CN107002222B - 用于氮化铝(aln)pvd工艺的气冷的最小接触面积(mca)的静电吸盘(esc) - Google Patents

用于氮化铝(aln)pvd工艺的气冷的最小接触面积(mca)的静电吸盘(esc) Download PDF

Info

Publication number
CN107002222B
CN107002222B CN201580063578.4A CN201580063578A CN107002222B CN 107002222 B CN107002222 B CN 107002222B CN 201580063578 A CN201580063578 A CN 201580063578A CN 107002222 B CN107002222 B CN 107002222B
Authority
CN
China
Prior art keywords
gas
cooling
electrostatic chuck
degrees celsius
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201580063578.4A
Other languages
English (en)
Other versions
CN107002222A (zh
Inventor
布赖恩·T·韦斯特
诺吉·A·贾金德拉
桑德拉贾·吉姆布林甘姆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of CN107002222A publication Critical patent/CN107002222A/zh
Application granted granted Critical
Publication of CN107002222B publication Critical patent/CN107002222B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4586Elements in the interior of the support, e.g. electrodes, heating or cooling devices
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32697Electrostatic control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32715Workpiece holder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32715Workpiece holder
    • H01J37/32724Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N13/00Clutches or holding devices using electrostatic attraction, e.g. using Johnson-Rahbek effect

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Chemical & Material Sciences (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Physical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

提供本公开内容的实施方式,包含一种静电吸盘组件、一种处理腔室和一种保持基板温度的方法。在一个实施方式中,提供有静电吸盘组件,静电吸盘组件包含静电吸盘、冷却板和气体箱。冷却板包含形成于冷却板中的气体通道。气体箱可操作以控制通过气体通道的冷却气体的流量。

Description

用于氮化铝(ALN)PVD工艺的气冷的最小接触面积(MCA)的静 电吸盘(ESC)
公开内容的背景
技术领域
本公开内容的实施方式一般涉及半导体器件的制造。尤其是,实施方式涉及在半导体器件的制造期间冷却静电吸盘。
背景技术
微机电系统(MEMS)是由半导体处理系统所制造的非常小的器件,用于在遍及世界的各种电子器件中。氮化铝(AlN)是在MEMS器件中常用的材料,而物理气相沉积(PVD)工艺是用于在基板上大量制造优质MEMS器件的偏好制造技术之一。
在AlN PVD工艺期间,基板被支撑在陶瓷静电吸盘(ESC)上,陶瓷静电吸盘保持在约400摄氏度的温度。为了可靠地制造MEMS器件,工艺在工艺温度中需要最小的变化。现存的ESC组件经设计以使用去离子水(DIW)冷却系统,以最小化在AlN PVD工艺中的温度变化。然而,传统的DIW冷却系统尚未能在用于PVD腔室中的ESC于以高功率和高温处理多个基板的制造运转的过程中保持稳定的温度。ESC的温度在仅几个基板经历AlN PVD工艺,同时制造MEMS之后开始趋向上升。在制造运转中被稍后继续处理的基板相较于较早的基板遭遇到较高的温度。温度急剧增加且此温度的急剧变化影响沉积于基板上的膜的应力。此外,在400摄氏度和更高的温度时,使用去离子水以冷却ESC可能产生热冲击,破坏陶瓷ESC。因此,传统的ESC的在400摄氏度和更高的温度时,不适合用以可靠地处理MEMS器件。
因此,存有一种改进的ESC的需求。
发明内容
提供本公开内容的实施方式,包含一种静电吸盘组件,一种处理腔室和一种保持基板的温度的方法。在一个实施方式中,提供一种静电吸盘组件,静电吸盘组件包含静电吸盘、冷却板和气体箱。冷却板包含形成于冷却板中的气体通道。气体箱可操作以控制通过气体通道的冷却气体的流量。
在另一个实施方式中,提供处理腔室,处理腔室包含腔室主体、气冷的静电吸盘组件和气体箱。腔室主体具有壁、盖和底部,腔室主体限定内部处理容积。气冷的静电吸盘组件设置在腔室主体的处理容积中,气冷的静电吸盘组件具有冷却板。冷却板具有气体通道,气体通道具有第一端和第二端。气体箱经构造以控制至在冷却板中的气体通道的第一端的冷却气体的流量,并从在冷却板中的气体通道的第二端接收冷却气体。
在另一实施方式中,提供有用于冷却气冷的静电吸盘组件的方法,方法包含供应冷却气体到气体箱;通过耦接至静电吸盘的冷却板将冷却气体从气体箱流出;使冷却气体从冷却板流至气体箱;以及使冷却气体流动通过在气体冷却箱中的热交换器以冷却冷却气体。
附图说明
以上本发明的详述特征能够被具体理解的方式、本发明更特定描述可以通过参照实施方式而获得,实施方式中的一些实施方式绘示于附图中。然而,应注意,附图仅绘示本发明的典型实施方式,因而不应视为对本发明的范围的限制,因为本发明可允许其它有效的实施方式。
图1具有气冷的静电吸盘的处理室的示意剖视图。
图2用于静电吸盘的气体冷却布置的示意图。
图3用于在气冷的静电吸盘中的冷却板的底部平面图。
图4描绘关于气冷的静电吸盘在对应于多个制造周期的一段时间的温度变化的图。
图5图示用于冷却气冷的静电吸盘的方法。
为了便于理解,尽可能地,使用了相同的附图符号,以指示附图中共通的相同元件。考虑到,一个实施方式的元件和特征在没有特定描述下可有益地并入其它实施方式中。
然而,应注意附图仅绘示本发明的示例性的实施方式,因而不应视为对本发明的范围的限制,因为本发明可允许其它等同有效的实施方式。
具体实施方式
使用AlN在PVD腔室中沉积的优质MEMS器件的产出可通过降低在PVD腔室中使用的静电吸盘(ESC)的温度变化而提高,静电吸盘(ESC)用于支撑上面沉积AlN层的基板。ESC的温度变化可通过以气体冷却ESC而减少。ESC组件和/或冷却板利用具有受控气流(N2或清洁的干空气(CDA)及其它)的气体冷却布置及系统互锁以确保气体流并用以限制在ESC/基板上的温度变化于约±7.5摄氏度内,ESC被支撑于冷却板上。此外,已显示出具有高的温度(诸如超过400摄氏度的温度及甚至高达近1000摄氏度的温度)的其他沉积应用受益于具有气体冷却以限制温度变化在±7.5摄氏度内的ESC。
图1图示示例性的处理腔室100(例如,物理气相沉积(PVD)或溅射处理腔室,或化学沉积腔室(CVD))。处理腔室100可以适合用于需要极小温度变化的高温操作。处理腔室100可以是适合于在基板190上溅射沉积氮化铝(AlN)材料的PVD腔室,例如,于制造MEMS期间。然而,应理解处理腔室100可以是CVD腔室或适合在腔室中处理的材料期望有限温度变化的应用的其他腔室。
处理腔室100包含腔室主体108,腔室主体108具有在腔室主体中界定的处理容积118。腔室主体108具有侧壁110和底部112。处理腔室100的腔室主体108和相关部件的尺寸未限定,且大体按比例高于待于腔室主体和相关部件中处理的基板190的尺寸。然而,因为任何合适的基板尺寸可以被处理,工艺腔室100可相应地调整尺寸。合适的基板尺寸的例子包含具有200mm直径、100mm直径或450mm直径的基板。
腔室盖组件104安装在腔室主体108的顶部上。腔室主体108可由不锈钢、铝或其他合适的材料所制成。基板存取口138穿过腔室主体108的侧壁110而形成,有助于将基板190传送进出处理腔室100。存取口138可被耦接至传送腔室和/或基板处理系统的其他腔室。
基板支撑件150设置在腔室主体108内侧。基板支撑件150可移动以控制基板支撑件150的顶部和腔室盖组件104之间的间隔。基板支撑件150包含气冷的静电吸盘(ESC)152和冷却板170,这两者进一步地描述于下文。
气体源132耦接至腔室主体108,以供应处理气体至处理容积118内。在一个实施方式中,若必要的话,工艺气体可包括惰性气体、非反应性气体及反应性气体。可由气体源132所提供的工艺气体的例子可包含但不限于氩气(Ar)、氦(He)、氖气(Ne)、氪(Kr)、氙(Xe)、氮气(N2)、氧气(O2)、氢气(H2)、氨(NH3)、甲烷(CH4)、一氧化碳(CO)和/或二氧化碳(CO2)等等。在一个实施方式中,气体源132供应N2和Ar至腔室容积内。
在工艺气体被引入至处理腔室100中之后,气体被能量化以形成等离子体。天线142,诸如一或多个感应线圈,可邻近处理腔室100而设置。天线功率源140可以供应功率给天线142,以感应耦合能量(诸如RF能量)至工艺气体,以在处理腔室100中的基板支撑件150和盖组件104之间所界定的处理区域中形成等离子体。替代地或另外地,包括在基板190的下方的阴极和在基板190
的上方的阳极的处理电极可被用以耦合RF功率以产生等离子体。亦控制在处理腔室100中的其他部件的操作的控制器180可控制天线功率源140的操作。
泵送口192穿过腔室主体108的底部112而形成。泵送器件194耦接至处理容积118,以抽空并控制处理容积118中的压力。泵送系统和腔室冷却设计在适合热预算需求(如-25C至+1000C)的温度时达到高真空度(1E-8托或更小)和低升高速率(1000mTorr/分)。泵送系统经设计以提供工艺压力的精确控制。
盖组件104一般包含靶材120和耦接至靶材120的接地屏蔽组件130。靶材120提供可在PVD工艺期间被溅射和沉积至基板190的表面上的材料源。靶材120作为于DC溅射期间的等离子体电路的阴极。
靶材120(或靶材板)可由用于沉积层的材料,或待形成于处理腔室100中的沉积层的元素制成。高压功率源,诸如功率源144,被连接至靶材120以帮助从靶材120溅射材料。靶材120可由包含硅(Si)、钛(Ti)金属、钽金属(Ta)、铪(Hf)、钨(W)金属、钴(Co)、镍(Ni)、铜(Cu)、铝(Al)、上述金属的合金、上述金属的组合,或类似的材料所制成。此外,于处理期间从靶材发射的电子可由靶材的n型或p型掺杂来控制。靶材可掺杂有传导(conducting)元素(诸如硼(B))。在一个实施方式中,靶材可包含Al合金,用于产生Al离子,Al离子与氮离子在基板190上结合,以形成AlN层。
靶材120一般地包含周边部分128和中央部分124。周边部分128设置在腔室的侧壁110上。靶材120的中央部分124可具有稍微朝设置在基板支撑件150上的基板190的表面延伸的弯曲表面。靶材120和基板支撑件150之间的间隔维持于约50mm和约150mm之间。应注意,靶材120的尺寸、形状、材料、构造和直径可为特定的工艺或基板要求而变化。靶材120亦可包含一起形成靶材的相邻的瓦(tile)或分段的材料。
盖组件104可进一步包括安装在靶材120上方的磁控管阴极102,磁控管阴极102在处理期间提高从靶材120溅射材料的效率。磁控管阴极321允许简易和快速的控制及订制的膜性质,同时确保一致的靶材腐蚀(erosion)和遍及基板190的膜(诸如AlN)的均匀沉积。磁控管组件的例子包含线性磁控管、蛇形磁控管、螺旋磁控管、双掌状(double-digitated)磁控管、矩形化螺旋磁控管及其他。
盖组件104的接地屏蔽件组件130包含接地框架106和接地屏蔽件122。接地屏蔽件组件130亦可包含其他腔室屏蔽件构件、靶材屏蔽件部件、暗区(dark space)屏蔽件和暗区屏蔽件框架。接地屏蔽件122由接地框架106耦接至周边部分128,接地框架106界定在处理容积118中的靶材120的中央部分下方的上方处理区域126。接地框架106电绝缘接地屏蔽件122与靶材120,同时通过侧壁110提供到处理腔室100的腔室主体108的接地路径。接地屏蔽件122限制于处理期间在上方处理区域126内所产生的等离子体,并从所限制的靶材120的中央部分124驱逐靶材源材料,由此允许所驱逐的靶材来源被主要地沉积在基板表面上,而非腔室侧壁110上。在一个实施方式中,接地屏蔽件122可由一或多个工件片段和/或由在该领域中已知的工艺(诸如焊接、胶合、高压压紧等)而结合的多个这些工件形成。
控制器180耦接至处理腔室100。控制器180包含中央处理单元(CPU)184、内存182和支援电路186。控制器180被用以控制工艺顺序、调节从气体源132至处理腔室100的气体流,并控制靶材120的离子轰击。CPU 184可具有可用于工业设置中的通用计算机处理器的任何形式。软件程序可被储存在存储器182中,诸如随机存取内存、只读存储器、软盘或硬盘驱动器,或其他形式的数字储存器中。支援电路186传统地耦接至CPU 184且可包括快取、时钟电路、输入/输出子系统、功率供应和类似者。当由CPU 184执行软件程序时,软件程序将CPU转换成专用计算机(控制器)180,专用计算机(控制器)180控制处理腔室100,使得工艺依据本发明而实施。软件程序亦可由第二控制器(图未示)储存和/或由第二控制器(未示出)而执行,第二控制器位于处理腔室100远程处。
在处理期间,材料从靶材120溅射并沉积在基板190的表面上。靶材120和基板支撑件150由功率源144相对于彼此和/或相对于地面偏压,以维持从由气体源132所供应的工艺气体形成的等离子体。来自等离子体的离子被加速朝向靶材并撞击靶材120,致使靶材料从靶材120被驱逐。被驱逐的靶材材料和反应性工艺气体一起在基板190上形成具有所期望成分的层。RF、DC或快速切换脉冲DC功率供应或它们的组合提供可调的靶材偏压,可调的靶材偏压用于AlN材料的溅射成分和沉积速率的精确控制。
延伸通过腔室主体108的底部112的轴164耦接至升降机构160。升降机构160经构造以移动基板支撑件150于下方传送位置和上方处理位置之间。波纹管162环绕轴164并耦接至基板支撑件150,以于轴164和基板支撑件150之间提供挠性密封,由此保持对处理腔室100的处理容积118的真空完整性。
如上所讨论的,基板支撑件150含有具有吸盘电极158的静电吸盘(ESC)。ESC 152使用相反电荷的吸引,以于处理期间保持基板190的绝缘和导电两者,且ESC 152由DC功率供应166供给功率。ESC 152包括镶嵌于介电主体153内的吸盘电极158。DC功率供应166可提供约200至约2000伏特的的DC夹持电压至吸盘电极158。DC功率供应166亦可包含系统控制器180,系统控制器180通过将DC电流导引至电极来控制吸盘电极158的操作,以用于夹持并解开基板190。
在一些实施方式中,亦希望在层沉积工艺的不同阶段期间,分别地施加偏压至基板190。因此,偏压可被从来源154(如,DC和/或RF源)提供至基板支撑件150中的偏压电极156(或吸盘电极158),使得于沉积工艺的一或多个阶段期间,在等离子体中形成的离子将轰击基板190。
遮蔽框架136设置在基板支撑件150的周边区域上,且经构造以限制从靶材120溅射至基板表面的所期望部分的源材料的沉积。腔室屏蔽件134可设置于腔室主体108的内壁上,并具有朝内延伸至处理容积118的唇部,唇部经构造以支撑绕基板支撑件150而设置的遮蔽框架136。当基板支撑件150被升至用于处理的上方位置时,设置于基板支撑件150上的基板190的外侧边缘由遮蔽框架136接合,且遮蔽框架136抬升并远离腔室屏蔽件134。当基板支撑件150降低到邻近基板传送存取端口138的传送位置时,遮蔽框架136设置回到腔室屏蔽件134上。升降销(未示出)由传送机器手或其它合适的传送机构而选择性地移动通过基板支撑件150,以升降在基板支撑件150上方的基板190,用以促进基板190的存取。
如以上所讨论的,基板支撑件150可包含冷却板170。冷却板170设置成与ESC 152的下侧接触。冷却板170被用以控制ESC 152的温度,及因此控制设置在ESC 152上的基板190的温度。冷却板170可被耦接至ESC 152,或为ESC 152的一部分。冷却板170由冷却线174连接至气体冷却箱178。气体冷却箱178可提供主要热传送流体,诸如气体,主要热传送流体在回到气体冷却箱178之前循环通过冷却板170。冷却板170可具有设置在冷却板170中的一或多个导管172。流过相邻导管172的主要热传送流体可被隔离,以使在ESC 152和冷却板170的不同区域之间的热传送能够局部控制,这有助于控制基板190的侧向温度轮廓。导管172可连接至歧管(岐管至冷却线174),或可各具有用于提供主要热传送流体进出冷却板170的单独的冷却线174。
冷却板170可保持在ESC 152上的基板190的温度低于膜可变得挥发并污染处理腔室100的温度。冷却板170将ESC 152保持在对于由AlN PVD形成MEMS器件的稳定的温度范围内。因此,冷却板170降低了制造缺陷和停机时间,由于处理腔室100免于腔室污染和/或对ESC造成损坏。
图2是用于ESC 152的气体冷却布置200的高阶示意图。气体冷却布置200包含气冷ESC组件252和气体冷却箱178。ESC组件252是基板支撑件150的一部分且ESC组件252由冷却线174连接至气体冷却箱178。ESC组件252包含ESC 152和冷却板176。冷却线174可包含一或多条的冷却气体返回线和一或多条冷却气体供应线。在一个实施方式中,冷却线174具有二条气体返回线和彼此流体分离的二条对应的气体供应线。冷却气体供应管线提供主要热传送流体至气冷的ESC组件252,主要热传送流体在此亦称为冷却气体。当冷却气体行经气冷的ESC组件252,并从气冷的ESC组件252移除热量时,冷却气体的温度上升。现已加热的冷却气体借由气体返回入口222从气冷的ESC组件252经由冷却线174返回到气体冷却箱178。
气体冷却箱178可具有用于在气体冷却箱178中连接和移动流体的多个连接件。气体冷却箱178可具有来源冷却气体入口214和来源冷却气体出口212。冷却气体源260可提供冷却气体至来源冷却气体入口214,冷却气体诸如N2、He或其它合适的气体。冷却气体可以约30摄氏度的温度来提供。冷却气体在源冷却气体入口214处进入气体冷却箱178并在源冷却气体出口212处离开。源冷却气体出口212流体地附接到冷却线174且离开源冷却气体出口212的冷却气体进入冷却板176。冷却气体可具有一温度,该温度适合用于通过从气冷的ESC组件252传送热至冷却气体来调节气冷的ESC组件252的温度。
气体冷却箱178可具有流量控制阀210。进入源冷却气体入口214的冷却气体(N2)的流量由流量控制阀210控制。流量控制阀210可以是具有传感器的可变的气体流量控制阀,传感器具有用以设定冷却气体的流动速率的数字输入/输出(I/O)口。I/O口可被附接控制器180。流量控制阀210,例如若不存在用于冷却气体的流量的设定值时,可传输流量信息及系统错误至控制器180。控制器180可操作流量控制阀210以调节冷却气体流出源冷却气体出口212而至气冷的Esc252的流量。
气体冷却箱178亦可具有气体返回入口222和返回气体出口224。冷却气体将热从气冷的ESC组件252带走。冷却气体经由冷却线离开气冷的ESC组件252并进入气体冷却箱178的气体返回入口222。冷却气体离开气体冷却箱178的返回气体出口224,且可以由冷却气体源260回收或再利用。
气体冷却箱178可附加地具有冷却流体入口232和冷却流体出口234。冷却流体源250可提供次级的冷却流体至气体冷却箱178的冷却流体入口232,次级的冷却流体,诸如去离子水(DIW)或其它合适的冷却流体。次级的冷却流体经由冷却流体出口234离开气体冷却箱178。离开冷却流体出口的次级的冷却流体可由冷却流体源250处理(诸如热处理以移除热量)、回收且甚至再利用。
气体冷却箱178可具有热交换器220和可选的恒温器226。热交换器220可为非接触的热交换器或其它合适的非接触的热交换器,诸如壳管式热交换器。此外,气体冷却箱178可具有流量开关230。从气冷的ESC组件252返回的冷却气体可被加热至约200摄氏度的温度。经加热的冷却气体在气体返回入口222处进入气体冷却箱178并通过热交换器220。流量开关230亦可具有互锁及IO口,以检测次级的冷却流体的流量并与控制器180通信。流量开关调节从冷却流体入口232进来并进入热交换器220的次级的冷却流体。热交换器220亦可具有流量开关,流量开关具有用于检测次级的冷却流体的互锁,及用于与控制器180通信的I/O端口。此外,热交换器可具有在热交换器220上的热开关,诸如双金属热开关,以检测过热状态,例如当在热交换器220中没有次级的冷却流体的流量时。热交换器可以以氟聚合物垫与气体冷却箱178隔离,以最小化在热交换器220和气体冷却箱178之间的热传送,并将RF功率与气冷的ESC组件252隔离。热交换器220可冷却经加热的冷却气体降低至约30摄氏度。现在经冷却的冷却气体可从气体冷却箱178经由返回气体出口224而排出。在一个实施方式中,控制器180监控恒温器226并调节流量开关230和流量控制阀210,以将冷却气体以一速率及适合保持气冷的ESC组件252在所期望的阶段点温度+/-7.5摄氏度内的温度提供至冷却板176。在一个示例中,所期望的阶段点温度可为约400摄氏度至约410摄氏度。
为实现在基板(未示出)与冷却板176之间的有效热传送,气体冷却通道310存在于冷却板176中。
图3为气冷的静电吸盘252的冷却板176的底视平面图。冷却板176可由铜(Cu)、不锈钢(SST)或其他导热材料或材料的混合物形成。在一个实施方式中,气体冷却通道310可为在板(诸如铜板320)中形成的槽。铜板320可被硬焊或接合至气冷的ESC组件252,或在气冷的ESC组件252的形成中压抵ESC 152。替代地,铜板320可在与ESC 152组装前,被硬焊或接合至次级的板或压抵次级的板,次级的板诸如SST板340。此外,导热垫圈材料可被放置在铜板320的面和陶瓷ESC 152的背侧(底侧)之间,以更好地将热量的热传送耦合至铜板320,并消除由不适当地热耦合接触所产生的温度轮廓的变化。冷却板176可具有用于仪器设备及其他控制线路(诸如,导线)通过冷却板176而至ESC 152的一或多个开放区域330。
在冷却板176中的气体冷却通道310可具有第一端312和第二端322。冷却线174可附接至第一和第二端312、322。冷却气体可从冷却线174流至第一端312中,并离开第二端322。虽然已显示冷却板170具有单一气体冷却通道310,应理解冷却板170可具有多个气体冷却通道310,每一气体冷却通道具有第一和第二端312、322,用以冷却气冷的ESC组件252。来自多个气体冷却通道的各自的第一端部312可被附接至歧管或具有单独的冷却线174。各自的第二端322可以被同样地构造。
具有作为在铜板320中的槽形成且被硬焊至SST板340的气体冷却通道310的冷却板170,增加了冷却流体与ESC 152之间的表面接触面积。所增加的表面接触面积提高了ESC152和冷却板170之间的热传送。作为在气冷的ESC 252中的铜板320中的沟槽形成的气体冷却通道310,可提供相较于在传统ESC中使用的传统水冷却线更长的冷却路径,例如高达约86%长。举例来说,在类似尺寸的200mm静电吸盘中,气体冷却通道310可以大于约20.0英寸长,例如约23.1英寸长,而传统的冷却线大约12.4英寸长。因此,气体冷却通道310提供具有较大的接触面积给气冷的ESC组件252,以更有效地移除来自设置于气冷的ESC组件252上的基板的热量。
在一个实施方式中,较长的气体冷却通道310携带N2气体以冷却ESC 152。N2气体可以是约30摄氏度且N2的流量由可变的气体流量控制阀210而控制。具有传感器的流量控制阀210建立N2气体的流率,该传感器具有数字输出至控制器180。从ESC排出的N2气体是在约200摄氏度,且当通过热交换器220时,在被排放至实验室环境之前冷却至30摄氏度。
图4描绘关于气冷的静电吸盘252在对应于多个制造周期的一段时间410的温度变化420的图。该图描绘三个制造周期,其中第一基板放置在处理腔室中、经处理、从处理腔室移除,接着第二和第三基板重复该周期。对ESC而言需要维持稳定的温度。在图4中所示的图的温度周期实际上为在沉积工艺期间稳定ESC的温度的尝试。当等离子体被启动时,由基板所吸收的额外的热量倾向继续加热基板和ESC,并超过理想的温度限制。气冷的ESC 252调节温度,以将温度保持于理想的温度范围内。
线段440描绘加热器的温度。加热器的温度在约378摄氏度和约445摄氏度之间变化。当在处理期间基板处在腔室中时,加热器的温度是在约445摄氏度。当基板被移至处理腔室和/或从处理腔室移出时,用于加热器温度的线段440下降至近378摄氏度。
为了比较,线段450描绘了未经冷却且运行经过用于三个基板的三个制造周期的传统ESC的温度。传统ESC(非冷却)的温度于整个工艺周期中升高。在仅3次运行之后,对传统ESC而言,可看到温度变化高于所欲的处理设定点温度之上约45摄氏度。此外,传统ESC的温度亦高于于处理前一个基板期间的传统ESC的温度约10度以上。若处理系统保持运行,传统ESC将达到甚至更高的温度,导致损坏的基板和工艺变化。
线段460描绘气冷的ESC组件252的温度。温度升高相较于由线段450所示的温度升高缓慢得多。气冷的ESC组件252具有被控制在约390℃至405℃(±7.5℃)内的温度变化。当处理三个基板时所示的温度改变证明了当处理三个基板时可维持恒定的温度,正如由相当一致化的温度曲线而证实。稳定化的温度曲线为更稳定的工艺的指示,更稳定的工艺接着导致在基板中制成的更一致质量的特征(诸如MEMS)。
图5描绘用于控制气冷的ESC的温度的方法。气冷的ESC可被构造成类似于图2中所示的气冷的ESC组件252。方法始于操作510,其中冷却气体被供应至气体冷却箱。冷却气体,诸如N2或其它合适的气体,可由气体源以约30摄氏度的温度供应。于操作520,冷却气体流至ESC的流量以流量控制阀调整,流量控制阀设置于气体冷却箱内侧。流量控制阀可具有I/O口,并与控制器通信。控制器可监控流量控制阀的错误状态并依据由控制器处理的其他信息以阀调整冷却气体的流率。
于操作530,使冷却气体流动通过在ESC中的冷却板。冷却气体离开流量控制阀,并从气体冷却出口离开气体冷却箱。从气体冷却出口,气体进入在ESC的冷却板中的气体冷却通道的第一端。气体冷却通道可为具有长度约23.1英寸的长度的槽。冷却气体与ESC接触且热量从ESC被传送至冷却气体。气体冷却通道具有第二端,现已加热的冷却气体由第二端离开冷却板。
于操作540,使冷却气体从ESC中的冷却板返回至气体冷却箱。现已加热的冷却气体进入气体冷却箱的气体返回入口。于操作550,使冷却气体流动通过气体冷却箱中的热交换器,以冷却冷却气体。热交换器具有附接至控制器的恒温器。控制器调整并监控用于冷却流体的流量控制器。冷却流体(诸如去离子水)进入热交换器,以从冷却气体移除热量。冷却气体以约30摄氏度离开热交换器。冷却气体的温度适合用以从气体冷却箱排出至实验室环境中,或出于冷却或其他目的而被再利用。
虽然前述涉及本发明的实施方式,在不偏离本发明的基本范围的情况下可设计本发明的其它的和进一步的实施例,且本发明的范围由随附的权利要求书来确定。

Claims (11)

1.一种静电吸盘组件,包括:
静电吸盘,所述静电吸盘具有被控制在390摄氏度至405摄氏度内的温度变化;
冷却板,经设置处于与所述静电吸盘接触,所述冷却板具有形成于所述冷却板中的气体通道;以及
气体箱,所述气体箱具有气体返回入口、气体返回出口、冷却气体入口、冷却气体出口和热交换器,所述冷却气体出口与所述热交换器隔离且耦接至在所述冷却板中的所述气体通道的第一端,所述冷却气体出口耦接至从冷却气体源接收冷却气体的所述冷却气体入口,所述气体返回入口耦接至在所述冷却板中的所述气体通道的第二端,所述气体返回入口被耦接通过所述热交换器而至所述气体返回出口,所述气体箱可操作以控制通过所述气体通道的冷却气体的流量,用以维持所述静电吸盘的温度在390摄氏度和405摄氏度之间,且所述热交换器适合用以将所述冷却气体从所述气体返回入口处的200摄氏度冷却至所述气体返回出口处,所述冷却气体从所述气体返回出口排出,并且由所述冷却气体源回收或再利用。
2.如权利要求1所述的静电吸盘组件,其中所述气体箱进一步包括:
流量控制阀,所述流量控制阀可操作以控制通过所述气体通道的冷却气体的所述流量。
3.如权利要求1所述的静电吸盘组件,其中所述冷却板由铜制成。
4.如权利要求1所述的静电吸盘组件,其中形成于所述冷却板中的所述气体通道包括槽。
5.如权利要求1所述的静电吸盘组件,其中形成于所述冷却板中的所述气体通道对于200 mm ESC而言至少20.0英寸长。
6.一种处理腔室,包括:
腔室主体,具有壁、盖和底部,所述腔室主体限定内部处理容积;
气冷的静电吸盘组件,所述气冷的静电吸盘组件包括静电吸盘,所述静电吸盘具有被控制在390摄氏度至405摄氏度内的温度变化,且所述气冷的静电吸盘组件设置在所述腔室主体的所述处理容积中,所述气冷的静电吸盘组件具有冷却板,所述冷却板具有气体通道,所述气体通道具有第一端和第二端;以及
气体箱,所述气体箱具有气体返回入口、气体返回出口、冷却气体入口、冷却气体出口和热交换器,所述热交换器耦接至所述气体返回入口和所述气体返回出口,并且所述冷却气体出口与热交换器隔离,其中所述气体箱经构造以控制至在所述冷却板中的所述气体通道的所述第一端的冷却气体的流量,所述冷却气体由冷却气体源提供,并从在所述冷却板中的所述气体通道的所述第二端接收所述冷却气体,并且其中所述气体箱经构造以维持所述静电吸盘的温度在390摄氏度和405摄氏度之间,且所述热交换器适合用以将所述冷却气体从所述气体返回入口处的200摄氏度冷却至所述气体返回出口处,所述冷却气体从所述气体返回出口排出,并且由所述冷却气体源回收或再利用。
7.如权利要求6所述的处理腔室,其中所述气体箱进一步包括:
热交换器,经构造以控制由所述气体箱输送至所述冷却板的气体通道的所述冷却气体的温度。
8.如权利要求6所述的处理腔室,其中形成于所述冷却板中的所述气体通道包括槽。
9.如权利要求6所述的处理腔室,其中形成于所述冷却板中的所述气体通道对于200mm ESC而言至少20.0英寸长。
10.一种处理腔室,包括:
腔室主体,具有壁、盖和底部,所述腔室主体限定内部处理容积;
气冷的静电吸盘组件,所述气冷的静电吸盘组件包括静电吸盘,所述静电吸盘具有被控制在400摄氏度与410摄氏度内的温度变化,且所述气冷的静电吸盘组件设置在所述腔室主体的所述处理容积中,所述气冷的静电吸盘组件具有冷却板,所述冷却板具有气体通道,所述气体通道具有第一端和第二端;以及
气体箱,所述气体箱具有气体返回入口、气体返回出口、冷却气体入口、冷却气体出口和热交换器,所述热交换器耦接至所述气体返回入口和所述气体返回出口,并且所述冷却气体出口与热交换器隔离,其中所述气体箱经构造以控制至在所述冷却板中的所述气体通道的所述第一端的冷却气体的流量,所述冷却气体由冷却气体源提供,并从在所述冷却板中的所述气体通道的所述第二端接收所述冷却气体,并且其中所述气体箱经构造以维持所述静电吸盘的温度在400摄氏度和410摄氏度之间,且所述热交换器适合用以将所述冷却气体从所述气体返回入口处的200摄氏度冷却至所述气体返回出口处,所述冷却气体从所述气体返回出口排出,并且由所述冷却气体源回收或再利用。
11.一种用于冷却气冷的静电吸盘组件的方法,所述方法包括以下步骤:
供应冷却气体到气体箱,所述气体箱具有气体返回入口、气体返回出口、冷却气体入口、冷却气体出口和热交换器;
使所述冷却气体从所述气体箱流动通过耦接至静电吸盘的冷却板;
使所述冷却气体从所述冷却板流至所述气体箱的所述气体返回入口;以及
使所述冷却气体流动通过在所述气体冷却箱中的所述热交换器以冷却来自冷却气体源的所述冷却气体并由此维持所述静电吸盘的温度在390摄氏度和405摄氏度之间,
其中所述气体返回入口被耦接通过所述热交换器而至所述气体返回出口,且所述冷却气体出口与所述热交换器分隔,且所述热交换器适合用以将所述冷却气体从所述气体返回入口处的200摄氏度冷却至所述气体返回出口处,所述冷却气体从所述气体返回出口排出,并且由所述冷却气体源回收或再利用。
CN201580063578.4A 2014-12-11 2015-11-04 用于氮化铝(aln)pvd工艺的气冷的最小接触面积(mca)的静电吸盘(esc) Active CN107002222B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/567,161 US10781518B2 (en) 2014-12-11 2014-12-11 Gas cooled electrostatic chuck (ESC) having a gas channel formed therein and coupled to a gas box on both ends of the gas channel
US14/567,161 2014-12-11
PCT/US2015/059065 WO2016093986A1 (en) 2014-12-11 2015-11-04 Gas cooled minimal contact area (mca) electrostatic chuck(esc) for aluminum nitride (aln) pvd process

Publications (2)

Publication Number Publication Date
CN107002222A CN107002222A (zh) 2017-08-01
CN107002222B true CN107002222B (zh) 2021-04-06

Family

ID=56107905

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580063578.4A Active CN107002222B (zh) 2014-12-11 2015-11-04 用于氮化铝(aln)pvd工艺的气冷的最小接触面积(mca)的静电吸盘(esc)

Country Status (6)

Country Link
US (1) US10781518B2 (zh)
JP (1) JP6879915B2 (zh)
KR (1) KR102401492B1 (zh)
CN (1) CN107002222B (zh)
TW (1) TWI692055B (zh)
WO (1) WO2016093986A1 (zh)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013078098A1 (en) * 2011-11-23 2013-05-30 Lam Research Corporation Multi zone gas injection upper electrode system
US9132436B2 (en) 2012-09-21 2015-09-15 Applied Materials, Inc. Chemical control features in wafer process equipment
US10256079B2 (en) 2013-02-08 2019-04-09 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
US11637002B2 (en) 2014-11-26 2023-04-25 Applied Materials, Inc. Methods and systems to enhance process uniformity
US20160225652A1 (en) 2015-02-03 2016-08-04 Applied Materials, Inc. Low temperature chuck for plasma processing systems
US9741593B2 (en) 2015-08-06 2017-08-22 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
US10504700B2 (en) 2015-08-27 2019-12-10 Applied Materials, Inc. Plasma etching systems and methods with secondary plasma injection
US9754769B2 (en) * 2015-09-15 2017-09-05 Lam Research Corporation Metrology methods to detect plasma in wafer cavity and use of the metrology for station-to-station and tool-to-tool matching
US10631370B2 (en) * 2015-10-30 2020-04-21 Ngk Insulators, Ltd. Member for semiconductor manufacturing apparatus, method for producing the same, and heater including shaft
US10504754B2 (en) 2016-05-19 2019-12-10 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
CN106229284A (zh) * 2016-07-19 2016-12-14 武汉新芯集成电路制造有限公司 一种点阵式控温静电吸附盘
US10546729B2 (en) 2016-10-04 2020-01-28 Applied Materials, Inc. Dual-channel showerhead with improved profile
JP2019537253A (ja) * 2016-10-18 2019-12-19 マットソン テクノロジー インコーポレイテッドMattson Technology, Inc. 被加工物を処理するためのシステムおよび方法
US10943834B2 (en) 2017-03-13 2021-03-09 Applied Materials, Inc. Replacement contact process
US11276590B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Multi-zone semiconductor substrate supports
US11276559B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Semiconductor processing chamber for multiple precursor flow
US10297458B2 (en) 2017-08-07 2019-05-21 Applied Materials, Inc. Process window widening using coated parts in plasma etch processes
US10903054B2 (en) 2017-12-19 2021-01-26 Applied Materials, Inc. Multi-zone gas distribution systems and methods
US11328909B2 (en) 2017-12-22 2022-05-10 Applied Materials, Inc. Chamber conditioning and removal processes
US10964512B2 (en) 2018-02-15 2021-03-30 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus and methods
US10319600B1 (en) 2018-03-12 2019-06-11 Applied Materials, Inc. Thermal silicon etch
US11049755B2 (en) * 2018-09-14 2021-06-29 Applied Materials, Inc. Semiconductor substrate supports with embedded RF shield
US11062887B2 (en) 2018-09-17 2021-07-13 Applied Materials, Inc. High temperature RF heater pedestals
US11417534B2 (en) 2018-09-21 2022-08-16 Applied Materials, Inc. Selective material removal
US11682560B2 (en) 2018-10-11 2023-06-20 Applied Materials, Inc. Systems and methods for hafnium-containing film removal
US11121002B2 (en) 2018-10-24 2021-09-14 Applied Materials, Inc. Systems and methods for etching metals and metal derivatives
US11437242B2 (en) 2018-11-27 2022-09-06 Applied Materials, Inc. Selective removal of silicon-containing materials
US10920319B2 (en) 2019-01-11 2021-02-16 Applied Materials, Inc. Ceramic showerheads with conductive electrodes
US20220074627A1 (en) * 2019-01-31 2022-03-10 Lam Research Corporation Cooling system for processing chamber
KR102282145B1 (ko) * 2019-11-04 2021-07-29 세메스 주식회사 기판 처리 장치 및 방법
TWI755659B (zh) * 2019-12-09 2022-02-21 天虹科技股份有限公司 降低氮化鋁的表面氧化物生成的方法與設備
US11594401B2 (en) * 2020-02-25 2023-02-28 Taiwan Semiconductor Manufacturing Co., Ltd. Method for manufacturing semiconductor wafer with wafer chuck having fluid guiding structure
JP7413112B2 (ja) 2020-03-24 2024-01-15 東京エレクトロン株式会社 基板載置台及び基板処理装置
CN116240503A (zh) * 2023-02-17 2023-06-09 航天材料及工艺研究所 一种新型电弧离子镀设备冷却方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070165356A1 (en) * 2003-04-22 2007-07-19 Applied Materials, Inc. Substrate support having heat transfer system
CN101093812A (zh) * 2006-04-27 2007-12-26 应用材料股份有限公司 具有双温度区的静电吸盘的衬底支架
US7480129B2 (en) * 2004-03-31 2009-01-20 Applied Materials, Inc. Detachable electrostatic chuck for supporting a substrate in a process chamber
CN102160167A (zh) * 2008-08-12 2011-08-17 应用材料股份有限公司 静电吸盘组件
US20120311858A1 (en) * 2009-10-02 2012-12-13 Ers Electronic Gmbh Apparatus for conditioning semiconductor chips and test method using the apparatus

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10303288A (ja) * 1997-04-26 1998-11-13 Anelva Corp プラズマ処理装置用基板ホルダー
JP3980187B2 (ja) * 1998-07-24 2007-09-26 日本碍子株式会社 半導体保持装置、その製造方法およびその使用方法
KR20010111058A (ko) * 2000-06-09 2001-12-15 조셉 제이. 스위니 전체 영역 온도 제어 정전기 척 및 그 제조방법
JP4660926B2 (ja) 2001-01-09 2011-03-30 東京エレクトロン株式会社 枚葉式の処理装置
KR100508754B1 (ko) * 2003-12-22 2005-08-17 삼성전자주식회사 온도 컨트롤러 및 이를 갖는 식각 장치
JP2006080222A (ja) * 2004-09-08 2006-03-23 Hitachi Ltd ウエハ処理装置
KR20070021801A (ko) * 2005-08-19 2007-02-23 삼성전자주식회사 반도체 소자 제조용 식각설비
US8226769B2 (en) 2006-04-27 2012-07-24 Applied Materials, Inc. Substrate support with electrostatic chuck having dual temperature zones
JP2009054871A (ja) 2007-08-28 2009-03-12 Tokyo Electron Ltd 載置台構造及び処理装置
US20090274590A1 (en) 2008-05-05 2009-11-05 Applied Materials, Inc. Plasma reactor electrostatic chuck having a coaxial rf feed and multizone ac heater power transmission through the coaxial feed
US8596336B2 (en) * 2008-06-03 2013-12-03 Applied Materials, Inc. Substrate support temperature control
US8607926B2 (en) * 2009-04-21 2013-12-17 E I Du Pont De Nemours And Company Composite flame barrier laminate for a thermal and acoustic insulation blanket
US8274017B2 (en) 2009-12-18 2012-09-25 Applied Materials, Inc. Multifunctional heater/chiller pedestal for wide range wafer temperature control
US8822876B2 (en) 2010-10-15 2014-09-02 Applied Materials, Inc. Multi-zoned plasma processing electrostatic chuck with improved temperature uniformity
CN110211858A (zh) * 2014-03-14 2019-09-06 应用材料公司 智能腔室及智能腔室元件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070165356A1 (en) * 2003-04-22 2007-07-19 Applied Materials, Inc. Substrate support having heat transfer system
US7480129B2 (en) * 2004-03-31 2009-01-20 Applied Materials, Inc. Detachable electrostatic chuck for supporting a substrate in a process chamber
CN101093812A (zh) * 2006-04-27 2007-12-26 应用材料股份有限公司 具有双温度区的静电吸盘的衬底支架
CN102160167A (zh) * 2008-08-12 2011-08-17 应用材料股份有限公司 静电吸盘组件
US20120311858A1 (en) * 2009-10-02 2012-12-13 Ers Electronic Gmbh Apparatus for conditioning semiconductor chips and test method using the apparatus

Also Published As

Publication number Publication date
JP2018501653A (ja) 2018-01-18
KR20170094359A (ko) 2017-08-17
US20160172226A1 (en) 2016-06-16
TW201633445A (zh) 2016-09-16
KR102401492B1 (ko) 2022-05-23
CN107002222A (zh) 2017-08-01
WO2016093986A1 (en) 2016-06-16
TWI692055B (zh) 2020-04-21
JP6879915B2 (ja) 2021-06-02
US10781518B2 (en) 2020-09-22

Similar Documents

Publication Publication Date Title
CN107002222B (zh) 用于氮化铝(aln)pvd工艺的气冷的最小接触面积(mca)的静电吸盘(esc)
JP5274918B2 (ja) プラズマ処理装置のチャンバー内部材の温度制御方法、チャンバー内部材及び基板載置台、並びにそれを備えたプラズマ処理装置
US10998204B2 (en) Method of processing substrate and substrate processing apparatus
US8555810B2 (en) Plasma dry etching apparatus having coupling ring with cooling and heating units
TWI572043B (zh) 具增強的游離及rf功率耦合的低電阻率鎢pvd
JP5255936B2 (ja) フォーカスリング及び基板載置台、並びにそれらを備えたプラズマ処理装置
KR102396430B1 (ko) 기판 처리 장치 및 기판 처리 방법
US20190051768A1 (en) Method for graded anti-reflective coatings by physical vapor deposition
US11367595B2 (en) Plasma processing apparatus
US9263313B2 (en) Plasma processing apparatus and plasma processing method
KR102160623B1 (ko) 스퍼터 공급원들을 위한 펄스 형상 제어기
WO2023069156A1 (en) Methods and apparatus for processing a substrate
US11170998B2 (en) Method and apparatus for depositing a metal containing layer on a substrate
US20200312634A1 (en) Plasma processing apparatus
US10727092B2 (en) Heated substrate support ring
US20220301913A1 (en) Reduced localized force in electrostatic chucking
US10957548B2 (en) Method of etching copper indium gallium selenide (CIGS) material
TW202406006A (zh) 支撐單元及包括其的處理基板的設備
CN113767463A (zh) 低温可偏置基板支撑件

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant