WO2022036878A1 - 一种高氮生物炭复合材料及其制备方法和用途 - Google Patents
一种高氮生物炭复合材料及其制备方法和用途 Download PDFInfo
- Publication number
- WO2022036878A1 WO2022036878A1 PCT/CN2020/127439 CN2020127439W WO2022036878A1 WO 2022036878 A1 WO2022036878 A1 WO 2022036878A1 CN 2020127439 W CN2020127439 W CN 2020127439W WO 2022036878 A1 WO2022036878 A1 WO 2022036878A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nitrogen
- biochar
- carbon
- composite material
- biomass
- Prior art date
Links
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 title claims abstract description 208
- 229910052757 nitrogen Inorganic materials 0.000 title claims abstract description 133
- 239000002131 composite material Substances 0.000 title claims abstract description 58
- 238000002360 preparation method Methods 0.000 title claims abstract description 21
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 87
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 65
- 239000002028 Biomass Substances 0.000 claims abstract description 49
- 239000012298 atmosphere Substances 0.000 claims abstract description 35
- 238000000034 method Methods 0.000 claims abstract description 29
- 238000001994 activation Methods 0.000 claims abstract description 28
- 239000007789 gas Substances 0.000 claims abstract description 28
- 230000004913 activation Effects 0.000 claims abstract description 27
- 238000000197 pyrolysis Methods 0.000 claims abstract description 25
- 239000012265 solid product Substances 0.000 claims abstract description 14
- 239000002253 acid Substances 0.000 claims abstract description 11
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 10
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 10
- 238000002156 mixing Methods 0.000 claims abstract description 10
- 238000003763 carbonization Methods 0.000 claims abstract description 9
- 238000010438 heat treatment Methods 0.000 claims abstract description 9
- 239000011248 coating agent Substances 0.000 claims abstract description 7
- 238000000576 coating method Methods 0.000 claims abstract description 7
- 235000010627 Phaseolus vulgaris Nutrition 0.000 claims description 44
- 244000046052 Phaseolus vulgaris Species 0.000 claims description 44
- 239000012190 activator Substances 0.000 claims description 23
- -1 alkali metal salts Chemical class 0.000 claims description 22
- 239000000203 mixture Substances 0.000 claims description 22
- 239000007790 solid phase Substances 0.000 claims description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 19
- 238000003760 magnetic stirring Methods 0.000 claims description 14
- 239000012153 distilled water Substances 0.000 claims description 13
- 238000005554 pickling Methods 0.000 claims description 12
- 239000000126 substance Substances 0.000 claims description 12
- 229910052723 transition metal Inorganic materials 0.000 claims description 12
- 239000000706 filtrate Substances 0.000 claims description 11
- 230000007935 neutral effect Effects 0.000 claims description 11
- 235000013527 bean curd Nutrition 0.000 claims description 9
- 238000005406 washing Methods 0.000 claims description 9
- 241000238557 Decapoda Species 0.000 claims description 8
- 229910052783 alkali metal Inorganic materials 0.000 claims description 8
- 239000002149 hierarchical pore Substances 0.000 claims description 6
- 125000000896 monocarboxylic acid group Chemical group 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 4
- 241000195493 Cryptophyta Species 0.000 claims description 3
- 239000007791 liquid phase Substances 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- 238000006479 redox reaction Methods 0.000 claims description 2
- 238000001816 cooling Methods 0.000 abstract description 10
- 238000011065 in-situ storage Methods 0.000 abstract description 3
- 229910000314 transition metal oxide Inorganic materials 0.000 abstract description 3
- 238000007306 functionalization reaction Methods 0.000 abstract description 2
- 230000003750 conditioning effect Effects 0.000 abstract 1
- 239000002994 raw material Substances 0.000 description 28
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 26
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 22
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 20
- 239000003610 charcoal Substances 0.000 description 16
- 229910002092 carbon dioxide Inorganic materials 0.000 description 14
- 239000012159 carrier gas Substances 0.000 description 13
- 238000006243 chemical reaction Methods 0.000 description 11
- 230000006641 stabilisation Effects 0.000 description 11
- 238000011105 stabilization Methods 0.000 description 11
- MBLBDJOUHNCFQT-LXGUWJNJSA-N aldehydo-N-acetyl-D-glucosamine Chemical compound CC(=O)N[C@@H](C=O)[C@@H](O)[C@H](O)[C@H](O)CO MBLBDJOUHNCFQT-LXGUWJNJSA-N 0.000 description 10
- 239000011148 porous material Substances 0.000 description 10
- 239000007772 electrode material Substances 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- 230000014759 maintenance of location Effects 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 7
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 238000002484 cyclic voltammetry Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000003792 electrolyte Substances 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 6
- 244000068988 Glycine max Species 0.000 description 5
- 235000010469 Glycine max Nutrition 0.000 description 5
- 239000003575 carbonaceous material Substances 0.000 description 5
- 239000008367 deionised water Substances 0.000 description 5
- 229910021641 deionized water Inorganic materials 0.000 description 5
- 238000004146 energy storage Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 4
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 4
- 125000000524 functional group Chemical group 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 238000001291 vacuum drying Methods 0.000 description 4
- 235000016425 Arthrospira platensis Nutrition 0.000 description 3
- 240000002900 Arthrospira platensis Species 0.000 description 3
- 241000238424 Crustacea Species 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 229910000019 calcium carbonate Inorganic materials 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 3
- 238000004132 cross linking Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000006260 foam Substances 0.000 description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 125000004355 nitrogen functional group Chemical group 0.000 description 3
- 238000002186 photoelectron spectrum Methods 0.000 description 3
- 229910000027 potassium carbonate Inorganic materials 0.000 description 3
- 239000002893 slag Substances 0.000 description 3
- 229940082787 spirulina Drugs 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 235000019750 Crude protein Nutrition 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 235000019764 Soybean Meal Nutrition 0.000 description 2
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 2
- 239000006230 acetylene black Substances 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000001351 cycling effect Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- ZOMNIUBKTOKEHS-UHFFFAOYSA-L dimercury dichloride Chemical class Cl[Hg][Hg]Cl ZOMNIUBKTOKEHS-UHFFFAOYSA-L 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 229910021389 graphene Inorganic materials 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000000543 intermediate Substances 0.000 description 2
- 244000144972 livestock Species 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 2
- 235000017557 sodium bicarbonate Nutrition 0.000 description 2
- 239000002910 solid waste Substances 0.000 description 2
- 239000004455 soybean meal Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000001960 triggered effect Effects 0.000 description 2
- 241001247197 Cephalocarida Species 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical group [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 244000302661 Phyllostachys pubescens Species 0.000 description 1
- 235000003570 Phyllostachys pubescens Nutrition 0.000 description 1
- 108010066207 Poultry Proteins Proteins 0.000 description 1
- 238000000026 X-ray photoelectron spectrum Methods 0.000 description 1
- SJWUULVPYAMRCJ-UHFFFAOYSA-N [N].[O].[P] Chemical compound [N].[O].[P] SJWUULVPYAMRCJ-UHFFFAOYSA-N 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 230000000433 anti-nutritional effect Effects 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- DLGYNVMUCSTYDQ-UHFFFAOYSA-N azane;pyridine Chemical compound N.C1=CC=NC=C1 DLGYNVMUCSTYDQ-UHFFFAOYSA-N 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- ORSSLKMFXMQQLX-UHFFFAOYSA-N carbon dioxide;phosphoric acid Chemical compound O=C=O.OP(O)(O)=O ORSSLKMFXMQQLX-UHFFFAOYSA-N 0.000 description 1
- 238000010000 carbonizing Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 210000003278 egg shell Anatomy 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000037427 ion transport Effects 0.000 description 1
- 239000012263 liquid product Substances 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 150000002815 nickel Chemical class 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 229910017464 nitrogen compound Inorganic materials 0.000 description 1
- 150000002830 nitrogen compounds Chemical class 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 244000144977 poultry Species 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000013112 stability test Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 239000003039 volatile agent Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/30—Active carbon
- C01B32/312—Preparation
- C01B32/336—Preparation characterised by gaseous activating agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/30—Active carbon
- C01B32/312—Preparation
- C01B32/318—Preparation characterised by the starting materials
- C01B32/324—Preparation characterised by the starting materials from waste materials, e.g. tyres or spent sulfite pulp liquor
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/30—Active carbon
- C01B32/312—Preparation
- C01B32/342—Preparation characterised by non-gaseous activating agents
- C01B32/348—Metallic compounds
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/30—Active carbon
- C01B32/354—After-treatment
- C01B32/372—Coating; Grafting; Microencapsulation
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G45/00—Compounds of manganese
- C01G45/02—Oxides; Hydroxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/24—Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/26—Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/32—Carbon-based
- H01G11/34—Carbon-based characterised by carbonisation or activation of carbon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/32—Carbon-based
- H01G11/44—Raw materials therefor, e.g. resins or coal
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/80—Particles consisting of a mixture of two or more inorganic phases
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Definitions
- the invention relates to the technical field of high-value utilization of organic solid waste, in particular to a functional type of transition metal oxide coating with multi-level pores prepared by utilizing high nitrogen-containing biomass in a carbon-rich atmosphere and a liquid phase system Biochar composite materials, and then in the field of energy storage such as supercapacitors.
- Biomass is the only renewable resource with net zero CO2 emissions. Biomass can be converted into gas, liquid and solid products through pyrolysis, which is a simple high-value utilization technology of biomass.
- biomass there are many kinds of biomass, one of which has high nitrogen content, such as bean cake residue, bean curd residue, shrimp shell, crab shell, algae and so on.
- bean cake dregs Take bean cake dregs as an example.
- Bean cake dregs are by-products obtained after soybean pressing and extraction of soybean oil. It is a raw material with high crude protein content. The crude protein content can reach more than 46%. It is often used as livestock and poultry protein feed.
- bean cake residue contains many anti-nutritional factors and antigenic substances, which will bring certain harm to the growth of livestock and poultry.
- activated biochar preparation methods usually use physical activation or chemical activation methods.
- physical activation is carried out by pyrolyzing and carbonizing the raw materials, and the obtained biochar is further activated by high temperature (usually ⁇ 800 ° C) water vapor or carbon dioxide for pore expansion; chemical activation is often used.
- Biochar is activated by chemical reagents with high proportion (eg mass ratio of activator to biochar ⁇ 1) and high corrosiveness (eg KOH, ZnCl 2 ). That is to say, at present, activated biochar is mostly produced by a two-step method (preparing biochar by pyrolysis and carbonization, and then performing the next activation process). There are many procedures, and the operating temperature is high under physical activation, and the pores of carbon are underdeveloped; chemical activation. , excessive consumption of chemical reagents, serious corrosion of equipment and other problems.
- Supercapacitors a promising alternative energy storage device, have attracted much attention due to their high power density, operational safety, ultra-long-cycle stability, and reversibility.
- Carbon materials are considered to be excellent materials for the fabrication of supercapacitors due to their low cost, high electrical conductivity, and good chemical stability.
- the pure carbon material has the defect of low theoretical specific capacitance, and its maximum specific capacitance does not exceed 250F/g. Studies have shown that the doping of heteroatoms such as nitrogen atoms in the carbon structure can improve the pseudocapacitive properties of capacitors and thus greatly improve the electrochemical properties of electrode materials.
- Patent CN105314629A discloses a method for directly preparing co-doped three-dimensional graphene electrode materials from biomass carbon sources, which uses biomass such as Artemia eggshells and soybean meal as carbon sources, adds red phosphorus or boric acid as stripping agents, and metal nickel salts.
- Oxygen-nitrogen-phosphorus polyatomic co-doped three-dimensional porous graphene was synthesized by calcination at 700-900°C in argon atmosphere as a catalyst.
- Patent CN102874807A discloses an activated carbon material and its application as an electrode material for electric double layer capacitors.
- the activated carbon material is prepared by using Phyllostachys pubescens as a carbon source by a phosphoric acid-carbon dioxide physicochemical activation method, that is, the raw materials are first fully soaked in a phosphoric acid solution. , and then heated to 400-800 °C under the protection of N2 atmosphere, and then activated at constant temperature in CO2 atmosphere to obtain activated carbon materials.
- Patent CN105921106A discloses a surface nitrogen-enriched activated carbon and its preparation method and application.
- the object of the present invention is to overcome the above-mentioned deficiencies in the prior art, and to provide a high-value utilization method for high-nitrogen biomass waste, which utilizes a non-inert atmosphere to contain carbon on the basis of pre-processing high-nitrogen biomass.
- the gas realizes one-step carbonization and activation of high-nitrogen biomass, and improves the energy density of carbon electrodes by coating transition metal oxides, realizing in-situ nitrogen self-doping and functionalization of biochar structures, and is used for supercapacitors and other energy storage devices. preparation.
- the present invention proposes a preparation method of high nitrogen biochar composite material, comprising the following steps:
- step S2 the solid product obtained in step S1 is placed in the pyrolysis equipment, and the carbon-containing gas is passed into the pyrolysis equipment to make the solid product pyrolyze under a carbon-rich atmosphere, and the heating equipment is started from room temperature to a preset temperature, and the processing After a period of time, it is cooled to room temperature to realize one-step carbonization and activation of high-nitrogen biomass to obtain nitrogen self-doping activated biochar;
- Metal oxide coating is carried out on nitrogen self-doping activated biochar to obtain a high nitrogen biochar composite material.
- the nitrogen content of the high-nitrogen biomass in step S1 is not less than 4 wt.%, including one or more combinations of bean cake residue, bean curd residue, shrimp shell, crab shell, algae and the like.
- the mixing and washing preparation in step S1 specifically includes the following steps: mixing the high-nitrogen biomass with a certain concentration of acid, heating to a certain temperature for repeated acid washing with magnetic stirring, and then washing with distilled water until the filtrate is neutral, obtaining Solid-phase washing of biomass, the concentration of the acid is 0.5-2M, the temperature is 60-80°C, and the acid is one of HCl, HNO 3 , H 2 SO 4 , H 3 PO 4 , CH 3 COOH or multiple combinations, preferably HCl and HNO 3 , the pretreatment of high-nitrogen biomass by mixing hydrochloric acid or nitric acid, which can effectively alleviate the polymerization and cross-linking of components in the subsequent pyrolysis process and the effect on inorganic minerals such as calcium carbonate.
- the removal of substances lays the foundation for the subsequent preparation of high-quality carbon.
- the mixing and washing preparation in step S1 further includes the following steps: uniformly mixing the solid-phase washing biomass with a trace activator to prepare a trace activator biomass blend, and the trace activator is a low corrosive alkali metal salts.
- the trace activator can be, but is not limited to, a low corrosive alkali metal salt, and the mass ratio of the trace activator/solid phase washed biomass is 0-10%. By adding a small amount of activator, the subsequent chain activation reaction can be triggered.
- the solid product put into the pyrolysis device in step S2 is solid-phase washed biomass or micro-activator biomass blend.
- the low corrosive alkali metal salt can be, but not limited to, Li 2 CO 3 , Na 2 CO 3 , NaHCO 3 , K 2 CO 3 , KHCO 3 , Rb 2 CO 3 , Cs 2 CO 3 , etc., preferably It is one or more combinations of K 2 CO 3 , KHCO 3 , Na 2 CO 3 , NaHCO 3 , and the selected low-corrosive alkali metal salt is not KOH or NaOH. KOH or NaOH are not within the preferred scope of the present invention due to their high corrosiveness.
- the carbon-containing gas in step S2 is one or more combinations of CO 2 and CH 3 COOH, the carbon-containing gas is preferably CO 2 , and the volume concentration of the carbon-containing gas is 20-100%.
- step S2 the solid product is pyrolyzed in a carbon-rich atmosphere, the treatment temperature is 450-900°C, and the treatment time is 0.1h-4h; the preferred treatment temperature is 600-800°C, and the treatment time is 0.5h-2h.
- the solid product undergoes pyrolysis in a high-temperature carbon-containing atmosphere, volatiles are released, and the residual solid is continuously aromatized. Pores are formed inside the bulk phase to form a larger specific surface area and a relatively regular three-dimensional nano-hierarchical pore structure; at the same time, the nitrogen-containing and oxygen-containing functional groups on the carbon surface will eventually exist in the form of pyridine nitrogen and pyrrolic nitrogen after interacting with the carbon-containing gas. , After this step, one-step carbonization and activation of high-nitrogen biomass was achieved. Experiments show that the number of nitrogen-containing functional groups on the carbon surface is significantly higher than that in the inert atmosphere, and the carbon-rich atmosphere promotes the immobilization of nitrogen-containing functional groups.
- nitrogen-containing compounds can significantly affect the surface polarity and electronic state of the biochar structure, causing conduction band and The change of the band gap between the valence bands guides the Faradaic reaction between electrolyte ions and impurity-containing defects, thereby significantly improving their electrochemical performance.
- the aforementioned trace activator biomass blend it will form a COK-containing intermediate composite structure during the pyrolysis process in a carbon-rich atmosphere, and then convert into a KC complex, which is further oxidized into a new complex in a carbon-rich atmosphere.
- the COK intermediates form a chain reaction that leads to the continuous formation and development of pore structures (as shown in Figure 8). That is to say, only a trace amount of green low-corrosion activator can be used in a carbon-rich atmosphere to realize the chain activation production and efficient preparation of activated biochar.
- the metal oxide is a transition metal salt
- the transition metal salt is deposited in the form of a metal oxide to coat the surface of the nitrogen self-doping activated biochar through a redox reaction in a liquid phase system.
- the thermal reaction is realized, which further improves the energy density of the electrode.
- the transition metal salt is one of TiCl 4 , KMnO 4 , Mn(NO 3 ) 2 , FeCl 3 , Fe 2 (SO 4 ) 3 , CoCl 3 , CuSO 4 ; preferably, it is FeCl 3 or KMnO 4 One; the transition metal salt concentration is 1-50 mmol/L, and the ratio of nitrogen self-doping activated biochar to transition metal salt substance is 1:(0.5-2). Further, the transition metal salt concentration is 2-10 mmol/L, and the amount ratio of nitrogen self-doping activated biochar to transition metal salt is 1: (0.8-1.2).
- the present invention also proposes a high-nitrogen biochar composite material prepared by the above preparation method.
- the high-nitrogen biochar composite material has a three-dimensional nanometer multi-level pore structure, the microporosity is not less than 70%, and the mesoporosity is not less than 70%. It is less than 10% and the macroporosity is not less than 5%.
- the micropores in the biochar structure are the main places for the ion charge storage to form the electric double layer capacitance, and the mesopores and macropores are more conducive to the efficient transport of ions.
- the thickness of the metal oxide is 10-50nm, and the structure is in the shape of hemispherical protrusions.
- the present invention also proposes the use of a high-nitrogen biochar composite material for preparing an electrode of a supercapacitor or an ion battery.
- Nitrogen self-doped biochar with hierarchical and hierarchical pore structure has high conductivity and wettability on the one hand, which is conducive to the full contact between electrode material and electrolyte, and on the other hand, high Faraday pseudocapacitance characteristics.
- the coating enhances the specific capacitance and energy density of the composite electrode.
- the supercapacitor electrode material prepared by using high nitrogen biochar composite material has a specific capacitance above 150F/g in a three-electrode system, and the assembled button-type symmetrical supercapacitor has an energy density of 4.5Wh. /kg or more, and after 10,000 charge-discharge cycles, the capacitance retention rate is more than 90%.
- the present invention has the following advantages and effects:
- the electrode prepared by the high nitrogen biochar prepared by the present invention has a three-dimensional nano-hierarchical pore structure, and the surface of the carbon contains more nitrogen functional groups.
- the experimental test shows that the nitrogen content is increased by 10% compared with the carbon material produced in a traditional inert atmosphere. %above.
- the high-nitrogen biomass is pretreated by acid pickling, while retaining nitrogen compounds as much as possible, reducing the carbon solid product hardness caused by the polymerization and cross-linking that may occur in the subsequent heat treatment of raw materials and the influence of minerals such as calcium carbonate. Poor quality, etc.
- the supercapacitor electrode prepared by the high nitrogen biochar prepared by the method of the present invention has a specific capacitance in a three-electrode system, 6M potassium hydroxide solution, and a current density of 1A/g.
- the specific capacitance is increased by more than 4 times, reaching more than 150F/g, and the capacitance retention rate of the assembled symmetric supercapacitor after 10,000 cycles is more than 90%, even after 30,000 cycles. 84% or more.
- the carbon-rich atmosphere pyrolysis adopted in the method does not require special equipment, has low cost, and is easy to popularize and use.
- Fig. 1 is a process flow diagram of a preparation method of a high nitrogen biochar composite material according to the present invention.
- SEM scanning electron microscope
- Figures (a)-(c) represent the scanning electron microscope images of the activated biochar (referred to as BPC) obtained from high-nitrogen biomass bean cake residues at different processing temperatures under CO atmosphere.
- the picture shows the high nitrogen biochar composite obtained by 800 °C treatment temperature + metal oxide loading.
- XPS X-ray photoelectron spectroscopy
- Figure (a) is the full XPS spectrum of the high-nitrogen biochar composite material and nitrogen self-doped activated biochar sample; (b) the photoelectron spectrum of the high-nitrogen biochar composite material with carbon functional groups; (c) the high-nitrogen biochar composite Photoelectron spectrum of the material with nitrogen functional group; (d) Photoelectron spectrum of the high nitrogen biochar composite with manganese functional group.
- Fig. 4 is the electrode cyclic voltammetry characteristic diagram prepared by the high nitrogen biochar composite material according to the embodiment of the present invention.
- Fig. 5 is the cyclic voltammetry characteristic and galvanostatic charge-discharge characteristic diagram of the comparative electrode of the embodiment of the present invention.
- Fig. 6 is the electrode galvanostatic charge-discharge and impedance performance test diagram prepared by the high nitrogen biochar composite material according to the embodiment of the present invention.
- FIG. 7 is a graph showing the energy density, power density and high-rate cycling characteristics of a symmetric supercapacitor assembled with an electrode prepared from a high-nitrogen biochar composite material according to an embodiment of the present invention
- Figure 8 is a schematic diagram of the formation of a chain reaction in a carbon-rich atmosphere.
- the preparation of supercapacitor electrodes using high-nitrogen biochar composites includes the following steps:
- Step 1 Weigh a certain quality of bean cake dregs raw material, mix with 2M hydrochloric acid, heat to 60°C for repeated pickling with magnetic stirring for 8 hours, filter, and then rinse with distilled water until the filtrate is neutral to obtain solid-phase washed bean cake dregs. After drying, take 5g of solid-phase washed bean cake residue sample and place it in a tube furnace, premix 20% volume fraction CO2 gas with Ar gas as a carrier gas, pass it into the tube furnace, and start heating the tube from room temperature after stabilization. furnace to 800°C, holding time for 2h; take out the sample after natural cooling, and obtain nitrogen self-doping activated bean cake residue charcoal, which is recorded as BPC-800-20%;
- Step 2 Mix nitrogen self-doping activated bean cake residue carbon BPC-800-20%, acetylene black and polytetrafluoroethylene in a mass ratio of 8:1:1, add an appropriate amount of isopropanol and grind to form an electrode film, and the electrode The film was dried in a vacuum drying oven at 80°C for 8 hours, and then cut into a certain 1cm ⁇ 1cm film and pressed on a 1cm ⁇ 2cm nickel foam sheet with a pressure of 10MPa and a pressure of 60s to obtain activated bean cake residue carbon BPC-800-20% electrode;
- Step 3 Weigh 56.9 mg of KMnO 4 and dissolve it in 60 mL of deionized water, and magnetically stir for 30 min to prepare a 6 mM KMnO 4 solution; transfer the solution to an autoclave liner with a capacity of 80 mL, and immerse the above-mentioned active bean cake residue carbon square electrode in it , and sealed in a hydrothermal reactor; the reactor was heated in a 170°C oven for 2 hours, and after cooling to room temperature, the samples were taken out, washed with ethanol and distilled water for several times, and dried in a vacuum drying oven at 60°C for 8 hours to obtain composite soybean cakes Slag carbon electrode BPC-800-20%@MnO 2 ;
- Step 4 The square electrode prepared in step 3), the platinum electrode and the saturated calomel electrode are respectively composed of a working electrode, a counter electrode and a reference electrode, and the 6M KOH solution is used as the electrolyte, and the composite bean cake residue charcoal is measured on the electrochemical workstation
- the activated bean cake residue carbon BPC-800, acetylene black and polytetrafluoroethylene were mixed in a mass ratio of 8:1:1, and an appropriate amount of isopropanol was added to grind to form an electrode film.
- the electrode film was placed in a vacuum drying oven at 80 °C for 8 hours. , and then cut into a certain 1cm ⁇ 1cm diaphragm and pressed on a 1cm ⁇ 2cm foam nickel sheet, or cut a 1.5cm diameter diaphragm and pressed it on a 1.5cm diameter nickel foam sheet, the pressure was 10MPa, and the pressure was maintained for 60s.
- Activated bean cake residue carbon BPC-800 electrode was obtained;
- the square composite bean cake dregs carbon electrode prepared by the above method, platinum electrode and saturated calomel electrode are respectively composed of working electrode, counter electrode and reference electrode.
- 6M KOH solution as electrolyte
- the composite bean cake dregs charcoal was measured in an electrochemical workstation.
- the circular composite bean cake residue carbon electrode obtained by the above method was assembled with positive and negative electrode shells, diaphragm paper, gaskets, etc. to form a button-type symmetrical supercapacitor.
- 6M KOH solution as the electrolyte, the composite bean cake was measured in an electrochemical workstation.
- the slag carbon electrode BPC-800@MnO 2 has an energy density as high as 4.5Wh/kg when the power density is 62.5W/kg, and the capacitance retention rate is 84.3% after 30,000 charge-discharge cycles.
- the specific surface area of the composite was measured to be 175.4 m2/g, and the nitrogen content was 5.8 wt.%.
- Example 2 The biggest difference between Example 2 and Example 1 is that in Example 2, the proportion of carbon-containing gas CO 2 was increased from 20% to 100%, the specific surface area of the high-nitrogen biochar composite material was increased by about 200%, and the nitrogen content was increased by more than 25%. The specific capacitance is improved by about 250%. The obtained material has excellent comprehensive properties.
- the tube furnace was heated from room temperature to 700 ° C, and the holding time was 0.5h; after the sample was cooled naturally It was taken out, and the chain-type activated bean cake residue charcoal was obtained.
- the measured specific surface area was 678 m 2 /g, and the nitrogen content was 5.2 wt. %.
- the tube furnace was heated from room temperature to 750 ° C, and the holding time was 0.5h; after the sample was cooled naturally It was taken out, and the chain activated shrimp shell charcoal was obtained.
- the measured specific surface area was 886 m 2 /g, and the nitrogen content was 8.98 wt.%.
- the comparative example 3 is pyrolyzed in a CO2 -free atmosphere, using a high proportion of activator, although the activated biochar with a higher specific surface area can be obtained, the nitrogen-containing functional groups on its surface are seriously lost, and its electrochemical performance is the same. needs improvement.
- the high-nitrogen biochar composite material of the present invention is used as a supercapacitor electrode material for preparing a supercapacitor electrode.
- the specific capacitance of the prepared supercapacitor electrode material is above 150F/g
- the energy density of the assembled button-type symmetrical supercapacitor is above 4.5Wh/kg
- the capacitance retention rate after 10,000 charge-discharge cycles is above 90%, and after 30,000 cycles Capacitance retention after cycling is still above 84%.
- the advantages of the high-nitrogen biomass carbon electrode prepared by the invention are that carbonization and activation are completed in one step, and a trace amount of low-corrosive alkali metal salt is added in a carbon-rich atmosphere to trigger a chain activation reaction of biochar, realize the continuous generation of biochar pores, and greatly reduce the
- the system reaction temperature and activator demand, and the activated carbon prepared by "physical activation” and “chemical activation” in the prior art has a three-dimensional nano-hierarchical pore structure, and the carbon surface contains more nitrogen functional groups, which is more suitable for supercapacitor storage.
- the system is simple in process, green and environmentally friendly, and suitable for large-scale industrial applications.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Power Engineering (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Nanotechnology (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Environmental & Geological Engineering (AREA)
- Carbon And Carbon Compounds (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
一种高氮生物炭复合材料及其制备方法和用途,制备方法包括以下步骤:以高氮生物质为碳源和氮源,将其与酸进行混合洗涤调制;将上述所获的固体产物置于热解设备,并将含碳气体通入热解设备使固体产物在富碳气氛下进行热解,从室温开始加热设备至预设温度,处理一段时间后冷却至室温,实现高氮生物质一步炭化与活化,制得氮自掺杂活性生物炭;在氮自掺杂活性生物炭上进行金属氧化物包覆获得高氮生物炭复合材料。该方法利用非惰性气氛含碳气体实现高氮生物质一步炭化与活化,并通过包覆过渡金属氧化物提升炭电极能量密度,实现生物炭结构原位氮自掺杂与功能化,该高氮生物炭复合材料可用于制备超级电容器或离子电池的电极。
Description
本发明涉及有机固体废弃物高值化利用的技术领域,具体涉及一种利用高含氮的生物质在富碳气氛与液相体系下制备具有多级孔道的过渡金属氧化物包覆的功能型生物炭复合材料,而后在超级电容器等储能领域的应用。
生物质是唯一一种CO
2净零排放的可再生资源。通过热解可将生物质转化为气、液、固三态产物,是一种简易的生物质高值利用技术。生物质种类繁多,其中一类生物质本身具有较高的氮含量,如豆饼渣、豆腐渣、虾壳、蟹壳、藻类等。以豆饼渣为例,豆饼渣是大豆压榨提取大豆油后所得副产品,是一种粗蛋白含量高的原料,粗蛋白含量可达46%以上,常被用作畜禽蛋白饲料。然而,豆饼渣中含有较多抗营养因子和抗原物质,会对畜禽生长带来一定危害,其已被确认为诱导畜禽消化道疾病发病的关键因素之一,因此限制了豆饼渣在饲料领域中的应用,使其更多成为有机固体废弃物。豆饼渣作为生物质的一种,可通过前述热解技术,将其简易方便地转化为具有较高比表面积、较发达孔隙结构的多孔生物炭;且由于高含粗蛋白,豆饼渣是一种天然高含氮原料,氮含量通常可达8wt.%以上,热解后氮会以新的形式部分保留在生物炭结构中,形成氮自掺杂生物炭,为后续高值利用奠定基础。然而传统热解过程中,多采用氮气、氩气等惰性气体作为载气,生成炭的过程中氮损失高,同时炭的理化性质较差,难以高值利用,需进一步活化制备活性生物炭。同时,受大豆特有组分影响,豆饼渣在热解中,易发生结块交联,硬度大幅增加,给炭的后续利用带来困难;而对于虾壳、蟹壳此类高氮生物质,其本身还含有较多的碳酸钙等无机矿物质, 同样对后续高品质碳材料的制备带来影响。
常规活性生物炭制备方法通常采用物理活化或化学活化法,如物理活化通过将原料热解炭化后所得生物炭经进一步高温(通常≥800℃)水蒸气或二氧化碳活化进行扩孔;化学活化多采用高比例(如活化剂与生物炭质量比≥1)、高腐蚀性(如KOH、ZnCl
2)的化学试剂对生物炭进行活化。也即目前活性生物炭多采用两步法(先热解炭化制备生物炭再进行下一步活化工艺)生产制造,工序繁多,且面临物理活化下操作温度高、炭的孔隙欠发达;化学活化下,化学试剂消耗过量、对设备造成严重腐蚀等问题。
超级电容器是一种极具发展前景的替代储能装置,因其具有功率密度高、运行安全、超长周期稳定性和可逆性等优点而受到人们的关注。碳材料因其低成本、高导电性和良好的化学稳定性而被认为是制备超级电容器的优良材料。然而,纯碳材料存在理论比电容偏低的缺陷,其最大比电容不超过250F/g。研究表明,碳结构中杂原子如氮原子掺杂能够提升电容器赝电容特性从而大幅提升电极材料电化学特性。利用本体高含氮的原料制备原位氮掺杂生物炭可有效避免外源氮掺杂剂引入而产生的成本偏高、工序复杂,且存在掺杂不均匀等问题。专利CN105314629A公开了一种生物质碳源直接制备共掺杂三维石墨烯电极材料的方法,其采用卤虫卵壳、豆粕等生物质为碳源,加入赤磷或硼酸为剥离剂,金属镍盐为催化剂,在氩气氛围下700~900℃煅烧合成了氧-氮-磷多原子共掺杂三维多孔石墨烯。专利CN102874807A公开了一种活性炭材料及其作为双电层电容器电极材料的应用,所述活性炭材料是以毛竹为碳源,采用磷酸-二氧化碳物理化学活化法制备得到,即原料先在磷酸溶液充分浸泡,而后在N
2气氛保护下升温至400-800℃,再在CO
2气氛恒温活化制得活性炭材料。专利CN105921106A公开了一种表面富氮活性炭及其制备方法与应用,它将富含氮元 素的豆粕原料在惰性气体保护下进行炭化和固氮,并采用KOH活化制备出具有发达微孔的富氮活性炭,氮含量为1.0~2.8%。也即现有技术原料多在惰性气氛下热解,制得的生物炭氮损失高、理化特性差、需二次活化,而二次活化中多使用高剂量、强腐蚀性活化剂,且获得的生物炭以微孔为主(≥90%)。研究表明,对于理想的碳质电极材料,一方面需要为电解液中离子提供大量吸附位置的微孔,另外还需要适合离子快速传递所必需的介孔。因此,具有分级的孔道结构将更加适合储能应用。另一方面,即便是使用含有杂原子掺杂的炭电极在超级电容器应用上仍存在能量密度低的问题。离子电池阴极用炭电极同样面临类似的问题。如何进一步提升高氮活性生物炭的电化学特性是一难点。
【发明内容】
本发明的目的在于克服现有技术中存在的上述不足,而提供一种高氮生物质废弃物高值化利用方法,该方法在预处理高氮生物质的基础上,利用非惰性气氛含碳气体实现高氮生物质一步炭化与活化,并通过包覆过渡金属氧化物提升炭电极能量密度,实现生物炭结构原位氮自掺杂与功能化,用于超级电容器等储能器件电极材料的制备。
为实现上述目的,本发明提出了一种高氮生物炭复合材料的制备方法,包括以下步骤:
S1.以高氮生物质为碳源和氮源,将其与酸进行混合洗涤调制,得到固体产物;
S2.将步骤S1中所获的固体产物置于热解设备,并将含碳气体通入热解设备使固体产物在富碳气氛下进行热解,从室温开始加热设备至预设温度,处理一段时间后冷却至室温,实现高氮生物质一步炭化与活化,制得氮自掺杂活性生物炭;
S3.在氮自掺杂活性生物炭上进行金属氧化物包覆获得高氮生物炭复合材料。
作为优选,步骤S1中所述高氮生物质本体氮含量不低于4wt.%,包括豆饼渣、豆腐渣、虾壳、蟹壳、藻类等中的一种或多种组合。
作为优选,步骤S1中混合洗涤调制具体包括如下步骤:将所述高氮生物质与一定浓度的酸混合,加热至一定温度进行磁力搅拌反复酸洗,而后用蒸馏水冲洗至滤液呈中性,获得固相洗涤生物质,所述酸的浓度为0.5-2M,所述温度为60-80℃,所述酸为HCl、HNO
3、H
2SO
4、H
3PO
4、CH
3COOH的一种或多种组合,优选为HCl和HNO
3,通过盐酸或硝酸的混合洗涤调制对高氮生物质进行预处理,可有效缓解后续热解过程中组分的聚合交联及对碳酸钙等无机矿物质的去除,为后续高品质炭的制备奠定基础。
作为优选,步骤S1中混合洗涤调制还包括如下步骤:将所述固相洗涤生物质与微量活化剂均匀混合,制得微量活化剂生物质共混物,所述微量活化剂为低腐蚀性碱金属盐。微量活化剂可以为但不限于为低腐蚀性碱金属盐,微量活化剂/固相洗涤生物质质量比为0-10%。通过微量活化剂的添加,能触发后续的链式活化反应。
作为优选,步骤S2中置入热解设备的固体产物为固相洗涤生物质或微量活化剂生物质共混物。
作为优选,所述低腐蚀性碱金属盐可以为但不限于为Li
2CO
3、Na
2CO
3、NaHCO
3、K
2CO
3、KHCO
3、Rb
2CO
3、Cs
2CO
3等,优选为K
2CO
3、KHCO
3、Na
2CO
3、NaHCO
3中的一种或多种组合,并且所选用的低腐蚀性碱金属盐不是KOH或NaOH。KOH或NaOH因腐蚀性较高,不在本发明优选范围之内。
作为优选,步骤S2中含碳气体为CO
2、CH
3COOH中的一种或多种组合, 所述含碳气体优选CO
2,含碳气体体积浓度占比为20-100%。
作为优选,步骤S2中固体产物置于富碳气氛下热解,处理温度为450-900℃,处理时长0.1h-4h;优选处理温度为600-800℃,处理时长0.5h-2h。
固体产物在高温含碳气氛下发生热解,挥发分释放,残留固体不断芳构化,同时含碳气体与挥发分及焦炭发生复杂的交互作用,侵蚀碳基体结构,从而在生物炭的表面和体相内部造孔,形成较大比表面积和较为规则的三维纳米多级孔道结构;同时,炭表面含氮含氧官能团在与含碳气体相互作用后,最终以吡啶氮、吡咯氮等形式存在,经过此步骤,实现了高氮生物质的一步炭化与活化。实验表明,炭表面含氮官能团数量较惰性气氛有明显升高,富碳气氛促进了含氮官能团的固定,而这些含氮化合物能够显著影响生物炭结构表面极性及电子状态,引起导带和价带之间带隙的变化,引导电解液离子与含杂缺陷间的法拉第反应,从而显著提高其电化学性能。而对于前述微量活化剂生物质共混物,其在富碳气氛热解过程中会形成含C-O-K的中间体复合结构,而后转化为K-C络合物,并在富碳气氛下被进一步氧化成新的C-O-K中间体形成链式反应,导致孔结构的不断形成和发展(如图8所示)。也即在富碳气氛下仅使用微量绿色低腐蚀活化剂,即可实现活性生物炭的链式活化生产与高效制备。
作为优选,步骤S3中所述金属氧化物为过渡金属盐,通过液相体系氧化还原反应,过渡金属盐以金属氧化物形式沉积包覆所述氮自掺杂活性生物炭表面,该步骤通过水热反应实现,进一步提升了电极能量密度。所述过渡金属盐为TiCl
4、KMnO
4、Mn(NO
3)
2、FeCl
3、Fe
2(SO
4)
3、CoCl
3、CuSO
4中的一种;作为优选,为FeCl
3或KMnO
4的一种;过渡金属盐浓度为1-50mmol/L,氮自掺杂活性生物炭与过渡金属盐物质的量比为1:(0.5-2)。进一步的,所述过渡金属盐浓度为2-10mmol/L,氮自掺杂活性生物炭与过渡金属盐物质的量比为1: (0.8-1.2)。
本发明还提出了一种采用上述制备方法所制得的高氮生物炭复合材料,所述高氮生物炭复合材料具有三维纳米多级孔道结构,微孔率不小于70%,介孔率不小于10%,大孔率不小于5%,在储能应用中,生物炭结构中微孔为离子电荷储存形成双电层电容的主要场所,介孔和大孔更有利于离子的高效传输。金属氧化物厚度在10-50nm,结构呈半微球凸起状。
本发明还提出了一种高氮生物炭复合材料的用途,所述高氮生物炭复合材料用于制备超级电容器或离子电池的电极。具有分级多级孔道结构的氮自掺杂生物炭一方面具有高电导率和可润性,利于电极材料和电解液的充分接触,另一方面高法拉第赝电容特性,进一步的,金属氧化物的包覆强化了复合电极的比电容量和能量密度。以在电容器中的应用为例,利用高氮生物炭复合材料所制备的超级电容器电极材料,其在三电极体系下比电容在150F/g以上,组装的纽扣式对称超级电容器能量密度在4.5Wh/kg以上,且经10000次充放电循环,电容保持率在90%以上。
本发明与现有技术相比,具有以下优点和效果:
1.利用含碳气体实现从高氮原料到高氮生物质活性炭的一步制备,克服传统生物质活性炭生产需经历先炭化后活化两步工艺步骤。
2.在富碳气氛下添加微量低腐蚀性碱金属盐,触发生物炭链式活化反应,实现生物炭孔隙的连续生成,而传统工艺的“物理活化”需较高温度(通常≥800℃),本发明在较低温度下(不高于700℃)即可触发扩孔反应;传统工艺的“化学活化”,多使用高剂量活化剂(通常1倍及以上质量于生物炭),本发明仅需不高于0.1倍质量于原料即可,大幅降低系统反应温度和活化剂需求量,且所使用的活化剂绿色环保。
3.本发明制备的高氮生物炭所制得的电极具有三维纳米多级孔道结构,炭 表面含有更多的氮官能团,经实验测试表明,较传统惰性气氛生产的碳材料,氮含量提升10%以上。
4.高氮生物质经酸洗调制预处理,在尽可能保留氮化合物的同时,降低原料后续热处理可能发生的聚合交联导致的炭固体产物硬度过高和碳酸钙等矿物质影响而导致炭品质差等问题。
5.进一步的,经实验测试证明,采用本发明方法制得的高氮生物炭所制得的超级电容器电极,在三电极体系,6M氢氧化钾溶液中,1A/g电流密度下,比电容与常规惰性气氛热解制备的生物炭比电容提高4倍以上,达到150F/g以上,组装制备的对称超级电容器10000次循环电容保持率在90%以上,即便是30000次循环电容保持率仍在84%以上。本方法采用的富碳气氛热解无需专用设备,成本低廉,易于推广使用。
本发明的特征及优点将通过实施例结合附图进行详细说明。
图1是本发明一种高氮生物炭复合材料的制备方法的工艺流程图。
图2是本发明实施例高氮生物炭复合材料与氮自掺杂活性生物炭扫描电子显微镜(SEM)图像;
其中,图(a)-(c),代表高氮生物质豆饼渣在CO
2气氛下不同处理温度后所得活性生物炭(记为BPC)的扫描电镜图,各图的处理温度:(a)700℃,(b)800℃,(c)900℃;(d)图为800℃处理温度+金属氧化物负载所得高氮生物炭复合材料。
图3是本发明实施例高氮生物炭复合材料与氮自掺杂活性生物炭X射线光电子能谱(XPS)图谱;
其中,图(a)为高氮生物炭复合材料与氮自掺杂活性生物炭样品XPS全图谱; (b)高氮生物炭复合材料含碳官能团光电子能谱;(c)高氮生物炭复合材料含氮官能团光电子能谱;(d)高氮生物炭复合材料含锰官能团光电子能谱。
图4是本发明实施例高氮生物炭复合材料制备的电极循环伏安特性图;
其中,(a)高氮生物炭复合材料不同扫描速率(20-200mV/s)下的循环伏安特性曲线;(b)高氮生物炭复合材料在10mV/s下的循环伏安特性曲线;(c)高氮生物炭复合材料在50mV/s下的循环伏安特性曲线;(d)高氮生物炭复合材料电压对数与电流对数函数拟合;(e)高氮生物炭复合材料赝电容贡献;注:图中横坐标Potential为电压(V),纵坐标Current为电流(A)。
图5是本发明实施例对比电极循环伏安特性和恒电流充放电特性图;
其中,(a)氮自掺杂活性生物炭循环伏安特性曲线;(b)氮自掺杂活性生物炭恒电流充放电曲线;(c)氮自掺杂活性生物炭不同扫描速率下的比面积电容;(d)氮自掺杂活性生物炭不同扫描速率下的比质量电容。
图6是本发明实施例高氮生物炭复合材料制备的电极恒电流充放电和阻抗性能测试图;
其中,(a)高氮生物炭复合材料恒电流充放电曲线;(b)高氮生物炭复合材料阻抗特性曲线。注:(a)图中横坐标Time为时间(s),纵坐标Potential为电压(V);(b)图中横坐标Z’与纵坐标为-Z”均为阻抗的变换式。
图7是本发明实施例高氮生物炭复合材料制备的电极组装的对称超级电容能量密度、功率密度和高倍率循环特性图;
其中,(a)氮自掺杂活性生物炭与高氮生物炭复合材料能量比较图;(b)氮自掺杂活性生物炭与高氮生物炭复合材料循环稳定性测试;注:(a)图中横坐标Power Density为功率密度(W/kg),纵坐标Energy Density为能量密度(Wh/kg);(b)图中横坐标Cycle Number为循环次数,纵坐标Capacitance Retention为电容 保有率(%)。
图8是富碳气氛下形成链式反应的示意图。
下面结合附图并通过实施例对本发明作进一步的详细说明,实施例仅列举以超级电容器应用下的复合材料应用,以下实施例是对本发明的解释而本发明并不局限于以下实施例。
实施例1
利用高氮生物炭复合材料制备超级电容器电极,包括以下步骤:
步骤1:称取一定质量的豆饼渣原料,与2M盐酸混合,加热至60℃进行磁力搅拌反复酸洗8h,过滤后,而后用蒸馏水冲洗至滤液呈中性,获得固相洗涤豆饼渣。待干燥后,取5g固相洗涤豆饼渣样品置于管式炉中,将20%体积分数CO
2气体与Ar气预混后作为载气,通入管式炉,稳定后从室温开始加热管式炉至800℃,保温时长2h;待样品自然冷却后取出,制得氮自掺杂活性豆饼渣炭,记为BPC-800-20%;
步骤2:将氮自掺杂活性豆饼渣炭BPC-800-20%、乙炔黑与聚四氟乙烯按质量比8:1:1进行混合,加入适量异丙醇研磨制成电极薄膜,将电极薄膜置于80℃真空干燥箱干燥8h,而后切成一定1cm×1cm的膜片压于1cm×2cm的泡沫镍片上,压力10MPa,压力保持60s,制得活性豆饼渣炭BPC-800-20%电极;
步骤3:称取56.9mg KMnO
4溶解于60mL去离子水中,磁力搅拌30min配置成6mM KMnO
4溶液;将溶液转移至容量为80mL的高压釜衬管中,将上述活性豆饼渣炭方形电极浸渍其中,并密封于水热反应釜;将反应釜置于170℃烘箱加热2h,待冷却至室温后,取出样品,用乙醇和蒸馏水洗涤数次,并在60℃真空干燥箱干燥8h,得到复合豆饼渣炭电极BPC-800-20%@MnO
2;
步骤4:将步骤3)制得的方形电极与铂电极、饱和甘汞电极分别组成工作 电极、对电极及参比电极,以6M KOH溶液为电解液,在电化学工作站测得复合豆饼渣炭BPC-800-20%@MnO
2比电容为50.4F/g(电流密度=1A/g)。测得其比表面积为64.2m
2/g,氮含量为4.6wt.%。
实施例2
称取一定质量的豆饼渣原料,与2M盐酸混合,加热至60℃进行磁力搅拌反复酸洗,过滤后,而后用蒸馏水冲洗至滤液呈中性,获得固相洗涤豆饼渣。取5g固相洗涤豆饼渣样品置于管式炉中,将100%体积分数CO
2气体作为载气,通入管式炉,稳定后从室温开始加热管式炉至800℃,保温时长2h;待样品自然冷却后取出,制得活性豆饼渣炭,记为BPC-800;
将活性豆饼渣炭BPC-800、乙炔黑与聚四氟乙烯按质量比8:1:1进行混合,加入适量异丙醇研磨制成电极薄膜,将电极薄膜置于80℃真空干燥箱干燥8h,而后切成一定1cm×1cm的膜片压于1cm×2cm的泡沫镍片上,或切成直径为1.5cm的膜片压于直径为1.5cm的泡沫镍片上,压力10MPa,压力保持60s,制得活性豆饼渣炭BPC-800电极;
称取56.9mg KMnO
4溶解于60mL去离子水中,磁力搅拌30min配置成6mM KMnO
4溶液;将溶液转移至容量为80mL的高压釜衬管中,将上述方形或圆形电极浸渍其中,并密封于水热反应釜;将反应釜置于170℃烘箱加热2h,待冷却至室温后,取出样品,用乙醇和蒸馏水洗涤数次,并在60℃真空干燥箱干燥8h,得到复合豆饼渣炭电极BPC-800@MnO
2;
将上述方法制得的方形复合豆饼渣炭电极与铂电极、饱和甘汞电极分别组成工作电极、对电极及参比电极,以6M KOH溶液为电解液,在电化学工作站测得复合豆饼渣炭电极BPC-800@MnO
2比电容为179F/g(电流密度=1A/g)。
将上述方法制得的圆形复合豆饼渣炭电极与正负极壳、隔膜纸、垫片等组装制成纽扣式对称超级电容器,以6M KOH溶液为电解液,在电化学工作站测 得复合豆饼渣炭电极BPC-800@MnO
2在功率密度为62.5W/kg时,具有高达4.5Wh/kg的能量密度,且经30000次充放电循环,电容保持率为84.3%。
测得复合材料比表面积为175.4m2/g,氮含量为5.8wt.%。
实施例2与实施例1最大区别在于,实施例2将含碳气体CO
2比例由20%提升至100%,高氮生物炭复合材料比表面积提高约200%,含氮量提升25%以上,比电容提升约250%。所得材料综合性能优良。
实施例3
称取一定质量的豆饼渣原料,与2M盐酸混合,加热至60℃进行磁力搅拌反复酸洗,过滤后,而后用蒸馏水冲洗至滤液呈中性,获得固相洗涤豆饼渣。称取0.025g碳酸钾并溶解于去离子水后加入5g干燥后的固相洗涤豆饼渣,并在70℃下不断磁力搅拌,直至两者充分混合。将混合物置于管式炉中,将100%体积分数CO
2气体作为载气,通入管式炉,稳定后从室温开始加热管式炉至700℃,保温时长0.5h;待样品自然冷却后取出,制得链式活化豆饼渣炭,测得其比表面积为678m
2/g,氮含量为5.2wt.%。
由上述检测结果可知,在CO
2热解气氛加入了微量的碳酸钾,有效触发了高氮生物质高效活化制炭,所得活性生物炭比表面积大幅提升。
实施例4
称取一定质量的虾姑壳原料,与0.5M盐酸混合,加热至80℃进行磁力搅拌反复酸洗,过滤后,而后用蒸馏水冲洗至滤液呈中性,获得固相洗涤虾姑壳。取5g干燥后的固相洗涤虾姑壳置于管式炉中,将100%体积分数N
2气体作为载气,通入管式炉,稳定后从室温开始加热管式炉至750℃,保温时长2h;待样品自然冷却后取出,制得虾姑壳炭,在电化学工作站测得惰性气氛下虾姑壳炭电极比电容为201.3F/g(电流密度=1A/g)。测得其比表面积为401m
2/g,氮含量为8.2wt.%。
由上述检测结果可知,以甲壳类高氮生物质为原料,在惰性气氛下热解,仍可获得性能较优的炭电极材料。
实施例5
称取一定质量的虾姑壳原料,与0.5M盐酸混合,加热至80℃进行磁力搅拌反复酸洗,过滤后,而后用蒸馏水冲洗至滤液呈中性,获得固相洗涤虾姑壳。取5g干燥后的固相洗涤虾姑壳置于管式炉中,将100%体积分数CO
2气体作为载气,通入管式炉,稳定后从室温开始加热管式炉至750℃,保温时长2h;待样品自然冷却后取出,制得虾姑壳炭,在电化学工作站测得惰性气氛下虾姑壳炭电极比电容为262.6F/g(电流密度=1A/g)。测得其比表面积为608m
2/g,氮含量为9.16wt.%。
由上述检测结果可知,以甲壳类高氮生物质为原料,在CO
2气氛下热解,所得炭材料较实施例4惰性氛围电化学性能有较明显提升。
实施例6
称取一定质量的虾姑壳原料,与0.5M盐酸混合,加热至80℃进行磁力搅拌反复酸洗,过滤后,而后用蒸馏水冲洗至滤液呈中性,获得固相洗涤虾姑壳。称取0.0125g碳酸氢钠并溶解于去离子水后加入5g干燥后的固相洗涤虾姑壳,并在80℃下不断磁力搅拌,直至两者充分混合。将混合物置于管式炉中,将100%体积分数CO
2气体作为载气,通入管式炉,稳定后从室温开始加热管式炉至750℃,保温时长0.5h;待样品自然冷却后取出,制得链式活化虾姑壳炭,测得其比表面积为886m
2/g,氮含量为8.98wt.%。
由上述检测结果可知,以甲壳类高氮生物质为原料,在CO
2热解气氛加入微量的碳酸钠,同样能有效触发高氮生物质高效活化制炭,所得活性生物炭理化特性大幅提升。
实施例7
称取一定质量的豆腐渣原料,与1M硝酸混合,加热至70℃进行磁力搅拌反复酸洗,过滤后,而后用蒸馏水冲洗至滤液呈中性,获得固相洗涤豆腐渣。取5g干燥后的固相洗涤豆豆腐渣样品置于管式炉中,将100%体积分数CO
2气体作为载气,通入管式炉,稳定后从室温开始加热管式炉至800℃,保温时长2h;待样品自然冷却后取出,制得活性豆腐渣炭;在电化学工作站测得活性豆腐渣炭的比电容为118.3F/g(电流密度=1A/g),在功率密度为62.5W/kg时,能量密度为3.5Wh/kg,经30000次充放电循环,电容保持率为96.7%。测得其比表面积为330m
2/g。
由上述检测结果可知,以豆腐渣此类高氮生物质为原料,不经金属氧化物负载,所得炭电极虽循环特性优良,但能量密度偏低。
实施例8
称取一定质量的豆饼渣原料,破碎筛分干燥后,取5g样品置于管式炉中,将100%体积分数CO
2气体作为载气,通入管式炉,稳定后从室温开始加热管式炉至700℃,保温时长2h;待样品自然冷却后取出,制得活性豆饼渣炭,记为BPC-700。在电化学工作站测得活性豆饼渣炭电极BPC-700比电容为98.4F/g。
由上述检测结果可知,以豆饼渣为原料,不经过酸洗预处理,在较低的CO
2气氛热解温度和无微量活化剂的添加下,所得炭的电化学性能欠佳。
实施例9
称取一定质量的豆饼渣原料,与1M盐酸混合,加热至80℃进行磁力搅拌反复酸洗,过滤后,而后用蒸馏水冲洗至滤液呈中性,获得洗涤豆饼渣。取5g洗涤豆饼渣干燥后样品置于管式炉中,将100%体积分数CO
2气体作为载气,通入管式炉,稳定后从室温开始加热管式炉至900℃,保温时长2h;待样品自然冷却后取出,制得活性豆饼渣炭,记为BPC-900;在电化学工作站测得活性豆 饼渣炭BPC-900比电容为70.4F/g。
由上述检测结果可知,以豆饼渣为原料,较高的CO
2气氛热解温度,在无微量活化剂的添加下,所得炭的电化学性能同样欠佳。
对比例1
称取一定质量的豆饼渣原料,与2M盐酸混合,加热至60℃进行磁力搅拌反复酸洗,过滤后,而后用蒸馏水冲洗至滤液呈中性,获得洗涤豆饼渣。称取0.1g碳酸钾并溶解于去离子水后加入5g干燥后的洗涤豆饼渣样品,并在60℃下不断磁力搅拌,直至两者充分混合。将混合物置于管式炉中,将100%体积分数Ar气体作为载气,通入管式炉,稳定后从室温开始加热管式炉至700℃,保温时长0.5h;待样品自然冷却后取出,制得豆饼渣炭,测得其比表面积为73m
2/g,氮含量为3.6wt.%。
由上述检测结果可知,对比例1在无CO
2气氛下热解,仅添加微量活化剂对实施效果作用有限。
对比例2
称取一定质量的豆腐渣原料,破碎筛分干燥后,取5g样品置于管式炉中,将100%体积分数CO
2气体作为载气,通入管式炉,稳定后从室温开始加热管式炉至800℃,保温时长2h;待样品自然冷却后取出,测得其比表面积为242m
2/g。
由上述检测结果可知,对比例2在无微量活化剂下,仅使用CO
2气氛热解对实施效果作用有限。
对比例3
称取5g质量的螺旋藻原料,与15g碳酸氢钠均匀混合。将混合物置于管式炉中,将100%体积分数N
2气体作为载气,通入管式炉,稳定后从室温开始加热管式炉至800℃,保温时长1h;待样品自然冷却后取出,制得惰性气氛螺旋藻炭,在电化学工作站测得螺旋藻炭比电容为142.7F/g(电流密度=1A/g)测得 其比表面积为1511m
2/g,氮含量为1.9wt.%。
由上述检测结果可知,对比例3在无CO
2气氛下热解,使用高比例活化剂,尽管能获得较高比表面积的活性生物炭,但其表面含氮官能团损失严重,其电化学性能同样有待提高。
本发明高氮生物炭复合材料作为超级电容器电极材料,用于制备超级电容器电极。所制备的超级电容器电极材料比电容在150F/g以上,所组装的纽扣式对称超级电容器能量密度在4.5Wh/kg以上,且经10000次充放电循环电容保持率在90%以上,在30000次循环后电容保持率仍在84%以上。本发明制备的高氮生物质炭电极优点在于炭化与活化一步完成,在富碳气氛下添加微量低腐蚀性碱金属盐,触发生物炭链式活化反应,实现生物炭孔隙的连续生成,大幅降低系统反应温度和活化剂需求量,且较现有技术“物理活化”和“化学活化”制备出来的活性炭,具有三维纳米多级孔道结构,炭表面含有更多的氮官能团,更适合超级电容器储能,系统工艺简单,绿色环保,适合大规模工业应用。
虽然本发明以实施例公开如上,但其并非用以限定本发明的保护范围,任何熟悉该项技术的技术人员,在不脱离本发明的构思和范围内所作的改动与润饰,均应属于本发明的保护范围。
Claims (10)
- 一种高氮生物炭复合材料的制备方法,其特征在于:包括以下步骤:S1.以高氮生物质为碳源和氮源,将其与酸进行混合洗涤调制,得到固体产物;S2.将步骤S1中所获的固体产物置于热解设备,并将含碳气体通入热解设备使固体产物在富碳气氛下进行热解,从室温开始加热设备至预设温度,处理一段时间后冷却至室温,实现高氮生物质一步炭化与活化,制得氮自掺杂活性生物炭;S3.在氮自掺杂活性生物炭上进行金属氧化物包覆获得高氮生物炭复合材料。
- 如权利要求1所述的一种高氮生物炭复合材料的制备方法,其特征在于:步骤S1中所述高氮生物质本体氮含量不低于4wt.%,包括豆饼渣、豆腐渣、虾壳、蟹壳、藻类中的一种或多种组合。
- 如权利要求2所述的一种高氮生物炭复合材料的制备方法,其特征在于:步骤S1中混合洗涤调制具体包括如下步骤:将所述高氮生物质与一定浓度的酸混合,加热至一定温度进行磁力搅拌反复酸洗,而后用蒸馏水冲洗至滤液呈中性,获得固相洗涤生物质,所述酸的浓度为0.5-2M,所述温度为60-80℃,所述酸为HCl、HNO 3、H 2SO 4、H 3PO 4、CH 3COOH的一种或多种组合。
- 如权利要求3所述的一种高氮生物炭复合材料的制备方法,其特征在于:步骤S1中混合洗涤调制还包括如下步骤:将所述固相洗涤生物质与微量活化剂均匀混合,制得微量活化剂生物质共混物,所述微量活化剂为低腐蚀性碱金属盐。
- 如权利要求4所述的一种高氮生物炭复合材料的制备方法,其特征在于:步骤S2中置入热解设备的固体产物为固相洗涤生物质或微量活化剂生物质共混物。
- 如权利要求4所述的一种高氮生物炭复合材料的制备方法,其特征在于:所述低腐蚀性碱金属盐为Li 2CO 3、Na 2CO 3、NaHCO 3、K 2CO 3、KHCO 3、Rb 2CO 3、Cs 2CO 3中的一种或多种组合。
- 如权利要求6所述的一种高氮生物炭复合材料的制备方法,其特征在于:步骤S2中所述含碳气体为CO 2、CH 3COOH中的一种或多种组合,所述含碳气体体积浓度占比为20-100%。
- 如权利要求7所述的一种高氮生物炭复合材料的制备方法,其特征在于:步骤S3中所述金属氧化物为过渡金属盐,通过液相体系氧化还原反应,过渡金属盐以金属氧化物形式沉积包覆所述氮自掺杂活性生物炭表面,所述过渡金属盐为TiCl 4、KMnO 4、Mn(NO 3) 2、FeCl 3、Fe 2(SO 4) 3、CoCl 3、CuSO 4中的一种;过渡金属盐浓度为1-50mmol/L,氮自掺杂活性生物炭与过渡金属盐物质的量比为1:(0.5-2)。
- 一种通过如权利要求1-8中任意一项所述的制备方法制得的高氮生物炭复合材料,其特征在于:所述高氮生物炭复合材料具有三维纳米多级孔道结构,微孔率不小于70%,介孔率不小于10%,大孔率不小于5%,金属氧化物厚度在10-50nm,结构呈半微球凸起状。
- 一种通过如权利要求1-8中任意一项所述的制备方法制得的高氮生物炭复合材料的用途,其特征在于:所述高氮生物炭复合材料用于制备超级电容器或离子电池的电极。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010840785.9 | 2020-08-20 | ||
CN202010840785.9A CN112174136B (zh) | 2020-08-20 | 2020-08-20 | 一种高氮生物炭复合材料及其制备方法和用途 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022036878A1 true WO2022036878A1 (zh) | 2022-02-24 |
Family
ID=73923919
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/127439 WO2022036878A1 (zh) | 2020-08-20 | 2020-11-09 | 一种高氮生物炭复合材料及其制备方法和用途 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112174136B (zh) |
WO (1) | WO2022036878A1 (zh) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111892051A (zh) * | 2020-08-27 | 2020-11-06 | 南昌航空大学 | 一种电容器电极材料用生物质分级多孔碳及其制备方法 |
CN114420472A (zh) * | 2022-03-31 | 2022-04-29 | 中国农业科学院农业环境与可持续发展研究所 | 一种生物质热解油制备储能电极材料的制备方法 |
CN114749178A (zh) * | 2022-05-13 | 2022-07-15 | 集美大学 | 一种利用蟹壳制备餐饮油烟净化处理催化剂的方法及其应用 |
CN114887590A (zh) * | 2022-05-11 | 2022-08-12 | 广州兴丰能源科技有限公司 | 一种富含碱性位点的多孔生物炭制备方法及其在臭气吸附中的应用 |
CN114959739A (zh) * | 2022-06-10 | 2022-08-30 | 佛山科学技术学院 | 一种甘蔗渣基Ni2+、Co2+离子掺杂生物炭材料的制备方法 |
CN114988396A (zh) * | 2022-05-11 | 2022-09-02 | 淮阴工学院 | 一种强化厌氧消化的石墨烯结构生物炭的制备及应用 |
CN115078492A (zh) * | 2022-06-22 | 2022-09-20 | 江苏大学 | 一种BiOX/N掺杂生物质炭纳米复合材料的制备方法和用途 |
CN115295327A (zh) * | 2022-08-22 | 2022-11-04 | 吉林大学 | 一种自掺杂多孔碳材料及其制备方法和应用 |
CN115321516A (zh) * | 2022-09-13 | 2022-11-11 | 惠州亿纬锂能股份有限公司 | 一种生物质基硬碳材料、其制备方法和锂离子电池 |
CN115400780A (zh) * | 2022-08-30 | 2022-11-29 | 天津大学浙江研究院 | Koh活化氮掺杂碳材料负载型催化剂及制备方法 |
CN115400732A (zh) * | 2022-09-20 | 2022-11-29 | 燕山大学 | 快速分离碘的杂化材料及其制备方法和应用 |
CN115448310A (zh) * | 2022-09-23 | 2022-12-09 | 国网河北能源技术服务有限公司 | 一种含氮多孔碳材料及其制备方法和应用 |
CN115646525A (zh) * | 2022-09-22 | 2023-01-31 | 华南理工大学 | 一种铁氮共掺杂生物炭及其制备方法与在处理废水中的应用 |
CN115672303A (zh) * | 2022-10-28 | 2023-02-03 | 安徽科技学院 | 一种基于柚子皮的碳基阴极催化材料的制备方法 |
CN116286073A (zh) * | 2022-12-09 | 2023-06-23 | 中国科学院广州能源研究所 | 一种基于聚光太阳能热源的废轮胎催化热解制备高质热解油的方法 |
GB2614216A (en) * | 2022-06-22 | 2023-06-28 | Univ Jiangsu | Preperation method and use of biox/n-doped biochar nanocomposite |
CN116666585A (zh) * | 2023-06-08 | 2023-08-29 | 江苏久泰电池科技有限公司 | 一种钠离子电池负极材料、负极片及钠离子电池 |
CN117117116A (zh) * | 2023-06-27 | 2023-11-24 | 东莞一展电子科技有限公司 | 一种过渡金属氧化物@生物质碳材料及其制备方法和应用 |
CN117735516A (zh) * | 2023-12-20 | 2024-03-22 | 哈尔滨工业大学 | 铁锰改性生物炭制备方法及其在暗发酵生物制氢中的应用 |
WO2024170916A1 (en) * | 2023-02-17 | 2024-08-22 | Deregallera Holdings Ltd | Method of manufacturing a carbon material for use as a battery electrode |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112919451B (zh) * | 2021-02-04 | 2023-01-31 | 四川大学 | 用于处理有机污染物的生物质石墨烯及其制备方法和应用 |
CN113200545B (zh) * | 2021-04-30 | 2022-12-02 | 中国科学院山西煤炭化学研究所 | 一种电容炭及其制备方法 |
CN113213480B (zh) * | 2021-06-02 | 2023-04-07 | 国际竹藤中心 | 一种一步法制备竹质活性炭的方法 |
CN113830766B (zh) * | 2021-08-20 | 2023-05-02 | 华中农业大学 | 发酵活化氧化的多孔活性生物炭的制备方法 |
CN113651324B (zh) * | 2021-09-03 | 2024-02-27 | 上海电力大学 | 一种污泥炭的制备方法及其应用 |
CN113845115B (zh) * | 2021-10-12 | 2024-04-05 | 西安理工大学 | 一种杂原子自掺杂生物质多孔碳的制备方法及其应用 |
CN114047240B (zh) * | 2021-11-10 | 2022-12-13 | 江西农业大学 | 一种高灵敏度电化学传感器在检测铜离子中的应用 |
CN114606023A (zh) * | 2022-03-23 | 2022-06-10 | 华北电力大学 | 一种生物质负碳热解多联产系统及方法 |
CN115240987B (zh) * | 2022-05-17 | 2023-10-20 | 中国计量大学 | 一种编织网状复合结构碳及其制备方法与应用 |
CN115285991B (zh) * | 2022-07-06 | 2023-11-28 | 浙江大学 | 基于生物质衍生物自组装生成分级多孔碳的方法及其应用 |
CN115259336B (zh) * | 2022-08-08 | 2023-06-20 | 北部湾大学 | 一种提高纳米零价铁在还原净化水体亚硒酸盐和硒酸盐时电子利用率的方法 |
CN116037068A (zh) * | 2023-01-19 | 2023-05-02 | 北京林业大学 | 一种用于吸附co2的富胺基生物炭及其制备方法 |
CN116803492B (zh) * | 2023-06-26 | 2024-05-17 | 东北大学 | 共热解生物炭负载纳米零价铁复合材料、制备方法及应用 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106698425A (zh) * | 2017-02-06 | 2017-05-24 | 武汉理工大学 | 一种吸附co2的虾壳基含氮活性炭的制备方法 |
CN106978206A (zh) * | 2017-03-29 | 2017-07-25 | 昆明理工大学 | 一种微波催化热解紫茎泽兰生产方法 |
CN107151016A (zh) * | 2017-06-28 | 2017-09-12 | 宿州市逢源生物科技有限公司 | 一种在二氧化碳气氛下制备秸秆生物质炭的制备方法 |
CN109589979A (zh) * | 2017-09-30 | 2019-04-09 | 黑龙江大学 | 一种金属氧化物/碳材料复合物及其制备方法和应用 |
CN109609151A (zh) * | 2018-11-28 | 2019-04-12 | 大连理工大学 | 固废生物质制备有序介孔碳-金属复合材料联产生物炭的装置与方法 |
KR20200048903A (ko) * | 2018-10-31 | 2020-05-08 | 한국철도기술연구원 | 직접 가열 방식의 마이크로파 열탈착 및 분해 설비 및 이를 이용한 폐목재로부터의 저탄소 친환경 소재 제조 방법 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102040218A (zh) * | 2011-01-19 | 2011-05-04 | 成都信息工程学院 | 利用生物质废弃物生产活性炭的新方法 |
CN104386685A (zh) * | 2014-10-22 | 2015-03-04 | 北京化工大学 | 一种由富氮生物质原料制备氮掺杂活性炭的方法 |
CN105236407A (zh) * | 2015-09-14 | 2016-01-13 | 中国东方电气集团有限公司 | 双层电容器电极用球形活性炭材料的制备方法 |
CN110723735A (zh) * | 2018-07-16 | 2020-01-24 | 深圳市环球绿地新材料有限公司 | 球形超容炭、其制备方法和用途 |
CN111180214A (zh) * | 2018-11-13 | 2020-05-19 | 北京化工大学 | 一种超级电容器用竹基多孔碳/二氧化锰纳米复合电极材料及其制备方法 |
CN111137889A (zh) * | 2020-01-09 | 2020-05-12 | 中国烟草总公司四川省公司 | 一种烟草基质活性炭及其制备方法 |
-
2020
- 2020-08-20 CN CN202010840785.9A patent/CN112174136B/zh active Active
- 2020-11-09 WO PCT/CN2020/127439 patent/WO2022036878A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106698425A (zh) * | 2017-02-06 | 2017-05-24 | 武汉理工大学 | 一种吸附co2的虾壳基含氮活性炭的制备方法 |
CN106978206A (zh) * | 2017-03-29 | 2017-07-25 | 昆明理工大学 | 一种微波催化热解紫茎泽兰生产方法 |
CN107151016A (zh) * | 2017-06-28 | 2017-09-12 | 宿州市逢源生物科技有限公司 | 一种在二氧化碳气氛下制备秸秆生物质炭的制备方法 |
CN109589979A (zh) * | 2017-09-30 | 2019-04-09 | 黑龙江大学 | 一种金属氧化物/碳材料复合物及其制备方法和应用 |
KR20200048903A (ko) * | 2018-10-31 | 2020-05-08 | 한국철도기술연구원 | 직접 가열 방식의 마이크로파 열탈착 및 분해 설비 및 이를 이용한 폐목재로부터의 저탄소 친환경 소재 제조 방법 |
CN109609151A (zh) * | 2018-11-28 | 2019-04-12 | 大连理工大学 | 固废生物质制备有序介孔碳-金属复合材料联产生物炭的装置与方法 |
Non-Patent Citations (1)
Title |
---|
WANG XIAOLIU, YINGYING LIU, LINGJUN ZHU, YUNCHAO LI, KAIGE WANG, KUNZAN QIU, NAKORN TIPPAYAWONG, PRUK AGGARANGSI, PRASERT REUBROYC: "Biomass derived N-doped biochar as efficient catalyst supports for CO2 methanation", JOURNAL OF CO2 UTILIZATION, ELSEVIER, NL, vol. 34, 18 September 2019 (2019-09-18), NL , pages 733 - 741, XP055908522, ISSN: 2212-9820, DOI: 10.1016/j.jcou.2019.09.003 * |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111892051A (zh) * | 2020-08-27 | 2020-11-06 | 南昌航空大学 | 一种电容器电极材料用生物质分级多孔碳及其制备方法 |
CN114420472B (zh) * | 2022-03-31 | 2022-07-19 | 中国农业科学院农业环境与可持续发展研究所 | 一种生物质热解油制备储能电极材料的制备方法 |
CN114420472A (zh) * | 2022-03-31 | 2022-04-29 | 中国农业科学院农业环境与可持续发展研究所 | 一种生物质热解油制备储能电极材料的制备方法 |
CN114988396A (zh) * | 2022-05-11 | 2022-09-02 | 淮阴工学院 | 一种强化厌氧消化的石墨烯结构生物炭的制备及应用 |
CN114887590A (zh) * | 2022-05-11 | 2022-08-12 | 广州兴丰能源科技有限公司 | 一种富含碱性位点的多孔生物炭制备方法及其在臭气吸附中的应用 |
CN114749178A (zh) * | 2022-05-13 | 2022-07-15 | 集美大学 | 一种利用蟹壳制备餐饮油烟净化处理催化剂的方法及其应用 |
CN114749178B (zh) * | 2022-05-13 | 2023-11-24 | 集美大学 | 一种利用蟹壳制备餐饮油烟净化处理催化剂的方法及其应用 |
CN114959739A (zh) * | 2022-06-10 | 2022-08-30 | 佛山科学技术学院 | 一种甘蔗渣基Ni2+、Co2+离子掺杂生物炭材料的制备方法 |
CN115078492A (zh) * | 2022-06-22 | 2022-09-20 | 江苏大学 | 一种BiOX/N掺杂生物质炭纳米复合材料的制备方法和用途 |
GB2614216B (en) * | 2022-06-22 | 2024-01-10 | Univ Jiangsu | PREPARATION METHOD AND USE OF BiOX/N-DOPED BIOCHAR NANOCOMPOSITE |
GB2614216A (en) * | 2022-06-22 | 2023-06-28 | Univ Jiangsu | Preperation method and use of biox/n-doped biochar nanocomposite |
CN115295327A (zh) * | 2022-08-22 | 2022-11-04 | 吉林大学 | 一种自掺杂多孔碳材料及其制备方法和应用 |
CN115295327B (zh) * | 2022-08-22 | 2024-07-05 | 吉林大学 | 一种自掺杂多孔碳材料及其制备方法和应用 |
CN115400780A (zh) * | 2022-08-30 | 2022-11-29 | 天津大学浙江研究院 | Koh活化氮掺杂碳材料负载型催化剂及制备方法 |
CN115400780B (zh) * | 2022-08-30 | 2024-03-05 | 天津大学浙江研究院 | Koh活化氮掺杂碳材料负载型催化剂及制备方法 |
CN115321516B (zh) * | 2022-09-13 | 2024-07-12 | 惠州亿纬锂能股份有限公司 | 一种生物质基硬碳材料、其制备方法和锂离子电池 |
CN115321516A (zh) * | 2022-09-13 | 2022-11-11 | 惠州亿纬锂能股份有限公司 | 一种生物质基硬碳材料、其制备方法和锂离子电池 |
CN115400732A (zh) * | 2022-09-20 | 2022-11-29 | 燕山大学 | 快速分离碘的杂化材料及其制备方法和应用 |
CN115400732B (zh) * | 2022-09-20 | 2023-09-12 | 燕山大学 | 快速分离碘的杂化材料及其制备方法和应用 |
CN115646525A (zh) * | 2022-09-22 | 2023-01-31 | 华南理工大学 | 一种铁氮共掺杂生物炭及其制备方法与在处理废水中的应用 |
CN115646525B (zh) * | 2022-09-22 | 2024-02-23 | 华南理工大学 | 一种铁氮共掺杂生物炭及其制备方法与在处理废水中的应用 |
CN115448310A (zh) * | 2022-09-23 | 2022-12-09 | 国网河北能源技术服务有限公司 | 一种含氮多孔碳材料及其制备方法和应用 |
CN115448310B (zh) * | 2022-09-23 | 2024-03-29 | 国网河北能源技术服务有限公司 | 一种含氮多孔碳材料及其制备方法和应用 |
CN115672303A (zh) * | 2022-10-28 | 2023-02-03 | 安徽科技学院 | 一种基于柚子皮的碳基阴极催化材料的制备方法 |
CN116286073A (zh) * | 2022-12-09 | 2023-06-23 | 中国科学院广州能源研究所 | 一种基于聚光太阳能热源的废轮胎催化热解制备高质热解油的方法 |
WO2024170916A1 (en) * | 2023-02-17 | 2024-08-22 | Deregallera Holdings Ltd | Method of manufacturing a carbon material for use as a battery electrode |
CN116666585B (zh) * | 2023-06-08 | 2023-12-05 | 江苏久泰电池科技有限公司 | 一种钠离子电池负极材料、负极片及钠离子电池 |
CN116666585A (zh) * | 2023-06-08 | 2023-08-29 | 江苏久泰电池科技有限公司 | 一种钠离子电池负极材料、负极片及钠离子电池 |
CN117117116A (zh) * | 2023-06-27 | 2023-11-24 | 东莞一展电子科技有限公司 | 一种过渡金属氧化物@生物质碳材料及其制备方法和应用 |
CN117735516A (zh) * | 2023-12-20 | 2024-03-22 | 哈尔滨工业大学 | 铁锰改性生物炭制备方法及其在暗发酵生物制氢中的应用 |
Also Published As
Publication number | Publication date |
---|---|
CN112174136A (zh) | 2021-01-05 |
CN112174136B (zh) | 2022-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022036878A1 (zh) | 一种高氮生物炭复合材料及其制备方法和用途 | |
Li et al. | Recent advances and challenges in biomass-derived porous carbon nanomaterials for supercapacitors | |
CN108529587B (zh) | 一种磷掺杂生物质分级孔炭材料的制备方法及其应用 | |
WO2021027100A1 (zh) | 一种氮掺杂多孔炭材料及其制备方法与应用 | |
US7799733B2 (en) | Process for preparing high surface area carbon | |
CN106365163B (zh) | 一种剑麻纤维活性炭的制备方法及该剑麻纤维活性炭在锂离子电容器中的应用 | |
CN105152170A (zh) | 一种蝉蜕基用于电化学电容器的多孔碳材料的制备方法 | |
CN112794324B (zh) | 一种高介孔率木质素多级孔碳材料及其制备方法与应用 | |
CN111547723B (zh) | 一种汉麻基多级孔碳材料及其制备方法和应用 | |
CN110526243A (zh) | 一种超级电容器用生物质多孔碳的制备方法及其应用 | |
CN108975328B (zh) | 一种两步预碳化制备氮氧共掺杂生物质多孔碳材料的方法 | |
CN110697714A (zh) | 一种萝卜衍生的氮掺杂的分级多孔炭及其制备方法和应用 | |
CN110620226A (zh) | 氮、硼共掺杂的碳纤维负载硒化钼电极材料的制备方法 | |
CN115231568B (zh) | 类石墨烯碳纳米片大孔交联棉秆生物质碳电极材料及其制备方法 | |
CN112447414A (zh) | 红毛丹果皮衍生多孔碳复合超级电容器的制备方法 | |
CN104192834A (zh) | 超级电容器用石墨烯及石墨烯复合物的制备方法 | |
CN112079352B (zh) | 一种生物质基多孔氮掺杂碳材料的制备方法及应用 | |
CN112875701A (zh) | 一种生物质碳超级电容器电极材料的制备方法及应用技术 | |
Xiao et al. | Hierarchical porous carbon derived from one-step self-activation of zinc gluconate for symmetric supercapacitors with high energy density | |
CN110589823A (zh) | 一种柚子皮多孔碳材料及其制备方法与应用 | |
CN113072066B (zh) | 一种多孔碳材料及其制备方法与超级电容器 | |
CN107680826A (zh) | 一种用于超级电容器的分层多孔活性炭电极材料的制备方法 | |
CN115497749B (zh) | 一种烟梗基多孔炭材料及其制备方法与在超级电容器中的应用 | |
CN114634171A (zh) | 基于冰模板调控的生物质基笼状多孔碳制备方法及其应用 | |
Guo et al. | A comparison of hydrothermal carbonization versus pyrolysis-activation for sludge-derived carbon materials on physiochemical properties and electrochemical performance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20950081 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20950081 Country of ref document: EP Kind code of ref document: A1 |