WO2021215503A1 - 半導体装置及び半導体装置の製造方法 - Google Patents

半導体装置及び半導体装置の製造方法 Download PDF

Info

Publication number
WO2021215503A1
WO2021215503A1 PCT/JP2021/016318 JP2021016318W WO2021215503A1 WO 2021215503 A1 WO2021215503 A1 WO 2021215503A1 JP 2021016318 W JP2021016318 W JP 2021016318W WO 2021215503 A1 WO2021215503 A1 WO 2021215503A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor layer
trench
insulating film
semiconductor device
conductor
Prior art date
Application number
PCT/JP2021/016318
Other languages
English (en)
French (fr)
Inventor
真吾 甲谷
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to KR1020227031039A priority Critical patent/KR20220137748A/ko
Priority to CN202180020185.0A priority patent/CN115280516B/zh
Priority to US17/910,046 priority patent/US20230101385A1/en
Priority to EP21792024.8A priority patent/EP4141962A4/en
Priority to JP2022517093A priority patent/JPWO2021215503A1/ja
Publication of WO2021215503A1 publication Critical patent/WO2021215503A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • H01L29/8725Schottky diodes of the trench MOS barrier type [TMBS]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • H01L29/66143Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/66196Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices with an active layer made of a group 13/15 material
    • H01L29/66204Diodes
    • H01L29/66212Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/47Schottky barrier electrodes

Definitions

  • This disclosure relates to a semiconductor device and a method for manufacturing the semiconductor device.
  • the upper surface of the insulating film and the conductor at the upper end opening of the trench is concave, and the upper surface of the insulating film and the conductor and the surface of the semiconductor layer are covered with a barrier metal. It has a structure.
  • a semiconductor device includes a semiconductor layer having a trench, an insulating film covering the inner surface of the trench, a conductor embedded in the trench covered with the insulating film, and the trench.
  • a Schottky junction layer that forms a Schottky junction with the surface of an adjacent semiconductor layer is provided.
  • the surface of the conductor is located below the surface of the semiconductor layer, and the surface of the semiconductor layer has an inclined portion at a portion adjacent to the inner wall surface of the trench, which is displaced downward as it approaches the inner wall surface. ..
  • an insulating film is formed on the surface of a semiconductor layer having a trench, a conductor is embedded in the trench, and an insulating film on the surface of the semiconductor layer adjacent to the trench is formed.
  • This is a method for manufacturing a semiconductor device in which a semiconductor layer surface is exposed by removing it by etching to form a Schottky junction on the semiconductor layer surface. Then, in the etching, the upper end surface of the insulating film covering the inner wall surface of the trench is lowered from the surface of the semiconductor layer, and the R of the corner portion formed by the surface of the semiconductor layer and the inner wall surface is anisotropically etched. Enlarge.
  • FIG. 1 It is sectional drawing which shows the semiconductor device which concerns on one Embodiment of this disclosure. It is an enlarged view corresponding to FIG. It is sectional drawing for demonstrating the manufacturing process of the semiconductor device shown in FIG. It is an enlarged view corresponding to FIG. It is sectional drawing for demonstrating the manufacturing process following FIG. It is an enlarged view corresponding to FIG. It is sectional drawing which shows the semiconductor device of the comparative example. It is a graph which shows the voltage-current characteristic in the reverse direction of this disclosure example and comparative example. It is a partially enlarged view of FIG.
  • the semiconductor device A1 of the embodiment of the present disclosure includes a semiconductor layer 11 having a trench 10, an insulating film 12, a conductor 13, and a Schottky junction layer 15.
  • the insulating film 12 covers the inner surface 10a of the trench 10.
  • the conductor 13 is embedded in the trench 10 covered with the insulating film 12.
  • the Schottky junction layer 15 forms a Schottky junction with the semiconductor layer surface 11a adjacent to the trench 10.
  • the conductor 13 for example, polysilicon may be applied.
  • Examples of the semiconductor layer 11 are silicon, and the insulating film 12 is a silicon oxide film.
  • the Schottky junction layer 15 is a barrier metal such as nickel, molybdenum, or platinum.
  • the surface 13a of the conductor 13 is located below the surface of the semiconductor layer 11a.
  • the semiconductor layer surface 11a has an inclined portion 11a1 that is displaced downward as it approaches the inner wall surface 10a1 at a portion adjacent to the inner wall surface 10a1 of the trench 10.
  • the step coverage of the surface of the base layer of the Schottky junction layer 15 is improved. Then, the electric field concentration when the reverse voltage is applied and the stress concentration due to the electric field concentration are alleviated, and the leak current can be suppressed to a low level.
  • the upper end surface 12a of the insulating film 12 covering the inner wall surface 10a1 is continuous with the inclined portion 11a1 and is inclined in the same direction as the inclined portion 11a1. That is, when tracing from the center of the semiconductor layer surface 11a to the surface 13a of the conductor 13, the inclined portion 11a1 and the upper end surface 12a are inclined downward. As a result, the step coverage of the surface of the base layer of the Schottky junction layer 15 in the peripheral portion of the Schottky junction is improved. Then, the electric field concentration when the reverse voltage is applied and the stress concentration due to the electric field concentration are alleviated, and the leak current can be suppressed to a low level.
  • the inclined portion 11a1 has a convex curved surface shape in which the inclination angle gradually increases as it approaches the inner wall surface 10a1.
  • the inclination angle is an angle formed by a tangent line at one point on the inclined portion 11a1 in a cross section perpendicular to the inner wall surface 10a1 shown in FIGS. 1 and 2 and a tangent line at the top portion (flat portion) of the semiconductor layer surface 11a.
  • the upper end surface 12a of the insulating film 12 covering the inner wall surface 10a1 has a convex curved surface shape in which the inclination angle gradually increases as it approaches the conductor 13.
  • the step coverage of the surface of the base layer of the Schottky junction layer 15 in the peripheral portion of the Schottky junction is improved. Then, the electric field concentration when the reverse voltage is applied and the stress concentration due to the electric field concentration are alleviated, and the leak current can be suppressed to a low level.
  • the insulating film 12 of the semiconductor layer surface 11a adjacent to the trench 10 is removed by etching to expose the semiconductor layer surface 11a as shown in FIGS. 5 and 6.
  • the insulating film 12 is overetched in order to sufficiently expose the semiconductor layer surface 11a.
  • the upper end surface 12a of the insulating film 12 covering the inner wall surface 10a1 of the trench 10 is etched deeper.
  • the upper end surface 12a is located below the semiconductor layer surface 11a. In this case, the insulating film on the semiconductor layer surface 11a is sufficiently removed.
  • the upper and lower sides are in the direction in which the trench 10 is dug down from the surface of the semiconductor layer 11 is downward, and vice versa. It does not mean the vertical direction (gravity direction) during use.
  • the upper end surface 12a of the insulating film 12 covering the inner wall surface 10a1 of the trench 10 is lowered from the semiconductor layer surface 11a, and the radius of the corner portion formed by the semiconductor layer surface 11a and the inner wall surface 10a1 is anisotropic. Increase by etching.
  • an etching gas type such as CF 4 , CF 3, etc., which can be etched and has strong anisotropy, may be applied.
  • the etching gas type such as CF 4 , CF 3, etc., which can be etched and has strong anisotropy
  • the etching proceeds in the lateral direction as well.
  • the curved surface-shaped inclined portion 11a1 as described above is formed.
  • the upper end surface 12a having a curved surface shape as described above is formed.
  • the Schottky junction layer 15 is formed on the surface 11a of the semiconductor layer to form a Schottky junction, and the semiconductor device A1 having the structure shown in FIGS. 1 and 2 is obtained.
  • the semiconductor device A1 is completed by carrying out other necessary steps.
  • FIG. 7 shows a semiconductor device B1 of a comparative example.
  • the semiconductor device B1 of the comparative example is different from the semiconductor device A1 of the present embodiment only in that there is no inclined portion 11a1 and the semiconductor layer surface 11a is flat, and the others are common.
  • the semiconductor device A1 of the present embodiment and the semiconductor device B1 of the comparative example the voltage-current characteristics in the reverse direction were simulated by designating common conditions, and the results are as shown in FIG. A part 80 of the graph shown in FIG. 8 is enlarged and shown in FIG.
  • the semiconductor device A1 of the present embodiment can suppress the reverse current lower than that of the semiconductor device B1 of the comparative example, and the reverse direction characteristics are improved.
  • the leakage current at the edge of the Schottky junction can be suppressed low when a reverse voltage is applied. Further, the insulating film on the surface 11a of the semiconductor layer is sufficiently removed, and the characteristics of Schottky bonding are good. According to the above-mentioned manufacturing method of the embodiment of the present disclosure, it is possible to manufacture a semiconductor device in which the step coverage of the surface of the base layer of the Schottky junction layer 15 is improved and the leakage current when a reverse voltage is applied can be suppressed to a low level. can. Further, in the manufactured semiconductor device, the insulating film on the surface 11a of the semiconductor layer is sufficiently removed, and the characteristics of Schottky bonding are good.
  • the present disclosure can be used for semiconductor devices and methods for manufacturing semiconductor devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

半導体装置A1は、トレンチ10を有した半導体層11と、トレンチの内面10aを覆う絶縁膜12と、絶縁膜で覆われたトレンチ内に埋設された導電体13と、トレンチに隣接した半導体層表面11aとショットキー接合を形成するショットキー接合層15と、を備える。導電体の表面13aは、半導体層表面より下に位置する。半導体層表面は、トレンチの内壁面10a1に隣接する部位に、当該内壁面に近づくほど下に変位する傾斜部11a1を有する。

Description

半導体装置及び半導体装置の製造方法
 本開示は、半導体装置及び半導体装置の製造方法に関する。
 従来、特開2012-9756号公報にも記載されるようにショットキー接合を有した半導体デバイスの製造がある。この半導体デバイスにおいて、トレンチを有した半導体層表面に絶縁膜を形成し、トレンチ内に導電体を埋め込み、トレンチに隣接した半導体層表面の絶縁膜をエッチングにより除去して半導体層表面を露出させ、当該半導体層表面にショットキー接合を形成することが行われる。
 特開2012-9756号公報にあっては、トレンチの上端開口部の絶縁膜及び導電体の上面が凹状にされ、当該絶縁膜及び導電体の上面、並びに半導体層表面がバリア金属で覆われた構造としている。
 本開示の1つの態様の半導体装置は、トレンチを有した半導体層と、前記トレンチの内面を覆う絶縁膜と、前記絶縁膜で覆われた前記トレンチ内に埋設された導電体と、前記トレンチに隣接した半導体層表面とショットキー接合を形成するショットキー接合層と、を備える。そして、前記導電体の表面は、前記半導体層表面より下に位置し、前記半導体層表面は、前記トレンチの内壁面に隣接する部位に、当該内壁面に近づくほど下に変位する傾斜部を有する。
 本開示の1つの態様の半導体装置の製造方法は、トレンチを有した半導体層の表面に絶縁膜を形成し、当該トレンチ内に導電体を埋め込み、当該トレンチに隣接した半導体層表面の絶縁膜をエッチングにより除去して半導体層表面を露出させ、前記半導体層表面にショットキー接合を形成する半導体装置の製造方法である。そして、前記エッチングにおいては、前記トレンチの内壁面を覆う絶縁膜の上端面を、前記半導体層表面より下げるとともに、前記半導体層表面と前記内壁面とでつくる角部のRを異方性エッチングにより大きくする。
本開示の一実施形態に係る半導体装置を示す断面模式図である。 図1に対応した拡大図である。 図1に示す半導体装置の製造プロセスを説明するための断面模式図である。 図3に対応した拡大図である。 図3に続く製造プロセスを説明するための断面模式図である。 図5に対応した拡大図である。 比較例の半導体装置を示す断面模式図である。 本開示例及び比較例の逆方向の電圧‐電流特性を示すグラフである。 図8の部分拡大図である。
 以下に本開示の一実施形態につき図面を参照して説明する。
〔半導体装置〕
 図1に示すように本開示の一実施形態の半導体装置A1は、トレンチ10を有した半導体層11と、絶縁膜12と、導電体13と、ショットキー接合層15とを備える。絶縁膜12は、トレンチ10の内面10aを覆う。導電体13は、絶縁膜12で覆われたトレンチ10内に埋設されている。ショットキー接合層15は、トレンチ10に隣接した半導体層表面11aとショットキー接合を形成する。
 導電体13としては、例えばポリシリコンを適用してもよい。半導体層11は、シリコン、絶縁膜12はシリコン酸化膜が例として挙げられる。ショットキー接合層15は、例えばニッケル、モリブデン、白金等のバリア金属である。
 図2に示すように導電体13の表面13aは、半導体層表面11aより下に位置する。
 そして半導体層表面11aは、トレンチ10の内壁面10a1に隣接する部位に、当該内壁面10a1に近づくほど下に変位する傾斜部11a1を有する。これにより、ショットキー接合層15の下地層表面のステップカバレッジが改善する。そして、逆電圧印加時の電界集中、それによる応力集中が緩和され、リーク電流を低く抑えることができる。
 内壁面10a1を覆う絶縁膜12の上端面12aは、傾斜部11a1に連続し、傾斜部11a1と同方向の傾斜である。すなわち、半導体層表面11aの中央から導電体13の表面13aに辿ったとき、傾斜部11a1、上端面12aが下り傾斜である。これにより、ショットキー接合の周囲部における、ショットキー接合層15の下地層表面のステップカバレッジが改善する。そして、逆電圧印加時の電界集中、それによる応力集中が緩和され、リーク電流を低く抑えることができる。
 また、傾斜部11a1は、内壁面10a1に近づくほど傾斜角が次第に大きくなる凸な曲面形状である。傾斜角は、図1、図2に示す内壁面10a1に垂直な断面において傾斜部11a1上にある一点における接線と、半導体層表面11aの頂部(フラット部分)における接線との成す角である。これにより、ショットキー接合層15の下地層表面のステップカバレッジが改善する。そして、逆電圧印加時の電界集中、それによる応力集中が緩和され、リーク電流を低く抑えることができる。
 また、内壁面10a1を覆う絶縁膜12の上端面12aは、導電体13に近づくほど傾斜角が次第に大きくなる凸な曲面形状である。これにより、ショットキー接合の周囲部における、ショットキー接合層15の下地層表面のステップカバレッジが改善する。そして、逆電圧印加時の電界集中、それによる応力集中が緩和され、リーク電流を低く抑えることができる。
〔半導体装置の製造方法〕
 上記の半導体装置A1を得るための一例の製造方法につき説明する。
(絶縁膜形成、導電体埋設工程)
 まず、図3,図4に示すようにトレンチ10を有した半導体層11の表面に絶縁膜12を形成し、当該トレンチ10内に導電体13を埋め込む。導電体13の表面をエッチングして導電体13の表面13aを半導体層表面11aより下に位置させる。
(絶縁膜エッチング工程)
 次に、トレンチ10に隣接した半導体層表面11aの絶縁膜12をエッチングにより除去して図5、図6に示すように半導体層表面11aを露出させる。このとき、半導体層表面11aを十分に露出させるために絶縁膜12がオーバーエッチされる。これにより、トレンチ10の内壁面10a1を覆う絶縁膜12の上端面12aがより深くエッチングされる。図5、図6に示すように半導体層表面11aより上端面12aが下に位置する。この場合、半導体層表面11a上の絶縁膜は十分に除去される。なお、本半導体装置及びその製造方法の説明においての上下は、半導体層11の表面からトレンチ10が掘り下がっている方向が下、その逆を上とするものであり、本半導体装置の製造時又は使用時の上下方向(重力方向)を言うものではない。
 以上のエッチングにおいては、トレンチ10の内壁面10a1を覆う絶縁膜12の上端面12aを、半導体層表面11aより下げるとともに、半導体層表面11aと内壁面10a1とでつくる角部のRを異方性エッチングにより大きくする。
 半導体層11がシリコンであり絶縁膜12がシリコン酸化膜である場合、これをエッチングでき、かつ、異方性が強い、エッチングガス種、例えばCF4、CF3等を適用してもよい。
 このエッチングの進行により、半導体層表面11aが絶縁膜12から露出した後、半導体層表面11aと内壁面10a1とでつくる角部がエッチングガスに曝露される。しかし、異方性が強いため、エッチングが横方向にも進行する。その結果、上述したような曲面形状の傾斜部11a1が形成される。また同様に異方性エッチングにより、上述したような曲面形状の上端面12aが形成される。
(ショットキー接合形成工程)
 その後、半導体層表面11aにショットキー接合層15を形成してショットキー接合を形成し図1、図2に示した構造の半導体装置A1を得る。その他必要な工程を実施して半導体装置A1を完成させる。
〔逆方向特性の比較〕
 図7は、比較例の半導体装置B1を示す。比較例の半導体装置B1は、上記本実施形態の半導体装置A1に対して、傾斜部11a1が無く、半導体層表面11aがフラットである点のみ異なり、その他は共通である。
 本実施形態の半導体装置A1及び比較例の半導体装置B1に関し、共通の条件を指定して逆方向の電圧‐電流特性をシミュレーションしたところ図8に示す通りとなった。図8に示すグラフの一部80を拡大して図9に示した。
 図8、図9に示すように本実施形態の半導体装置A1は、比較例の半導体装置B1に対して逆方向電流を低く抑えることができ、逆方向特性が改善した。
 上述したショットキー接合層15の下地層表面のステップカバレッジが改善し、逆電圧印加時の電界集中、それによる応力集中が緩和され、リーク電流を低く抑えることができる効果があると確認できた。
〔まとめ、その他〕
 以上の本開示の実施形態の半導体装置によれば、逆電圧印加時にショットキー接合の縁部でのリーク電流を低く抑えることができる。
 また、半導体層表面11a上の絶縁膜が十分に除去されており、ショットキー接合の特性が良好である。
 以上の本開示の実施形態の製造方法によれば、ショットキー接合層15の下地層表面のステップカバレッジが改善され、逆電圧印加時のリーク電流を低く抑えることができる半導体装置を製造することができる。
 また製造される半導体装置は、半導体層表面11a上の絶縁膜が十分に除去されており、ショットキー接合の特性が良好である。
 以上本開示の実施形態を説明したが、この実施形態は、例として示したものであり、この他の様々な形態で実施が可能であり、発明の要旨を逸脱しない範囲で、構成要素の省略、置き換え、変更を行うことができる。
 本開示は、半導体装置及び半導体装置の製造方法に利用することができる。
10   トレンチ
11   半導体層
11a 半導体層表面
11a1 傾斜部
12   絶縁膜
13   導電体
15   ショットキー接合層
A1   半導体装置

Claims (5)

  1.  トレンチを有した半導体層と、
     前記トレンチの内面を覆う絶縁膜と、
     前記絶縁膜で覆われた前記トレンチ内に埋設された導電体と、
     前記トレンチに隣接した半導体層表面とショットキー接合を形成するショットキー接合層と、
     を備え、
     前記導電体の表面は、前記半導体層表面より下に位置し、
     前記半導体層表面は、前記トレンチの内壁面に隣接する部位に、当該内壁面に近づくほど下に変位する傾斜部を有する半導体装置。
  2.  前記内壁面を覆う絶縁膜の上端面は、前記傾斜部に連続し、前記傾斜部と同方向の傾斜である請求項1に記載の半導体装置。
  3.  前記内壁面に垂直な断面において前記傾斜部上にある一点における接線と、前記半導体層表面の頂部における接線との成す角を傾斜角とするとき、前記傾斜部は、前記内壁面に近づくほど傾斜角が次第に大きくなる凸な曲面形状である請求項1又は請求項2に記載の半導体装置。
  4.  前記内壁面を覆う絶縁膜の上端面は、前記導電体に近づくほど傾斜角が次第に大きくなる凸な曲面形状である請求項2に記載の半導体装置。
  5.  トレンチを有した半導体層の表面に絶縁膜を形成し、当該トレンチ内に導電体を埋め込み、当該トレンチに隣接した半導体層表面の絶縁膜をエッチングにより除去して半導体層表面を露出させ、前記半導体層表面にショットキー接合を形成する半導体装置の製造方法であって、
     前記エッチングにおいては、前記トレンチの内壁面を覆う絶縁膜の上端面を、前記半導体層表面より下げるとともに、前記半導体層表面と前記内壁面とでつくる角部のRを異方性エッチングにより大きくする半導体装置の製造方法。
PCT/JP2021/016318 2020-04-24 2021-04-22 半導体装置及び半導体装置の製造方法 WO2021215503A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020227031039A KR20220137748A (ko) 2020-04-24 2021-04-22 반도체 장치 및 반도체 장치의 제조 방법
CN202180020185.0A CN115280516B (zh) 2020-04-24 2021-04-22 半导体装置以及半导体装置的制造方法
US17/910,046 US20230101385A1 (en) 2020-04-24 2021-04-22 Semiconductor device and method for manufacturing semiconductor device
EP21792024.8A EP4141962A4 (en) 2020-04-24 2021-04-22 SEMICONDUCTOR COMPONENT AND METHOD FOR PRODUCING THE SEMICONDUCTOR COMPONENT
JP2022517093A JPWO2021215503A1 (ja) 2020-04-24 2021-04-22

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020077274 2020-04-24
JP2020-077274 2020-04-24

Publications (1)

Publication Number Publication Date
WO2021215503A1 true WO2021215503A1 (ja) 2021-10-28

Family

ID=78269239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/016318 WO2021215503A1 (ja) 2020-04-24 2021-04-22 半導体装置及び半導体装置の製造方法

Country Status (6)

Country Link
US (1) US20230101385A1 (ja)
EP (1) EP4141962A4 (ja)
JP (1) JPWO2021215503A1 (ja)
KR (1) KR20220137748A (ja)
CN (1) CN115280516B (ja)
WO (1) WO2021215503A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008034572A (ja) * 2006-07-28 2008-02-14 Matsushita Electric Ind Co Ltd 半導体装置とその製造方法
JP2009521816A (ja) * 2005-12-27 2009-06-04 キュースピード セミコンダクター インコーポレーテッド 高速回復整流器構造体の装置および方法
US20100200910A1 (en) * 2009-02-09 2010-08-12 Joseph Yedinak Semiconductor Devices with Stable and Controlled Avalanche Characteristics and Methods of Fabricating the Same
JP2012009756A (ja) 2010-06-28 2012-01-12 Shindengen Electric Mfg Co Ltd ショットキーバリアダイオード及びその製造方法
CN205609533U (zh) * 2016-03-21 2016-09-28 张敏 一种肖特基二极管结构
CN107293574A (zh) * 2016-11-25 2017-10-24 扬州国宇电子有限公司 一种沟槽肖特基势垒二极管芯片
WO2018146791A1 (ja) * 2017-02-10 2018-08-16 三菱電機株式会社 半導体装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001068688A (ja) * 1999-08-26 2001-03-16 Fuji Electric Co Ltd ショットキーバリアダイオードの製造方法およびショットキーバリアダイオード
JP2011205091A (ja) * 2010-03-24 2011-10-13 Panasonic Corp 半導体装置およびその製造方法
CN108962972B (zh) * 2017-05-19 2021-12-21 帅群微电子股份有限公司 沟槽式功率半导体元件及其制造方法
US10388801B1 (en) * 2018-01-30 2019-08-20 Semiconductor Components Industries, Llc Trench semiconductor device having shaped gate dielectric and gate electrode structures and method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009521816A (ja) * 2005-12-27 2009-06-04 キュースピード セミコンダクター インコーポレーテッド 高速回復整流器構造体の装置および方法
JP2008034572A (ja) * 2006-07-28 2008-02-14 Matsushita Electric Ind Co Ltd 半導体装置とその製造方法
US20100200910A1 (en) * 2009-02-09 2010-08-12 Joseph Yedinak Semiconductor Devices with Stable and Controlled Avalanche Characteristics and Methods of Fabricating the Same
JP2012009756A (ja) 2010-06-28 2012-01-12 Shindengen Electric Mfg Co Ltd ショットキーバリアダイオード及びその製造方法
CN205609533U (zh) * 2016-03-21 2016-09-28 张敏 一种肖特基二极管结构
CN107293574A (zh) * 2016-11-25 2017-10-24 扬州国宇电子有限公司 一种沟槽肖特基势垒二极管芯片
WO2018146791A1 (ja) * 2017-02-10 2018-08-16 三菱電機株式会社 半導体装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4141962A4

Also Published As

Publication number Publication date
US20230101385A1 (en) 2023-03-30
CN115280516A (zh) 2022-11-01
KR20220137748A (ko) 2022-10-12
EP4141962A4 (en) 2024-05-22
JPWO2021215503A1 (ja) 2021-10-28
CN115280516B (zh) 2024-10-25
EP4141962A1 (en) 2023-03-01

Similar Documents

Publication Publication Date Title
KR100272987B1 (ko) 반도체장치및그제조방법
JP2006190947A (ja) リセスゲート及びそれを備えた半導体装置の製造方法
WO2021215503A1 (ja) 半導体装置及び半導体装置の製造方法
JP2005129654A (ja) 半導体装置の製造方法
JP2009224660A (ja) 半導体装置の製造方法
WO2021200238A1 (ja) 半導体装置及び半導体装置の製造方法
WO2021185062A1 (zh) 半导体结构及形成方法
TWI767143B (zh) 高電壓電晶體結構及其製造方法
JP6729727B2 (ja) 半導体装置および製造方法
JP5588765B2 (ja) ショットキーバリアダイオード及びその製造方法
CN101794728B (zh) 制造半导体器件的方法和半导体器件
KR100475050B1 (ko) 스페이서로보호되는박막의질화막라이너를갖는트렌치소자분리방법및구조
WO2021215505A1 (ja) 半導体装置及び半導体装置の製造方法
KR100275484B1 (ko) 트렌치형 게이트 전극을 갖는 전력소자 제조방법
TWI840111B (zh) 半導體結構及其形成方法
JPH02231739A (ja) 半導体装置の製造方法
KR100207539B1 (ko) 반도체장치의 트랜치 소자분리방법
JP2002076110A (ja) トレンチ絶縁構造形成の間の凹型面形成に関する問題を減少させる方法
TWI466234B (zh) 形成埋入式導線的方法及埋入式導線的結構
CN118969609A (zh) 一种改善sgt源多晶硅填充的方法及sgt器件
JP2009238866A (ja) 半導体装置の製造方法
KR20080001197A (ko) 반도체 소자 및 그의 형성 방법
JP3367484B2 (ja) 半導体装置及びその製造方法
KR100545184B1 (ko) 트랜치 소자분리를 위한 반도체 소자의 트랜치 형성 방법
KR100652311B1 (ko) 반도체 소자의 격리막 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21792024

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227031039

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022517093

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021792024

Country of ref document: EP

Effective date: 20221124

NENP Non-entry into the national phase

Ref country code: DE