2019057531A (ja) * | 2017-09-19 | 2019-04-11 | モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 | ウエハ支持装置 |
US10128086B1 (en) | 2017-10-24 | 2018-11-13 | Applied Materials, Inc. | Silicon pretreatment for nitride removal |
US10283324B1 (en) | 2017-10-24 | 2019-05-07 | Applied Materials, Inc. | Oxygen treatment for nitride etching |
KR102441541B1 (ko) * | 2017-11-09 | 2022-09-08 | 주식회사 미코세라믹스 | 마운트, 상기 마운트를 포함하는 히터 및 상기 히터를 포함하는 증착 장치 |
WO2019105236A1 (zh) * | 2017-11-28 | 2019-06-06 | 北京北方华创微电子装备有限公司 | 静电卡盘以及半导体设备 |
US11410857B2 (en) | 2017-11-30 | 2022-08-09 | Taiwan Semiconductor Manufacturing Co., Ltd. | Wafer holding pins and methods of using the same |
US10256112B1 (en) | 2017-12-08 | 2019-04-09 | Applied Materials, Inc. | Selective tungsten removal |
US10903054B2 (en) | 2017-12-19 | 2021-01-26 | Applied Materials, Inc. | Multi-zone gas distribution systems and methods |
US11328909B2 (en) | 2017-12-22 | 2022-05-10 | Applied Materials, Inc. | Chamber conditioning and removal processes |
US10854426B2 (en) | 2018-01-08 | 2020-12-01 | Applied Materials, Inc. | Metal recess for semiconductor structures |
JP7374103B2 (ja) | 2018-01-31 | 2023-11-06 | ラム リサーチ コーポレーション | 静電チャック(esc)ペデスタル電圧分離 |
US20190244787A1 (en) * | 2018-02-02 | 2019-08-08 | Wei-Chuan Chou | Plasma etching reaction chamber |
US10964512B2 (en) | 2018-02-15 | 2021-03-30 | Applied Materials, Inc. | Semiconductor processing chamber multistage mixing apparatus and methods |
US10679870B2 (en) | 2018-02-15 | 2020-06-09 | Applied Materials, Inc. | Semiconductor processing chamber multistage mixing apparatus |
TWI716818B (zh) | 2018-02-28 | 2021-01-21 | 美商應用材料股份有限公司 | 形成氣隙的系統及方法 |
US10593560B2 (en) | 2018-03-01 | 2020-03-17 | Applied Materials, Inc. | Magnetic induction plasma source for semiconductor processes and equipment |
US10319600B1 (en) | 2018-03-12 | 2019-06-11 | Applied Materials, Inc. | Thermal silicon etch |
US10497573B2 (en) | 2018-03-13 | 2019-12-03 | Applied Materials, Inc. | Selective atomic layer etching of semiconductor materials |
US11086233B2 (en) * | 2018-03-20 | 2021-08-10 | Lam Research Corporation | Protective coating for electrostatic chucks |
US10573527B2 (en) | 2018-04-06 | 2020-02-25 | Applied Materials, Inc. | Gas-phase selective etching systems and methods |
US10490406B2 (en) | 2018-04-10 | 2019-11-26 | Appled Materials, Inc. | Systems and methods for material breakthrough |
US10699879B2 (en) | 2018-04-17 | 2020-06-30 | Applied Materials, Inc. | Two piece electrode assembly with gap for plasma control |
US10886137B2 (en) | 2018-04-30 | 2021-01-05 | Applied Materials, Inc. | Selective nitride removal |
US10957572B2 (en) | 2018-05-02 | 2021-03-23 | Applied Materials, Inc. | Multi-zone gasket for substrate support assembly |
JP7090465B2 (ja) * | 2018-05-10 | 2022-06-24 | 東京エレクトロン株式会社 | 載置台及びプラズマ処理装置 |
JP2019201086A (ja) * | 2018-05-15 | 2019-11-21 | 東京エレクトロン株式会社 | 処理装置、部材及び温度制御方法 |
US10872778B2 (en) | 2018-07-06 | 2020-12-22 | Applied Materials, Inc. | Systems and methods utilizing solid-phase etchants |
US10755941B2 (en) | 2018-07-06 | 2020-08-25 | Applied Materials, Inc. | Self-limiting selective etching systems and methods |
US10672642B2 (en) | 2018-07-24 | 2020-06-02 | Applied Materials, Inc. | Systems and methods for pedestal configuration |
KR20200023988A (ko) * | 2018-08-27 | 2020-03-06 | 삼성전자주식회사 | 정전 척 및 상기 정전 척을 탑재한 웨이퍼 식각 장치 |
US10892198B2 (en) | 2018-09-14 | 2021-01-12 | Applied Materials, Inc. | Systems and methods for improved performance in semiconductor processing |
US11049755B2 (en) | 2018-09-14 | 2021-06-29 | Applied Materials, Inc. | Semiconductor substrate supports with embedded RF shield |
US11062887B2 (en) * | 2018-09-17 | 2021-07-13 | Applied Materials, Inc. | High temperature RF heater pedestals |
US11417534B2 (en) | 2018-09-21 | 2022-08-16 | Applied Materials, Inc. | Selective material removal |
US11682560B2 (en) | 2018-10-11 | 2023-06-20 | Applied Materials, Inc. | Systems and methods for hafnium-containing film removal |
US11121002B2 (en) | 2018-10-24 | 2021-09-14 | Applied Materials, Inc. | Systems and methods for etching metals and metal derivatives |
US11437242B2 (en) | 2018-11-27 | 2022-09-06 | Applied Materials, Inc. | Selective removal of silicon-containing materials |
US11380571B2 (en) * | 2018-12-13 | 2022-07-05 | Xia Tai Xin Semiconductor (Qing Dao) Ltd. | Chuck assembly and method of securing electrostatic chuck |
US11721527B2 (en) | 2019-01-07 | 2023-08-08 | Applied Materials, Inc. | Processing chamber mixing systems |
US10920319B2 (en) | 2019-01-11 | 2021-02-16 | Applied Materials, Inc. | Ceramic showerheads with conductive electrodes |
JP7269759B2 (ja) * | 2019-03-12 | 2023-05-09 | 新光電気工業株式会社 | 基板固定装置 |
CN113826045A (zh) * | 2019-04-30 | 2021-12-21 | Asml荷兰有限公司 | 用于在本体上提供耐磨材料的方法、以及复合体 |
US11756819B2 (en) | 2019-05-16 | 2023-09-12 | Applied Materials, Inc. | Methods and apparatus for minimizing substrate backside damage |
US11887878B2 (en) * | 2019-06-28 | 2024-01-30 | Applied Materials, Inc. | Detachable biasable electrostatic chuck for high temperature applications |
US20220262657A1 (en) * | 2019-08-02 | 2022-08-18 | Applied Materials, Inc. | Pedestal with multi-zone heating |
US20210175103A1 (en) * | 2019-12-06 | 2021-06-10 | Applied Materials, Inc. | In situ failure detection in semiconductor processing chambers |
CN111128845B (zh) * | 2019-12-16 | 2022-10-21 | 北京北方华创微电子装备有限公司 | 应用于薄膜沉积装置的托盘 |
JP2021118249A (ja) * | 2020-01-24 | 2021-08-10 | 東京エレクトロン株式会社 | プラズマ処理装置 |
KR102253957B1 (ko) * | 2020-01-31 | 2021-05-20 | 정홍흔 | 반도체 플라즈마 물리기상증착 장치 및 볼록형 서스 히터 |
CN111477569B (zh) * | 2020-04-10 | 2024-02-27 | 北京北方华创微电子装备有限公司 | 一种半导体设备中的加热装置及半导体设备 |
JP7554849B2 (ja) | 2020-05-11 | 2024-09-20 | インテグリス・インコーポレーテッド | ガス流特徴部を有する静電チャック、及び関連する方法 |
CN111607785A (zh) * | 2020-05-26 | 2020-09-01 | 北京北方华创微电子装备有限公司 | 一种加热装置及半导体加工设备 |
US20210381101A1 (en) * | 2020-06-03 | 2021-12-09 | Applied Materials, Inc. | Substrate processing system |
JP7515310B2 (ja) * | 2020-06-10 | 2024-07-12 | 東京エレクトロン株式会社 | 載置台、基板処理装置及び基板処理方法 |
US11567417B2 (en) * | 2021-01-20 | 2023-01-31 | Applied Materials, Inc. | Anti-slippery stamp landing ring |
US11569114B2 (en) * | 2021-02-12 | 2023-01-31 | Applied Materials, Inc. | Semiconductor processing with cooled electrostatic chuck |
US11699611B2 (en) | 2021-02-23 | 2023-07-11 | Applied Materials, Inc. | Forming mesas on an electrostatic chuck |
KR20240005939A (ko) * | 2021-05-10 | 2024-01-12 | 어플라이드 머티어리얼스, 인코포레이티드 | 금속 매트릭스 복합재를 갖는 고온 서셉터 |
JP7308330B2 (ja) | 2021-05-10 | 2023-07-13 | ピコサン オーワイ | 基板処理装置及び方法 |
US12014906B2 (en) * | 2021-11-19 | 2024-06-18 | Applied Materials, Inc. | High temperature detachable very high frequency (VHF) electrostatic chuck (ESC) for PVD chamber |
US20230162955A1 (en) * | 2021-11-24 | 2023-05-25 | Applied Materials, Inc. | Electrostatic chuck with detachable shaft |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6081414A (en) * | 1998-05-01 | 2000-06-27 | Applied Materials, Inc. | Apparatus for improved biasing and retaining of a workpiece in a workpiece processing system |
JP2001223261A (ja) * | 2000-02-07 | 2001-08-17 | Hitachi Ltd | 静電チャック及び静電吸着装置 |
KR20010111058A (ko) * | 2000-06-09 | 2001-12-15 | 조셉 제이. 스위니 | 전체 영역 온도 제어 정전기 척 및 그 제조방법 |
JP2007243139A (ja) * | 2006-02-08 | 2007-09-20 | Toto Ltd | 静電チャック |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5805408A (en) * | 1995-12-22 | 1998-09-08 | Lam Research Corporation | Electrostatic clamp with lip seal for clamping substrates |
US6108189A (en) * | 1996-04-26 | 2000-08-22 | Applied Materials, Inc. | Electrostatic chuck having improved gas conduits |
US5764471A (en) * | 1996-05-08 | 1998-06-09 | Applied Materials, Inc. | Method and apparatus for balancing an electrostatic force produced by an electrostatic chuck |
US5903428A (en) * | 1997-09-25 | 1999-05-11 | Applied Materials, Inc. | Hybrid Johnsen-Rahbek electrostatic chuck having highly resistive mesas separating the chuck from a wafer supported thereupon and method of fabricating same |
US5880924A (en) * | 1997-12-01 | 1999-03-09 | Applied Materials, Inc. | Electrostatic chuck capable of rapidly dechucking a substrate |
US6067222A (en) * | 1998-11-25 | 2000-05-23 | Applied Materials, Inc. | Substrate support apparatus and method for fabricating same |
JP2001102436A (ja) * | 1999-05-07 | 2001-04-13 | Applied Materials Inc | 静電チャック及びその製造方法 |
JP3805134B2 (ja) * | 1999-05-25 | 2006-08-02 | 東陶機器株式会社 | 絶縁性基板吸着用静電チャック |
US7479456B2 (en) * | 2004-08-26 | 2009-01-20 | Applied Materials, Inc. | Gasless high voltage high contact force wafer contact-cooling electrostatic chuck |
JP3623938B2 (ja) | 2000-12-11 | 2005-02-23 | ジーイー・スペシャルティ・マテリアルズ・ジャパン株式会社 | 静電チャックの製造方法 |
US6483690B1 (en) * | 2001-06-28 | 2002-11-19 | Lam Research Corporation | Ceramic electrostatic chuck assembly and method of making |
US6538872B1 (en) * | 2001-11-05 | 2003-03-25 | Applied Materials, Inc. | Electrostatic chuck having heater and method |
JP3881908B2 (ja) * | 2002-02-26 | 2007-02-14 | 株式会社日立ハイテクノロジーズ | プラズマ処理装置 |
KR20050005035A (ko) | 2003-07-01 | 2005-01-13 | 삼성전자주식회사 | 화학기상증착 공정용 반도체소자 제조설비 |
KR100505035B1 (ko) * | 2003-11-17 | 2005-07-29 | 삼성전자주식회사 | 기판을 지지하기 위한 정전척 |
JP4349952B2 (ja) * | 2004-03-24 | 2009-10-21 | 京セラ株式会社 | ウェハ支持部材とその製造方法 |
JP4476701B2 (ja) * | 2004-06-02 | 2010-06-09 | 日本碍子株式会社 | 電極内蔵焼結体の製造方法 |
JP4476824B2 (ja) * | 2005-01-25 | 2010-06-09 | 太平洋セメント株式会社 | 静電チャックおよび露光装置 |
TW200726344A (en) * | 2005-12-30 | 2007-07-01 | Epistar Corp | Hybrid composite material substrate |
JP4615464B2 (ja) * | 2006-03-16 | 2011-01-19 | 東京エレクトロン株式会社 | プラズマ処理装置用電極アッセンブリ及びプラズマ処理装置 |
US20070224451A1 (en) * | 2006-03-24 | 2007-09-27 | General Electric Company | Composition, coating, coated article, and method |
JP2008042140A (ja) * | 2006-08-10 | 2008-02-21 | Tokyo Electron Ltd | 静電チャック装置 |
US7672111B2 (en) * | 2006-09-22 | 2010-03-02 | Toto Ltd. | Electrostatic chuck and method for manufacturing same |
US8573836B2 (en) * | 2006-10-26 | 2013-11-05 | Tokyo Electron Limited | Apparatus and method for evaluating a substrate mounting device |
-
2009
- 2009-08-06 WO PCT/US2009/052917 patent/WO2010019430A2/en active Application Filing
- 2009-08-06 EP EP09807085A patent/EP2321846A4/en not_active Withdrawn
- 2009-08-06 KR KR1020117005795A patent/KR101582785B1/ko active IP Right Grant
- 2009-08-06 CN CN200980136614XA patent/CN102160167B/zh active Active
- 2009-08-06 JP JP2011523047A patent/JP2011530833A/ja active Pending
- 2009-08-11 US US12/539,410 patent/US8390980B2/en active Active
- 2009-08-12 TW TW98127179A patent/TWI473199B/zh active
-
2013
- 2013-11-06 JP JP2013230258A patent/JP5538612B2/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6081414A (en) * | 1998-05-01 | 2000-06-27 | Applied Materials, Inc. | Apparatus for improved biasing and retaining of a workpiece in a workpiece processing system |
JP2001223261A (ja) * | 2000-02-07 | 2001-08-17 | Hitachi Ltd | 静電チャック及び静電吸着装置 |
KR20010111058A (ko) * | 2000-06-09 | 2001-12-15 | 조셉 제이. 스위니 | 전체 영역 온도 제어 정전기 척 및 그 제조방법 |
JP2007243139A (ja) * | 2006-02-08 | 2007-09-20 | Toto Ltd | 静電チャック |
Cited By (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11754929B2 (en) | 2012-02-03 | 2023-09-12 | Asml Netherlands B.V. | Substrate holder and method of manufacturing a substrate holder |
CN109254501A (zh) * | 2012-02-03 | 2019-01-22 | Asml荷兰有限公司 | 衬底支架、光刻装置、器件制造方法和制造衬底保持器的方法 |
US11376663B2 (en) | 2012-02-03 | 2022-07-05 | Asml Netherlands B.V. | Substrate holder and method of manufacturing a substrate holder |
CN102632408A (zh) * | 2012-05-05 | 2012-08-15 | 山东大学 | 一种加速钻削过程中工件传热的热管夹具及方法 |
CN107265400A (zh) * | 2012-05-25 | 2017-10-20 | 苹果公司 | 具有硅电极的微型器件转移头部 |
CN107265400B (zh) * | 2012-05-25 | 2019-10-08 | 苹果公司 | 具有硅电极的微型器件转移头部 |
CN104488074B (zh) * | 2012-07-03 | 2017-07-11 | 华特隆电器制造公司 | 用于层状加热器的复合衬底 |
US10658206B2 (en) | 2012-07-03 | 2020-05-19 | Watlow Electric Manufacturing Company | Method of forming a composite substrate for layered heaters |
CN105706351B (zh) * | 2013-11-22 | 2019-07-19 | 应用材料公司 | 用于静电卡盘表面的垫设计 |
CN105706351A (zh) * | 2013-11-22 | 2016-06-22 | 应用材料公司 | 用于静电卡盘表面的垫设计 |
US11322337B2 (en) | 2014-08-01 | 2022-05-03 | Applied Materials, Inc. | Plasma processing system workpiece carrier with thermally isolated heater plate blocks |
CN106716608B (zh) * | 2014-08-01 | 2020-10-02 | 应用材料公司 | 具有独立隔离的加热器区域的晶片载体 |
CN106716608A (zh) * | 2014-08-01 | 2017-05-24 | 应用材料公司 | 具有独立隔离的加热器区域的晶片载体 |
CN111564405B (zh) * | 2014-08-26 | 2023-10-03 | 应用材料公司 | 用于处理基板的方法 |
CN111564405A (zh) * | 2014-08-26 | 2020-08-21 | 应用材料公司 | 用于处理基板的方法 |
CN106663647A (zh) * | 2014-10-17 | 2017-05-10 | 应用材料公司 | 用于高温处理的静电夹盘组件 |
CN111916387A (zh) * | 2014-10-17 | 2020-11-10 | 应用材料公司 | 用于高温处理的静电夹盘组件 |
CN106663647B (zh) * | 2014-10-17 | 2020-08-25 | 应用材料公司 | 用于高温处理的静电夹盘组件 |
US10781518B2 (en) | 2014-12-11 | 2020-09-22 | Applied Materials, Inc. | Gas cooled electrostatic chuck (ESC) having a gas channel formed therein and coupled to a gas box on both ends of the gas channel |
CN107002222A (zh) * | 2014-12-11 | 2017-08-01 | 应用材料公司 | 用于氮化铝(aln)pvd工艺的气冷的最小接触面积(mca)的静电吸盘(esc) |
CN107002222B (zh) * | 2014-12-11 | 2021-04-06 | 应用材料公司 | 用于氮化铝(aln)pvd工艺的气冷的最小接触面积(mca)的静电吸盘(esc) |
CN105742148A (zh) * | 2014-12-25 | 2016-07-06 | 东京毅力科创株式会社 | 蚀刻处理方法和蚀刻处理装置 |
US12009228B2 (en) | 2015-02-03 | 2024-06-11 | Applied Materials, Inc. | Low temperature chuck for plasma processing systems |
CN107533945B (zh) * | 2015-02-03 | 2020-03-17 | 应用材料公司 | 用于等离子体处理系统的低温夹具 |
CN107533945A (zh) * | 2015-02-03 | 2018-01-02 | 应用材料公司 | 用于等离子体处理系统的低温夹具 |
CN107208261A (zh) * | 2015-02-06 | 2017-09-26 | 应用材料公司 | 用于静电卡盘表面的径向向外的垫设计 |
CN114686834A (zh) * | 2015-02-06 | 2022-07-01 | 应用材料公司 | 用于静电卡盘表面的径向向外的垫设计 |
CN108701642A (zh) * | 2016-03-04 | 2018-10-23 | 应用材料公司 | 用于高温工艺的基板支撑组件 |
CN108701630A (zh) * | 2017-01-31 | 2018-10-23 | 应用材料公司 | 基板载体和处理基板的方法 |
CN111448646A (zh) * | 2017-12-11 | 2020-07-24 | 应用材料公司 | 低温冷却的可旋转静电卡盘 |
CN112166497B (zh) * | 2018-06-22 | 2021-12-21 | 应用材料公司 | 半导体晶片处理中最小化晶片背侧损伤的方法 |
CN112166497A (zh) * | 2018-06-22 | 2021-01-01 | 应用材料公司 | 半导体晶片处理中最小化晶片背侧损伤的方法 |
CN111212930A (zh) * | 2018-07-26 | 2020-05-29 | 应用材料公司 | 用以支撑真空腔室中载体或部件的支撑装置、用以支撑真空腔室中载体或部件的支撑装置的使用、用以处理真空腔室中载体的设备、及真空沉积系统 |
CN113169111A (zh) * | 2018-12-07 | 2021-07-23 | 应用材料公司 | 具有改良的热耦合以用于热敏感处理的静电吸盘 |
CN112970100A (zh) * | 2018-12-11 | 2021-06-15 | 应用材料公司 | 低温静电吸盘 |
WO2022051377A1 (en) * | 2020-09-01 | 2022-03-10 | Applied Materials, Inc. | Dynamic electrical and fluid delivery system with indexing motion for batch processing chambers |
US11602064B2 (en) | 2020-09-01 | 2023-03-07 | Applied Materials, Inc. | Dynamic electrical and fluid delivery system with indexing motion for batch processing chambers |
US11950384B2 (en) | 2020-09-01 | 2024-04-02 | Applied Materials, Inc. | Dynamic electrical and fluid delivery system with indexing motion for batch processing chambers |
CN114695048A (zh) * | 2020-12-30 | 2022-07-01 | 中微半导体设备(上海)股份有限公司 | 下电极组件和包含下电极组件的等离子体处理装置 |
CN112582330A (zh) * | 2021-02-22 | 2021-03-30 | 北京中硅泰克精密技术有限公司 | 半导体工艺设备及其静电卡盘组件 |
Also Published As
Publication number | Publication date |
---|---|
TW201027661A (en) | 2010-07-16 |
KR20110049867A (ko) | 2011-05-12 |
EP2321846A2 (en) | 2011-05-18 |
JP2011530833A (ja) | 2011-12-22 |
EP2321846A4 (en) | 2012-03-14 |
US20100039747A1 (en) | 2010-02-18 |
KR101582785B1 (ko) | 2016-01-07 |
TWI473199B (zh) | 2015-02-11 |
JP5538612B2 (ja) | 2014-07-02 |
WO2010019430A3 (en) | 2010-05-14 |
JP2014060421A (ja) | 2014-04-03 |
CN102160167B (zh) | 2013-12-04 |
WO2010019430A2 (en) | 2010-02-18 |
US8390980B2 (en) | 2013-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102160167B (zh) | 静电吸盘组件 | |
JP6689937B2 (ja) | 真空プロセス・チャンバの構成部品及び製造方法 | |
CN103081088B (zh) | 静电夹盘和使用静电夹盘的方法 | |
US7589950B2 (en) | Detachable electrostatic chuck having sealing assembly | |
US6853533B2 (en) | Full area temperature controlled electrostatic chuck and method of fabricating same | |
KR100907848B1 (ko) | 고온 정전기 척 | |
US7480129B2 (en) | Detachable electrostatic chuck for supporting a substrate in a process chamber | |
JP4256482B2 (ja) | 高温の静電チャックから下側の低温体に伝熱するための装置及び方法 | |
CN108505010B (zh) | 用于沉积腔室的基板支撑夹盘冷却 | |
JP4805450B2 (ja) | 静電チャック及び真空チャンバ内の基板処理方法 | |
US10079167B2 (en) | Electrostatic chucking device | |
JPH0982788A (ja) | 静電チャックおよびその製造方法 | |
JP2004349666A (ja) | 静電チャック | |
JP2010205790A (ja) | サセプタ及びプラズマ処理装置 | |
KR102688371B1 (ko) | 반도체 제조 장치용 부재 | |
US20230343565A1 (en) | Wafer placement table | |
CN115410978B (zh) | 静电卡盘和半导体工艺设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C53 | Correction of patent of invention or patent application | ||
CB02 | Change of applicant information |
Address after: American California Applicant after: Applied Materials Inc. Address before: American California Applicant before: Applied Materials Inc. |
|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |