CN101425575A - 负极以及电池 - Google Patents

负极以及电池 Download PDF

Info

Publication number
CN101425575A
CN101425575A CNA2008101752185A CN200810175218A CN101425575A CN 101425575 A CN101425575 A CN 101425575A CN A2008101752185 A CNA2008101752185 A CN A2008101752185A CN 200810175218 A CN200810175218 A CN 200810175218A CN 101425575 A CN101425575 A CN 101425575A
Authority
CN
China
Prior art keywords
chemical formula
negative electrode
active material
electrode active
negative pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2008101752185A
Other languages
English (en)
Other versions
CN101425575B (zh
Inventor
广濑贵一
中井秀树
川濑贤一
山口裕之
洼田忠彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Northeast China
Murata Manufacturing Co Ltd
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Publication of CN101425575A publication Critical patent/CN101425575A/zh
Application granted granted Critical
Publication of CN101425575B publication Critical patent/CN101425575B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/387Tin or alloys based on tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明提供了一种能够改善循环特性的负极和电池。该电池包括正极、负极以及电解液。电解液浸渍到设置在正极和负极之间的隔膜中。负极在设置在负极集电体上的负极活性物质层上具有涂层。该涂层包含氟树脂。氟树脂的末端是能够固定(例如,吸附或粘结)在负极活性物质层(负极活性物质)的表面上的羟基等。

Description

负极以及电池
相关申请的交叉引用
本发明包含于2007年10月31日向日本专利局提交的日本专利申请JP2007-283080涉及的主题,将其全部内容并入本文作为参考。
技术领域
本发明涉及在负极集电体上具有负极活性物质层的负极以及包括该负极的电池。
背景技术
近年来,已经广泛使用便携式电子装置,例如组合摄像机(磁带录像机)、移动电话、以及笔记本式个人计算机,并且非常需要求减少它们的尺寸和重量以及实现它们的长寿命。因此,已经开发了作为用于便携式电子装置电源的电池,尤其是能够提供高能量密度的轻量化二次电池。
特别地,利用锂的嵌入和脱嵌用于充电和放电反应的二次电池(所谓的锂离子二次电池)是极其有前景的,因为相比于铅电池和镍镉电池,这样的二次电池可以提供更高的能量密度。锂离子二次电池具有正极、负极以及电解液。负极在负极集电体上具有负极活性物质层。
作为包含在负极活性物质层中的负极活性物质,已经广泛使用诸如石墨的碳材料。近年来,随着高性能和多功能便携式电子装置的开发,要求进一步改善电池容量。因此,已经考虑使用硅、锡等代替碳材料。由于硅的理论容量(4199mAh/g)和锡的理论容量(994mAh/g)显著高于石墨的理论容量(372mAh/g),因此期待电池容量可以由此被大大地改善。
然而,在使用硅等作为负极活性物质的情况下,嵌入锂的负极活性物质在充电时被高度活化。因此,电解液易于分解,并且锂易于被钝化。从而,当重复充电和放电时放电容量降低,因此很难获得充足的循环特性。
因此,在使用硅等作为负极活性物质的情况下,也已经发明了各种装置以改善循环特性。具体地说,已经提出了在电解液中包含全氟聚醚的技术(例如,参见日本未审查专利申请公开第2002-305023号和第2006-269374号),以及在负极的表面上设置含全氟聚醚的涂层的技术(例如,参见日本未审查专利申请公开第2004-265609号)。此外,已经提出了负极用高分子材料如偏二氟乙烯的均聚物或共聚物包覆的技术(例如,参见日本未审查专利申请公开第2006-517719号)。
发明内容
近年来,便携式电子装置的高性能和多功能被日益开发,并且电力消耗倾向于增加。因此,频繁重复二次电池的充电和放电,由此循环特性倾向于容易被降低。所以,期望进一步改善二次电池的循环特性。
考虑到上述问题,在本发明中,期望提供一种能够改善循环特性的负极以及电池。
根据本发明的实施方式,提供了一种在设置于负极集电体的负极活性物质层上包括涂层的负极,其中,所述涂层包含选自由具有化学式1或化学式2所示结构的氟树脂组成的组中的至少一种。
化学式1
Figure A200810175218D00201
h和k表示比率,并且h+k为1。
化学式2
Figure A200810175218D00202
m和n表示比率,并且m+n为1。
根据本发明的实施方式,提供了一种电池,包括彼此相对的正极和负极,并且两者之间具有隔膜;以及电解液,其中,正极、负极、隔膜以及电解液中的至少一种包含选自由具有化学式1或化学式2所示结构的氟树脂组成的组中的至少一种。
化学式1
Figure A200810175218D00203
h和k表示比率,并且h+k为1。
化学式2
Figure A200810175218D00211
m和n表示比率,并且m+n为1。
根据本发明实施方式的负极,由于设置在负极活性物质层上的涂层包含选自由具有化学式1或化学式2所示结构的氟树脂组成的组中的至少一种,因此可以改善电化学稳定性。这同样适用于以下情况,在本发明实施方式的电池中正极、负极、隔膜以及电解液中的至少一种包含选自由具有化学式1或化学式2所示结构的氟树脂组成的组中的至少一种。因此,根据本发明实施方式的电池,即使当重复进行充电和放电时,也可以防止电解液的分解反应。结果,可以改善循环特性。
通过以下描述,本发明的其它和进一步的目的、特征以及优点将被更充分地呈现。
附图说明
图1是示出了根据本发明实施方式的负极的结构的剖视图;
图2A和图2B是示出了图1所示的负极的剖视结构的SEM照片及其示意图;
图3A和图3B是示出了图1所示的负极的另一剖视结构的SEM照片及其示意图;
图4是示出了包括根据本发明实施方式的负极的第一电池的结构的剖视图;
图5是沿图4所示的第一电池的线V-V的剖视图;
图6是示出了图5所示的电池元件的放大部分的剖视图;
图7是示出了包括根据本发明实施方式的负极的第二电池的结构的剖视图;
图8是示出了图7所示的螺旋卷绕电极体的放大部分的剖视图;
图9是示出了包括根据本发明实施方式的负极的第三电池的结构的剖视图;
图10是沿图9所示的螺旋卷绕电极体的线X-X的剖视图;
图11是示出了图10所示的螺旋卷绕电极体的放大部分的剖视图;
图12是示出了实施例1-1中的负极的表面结构的SEM照片;
图13是示出了实施例1-5中的负极的表面结构的SEM照片;
图14是示出了负极活性物质中的氧含量与放电容量保持率之间的相互关系的曲线图;
图15是示出了第二含氧区域的数量与放电容量保持率之间的相互关系的曲线图;
图16是示出了负极集电体的表面的十点平均粗糙度与放电容量保持率之间的相互关系的曲线图;以及
图17是示出了摩尔比与放电容量保持率之间的相互关系的曲线图。
具体实施方式
在下文中,将参照附图详细地描述本发明的实施方式。
图1示出了根据本发明实施方式的负极的剖视结构。负极例如用于如电池的电化学装置。该负极具有:有一对表面的负极集电体1、设置在该负极集电体1上的负极活性物质层2、以及设置在负极活性物质层2上的涂层3。
负极集电体1优选由具有良好的电化学稳定性、良好的导电性、以及良好的机械强度的金属材料制成。作为这样的金属材料,例如,可以列举铜(Cu)、镍(Ni)、不锈钢等。特别地,铜是优选的,因为由此可以获得高的导电性。
尤其是,上述金属材料优选包含一种或多种不与电极反应物形成金属间化合物的金属元素。当与电极反应物形成金属间化合物时,当操作电化学装置时(例如,当电池充电和放电时),受到由于负极活性物质层2的膨胀和收缩引起的应力的影响,可能发生集电性降低并且负极活性物质层2与负极集电体1分离。作为上述金属元素,例如,可以列举铜、镍、钛(Ti)、铁(Fe)、铬(Cr)等。
上述金属材料优选包含一种或多种与负极活性物质层2合金化的金属元素。从而,改善负极集电体1和负极活性物质层2之间的接触特性,因此,负极活性物质层2几乎不会与负极集电体1分离。作为不与电极反应物形成金属间化合物而与负极活性物质层2合金化的金属元素,例如,在负极活性物质层2包含硅作为负极活性物质的情况下,可以列举铜、镍、铁等。根据强度和导电性,这些金属元素是优选的。
负极集电体1可以具有单层结构或多层结构。在负极集电体1具有多层结构的情况下,优选与负极活性物质层2邻近的层由与负极活性物质层2合金化的金属材料制成,而不与负极活性物质层2邻近的层由其它金属材料制成。
负极集电体1的表面优选被粗糙化。从而,由于所谓的糙面效应,可以改善负极集电体1和负极活性物质层2之间的接触特性。在这种情况下,至少将与负极活性物质层2相对的区域中的负极集电体1的表面粗糙化就足够了。作为粗糙化方法,例如,可以列举通过电解处理等形成细颗粒的方法。电解处理是一种通过在电解槽中由电解法在负极集电体1的表面上形成细颗粒而提供凹凸度的方法。由电解处理提供的铜箔通常称为“电解铜箔”。
负极集电体1的表面的十点平均粗糙度Rz并没有特别限制,但是优选为1.5μm以上6.5μm以下,因为由此能进一步改善负极集电体1与负极活性物质层2之间的接触特性。更具体地说,如果十点平均粗糙度Rz小于1.5μm,则存在不能获得充分的接触特性的可能性。同时,如果十点平均粗糙度Rz大于6.5μm,则存在在负极活性物质层2中包含许多孔,从而表面积被增大的可能性。
负极活性物质层2包含作为负极活性物质的一种或多种能够嵌入和脱嵌电极反应物的负极材料,并且根据需要还可以包含其他材料如导电剂和粘结剂。负极活性物质层2可以设置在负极集电体1的两个面上,或者可以仅设置在负极集电体1的单个面上。
作为能够嵌入和脱嵌电极反应物的负极材料,例如,可以列举能够嵌入和脱嵌电极反应物并包含金属元素和准金属元素中的至少一种作为构成元素的材料。优选使用这样的负极材料,因为由此可以获得高能量密度。这样的负极材料可以是金属元素或准金属元素的单质、合金、或化合物;或可以至少部分具有其一种或多种相。在本发明中,除了由两种或多种金属元素构成的合金以外,“合金”还包括含有一种或多种金属元素以及一种或多种准金属元素的合金。而且,“合金”可以包含非金属元素。其结构包括固溶体、共晶(低共熔混合物)、金属间化合物、以及它们的两种或多种共存的结构。
作为这样的金属元素或这样的准金属元素,例如,可以列举能够与电极反应物形成合金的金属元素或准金属元素。具体地说,可以列举镁(Mg)、硼(B)、铝(Al)、镓(Ga)、铟(In)、硅、锗(Ge)、锡、铅(Pb)、铋(Bi)、镉(Cd)、银(Ag)、锌、铪(Hf)、锆(Zr)、钇(Y)、钯(Pd)、铂(Pt)等。特别地,优选使用硅和锡中的至少一种,并且更优选使用硅,由于硅和锡具有高的嵌入和脱嵌电极反应物的能力,从而可以提供高能量密度。
作为包含硅和锡中的至少一种的负极材料,例如,可以列举硅的单质、合金、或化合物;锡的单质、合金、或化合物;或至少部分具有其一种或多种相的材料。可以单独使用其中的每一种,或者可以通过混合使用其中的多种。
作为硅的合金,例如,可以列举包含选自由锡、镍、铜、铁、钴、锰、锌、铟、银、钛、锗、铋、锑(Sb)、以及铬组成的组中的至少一种作为除了硅以外的第二元素的合金。作为硅的化合物,例如,可以列举包含氧或碳(C)的化合物,并且硅的化合物可以包含除了硅以外的上述第二元素。可以列举的硅的合金或化合物的实例包括SiB4、SiB6、Mg2Si、Ni2Si、TiSi2、MoSi2、CoSi2、NiSi2、CaSi2、CrSi2、Cu5Si、FeSi2、MnSi2、NbSi2、TaSi2、VSi2、WSi2、ZnSi2、SiC、Si3N4、Si2N2O、SiOv(0<v≤2)、SnOw(0<w≤2)、LiSiO等。
作为锡的合金,例如,可以列举包含选自由硅、镍、铜、铁、钴、锰、锌、铟、银、钛、锗、铋、锑、以及铬组成的组中的至少一种作为除了锡以外的第二元素的合金。作为锡的化合物,例如,可以列举包含氧或碳的化合物,并且可以包含除了锡以外的上述第二元素。锡的合金或化合物的实例包括SnSiO3、LiSnO、Mg2Sn等。
尤其是,作为包含硅和锡中的至少一种的负极材料,例如,包含除了作为第一元素的锡之外的第二元素和第三元素的负极材料是优选的。作为第二元素,可以列举选自由钴、铁、镁、钛、钒(V)、铬、锰、镍、铜、锌、镓、锆、铌(Nb)、钼、银、铟、铈(Ce)、铪、钽(Ta)、钨(W)、铋、以及硅组成的组中的至少一种。作为第三元素,可以列举选自由硼、碳、铝、以及磷(P)组成的组中的至少一种。在包含第二元素和第三元素的情况下,可以改善循环特性。
特别地,包含锡、钴、以及碳作为构成元素的含SnCoC材料是优选的,其中碳含量为9.9wt%以上29.7wt%以下,而钴占锡和钴总和的比率(Co/(Sn+Co))为30wt%以上70wt%以下。在这样的组成范围内,可以获得高能量密度。
含SnCoC材料可以根据需要进一步包含其它元素。作为其它元素,例如,硅、铁、镍、铬、铟、铌、锗、钛、钼、铝、磷、镓、铋等是优选的。可以包含其两种或多种,因为由此可以获得更高的效果。
含SnCoC材料具有包含锡、钴、以及碳的相。这样的相优选具有低结晶性结构或非晶态结构。而且,在含SnCoC材料中,作为构成元素的碳的至少部分优选与作为其它元素的金属元素或准金属元素结合。从而防止锡等的凝聚或结晶。
含SnCoC材料可以例如通过混合每一元素的原料,在电炉、高频感应炉、电弧熔化炉等中溶解所得的混合物,然后使所得物凝固而形成。另外,含SnCoC材料可以通过诸如气体雾化和水雾化的各种雾化方法,各种辊压方法,或使用机械化学反应的方法如机械合金化方法和机械研磨方法来形成。特别地,含SnCoC材料优选通过使用机械化学反应的方法来形成,因为由此负极活性物质可以具有低的结晶性结构或非晶态结构。对于使用机械化学反应的方法,例如,使用诸如行星式球磨机和超微磨碎机的制造装置。
作为用于检查元素结合状态的测量方法,例如,可以使用X射线光电子能谱法(XPS)。在XPS中,在石墨的情况下,在进行了能量校正使得在84.0eV获得金原子的4f轨道(Au4f)的峰的装置中,观测到碳的1s轨道(C1s)的峰位于284.5eV。在表面污染碳的情况下,观测到峰位于284.8eV。同时,在碳元素的更高电荷密度的情况下,例如,在碳与金属元素或准金属元素结合的情况下,在小于284.5eV的区域中观测到C1s的峰。即,在小于284.5eV的区域中观测到含SnCoC材料的C1s的合成波的峰的情况下,在含SnCoC材料中包含的至少部分碳键合了作为其它元素的金属元素或准金属元素。
在XPS中,例如,Cls的峰用于校正光谱能量轴。由于表面污染碳通常存在于表面上,所以表面污染碳的Cls峰设定在284.8eV,其用作能量基准。在XPS中,获得作为包括表面污染碳的峰和含SnCoC材料中碳的峰形式的Cls的峰波形。因此,例如,通过借助于商购软件分析波形,分离表面污染碳的峰和含SnCoC材料中碳的峰。在波形分析中,存在于最低束缚能量侧的主峰的位置设定为能量基准(284.8eV)。
使用硅的单质、合金、或化合物;锡的单质、合金、或化合物;或至少部分具有其一种或多种相的材料作为负极材料的负极活性物质层2通过例如气相沉积法、液相沉积法、喷涂法、涂覆法、烧成法、或这些方法中的两种以上的组合来形成。在这种情况下,负极集流体1和负极活性物质层2优选在其界面的至少部分上合金化。具体地说,在它们的界面上,负极集流体1的元素可以扩散到负极活性物质层2中;或负极活性物质层2的元素可以扩散到负极集流体1中;或者这些元素可以彼此扩散。从而,可以防止由于在充电和放电过程中负极活性物质层2的膨胀和收缩引起的破坏,并且可以改善负极集流体1和负极活性物质层2之间的电子传导性。
作为气相沉积法,例如,可以列举物理沉积法或化学沉积法。具体地说,可以列举真空蒸发法、溅射法、离子镀法、激光消融法、热CVD(化学气相沉积)法、等离子体CVD法等。作为液相沉积法,可以使用如电镀和无电电镀的已知技术。涂覆法是例如一种这样的方法,将混合有粘结剂等的颗粒状负极活性物质分散在溶剂中,并用所得物涂覆负极集流体。烧成法是例如一种这样的方法,负极集电体通过涂覆法来涂覆,然后在高于粘结剂等的熔点的温度下进行热处理。对于烧成法,也可以采用已知的技术,例如,空气烧成法、反应烧成法、以及热压烧成法。
除了上述负极材料外,作为能够嵌入和脱嵌电极反应物的负极材料,例如,可以列举碳材料。作为碳材料,例如,可以列举石墨化碳、(002)面的间距为0.37nm以上的非石墨化碳、(002)面的间距为0.34nm以下的石墨等。更具体地说,可以列举热解碳、焦炭、玻璃化碳纤维、有机高分子化合物烧成体、活性炭、炭黑等。其中,焦炭包括沥青焦炭、针状焦炭、石油焦炭等。有机高分子化合物烧成体通过在适当的温度下烧成和碳化酚树脂、呋喃树脂等而获得。在碳材料中,伴随电极反应物的嵌入和脱嵌的晶体结构变化非常小。因此,通过使用碳材料,可以获得高能量密度并且可以获得优异的循环特性。此外,碳材料还用作导电剂,因此优选使用碳材料。碳材料的形状可以是纤维状、球形、粒状以及鳞片状中的任何一种。
而且,作为能够嵌入和脱嵌电极反应物的负极材料,例如,可以列举能够嵌入和脱嵌电极反应物的金属氧化物、高分子化合物等。作为金属氧化物,例如,可以列举氧化铁、氧化钌、氧化钼等。作为高分子化合物,例如,可以列举聚乙炔、聚苯胺、聚吡咯等。
不用说,作为能够嵌入和脱嵌电极反应物的负极材料,可以使用除了上述材料之外的材料。而且,可以通过混合,使用指定的两种以上的上述一系列能够嵌入和脱嵌电极反应物的负极材料。
负极活性物质优选包含氧作为构成元素,因为由此可以防止负极活性物质层2的膨胀和收缩。在负极活性物质具有硅的情况下,氧的至少部分优选与硅的一部分键合。键合状态可以是以一氧化硅、二氧化硅的形式,或者以其他亚稳态的形式。
负极活性物质中的氧含量优选为3原子数%以上40原子数%以下,因为由此可以获得更高的效果。具体地说,如果氧含量小于3原子数%,则存在不能充分地抑制负极活性物质层2的膨胀和收缩的可能性。同时,如果氧含量大于40原子数%,在电阻可能过度增加。当在电化学装置中负极与电解液一起使用时,负极活性物质层2不包括由电解液等的分解形成的涂层。即,当计算负极活性物质中的氧含量时,上述涂层中的氧不包括在计算中。
为了使负极活性物质包含氧,例如,当通过气相沉积法沉积负极活性物质时可以将氧气连续地引入到室中。尤其是,当期望的氧含量不仅通过引入氧气而获得时,可以将液体(例如,水蒸汽等)引入到室中作为氧的供应源。
而且,负极活性物质优选包含选自由铁、钴、镍、铬、钛、以及钼组成的组中的至少一种金属元素作为构成元素。从而,可以改善负极活性物质的粘合特性,防止负极活性物质层2的膨胀和收缩,并且可以降低负极活性物质的电阻。负极活性物质中的金属元素含量可以随意设定。然而,在负极用于电池的情况下,金属元素的过高含量是不实用的,因为在这样的情况下,必需增加负极活性物质层2的厚度以获得期望的电池容量,从而容易引起负极活性物质层2与负极集电体1的分离以及负极活性物质层2的损坏。
为了使负极活性物质包含上述金属元素,例如,当通过作为气相沉积法的蒸发法来沉积负极活性物质时,可以使用混合有金属元素的蒸发源,或者可以使用多个蒸发源。
而且,优选负极活性物质具有含氧区域,在该含氧区域中,负极活性物质在厚度方向上具有氧,并且在含氧区域中的氧含量大于在其他区域中的氧含量。从而,可以防止负极活性物质层2的膨胀和收缩。含氧区域以外的区域有可能包含氧或不包含氧。不用说,当含氧区域以外的区域也具有氧时,其氧含量低于含氧区域中的氧含量。
在这种情况下,为了进一步抑制负极活性物质层2的膨胀和收缩,优选含氧区域以外的区域也具有氧,并且负极活性物质包括第一含氧区域(具有更低的氧含量的区域)和比第一含氧区域具有更高的氧含量的第二含氧区域(具有更高的氧含量的区域)。在这种情况下,优选第二含氧区域夹在第一含氧区域之间。更优选第一含氧区域和第二含氧区域交替并反复地层叠。从而,可以获得更高的效果。第一含氧区域中的氧含量优选尽可能小。第二含氧区域中的氧含量例如类似于在上述负极活性物质包含氧的情况下的氧含量。
为了使负极活性物质包括第一含氧区域和第二含氧区域,例如,当通过气相沉积法沉积负极活性物质时,氧气可以被间歇地引入到室中或者改变引入到室中的氧气量。不用说,当期望的氧含量不能仅仅通过引入氧气而获得时,可以将液体(例如,水蒸气等)引入到室中。
有可能第一含氧区域的氧含量与第二含氧区域的氧含量的差别明显,或者第一含氧区域的氧含量与第二含氧区域的氧含量的差别不明显。尤其是,在上述氧气的引入量连续变化时,氧含量也可以连续变化。在氧气的引入量间歇变化的情况下,第一含氧区域和第二含氧区域变成所谓的“层”。同时,在氧气的引入量连续变化时,第一含氧区域和第二含氧区域变成“层状(lamellar state)”而不是“层”。在后者的情况下,负极活性物质中的氧含量以高低起伏的状态分布。在这种情况下,优选氧含量在第一含氧区域和第二含氧区域之间递增或连续变化。在氧含量快速变化的情况下,可能降低离子扩散特性,也可能增加电阻。
尤其是,负极活性物质可以由多个颗粒构成。在负极活性物质通过诸如气相沉积法的沉积方法形成的情况下,负极活性物质可以具有通过单个沉积步骤形成的单层结构,或者可以具有通过多个沉积步骤形成的多层结构。然而,在沉积步骤中,为了防止在伴随高温的蒸发方法等沉积负极活性物质时负极集电体1的热损伤,负极活性物质优选具有多层结构。当负极活性物质的沉积步骤被分成几个步骤(负极活性物质顺序形成并沉积)时,与负极活性物质通过单个沉积步骤形成的情况相比,负极集电体1暴露在高温下的时间被缩短。
而且,负极活性物质优选连接于负极集电体1,因为由此可以提高负极活性物质层2与负极集电体1的接触强度。为了使负极活性物质与负极集电体1连接,例如,通过气相沉积法等在负极集电体1上沉积负极活性物质,负极活性物质从负极集电体1的表面开始在负极活性物质层2的厚度方向上生长。在这种情况下,优选通过气相沉积法来沉积负极活性物质,并且如上所述,负极集电体1和负极活性物质层2至少在之间的界面上被合金化。
在负极活性物质由多个颗粒构成的情况下,负极活性物质层2优选包含不与电极反应物合金化的金属材料以及负极活性物质。由于负极活性物质均与之间的金属材料彼此结合,因此可以防止负极活性物质层2的膨胀和收缩。在这种情况下,特别是当负极活性物质通过气相沉积法等而沉积时,同样可以获得高粘结特性。金属材料具有不与电极反应物合金化的金属元素。作为这样的金属元素,例如,可以列举选自由铁、钴、镍、锌以及铜组成的组中的至少一种。不用说,金属材料还可以包含除了上述金属元素外的金属元素。本发明中的“金属材料”是一种广义术语,因此金属材料可以是单质、合金以及化合物中的一种,只要该金属材料包含不与电极反应物合金化的金属元素。
每单位面积的负极活性物质的摩尔数M1与每单位面积的金属材料的摩尔数M2之间的摩尔比M2/M1没有特别限制,但是优选1/15以上7/1以下。从而,可以大大防止负极活性物质层2的膨胀和收缩。
将通过负极活性物质由多个颗粒构成并在其颗粒中具有多层结构的情况下的实例来描述负极的详细结构。
图2A和图2B示出了图1所示的负极集电体1和负极活性物质层2的部分放大剖视图。图2A是扫描电子显微镜(SEM)照片(二次电子图像),而图2B是图2A所示的SEM图像的示意图。
在负极活性物质由多个颗粒(负极活性物质颗粒201)构成的情况下,在负极活性物质层2中产生多个间隙和空隙。更具体地说,在负极集电体1的粗糙表面上,存在多个突起(例如,由电解处理形成的细颗粒)。在这种情况下,通过诸如气相沉积法的沉积方法在负极集电体1的表面上沉积负极活性物质几次,以形成负极活性物质的层叠体,从而对于上述每一个突起,负极活性物质颗粒201在厚度方向上递增性生长。根据多个负极活性物质颗粒201的密集结构、多层结构以及表面结构,产生多个间隙202和203以及多个空隙204。
对于上述每一突起,当负极活性物质颗粒201生长时,间隙202在彼此邻近的各个负极活性物质颗粒201之间产生。当负极活性物质颗粒201具有多层结构时,间隙203在各层之间产生。当纤维状细突起(未示出)在负极活性物质颗粒201的表面上产生时,在突起之间产生空隙204。空隙204可能在负极活性物质颗粒201的整个表面上产生,也可能在其部分表面上产生。在每次形成负极活性物质颗粒201时,上述纤维状细突起在负极活性物质颗粒201的表面上产生。因此,空隙204不仅在负极活性物质颗粒201的最上表面(暴露面)上产生,而且可以在每一层之间产生。
图3A和图3B示出了负极集电体1和负极活性物质层2的另一剖视结构,并且示出了对应于图2A和图2B的SEM照片和示意图。
负极活性物质层2在间隙202和203以及空隙204中具有不与上述电极反应物合金化的金属材料205。多个负极活性物质颗粒201与之间的金属材料205接合,从而可以防止负极活性物质层2的膨胀和收缩。在这种情况下,间隙202和203以及空隙204中的至少一个可以具有金属材料205,并且特别是所有间隙202和203以及空隙204优选均具有金属材料205,因为由此可以获得更高的效果。
金属材料205侵入到位于邻近的负极活性物质颗粒201之间的间隙202中。更具体地说,在负极活性物质颗粒201通过气相沉积法等形成的情况下,如上所述,对存在于负极集电体1的表面上的每一突起生长负极活性物质颗粒201,因此在负极活性物质颗粒201之间产生间隙202。间隙202引起负极活性物质层2的粘结特性降低。因此,为了改善粘结特性,将金属材料205填充到上述间隙202中。在这种情况下,填充间隙202的一部分就足够了,但是优选更大的填充量,因为由此可以进一步改善负极活性物质层2的粘结特性。金属材料205的填充量优选为20%以上,更优选40%以上,并且更优选80%以上。
金属材料205侵入到负极活性物质颗粒201的间隙203中。更具体地说,在负极活性物质颗粒201具有多层结构的情况下,间隙203在各层之间产生。与上述间隙202一样,间隙203也引起负极活性物质层2的粘结特性降低。因此,为了改善粘结特性,将金属材料205填充在上述间隙203中。在这种情况下,填充间隙的一部分就足够了,但是优选更大的填充量,因为由此可以进一步改善负极活性物质层2的粘结特性。
而且,为了防止在负极活性物质颗粒201的最上层的暴露面上产生的纤维状细突起(未示出)对电化学装置性能的不利影响,用金属材料205覆盖突起。更具体地说,在负极活性物质颗粒201通过气相沉积法等形成的情况下,纤维状细突起在其表面上产生,因此空隙204在突起之间产生。空隙204引起负极活性物质的表面积增加,因此在表面上形成的不可逆涂层的量也增加,可能导致电极反应的进程降低。因此,为了避免电极反应的进程降低,用金属材料205来填充上述空隙204。在这种情况下,填充空隙204的一部分至少就足够了,但是优选更大的填充量,因为由此可以大大防止电极反应的进程的降低。金属材料205散布在负极活性物质颗粒221的暴露面(最上面)的描述是指上述细突起存在于金属材料205散布的区域中。不用说,金属材料205不一定是散布在负极活性物质颗粒201的表面上,也可以覆盖其整个表面。
侵入到间隙203中的金属材料205具有用来填充在各层中的空隙204中的功能。更具体地说,在负极活性物质多次沉积的情况下,对于每一次沉积,上述细突起就在其表面产生。因此,金属材料205不仅填充在各层的间隙203中,而且填充在各层的空隙204中。
金属材料205通过例如气相沉积法和液相沉积法中的至少一种而形成。特别地,金属材料205优选通过液相沉积法形成。从而,金属材料205容易侵入间隙202和203以及空隙204中。作为气相沉积法,例如,可以列举类似于形成负极活性物质的方法。而且,作为液相沉积法,例如,可以列举诸如电镀法和化学镀法的镀覆法。特别地,电镀法是优选的,因为由此金属材料205更易于侵入到间隙202和203以及空隙204中。
尤其是,金属材料205优选具有结晶性,因为与金属材料205不具有结晶性(无定形状态)的情况相比,整个负极的电阻降低,并且电极反应物在负极中容易嵌入和脱嵌。而且,在这种情况下,在电化学装置的初始操作时(例如,在电池的初始充电时),电极反应物被均匀地嵌入和脱嵌,并且在负极中几乎不会产生局部应力,因此可以抑制褶皱的发生。
在图2A和图2B以及图3A和图3B中,已经给出了负极活性物质具有多层结构,并且间隙202和203两者均存在于负极活性物质层2中的情况的描述,因此负极活性物质层2在间隙202和203中具有金属材料205。同时,在负极活性具有单层结构,并且仅间隙202存在于负极活性物质层2中的情况下,负极活性物质层2仅在间隙202中具有金属材料205。不用说,在这两种情况下,由于空隙204存在于负极活性物质层2中,因此负极活性物质层2在空隙204中具有金属材料205。
作为导电剂,例如,可以列举碳材料如石墨、炭黑、乙炔黑、以及科琴黑(Ketjen black)。可以单独使用这样的碳材料,或者可以通过混合使用它们中的多种。导电剂可以是金属材料、聚合物等,只要该材料具有导电性。
作为粘结剂,例如,可以列举合成橡胶,如丁苯橡胶、氟化橡胶以及三元乙丙橡胶;或高分子材料,如聚偏二氟乙烯等。可以单独使用其中的一种,或者可以通过混合使用它们中的多种。
涂层3包含选自由具有化学式1或化学式2所示结构的氟树脂(在下文中,简称为“氟树脂”)组成的组中的至少一种。当将具有化学式1或化学式2所示结构的氟树脂设置在负极活性物质层2上作为涂层时,由此可以改善负极的化学稳定性。涂层3可以设置在负极集电体1的两个面上,或者可以仅设置在单个面上。氟树脂的结构可以通过例如借助于XPS检查涂层3中的元素键合状态来确定。
化学式1
Figure A200810175218D00361
h和k表示比率,并且h+k为1。
化学式2
m和n表示比率,并且m+n为1。
可以任意设定化学式1所示的h和k之间的比率(h:k)。特别地,h>k是优选的,因为由此可以进一步改善涂层3的化学稳定性。这同样类似地适用于化学式2所示的m和n之间的比率。
氟树脂总体上可以具有任何结构,只要该氟树脂具有化学式1或化学式2所示的结构。即,氟树脂的末端可以为全氟基团如全氟烷基,或者可以为任何其他各种基团。当氟树脂的末端是全氟烷基时,氟树脂是所谓的全氟聚醚。作为全氟烷基,例如,可以列举三氟甲基(-CF3)等。然而,也可以列举除了三氟甲基以外的全氟烷基。
尤其是,氟树脂总体上优选具有化学式3所示的结构。在这种情况下,氟树脂通过末端的R1和R2固定在负极活性物质层2(负极活性物质)的表面上。因此,与其末端是全氟基团的情况相比,涂层3与负极活性物质层2的接触强度增加。在这种情况下,负极活性物质优选包含选自由硅的单质、合金和化合物,以及锡的单质、合金和化合物组成的组中的至少一种。从而,氟树脂牢固地固定在负极活性物质的表面上,并且因此大大增加涂层3的接触强度。
化学式3
R1—X—R2
X为化学式1或化学式2所示的结构。R1和R2中的至少一种为能够固定在负极活性物质层的表面上的基团。
化学式3所示的R1和R2中的至少一种可以是任何基团,只要该基团可以固定在负极活性物质的表面上。“固定”是指与其末端为全氟烷基的情况相比,负极活性物质与涂层3之间的相互作用(接触力)增强的状态。这样的状态包括,例如,吸附、粘结、附着等。
作为R1和R2中的至少一种,例如,可以列举羟基(-OH)、酯基(-COOR)、硅烷基(-SiR3)、烷氧基硅烷基(-Si(OR)3)、磷酸酯基(-H2PO4)、氨基(-NR2)、酰胺基(-CONR2)、氰基(-CC≡N)、异氰酸酯基(-N=C=O)等,因为由此可以增大涂层3的接触强度。上述各基团中的R可以为任何基团,只要它为一价基诸如氢和烷基。
更具体地说,R1和R2中的至少一种具有化学式4所示的结构。当化学式4中的p为0或1时,在某些情况下包括桥氧基(-O-),并且在某些情况下不包括。这同样适用于R3(q)至R4(r)。化学式11中的R7和R8可以是相同的或不同的。这同样适用于化学式12至14以及化学式16所示的R9至R18。
化学式4
Figure A200810175218D00381
p、q以及r是0或1。R3是化学式5所示的二价连接基,R4是化学式6或化学式7所示的二价连接基,以及R5是化学式8至化学式17所示的一价基。
化学式5
Figure A200810175218D00391
n是1以上的整数。
化学式6
Figure A200810175218D00392
n是1以上的整数。
化学式7
Figure A200810175218D00393
化学式8
Figure A200810175218D00394
n是0至10的整数。
化学式9
Figure A200810175218D00395
化学式10
Figure A200810175218D00401
R6是氢、10以下碳数的烷基或-CH2-CN。
化学式11
R7和R8是氢或20以下碳数的烷基。
化学式12
Figure A200810175218D00403
R9至R11是氢、卤素、10以下碳数的烷基、10以下碳数的亚烷基或10以下碳数的烷氧基。
化学式13
R12和R13是氢、羟基、卤素或10以下碳数的烷基。
化学式14
R14和R15是氢或10以下碳数的烷基。
化学式15
—N=C=O
化学式16
Figure A200810175218D00412
R16至R18是氢或卤素。
化学式17
—C≡N
特别地,化学式8或化学式9所示的结构或化学式12所示的结构(在R9至R11为烷氧基的情况下)是优选的,并且化学式12所示的结构是更优选的,因为由此可以获得更高的效果。在化学式8以及化学式10至化学式14中限定碳数的原因如下。如果碳数过大,则在溶剂等中的溶解度变低。在这种情况下,当涂层3通过诸如浸渍法的液相沉积法而形成时,很难良好再现地控制形成量(涂覆量)。
作为化学式3和化学式4所示的R1和R2的具体实例,例如,可以列举化学式18(1)至化学式20(7)所示的基团。
化学式18
Figure A200810175218D00421
化学式19
—CH2—OH-----(1)
—CH2—O—CH2—CH2—O—CH2—CH2—OH   -----(2)
Figure A200810175218D00431
化学式20
Figure A200810175218D00432
—CH2—NH2   -----(2)
—CH2—N=C=O   -----(3)
Figure A200810175218D00433
—O—CH2—CN   -----(5)
—CF2—OH   -----(6)
Figure A200810175218D00434
化学式4所示的结构(化学式5至化学式17所示的结构)与化学式18(1)至化学式20(7)所示的一系列基团之间的相互关系将描述如下。
化学式18(1)至18(4)所示的基团是其中p、q以及r为0,并且R5为化学式12(R9至R11为烷氧基)的基团。
化学式19(1)所示的基团是其中p和q为0,r为1,R4为化学式6(n为1),并且R5为化学式8(n为0)的基团。化学式19(2)所示的基团是其中p和q为0,r为1,R4为化学式6(n为1),并且R5为化学式8(n为2)的基团。化学式19(3)所示的基团是其中p和q为0,r为1,R4为化学式6(n为1),并且R5为化学式9的基团。化学式19(4)所示的基团是其中p、q和r为0,并且R5为化学式10(R6为甲基)的基团。化学式19(5)所示的基团是其中p和q为0,r为1,R4为化学式6(n为1),并且R5为化学式13(R12和R13为氢)的基团。化学式19(6)所示的基团是其中p和q为0,r为1,R4为化学式7,以及R5为化学式8(n为0)的基团。化学式19(7)所示的基团是其中p、q和r为0,并且R5为化学式11(R7和R8为氢)的基团。
化学式20(1)所示的基团是其中p、q和r为0,并且R5为化学式11(R7为氢,而R8为十八烷基)的基团。化学式20(2)所示的基团是其中p和q为0,r为1,R4为化学式6(n为1),并且R5为化学式14(R14和R15为氢)的基团。化学式20(3)所示的基团是其中p和q为0,r为1,R4为化学式6(n为1),并且R5为化学式15的基团。化学式20(4)所示的基团是其中p、q和r为0,并且R5为化学式10(R6为-CH2-CN)的基团。化学式20(5)所示的基团是其中p和r为1,q为0,R4为化学式6(n为1),并且R5为化学式17的基团。化学式20(6)所示的基团是其中p和r为0,q为1,R3为化学式5(n为1),并且R5为化学式8(n为0)的基团。化学式20(7)所示的基团是其中p和q为0,r为1,R4为化学式6(n为1),并且R5为化学式16(R16至R18为氢)的基团。
特别地,具有化学式18(1)至18(4)或化学式19(1)至19(3)所示结构的氟树脂是优选的,并且具有化学式18(1)至18(4)所示结构的氟树脂是更优选的,因为在电极反应中涂层3的存在电极反应物很难被消耗,由此可以改善电极反应效率。
涂层3可以通过例如浸渍法、涂覆法、喷涂法等而形成。具体地说,由浸渍法代表的液相沉积法是优选的,因为可以容易地形成具有足够膜厚度的涂层3。然而,涂层3可以通过其他方法而形成。
尤其是,当包含氟树脂的涂层3设置在负极活性物质层2上时,涂层3的表面优选具有电极反应物的氟化物(在下文中,简称为“氟化物”)。氟化物防止负极活性物质层2的膨胀和收缩并使负极活性物质的表面积保持较小。由此,可以进一步改善负极的化学稳定性。氟化物在电极反应中(例如,在电池的充电和放电中)通过电极反应物与氟树脂中的氟之间的反应而形成。例如,在负极用于包含锂作为电极反应物的电池的情况下,氟化物包括氟化锂。氟化物可以以膜的状态或以颗粒的状态形成在涂层3的表面上。
在氟化物形成在涂层3的表面上的情况下,存在这样的倾向,氟化物的形成几乎在一次电极反应(第一次电极反应)中完成,并且氟化物几乎不通过随后的电极反应(第二次电极反应和以后的电极反应)形成。因此,如果氟化物在涂层3的表面上产生,则可以确定是否在负极发起了电极反应,而与负极的历史(到此为止在负极中重复的电极反应的次数)无关。换句话说,当氟化物在涂层3的表面上产生时,意味着在负极中已经发生了电极反应。上述“一次电极反应”意味着,在负极用于电池时在充电和放电的情况下,在通常的(实际的)条件下对电池进行充电和放电的情形,但并不意味着在诸如过充电的特殊条件下对电池进行充电和放电的情形。
例如,通过以下步骤来形成负极。
首先,制备由电解铜箔等制成的负极集电体1。之后,通过气相沉积法等在负极集电体1的表面上沉积负极活性物质以形成负极活性物质层2。当通过气相沉积法来沉积负极活性物质时,可以通过1个沉积步骤来形成单层结构,或者通过多个沉积步骤来形成多层结构。尤其是,在负极活性物质形成为多层结构的情况下,可以在负极集电体1相对于蒸发源往复运动的同时,多次沉积负极活性物质,也可以使负极电集体1相对蒸发源保持固定,反复打开和关闭遮挡板的同时,多次沉积负极活性物质。最后,制备其中氟树脂溶解于溶剂等中的溶液。之后,将形成有负极活性物质层2的负极集电体1浸渍到溶液中,取出并干燥以形成涂层3。从而,完成负极的制备。
根据该负极,设置在负极活性物质层2上的涂层3包含选自具有化学式1或化学式2所示结构的氟树脂中的至少一种。因此,与没有设置涂层3的情况相比,可以改善负极的化学稳定性。当负极活性物质包含高度活性的硅或锡时,这样的作用特别显著。结果,该负极有助于改善使用该负极的电化学装置的循环特性。
尤其是,当氟树脂具有化学式3所示的结构时,更特别地,当氟树脂具有氟树脂的末端(R1,R2)为羟基等的结构时,或者当氟树脂具有化学式4所示的结构时,与末端为全氟烷基的情况相比,可以提高涂层3与负极活性物质层2的接触强度,因此可以获得更高的效果。
而且,当在涂层3的表面上存在电极反应物的氟化物时,可以进一步改善负极的化学稳定性,因此可以获得更高的效果。
而且,当负极活性物质具有氧并且负极活性物质中的氧含量在3原子数%以上40原子数%以下时,或者当负极活性物质包含选自由铁、钴、镍、钛、铬以及钼组成的组中的至少一种时,或者当负极活性物质在厚度方向上具有含氧区域(其中存在氧并且其氧含量高于其他区域的区域)时,可以获得更高的效果。
而且,当负极集电体1的表面的十点平均粗糙度Rz为1.5μm以上6.5μm以下时,可以改善负极集电体1与负极活性物质层2之间的接触特性,因此可以获得更高的效果。
此外,当负极活性物质层2具有不与电极反应物合金化的金属材料以及负极活性物质时,可以改善负极活性物质的粘结特性并且可以防止负极活性物质层2的膨胀和收缩,因此可以获得更高度的效果。在这种情况下,当金属材料通过液相沉积法而形成时,可以获得更高的效果。而且,当负极活性物质与金属材料之间的摩尔比M2/M1为1/15以上7/1以下时,可以获得更高的效果。
接着,在下文中,将给出上述负极的使用实例的描述。作为电化学装置的实例,本文中采用电池。负极如下用于电池。
本文描述的电池例如,包括彼此相对的正极和负极,并且两者之间具有隔膜,以及电解液。电池是锂离子二次电池,其中负极容量基于作为电极反应的锂的嵌入和脱嵌来表达。正极在正极集电体上具有正极活性物质层。电解液包含溶剂和电解质盐。
在二次电池中,正极、负极、隔膜、以及电解液中的至少一种构成部分包含选自具有化学式1或化学式2所示结构的氟树脂中的至少一种。因此,可以改善包含氟树脂的构成部分的化学稳定性,并且由此可以防止电解液的分解反应。在正极和负极包含氟树脂的情况下,如同对上述负极描述的那样,包含氟树脂的涂层设置在正极活性物质层或负极活性物质层上。在电解液包含氟树脂的情况下,氟树脂分散在溶剂中。在这种情况下,全部氟树脂可以溶解于溶剂中,或者仅其部分可以溶解于其中。在隔膜具有氟树脂的情况下,包含氟树脂的涂层设置在其单个面或两个面上。
包含氟树脂的构成部分可以仅是正极、负极、隔膜以及电解液中的一种。然而,优选正极、负极、隔膜以及电解液中的两种包含氟树脂,并且更优选其全部包含氟树脂,因为由此可以大大防止电解液的分解反应。特别地,当限于由包含氟树脂的两种构成部分构成的组合时,负极和隔膜的组合是优选的,因为由此可以获得更高的效果。
在正极、负极、隔膜以及电解液中的仅一种包含氟树脂时,优选正极、负极或隔膜包含氟树脂,并且更优选负极包含氟树脂,因为由此可以大大防止分解反应。
二次电池的类型(电池结构)没有特别限制。在下文中,将对采取方形二次电池、圆柱形二次电池、以及层压膜型二次电池作为电池结构的实例,负极包含氟树脂的情况对二次电池给出详细描述。
第一电池
图4和图5示出了第一电池的剖视结构。图5示出了沿图4所示的线V-V的剖视图。
如上所述,该电池是锂离子二次电池,其中负极22的容量基于作为电极反应物的锂的嵌入和脱嵌来表示。在该二次电池中,在电池壳11内主要包含具有扁平螺旋卷绕结构的电池元件20。电池壳11例如是方形包装件。如图5所示,方形包装件在长度方向具有横截面为矩形或近似矩形(包括部分曲线)的形状。方形包装件不仅构成矩形形状的方形电池,而且构成椭圆形形状的方形电池。即,方形包装件是指具有底部的矩形容器状部件,或具有底部的椭圆形容器状部件,其分别具有矩形形状的开口或通过由直线连接圆弧而形成的近似矩形形状(椭圆形形状)的开口。图5示出了电池壳11具有矩形横截面形状的情况。包括电池壳11的电池结构被称为方形结构。
电池壳11由例如含铁、铝(Al)、或它们的合金的金属材料制成。电池壳11还可以具有作为电极端子的功能。在这种情况下,通过利用电池壳11的刚性(几乎不变形的特性)以抑制充电和放电时二次电池膨胀,刚性的铁比铝更优选。在电池壳11由铁制成的情况下,例如,铁可以被镀镍(Ni)等。
电池壳11具有中空结构,其中电池壳11的一端封闭,而电池壳11的另一端是敞开的。在电池壳11的开口端,连接绝缘板12和电池盖13,从而在电池壳11的内部被密封。绝缘板12位于电池元件20和电池盖13之间,并且垂直于电池元件20的螺旋卷绕外周面设置,并且由例如聚丙烯等制成。电池盖13由例如类似于电池壳11的材料制成,并且如电池壳11也具有作为电极端子的功能。
在电池盖13的外侧,设置作为正极端子的端子板14。端子板14用置于两者之间的绝缘层16与电池盖13电绝缘。绝缘层16由例如聚对苯二甲酸丁二酯等制成。在电池盖13的大致中心,设置通孔。将正极销15插入到通孔中使得正极销电连接至端子板14,并且用两者之间的垫圈17与电池盖13电绝缘。垫圈17由例如绝缘材料制成,并且其表面用沥青涂敷。
在电池盖13的边缘附近,设置裂开阀18和注入孔19。裂开阀18电连接至电池盖13。当由于内部短路、外部加热等而使电池的内压力变至一定水平或更大时,裂开阀18从电池盖13分离以释放内压力。注入孔19通过由例如不锈钢钢球制成的密封件19A密封。
电池元件20通过层叠正极21和负极22以及两者之间的隔膜23,然后对所得的层叠体进行螺旋卷绕而形成。根据电池壳11的形状,电池元件20是扁平的。将由铝等制成的正极引线24连接至正极21的末端(例如,其内末端)。将由镍等制成的负极引线25连接至负极22的末端(例如,其外末端)。正极引线24通过焊接至正极销15的末端而电连接至端子板14。焊接负极引线25,并且电连接至电池壳11。
图6示出了图5所示的螺旋卷绕电极体20的放大部分。在正极21中,例如,正极活性物质层21B设置在具有一对面的带形正极集电体21A的两个面上。正极活性物质层21B可以设置在正极集电体21A的两个面上,或者仅设置在正极集电体21A的单个面上。正极集电体21A由例如金属材料(诸如铝、镍以及不锈钢)制成。正极活性物质层21B包含作为正极活性物质的一种或多种能够嵌入和脱嵌锂的正极材料。根据需要,正极活性物质层21B可以包含其他材料如粘结剂和导电剂。粘结剂和导电剂的细节类似于那些针对上述负极描述的情况。
作为能够嵌入和脱嵌锂的正极材料,例如,含锂化合物是优选的,因为由此可以获得高能量密度。作为含锂化合物,例如,可以列举含锂和过渡金属元素的复合氧化物,或含锂和过渡金属元素的磷酸盐化合物。尤其是,包含选自由钴、镍、锰以及铁组成的组中的至少一种作为过渡金属元素的化合物是优选的,因为由此可以获得更高的电压。其化学式例如表示为LixM1O2或LiyM2PO4。在该式中,M1和M2表示一种或多种过渡金属元素。X和y的值根据电池的充电和放电状态而变化,并且通常在0.05≤x≤1.10和0.05≤y≤1.10的范围内。
作为含锂和过渡金属元素的复合氧化物,例如,可以列举锂钴复合氧化物(LixCoO2)、锂镍复合氧化物(LixNiO2)、锂镍钴复合氧化物(LixNi1-zCozO2(z<1))、锂镍钴锰复合氧化物(LixNi(1-v-w)CovMnwO2)(v+w<1))、具有尖晶石结构的锂锰复合氧化物(LiMn2O4)等。特别地,含钴的复合氧化物是优选的,因为由此可以获得高容量并且可以获得优异的循环特性。作为含锂和过渡金属元素的磷酸盐化合物,例如,可以列举锂铁磷酸盐化合物(LiFePO4)、锂铁锰磷酸盐化合物(LiFe1-uMnuPO4(u<1))等。
此外,作为上述正极材料,例如,可以列举氧化物如二氧化钛、氧化钒、以及二氧化锰;二硫化物如二硫化钛和硫化钼;硫属元素化物如硒化铌;硫磺;导电聚合物如聚苯胺和聚噻吩。
负极22具有类似于上述负极的结构。例如,在负极22中,负极活性物质层22B和涂层22C设置在具有一对面的带形负极集电体22A的两个面上。负极集电体22A、负极活性物质层22B、以及涂层22C的结构分别类似于上述负极中的负极集电体1、负极活性物质层2、以及涂层3的结构。在负极22中,能够嵌入和脱嵌锂的负极活性物质的充电容量优选大于正极21的充电容量。
隔膜23将正极21与负极22分开,并且使作为电极反应物的离子通过,同时防止由于两个电极的接触而引起的电流短路。隔膜23由例如由合成树脂(如聚四氟乙烯、聚丙烯、以及聚乙烯)制成的多孔膜、陶瓷多孔膜等制成。隔膜23可以具有层叠有如上述多孔膜的两种或更多种多孔膜的结构。
使作为液体电解质的电解液浸渍到隔膜23中。电解液包含例如溶剂和溶解于其中的电解质盐。
溶剂包含例如一种或多种非水溶剂如有机溶剂。非水溶剂包括例如碳酸酯溶剂如碳酸亚乙酯、碳酸亚丙酯、碳酸亚丁酯、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯、以及碳酸甲丙酯。从而,可以获得优异的容量特性、优异的循环特性、以及优异的保存特性。特别地,高粘度溶剂如碳酸亚乙酯和碳酸亚丙酯与低粘度溶剂如碳酸二甲酯、碳酸甲乙酯、以及碳酸二乙酯的混合物是优选的。从而,可以改善电解质盐的离解特性和离子迁移率,并且由此可以获得更高的效果。
溶剂优选包含化学式21所示的具有卤素作为构成元素的链状碳酸酯以及化学式22所示的具有卤素作为构成元素的环状碳酸酯中的至少一种。从而,在负极22的表面上形成稳定的保护膜(涂层),并且可以防止电解液的分解反应,因此可以改善循环特性。
化学式21
R21~R26是氢、卤素、烷基、或卤代烷基。R21~R26中的至少一个为卤素或卤代烷基。
化学式22
Figure A200810175218D00531
R31~R34是氢、卤素、烷基、或卤代烷基。R31~R34中的至少一个为卤素或卤代烷基。
化学式21中的R21~R26可以是相同的或不同的。这同样适用于化学式22中的R31~R34。R21~R26和R31~R34中描述的“卤代烷基”是通过用卤素取代烷基中的至少部分氢而获得的基团。卤素的类型没有特别限制,但是例如,可以列举选自由氟、氯和溴组成的组中的至少一种。特别地,氟是优选的,因为由此可以获得更高的效果。不用说,还可以使用其他卤素。
卤素的数量,两种比一种更优选,并且可以为三种以上,因为由此可以改善形成保护膜的能力并且可以形成刚性和稳定性更好的保护膜。因此,可以大大防止电解液的分解反应。
作为化学式21所示的具有卤素的链状碳酸酯,例如,可以列举碳酸氟甲酯甲酯、碳酸二(氟甲基)酯、碳酸二氟甲酯甲酯等。可以单独使用其中的一种,或者可以通过混合使用其中的多种。
作为化学式22所示的具有卤素的环状碳酸酯,例如,可以列举化学式23(1)至24(9)所示的化合物。即,可以列举化学式23(1)的4-氟-1,3-二氧戊环-2-酮、化学式23(2)的4-氯-1,3-二氧戊环-2-酮、化学式23(3)的4,5-二氟-1,3-二氧戊环-2-酮、化学式23(4)的四氟-1,3-二氧戊环-2-酮、化学式23(5)的4-氟-5-氯-1,3-二氧戊环-2-酮、化学式23(6)的4,5-二氯-1,3-二氧戊环-2-酮、化学式23(7)的四氯-1,3-二氧戊环-2-酮、化学式23(8)的4,5-二(三氟甲基)-1,3-二氧戊环-2-酮、化学式23(9)的4-三氟甲基-1,3-二氧戊环-2-酮、化学式23(10)的4,5-二氟-4,5-二甲基-1,3-二氧戊环-2-酮、化学式23(11)的4-甲基-5,5-二氟-1,3-二氧戊环-2-酮、化学式23(12)的4-乙基-5,5-二氟-1,3-二氧戊环-2-酮等。而且,可以列举化学式24(1)的4-三氟甲基-5-氟-1,3-二氧戊环-2-酮、化学式24(2)的4-三氟甲基-5-甲基-1,3-二氧戊环-2-酮、化学式24(3)的4-氟-4,5-二甲基-1,3-二氧戊环-2-酮、化学式24(4)的4,4-二氟-5-(1,1-二氟乙基)-1,3-二氧戊环-2-酮、化学式24(5)的4,5-二氯-4,5-二甲基-1,3-二氧戊环-2-酮、化学式24(6)的4-乙基-5-氟-1,3-二氧戊环-2-酮、化学式24(7)的4-乙基-4,5-二氟-1,3-二氧戊环-2-酮、化学式24(8)的4-乙基-4,5,5-三氟-1,3-二氧戊环-2-酮、化学式24(9)的4-氟-4-甲基-1,3-二氧戊环-2-酮等。可以单独使用其中的一种,或者可以通过混合使用其中的多种。
化学式23
化学式24
特别地,4-氟-1,3-二氧戊环-2-酮或4,5-二氟-1,3-二氧戊环-2-酮是优选的,并且4,5-二氟-1,3-二氧戊环-2-酮是更优选的。尤其是,作为4,5-二氟-1,3-二氧戊环-2-酮,反式异构体比顺式异构体更优选,因为反式异构体更易于获得并且提供高的效果。
而且,溶剂优选包含具有不饱和键的环状碳酸酯,因为由此可以改善循环特性。作为具有不饱和键的环状碳酸酯,例如,可以列举碳酸亚乙烯酯、碳酸乙烯基亚乙酯等。可以通过混合使用它们中的多种。
而且,溶剂优选包含磺内酯(环状磺酸酯),因为由此可以改善循环特性并且可以防止二次电池的溶胀。作为磺内酯,例如,可以列举丙磺酸内酯、丙烯磺酸内酯等。可以通过混合使用其中的多种。
此外,溶剂优选包含酸酐,因为由此可以改善循环特性。作为酸酐,例如,可以列举琥珀酸酐、戊二酸酐、马来酸酐、磺基苯甲酸酐、磺基丙酸酐(sulfopropionic acid anhydride)、磺基丁酸酐(sulfobutyric acid anhydride)、乙烷二磺酸酐、丙烷二磺酸酐、苯二磺酸酐等。可以通过混合使用其中的多种。特别地,磺基苯酸酐或磺基丙酸酐是优选的,因为由此可以获得充分的效果。溶剂中酸酐的含量例如为0.5wt%以上3wt%以下。
电解质盐包含例如一种或多种轻金属盐如锂盐。作为锂盐,例如,可以列举六氟磷酸锂、四氟硼酸锂、高氯酸锂、六氟砷酸锂等,因为由此可以获得优异的容量特性、优异的循环特性、以及优异的保存特性。特别地,六氟磷酸锂是优选的,由于可以降低内阻,因而可以获得更高的效果。
电解质盐优选包含选自由化学式25至化学式27所示的化合物组成的组中的至少一种。因此,在这样的化合物与上述六氟磷酸锂等一起使用的情况下,可以获得更高的效果。化学式25中的R41和R43可以是相同的或不同的。这同样适用于化学式26中的R51至R53以及化学式27中的R61和R62。
化学式25
Figure A200810175218D00561
X41为短周期型周期表中的1A族元素或2A族元素或者铝。M41为过渡金属,短周期型周期表中的3B族元素、4B族元素、或5B族元素。R41为卤素。Y41为-OC-R42-CO-、-OC-CR432-、或-OC-CO-。R42为亚烷基、卤代亚烷基、亚芳基、或卤代亚芳基。R43为烷基、卤代烷基、芳基、或卤代芳基。a4是1~4的整数。b4是0、2或4的整数。c4、d4、m4、以及n4是1~3的整数。
化学式26
Figure A200810175218D00571
X51是短周期型周期表中的1A族元素或2A族元素。M51为过渡金属元素,短周期型周期表中的3B族元素、4B族元素、或5B族元素。Y51为-OC-(CR512)b5-CO-、-R532C-(CR522)c5-CO-、-R532C-(CR522)c5-CR532-、-R532C-(CR522)c5-SO2-、-O2S-(CR522)d5-SO2-、或-OC-(CR522)d5-SO2-。R51和R53是氢、烷基、卤素、或卤代烷基。R51和R53各自中的至少一个是卤素或卤代烷基。R52是氢、烷基、卤素、或卤代烷基。a5、e5、以及n5为1或2的整数。b5和d5为1~4的整数。c5为0~4的整数。f5和m5为1~3的整数。
化学式27
Figure A200810175218D00572
X61为短周期型周期表中的1A族元素或2A族元素。M61为过渡金属元素,短周期型周期表中的3B族元素、4B族元素、或5B族元素。Rf为碳数在1~10范围内的氟化烷基或碳数在1~10范围内的氟化芳基。Y61为-OC-(CR612)d6-CO-、-R622C-(CR612)d6-CO-、-R622C-(CR612)d6-CR622-、-R622C-(CR612)d6-SO2-、-O2S-(CR612)e6-SO2-、或-OC-(CR612)e6-SO2-。R61为氢、烷基、卤素、或卤代烷基。R62为氢、烷基、卤素、或卤代烷基,并且它们中的至少一个是卤素或卤代烷基。a6、f6、以及n6为1或2的整数。b6、c6、以及e6为1~4的整数。d6为0~4的整数。g6和m6为1~3的整数。
作为化学式25所示的化合物,例如,可以列举化学式28(1)至28(6)所示的化合物。作为化学式26所示的化合物,例如,可以列举化学式29(1)至29(8)所示的化合物。作为化学式27所示的化合物,例如,可以列举化学式30所示的化合物等。不用说,化合物并不限于化学式28(1)至化学式30所示的化合物,并且化合物可以是其他化合物,只要这样的化合物具有化学式25至化学式27所示的结构。
化学式28
Figure A200810175218D00581
化学式29
化学式30
Figure A200810175218D00592
电解质盐可以包含选自由化学式31至化学式33所示的化合物组成的组中的至少一种。从而,在这样的化合物与上述六氟磷酸锂一起使用的情况下,可以获得更高的效果。化学式31中的m和n可以是相同的或不同的。这同样适用于化学式33中的p、q以及r。
化学式31
LiN(CmF2m+1SO2)(CnF2n+1SO2)
m和n是1以上的整数。
化学式32
Figure A200810175218D00601
R71是碳数在2~4范围内的直链/支链的全氟亚烷基。
化学式33
LiC(CpF2p+1SO2)(CqF2q+1SO2)(CrF2r+1SO2)
p、q以及r是1以上的整数。
作为化学式31所示的链状化合物,例如,可以列举二(三氟甲磺酰基)亚胺锂(LiN(CF3SO2)2)、二(五氟乙磺酰基)亚胺锂(LiN(C2F5SO2)2)、(三氟甲磺酰基)(五氟乙磺酰基)亚胺锂(LiN(CF3SO2)(C2F5SO2))、(三氟甲磺酰基)(七氟丙磺酰基)亚胺锂(LiN(CF3SO2)(C3F7SO2))、(三氟甲磺酰基)(九氟丁磺酰基)亚胺锂(LiN(CF3SO2)(C4F9SO2))等。可以单独使用其中的一种,或者可以通过混合使用其中的多种。
作为化学式32所示的环状化合物,例如,可以列举化学式34-1至34-4所示的化合物。即,化学式34-1所示的1,2-全氟乙二磺酰基亚胺锂、化学式34-2所示的1,3-全氟丙二磺酰基亚胺锂、化学式34-3所示的1,3-全氟丁二磺酰基亚胺锂、化学式34-4所示的1,4-全氟丁二磺酰基亚胺锂等。可以单独使用其中的一种,或者可以通过混合使用其中的多种。特别地,1,2-全氟乙二磺酰基酰亚胺锂是优选的,因为由此可以获得充足的效果。
化学式34
Figure A200810175218D00611
作为化学式33所示的链状化合物,例如,可以列举三(三氟甲磺酰基)甲基锂(LiC(CF3SO2)3)等。
电解质盐对溶剂的含量优选为0.3mol/kg以上3.0mol/kg以下。如果在上述范围之外,则存在离子传导性显著降低的可能性。
例如,可以通过以下步骤来制造二次电池。
首先,形成正极21。首先,将正极活性物质、粘结剂、以及导电剂进行混合以制备正极混合物,将该正极混合物分散在有机溶剂中以形成糊状正极混合物浆料。随后,通过刮刀、刮条涂布机等,用该正极混合物浆料均匀地涂布正极集电体21A的两个面,使其干燥。最后,通过辊压机等对涂层进行压制成型,如果有必要同时进行加热,以形成正极活性物质层21B。在这种情况下,可以对涂层压制成型几次。
而且,通过与形成上述负极相同的步骤,通过在负极集电体22A的两个面上形成负极活性物质层22B和涂层22C而形成负极22。
接着,通过使用正极21和负极22而形成电池元件20。首先,通过焊接等使正极引线24连接至正极集电体21A,并且通过焊接等使负极引线25连接至负极集电体22A。随后,将正极21和负极22与两者之间的隔膜23一起层叠,并且在长度方向上进行螺旋卷绕。最后,形成扁平形状的螺旋卷绕体。
如下来装配二次电池。首先,在将电极元件20容纳在电池壳11内之后,将绝缘板12设置在电池元件20上。随后,通过焊接等将正极引线24连接至正极销15,并且通过焊接等将负极引线25连接至电池壳11。之后,通过激光焊接等使电池盖13固定在电池壳11的开口端。最后,将电解液从注入孔19注入到电池壳11中,并且浸渍到隔膜23中。之后,通过密封件19A密封注入孔19。从而完成图4至图6所示的二次电池的制备。
在二次电池中,例如,当充电时,锂离子从正极21中脱嵌,并通过浸渍到隔膜23中的电解液嵌入到负极22中。同时,例如,当放电时,锂离子从负极22中脱嵌,并通过浸渍到隔膜23中的电解液嵌入到正极21中。
根据方形二次电池,由于负极22具有类似与上述负极的结构,因此即使当重复充电和放电时也可以防止电解液的分解反应。因此,可以改善循环特性。在这种情况下,当负极22包含对获得高容量有利的硅时,可以改善循环特性。因此,可以由此获得比在负极包含其他负极材料如碳材料的情况下更高的效果。
尤其是,当电池壳11由刚性金属制成时,与电池壳由柔软膜制成的情况相比,当负极活性物质层22B膨胀和收缩时,负极22几乎不会损坏。因此,可以进一步改善循环特性。在这种情况下,当电池壳11由比铝更具刚性的铁制成时,可以获得更高的效果。
此二次电池的除了上述效果之外的效果类似于上述负极的那些效果。
第二电池
图7和图8示出了第二电池的截面结构。图8示出了图7所示的螺旋卷绕电极体40的放大部分。电池是锂离子二次电池,其中,负极42的容量基于作为电极反应物的锂的嵌入和脱嵌来表示,如上所述。该电池主要包括其中正极41和负极42与两者之间的隔膜43一起螺旋卷绕的螺旋卷绕电极体40、以及在大致中空的圆柱体形状的电池壳31内的一对绝缘板32和33。包括电池壳31的电池结构是所谓的圆柱形二次电池。
电池壳31由例如类似于上述第一电池中电池壳11的金属材料制成。电池壳31的一端封闭,而其另一端是敞开的。一对绝缘板32和33设置为夹住两者之间的螺旋卷绕电极体40,并设置成在与螺旋卷绕外周面垂直的方向延伸。
在电池壳31的开口端,电池盖34、以及设置在电池盖34内侧的安全阀机构35和PTC(正温度系数)装置36通过用垫圈37嵌塞而连接。从而电池壳31的内部被密封。电池盖34由例如类似于电池壳31的材料制成。安全阀机构35通过中间的PTC装置36电连接至电池盖34。在安全阀机构35中,当由于内部短路、外部加热等而使内压力变至一定水平或更大时,盘状板35A弹起以切断电池盖34与螺旋卷绕电极体40之间的电连接。当温度升高时,PTC装置36增加电阻,从而限制电流以防止由大电流引起的异常热产生。垫圈37由例如绝缘材料制成,并且其表面用沥青涂敷。
中心销44可以插入螺旋卷绕电极体40的中心。在螺旋卷绕电极体40中,将由铝等制成的正极引线45连接至正极41,而将由镍等制成的负极引线46连接至负极42。正极引线45通过焊接至安全阀机构35而电连接至电池盖34。焊接负极引线46,从而电连接至电池壳31。
正极41具有例如这样的结构,正极活性物质层41B设置在带形正极集电体41A的两个面上。负极42具有类似于上述负极的结构,例如,其中负极活性物质层42B和涂层42C设置在带形负极集电体42A的两个面上的结构。正极集电体41A、正极活性物质层41B、负极集电体42A、负极活性物质层42B、涂层42C和隔膜43的结构,以及电解液的组成分别类似于上述第一电池中的正极集电体21A、正极活性物质层21B、负极集电体22A、负极活性物质层22B、涂层22C和隔膜23的结构,以及电解液的组成。
例如,可以如下来制造二次电池。
首先,例如,通过分别类似于形成上述第一电池中正极21和负极22步骤的步骤,通过在正极集电体41A的两个面上形成正极活性物质层41B而形成正极41,以及通过在负极集电体42A的两个面上形成负极活性物质层42B和涂层42C而形成负极42。随后,将正极引线45连接至正极41,而将负极引线46连接至负极42。随后,将正极41和负极42与两者之间的隔膜43一起进行螺旋卷绕,从而形成螺旋卷绕电极体40。将正极引线45的末端连接至安全阀机构35,而将负极引线46的末端连接至电池壳31。之后,将螺旋卷绕电极体40夹在一对绝缘板32和33之间,并容纳在电池壳31内。接着,将电解液注入到电池壳31中,并浸渍到隔膜43中。最后,在电池壳31的开口端,通过用垫圈37嵌塞而固定电池盖34、安全阀机构35、以及PTC装置36。从而完成图7和图8所示的二次电池的制备。
在此二次电池中,例如,当充电时,锂离子从正极41中脱嵌,并经过浸渍到隔膜43中的电解液而嵌入到负极42中。同时,例如,当放电时,锂离子从负极42中脱嵌,并经过浸渍到隔膜43中的电解液而嵌入到正极41中。
根据圆柱形二次电池,负极42具有类似于上述负极的结构。因此,可以改善循环特性。除了上述效果之外,此二次电池的效果类似于第一电池的那些效果。
第三电池
图9示出了第三电池的分解透视结构。图10示出了沿图9所示的线X-X的横截面。该电池是如上所述的锂离子二次电池,其中负极54的容量基于作为电极反应物的锂的嵌入和脱嵌来表示。在该电池中,将其上连接有正极引线51和负极引线52的螺旋卷绕电极体50容纳在膜包装件60内。包括包装件60的电池结构是所谓的层压膜型结构。
例如,正极引线51和负极引线52分别从包装件60的内部至外部以相同的方向引出。正极引线51由例如金属材料如铝制成,而负极引线52由例如金属材料如铜、镍、以及不锈钢制成。金属材料为薄板状或网孔状。
包装件60由铝层压膜制成,其中,例如将尼龙膜、铝箔、以及聚乙烯膜以该次序粘结在一起。包装件60具有例如其中两片矩形铝层压膜的各自的外缘部通过熔合或粘合剂彼此粘结使得聚乙烯膜和螺旋卷绕电极体50彼此相对的结构。
将用于防止外部空气进入的粘合膜61插入到包装件60与正极引线51、负极引线52之间。粘合膜61由对正极引线51和负极引线52具有接触特性的材料制成。这样的材料的实例包括,例如,聚烯烃树脂如聚乙烯、聚丙烯、改性聚乙烯、以及改性聚丙烯。
包装件60可以由具有其它层压结构的层压膜、聚合物膜如聚丙烯膜、或金属膜代替上述铝层压膜制成。
图11示出了图10所示的螺旋卷绕电极体50的放大部分。在螺旋卷绕电极体50中,正极53和负极54与两者之间的隔膜55和电解质56一起层叠,然后螺旋卷绕。其最外周部由保护带57保护。
正极53具有例如这样的结构,正极活性物质层53B设置在具有一对相反面的正极集电体53A的两个面上。负极54具有类似于上述负极的结构,例如,具有其中负极活性物质层54B和涂层54C设置在带形负极集电体54A的两个面上的结构。正极集电体53A、正极活性物质层53B、负极集电体54A、负极活性物质层54B、涂层54C以及隔膜55的结构分别类似于上述第一电池的正极集电体21A、正极活性物质层21B、负极集电体22A、负极活性物质层22B、涂层22C以及隔膜23的那些结构。
电解质56是含有电解液和保持电解液的高分子化合物的所谓凝胶电解质。凝胶电解质是优选的,因为由此可以获得高离子传导性(例如,在室温下为1mS/cm以上),并且可以防止液体泄漏。
作为高分子化合物,例如,可以列举聚丙烯腈、聚偏二氟乙烯、聚偏二氟乙烯和聚六氟丙烯的共聚物、聚四氟乙烯、聚六氟丙烯、聚环氧乙烷、聚环氧丙烷、聚磷腈、聚硅氧烷、聚乙酸乙烯酯、聚乙烯醇、聚甲基丙烯酸甲酯、聚丙烯酸、聚甲基丙烯酸、丁苯橡胶、丁腈橡胶、聚苯乙烯、聚碳酸酯等。可以单独使用这些高分子化合物中的一种,或者可以通过混合使用其中的多种。特别地,作为高分子化合物,优选使用聚丙烯腈、聚偏二氟乙烯、聚六氟丙烯、聚环氧乙烷等,因为这样的化合物是电化学稳定的。
电解液的组成类似于第一电池中电解液的组成。然而,在这种情况下,溶剂是指很宽的概念,不仅包括液体溶剂而且包括能够离解电解质盐的具有离子传导性的溶剂。因此,当使用具有离子传导性的高分子化合物时,溶剂也包括这样的高分子化合物。
代替其中电解液由高分子化合物保持的凝胶电解质56,可以直接使用电解液。在这种情况下,电解液浸渍到隔膜55中。
例如,可以通过以下三种制造方法来制造包括凝胶电解质56的二次电池。
在第一种制造方法中,首先,例如,通过类似于制造第一电池的方法的步骤,通过在正极集电体53A的两个面上形成正极活性物质层53B而形成正极53,以及通过在负极集电体54A的两个面上形成负极活性物质层54B和涂层54C而形成负极54。随后,制备包含电解液、高分子化合物、以及溶剂的前体溶液。在用该前体溶液涂布正极53和负极54之后,使溶剂挥发以形成凝胶电解质56。随后,将正极引线51焊接至正极集电体53A,而将负极引线52焊接至负极集电体54A。接着,将设置有电解质56的正极53和负极54与两者之间的隔膜55一起层叠以获得层叠体。之后,将该层叠体在长度方向上螺旋卷绕,将保护带57粘附至其最外周部以形成螺旋卷绕电极体50。最后,例如,在将螺旋卷绕电极体50夹在两片膜包装件60之间后,通过热熔合等方式连接包装件60的外缘部,以封入螺旋卷绕电极体50。此时,将粘合膜61插入到正极引线51、负极引线52和包装件60之间。从而,完成图9至图11所示的二次电池的制备。
在第二种制造方法中。首先,将正极引线51焊接至正极53,而将负极引线52焊接至负极54。之后,将正极53和负极54与两者之间的隔膜55一起层叠并螺旋卷绕。将保护带57粘附至其最外周部,从而形成作为螺旋卷绕电极体50的前体的螺旋卷绕体。随后,在将螺旋卷绕体夹在两片膜包装件60之间后,将除了一边之外的最外周部通过热熔合等方式进行粘合以获得袋形状态,并且将螺旋卷绕体容纳在袋状包装件60内。随后,制备含有电解液、作为用于高分子化合物原料的单体、聚合引发剂、以及其它材料如聚合抑制剂(如果需要)的用于电解质的组成物质,将其注入到袋状包装件60内。之后,将包装件60的开口通过热熔合等方式密封。最后,使单体热聚合以获得高分子化合物。从而,形成凝胶电解质56。因此,完成该二次电池的制备。
在第三种制造方法中,除了首先使用两面均用高分子化合物涂覆的隔膜55之外,以与上述第二种制造方法相同的方式形成螺旋卷绕体并容纳在袋状包装件60中。作为涂覆隔膜55的高分子化合物,例如,可以列举含偏二氟乙烯作为组分的聚合物,即,均聚物、共聚物、多元共聚物等。具体地说,可以列举聚偏二氟乙烯;含偏二氟乙烯和六氟丙烯作为组分的二元共聚物;含偏二氟乙烯、六氟丙烯、以及三氟氯乙烯作为组分的三元共聚物等。作为高分子化合物,除了含有偏二氟乙烯作为组分的上述聚合物外,还可以包含其他一种或多种高分子化合物。随后,将电解液注入到包装件60中。之后,通过热熔合等方式密封包装件60的开口。最后,加热所得物,同时将重物施加至包装件60,并且使隔膜55通过中间的高分子化合物与正极53和负极54接触。从而,使电解液浸渍到高分子化合物中,并且使高分子化合物胶凝化以形成电解质56。因此,完成该二次电池的制备。
在第三种制造方法中,与第一种制造方法相比,抑制了二次电池的溶胀。此外,在第三种制造方法中,与第二种制造方法相比,作为高分子化合物原料的单体、溶剂等几乎不会保留在电解质56中,并且高分子化合物的形成步骤被很好地控制。因此,在正极53/负极54/隔膜55与电解质56之间可以获得充分的接触特性。
根据层压膜型二次电池,负极54具有类似于上述负极的结构。因此,可以改善循环特性。除了上述效果之外,此二次电池的效果类似于第一电池的那些效果。
实施例
将详细地描述本发明的实施例。
实施例1-1
通过以下步骤来制造图9至图11所示的层压膜型二次电池。然后,制造作为锂离子二次电池的二次电池,其中负极54的容量基于锂的嵌入和脱嵌来表达。
首先,形成正极53。首先,将碳酸锂(Li2CO3)和碳酸钴(CoCO3)以0.5:1的摩尔比进行混合。之后,将混合物在空气中在900℃下烧制5小时。从而,获得锂钴复合氧化物(LiCoO2)。随后,将91质量份的作为正极活性物质的锂钴复合氧化物、6质量份的作为导电剂的石墨、以及3质量份的作为粘结剂的聚偏二氟乙烯进行混合以获得正极混合物。之后,将该正极混合物分散到N-甲基-2-吡咯烷酮中以获得糊状正极混合物浆料。最后,用该正极混合物浆料对由带形铝箔(厚度:12μm厚)制成的正极集电体53A的两个面均匀地进行涂布,使其干燥。之后,通过辊压机对所得物进行压制成型以形成正极活性物质层53B。
接着,形成负极54。首先,制备由电解铜箔制成的负极集电体54A(厚度:18μm,十点平均粗糙度Rz:3.5μm)。随后,使用偏向式电子束蒸发源,通过电子束蒸发法将作为负极活性物质的硅沉积在负极集电体54A的两个面上,从而形成包含多个颗粒状负极活性物质的负极活性物质层54B。当形成负极活性物质层54B时,使用具有99%纯度的硅作为蒸发源,沉积速率为100nm/sec,并且负极活性物质形成为具有单层结构(厚度:7.5μm)。而且,将氧气以及水蒸气(如果需要)连续地引入到室中,使得负极活性物质中的氧含量为3原子数%。最后,将具有化学式1所示结构的氟树脂分散在Galden溶剂中以制备2wt%溶液。将其上形成有负极活性物质层54B的负极集电体54A浸渍到溶液中30秒,取出,并干燥以形成涂层54C。当形成涂层54C时,作为具有化学式3和化学式4所示结构的氟树脂(X=化学式1),可以使用其中末端(R1和R2)具有化学式18(1)所示结构的氟树脂。
接着,在混合作为溶剂的碳酸亚乙酯(EC)和碳酸二乙酯(DEC)后,将作为电解质盐的六氟磷酸锂(LiPF6)溶解于其中以制备电解液。溶剂(EC:DEC)的组成重量比为50:50。电解液中电解质盐的浓度为1mol/kg。
接着,通过使用正极53、负极54以及电解液来组装二次电池。首先,将由铝制成的正极引线51焊接至正极集电体53A的一端,而将由镍制成的负极引线52焊接至负极集电体54A的一端。随后,将正极53、其中由多孔聚乙烯作为主要成分构成的膜夹在由多孔聚丙烯作为主要成分构成的膜之间的3层隔膜55(厚度:23μm)、负极54、以及上述聚合物隔膜55以该顺序层叠。将所得的层叠体在长度方向上螺旋卷绕,通过由胶粘带制成的保护带57固定螺旋卷绕体的端部,从而形成作为螺旋卷绕电极体50的前体的螺旋卷绕体。随后,将该螺旋卷绕体夹在由3层层压膜(总厚度:100μm)制成的包装件60之间,在该3层层压膜中,从外侧开始层叠尼龙膜(厚度:30μm)、铝箔(厚度:40μm)、以及非拉伸聚丙烯(厚度:30μm)。之后,将除了包装件的一侧边缘之外的外缘部彼此进行热熔合。从而,将螺旋卷绕体容纳在袋形状态的包装件60内。随后,通过包装件60的开口注入电解液,使电解液浸渍到隔膜55中,从而形成螺旋卷绕电极体50。最后,在真空气氛下通过热熔合对包装件60的开口进行密封,从而,完成层压膜型二次电池的制备。
实施例1-2至1-4
以与实施例1-1中相同的方式进行操作,不同之处在于:使用其中R1和R2具有化学式18(2)所示结构的氟树脂(实施例1-2)、其中R1和R2具有化学式18(3)所示结构的氟树脂(实施例1-3)、或者其中R1和R2具有化学式18(4)所示结构的氟树脂(实施例1-4)代替其中R1和R2具有化学式18(1)所示结构的氟树脂。
实施例1-5至1-11
以与实施例1-1中相同的方式进行操作,不同之处在于:使用其中R1和R2具有化学式19(1)所示结构的氟树脂(实施例1-5)、其中R1和R2具有化学式19(2)所示结构的氟树脂(实施例1-6)、其中R1和R2具有化学式19(3)所示结构的氟树脂(实施例1-7)、其中R1和R2具有化学式19(4)所示结构的氟树脂(实施例1-8)、其中R1和R2具有化学式19(5)所示结构的氟树脂(实施例1-9)、其中R1和R2具有化学式19(6)所示结构的氟树脂(实施例1-10)、或者其中R1和R2具有化学式19(7)所示结构的氟树脂(实施例1-11)代替其中R1和R2具有化学式18(1)所示结构的氟树脂。
实施例1-12至1-16
以与实施例1-1中相同的方式进行操作,不同之处在于:使用其中R1和R2具有化学式20(1)所示结构的氟树脂(实施例1-12)、其中R1和R2具有化学式20(2)所示结构的氟树脂(实施例1-13)、其中R1和R2具有化学式20(3)所示结构的氟树脂(实施例1-14)、其中R1和R2具有化学式20(4)所示结构的氟树脂(实施例1-15)、或其中R1和R2具有化学式20(5)所示结构的氟树脂(实施例1-16)代替其中R1和R2具有化学式18(1)所示结构的氟树脂。
实施例1-17
以与实施例1-1中相同的方式进行操作,不同之处在于:使用其中R1和R2为三氟甲基的氟树脂代替其中R1和R2具有化学式18(1)所示结构的氟树脂。
比较例1
以与实施例1-1中相同的方式进行操作,不同之处在于:没有形成涂层54C。
当检测实施例1-1至1-17以及比较例1的二次电池的循环特性时,获得了表1所示的结果。
在检测循环特性中,首先,为了使电池状态稳定,在23℃下实施充电和放电1次。之后,在相同的气氛下实施充电和放电以测量第二次的放电容量。随后,在相同的气氛下对二次电池进行充电和放电99次,从而测量第101次的放电容量。之后,计算放电容量保持率(%)=(第101次的放电容量/第2次的放电容量)×100。在充电时,在3mA/cm2的恒电流密度下实施充电直到电池电压达到4.2V,然后在4.2V的恒电压下持续进行充电直到电流密度达到0.3mA/cm2。在放电时,在3mA/cm2的恒电流密度下实施放电直到电池电压达到2.5V。
将用于检测循环特性的步骤和条件类似地应用于下面一系列实施例和比较例。
表1
负极活性物质:硅(电子束蒸发法)
十点平均粗糙度Rz:3.5μm
负极活性物质中的氧含量:3原子数%
Figure A200810175218D00731
如表1所示,当使用具有化学式1所示结构的氟树脂并且负极活性物质形成为单层结构时,在其中形成包含氟树脂的涂层54C的实施例1-1至1-7中,放电容量保持率明显高于没有形成涂层54C的比较例1。在这种情况下,在末端具有化学式18(1)等所示的结构的实施例1-1至1-16中,放电容量保持率明显高于末端为三氟甲基的实施例1-17。实施例1-1至1-16的放电容量保持率倾向于超过80%。因此,证实了,在本发明的二次电池中,当在负极活性物质层54B上设置包含具有化学式1所示结构的氟树脂的涂层54C时,可以改善循环特性。在这种情况下,还证实了,当氟树脂具有化学式3或化学式4所示的结构时,进一步改善循环特性。
以与实施例1-1和1-5至1-9相同的方式进行操作,不同之处在于:负极活性物质形成为6层结构。在负极集电体54A相对蒸发源以100nm/s的沉积速度往复运动的同时,顺序地沉积硅。
实施例3-1至3-6
以与实施例1-1和1-5至1-9相同的方式进行操作,不同之处在于:负极活性物质通过类似于实施例2-1至2-6的步骤形成为12层结构。
实施例4-1至4-6
以与实施例1-1和1-5至1-9相同的方式进行操作,不同之处在于:负极活性物质通过类似于实施例2-1至2-6的步骤形成为24层结构。
比较例2
以与比较例1相同的方式进行操作,不同之处在于:与在实施例2-1至2-6中一样,负极活性物质形成为6层结构。
比较例3
以与比较例1相同的方式进行操作,不同之处在于:与在实施例3-1至3-6中一样,负极活性物质形成为12层结构。
比较例4
以与比较例1相同的方式进行操作,不同之处在于:与在实施例4-1至4-6中一样,负极活性物质形成为24层结构。
当检测实施例2-1至2-6、3-1至3-6、和4-1至4-6以及比较例2至4的二次电池的循环特性时,获得了表2至表4所示的结果。表2
负极活性物质:硅(电子束蒸发法)
十点平均粗糙度Rz:3.5μm
负极活性物质中的氧含量:3原子数%
Figure A200810175218D00751
表3
负极活性物质:硅(电子束蒸发法)
十点平均粗糙度Rz:3.5μm
负极活性物质中的氧含量:3原子数%
表4
负极活性物质:硅(电子束蒸发法)
十点平均粗糙度Rz:3.5μm
负极活性物质中的氧含量:3原子数%
如表2至表4所示,当负极活性物质形成为多层结构时,同样可以获得类似于表1的结果。即,在形成了包含氟树脂的涂层54C的实施例2-1至2-6、3-1至3-6、以及4-1至4-6中,放电容量保持率明显高于没有形成涂层54C的比较例2至4。在这种情况下,对除了负极活性物质层的数量以外具有彼此类似的结构的实施例1-1、2-1、3-1以及4-1之间进行比较时,存在这样的趋势,即,在负极活性物质具有多层结构的情况下的放电容量保持率高于负极活性物质具有单层结构的情况下的放电容量保持率,并且随着层数的增加,放电容量保持率变得更大。因此,证实了,在本发明的二次电池中,当负极活性物质形成为多层结构时,同样可以改善循环特性。还证实了,当负极活性物质层的数量增加时,进一步改善循环特性。
实施例5-1至5-7
以与实施例1-1、1-5至1-9以及1-17相同的方式进行操作,不同之处在于:使用具有化学式2所示结构的氟树脂(X=化学式2)代替化学式1所示的结构。
比较例5
以与比较例1相同的方式进行操作,不同之处在于:如在实施例5-1至5-7中一样,使用具有化学式2所示结构的氟树脂。
当检测实施例5-1至5-7以及比较例5的二次电池的循环特性时,获得了表5所示的结果。
表5
负极活性物质:硅(电子束蒸发法)
十点平均粗糙度Rz:3.5μm
负极活性物质中的氧含量:3原子数%
Figure A200810175218D00781
如表5所示,当使用具有化学式2所示结构的氟树脂时,同样可以获得类似于表1的结果。即,在其中形成包含氟树脂的涂层54C的实施例5-1至5-7中,放电容量保持率明显高于没有形成涂层54C的比较例5。在这种情况下,当末端(R1和R2)具有化学式18(1)等所示的结构时,放电容量保持率明显高于末端为三氟甲基的情况。前者的放电容量保持率倾向于超过80%。因此,证实了,在本发明的二次电池中,当在负极活性物质层54B上设置包含具有化学式2所示结构的氟树脂的涂层54C时,可以改善循环特性。在这种情况下,还证实了,当氟树脂具有化学式3或化学式4所示的结构时,进一步改善循环特性。
作为上述一系列实施例和比较例的代表,当观察用于实施例1-1和1-5的二次电池的负极54的表面时,获得了图12和图13中所示的结果。图12和图13分别是示出了实施例1-1和1-5的负极54的剖视结构的SEM照片。在观察负极54的表面时,除了用于检测循环特性的二次电池外,还制造用于检查电极反应物的氟化物的生成状态的二次电池。对后者的二次电池进行充电和放电30次,然后分解。随后,取出负极54,并通过SEM观察其表面。
如图12和图13所示,在实施例1-1和实施例1-5两者中,观察到了多个颗粒状负极活性物质,并且在其表面上观察到了作为电极反应物的锂的氟化物(氟化锂)。在这种情况下,在实施例1-1(图12)中,氟化物呈现为分成多个部分的涂层状态。同时,在实施例1-5(图13)中,氟化锂呈现为多个颗粒的状态。氟化锂的这样的差别可能是由氟树脂的类型(在末端处存在的基团的不同)而引起的。因此,证实了,在本发明的二次电池中,当在形成包含氟树脂的涂层54C之后进行充电和放电时,在涂层54C的表面上产生涂层状或颗粒状的氟化锂。
实施例6-1至6-4
以与实施例1-1、1-5、1-6以及1-8相同的方式进行操作,不同之处在于:通过烧结法代替电子束沉积法来形成负极活性物质层54B。如下形成负极活性物质层54B。首先,将90质量份的作为负极活性物质的硅粉末(平均颗粒直径:6μm)和10质量份的作为粘结剂的聚偏二氟乙烯进行混合以获得负极混合物。之后,将该负极混合物分散在N-甲基-2-吡咯烷酮中以获得糊状负极混合物浆料。随后,用该负极混合物浆料均匀地涂覆负极集电体54A的两个面,然后通过辊压机对这样的所得涂层进行压制成型。最后,在真空气氛下在220℃下加热涂层12小时。上述平均颗粒直径是所谓的中值粒径。这将同样适用于以下的描述。
比较例6
以与比较例1相同的方式进行操作,不同之处在于:与实施例6-1至6-4中一样,通过烧结法来形成负极活性物质层54B。
当检测实施例6-1至6-4以及比较例6的二次电池的循环特性时,获得了表6所示的结果。
表6
负极活性物质:硅(烧结法)
十点平均粗糙度Rz:3.5μm
Figure A200810175218D00801
如表6所示,当负极活性物质层54B通过烧结法而形成时,同样获得了类似于表1的结果。即,在形成了包含氟树脂的涂层54C的实施例6-1至6-4中,放电容量保持率高于没有形成涂层54C的比较例6。因此,证实了,在本发明的二次电池中,当负极活性物质层54B通过烧结法而形成时,同样可以改善循环特性。
实施例7-1至7-4
以与实施例1-1、1-5、1-6以及1-8相同的方式进行操作,不同之处在于:通过使用包含锡的合金代替硅作为负极活性物质来形成负极活性物质层54B。如下形成负极活性物质层54B。首先,通过气体雾化法来形成粉末状的锡-钴合金(原子数比为Sn:Co=80:20)。之后,将所得的锡-钴合金粉碎并分级直到平均颗粒直径变成15μm。随后,将75质量份的作为负极活性物质的锡-钴合金粉末、20质量份的作为导电剂的鳞片状石墨、以及5质量份的作为增稠剂的羧甲基纤维素进行混合以获得负极混合物。之后,将该负极混合物分散在纯水中以获得负极混合物浆料。最后,用该负极混合物浆料均匀地涂覆负极集电体54A的两个面,然后通过辊压机对这样的所得涂层进行压制成型。通过俄歇电子能谱仪(AES)来分析完成的负极54。结果,证实了,负极集电体54A和负极活性物质层54B在两者之间的至少部分界面中被合金化。
比较例7
以与比较例1相同的方式进行操作,不同之处在于:与实施例7-1至7-4中一样,通过使用锡-钴合金作为负极活性物质来形成负极活性物质层54B。
当检测实施例7-1至7-4以及比较例7的二次电池的循环特性时,获得了表7所示的结果。
表7
负极活性物质:锡-钴合金(涂覆法)
十点平均粗糙度Rz:3.5μm
如表7所示,当负极活性物质层54B通过使用锡-钴合金而形成时,同样获得了类似于表1的结果。即,在形成了包含氟树脂的涂层54C的实施例7-1至7-4中,放电容量保持率高于没有形成涂层54C的比较例7。因此,证实了,在本发明的二次电池中,当使用包含锡的合金作为负极活性物质时,同样可以改善循环特性。
实施例8-1至8-3
以与实施例1-1、1-5以及1-6相同的方式进行操作,不同之处在于:通过使用碳材料代替硅作为负极活性物质来形成负极活性物质层54B。如下形成负极活性物质层54B。将作为负极活性物质的87质量份的中间相碳微球(MCMB:平均颗粒直径:25μm)和3质量份作为负极活性物质的石墨、以及10质量份作为粘结剂的聚偏二氟乙烯进行混合以获得负极混合物。之后,将该负极混合物分散在N-甲基-2-吡咯烷酮中以获得糊状负极混合物浆料。之后,用该负极混合物浆料均匀地涂覆负极集电体54A的两个面,干燥,然后通过辊压机对这样的所得涂层进行压制成型。
比较例8
以与比较例1相同的方式进行操作,不同之处在于:与实施例8-1至8-3中一样,通过使用碳材料作为负极活性物质来形成负极活性物质层54B。
当检测实施例8-1至8-3以及比较例8的二次电池的循环特性时,获得了表8所示的结果。
表8
负极活性物质:MCMB(涂覆法)
十点平均粗糙度Rz:3.5μm
Figure A200810175218D00821
如表8所示,当负极活性物质层54B通过使用碳材料而形成时,同样获得了类似于表1的结果。即,在形成了包含氟树脂的涂层54C的实施例8-1至8-3中,放电容量保持率高于没有形成涂层54C的比较例8。因此,证实了,在本发明的二次电池中,当使用碳材料作为负极活性物质时,同样可以改善循环特性。
实施例9-1至9-6
以与实施例4-1相同的方式进行操作,不同之处在于:负极活性物质中的氧含量从3原子数%变为2原子数%(实施例9-1)、10原子数%(实施例9-2)、20原子数%(实施例9-3)、30原子数%(实施例9-4)、40原子数%(实施例9-5)、或45原子数%(实施例9-6)。
当检测实施例9-1至9-6的二次电池的循环特性时,获得了表9和图14所示的结果。
表9
负极活性物质:硅(电子束蒸发法)
十点平均粗糙度Rz=3.5μm
Figure A200810175218D00831
如表9所示,在负极活性物质中的氧含量不同的实施例9-1至9-6中,如同实施例4-1一样,放电容量保持率明显高于比较例4。在这种情况下,如表9和图14所示,随着氧含量增加,放电容量保持率倾向于先增加然后变成几乎恒定。如果氧含量小于3原子数%,则放电容量保持率倾向于大幅降低。然而,如果氧含量大于40原子数%,则虽然放电容量保持率倾向于增加,但电池容量倾向于降低。因此,证实了,在本发明的二次电池中,当改变负极活性物质中的氧含量时,同样可以改善循环特性。而且,证实了,如果氧含量为3原子数%以上,则进一步改善特性,并且如果氧含量为3原子数%以上40原子数%以下,则可以确保电池容量。
实施例10-1至10-6
以与实施例4-1相同的方式进行操作,不同之处在于:通过使用99%纯度的硅和99.9%纯度的金属元素作为蒸发源来沉积包含硅和金属元素两者的负极活性物质。作为金属元素,可以使用铁(实施例10-1)、钴(实施例10-2)、镍(实施例10-3)、铬(实施例10-4)、钛(实施例10-5)、或钼(实施例10-6)。调节金属元素的蒸发量使得负极活性物质中的金属元素含量为5原子数%。
当检测实施例10-1至10-6的二次电池的循环特性时,获得了表10所示的结果。
表10
负极活性物质:硅(电子束蒸发法)
十点平均粗糙度Rz=3.5μm
负极活性物质中的氧含量:3原子数%
Figure A200810175218D00851
如表10所示,在负极活性物质包含金属元素和硅的实施例10-1至10-6中,放电容量保持率高于负极活性物质不包含金属元素的实施例4-1。因此,证实了,在本发明的二次电池中,当负极活性物质包含金属元素时,进一步改善循环特性。
实施例11-1至11-3
以与实施例4-1相同的方式进行操作,不同之处在于:将氧气等间歇地引入到室中的同时,沉积负极活性物质,使得第一含氧区域和具有的氧含量高于第一含氧区域的第二含氧区域通过沉积硅而交替地层叠,代替通过将氧气等连续地引入到室的同时,沉积硅而使负极活性物质包含氧。第二含氧区域中的氧含量为3原子数%,而其数量为6(实施例11-1)、12(实施例11-2)、或24(实施例11-3)。
当检测实施例11-1至11-3的二次电池的循环特性时,获得了表11和图15所示的结果。
表11
负极活性物质:硅(电子束蒸发法)
十点平均粗糙度Rz=3.5μm
负极活性物质中的氧含量:3原子数%
Figure A200810175218D00861
如表11和图15所示,在负极活性物质具有第一和第二含氧区域的实施例11-1至11-3中,放电容量保持率高于负极活性物质不包含第一和第二含氧区域的实施例4-1。在这种情况下,随着第二含氧区域数量增加,放电容量保持率倾向于更高。因此,证实了,在本发明的二次电池中,当负极活性物质具有第一和第二含氧区域时,改善循环特性。而且,证实了,随着第二含氧区域数量增加,进一步改善特性。
实施例12-1
以与实施例1-1相同的方式进行操作,不同之处在于:代替电子束蒸发法,通过RF磁控溅射法来形成负极活性物质层54B(厚度:6.2μm)。此时,使用99.99%纯度的硅作为靶,并且沉积速度为0.5nm/s。
实施例12-2
以与实施例1-1相同的方式进行操作,不同之处在于:代替电子束蒸发法,通过CVD法来形成负极活性物质层54B(厚度:6.3μm)。此时,分别使用硅烷和氩气作为原料和激发气,沉积速度和基板温度分别为1.5nm/s和200℃。
当检测实施例12-1和12-2的二次电池的循环特性时,获得了表12所示的结果。
表12
负极活性物质:硅(电子束蒸发法)
十点平均粗糙度Rz=3.5μm
负极活性物质中的氧含量:3原子数%
Figure A200810175218D00871
如表12所示,在形成负极活性物质层54B的方法不同的实施例12-1和12-2中,如同实施例1-1一样,放电容量保持率高于比较例1。在这种情况下,在使用电子束蒸发法的情况下比使用溅射法和使用CVD法的情况下,放电容量保持率倾向于增加。因此,证实了,在本发明的二次电池中,当改变形成负极活性物质层54B的方法时,同样可以改善循环特性。而且,证实了,当使用蒸发法时,进一步改善特性。
实施例13-1至13-7
以与实施例4-1相同的方式进行操作,不同之处在于:负极集电体54A的表面的十点平均粗糙度Rz从3.5μm改为1μm(实施例13-1)、1.5μm(实施例13-2)、2.5μm(实施例13-3)、4.5μm(实施例13-4)、5.5μm(实施例13-5)、6.5μm(实施例13-6)、或7μm(实施例13-7)。
当检测实施例13-1至13-7的二次电池的循环特性时,获得了表13和图16所示的结果。
表13
负极活性物质:硅(电子束蒸发法)
十点平均粗糙度Rz=3.5μm
负极活性物质中的氧含量:3原子数%
Figure A200810175218D00881
如表13所述,在十点平均粗糙度Rz不同的实施例13-1至13-7中,如同实施例4-1一样,放电容量保持率大大高于比较4。在这种情况下,如表13和图16所示,随着十点平均粗糙度Rz增大,放电容量保持率倾向于先增加然后降低,并且如果十点平均粗糙度Rz为小于1.5μm或大于6.5μm,则放电容量保持率倾向于急剧降低。因此,证实了,在本发明的二次电池中,如果改变负极集电体54A的表面的十点平均粗糙度Rz,则同样可以改善循环特性。而且,证实了,如果十点平均粗糙度Rz为1.5μm以上6.5μm以下,则进一步改善循环特性。
实施例14-1
以与实施例4-1相同的方式进行操作,不同之处在于:通过以下步骤来制造图4至图6所示的方形二次电池代替层压膜型二次电池。
首先,形成正极21和负极22。之后,将由铝制成的正极引线24焊接至正极集电体21A,而将由镍制成的负极引线25焊接至负极集电体22A。随后,将正极21、隔膜23、以及负极22以该次序进行层叠,并且在长度方向上螺旋卷绕,然后形成为扁平状。从而,形成电池元件20。随后,将电池元件20容纳在由铝制成的电池壳11内。之后,将绝缘板12设置在电池元件20上。随后,将正极引线24和负极引线25分别焊接至正极销15和电池壳11。之后,通过激光焊接使电池盖13固定至电池壳11的开口端。最后,将电解液通过注入孔19注入到电池壳11中。之后,通过密封件19A密封注入孔19,从而完成方形电池的制备。
实施例14-2
以与实施例14-1相同的方式进行操作,不同之处在于:使用由铁制成的电池壳11代替由铝制成的电池壳11。
当检测实施例14-1和14-2的二次电池的循环特性时,获得了表14所示的结果。
表14
负极活性物质:硅(电子束蒸发法)
十点平均粗糙度Rz=3.5μm
负极活性物质中的氧含量:3原子数%
Figure A200810175218D00901
如表14所示,在电池结构不同的实施例14-1和14-2中,如同实施例4-1一样,放电容量保持率同样高于比较例4。在这种情况下,实施例14-1和14-2的放电容量保持率倾向于高于实施例4-1,并且在电池壳11由铁制成的情况下的放电容量保持率高于电池壳11由铝制成的情况。因此,证实了,在本发明的二次电池中,当电池结构改变时,同样可以改善循环特性。而且,证实了,在电池结构为方形的情况下,与电池结构为层压膜型的情况相比,进一步改善循环特性,并且使用由铁制成的电池壳11的情况下进一步改善循环特性。尽管在这里对包装件由金属材料制成的圆柱形二次电池没有给出具体实施例,但是很显然,在这样的圆柱形二次电池中也可以获得类似的效果,因为与在层压膜型二次电池中相比,在包括由金属材料制成的包装件的方形二次电池中可以改善循环特性和溶胀特性。
实施例15-1
以与实施例14-1相同的方式进行操作,不同之处在于:使用作为化学式22所示的具有卤素的环状碳酸酯的4-氟-1,3-二氧戊环-2酮(FEC)代替EC作为溶剂。
实施例15-2
以与实施例15-1相同的方式进行操作,不同之处在于:作为电解质盐,加入四氟硼酸锂(LiBF4),并且加入磺基苯甲酸酐(SBAH)作为酸酐。在电解液中的六氟硼酸锂的浓度保持为1mol/kg时,电解液中的四氟硼酸锂的浓度设定为0.05mol/kg。而且,溶剂中SBAH的含量为1wt%。此处“Wt%”是指整个溶剂为100wt%的情况下的单位。这同样将适用于以下描述。
实施例15-3
以与实施例15-2相同的方式进行操作,不同之处在于:加入碳酸亚丙酯(PC)作为溶剂。溶剂(PC:FEC:DEC)的组成重量比为20:30:50。
实施例15-4
以与实施例15-3相同的方式进行操作,不同之处在于:加入作为化学式22所示的具有卤素的环状碳酸酯的4,5-二氟-1,3-二氧戊环-2-酮(DFEC)作为溶剂。溶剂(PC:FEC:DFEC:DEC)的组成重量比为30:10:10:50。
实施例15-5
以与实施例15-3相同的方式进行操作,不同之处在于:使用DFEC代替FEC作为溶剂。溶剂(PC:DFEC:DEC)的组成重量比为40:10:50。
当对于实施例15-1至15-5的二次电池检测循环特性时,获得了表15所示的结果。
表15
负极活性物质:硅(电子束蒸发法)
十点平均粗糙度Rz=3.5μm
负极活性物质中的氧含量:3原子数%
Figure A200810175218D00921
如表15所示,在电解液包含其他溶剂(FEC等)、其他电解质盐(四氟硼酸锂)、或酸酐(SBAH)的实施例15-1至15-5中,放电容量保持率高于电解液不包含上述物质的实施例4-1。在这种情况下,当溶剂包含DFEC时,与溶剂包含FEC的情况相比,放电容量保持率倾向于更高。因此,证实了,在本发明的二次电池中,当改变溶剂的组成和电解质盐的类型时,同样可以改善循环特性。还证实了,当向电解液中加入其他溶剂、其他电解质、或酸酐时,进一步改善循环特性。而且,证实了,当在溶剂中包含化学式22所示的具有卤素的环状碳酸酯时,改善循环特性。此外,证实了,随着卤素的数量增加,进一步改善特性。
在溶剂包含化学式21所示的具有卤素的链状碳酸酯的情况下的结果在本文中并没有示出。然而,化学式21所示的具有卤素的链状碳酸酯具有与化学式22所示的具有卤素的环状碳酸酯相同的功能。因此,显而易见的是,当溶剂包含化学式21所示的具有卤素的链状碳酸酯时,可以获得相似的结果。这同样适用于使用相同/不同类型的两种碳酸酯的混合物的情况。
实施例16-1
以与实施例4-1相同的方式进行操作,不同之处在于:形成包含金属材料和负极活性物质的负极活性物质层54B。当形成金属材料时,在负极集电体54A的两个面上沉积负极活性物质,然后,通过电镀法在两个面上生长钴镀膜。作为电镀液,使用钴电镀液(Nippon Kojundo Kagaku Co.,Ltd.制造)。电流密度在2A/dm2至5A/dm2的范围内,并且电镀速率为10nm/s。而且,每单位面积的负极活性物质的摩尔数M1与每单位面积的金属材料的摩尔数M2之间的摩尔比M2/M1为1/20。
实施例16-2至16-11
以与实施例16-1相同的方式进行操作,不同之处在于:摩尔比M2/M1为1/15(实施例16-2)、1/10(实施例16-3)、1/5(实施例16-4)、1/2(实施例16-5)、1/1(实施例16-6)、2/1(实施例16-7)、3/1(实施例16-8)、5/1(实施例16-9)、7/1(实施例16-10)、或8/1(实施例16-11),而不是1/20。
实施例16-12至16-15
以与实施例16-5相同的方式进行操作,不同之处在于:使用铁电镀液(实施例16-12)、镍电镀液(实施例16-13)、锌电镀液(实施例16-14)、或铜电镀液(实施例16-15)代替钴电镀液作为电镀液。电流密度在使用铁电镀液的情况下在2A/dm2至5A/dm2的范围内,在使用镍电镀液的情况下在2A/dm2至10A/dm2的范围内,在使用锌电镀液的情况下在1A/dm2至3A/dm2的范围内,以及在使用铜电镀液的情况下在2A/dm2至8A/dm2的范围内。所有上述一系列电镀液由Nippon Kojundo Kagaku Co.,Ltd.制备。
当检测实施例16-1至16-15的二次电池的循环特性时,获得了表16和图17所示的结果。
表16
负极活性物质:硅(电子束蒸发法)
十点平均粗糙度Rz=3.5μm
负极活性物质中的氧含量:3原子数%
Figure A200810175218D00941
如表16所示,在形成了金属材料的实施例16-1至16-15中,放电容量保持率高于没有形成金属材料的实施例4-1。在这种情况下,如表16和图17所示,随着摩尔比M2/M1变得更大,放电容量保持率倾向于先增加后降低,并且如果摩尔比M2/M1小于1/15或大于7/1,则放电容量保持率倾向于大幅降低。而且,当对具有不同金属类型的实施例16-5和16-12至20-15进行相互比较时,与使用铁、镍、锌、或铜的情况相比,在使用钴的情况下放电容量保持率倾向于更高。因此,证实了,在本发明的二次电池中,当形成了不与电极反应物反应的金属材料时,改善循环特性。还证实了,如果摩尔比为1/15以上7/1以下,则当使用钴作为金属材料时,进一步改善循环特性。
实施例17-1
以与实施例1-1相同的方式进行操作,不同之处在于:代替负极54,在正极53中包含氟树脂。当在正极53中包含氟树脂时,通过类似于形成涂层54C的步骤而在正极活性物质层53B上形成包含氟树脂的涂层。
实施例17-2
以与实施例1-1相同的方式进行操作,不同之处在于:代替负极54,在隔膜55中包含氟树脂。当在隔膜55中包含氟树脂时,通过类似于形成涂层54C的步骤而在隔膜55的两个面上形成包含氟树脂的涂层。
实施例17-3
以与实施例1-1相同的方式进行操作,不同之处在于:代替负极54,在电解液中包含氟树脂。当在电解液中包含氟树脂时,将氟树脂分散在电解液中,同时将分散量调节为与在上述涂层中的含量相同。
实施例17-4
以与实施例1-1相同的方式进行操作,不同之处在于:通过类似于实施例1-1和17-2的步骤,在负极54和隔膜55两者中包含氟树脂。
当检测实施例17-1至17-14的二次电池的循环特性时,获得了表17所示的结果。
表17
负极活性物质:硅(电子束蒸发法)
十点平均粗糙度Rz:3.5μm
负极活性物质中的氧含量:3原子数%
Figure A200810175218D00961
如表17所示,在正极53、隔膜55、或电解液中包含氟树脂或者在负极54和隔膜55两者中包含氟树脂的实施例17-1至17-4中,如同负极54中包含氟树脂的实施例1-1一样,放电容量保持率显著高于比较例1。在这种情况下,对在不同位置包含氟树脂的实施例1-1和17-1至17-3之间进行比较时,存在这样的趋势,即,在正极53或隔膜55中包含氟树脂时,与在电解液中包含氟树脂的情况相比,放电容量保持率更高;并且在负极54中包含氟树脂时,放电容量保持率比上述情况的更高于。而且,在不同位置包含氟树脂的的实施例1-1、17-2和17-4之间进行比较时,存在这样的趋势,即,在负极54和隔膜55两者中均包含氟树脂时,放电容量保持率高于在负极54和隔膜55之一中包含氟树脂的情况。
虽然此处没有给出具体实施例,但显而易见的是,由于在负极54和隔膜55两者中均包含氟树脂时,放电容量保持率显著地高,所以在正极53、负极54、隔膜55、以及电解液中的两种以上中包含氟树脂时,放电容量保持率同样可以显著地很高。
因此,在本发明的二次电池中,证实了,当在正极53、负极54、隔膜55、以及电解液中的至少一种中包含氟树脂时,改善循环特性。在这种情况下,还证实了,当在负极54中包含氟树脂时,进一步改善循环特性。此外,证实了,在正极53、负极54、隔膜55、以及电解液中的两种以上中包含氟树脂时,进一步改善特性。
由上述表1至表17以及图14至图17的结果显而易见的是,在本发明的二次电池中,证实了,在正极、负极、隔膜、以及电解液中的至少一种中包含选自由具有化学式1或化学式2所示结构的氟树脂组成的组中的至少一种时,可以改善循环特性。特别地,证实了,当在负极中包含上述氟树脂时,可以获得优异的循环特性,而与诸如负极集电体和负极活性物质层的结构、电解液的组成,以及电池结构的类型无关。
在这种情况下,证实了,当使用诸如硅和锡钴合金的材料(可以嵌入和脱嵌锂并具有金属元素和准金属元素中的至少一种的材料)时,与使用诸如MCMB的碳材料作为负极活性物质的情况下相比,放电容量保持率大幅增加,因此在前一情况下可以获得更高的效果。这样的结果可能是由以下事实引起的:即,使用有利于获得高容量的硅等作为负极活性物质时,与使用碳材料的情况相比,电解液更易于分解,因此可以显著地发挥电解液的分解抑制效果。
已经参照实施方式和实施例描述了本发明。然而,本发明并不限于上述实施方式和上述实施例中描述的方面,并且可以进行各种变形。例如,在上述实施方式和上述实施例中,作为电池类型,已经给出了负极容量基于锂的嵌入和脱嵌来表达的锂离子二次电池的描述。然而,本发明的电池并不一定限于此。本发明可以类似地应用于这样的二次电池,即,其中通过将能够嵌入和脱嵌锂的负极材料的充电容量设置为比正极的充电容量更小的值,使负极容量包括与锂的嵌入和脱嵌有关的容量以及与锂的析出和溶解有关的容量,并且负极容量表示为这些容量的总和。
而且,在上述实施方式和上述实施例中,已经对作为电池结构的方型、圆柱型、或层压膜型二次电池的具体实施例以及电池元件具有螺旋卷绕结构的电池的具体实施例给出了描述。然而,本发明可以类似地应用于具有其它结构的电池(如硬币型电池和纽扣型电池)、或电池元件具有其它结构如层压结构的电池。
而且,在上述实施方式和上述实施例中,已经给出了使用锂作为电极反应物的情况的描述。然而,作为电极反应物,可以使用其它1A族元素如钠(Na)和钾(K)、2A族元素如镁(Mg)和钙(Ca)、或其它轻金属如铝。在这些情况下,同样可以使用上述实施方式中描述的负极材料作为负极活性物质。
而且,在上述实施方式和上述实施例中,关于本发明的负极或电池中的负极活性物质的氧含量,由实施例的结果导出的其数值范围已经描述为适当的范围。然而,这样的描述并没有完全排除氧含量可以超出上述范围的可能性。即,上述适当的范围是用于获得本发明效果的特别优选的范围。因此,只要可以获得本发明的效果,氧含量在某种程度上可以超出上述范围。除了上述氧含量以外,这同样适用于摩尔比M2/M1等。
本领域技术人员应当理解的是,根据设计要求和其它因素,可以在所附权利要求书的范围内或其等同范围内进行各种修改、组合、子组合以及变化。

Claims (49)

1.一种负极,包括:
位于设置在负极集电体上的负极活性物质层上的涂层,其中,所述涂层包含选自由具有化学式1或化学式2所示结构的氟树脂组成的组中的至少一种,
化学式1
其中,h和k表示比率,并且h+k为1;
化学式2
Figure A200810175218C00022
其中,m和n表示比率,并且m+n为1。
2.根据权利要求1所述的负极,其中,所述氟树脂具有化学式3所示的结构,
化学式3
R1—X—R2
其中,X为化学式1或化学式2所示的结构,并且R1和R2中的至少一个是能够固定在所述负极活性物质层的表面上的基团。
3.根据权利要求2所述的负极,其中,化学式3所示的R1和R2中的至少一种是羟基、酯基、硅烷基、烷氧基硅烷基、磷酸酯基、氨基、酰胺基、氰基或异氰酸酯基。
4.根据权利要求2所述的负极,其中,化学式3所示的R1和R2中的至少一种具有化学式4所示的结构,
化学式4
Figure A200810175218C00031
其中,p、q以及r是0或1,R3是化学式5所示的二价连接基,R4是化学式6或化学式7所示的二价连接基,以及R5是化学式8至化学式17所示的一价基,
化学式5
Figure A200810175218C00032
其中,n是1以上的整数;
化学式6
其中,n是1以上的整数;
化学式7
Figure A200810175218C00034
化学式8
Figure A200810175218C00035
其中,n是0至10的整数;
化学式9
Figure A200810175218C00041
化学式10
其中,R6是氢、10以下碳数的烷基或-CH2-CN;
化学式11
Figure A200810175218C00043
其中,R7和R8是氢或20以下碳数的烷基;
化学式12
Figure A200810175218C00044
其中,R9至R11是氢、卤素、10以下碳数的烷基、10以下碳数的亚烷基或10以下碳数的烷氧基;
化学式13
Figure A200810175218C00045
其中,R12和R13是氢、羟基、卤素或10以下碳数的烷基;
化学式14
Figure A200810175218C00051
其中,R14和R15是氢或10以下碳数的烷基;
化学式15
—N=C=O
化学式16
Figure A200810175218C00052
其中,R16至R18是氢或卤素;
化学式17
—C≡N
5.根据权利要求1所述的负极,其中,所述负极活性物质层包含含有选自由硅(Si)的单质、合金以及化合物,和锡(Sn)的单质、合金以及化合物组成的组中的至少一种的负极活性物质。
6.根据权利要求5所述的负极,其中,所述负极活性物质包含氧,并且所述负极活性物质中的氧含量为3原子数%以上40原子数%以下。
7.根据权利要求5所述的负极,其中,所述负极活性物质在厚度方向上具有包含氧的含氧区域,并且所述含氧区域中的氧含量高于其他区域中的氧含量。
8.根据权利要求5所述的负极,其中,所述负极活性物质具有选自由铁(Fe)、钴(Co)、镍(Ni)、铬(Cr)、钛(Ti)以及钼(Mo)组成的组中的至少一种金属元素。
9.根据权利要求5所述的负极,其中,所述负极活性物质由多个颗粒构成。
10.根据权利要求9所述的负极,其中,所述负极活性物质的颗粒在所述颗粒内具有多层结构。
11.根据权利要求9所述的负极,其中,所述负极活性物质连接于所述负极集电体。
12.根据权利要求9所述的负极,其中,所述负极活性物质通过气相沉积法形成。
13.根据权利要求10所述的负极,其中,所述负极活性物质层在所述负极活性物质的颗粒之间的间隙中具有不与电极反应物合金化的金属材料。
14.根据权利要求13所述的负极,其中,所述负极活性物质层在所述负极活性物质的颗粒的暴露面上具有所述金属材料。
15.根据权利要求13所述的负极,其中,所述负极活性物质层在所述负极活性物质的颗粒内的间隙中具有所述金属材料。
16.根据权利要求13所述的负极,其中,所述金属材料具有选自由铁、钴、镍、锌(zn)以及铜(Cu)组成的组中的至少一种金属元素。
17.根据权利要求13所述的负极,其中,所述金属材料通过液相沉积法形成。
18.根据权利要求13所述的负极,其中,每单位面积的所述负极活性物质的摩尔数M1与每单位面积的所述金属材料的摩尔数M2之间的摩尔比M2/M1为1/15以上7/1以下。
19.根据权利要求1所述的负极,其中,所述负极集电体的表面的十点平均粗糙度Rz为1.5μm以上6.5μm以下。
20.一种电池,包括:
彼此相对的正极和负极,并且两者之间具有隔膜;以及
电解液,
其中,所述正极、负极、隔膜以及电解液中的至少一种包含选自由具有化学式18或化学式19所示结构的氟树脂组成的组中的至少一种,
化学式18
Figure A200810175218C00071
其中,h和k表示比率,并且h+k为1;
化学式19
Figure A200810175218C00072
其中,m和n表示比率,并且m+n为1。
21.根据权利要求20所述的电池,其中,所述氟树脂具有化学式20所示的结构,
化学式20
R1—X—R2
其中,X为化学式18或化学式19所示的结构,并且R1和R2中的至少一种是能够固定在所述负极的表面上的基团。
22.根据权利要求21所述的电池,其中,化学式20中所示的R1和R2中的至少一种是羟基、酯基、硅烷基、烷氧基硅烷基、磷酸酯基、氨基、酰胺基、氰基或异氰酸酯基。
23.根据权利要求21所述的电池,其中,化学式20中所示的R1和R2中的至少一种具有化学式21所示的结构,
化学式21
Figure A200810175218C00081
其中,p、q以及r是0或1,R3是化学式22所示的二价连接基,R4是化学式23或化学式24所示的二价连接基,以及R5是化学式25至化学式34所示的一价基,
化学式22
其中,n是1以上的整数;
化学式23
Figure A200810175218C00083
其中,n是1以上的整数;
化学式24
Figure A200810175218C00091
化学式25
Figure A200810175218C00092
其中,n是0至10的整数;
化学式26
Figure A200810175218C00093
化学式27
Figure A200810175218C00094
其中,R6是氢、10以下碳数的烷基或-CH2-CN;
化学式28
Figure A200810175218C00095
其中,R7和R8是氢或20以下碳数的烷基;
化学式29
其中,R9至R11是氢、卤素、10以下碳数的烷基、10以下碳数的亚烷基或10以下碳数的烷氧基;
化学式30
Figure A200810175218C00101
其中,R12和R13是氢、羟基、卤素或10以下碳数的烷基;
化学式31
Figure A200810175218C00102
其中,R14和R15是氢或10以下碳数的烷基;
化学式32
—N=C=O
化学式33
Figure A200810175218C00103
其中,R16至R18是氢或卤素;
化学式34
—C≡N
24.根据权利要求20所述的电池,其中,所述负极在设置在负极集电体上的负极活性物质层上具有涂层,并且所述涂层包含所述氟树脂。
25.根据权利要求24所述的电池,其中,电极反应物的氟化物设置在所述涂层的表面上。
26.根据权利要求24所述的电池,其中,所述负极活性物质层包含含有选自由硅的单质、合金以及化合物,和锡的单质、合金以及化合物组成的组中的至少一种的负极活性物质。
27.根据权利要求26所述的电池,其中,所述负极活性物质包含氧,并且所述负极活性物质中的氧含量为3原子数%以上40原子数%以下。
28.根据权利要求26所述的电池,其中,所述负极活性物质在厚度方向上具有包含氧的含氧区域,并且所述含氧区域中的氧含量高于其他区域中的氧含量。
29.根据权利要求26所述的电池,其中,所述负极活性物质具有选自由铁、钴、镍、铬、钛以及钼组成的组中的至少一种金属元素。
30.根据权利要求26所述的电池,其中,所述负极活性物质由多个颗粒构成。
31.根据权利要求30所述的电池,其中,所述负极活性物质的颗粒在所述颗粒内具有多层结构。
32.根据权利要求30所述的电池,其中,所述负极活性物质连接于所述负极集电体。
33.根据权利要求30所述的电池,其中,所述负极活性物质通过气相沉积法形成。
34.根据权利要求31所述的电池,其中,所述负极活性物质层在所述负极活性物质的所述颗粒之间的间隙中具有不与电极反应物合金化的金属材料。
35.根据权利要求34所述的电池,其中,所述负极活性物质层在所述负极活性物质的所述颗粒的暴露面上具有所述金属材料。
36.根据权利要求34所述的电池,其中,所述负极活性物质层在所述负极活性物质的所述颗粒内的间隙中具有所述金属材料。
37.根据权利要求34所述的电池,其中,所述金属材料具有选自由铁、钴、镍、锌以及铜组成的组中的至少一种金属元素。
38.根据权利要求34所述的电池,其中,所述金属材料通过液相沉积法形成。
39.根据权利要求34所述的电池,其中,每单位面积的所述负极活性物质的摩尔数M1与每单位面积的所述金属材料的摩尔数M2之间的摩尔比M2/M1为1/15以上7/1以下。
40.根据权利要求24所述的电池,其中,所述负极集电体的表面的十点平均粗糙度Rz为1.5μm以上6.5μm以下。
41.根据权利要求20所述的电池,其中,所述电解液包含含有具有不饱和键的环状碳酸酯的溶剂。
42.根据权利要求20所述的电池,其中,所述电解液包含含有化学式35所示的具有卤素的链状碳酸酯和化学式36所示的具有卤素的环状碳酸酯中的至少一种的溶剂,
化学式35
Figure A200810175218C00131
其中,R21~R26是氢、卤素、烷基或卤代烷基,并且R21~R26中的至少一个为卤素或卤代烷基;
化学式36
Figure A200810175218C00132
其中,R31~R34是氢、卤素、烷基或卤代烷基,并且R31~R34中的至少一个为卤素或卤代烷基。
43.根据权利要求42所述的电池,其中,所述化学式35所示的具有卤素的链状碳酸酯是碳酸氟甲酯甲酯、碳酸二氟甲酯甲酯以及碳酸二(氟甲基)酯中的至少一种,并且
所述化学式36所示的具有卤素的环状碳酸酯是4-氟-1,3-二氧戊环-2-酮和4,5-二氟-1,3-二氧戊环-2-酮中的至少一种。
44.根据权利要求20所述的电池,其中,所述电解液包含含有磺内酯的溶剂。
45.根据权利要求20所述的电池,其中,所述电解液包含含有酸酐的溶剂。
46.根据权利要求20所述的电池,其中,所述电解液包含含有选自由六氟磷酸锂(LiPF6)、四氟硼酸锂(LiBF4)、高氯酸锂(LiClO4)以及六氟砷酸锂(LiAsF6)组成的组中的至少一种的电解质盐。
47.根据权利要求20所述的电池,其中,所述电解液包含含有选自由化学式37至化学式39所示的化合物组成的组中的至少一种的电解质盐,
化学式37
其中,X41为短周期型周期表中的1A族元素或2A族元素或者铝;M41为过渡金属元素,短周期型周期表中的3B族元素、4B族元素或5B族元素;R41为卤素;Y41为-OC-R42-CO-、-OC-CR432-或-OC-CO-;R42为亚烷基、卤代亚烷基、亚芳基或卤代亚芳基;R43为烷基、卤代烷基、芳基或卤代芳基;a4是1~4的整数;b4是0、2或4的整数;以及c4、d4、m4和n4是1~3的整数,
化学式38
Figure A200810175218C00142
其中,X51是短周期型周期表中的1A族元素或2A族元素;M51为过渡金属元素,短周期型周期表中的3B族元素、4B族元素或5B族元素;Y51为-OC-(CR512)b5-CO-、-R532C-(CR522)c5-CO-、-R532C-(CR522)c5-CR532-、-R532C-(CR522)c5-SO2-、-O2S-(CR522)d5-SO2-或-OC-(CR522)d5-SO2-;R51和R53是氢、烷基、卤素或卤代烷基,R51和R53各自中的至少一个是卤素或卤代烷基;R52是氢、烷基、卤素或卤代烷基;a5、e5以及n5为1或2的整数;b5和d5为1~4的整数;c5为0~4的整数;以及f5和m5为1~3的整数,
化学式39
Figure A200810175218C00151
其中,X61为短周期型周期表中的1A族元素或2A族元素;M61为过渡金属元素,短周期型周期表中的3B族元素、4B族元素或5B族元素;Rf为碳数在1~10范围内的氟化烷基或碳数在1~10范围内的氟化芳基;Y61为-OC-(CR612)d6-CO-、-R622C-(CR612)d6-CO-、-R622C-(CR612)d6-CR622-、-R622C-(CR612)d6-SO2-、-O2S-(CR612)e6-SO2-或-OC-(CR612)e6-SO2-;R61为氢、烷基、卤素或卤代烷基;R62为氢、烷基、卤素或卤代烷基,并且它们中的至少一个是卤素或卤代烷基;a6、f6以及n6为1或2的整数;b6、c6以及e6为1~4的整数;d6为0~4的整数;以及g6和m6为1~3的整数。
48.根据权利要求47所述的电池,其中,所述化学式37所示的化合物是选自由化学式40(1)~40(6)所示的化合物组成的组中的至少一种,所述化学式38所示的化合物是选自由化学式41(1)~41(8)所示的化合物组成的组中的至少一种,以及所述化学式39所示的化合物是化学式42所示的化合物,
化学式40
Figure A200810175218C00161
化学式41
Figure A200810175218C00162
化学式42
Figure A200810175218C00163
49.根据权利要求20所述的电池,其中,所述电解液包含含有选自由化学式43至化学式45所示的化合物组成的组中的至少一种的电解质盐,
化学式43
LiN(CmF2m+1SO2)(CnF2n+1SO2)
其中,m和n是1以上的整数;
化学式44
Figure A200810175218C00171
其中,R71是碳数在2~4范围内的直链或支链的全氟亚烷基;
化学式45
LiC(CpF2p+1SO2)(CqF2q+1SO2)(CrF2r+1SO2)
其中,p、q以及r是1以上的整数。
CN2008101752185A 2007-10-31 2008-10-30 负极以及电池 Active CN101425575B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007283080A JP5470696B2 (ja) 2007-10-31 2007-10-31 リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP2007283080 2007-10-31
JP2007-283080 2007-10-31

Publications (2)

Publication Number Publication Date
CN101425575A true CN101425575A (zh) 2009-05-06
CN101425575B CN101425575B (zh) 2012-10-03

Family

ID=40583264

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008101752185A Active CN101425575B (zh) 2007-10-31 2008-10-30 负极以及电池

Country Status (4)

Country Link
US (2) US8932756B2 (zh)
JP (1) JP5470696B2 (zh)
KR (1) KR101562499B1 (zh)
CN (1) CN101425575B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102237511A (zh) * 2010-04-22 2011-11-09 日立麦克赛尔能源株式会社 锂二次电池用正极以及锂二次电池
CN102569748A (zh) * 2010-12-24 2012-07-11 Fdktwicell株式会社 碱性二次电池用的负极及使用该负极的碱性二次电池
CN102593514A (zh) * 2012-03-09 2012-07-18 诺莱特科技(苏州)有限公司 一种锂离子电池高电压电解液添加剂及其电解液
CN103000900A (zh) * 2011-09-07 2013-03-27 株式会社日立制作所 被覆活性物质及使用该被覆活性物质的锂二次电池
CN103594730A (zh) * 2013-11-29 2014-02-19 张家港市国泰华荣化工新材料有限公司 用于硅负极锂电池的电解液及硅负极锂电池
CN103959547A (zh) * 2011-09-29 2014-07-30 日立麦克赛尔株式会社 锂二次电池
CN105431964A (zh) * 2013-08-16 2016-03-23 罗伯特·博世有限公司 具有碱土金属羧酸盐隔板的锂电池
CN106207256A (zh) * 2015-05-25 2016-12-07 松下知识产权经营株式会社 电解液、及电池
CN109937497A (zh) * 2016-11-02 2019-06-25 大金工业株式会社 电极和电化学器件

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4952693B2 (ja) * 2008-09-25 2012-06-13 ソニー株式会社 リチウムイオン二次電池用正極及びリチウムイオン二次電池
JP5521523B2 (ja) * 2009-12-09 2014-06-18 ソニー株式会社 リチウムイオン二次電池、リチウムイオン二次電池用負極、電動工具、電気自動車および電力貯蔵システム
CN102903923B (zh) * 2011-04-12 2016-03-23 美国电化学动力公司 一种全固态储能装置
JP5675540B2 (ja) 2011-09-22 2015-02-25 信越化学工業株式会社 非水電解液二次電池用負極材及び非水電解液二次電池
KR101511822B1 (ko) 2012-05-30 2015-04-13 주식회사 엘지화학 리튬 이차전지용 음극 활물질 및 이를 포함하는 리튬 이차전지
KR101579641B1 (ko) * 2012-05-30 2015-12-22 주식회사 엘지화학 리튬 이차전지용 음극 활물질 및 이를 포함하는 리튬 이차전지
US20140045080A1 (en) * 2012-08-10 2014-02-13 Robert Bosch Gmbh Controlling the Location of Product Distribution and Removal in a Metal/Oxygen Cell
DE13847827T1 (de) * 2012-10-19 2016-03-10 The University Of North Carolina At Chapel Hill Ionenleitende polymere und polymermischungen für alkalimetallionenbatterien
JP2016520956A (ja) 2013-04-01 2016-07-14 ザ・ユニヴァーシティ・オヴ・ノース・キャロライナ・アト・チャペル・ヒル アルカリ金属イオンバッテリーのためのイオン伝導性フルオロポリマーカーボネート
US9540312B2 (en) 2015-02-03 2017-01-10 Blue Current, Inc. Non-flammable electrolyte composition including carbonate-terminated perfluoropolymer and phosphate-terminated or phosphonate-terminated perfluoropolymer and battery using same
US9543619B2 (en) * 2015-02-03 2017-01-10 Blue Current, Inc. Functionalized phosphorus containing fluoropolymers and electrolyte compositions
EP3455896A4 (en) * 2016-05-10 2020-01-01 Seeo, Inc FLUORED ELECTROLYTE WITH NITRILE GROUPS
JP6773498B2 (ja) * 2016-09-21 2020-10-21 株式会社東芝 電極、非水電解質電池、電池パック、及び車両
JP6874617B2 (ja) 2017-09-21 2021-05-19 トヨタ自動車株式会社 負極シートの製造方法
JP7032968B2 (ja) * 2018-03-27 2022-03-09 Fdk株式会社 ニッケル水素二次電池用の負極及びニッケル水素二次電池
JP6981338B2 (ja) * 2018-03-28 2021-12-15 トヨタ自動車株式会社 負極材料、非水電解質二次電池およびそれらの製造方法
JP7079140B2 (ja) * 2018-05-10 2022-06-01 ダイキン工業株式会社 電極および電気化学デバイス
JP2020102457A (ja) * 2020-02-19 2020-07-02 ダイキン工業株式会社 電極および電気化学デバイス

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3260319B2 (ja) * 1998-04-08 2002-02-25 ティーディーケイ株式会社 シート型電極・電解質構造体の製造方法
JP2002110184A (ja) * 2000-09-27 2002-04-12 Sony Corp ボタン形アルカリ電池及びその製造方法
JP4734701B2 (ja) 2000-09-29 2011-07-27 ソニー株式会社 正極活物質の製造方法及び非水電解質電池の製造方法
KR100433002B1 (ko) * 2001-12-07 2004-05-24 삼성에스디아이 주식회사 극판, 이를 채용한 리튬전지, 및 극판 제조방법
DE10240032A1 (de) * 2002-08-27 2004-03-11 Creavis Gesellschaft Für Technologie Und Innovation Mbh Ionenleitender Batterieseparator für Lithiumbatterien, Verfahren zu deren Herstellung und die Verwendung derselben
JP4501344B2 (ja) * 2003-01-23 2010-07-14 ソニー株式会社 二次電池
GB0302834D0 (en) * 2003-02-07 2003-03-12 Aea Technology Battery Systems Secondary cell with tin anode
JP4366101B2 (ja) * 2003-03-31 2009-11-18 キヤノン株式会社 リチウム二次電池
JP2004311141A (ja) * 2003-04-04 2004-11-04 Sony Corp 電極およびそれを用いた電池
JP3922579B2 (ja) * 2003-11-05 2007-05-30 ソニー株式会社 負極および電池
KR20070020130A (ko) * 2004-07-29 2007-02-16 스미토모 티타늄 가부시키가이샤 이차전지용 SiO분말 및 그 제조방법
WO2006030632A1 (ja) * 2004-09-14 2006-03-23 Nok Kluber Co., Ltd. パーフルオロポリエーテル油組成物
JP4824394B2 (ja) * 2004-12-16 2011-11-30 パナソニック株式会社 リチウムイオン二次電池用負極、その製造方法、およびそれを用いたリチウムイオン二次電池
JP4024254B2 (ja) * 2005-03-23 2007-12-19 三井金属鉱業株式会社 非水電解液二次電池
JP2006269374A (ja) * 2005-03-25 2006-10-05 Toshiba Corp 非水電解質電池
JP4911444B2 (ja) * 2005-05-20 2012-04-04 福田金属箔粉工業株式会社 リチウム二次電池用負極材料及びその製造方法
JP4892931B2 (ja) * 2005-11-04 2012-03-07 ソニー株式会社 リチウムイオン二次電池
DE602006020912D1 (de) * 2005-11-07 2011-05-05 Panasonic Corp Elektrode für eine wiederaufladbare lithium-batterie, wiederaufladbare lithium-batterie und verfahren zur herstellung besagter wiederaufladbarer lithium-batterie
JP4967321B2 (ja) * 2005-11-21 2012-07-04 ソニー株式会社 リチウムイオン二次電池
EP1978580B1 (en) * 2006-01-25 2010-10-27 Panasonic Corporation Negative electrode for lithium secondary battery, method for producing same, and lithium secondary battery comprising such negative electrode for lithium secondary battery
JP4984553B2 (ja) * 2006-01-30 2012-07-25 ソニー株式会社 二次電池用負極及びそれを用いた二次電池
JP4379743B2 (ja) * 2006-12-08 2009-12-09 ソニー株式会社 電解液および二次電池

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102237511A (zh) * 2010-04-22 2011-11-09 日立麦克赛尔能源株式会社 锂二次电池用正极以及锂二次电池
CN105514358A (zh) * 2010-04-22 2016-04-20 日立麦克赛尔能源株式会社 锂二次电池用正极的制造方法以及锂二次电池
US9065116B2 (en) 2010-04-22 2015-06-23 Hitachi Maxell, Ltd. Lithium secondary battery positive electrode and lithium secondary battery
CN102569748A (zh) * 2010-12-24 2012-07-11 Fdktwicell株式会社 碱性二次电池用的负极及使用该负极的碱性二次电池
CN102569748B (zh) * 2010-12-24 2015-10-28 Fdk株式会社 碱性二次电池用的负极及使用该负极的碱性二次电池
CN103000900B (zh) * 2011-09-07 2015-07-29 株式会社日立制作所 被覆活性物质及使用该被覆活性物质的锂二次电池
CN103000900A (zh) * 2011-09-07 2013-03-27 株式会社日立制作所 被覆活性物质及使用该被覆活性物质的锂二次电池
CN103959547B (zh) * 2011-09-29 2016-10-26 日立麦克赛尔株式会社 锂二次电池
CN103959547A (zh) * 2011-09-29 2014-07-30 日立麦克赛尔株式会社 锂二次电池
CN102593514A (zh) * 2012-03-09 2012-07-18 诺莱特科技(苏州)有限公司 一种锂离子电池高电压电解液添加剂及其电解液
CN105431964A (zh) * 2013-08-16 2016-03-23 罗伯特·博世有限公司 具有碱土金属羧酸盐隔板的锂电池
US10109890B2 (en) 2013-08-16 2018-10-23 Robert Bosch Gmbh Lithium cell having an alkaline-earth metal carboxylate separator
CN103594730B (zh) * 2013-11-29 2016-04-06 张家港市国泰华荣化工新材料有限公司 用于硅负极锂电池的电解液及硅负极锂电池
CN103594730A (zh) * 2013-11-29 2014-02-19 张家港市国泰华荣化工新材料有限公司 用于硅负极锂电池的电解液及硅负极锂电池
CN106207256A (zh) * 2015-05-25 2016-12-07 松下知识产权经营株式会社 电解液、及电池
CN106207256B (zh) * 2015-05-25 2021-01-15 松下知识产权经营株式会社 电解液、及电池
CN109937497A (zh) * 2016-11-02 2019-06-25 大金工业株式会社 电极和电化学器件
CN109937497B (zh) * 2016-11-02 2022-11-29 大金工业株式会社 电极和电化学器件

Also Published As

Publication number Publication date
JP5470696B2 (ja) 2014-04-16
US8932756B2 (en) 2015-01-13
US20090111019A1 (en) 2009-04-30
US9583766B2 (en) 2017-02-28
KR101562499B1 (ko) 2015-10-22
JP2009110845A (ja) 2009-05-21
KR20090045113A (ko) 2009-05-07
US20150079468A1 (en) 2015-03-19
CN101425575B (zh) 2012-10-03

Similar Documents

Publication Publication Date Title
CN101425575B (zh) 负极以及电池
CN101471436B (zh) 负极及其制造方法、二次电池及其制造方法、和砜化合物
CN101447569B (zh) 负极、电池及其制造方法
CN101471457B (zh) 电解液、锂离子二次电池及其制造方法、以及化合物
CN101425579B (zh) 负极活性物质、负极以及电池
CN101331630B (zh) 负极及其制造方法、以及电池及其制造方法
CN101567462B (zh) 负极以及二次电池
CN101604762B (zh) 负极以及二次电池
CN101546823B (zh) 负极以及二次电池
CN102082299B (zh) 电解液
CN101533929B (zh) 电解液和二次电池
JP5298609B2 (ja) 二次電池用負極および二次電池
KR101579641B1 (ko) 리튬 이차전지용 음극 활물질 및 이를 포함하는 리튬 이차전지
CN101645499B (zh) 电池以及电极
JP5239473B2 (ja) 二次電池用電解液、二次電池および電子機器
CN101685857B (zh) 电池以及电极
JP2009224258A (ja) 電解液および二次電池
JP2010015885A (ja) 負極、正極および二次電池、ならびにそれらの製造方法
CN103138006A (zh) 二次电池
CN101540421A (zh) 电解液和二次电池
JP2009224257A (ja) 電解液および二次電池

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20180412

Address after: Kyoto Japan

Patentee after: Murata Manufacturing Co.,Ltd.

Address before: Fukushima

Patentee before: Murata, Northeast China

Effective date of registration: 20180412

Address after: Fukushima

Patentee after: Murata, Northeast China

Address before: Tokyo, Japan

Patentee before: Sony Corp.

TR01 Transfer of patent right