WO2021109965A1 - 一种锂离子电池电极材料及其制备方法 - Google Patents

一种锂离子电池电极材料及其制备方法 Download PDF

Info

Publication number
WO2021109965A1
WO2021109965A1 PCT/CN2020/132694 CN2020132694W WO2021109965A1 WO 2021109965 A1 WO2021109965 A1 WO 2021109965A1 CN 2020132694 W CN2020132694 W CN 2020132694W WO 2021109965 A1 WO2021109965 A1 WO 2021109965A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
coating
core body
solution
metal
Prior art date
Application number
PCT/CN2020/132694
Other languages
English (en)
French (fr)
Inventor
李政杰
沙玉静
夏圣安
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021109965A1 publication Critical patent/WO2021109965A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the field of lithium ion batteries, and more specifically, to a lithium ion battery electrode material and a preparation method thereof.
  • smart mobile terminals have entered people’s field of vision, such as smart wearable devices (such as bracelets, watches, smart glasses, augmented reality (AR) recognition technology devices, and virtual Reality technology (virtual reality, VR) equipment, etc.), portable electronic devices (such as smart phones, tablet computers, and notebook computers, etc.), drones, smart home robots, and smart electric vehicles.
  • smart wearable devices such as bracelets, watches, smart glasses, augmented reality (AR) recognition technology devices, and virtual Reality technology (virtual reality, VR) equipment, etc.
  • portable electronic devices such as smart phones, tablet computers, and notebook computers, etc.
  • drones smart home robots
  • smart electric vehicles such as a smart home robots, and smart electric vehicles.
  • a common method to improve the performance of lithium-ion batteries is to pre-lithiate the electrode materials of the lithium-ion batteries.
  • the current pre-lithiation method it has not been possible to propose a method with high safety and high pre-lithiation efficiency, so that the lithium ion material can meet the user's requirements for battery performance.
  • the embodiments of the present application provide a lithium ion battery electrode material and a preparation method thereof, which can solve the problems of low battery energy density and poor cycle performance caused by low pre-lithiation efficiency.
  • an electrode material for a lithium ion battery comprising: one or more first core bodies; a metal lithium coating, the metal lithium coating coating on the surface of the one or more first core bodies Protective coating, the protective coating is wrapped on the outside of the metallic lithium coating, so that the metallic lithium coating is isolated from the air.
  • the lithium ion battery electrode material provided in the embodiments of the present application can be used to prepare electrode pole pieces of a lithium ion battery, such as a positive pole piece or a negative pole piece.
  • the battery electrode material may include primary particles and secondary particles.
  • the structure of the primary particles may be: a protective coating envelops a single core body with a metallic lithium coating.
  • the structure of the secondary particles can be: a plurality of nuclei are reunited with a metallic lithium coating, and the outer side of the metallic lithium is then wrapped with a protective coating.
  • the secondary particles can be a plurality of nuclei first agglomerated together. Form a nucleus group, and then wrap a metal lithium coating and a protective coating on the outside of the nucleus group; or, the secondary particles can also be a plurality of nuclei wrapped with a metal lithium coating to form a plurality of metal lithium coatings.
  • the coated core particle cluster is wrapped with a protective coating on the outside of the particle cluster.
  • the metal lithium coating wraps a single core to form a particle, and multiple particles are agglomerated into a particle cluster by bonding or other means.
  • the above-mentioned secondary particles can be obtained by wrapping the protective coating on the outside of the dough.
  • each first core body is covered with a metallic lithium coating.
  • the outer side of the lithium metal coating of each first core body is covered with a protective coating or a plurality of first core bodies with a lithium metal coating are gathered together (for example, secondary particles obtained by granulation), the protective coating It can be coated on the outer side of a plurality of first core metal lithium coatings.
  • the metal lithium coating as a lithium-supplementing coating has a higher lithium content than a lithium-containing compound as a lithium-supplementing coating. Therefore, it can effectively supplement the active lithium ions in the battery chemical reaction and reduce the first charge and discharge. In the process, active lithium ions such as SEI are formed, which improves the coulombic efficiency of battery materials.
  • the protective coating may be coated on the outer side of the metallic lithium coating of one or more first core bodies.
  • the protective coating may be a protective coating of a metallic lithium coating, which is used to make the metallic lithium come into contact with oxygen, nitrogen, etc. in the air or an electrolyte solution, thereby increasing the service life of the metallic lithium coating, thereby increasing The energy density and cycle performance of lithium-ion batteries.
  • the material of the protective coating is inorganic or polymer.
  • the inorganic substance when the material of the protective coating is an inorganic substance, includes any one or more of the following: graphite, mesoporous carbon spheres, nitrogen Boron, hard carbon, soft carbon, mesophase carbon microspheres, carbon nanotubes CNT, graphene, carbon fiber, activated carbon, porous carbon, acetylene black AB, Ketjen black, pitch, silicon oxide, aluminum oxide, magnesium oxide, Lanthanum oxide, titanium oxide, zinc oxide, barium titanate, lithium nitride, lithium phosphorus oxynitride LIPON, lithium titanium aluminum phosphate LATP, lithium aluminum germanium phosphate LAGP, lithium lanthanum zirconium oxide LLZO, lithium lanthanum titanium oxide LLTO, lithium germanium phosphorus Sulfur Li 10 GeP 2 S 12 , Li 9.54 Si 1.74 P 1.44 S 11.7 Cl 0.3 , Li 2 CO 3 , LiBF 4 , Li
  • the polymer when the material of the protective coating is a polymer, includes any one or more of the following: polypyrrole, polyacrylic acid PAA, polyacrylic acid Vinyl alcohol PVA, polymethyl methacrylate PMMA, polymethyl acrylate, polyethyl methacrylate, polyethyl acrylate, polypropyl methacrylate, polypropyl acrylate, polybutyl acrylate, polymethacrylic acid Butyl ester, polypentyl methacrylate, polypentyl acrylate, polycyclohexyl methacrylate, polycyclohexyl acrylate, polyhexyl methacrylate, polyhexyl acrylate, poly(glycidyl acrylate), poly Glycidyl methacrylate, polyvinylidene fluoride PVDF, polystyrene, hydrogenated polystyrene, polyvinylpyridine, polyvinyl
  • the material of the first core body is SiOx, where 0 ⁇ x ⁇ 2, and the material of the protective coating is polyacrylic acid PAA; or
  • the material of the first core body is SiOx/graphite, where 0 ⁇ x ⁇ 2, and the material of the protective coating is carbon C; or, the material of the first core body is SiOx/CNT/graphite, where, 0 ⁇ x ⁇ 2, the material of the protective coating is polyacrylic acid PAA; or, the material of the first core body is SiOx/C, where 0 ⁇ x ⁇ 2, the material of the protective coating is carbonic acid Lithium Li 2 CO 3 ; or, the material of the first core body is SiOx/C, where 0 ⁇ x ⁇ 2, and the material of the protective coating is PAA; or, the material of the first core body is SiOx/C/CNT, wherein 0 ⁇ x ⁇ 2, the material of the protective coating is Li 2 CO 3 ; or, the material of the first core body is Si
  • the material of the protective coating is polydimethylsiloxane PDMS; or, the material of the first core body is silicon Si, and the material of the protective coating is lithium phosphate Li 3 PO 4 ; or, The material of the first core body is silicon carbon material Si/C, and the material of the protective coating is polyacrylic acid PAA; or, the material of the first core body is silicon carbon material Si/C, and the protective coating
  • the material of the layer is C; or, the material of the first core body is lithium cobalt oxide LCO, and the material of the protective coating is lithium aluminum germanium aluminum phosphate LAGP; or, the material of the first core body is nickel cobalt manganese Lithium oxide NCM, the material of the protective coating is Li 3 PO 4 ; or, the material of the first core body is lithium nickel cobalt aluminate NCA, and the material of the protective coating is Li 3 PO 4 ; or, The material of the first core body is hard carbon, and the material of the protective coating is polyacrylic acid PAA.
  • a method for preparing an electrode material for a lithium ion battery including: heating metallic lithium to a molten state to obtain molten metallic lithium; immersing a first core body in the molten metallic lithium to make the first The surface of the core body is covered with a metal lithium coating; the surface of the metal lithium coating is coated with a first solution to form a protective coating covering the outside of the metal lithium coating.
  • the metal lithium coating as a lithium-supplementing coating has a higher lithium content than a lithium-containing compound as a lithium-supplementing coating. Therefore, it can effectively supplement the active lithium ions in the battery chemical reaction and reduce the first charge and discharge. In the process, active lithium ions such as SEI are formed, which improves the coulombic efficiency of battery materials.
  • the protective coating may be a protective coating of a metallic lithium coating, which is used to make the metallic lithium come into contact with oxygen, nitrogen, etc. in the air or an electrolyte solution, thereby increasing the service life of the metallic lithium coating, thereby increasing The energy density and cycle performance of lithium-ion batteries.
  • the heating metal lithium to a molten state includes: placing a metal lithium foil and/or a metal lithium powder and/or a metal lithium ingot in a crucible; The crucible is heated in a protective atmosphere filled with inert gas, wherein the heating temperature of the heating device is 150-500°C.
  • the immersing the first core body in the molten metal lithium to obtain a core body with a lithium metal coating includes: dipping the first core body Dipping into the molten lithium metal and stirring; cooling to a first temperature to obtain a core body with a lithium metal coating.
  • the temperature drop rate is 5-20°C/min.
  • coating the first solution on the surface of the lithium metal coating to form a protective coating includes: immersing the core body with the lithium metal coating in The first solution; stirring, filtering, and vacuum drying the core with the lithium metal coating in the first solution, so that the protective coating is formed on the surface of the lithium metal coating; or, Coating the first solution on the surface of the lithium metal coating; vacuum-drying the coated first solution, so that the protective coating is formed on the surface of the lithium metal coating.
  • the first solution is a dimethyl sulfoxide DMSO solution of polyacrylic acid PAA
  • the preparation process of the PAA/DMSO solution includes: dissolving the PAA Until the DMSO forms a second solution, and the heating temperature of the second solution is set to 30-80° C.; the second solution is stirred for 1-2 hours to form the PAA/DMSO solution.
  • the temperature of the vacuum drying is 50-80°C.
  • the concentration of the PAA/DMSO solution is 0.1-0.5%.
  • a method for preparing an electrode material for a lithium ion battery including: dissolving metallic lithium in a first solution to form a second solution, wherein the first solution is a solution including an aprotic polar solvent; The second solution is coated on the surface of the first core body to obtain a core body with a metal lithium coating; and a third solution is coated on the surface with the second solution coating to form a protective coating.
  • the metal lithium coating as a lithium-supplementing coating has a higher lithium content than a lithium-containing compound as a lithium-supplementing coating. Therefore, it can effectively supplement the active lithium ions in the battery chemical reaction and reduce the first charge and discharge. In the process, active lithium ions such as SEI are formed, which improves the coulombic efficiency of battery materials.
  • the protective coating may be a protective coating of a metallic lithium coating, which is used to make the metallic lithium come into contact with oxygen, nitrogen, etc. in the air or an electrolyte solution, thereby increasing the service life of the metallic lithium coating, thereby increasing The energy density and cycle performance of lithium-ion batteries.
  • the method further includes: dissolving an anhydrous benzene ring compound containing a conjugated double bond in an anhydrous aprotic electrode in a protective atmosphere of an inert gas. Solvent to obtain the first solution.
  • the anhydrous benzene ring compound containing conjugated double bonds includes any one or more of the following: aromatic compounds, biphenyls, fused ring aromatic hydrocarbons Such compounds are preferably biphenyl and its derivatives, terphenyl, tetraphenyl, naphthalene, anthracene, phenanthrene, and benzophenone.
  • the aprotic polar solvent includes any one or more of the following: acetonitrile CH3CN, dimethylformamide DMF, 1,3-dimethyl- 2-imidazolinone DMI, dimethyl sulfoxide DMSO, hexamethylphosphoric triamide HMPA, tetrahydrofuran, dioxolane, dimethyl ether, glyme, crown ether, diethyl ether, methyl ethyl ether, methyl ether Amyl ether, ethylene glycol dimethyl ether, ethylene glycol dibutyl ether, diethylene glycol dibutyl ether, ethylene glycol diethyl ether, tetramethylethylenediamine, tetramethylpropylenediamine, pentamethyldiethyl Ethylene triamine.
  • the dissolving metallic lithium in the first solution to form the second solution includes: dissolving metallic lithium foil or metallic lithium powder in the first solution, The second solution is formed, wherein the lithium concentration in the second solution is 0.1-0.2 mol/L.
  • the method further includes: mixing the inorganic-organic composite with the aprotic polar solvent and then stirring to form the third solution;
  • the third solution is coated on the surface of the second solution coating, so that the third solution completely covers the core and the second coating, wherein the coating time is 0.2-2h;
  • the core body after the third solution is vacuum dried, wherein the temperature of the vacuum drying is 50-80°C.
  • a method for preparing an electrode material for a lithium ion battery includes: performing a single vapor deposition on a first core body so that the first core body is coated with a metal lithium coating, and the evaporation of the first core body is The source is lithium metal; the core body with the lithium metal coating is subjected to secondary evaporation to form a protective coating on the surface of the lithium metal coating.
  • the metal lithium coating as a lithium-supplementing coating has a higher lithium content than a lithium-containing compound as a lithium-supplementing coating. Therefore, it can effectively supplement the active lithium ions in the battery chemical reaction and reduce the first charge and discharge. In the process, active lithium ions such as SEI are formed, which improves the coulombic efficiency of battery materials.
  • the protective coating may be a protective coating of a metallic lithium coating, which is used to make the metallic lithium come into contact with oxygen, nitrogen, etc. in the air or an electrolyte solution, thereby increasing the service life of the metallic lithium coating, thereby increasing The energy density and cycle performance of lithium-ion batteries.
  • the step of vapor-depositing the first core body once so that the first core body is coated with a metal lithium coating includes: A core body is placed in the first vacuum evaporation zone, wherein the first vacuum evaporation zone includes metallic lithium; heating the first vacuum evaporation zone to evaporate the metallic lithium; when the metallic lithium is completely When the first core body is covered, the core body with the metallic lithium coating is obtained.
  • the method further includes: filling the first vacuum evaporation zone with an inert protective gas, so that the air pressure of the first vacuum evaporation zone is maintained at Within the range of 10-300 Pa; and/or, the heating temperature for the metallic lithium is set to 200-900° C.; and/or, the time of the first evaporation is set to be 0.5-24 h.
  • the target for the secondary vapor deposition is lithium phosphate Li 3 PO 4 .
  • the second evaporation of the core body with the lithium metal coating includes: placing the core body with the lithium metal coating on the core body containing the lithium metal coating.
  • the second vacuum evaporation chamber of Li 3 PO 4 and control the distance between the core body with metallic lithium coating and the target material to be kept in the range of 50-100 mm; vacuum the evaporation chamber, And filled with an inert protective gas, so that the pressure of the second vacuum evaporation zone is maintained at 1.5-100 Pa; the evaporation power of the second evaporation is set to 100-500W; and/or, the second evaporation is set The time is 5-30min.
  • a lithium ion battery in a fifth aspect, includes a positive pole piece, a negative pole piece, a separator, an electrolyte, and a casing, wherein the material of the positive pole piece or the negative pole piece is the first aspect Any implementation of the materials described in.
  • the method for preparing lithium ion battery electrode materials can obtain the lithium ion battery electrode material coated with a metal lithium coating and a protective coating outside the core body. Because the metal lithium coating is relative to the lithium-containing compound , The lithium content is higher, therefore, it can effectively supplement the active lithium ions in the battery chemical reaction, reduce the active lithium ions consumed by the formation of SEI during the first charge and discharge process, and improve the coulombic efficiency of battery materials.
  • using metallic lithium coating as a raw material for replenishing lithium ions can reduce the lithium ion diffusion barrier, increase the migration number of lithium ions, and increase the extraction or insertion efficiency of lithium ions, thereby improving the energy density and cycle stability of the lithium ion battery.
  • Figure 1 shows a schematic diagram of the structure of a lithium-ion battery.
  • FIG. 2 shows a schematic structural diagram of a lithium ion battery electrode material provided by an embodiment of the present application.
  • FIG. 3 shows a schematic structural diagram of another lithium ion battery electrode material provided by an embodiment of the present application.
  • FIG. 4 shows a schematic structural diagram of another lithium ion battery electrode material provided by an embodiment of the present application.
  • FIG. 5 shows a schematic flow chart of preparing electrode materials for lithium ion batteries by using a solid phase melting method provided by an embodiment of the present application.
  • FIG. 6 shows a schematic flow chart of preparing electrode materials for lithium ion batteries by a liquid phase reaction method provided in an embodiment of the present application.
  • FIG. 7 shows a schematic flow chart of preparing electrode materials for lithium-ion batteries by a vacuum evaporation method provided by an embodiment of the present application.
  • a device that uses the difference in potential between two electrodes to generate a potential difference, thereby allowing electrons to flow and generating current.
  • the primary battery can convert chemical energy into electrical energy.
  • the electrode where the current flows out has a higher potential, which is the positive electrode, and electrons are obtained for reduction; in the electrolytic cell, the positive electrode is the electrode connected to the positive electrode of the power source, and the loss of electrons plays a role of oxidation.
  • the electrode that the current flows into has a low potential, which is the negative electrode, which loses electrons to cause oxidation; in the electrolytic cell, the negative electrode is the electrode connected to the negative electrode of the power supply, and electrons are obtained for reduction.
  • the main function of the separator is to separate the positive and negative poles of the battery and place the two poles in contact to short-circuit.
  • the separator also has the function of allowing electrolyte ions to pass through.
  • Solid electrolyte interface solid electrolyte interface, SEI
  • an interface film is formed on the surface of the positive electrode or the negative electrode after charging/discharging, which has ionic conductivity and electronic insulation, and its properties are similar to solid electrolytes, which are usually called SEI films.
  • the lithiation reaction refers to a type of reaction in which lithium is introduced into the reactant.
  • lithium-ion batteries have been widely used in various fields due to their advantages such as large specific capacity, long cycle life, low self-discharge rate, safety and environmental protection.
  • the first charge of a lithium ion battery will form an SEI on the surface of the negative electrode, and its formation will consume part of the active lithium ions provided by the positive electrode, resulting in a decrease in the reversible capacity of the battery.
  • side reactions on the electrode surface increase, which reduces the coulombic efficiency (coulombic efficiency) and decreases the active lithium, resulting in poor cycle performance.
  • the coulombic efficiency of the material itself is lower than that of traditional graphite anodes (generally 92%), and with As the cycle progresses, the material expands, causing the SEI to be repeatedly generated and broken, resulting in the loss of more active lithium ions, and ultimately resulting in lower capacity, efficiency, and energy density of the battery cell. Therefore, if sufficient active lithium ions can be replenished before the operation of the lithium-ion battery, the energy density and cycle performance of the lithium-ion battery can be greatly improved, and users can obtain a better electronic device battery life experience.
  • alloy anode materials such as silicon carbon, silicon oxide, tin, etc.
  • the current pre-lithiation methods for lithium-ion batteries can include physical lithium supplementation technology, chemical lithium supplementation technology, and electrochemical prelithiation.
  • the brief process of each method and the defects are as follows:
  • (1) Physical Lithium Supplement Technology Directly introduce lithium metal (ultra-thin metal lithium foil or metal lithium powder) during homogenization or coating or rolling of battery materials, and perform pre-lithiation after liquid injection/formation. This technology requires The battery cell factory has a lithium metal operating environment such as a drying room (dew point ⁇ -50°C), which has a greater risk of fire and explosion.
  • a drying room dew point ⁇ -50°C
  • the process of a physical lithium replenishment technology is: adding lithium powder with a coating layer in the battery homogenization or coating process, where the coating layer may include wax and inorganic coatings (such as lithium carbonate, fluorinated Lithium, lithium phosphate, silicon dioxide, lithium silicate, etc.).
  • the coating layer may include wax and inorganic coatings (such as lithium carbonate, fluorinated Lithium, lithium phosphate, silicon dioxide, lithium silicate, etc.).
  • metal lithium powder with a coating layer as a raw material for replenishing lithium has a greater safety hazard.
  • Chemical lithium replenishment technology mainly use lithium-containing compounds or lithium-containing organic solutions or lithium salts, etc., which are introduced as additives or reaction media during homogenization, coating or rolling, and pre-lithiation is performed after liquid injection/formation.
  • chemical lithium supplementation is safer, but the efficiency of lithium supplementation is low, the reaction is complicated, and there may be problems such as gas production and instability of by-products, which may affect the energy density and/or cycle performance of the battery.
  • a method for chemically replenishing lithium uses a lithium-carbon composite material as a lithium-carbon composite material.
  • the lithium-carbon composite material contains carbon particles and metallic lithium filled inside or on the surface.
  • the efficiency of replenishing lithium is low.
  • the low density of the lithium-carbon composite material it will affect the volumetric energy density of the battery.
  • Electrochemical pre-lithiation mainly use the target and lithium-rich materials or metal lithium to assemble a half-cell device, and accurately control the de-intercalation reaction by adjusting the current and voltage, so as to achieve the target pre-lithiation, and then take out the pre-lithiation After the target was re-assembled and tested the battery, the whole process was complicated and time-consuming, mostly for academic research, and could not be mass-produced.
  • the pre-lithiation technology is an effective means to improve the energy density and cycle performance of the battery, but if the pre-lithiation material is not suitable, the pre-lithiation process will have a great safety risk, and even if the lithium supplement layer is obtained, It is impossible to achieve high-efficiency replenishment of lithium, so pre-lithiation on materials is an important technical means. How to achieve safe and efficient pre-lithiation has become one of the key issues in the field of lithium-ion battery research.
  • the embodiments of the present application provide a lithium ion battery electrode material and a preparation method of the lithium ion battery electrode material.
  • the prelithiation process can be reduced.
  • the efficiency of prelithiation is improved.
  • the lithium ion battery to which the lithium ion battery electrode material is applied is first introduced with reference to FIG. 1.
  • Figure 1 shows a schematic diagram of the structure of a lithium-ion battery.
  • the lithium ion battery includes a positive electrode, a negative electrode, an electrolyte, a diaphragm, and a corresponding circuit. It generates electric current through the directional flow of electrons between the positive electrode and the negative electrode to provide power to the device.
  • the positive electrode material may be an aluminum electrode
  • the aluminum electrode may also include materials such as LiMO 2 , where the M of LiMO 2 may be nickel, cobalt, or manganese.
  • the LiMO 2 may be lithium cobalt oxide LiCoO2, lithium nickel oxide LiNiO2, lithium manganate LiMn2O2, lithium nickel cobalt manganate LiNixCoyMnzO2, lithium nickel cobalt aluminate LiNi0.8Co0.15Al0.05, and the like.
  • the negative electrode material of the lithium ion battery can be a copper electrode.
  • the positive electrode material can be LiCoO2; the negative electrode material can be copper, such as copper foil.
  • lithium ions are extracted from the crystal lattice of the positive electrode material, and inserted into the negative electrode material after passing through the electrolyte, so that the negative electrode is rich in lithium and the positive electrode is poor in lithium; After passing through the electrolyte, it is inserted into the lattice of the positive electrode material, so that the positive electrode is rich in lithium and the negative electrode is poor in lithium.
  • the difference between the potential of the positive and negative electrode materials when inserting and extracting lithium ions relative to the metal lithium is the operating voltage of the battery.
  • lithium ion batteries (1) all active lithium ions come from the positive electrode material; (2) the number of active lithium ions in lithium ion batteries is limited. Therefore, whether it is due to the generation of SEI or the structural damage of the positive electrode/negative electrode, etc., it will cause the loss of active lithium ions, resulting in the degradation of the energy density and cycle performance of the lithium ion battery.
  • FIGS. 2 to 4 show schematic structural diagrams of electrode materials for lithium-ion batteries provided by embodiments of the present application.
  • the embodiments of the present application provide a lithium-ion battery electrode material with a metal lithium coating structure.
  • the material is a lithium-ion battery active material used to make a positive electrode or a negative electrode, which includes a core body and a coating on The metallic lithium coating on the core body and the metallic lithium protective layer covering the outside of the metallic lithium coating.
  • the lithium ion battery electrode material includes: a first core body, a metal lithium coating, and a protective coating.
  • the metallic lithium coating is coated on the surface of the first core body (as shown in Figure 2); the protective coating is coated on the outside of the metallic lithium coating, so that the metallic lithium coating is isolated from the air ( Figure 3 and Figure 3). 4).
  • the lithium ion battery electrode material may include primary particles and/or secondary particles.
  • the primary particles mentioned in the embodiments of the present application may be, for example, a core body covered with a lithium metal coating, and the outer layer of the lithium metal coating is covered with a lithium metal protective coating, and the protective coating is used to avoid metal
  • the lithium is in contact with the electrolyte or air in the electrode material of the lithium ion battery, so that the metal lithium coating has a higher lithium replenishing performance.
  • the structure of the secondary particles mentioned in the embodiments of the present application may be, for example, that after a plurality of nuclei are aggregated to form a nucleus, the outside of the nucleus is covered with a metal lithium coating, and the metal lithium coating is then covered with a protective coating. Layer; or, a plurality of nuclei with metallic lithium coating agglomerate to form a particle group (wherein, the surface of each nucleus may be coated with a metallic lithium coating), and the outer side of the nucleus group is coated with a protective coating.
  • the schematic structure of the primary particles may be as shown in FIG. 3, and the protective coating is coated on the outer side of the metallic lithium coating of a first core body.
  • the schematic structure of the secondary particles may be as shown in FIG. 4, and the protective coating is coated on the outer side of the metallic lithium coating of the plurality of first core bodies.
  • the secondary particles can be obtained by granulation.
  • the nucleus group mentioned above can be obtained after multiple nuclei are bonded.
  • the nucleus group can be formed by the aggregation of multiple nuclei;
  • the particle group can refer to the nucleus with a metal lithium coating.
  • the particle cluster is formed by the aggregation of multiple core bodies with metallic lithium coating.
  • the way to obtain secondary particles may be, for example, by controlling the temperature of the core body or the core body with a metallic lithium coating, so that the core body can form a particle group (nucleus body group) through the cohesiveness of its own material.
  • the method of obtaining secondary particles by granulation is not limited to this, and this application is not limited thereto.
  • the first core body may be a particle with a particle size of not less than 3um.
  • the core material may be any one commonly used as an electrode material of a lithium ion battery, such as graphite, which is not limited in the embodiments of the present application.
  • the material used to prepare the negative electrode of a lithium ion battery may include one or more of the following: silicon Si, nano silicon, micro silicon, silicon oxide, silicon oxide (SiOx, 0 ⁇ x ⁇ 2), silicon carbon ( Si/C), porous silicon, thin film silicon, tin, tin dioxide, germanium, germanium oxide, silicon tin alloy, silicon germanium alloy, lithium silicon alloy, phosphorus, lithium phosphorus alloy, cobalt oxide, iron oxide, artificial graphite (AG ), natural graphite (NG), hard carbon (HC), soft carbon, mesophase carbon microspheres (CMCB), lithium titanate, carbon nanotubes (CNT), graphene, carbon fiber, activated carbon, porous carbon , Acetylene Black (AB), Ketjen Black, etc.
  • the material used to prepare the positive electrode of a lithium ion battery may include one or more of the following: lithium cobalt oxide (LCO), lithium nickel cobalt manganate (NCM), lithium nickel cobalt aluminate (NCA), manganese acid Lithium, lithium nickelate, lithium-rich manganese base, lithium iron phosphate, lithium cobalt phosphate, lithium cobalt phosphate, lithium vanadium phosphate, lithium iron sulfate fluoride, sulfur, lithium sulfide, selenium, lithium selenide, iron fluoride, fluoride Cobalt, nickel fluoride, copper fluoride, bismuth fluoride, iron oxyfluoride, etc.
  • LCO lithium cobalt oxide
  • NCM lithium nickel cobalt manganate
  • NCA lithium nickel cobalt aluminate
  • manganese acid Lithium, lithium nickelate, lithium-rich manganese base lithium iron phosphate, lithium cobalt phosphate, lithium cobalt phosphate
  • the specific material of the first core body may include any one or more of the following: silicon (Si), nano silicon, micro silicon, silicon oxide, silicon oxide (SiOx, 0 ⁇ x ⁇ 2) , Silicon carbon (Si/C), porous silicon, thin film silicon, lithium silicon alloy, artificial graphite (AG), natural graphite (NG), hard carbon (HC), soft carbon, mesophase carbon microspheres (CMCB), carbon Nanotubes (CNT), graphene, carbon fiber, activated carbon, porous carbon, acetylene black (AB), Ketjen black, etc.
  • the material of the first core body may further include a doping element.
  • the doped element is, for example, one or more of nitrogen, oxygen, boron, phosphorus, sulfur, chlorine, fluorine, lithium, sodium, magnesium, aluminum, titanium, lanthanum, tungsten, niobium, calcium, zirconium, and the like.
  • anode materials, cathode materials, and materials of the first core body of the lithium ion battery listed above are only exemplary examples, and they may also include various other materials, which are not limited in the embodiments of the present application.
  • the metallic lithium coating is coated on the outer side of the first core body to completely cover the surface of the first core body, so as to realize the prelithiation of the first core body and the effect of the battery material.
  • the efficient replenishment of lithium since the lithium ion concentration in the metal lithium coating is higher than that of the lithium-containing compound, the use of metal lithium as the lithium supplement coating can achieve efficient lithium supplementation, and the process of obtaining the metal lithium coating It also has high security. The process of obtaining the metallic lithium coating will be described in detail below.
  • the embodiment of the present application may prepare the metal lithium coating by a physical or chemical method.
  • the method for preparing the metal lithium coating may include one or more of the following: mechanical stirring method, high-energy ball milling method, mechanical fusion method, in-situ growth method, epitaxial growth method, atomic layer deposition method, vapor deposition method, magnetic Controlled sputtering method, liquid phase reaction method, sol-gel method, solvothermal method, vacuum thermal deposition method, plasma sputtering method, microwave reaction method, high temperature melting method, etc., which are not limited in this application.
  • the specific preparation process of the metal lithium coating by different methods will be described in detail below.
  • the lithium ion battery electrode material provided in the embodiments of the present application uses metallic lithium as the coating material outside the core body, which can improve the coulombic efficiency of the battery material, reduce the lithium ion diffusion barrier, and increase the lithium ion migration number.
  • metallic lithium as a lithium-supplementing coating can also reduce the polarization of the lithium ion concentration on the surface of the material, improve the extraction or insertion efficiency of lithium ions, and thus improve the cycle performance of the battery.
  • the protective coating is used to isolate the nucleus and the metallic lithium coating from electrolyte or air, so as to increase its service life, thereby increasing the efficiency of replenishing lithium.
  • the material of the protective coating can be inorganic or polymer.
  • the inorganic substance may include one or more of the following: graphite, mesoporous carbon spheres, boron nitride, hard carbon, soft carbon, mesophase carbon Microspheres, carbon nanotubes, graphene, carbon fiber, activated carbon, porous carbon, acetylene black AB, Ketjen black, pitch, silicon oxide, aluminum oxide, magnesium oxide, lanthanum oxide, titanium oxide, zinc oxide, barium titanate, Lithium nitride, lithium phosphorus oxygen nitrogen LIPON, lithium titanium aluminum phosphate LATP, lithium aluminum germanium phosphate LAGP, lithium lanthanum zirconium oxide LLZO, lithium lanthanum titanium oxide LLTO, lithium germanium phosphorus sulfur Li 10 GeP 2 S 12 , Li 9.54 Si 1.74 P 1.44 S 11.7 Cl 0.3 , Li 2 CO 3 , LiBF 4 , Li 4 SiO 4 , Li 2 TiO 3
  • the polymer when the material of the protective coating is a polymer, the polymer may include one or more of the following: polypyrrole, polyacrylic acid PAA, polyvinyl alcohol PVA, polymethyl methacrylate PMMA, Polymethyl acrylate, polyethyl methacrylate, polyethyl acrylate, polypropyl methacrylate, polypropyl acrylate, polybutyl acrylate, polybutyl methacrylate, polypentyl methacrylate, polyacrylic acid Amyl ester, polycyclohexyl methacrylate, polycyclohexyl acrylate, polyhexyl methacrylate, polyhexyl acrylate, poly(glycidyl acrylate), polyglycidyl methacrylate, polyvinylidene fluoride PVDF , Polystyrene, hydrogenated polystyrene, polyvinylpyridine, polyvinylcyclohexane, polyimide PI, polyamide
  • the following list is only an example, not an exhaustive list, and it does not limit the application.
  • the lithium ion battery electrode material of the pole piece of the lithium ion battery electrode material includes: the material is a first core body of SiOx/graphite, where 0 ⁇ x ⁇ 2; metal lithium coating; and the material is carbon C's protective coating.
  • the lithium ion battery electrode material of the pole piece of the lithium ion battery electrode material includes: a first core body made of SiOx/CNT/graphite, where 0 ⁇ x ⁇ 2; metal lithium coating; material It is a protective coating of polyacrylic acid PAA.
  • the lithium ion battery electrode material of the pole piece of the lithium ion battery electrode material includes: the material is a first core body of SiOx/C, where 0 ⁇ x ⁇ 2; metal lithium coating; and the material is carbonic acid Lithium Li 2 CO 3 protective coating.
  • the lithium ion battery electrode material of the pole piece of the lithium ion battery electrode material includes: a first core body made of SiOx/C, where 0 ⁇ x ⁇ 2; a metal lithium coating; and a material of PAA Protective coating.
  • the lithium ion battery electrode material of the pole piece of the lithium ion battery electrode material includes: a first core body whose material is SiOx/C/CNT, where 0 ⁇ x ⁇ 2; metal lithium coating; material It is a protective coating for Li 2 CO 3.
  • the lithium ion battery electrode material of the pole piece of the lithium ion battery electrode material includes: a first core body made of SiOx/C/graphite, where 0 ⁇ x ⁇ 2; metal lithium coating; material It is a protective coating of polydimethylsiloxane PDMS.
  • the lithium ion battery electrode material of the pole piece of the lithium ion battery electrode material includes: a first core body made of silicon Si; a metal lithium coating; and a protective coating made of lithium phosphate Li 3 PO 4 .
  • the lithium ion battery electrode material of the pole piece of the lithium ion battery electrode material includes: the material is the first core body of silicon carbon material Si/C; the metal lithium coating; the material is the lithium aluminum germanium aluminum phosphate LAGP Protective coating.
  • the lithium ion battery electrode material of the pole piece of the lithium ion battery electrode material includes: the material is the first core body of the silicon carbon material Si/C; the metal lithium coating; the material is the protective coating of polyacrylic acid PAA Floor.
  • the lithium ion battery electrode material of the pole piece of the lithium ion battery electrode material includes: the material is the first core body of lithium cobalt oxide LCO; the metal lithium coating; the material is the protective coating of lithium aluminum germanium phosphate LAGP Floor.
  • the lithium ion battery electrode material of the pole piece of the lithium ion battery electrode material includes: the material is the first core body of the lithium nickel cobalt manganate NCM; the metal lithium coating; the material is the protection of Li 3 PO 4 coating.
  • the lithium ion battery electrode material of the pole piece of the lithium ion battery electrode material includes: the material is the first core body of nickel cobalt lithium aluminate NCA; the metal lithium coating; the material is the protection of Li 3 PO 4 coating.
  • the electrode material of the lithium ion battery of the pole piece of the electrode material of the lithium ion battery includes: a first core body made of hard carbon; a metal lithium coating; and a protective coating made of polyacrylic acid PAA.
  • the core body and protective coating of the lithium ion battery electrode material provided in the examples of this application can be of various types, while the material of the lithium supplement coating is metallic lithium, and its purpose is mainly to improve the efficiency of lithium supplement. And improve the safety in the preparation process of the electrode material of the lithium ion battery.
  • the preparation method of the lithium ion battery electrode material provided in the embodiments of the present application will be introduced below.
  • the lithium ion battery electrode materials provided in the embodiments of the present application can be prepared by various methods, such as a solid phase melting method, a liquid phase reaction method, and a vacuum evaporation method.
  • FIG. 5 shows a schematic flow chart of preparing electrode materials for lithium ion batteries by using a solid phase melting method provided by an embodiment of the present application.
  • the solid-phase melting method for preparing electrode materials of lithium-ion batteries may include the following steps:
  • metallic lithium is placed in a crucible, and the crucible is placed in a heating device (such as a heating furnace) to heat the metallic lithium to a molten state.
  • a heating device such as a heating furnace
  • the heating temperature of the heating device may be set in the range of 150-500°C, wherein the heating rate of the heating device may be set in the range of 1-10°C/min.
  • the raw material used to prepare the molten metal lithium may be, for example, metal lithium foil or metal lithium powder or metal lithium ingot.
  • the heating device is evacuated and filled with an inert gas (such as argon) to control the content of water and oxygen in the heating device Less than 0.1ppm.
  • an inert gas such as argon
  • the crucible used to carry metallic lithium may be an aluminum crucible or a tantalum crucible, or any other crucible that does not react with lithium and has stable performance under high temperature conditions.
  • the first core body can be immersed in the molten metal lithium according to the pre-designed stoichiometric ratio of the first core body and the metal lithium, so that the molten metal lithium can be coated on the first core body. surface. Specifically, the molten metal lithium can completely cover the surface of the first core body.
  • the first nucleus body is weighed according to the ratio range of 0.8-1.2:1 molar ratio of the first nucleus body and metallic lithium.
  • the first core body may be granular, specifically, it may be a primary particle or a secondary particle.
  • metallic lithium can cover the surface of the first core body in contact with air.
  • the specific material of the first core body may include any one or more of the following: silicon (Si), nano silicon, micro silicon, silicon oxide, silicon oxide (SiOx, 0 ⁇ x ⁇ 2) , Silicon carbon (Si/C), porous silicon, thin film silicon, lithium silicon alloy, artificial graphite (AG), natural graphite (NG), hard carbon (HC), soft carbon, mesophase carbon microspheres (CMCB), carbon Nanotubes (CNT), graphene, carbon fiber, activated carbon, porous carbon, acetylene black (AB), Ketjen black, etc.
  • the stirring time can be set to 1-2h, for example.
  • the temperature of the first core body is lowered, where the temperature reduction rate may be, for example, 5-20° C./min.
  • the temperature of the first core body can be quickly reduced to the first temperature to obtain a core body with a metallic lithium coating, wherein the first temperature is any temperature (such as room temperature) lower than the melting point of metallic lithium.
  • the temperature can be quickly cooled until the metal lithium solidifies on the surface of the first core body to form a dense lithium metal coating.
  • heating temperature, heating speed, heating time, stirring time, cooling speed, cooling time, and the temperature to be lowered and other parameters involved in the above process can be set in advance through the program of the heating device.
  • the protective coating may be a protective coating coated on the outer side of the metallic lithium coating by coating the first solution on the surface of the metallic lithium coating, and after the first solution is vacuum dried.
  • the first solution may be a solution formed by dissolving polyacrylic acid PAA into dimethyl sulfoxide DMSO. Specifically, according to the pre-designed composition, dissolve PAA in DMSO, and heat and stir the solution.
  • the heating temperature can be, for example, 30-80°C, and the stirring time can be, for example, 1-12h, so that PAA is in DMSO. Mix well in the mixture.
  • the mass percentage of PAA in DMSO may be 0.1-0.5%, for example.
  • the core body with the lithium metal coating is immersed in the first solution prepared in advance, and the first core body with the lithium metal coating is stirred so that the outside of the lithium metal coating is fully infiltrated into the first solution.
  • a solution; the first solution mixed with the first core body is filtered to obtain the first core body coated with the first solution; the first core body coated with the first solution is vacuum dried to make the first core body
  • a solution forms a protective coating on the metal lithium surface of the first core body.
  • the metal lithium coating of the first core body can also be coated with the first solution, so that the first solution can completely infiltrate or cover the metal lithium coating; for the first solution coated with the first solution A core body is vacuum dried, so that the first solution forms a protective coating on the surface of the metal lithium of the first core body.
  • the temperature for vacuum drying the first core body coated with the first solution can be set within a temperature range of 50-80°C. After vacuum drying, the product can be collected to obtain a lithium ion battery electrode material with protective coating, metal lithium coating and core structure.
  • FIG. 6 shows a schematic flow chart of preparing electrode materials for lithium ion batteries by a liquid phase reaction method provided in an embodiment of the present application.
  • the liquid phase reaction method is a process in which a solution is completely infiltrated on the surface of the core body and then dried to obtain a lithium ion battery electrode material with a coating structure.
  • the process of forming a metallic lithium coating is: dissolving metallic lithium into a solution containing an aprotic polar solvent to form a solution with a certain concentration of lithium ions, after the solution is infiltrated on the surface of the core body, the core body is dried , So that the solvent evaporates, and the lithium ions can then remain on the surface of the core body to form a lithium metal coating.
  • the molecules of aprotic polar solvents are polar, so they will produce a solvation effect on the solute molecules, that is, the solvent molecules surround the solute molecules.
  • the first solution is a solution containing an aprotic polar solvent.
  • the configuration process of the first solution can be, for example, in an inert gas atmosphere (water and oxygen content less than 0.1 ppm), in accordance with a pre-designed ratio, anhydrous benzene rings containing conjugated double bonds
  • the compound is dissolved in an anhydrous aprotic polar solvent to form a mixed solution, and the mixed solution is the first solution.
  • anhydrous benzene ring compounds containing conjugated double bonds may include, for example, aromatic compounds, biphenyls, and fused ring aromatic compounds, preferably biphenyl and its derivatives, terphenyl , Tetraphenyl, naphthalene, anthracene, phenanthrene, benzophenone, etc.; aprotic polar solvents can include, for example: acetonitrile (CH3CN), dimethylformamide (DMF), 1,3-dimethyl-2- Imidazolinone (DMI), dimethyl sulfoxide (DMSO), hexamethylphosphoric triamide (HMPA), tetrahydrofuran, dioxolane, dimethyl ether, glyme, crown ether, diethyl ether, Methyl ethyl ether, methyl amyl ether, ethylene glycol dimethyl ether, ethylene glycol dibutyl ether, diethylene glycol dibutyl ether, diethylene
  • a specific amount of metallic lithium (such as metallic lithium foil or metallic lithium powder) is dissolved in a pre-configured first solution to form a second solution, wherein the second solution
  • the solution is a lithium-containing solution containing a certain concentration of lithium ions.
  • the process of dissolving lithium metal into the first solution and obtaining the second solution can be, for example, dissolving lithium metal powder or metal lithium foil in the first solution, where, in order to speed up the dissolution, the metal The first solution of lithium is stirred until the metallic lithium is completely dissolved in the first solution.
  • the amount of metal lithium can be determined according to the pre-designed required lithium concentration in the second solution, where the molar concentration of lithium in the second solution can be, for example, 0.1-2 mol/L.
  • a certain amount of the second solution can be dripped onto the surface of the first core body, and the dripping may be repeated several times until the surface of the first core body is completely infiltrated; and then the surface is infiltrated by the lithium-containing solution.
  • the second nucleus body is dried to evaporate the organic solvent in the solution to obtain a nucleus body with a lithium metal coating on the surface.
  • the third solution can be used, for example, to prepare the first core body and the protective coating on the outer side of the metallic lithium.
  • the configuration process of the third solution may be, for example, mixing the inorganic-organic composite with the aprotic polar solvent and then stirring into a uniform slurry to form the third solution.
  • the inorganic-organic compound may include one or more of the following: metal-organic framework UiO-66, HKUST-1, MOF-5, ZIF-8;
  • the aprotic polar solvent may include, for example, one or more of the following Species: acetonitrile (CH3CN), dimethylformamide (DMF), 1,3-dimethyl-2-imidazolinone (DMI), dimethyl sulfoxide (DMSO), hexamethylphosphoric triamide (HMPA), tetrahydrofuran, dioxolane, dimethyl ether, glyme, crown ether, diethyl ether, methyl ethyl ether, methyl amyl ether, ethylene glycol dimethyl ether, ethylene glycol dibutyl ether, diethylene two Dibutyl alcohol, ethylene glycol diethyl ether, tetramethylethylenediamine, tetramethylpropylenediamine, pentamethyldiethanoltri
  • the third solution is applied to the surface with the lithium metal coating
  • the process of forming the protective coating may be: drop-coating the third solution on the surface of the lithium metal coating to make the second The three solutions completely cover the lithium metal coating, wherein the dripping process can be repeated until the third solution completely infiltrates or coats the lithium metal coating.
  • the time for coating the surface of the lithium metal coating can be set to 0.2-2h; vacuum drying the core body after coating the third solution to obtain a lithium ion battery electrode material with a protective layer, a metal lithium coating and a core body structure.
  • the temperature of vacuum drying can be set to 50-80°C.
  • FIG. 7 shows a schematic flow chart of preparing electrode materials for lithium-ion batteries by a vacuum evaporation method provided by an embodiment of the present application.
  • S301 Perform a single vapor deposition on the first core body, so that the first core body is coated with a metal lithium coating, and the evaporation source of the first vapor deposition is metal lithium.
  • the one-time evaporation involved in the vacuum evaporation method refers to the use of metallic lithium as the evaporation source, and by controlling the heating temperature, the metallic lithium evaporates and adheres to the surface of the first core body to form Lithium metal coating.
  • the specific process may include: placing a plurality of first core bodies in the first vacuum evaporation zone, where the first vacuum evaporation zone includes metal lithium as the evaporation source, and after being placed in the first core body,
  • the first evaporation zone can be evacuated and filled with an inert protective gas (such as argon), and the pressure of the first evaporation zone can be controlled to reach a preset pressure value by filling the volume of the inert gas.
  • an inert protective gas such as argon
  • the air pressure value can be, for example, 10-300 Pa; heating the metal lithium source to evaporate the metal lithium, wherein the heating temperature of the metal lithium source can be set to, for example, 200-900°C, and the evaporation time can be set to, for example, 0.5 Any time within the time range of -24h.
  • first core bodies in order to increase the contact area between the first core body and the "lithium vapor" obtained by evaporating the lithium source, when the first core body is placed in the first evaporation chamber, multiple first core bodies can be Tile in the evaporation area.
  • the product obtained in step S301 can be transferred to the second vacuum evaporation chamber, wherein the second evaporation chamber includes phosphoric acid Evaporation coating chamber for lithium Li 3 PO 4 targets.
  • the second vapor deposition chamber is evacuated, wherein the pressure of the second vapor deposition chamber after the evacuated The value may not be higher than 1 ⁇ 10 -4 P.
  • the evacuated second vapor deposition chamber can also be filled with high-purity nitrogen, and the pressure of the second vapor deposition chamber can reach a preset pressure value by controlling the amount of nitrogen filled, where the preset pressure value can be, for example, It is 1.5Pa.
  • the distance between the target material and the core can be controlled to reach a preset distance
  • the evaporation power of the second evaporation chamber is the preset power
  • the preset distance may be 50, for example. -100mm
  • the preset power can be 100-500W, for example.
  • the method for preparing lithium ion battery electrode materials can obtain the lithium ion battery electrode material coated with a metal lithium coating and a protective coating outside the core body. Because the metal lithium coating is relative to the lithium-containing compound , The lithium content is higher, therefore, it can effectively supplement the active lithium ions in the battery chemical reaction, reduce the active lithium ions consumed by the formation of SEI during the first charge and discharge process, and improve the coulombic efficiency of battery materials.
  • using metallic lithium coating as a raw material for replenishing lithium ions can reduce the lithium ion diffusion barrier, increase the migration number of lithium ions, and increase the extraction or insertion efficiency of lithium ions, thereby improving the energy density and cycle stability of the lithium ion battery.
  • the embodiment of the present application also provides a lithium ion battery.
  • the lithium ion battery includes a positive pole piece, a negative pole piece, a separator, an electrolyte, and a casing.
  • the material of the positive pole piece or the negative pole piece may include the lithium ion battery electrode material provided in the above embodiments of the present application.
  • the battery electrode material includes a core, a lithium metal coating on the surface of the core, and a protective coating on the surface of the lithium metal coating.
  • the preparation process of the electrode material for lithium ion batteries with the core material being silicon oxide, the coating being metal lithium and the protective coating material being PAA is introduced.
  • This embodiment provides an electrode material for a lithium ion battery that uses PAA as a protective coating, metallic lithium as a lithium supplemental coating, and silicon oxide as a core body.
  • the process of preparing a composite material having a PAA protective layer, a metal lithium coating and a silicon oxide core and a lithium ion battery including the composite material may include the following steps:
  • the metal lithium is placed in the crucible and placed into the heating device, where the metal lithium can be metal lithium foil or metal lithium powder or metal lithium ingot ;
  • Program the heating device to increase the temperature to heat the metal lithium to a molten state, where the heating rate can be, for example, 2°C/min, and the final heating temperature can be 300°C; take the silicon oxide (particle size can be 0-5um), according to The Si and Li molar ratio is 2:1, and the mixture is evenly mixed and stirred for 1 hour, and then the temperature is rapidly reduced by the program (the cooling rate can be -20°C/min) to room temperature to obtain the precursor material of the silicon oxide precursor with the metal lithium coating.
  • exemplary, according to the pre-configured ingredients take a quantitative amount of polyacrylic acid PAA (molecular weight Mw ⁇ 450,000) and dissolve it in DMSO, and set the heating temperature to 60° C. and the stirring time to 6 hours to prepare a 0.25% PAA solution in DMSO;
  • the precursor material of the silicon oxide coated with lithium metal was added to the above PAA/DMSO, mixed and stirred for 2 hours, filtered, dried under vacuum at 60°C, and the product was collected to obtain the polyacrylic acid PAA coated with the oxidation of lithium metal coating Sub-silicon composite material.
  • the conductive agent may be, for example, conductive carbon black (Super P).
  • the binder can be PAA, for example; the slurry is coated on the surface of the copper foil, and then vacuum-baked at 120°C for 12 hours, then rolled and cut to obtain the negative electrode sheet; with the nickel cobalt lithium manganate positive electrode, use mole LiPF6/(EC+DEC, 1:1) electrolyte with a concentration of 1mol/L, using polypropylene or polyethylene single-layer or multi-layer separators, is made into a soft pack battery of about 130mAh for battery testing and use.
  • the preparation process of the lithium ion battery electrode material with the core material of silicon oxide and carbon nanotube composite material SiOx/CNT, the coating of metal lithium and the protective coating material of PAA is introduced.
  • This embodiment provides an electrode material for a lithium ion battery that uses PAA as a protective coating, metallic lithium as a lithium supplemental coating, and a composite material of silicon oxide and carbon nanotubes as a nucleus.
  • the process of preparing a composite material having a PAA protective layer, a metal lithium coating and a silicon oxide and carbon nanotube composite material core and a lithium ion battery including the composite material may include the following steps:
  • the silicon oxide particle size of 3-10um
  • the single-walled carbon nanotube dispersion and mix stir uniformly and spray dry to obtain the carbon nanotube cross-linked coated silicon oxide secondary particles (particles)
  • the diameter is 0-9um) composite material; put a certain amount of metal lithium foil or metal lithium powder in a crucible to program the temperature, and heat the metal lithium to a molten state, where the heating rate can be set to 2°C/min, and the heating temperature can be set The temperature is 450°C; according to the molar ratio of Si and Li 1:1, weigh the composite material of silicon oxide and carbon nanotubes and add them to the molten lithium, mix well, stir for 0.3h, and then the program will cool down rapidly (the cooling speed can be set to 30° C./min) to room temperature to obtain a precursor material of a composite material of silicon oxide and carbon nanotubes with a metallic lithium coating structure.
  • PAA molecular weight Mw ⁇ 450,000
  • DMSO molecular weight Mw ⁇ 450,000
  • the precursor material of the silicon and carbon nanotube composite material was added to PAA/DMSO, mixed and stirred for 1 hour, filtered, vacuum dried at a temperature of 60°C, and the product was collected to obtain polyacrylic acid PAA coated with lithium metal coating Composite material of silicon oxide and carbon nanotubes.
  • the conductive agent and the binder are uniformly stirred according to a mass ratio of 75:10:15 to obtain a slurry.
  • the conductive agent may be, for example, conductive carbon black (Super P), the binder can be PAA, for example; the slurry is coated on the surface of the copper foil, and the slurry is vacuum-baked at 120°C for 12 hours, then rolled and cut to obtain a negative electrode sheet; with nickel cobalt manganese acid Lithium positive electrode, using 1mol/L LiPF6/(EC+DEC, 1:1) electrolyte, and using a single-layer or multi-layer battery separator made of polypropylene or polyethylene to make a soft pack battery of about 130mAh. For battery testing and use.
  • the preparation process of the electrode material of lithium ion battery whose core material is silicon carbon material Si/C, the coating is metal lithium and the protective coating material is PAA is introduced.
  • This embodiment provides an electrode material for a lithium ion battery using PAA as a protective coating, metallic lithium as a lithium supplemental coating, and silicon carbon material Si/C as a core body.
  • the process of preparing a composite material having a PAA protective coating, a metal lithium coating and a silicon-carbon material Si/C core and a lithium ion battery including the composite material may include the following steps:
  • the silicon carbon raw material (particle size, for example, 3-10um) and pitch are mixed in proportion (such as 1:0.05), heated to 600°C at a heating rate of 5°C/min, and stirred for 1 hour for coating manufacturing
  • silicon-carbon secondary particles coated with carbon (particle size 0-12um) battery material Si/C in an argon-filled environment (water and oxygen content ⁇ 0.1ppm), according to the volume ratio 1:1
  • PAA molecular weight Mw ⁇ 450000
  • DMSO dimethyl methacrylate
  • the precursor material of Si/C was added to PAA/DMSO, mixed and stirred for 1 hour, filtered, vacuum dried at 60°C, and the product was collected to obtain polyacrylic acid PAA coated silicon carbon with lithium metal coating Si/C composite material.
  • the conductive agent and the binder are uniformly stirred according to a mass ratio of 75:10:15 to obtain a slurry.
  • the conductive agent may be, for example, conductive carbon black (Super P), the binder may be PAA, for example; the slurry is coated on the surface of the copper foil, and then vacuum-baked at 120°C for 12 hours, then rolled and cut to obtain a negative electrode sheet; combined with lithium nickel cobalt manganate
  • the preparation process of the lithium ion battery electrode material with the core material being lithium cobalt oxide LCO, the coating being metal lithium and the protective coating material being lithium phosphorus oxynitride LiPON is introduced.
  • This embodiment provides an electrode material for a lithium ion battery that uses lithium phosphorus, oxygen, nitrogen, LiPON as the protective coating, metal lithium as the lithium supplemental coating, and lithium cobalt oxide LCO as the nucleus.
  • the process of preparing a composite material having a LiPON protective coating, a metal lithium coating and an LCO core and a lithium ion battery including the composite material may include the following steps:
  • Exemplarily take a certain amount of lithium cobalt oxide LCO particles and spread it in the evaporation zone of the vacuum chamber, pass in argon gas to adjust and control the pressure of the evaporation zone to be about 200Pa, set the heating temperature of the lithium source to 500°C, and the evaporation time to be 2h , The precursor material of lithium cobalt oxide LCO with metal lithium coating is obtained.
  • the lithium cobaltate LCO precursor material having a coating of metal lithium was transferred to a target containing Li 3 PO 4 (e.g., a purity of 99.9% and a diameter of 50mm, a thickness of 4mm Li 3 PO 4) of the vapor deposition chamber, Vacuum so that the pressure in the coating chamber reaches 1 ⁇ 10 -4 Pa, and then evaporate it in high-purity nitrogen for 20 minutes.
  • the working pressure is controlled by the amount of nitrogen filled, for example, 1.5 Pa; in addition, the target and core particles are controlled.
  • the distance can be 100mm, and the evaporation power can be 100W, to obtain a lithium cobalt oxide LCO composite material coated with lithium phosphorus, oxygen, nitrogen, LiPON, and having a lithium metal coating.
  • the conductive agent and the binder are uniformly stirred according to a mass ratio of 75:10:15 to obtain a slurry.
  • the conductive agent may be, for example, conductive carbon black (Super P)
  • the binder can be, for example, polyvinylidene difluoride (PVDF); the slurry is coated on the surface of the copper foil, and after being vacuum-baked at 120°C for 12 hours, it is rolled and cut.
  • the lithium ion battery electrode materials provided in the embodiments of the present application are not limited to the above-listed ones.
  • the lithium supplemental coating is metallic lithium
  • the core material and metallic lithium protective coating materials may also include other materials. There are many, and this application is not limited to this.
  • the method for preparing lithium ion battery electrode materials can obtain lithium ion battery electrode materials coated with a metal lithium coating and a protective coating outside the core body, wherein the lithium metal coating has a high efficiency of replenishing lithium. Function, because compared with the lithium-containing compound as the lithium supplement coating, the lithium content in the metal lithium coating is higher and does not produce by-products. Therefore, it can effectively supplement the active lithium ions in the battery chemical reaction and reduce the first charge. During the discharge process, active lithium ions such as SEI are formed, which improves the coulombic efficiency of battery materials.
  • metallic lithium coating as a raw material for replenishing lithium ions can reduce the lithium ion diffusion barrier, increase the migration number of lithium ions, improve the extraction or insertion efficiency of lithium ions, and increase the rate performance of battery materials, thereby improving the performance of lithium ion batteries. Energy density and cycle stability.
  • the presence of the lithium metal protective layer can prevent side reactions between the lithium metal coating structure and water, oxygen, nitrogen in the air, and improve safety. At the same time, it can alleviate the metal lithium coating structure and electrolysis. The side reaction of the liquid, thereby improving the stability of the battery material and improving the battery cycle stability.
  • the preparation method of the lithium-ion battery electrode material with a metallic lithium coating structure provided by the embodiments of the present application is simple, has good repeatability, and has high economic benefits.
  • the metallic lithium coating in the embodiments of the present application may also be other metallic coating structures, such as metallic sodium coating structures.
  • the metal potassium coating structure or the metal tin coating structure, etc., the specific metal element types can be selected according to needs. But in the field of lithium-ion batteries, the main concern is metal lithium coating.

Abstract

一种锂离子电池电极材料及其制备方法,属于锂离子电池领域;其中,该锂离子电池电极材料包括:至少一个第一核体;金属锂涂层,所述金属锂涂层包覆在所述至少一个第一核体表面;保护涂层,所述保护涂层包覆在所述金属锂涂层外侧,使得所述金属锂涂层与空气隔绝;该锂离子电池电极材料能够在电池化学反应中有效地补充活性锂离子,减少首次充放电过程中形成SEI等消耗的活性锂离子,提高电池材料的库伦效率;此外,采用金属锂涂层作为补充锂离子的原料,可以降低锂离子扩散势垒,提高锂离子迁移数,提高锂离子的脱出或嵌入效率,从而提高锂离子电池的能量密度和循环稳定性。

Description

一种锂离子电池电极材料及其制备方法
本申请要求于2019年12月04日提交中国专利局、申请号为201911229146.2、发明名称为“一种锂离子电池电极材料及其制备方法”的专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及锂离子电池领域,更为具体地,涉及一种锂离子电池电极材料及其制备方法。
背景技术
随着科技发展和社会进步,越来越多的智能移动终端进入到人们的视野,如智能穿戴式设备(如手环、手表、智能眼镜、增强现实(augmented reality,AR)识别技术设备以及虚拟现实技术(virtual reality,VR)设备等)、便携式电子器件(如智能手机、平板电脑以及笔记本电脑等)、无人机、智能家用机器人和智能电动汽车等。这些新事物的出现极大地丰富和便利了人们的生活,提高了整个社会的生产效率,同时也反向对移动终端的储能系统提出了更高的需求,如高续航时间、更快的充电速度、更高的能量密度、更长的循环寿命和更好的安全保障。
目前,提高锂离子电池性能的一种常用方法是对锂离子电池电极材料预锂化。但是,就目前的预锂化手段来说,还未能提出一种安全性高、预锂化效率高的手段,使得锂离子材料能够满足用户对电池性能的要求。
发明内容
本申请实施例提供了一种锂离子电池电极材料及其制备方法,能够解决预锂化效率低导致的电池能量密度低和循环性能差的问题。
第一方面,提供了一种锂离子电池电极材料,包括:一个或多个第一核体;金属锂涂层,所述金属锂涂层包覆在所述一个或多个第一核体表面;保护涂层,所述保护涂层包覆在所述金属锂涂层外侧,使得所述金属锂涂层与空气隔绝。
可选地,本申请实施例提供的锂离子电池电极材料可以用于制备锂离子电池的电极极片,如正极极片或负极极片。
可选地,该电池电极材料可以包括一次颗粒和二次颗粒。其中,一次颗粒的结构可以是:保护涂层包裹具有金属锂涂层的单个核体。二次颗粒的结构可以是:多个核体团聚后包裹有金属锂涂层,该金属锂外侧再包裹有保护涂层,换句话说,二次颗粒可以是多个核体先团聚到一起,形成核体团,在该核体团外侧再包裹金属锂涂层以及保护涂层;或者,二次颗粒还可以是多个包裹有金属锂涂层的核体团聚后,形成多个具有金属锂涂层的核体颗粒团,在该颗粒团外侧再包裹保护涂层,换句话说,金属锂涂层包裹单个核体形成颗粒,多个该颗粒通过粘结等方式团聚为颗粒团,该颗粒团外侧包裹保护涂层后即可以得到上述 所说的二次颗粒。
可选地,每个第一核体表面均包覆有金属锂涂层。每个第一核体的金属锂涂层的外侧包覆有保护涂层或者多个具有金属锂涂层的第一核体聚集在一起(如造粒得到二次颗粒)后,该保护涂层可以包覆在多个第一核体金属锂涂层的外侧。
应理解,金属锂涂层作为补锂涂层相对于含锂化合物作为补锂涂层而言,锂的含量更高,因此,能够在电池化学反应中有效地补充活性锂离子,减少首次充放电过程中形成SEI等消耗的活性锂离子,提高电池材料的库伦效率。
可选地,保护涂层可以包覆在一个或多个第一核体的金属锂涂层外侧。
应理解,该保护涂层可以是金属锂涂层的保护涂层,用于使得金属锂与空气中的氧、氮等或者电解质溶液发生接触,提高了金属锂涂层的使用寿命,进而提升了锂离子电池的能量密度和循环性能。
结合第一方面,在第一方面的某些实现方式中,所述保护涂层的材料为无机物或聚合物。
结合第一方面,在第一方面的某些实现方式中,当所述保护涂层的材料为无机物时,所述无机物包括以下任意一种或多种:石墨、介孔碳球、氮化硼、硬碳、软碳、中间相碳微球、碳纳米管CNT、石墨烯、碳纤维、活性碳、多孔碳、乙炔黑AB、科琴黑、沥青、氧化硅、氧化铝、氧化镁、氧化镧、氧化钛、氧化锌、钛酸钡、氮化锂、锂磷氧氮LIPON、磷酸钛铝锂LATP、磷酸锗铝锂LAGP、锂镧锆氧LLZO、锂镧钛氧LLTO、锂锗磷硫Li 10GeP 2S 12、Li 9.54Si 1.74P 1.44S 11.7Cl 0.3、Li 2CO 3、LiBF 4、Li 4SiO 4、Li 2TiO 3、LiNbO 3、Li 3PO 4、LiF、石蜡以及金属-有机骨架材料。
结合第一方面,在第一方面的某些实现方式中,当所述保护涂层的材料为聚合物时,所述聚合物包括以下任意一种或多种:聚吡咯、聚丙烯酸PAA、聚乙烯醇PVA、聚甲基丙烯酸甲酯PMMA、聚丙烯酸甲酯、聚甲基丙烯酸乙酯、聚丙烯酸乙酯、聚甲基丙烯酸丙酯、聚丙烯酸丙酯、聚丙烯酸丁酯、聚甲基丙烯酸丁酯、聚甲基丙烯酸戊酯、聚丙烯酸戊酯、聚甲基丙烯酸环己酯、聚丙烯酸环己酯、聚甲基丙烯酸己酯、聚丙烯酸己酯、聚(丙烯酸缩水甘油酯)、聚甲基丙烯缩水甘油酯、聚偏氟乙烯PVDF、聚苯乙烯、氢化聚苯乙烯、聚乙烯基吡啶、聚乙烯基环己烷、聚酰亚胺PI、聚酰胺、聚乙烯、聚丁烯、聚丙烯、聚二甲基硅氧烷PDMS、聚丙烯腈、聚马来酸、聚甲基丙烯酸、聚叔丁基乙烯基醚、叔丁基乙烯基醚、聚环己基乙烯基醚、环己基乙烯基醚、聚二乙烯基苯、聚环氧乙烷PEO、聚环氧丙烷、聚乙烯乙酸乙烯酯、聚胺、聚腈、聚烯烃、聚异戊二烯、聚丁二烯、聚氨酯、十八烷基磷酸。
结合第一方面,在第一方面的某些实现方式中,所述第一核体的材料为SiOx,其中,0<x<2,所述保护涂层的材料为聚丙烯酸PAA;或者,所述第一核体的材料为SiOx/石墨,其中,0<x<2,所述保护涂层的材料为碳C;或者,所述第一核体的材料为SiOx/CNT/石墨,其中,0<x<2,所述保护涂层的材料为聚丙烯酸PAA;或者,所述第一核体的材料为SiOx/C,其中,0<x<2,所述保护涂层的材料为碳酸锂Li 2CO 3;或者,所述第一核体的材料为SiOx/C,其中,0<x<2,所述保护涂层的材料为PAA;或者,所述第一核体的材料为SiOx/C/CNT,其中,0<x<2,所述保护涂层的材料为Li 2CO 3;或者,所述第一核体的材料为SiOx/C/石墨,其中,0<x<2,所述保护涂层的材料为聚二甲基硅氧烷PDMS;或者,所 述第一核体的材料为硅Si,所述保护涂层的材料为磷酸锂Li 3PO 4;或者,所述第一核体的材料为硅碳材料Si/C,所述保护涂层的材料为聚丙烯酸PAA;或者,所述第一核体的材料为硅碳材料Si/C,所述保护涂层的材料为C;或者,所述第一核体的材料为钴酸锂LCO,所述保护涂层的材料为磷酸锗铝锂LAGP;或者,所述第一核体的材料为镍钴锰酸锂NCM,所述保护涂层的材料为Li 3PO 4;或者,所述第一核体的材料为镍钴铝酸锂NCA,所述保护涂层的材料为Li 3PO 4;或者,所述第一核体的材料为硬碳,所述保护涂层的材料为聚丙烯酸PAA。
第二方面,提供了一种锂离子电池电极材料的制备方法,包括:将金属锂加热至熔融状态,获得熔融金属锂;将第一核体浸入所述熔融金属锂中,使所述第一核体表面包覆金属锂涂层;在所述金属锂涂层的表面涂覆第一溶液,形成包覆在所述金属锂涂层外侧的保护涂层。
应理解,金属锂涂层作为补锂涂层相对于含锂化合物作为补锂涂层而言,锂的含量更高,因此,能够在电池化学反应中有效地补充活性锂离子,减少首次充放电过程中形成SEI等消耗的活性锂离子,提高电池材料的库伦效率。
可选地,保护涂层可以是金属锂涂层的保护涂层,用于使得金属锂与空气中的氧、氮等或者电解质溶液发生接触,提高了金属锂涂层的使用寿命,进而提升了锂离子电池的能量密度和循环性能。
结合第二方面,在第二方面的某些实现方式中,所述将金属锂加热至熔融状态,包括:将金属锂箔和/或金属锂粉和/或金属锂锭置于坩埚中;将所述坩埚置于充满惰性气体保护气氛中进行加热,其中,所述加热装置的加热温度为150-500℃。
结合第二方面,在第二方面的某些实现方式中,所述将第一核体浸入所述熔融金属锂中,获得具有金属锂涂层的核体,包括:将所述第一核体浸入所述熔融金属锂中,并进行搅拌;降温至第一温度,获得具有金属锂涂层的核体。
结合第二方面,在第二方面的某些实现方式中,所述降温的速度为5-20℃/min。
结合第二方面,在第二方面的某些实现方式中,在所述金属锂涂层的表面涂覆第一溶液,形成保护涂层,包括:将所述具有金属锂涂层的核体浸入所述第一溶液;对所述第一溶液中的所述具有金属锂涂层的核体进行搅拌、过滤以及真空干燥,使得在所述金属锂涂层表面形成所述保护涂层;或者,在所述具有金属锂涂层表面涂覆所述第一溶液;对涂覆的所述第一溶液进行真空干燥,使得在所述金属锂涂层表面形成所述保护涂层。
结合第二方面,在第二方面的某些实现方式中,所述第一溶液为聚丙烯酸PAA的二甲基亚砜DMSO溶液,其中,PAA/DMSO溶液的制备过程包括:将所述PAA溶解至所述DMSO形成第二溶液,并将所述第二溶液的加热温度设置为30-80℃;对所述第二溶液搅拌1-2h,形成所述PAA/DMSO溶液。
结合第二方面,在第二方面的某些实现方式中,所述真空干燥的温度为50-80℃。
结合第二方面,在第二方面的某些实现方式中,所述PAA/DMSO溶液的浓度为0.1-0.5%。
第三方面,提供了一种锂离子电池电极材料的制备方法,包括:将金属锂溶解于第一溶液,形成第二溶液,其中,所述第一溶液为包括非质子极性溶剂的溶液;将所述第二溶液涂覆至第一核体表面,获得具有金属锂涂层的核体;在具有所述第二溶液涂层的表面涂 覆第三溶液,形成保护涂层。
应理解,金属锂涂层作为补锂涂层相对于含锂化合物作为补锂涂层而言,锂的含量更高,因此,能够在电池化学反应中有效地补充活性锂离子,减少首次充放电过程中形成SEI等消耗的活性锂离子,提高电池材料的库伦效率。
可选地,保护涂层可以是金属锂涂层的保护涂层,用于使得金属锂与空气中的氧、氮等或者电解质溶液发生接触,提高了金属锂涂层的使用寿命,进而提升了锂离子电池的能量密度和循环性能。
结合第三方面,在第三方面的某些实现方式中,所述方法还包括:在惰性气体的保护气氛中,将无水含共轭双键的苯环类化合物溶于无水非质子极性溶剂,获得所述第一溶液。
结合第三方面,在第三方面的某些实现方式中,所述无水含共轭双键的苯环类化合物包括以下任意一种或多种:芳香族化合物、联苯类、稠环芳烃类化合物,优选二联苯及其衍生物、三联苯、四联苯、萘、蒽、菲、二苯甲酮。
结合第三方面,在第三方面的某些实现方式中,所述非质子极性溶剂包括以下任意一种或多种:乙腈CH3CN、二甲基甲酰胺DMF、1,3-二甲基-2-咪唑啉酮DMI、二甲基亚砜DMSO、六甲基磷酰三胺HMPA、四氢呋喃、二氧戊环、二甲醚、甘醇二甲醚、冠醚、二乙醚、甲乙醚、甲戊醚、乙二醇二甲醚、乙二醇二丁醚、二乙二醇二丁醚、乙二醇二乙醚、四甲基乙二胺、四甲基丙二胺、五甲基二乙撑三胺。
结合第三方面,在第三方面的某些实现方式中,所述将金属锂溶解于第一溶液,形成第二溶液,包括:将金属锂箔或者金属锂粉溶解于所述第一溶液,形成所述第二溶液,其中,所述第二溶液中锂浓度为0.1-0.2mol/L。
结合第三方面,在第三方面的某些实现方式中,所述方法还包括:将无机-有机复合物与所述非质子极性溶剂混合后搅拌,形成所述第三溶液;将所述第三溶液涂覆于所述第二溶液涂层的表面,使所述第三溶液完全覆盖所述核体和所述第二涂层,其中,涂覆时间为0.2-2h;对涂覆所述第三溶液后的核体进行真空干燥,其中,所述真空干燥的温度为50-80℃。
第四方面,提供了一种锂离子电池电极材料的制备方法,包括:对第一核体进行一次蒸镀,使得所述第一核体外包覆金属锂涂层,所述一次蒸镀的蒸发源为金属锂;对具有金属锂涂层的核体进行二次蒸镀,在所述金属锂涂层表面形成保护涂层。
应理解,金属锂涂层作为补锂涂层相对于含锂化合物作为补锂涂层而言,锂的含量更高,因此,能够在电池化学反应中有效地补充活性锂离子,减少首次充放电过程中形成SEI等消耗的活性锂离子,提高电池材料的库伦效率。
可选地,保护涂层可以是金属锂涂层的保护涂层,用于使得金属锂与空气中的氧、氮等或者电解质溶液发生接触,提高了金属锂涂层的使用寿命,进而提升了锂离子电池的能量密度和循环性能。
结合第四方面,在第四方面的某些实现方式中,所述对第一核体进行一次蒸镀,使得所述第一核体外包覆金属锂涂层,包括:将多个所述第一核体置于第一真空蒸镀区,其中,所述第一真空蒸镀区包括金属锂;对所述第一真空蒸镀区加热,使所述金属锂蒸发;当所述金属锂完全包覆住所述第一核体时,获得所述具有金属锂涂层的核体。
结合第四方面,在第四方面的某些实现方式中,所述方法还包括:向所述第一真空蒸 镀区充入惰性保护气体,使得所述第一真空蒸镀区的气压保持在10-300Pa范围内;和/或,将对所述金属锂的加热温度设置为200-900℃;和/或,所述一次蒸镀的时间设置为0.5-24h。
结合第四方面,在第四方面的某些实现方式中,所述二次蒸镀的靶材为磷酸锂Li 3PO 4
结合第四方面,在第四方面的某些实现方式中,所述对具有金属锂涂层的核体进行二次蒸镀,包括:将所述具有金属锂涂层的核体置于含有所述Li 3PO 4的第二真空蒸镀室,并控制所述具有金属锂涂层的核体与所述靶材的距离保持在50-100mm的范围内;对所述蒸镀室抽真空,并充入惰性保护气体,使得所述第二真空蒸镀区的气压保持在1.5-100Pa;设置所述二次蒸镀的蒸发功率为100-500W;和/或,设置所述二次蒸镀的时间为5-30min。
第五方面,提供了一种锂离子电池,所述锂离子电池包括正极极片、负极极片、隔膜、电解液和外壳,其中,所述正极极片或负极极片的材料为第一方面任一实现中所述的材料。
通过本申请实施例提供的制备锂离子电池电极材料的方法可以获得在核体外包覆有金属锂涂层以及保护涂层的锂离子电池电极材料,由于金属锂涂层相对于含锂化合物而言,锂的含量更高,因此,能够在电池化学反应中有效地补充活性锂离子,减少首次充放电过程中形成SEI等消耗的活性锂离子,提高电池材料的库伦效率。此外,采用金属锂涂层作为补充锂离子的原料,可以降低锂离子扩散势垒,提高锂离子迁移数,提高锂离子的脱出或嵌入效率,从而提高锂离子电池的能量密度和循环稳定性。
附图说明
图1示出了一种锂离子电池的结构示意图。
图2示出了本申请实施例提供的一种锂离子电池电极材料的结构示意图。
图3示出了本申请实施例提供的另一种锂离子电池电极材料的结构示意图。
图4示出了本申请实施例提供的又一种锂离子电池电极材料的结构示意图。
图5示出了本申请实施例提供的采用固相熔融法制备锂离子电池电极材料的示意性流程图。
图6示出了本申请实施例提供的采用液相反应法制备锂离子电池电极材料的示意性流程图。
图7示出了本申请实施例提供的采用真空蒸镀法制备锂离子电池电极材料的示意性流程图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
为便于理解,首先对本申请实施例中可能出现的概念进行介绍。
1、原电池(primary cell)
利用两个电极的电势不同,产生电势差,从而使电子流动,产生电流的装置。原电池可以将化学能转化为电能。
2、正极(cathode)
在原电池中,电流流出的电极电势较高,为正极,得到电子起还原作用;在电解池中,正极为与电源正极相连的电极,失去电子起氧化作用。
3、负极(anode)
在原电池中,电流流入的电极电势较低,为负极,失去电子起氧化作用;在电解池中,负极为与电源负极相连的电极,得到电子起还原作用。
4、电解质(electrolyte)
在电池正负极之间提供离子交换的媒介。
5、隔膜(separator)
隔膜的主要作用是使电池的正负极分隔开来,放置两极接触而短路。此外,隔膜还具有能使电解质离子通过的功能。
6、固态电解质界面(solid electrolyte interface,SEI)
在电池中,充电/放电后会在正极或负极表面形成一层界面膜,具有离子导电性和电子绝缘性,其性质与固态电解液类似,通常称为SEI膜。
7、锂化反应
锂化反应是指将锂引入到反应物中的一类反应。
自20世纪80年代以来,锂离子电池由于比容量大、循环寿命长、自放电率低和安全环保等优点,被广泛应用于各个领域。然而,锂离子电池首次充电会在负极表面形成SEI,其形成会消耗正极提供的部分活性锂离子,导致电池可逆容量降低。同时,随着充放电循环的进行,电极表面副反应增多,使库伦效率(coulombic efficiency)降低,活性锂减少,导致循环性能变差。特别是对于高能量密度锂离子电池的关键负极材料—合金类负极材料(如硅碳、硅氧以及锡等),材料本身的库伦效率低于传统石墨负极(一般为92%),并且随着循环进行,材料发生膨胀,使得SEI反复生成破碎,造成更多活性锂离子的损失,最终导致电芯的容量、效率和能量密度偏低。因此,如果能在锂离子电池工作之前预先补充足够的活性锂离子,就可以大大提升锂离子电池的能量密度和循环性能,使用户获得较好的电子设备续航体验。
一般来说,当前锂离子电池预锂化采用的方式可以包括物理补锂技术、化学补锂技术以及电化学预锂化。其中,各个方式的简要流程以及存在的缺陷如下:
(1)物理补锂技术:即在电池材料匀浆或涂布或辊压时直接引入金属锂(超薄金属锂箔或者金属锂粉),注液/化成后进行预锂化,该技术需要电芯厂具备干燥房(露点≦-50℃)等锂金属操作环境,存在较大的起火爆炸风险。
目前,一种物理补锂技术的过程为:通过在电池匀浆或涂布过程中加入具有涂覆层的锂粉,其中,涂覆层可以包括蜡以及无机涂层(如碳酸锂、氟化锂、磷酸锂、二氧化硅、硅酸锂等)。
然而,由于金属锂粉的密度小,很容易漂浮在空气中或者吸附到设备上,存在极大的安全风险,严重时甚至会引起爆炸。因此,采用具有涂覆层的金属锂粉作为补锂原料具有较大的安全隐患。
(2)化学补锂技术:主要使用含锂化合物或含锂有机溶液或者锂盐等,作为添加剂或反应介质在匀浆或涂布或辊压时引入,注液/化成后进行预锂化。相比于物理补锂,化学补锂安全性高,但是补锂效率较低,反应复杂,可能存在产气以及副产物不稳定等问 题,可能影响到电池的能量密度和/或循环性能。
目前,一种化学补锂的方法采用的补锂原料为锂-碳复合材料,该锂-碳复合材料包含碳颗粒以及内部或表面填充的金属锂。然而,由于该锂-碳复合材料中金属锂的含量较低,补锂效率较低。此外,由于锂-碳复合材料的密度较小,会影响电池的体积能量密度。
(3)电化学预锂化:主要采用标的和富锂材料或金属锂组装成半电池装置,通过调控电流和电压精确控制脱嵌锂反应,从而实现对标的预锂化,然后取出预锂化后的标的重新进行电芯组装测试,整个过程复杂且耗时,多为学术研究,无法量产。
可以看到,预锂化技术是提升电池能量密度和循环性能的有效手段,但是若预锂化的材料不合适会使得预锂化过程存在很大的安全风险,并且即使获得补锂层,也无法实现高效补锂,所以在材料上进行预锂化是一个重要的技术手段,如何实现安全、高效的预锂化成为锂离子电池研究领域的关键问题之一。
针对上述问题,本申请实施例提供了一种锂离子电池电极材料以及该锂离子电池电极材料的制备方法,通过采用该电池电极材料进行锂离子电池的预锂化,可以在降低预锂化过程的安全风险的同时,提高预锂化的效率。
为便于理解,在介绍本申请实施例提供的锂离子电池电极材料之前,首先结合附图1对该锂离子电池电极材料所应用于的锂离子电池进行介绍。
图1示出了一种锂离子电池的结构示意图。
其中,该锂离子电池包括正极、负极、电解液、隔膜以及相应的回路等。其通过正极和负极间电子的定向流动产生电流,为设备提供电力。
在一种实现方式中,在该锂离子电池中,正极材料可以为铝质电极,该铝质电极中还可以包括如LiMO 2等材料,其中,LiMO 2种的M可以为镍、钴、锰、铝等元素中的一种或多种。示例性的,该LiMO 2例如可以是:钴酸锂LiCoO2,镍酸锂LiNiO2,锰酸锂LiMn2O2,镍钴锰酸锂LiNixCoyMnzO2,镍钴铝酸锂LiNi0.8Co0.15Al0.05等。
在一种实现方式中,该锂离子电池的负极材料可以是铜质电极其中,在应用时,正极材料可以选择LiCoO2;负极材料可以选择铜,如铜箔等。
此外,结合附图1对锂离子电池充电和放电时的工作原理进行简单地介绍。
示例性的,锂离子电池充电时,锂离子从正极材料的晶格中脱出,经过电解质后插入到负极材料中,使得负极富锂,正极贫锂;放电时,锂离子从负极材料中脱出,经过电解质后插入到正极材料的晶格中,使得正极富锂,负极贫锂。这样正负极材料在插入及脱出锂离子时相对于金属锂的电位的差值,就是电池的工作电压。
可以看出,在锂离子电池中:(1)活性锂离子全部来源于正极材料;(2)锂离子电池中的活性锂离子数量有限。因此,不管是由于SEI的生成还是正极/负极发生结构破坏等,都会导致活性锂离子的损失,造成锂离子电池能量密度和循环性能的衰减。
图2至图4示出了本申请实施例提供的锂离子电池电极材料的结构示意图。
可以看出,本申请实施例提供了一种具有金属锂涂层结构的锂离子电池电极材料,所述材料为锂离子电池活性材料,用于制作正极或负极,其包括核体和包覆于核体上的金属锂涂层,以及包覆于金属锂涂层外侧的金属锂保护层。
在一种实现方式中,该锂离子电池电极材料包括:第一核体、金属锂涂层和保护涂层。 其中,金属锂涂层包覆在该第一核体表面(如图2所示);保护涂层包覆在金属锂涂层外侧,使得该金属锂涂层与空气隔绝(如图3和图4所示)。
在一种实现方式中,该锂离子电池电极材料可以包括一次颗粒和/或二次颗粒。其中,本申请实施例所说的一次颗粒例如可以是:一个核体外侧包覆金属锂涂层,该金属锂涂层外层包覆有金属锂保护涂层,该保护涂层用于避免金属锂与锂离子电池电极材料中的电解液或者空气接触,使得该金属锂涂层具有较高的补锂性能。本申请实施例所说的二次颗粒的结构例如可以是:多个核体团聚形成核体团后,该核体团外侧包覆金属锂涂层,该金属锂涂层再包覆有保护涂层;或者,具有金属锂涂层的多个核体团聚,形成颗粒团(其中,每个核体表面可以包覆有金属锂涂层),该核体团外侧包覆有保护涂层。
在一种实现方式中,一次颗粒的示意性结构可以如图3所示,保护涂层包覆在一个第一核体的金属锂涂层外侧。
在一种实现方式中,二次颗粒的示意性结构可以如图4所示,保护涂层包覆在多个第一核体的金属锂涂层外侧。
应理解,二次颗粒可以通过造粒的方式获得。其中,上文所说的核体团可以是多个核体粘结后获得的,换句话说,核体团可以是多个核体聚集形成的;颗粒团可以指具有金属锂涂层的核体粘结后获得的,换句话说,颗粒团由多个具有金属锂涂层的核体聚集而成。示例性的,获得二次颗粒的方式例如可以是:通过控制核体或者具有金属锂涂层的核体所处的温度,使得核体通过自身材料的粘结性,形成颗粒团(核体团);或者,使得核体表面金属锂涂层的粘结性,形成颗粒团(核体团)。其中,通过造粒方式获得二次颗粒的方式不限于此,本申请对此并不限定。
在一种实现方式中,第一核体可以是粒径不小于3um的颗粒。此外,该核体材料可以为常用作锂离子电池电极材料的任意一种,如石墨等,本申请实施例对此并不限定。
作为一个示例,用于制备锂离子电池负极的材料可以包括以下一种或多种:硅Si、纳米硅、微米硅、氧化硅、氧化亚硅(SiOx,0<x<2)、硅碳(Si/C)、多孔硅、薄膜硅、锡、二氧化锡、锗、氧化锗、硅锡合金、硅锗合金、锂硅合金、磷、锂磷合金、氧化钴、氧化铁、人造石墨(AG)、天然石墨(NG)、硬碳(HC)、软碳、中间相碳微球(CMCB)、钛酸锂、碳纳米管(CNT)、石墨烯(graphene)、碳纤维、活性碳、多孔碳、乙炔黑(AB)、科琴黑等。
作为另一个示例,用于制备锂离子电池正极的材料可以包括以下一种或多种:钴酸锂(LCO)、镍钴锰酸锂(NCM)、镍钴铝酸锂(NCA)、锰酸锂、镍酸锂、富锂锰基、磷酸铁锂、磷酸钴锂、磷酸钴锂、磷酸钒锂、氟化硫酸铁锂、硫、硫化锂、硒、硒化锂、氟化铁、氟化钴、氟化镍、氟化铜、氟化铋、氧氟化铁等。
在一种实现方式中,第一核体的具体材料可以包括以下任意一种或多种:硅(Si)、纳米硅、微米硅、氧化硅、氧化亚硅(SiOx,0<x<2)、硅碳(Si/C)、多孔硅、薄膜硅、锂硅合金、人造石墨(AG)、天然石墨(NG)、硬碳(HC)、软碳、中间相碳微球(CMCB)、碳纳米管(CNT)、石墨烯、碳纤维、活性碳、多孔碳、乙炔黑(AB)、科琴黑等。
在一种实现方式中,第一核体的材料还可以包括掺杂元素。其中,掺杂的元素例如为氮、氧、硼、磷、硫、氯、氟、锂、钠、镁、铝、钛、镧、钨、铌、钙、锆等中的一种或几种。
应理解,以上列举的锂离子电池的负极材料、正极材料以及第一核体的材料仅为示例性举例,其还可以包括其他多种材料,本申请实施例对此并不限定。
在一种实现方式中,金属锂涂层包覆在第一核体的外侧,将该第一核体的表面完全包覆住,以实现对该第一核体的预锂化以及对电池材料的高效补锂。其中,应理解,由于金属锂涂层中锂离子浓度较含锂化合物的锂离子浓度高,因此,采用金属锂作为补锂涂层能够实现高效补锂,并且,该金属锂涂层的获得过程也具有高安全性。获得该金属锂涂层的过程将在下文进行具体地介绍。
在一种实现方式中,本申请实施例可以通过物理或化学方法制备金属锂涂层。具体地,制备金属锂涂层的方法可以包括以下一种或多种:机械搅拌法、高能球磨法、机械融合法、原位生长法、外延生长法、原子层沉积法、气相沉积法、磁控溅射法、液相反应法、溶胶凝胶法、溶剂热法、真空热沉积法、等离子溅射法、微波反应法、高温熔融法等,本申请对此并不限定。其中,通过不同方法具体制备金属锂涂层的过程将在下文进行详细地介绍。
应理解,本申请实施例提供的锂离子电池电极材料采用金属锂作为核体外的涂层材料,能够提高电池材料的库伦效率,降低锂离子扩散势垒,提高锂离子迁移数。此外,采用金属锂作为补锂涂层,还可以降低材料表面的锂离子浓度极化,提高锂离子的脱出或嵌入效率,从而提升电池的循环性能。
在一种实现方式中,保护涂层用于使核体和金属锂涂层隔绝电解液或者空气,以提高其使用寿命,进而提升补锂效率。其中,该保护涂层的材料可以为无机物或聚合物。
在一种实现方式中,当保护涂层的材料为无机物时,该无机物可以包括以下一种或多种:石墨、介孔碳球、氮化硼、硬碳、软碳、中间相碳微球、碳纳米管、石墨烯、碳纤维、活性碳、多孔碳、乙炔黑AB、科琴黑、沥青、氧化硅、氧化铝、氧化镁、氧化镧、氧化钛、氧化锌、钛酸钡、氮化锂、锂磷氧氮LIPON、磷酸钛铝锂LATP、磷酸锗铝锂LAGP、锂镧锆氧LLZO、锂镧钛氧LLTO、锂锗磷硫Li 10GeP 2S 12、Li 9.54Si 1.74P 1.44S 11.7Cl 0.3、Li 2CO 3、LiBF 4、Li 4SiO 4、Li 2TiO 3、LiNbO 3、Li 3PO 4、LiF、石蜡以及金属-有机骨架材料等。
在一种实现方式中,当保护涂层的材料为聚合物时,该聚合物可以包括以下一种或多种:聚吡咯、聚丙烯酸PAA、聚乙烯醇PVA、聚甲基丙烯酸甲酯PMMA、聚丙烯酸甲酯、聚甲基丙烯酸乙酯、聚丙烯酸乙酯、聚甲基丙烯酸丙酯、聚丙烯酸丙酯、聚丙烯酸丁酯、聚甲基丙烯酸丁酯、聚甲基丙烯酸戊酯、聚丙烯酸戊酯、聚甲基丙烯酸环己酯、聚丙烯酸环己酯、聚甲基丙烯酸己酯、聚丙烯酸己酯、聚(丙烯酸缩水甘油酯)、聚甲基丙烯缩水甘油酯、聚偏氟乙烯PVDF、聚苯乙烯、氢化聚苯乙烯、聚乙烯基吡啶、聚乙烯基环己烷、聚酰亚胺PI、聚酰胺、聚乙烯、聚丁烯、聚丙烯、聚二甲基硅氧烷PDMS、聚丙烯腈、聚马来酸、聚甲基丙烯酸、聚(叔丁基乙烯基醚)、聚(环己基乙烯基醚)、聚二乙烯基苯、聚环氧乙烷PEO、聚环氧丙烷、聚乙烯乙酸乙烯酯、聚胺、聚腈、聚烯烃、聚异戊二烯、聚丁二烯、聚氨酯、十八烷基磷酸等。
应理解,本申请实施例上述列举的保护涂层的材料仅为示例,并非穷举,本申请实施例提供的保护涂层的材料并不限于此。
以下为本申请实施例提供的锂离子电池电极材料包括的第一核体、金属锂涂层以及保护涂层几种可能的材料组合方式。以下列举仅为示例,并非穷举,其不对本申请构成限定。
在一种实现方式中,锂离子电池电极材料的极片的锂离子电池电极材料包括:材料为 SiOx/石墨的第一核体,其中,0<x<2;金属锂涂层;材料为碳C的保护涂层。
在一种实现方式中,锂离子电池电极材料的极片的锂离子电池电极材料包括:材料为SiOx/CNT/石墨的第一核体,其中,0<x<2;金属锂涂层;材料为聚丙烯酸PAA的保护涂层。
在一种实现方式中,锂离子电池电极材料的极片的锂离子电池电极材料包括:材料为SiOx/C的第一核体,其中,0<x<2;金属锂涂层;材料为碳酸锂Li 2CO 3的保护涂层。
在一种实现方式中,锂离子电池电极材料的极片的锂离子电池电极材料包括:材料为SiOx/C的第一核体,其中,0<x<2;金属锂涂层;材料为PAA的保护涂层。
在一种实现方式中,锂离子电池电极材料的极片的锂离子电池电极材料包括:材料为SiOx/C/CNT的第一核体,其中,0<x<2;金属锂涂层;材料为Li 2CO 3的保护涂层。
在一种实现方式中,锂离子电池电极材料的极片的锂离子电池电极材料包括:材料为SiOx/C/石墨的第一核体,其中,0<x<2;金属锂涂层;材料为聚二甲基硅氧烷PDMS的保护涂层。
在一种实现方式中,锂离子电池电极材料的极片的锂离子电池电极材料包括:材料为硅Si的第一核体;金属锂涂层;材料为磷酸锂Li 3PO 4的保护涂层。
在一种实现方式中,锂离子电池电极材料的极片的锂离子电池电极材料包括:材料为硅碳材料Si/C的第一核体;金属锂涂层;材料为磷酸锗铝锂LAGP的保护涂层。
在一种实现方式中,锂离子电池电极材料的极片的锂离子电池电极材料包括:材料为硅碳材料Si/C的第一核体;金属锂涂层;材料为聚丙烯酸PAA的保护涂层。
在一种实现方式中,锂离子电池电极材料的极片的锂离子电池电极材料包括:材料为钴酸锂LCO的第一核体;金属锂涂层;材料为磷酸锗铝锂LAGP的保护涂层。
在一种实现方式中,锂离子电池电极材料的极片的锂离子电池电极材料包括:材料为镍钴锰酸锂NCM的第一核体;金属锂涂层;材料为Li 3PO 4的保护涂层。
在一种实现方式中,锂离子电池电极材料的极片的锂离子电池电极材料包括:材料为镍钴铝酸锂NCA的第一核体;金属锂涂层;材料为Li 3PO 4的保护涂层。
在一种实现方式中,锂离子电池电极材料的极片的锂离子电池电极材料包括:材料为硬碳的第一核体;金属锂涂层;材料为聚丙烯酸PAA的保护涂层。
可以看出,本申请实施例提供的锂离子电池电极材料,核体和保护涂层可以为多种类型,而补锂涂层的材料则为金属锂,其目的主要是为了提高补锂效率,并且提高锂离子电池电极材料制备过程中的安全性。
以下对本申请实施例提供的锂离子电池电极材料的制备方法进行介绍。本申请实施例提供的锂离子电池电极材料可以采用多种方法制备,如固相熔融法、液相反应法和真空蒸镀法。
图5示出了本申请实施例提供的采用固相熔融法制备锂离子电池电极材料的示意性流程图。
在一种实现方式中,本申请实施例提供的用于制备锂离子电池电极材料的固相熔融法可以包括以下步骤:
S101,在惰性气体的保护气氛中将金属锂加热至熔融状态,获得熔融金属锂。
在一种实现方式中,将金属锂置于坩埚中,并将该坩埚置于加热装置(如加热炉)中, 对该金属锂加热至熔融状态。示例性的,加热装置的加热温度可以设置在150-500℃的范围内,其中,加热装置的加热速度可以设置在1-10℃/min的范围内。
在一种实现方式中,用于制备熔融状态金属锂的原料例如可以是金属锂箔或者金属锂粉或者金属锂锭。
在一种实现方式中,当将含有金属锂的坩埚放置入加热装置后,对该加热装置进行抽真空,并充入惰性气体(如氩气),以控制该加热装置中水和氧的含量小于0.1ppm。
在一种实现方式中,用于承载金属锂的坩埚可以是铝坩埚或者钽坩埚,或者任意其他不与锂发生反应且性能在高温条件下稳定的坩埚。
S102,将第一核体浸入熔融金属锂中,使该第一核体表面包覆金属锂涂层。
在一种实现方式中,可以按照预先设计的第一核体和金属锂的化学计量比,将第一核体浸入熔融状态的金属锂中,使得熔融金属锂可以包覆在第一核体的表面。具体地,熔融金属锂可以完全包覆住该第一核体的表面。
示例性的,按照第一核体和金属锂的摩尔比为0.8~1.2:1的比例范围,称取第一核体。其中,第一核体可以为颗粒状,具体地,可以是一次颗粒或者二次颗粒。当第一核体为二次颗粒时,可以使金属锂包覆住该第一核体与空气接触的表面。
在一种实现方式中,第一核体的具体材料可以包括以下任意一种或多种:硅(Si)、纳米硅、微米硅、氧化硅、氧化亚硅(SiOx,0<x<2)、硅碳(Si/C)、多孔硅、薄膜硅、锂硅合金、人造石墨(AG)、天然石墨(NG)、硬碳(HC)、软碳、中间相碳微球(CMCB)、碳纳米管(CNT)、石墨烯、碳纤维、活性碳、多孔碳、乙炔黑(AB)、科琴黑等。
在一种实现方式中,将第一核体浸入熔融状态的金属锂中之后,对该第一核体进行充分混匀搅拌。其中,搅拌时间例如可以设置为1-2h。
在一种实现方式中,当搅拌完毕,第一核体表面充分包覆了金属锂之后,对该第一核体进行降温,其中,降温速度例如可以为5-20℃/min。示例性的,可以快速将第一核体的温度降至第一温度,获得具有金属锂涂层的核体,其中,第一温度为低于金属锂熔点的任一温度(如室温)。具体地,使得第一核体表面包覆金属锂后可以快速降温至金属锂在第一核体表面凝固,形成致密的金属锂涂层。
应理解,对于上述过程涉及的加热温度、加热速度、加热时间、搅拌时间、降温速度、降温时间以及需要降至的温度等参数,可以提前通过加热装置的程序进行设定。
S103,在金属锂涂层的表面涂覆第一溶液,形成包覆在所述金属锂涂层外侧的保护涂层。
应理解,当第一核体表面包覆金属锂涂层后,为了使金属锂涂层避免直接与空气等外部接触,导致使用寿命降低,需要在该金属锂涂层外侧再涂覆一层保护层,以隔绝金属锂涂层与外部接触。其中,保护涂层可以是在金属锂涂层表面涂覆第一溶液,待对该第一溶液进行真空干燥后,形成的包覆在金属锂涂层外侧的保护涂层。
在一种实现方式中,第一溶液可以是聚丙烯酸PAA溶解到二甲基亚砜DMSO后形成的溶液。具体地,根据预先设计的成分,取PAA溶解到DMSO中,并对该溶液进行加热和搅拌,其中,加热温度例如可以是30-80℃,搅拌时间例如可以是1-12h,使得PAA在DMSO中充分混合均匀。示例性的,PAA在DMSO的质量百分比例如可以是0.1-0.5%。
在一种实现方式中,将具有金属锂涂层的核体浸入预先制备的第一溶液中,并对该具 有金属锂涂层的第一核体进行搅拌,使得金属锂涂层外侧充分浸润第一溶液;对该混合有第一核体的第一溶液进行过滤,获得包覆有第一溶液的第一核体;对包覆有第一溶液的第一核体进行真空干燥,使得该第一溶液在第一核体的金属锂表面形成保护涂层。
在一种实现方式中,还可在第一核体的金属锂涂层表明涂覆第一溶液,使得第一溶液完全浸润或者包覆该金属锂涂层;对包覆有第一溶液的第一核体进行真空干燥,使得该第一溶液在第一核体的金属锂表面形成保护涂层。
在一种实现方式中,对包覆有第一溶液的第一核体进行真空干燥的温度可以设置在50-80℃的温度范围内。真空干燥后,可以收集产物,即获得具有保护涂层、金属锂涂层以及核体结构的锂离子电池电极材料。
图6示出了本申请实施例提供的采用液相反应法制备锂离子电池电极材料的示意性流程图。
应理解,液相反应法是通过将溶液在核体表面完全浸润,然后干燥,获得具有涂层结构的锂离子电池电极材料的过程。其中,形成金属锂涂层的过程为:将金属锂溶解入包含非质子极性溶剂的溶液中,形成具有一定锂离子浓度的溶液,将该溶液浸润核体表面后,对该核体进行干燥,使得溶剂蒸发,锂离子继而可以保留在核体表面,形成金属锂涂层。其中,非质子极性溶剂的分子具有极性,因此会对溶质分子产生溶剂化效应,也即溶剂分子将溶质分子包围。
本申请实施例提供的用于制备锂离子电池电极材料的液相反应法可以包括以下步骤:
S201,将金属锂溶解于第一溶液,形成第二溶液,其中,该第一溶液为包括非质子极性溶剂的溶液。
在一种实现方式中,第一溶液为包含非质子极性溶剂的溶液。具体地,该第一溶液的配置过程例如可以是:在惰性气体保护的气氛(水和氧含量小于0.1ppm)中,按照预先设计的比例,将无水的含共轭双键的苯环类化合物溶于无水的非质子极性溶剂中形成混合溶液,该混合溶液即为第一溶液。
示例性的,上述所说的无水的含共轭双键的苯环类化合物例如可以包括:芳香族化合物、联苯类、稠环芳烃类化合物,优选二联苯及其衍生物、三联苯、四联苯、萘、蒽、菲、二苯甲酮等;非质子极性溶剂例如可以包括:乙腈(CH3CN),二甲基甲酰胺(DMF),1,3-二甲基-2-咪唑啉酮(DMI),二甲基亚砜(DMSO),六甲基磷酰三胺(HMPA)、四氢呋喃、二氧戊环、二甲醚、甘醇二甲醚、冠醚、二乙醚、甲乙醚、甲戊醚、乙二醇二甲醚、乙二醇二丁醚、二乙二醇二丁醚、乙二醇二乙醚、四甲基乙二胺、四甲基丙二胺、五甲基二乙醇三胺等。
在一种实现方式中,按照预先设计的比例,取特定数量的金属锂(如金属锂箔或者金属锂粉)溶解于预先配置好的第一溶液中,形成第二溶液,其中,该第二溶液为包括一定浓度锂离子的含锂溶液。
具体地,将金属锂溶解入第一溶液,获取第二溶液的过程例如可以是,将金属锂粉或者金属锂箔放入第一溶液中溶解,其中,为了加快溶解,可以对该放入金属锂的第一溶液进行搅拌,直至金属锂在第一溶液中完全溶解。其中,金属锂的用量可以根据预先设计的所需的第二溶液中锂的浓度确定的,其中,第二溶液中锂的摩尔浓度例如可以是0.1-2mol/L。
S202,将第二溶液涂覆至第一核体表面,获得具有金属锂涂层的核体。
在一种实现方式中,可以取一定量的第二溶液滴涂到第一核体表面,重复滴涂数次,直至该第一核体表面被完全浸润;然后对表面被含锂溶液浸润后的第二核体进行干燥,使得该溶液中的有机溶剂蒸发,获得表面具有金属锂涂层的核体。
S203,在具有金属锂涂层的表面涂覆第三溶液,形成保护涂层。
在一种实现方式中,第三溶液例如可以用于制备第一核体和金属锂外侧的保护涂层。其中,第三溶液的配置过程例如可以是:将无机-有机复合物与非质子极性溶剂混合后搅拌成均匀浆料,形成该第三溶液。
其中,无机-有机复合物例如可以包括以下一种或多种:金属-有机框架UiO-66、HKUST-1、MOF-5、ZIF-8;非质子极性溶剂例如可以包括以下一种或多种:乙腈(CH3CN),二甲基甲酰胺(DMF),1,3-二甲基-2-咪唑啉酮(DMI),二甲基亚砜(DMSO),六甲基磷酰三胺(HMPA)、四氢呋喃、二氧戊环、二甲醚、甘醇二甲醚、冠醚、二乙醚、甲乙醚、甲戊醚、乙二醇二甲醚、乙二醇二丁醚、二乙二醇二丁醚、乙二醇二乙醚、四甲基乙二胺、四甲基丙二胺、五甲基二乙醇三胺等。
在一种实现方式中,在具有金属锂涂层的表面涂覆第三溶液,形成保护涂层的过程可以是:将所述第三溶液滴涂于金属锂涂层的表面,使所述第三溶液完全覆盖金属锂涂层,其中,可以重复滴涂过程,直至第三溶液完全浸润或包覆该金属锂涂层,示例性的,对金属锂涂层表层进行涂覆的时间可以设置为0.2-2h;对涂覆第三溶液后的核体进行真空干燥,获得具有保护层、金属锂涂层以及核体结构的锂离子电池电极材料。示例性的,真空干燥的温度可以设置为50-80℃。
图7示出了本申请实施例提供的采用真空蒸镀法制备锂离子电池电极材料的示意性流程图。
本申请实施例提供的用于制备锂离子电池电极材料的真空蒸镀法可以包括以下步骤:
S301,对第一核体进行一次蒸镀,使得该第一核体外包覆金属锂涂层,该一次蒸镀的蒸发源为金属锂。
应理解,本申请实施例提供的真空蒸镀法中所涉及的一次蒸镀是指:采用金属锂作为蒸镀源,通过控制加热温度,使得金属锂蒸发并附着于第一核体表面,形成金属锂涂层。
其中,其具体过程可以包括:将多个第一核体置于第一真空蒸镀区,其中,第一真空蒸镀区包括金属锂作为蒸镀源,且待放置入第一核体后,可以对该第一蒸镀区进行抽真空,并填充入惰性保护气体(如氩气),并通过充入惰性气体的体积来控制第一蒸镀区的气压达到预设气压值,该预设气压值例如可以是10-300Pa;对金属锂源进行加热,使该金属锂蒸发,其中,对金属锂源加热的温度例如可以设定为200-900℃,蒸镀时间例如可以设定为0.5-24h的时间范围内的任一时间。
在一种实现方式中,为了使增大第一核体与蒸发锂源获得的“锂蒸汽”的接触面积,在第一蒸镀室放置第一核体时,可以将多个第一核体平铺在蒸镀区。
S302,对具有金属锂涂层的核体进行二次蒸镀,在该金属锂涂层表面形成保护涂层。
在一种实现方式中,当在步骤S301中获得具有金属锂涂层的核体后,可以将步骤S301获得的产物转移至第二真空蒸镀室,其中,第二蒸镀室为包括有磷酸锂Li 3PO 4靶材的蒸发镀膜室。
在一种实现方式中,当将具有金属锂涂层的核体放置入第二蒸镀室后,对该第二蒸镀室进行抽真空,其中,抽真空后的第二蒸镀室的气压值可以不高于1×10 -4P。此外,还可以向抽真空后的第二蒸镀室充入高纯氮气,通过控制充入氮气的量使得第二蒸镀室的气压达到预设气压值,其中,该预设气压值例如可以是1.5Pa。
在一种实现方式中,通过设置程序参数,可以控制靶材和核体的距离达到预设距离,并使第二蒸镀室的蒸发功率为预设功率,其中,预设距离例如可以是50-100mm,预设功率例如可以是100-500W。
通过本申请实施例提供的制备锂离子电池电极材料的方法可以获得在核体外包覆有金属锂涂层以及保护涂层的锂离子电池电极材料,由于金属锂涂层相对于含锂化合物而言,锂的含量更高,因此,能够在电池化学反应中有效地补充活性锂离子,减少首次充放电过程中形成SEI等消耗的活性锂离子,提高电池材料的库伦效率。此外,采用金属锂涂层作为补充锂离子的原料,可以降低锂离子扩散势垒,提高锂离子迁移数,提高锂离子的脱出或嵌入效率,从而提高锂离子电池的能量密度和循环稳定性。
本申请实施例还提供了一种锂离子电池。该锂离子电池包括正极极片、负极极片、隔膜、电解液和外壳,其中,正极极片或负极极片的材料可以包括上述本申请实施例中提供的锂离子电池电极材料,该锂离子电池电极材料包括核体、包覆在核体表面的金属锂涂层以及包覆在金属锂涂层表面的保护涂层。
以下结合实施例,对本申请实施例提供的锂离子电池包括的几种具体的锂离子电池电极材料的组成以及制备过程进行介绍。
首先,针对由核体材料为氧化亚硅,涂层为金属锂和保护涂层材料为PAA的锂离子电池电极材料的制备过程进行介绍。
本实施例提供一种由PAA作为保护涂层、金属锂作为补锂涂层以及氧化亚硅作为核体的锂离子电池电极材料。其中,制备具有PAA保护层、金属锂涂层和氧化亚硅核体的复合材料以及包括该复合材料的锂离子电池的过程,可以包括如下步骤:
(1)制备具有金属锂涂层的氧化亚硅的前驱体材料。
示例性的,在充满氩气的环境中(水和氧含量<0.1ppm),将金属锂置于坩埚并放置入加热装置,其中,金属锂可以是金属锂箔或金属锂粉或金属锂锭;对加热装置进行程序升温,加热金属锂至熔融状态,其中,加热速度例如可以为2℃/min,最终加热温度可以为300℃;取氧化亚硅(粒径可以为0-5um),按照Si和Li摩尔比2:1投料,混合均匀后搅拌1h,之后程序急速降温(降温速度可以为-20℃/min)到室温,得到具有金属锂涂层的氧化亚硅前的驱体材料。
(2)制备聚丙烯酸PAA包覆具有金属锂涂层的氧化亚硅复合材料。
示例性的,根据预配置的成分,取定量的聚丙烯酸PAA(分子量Mw~450000)溶解到DMSO,并设置加热温度为60℃,搅拌时间为6h,配制0.25%PAA的DMSO溶液;将得到的具有金属锂涂层的氧化亚硅的前驱体材料加入上述PAA/DMSO中,混合搅拌2h后,过滤,60℃真空干燥,收集产物,得到所述聚丙烯酸PAA包覆具有金属锂涂层的氧化亚硅复合材料。
(3)制备二次电池
使用步骤(2)制备得到的复合材料,与导电剂、粘结剂,按照质量比75:10:15搅拌均 匀,得到浆料,其中,导电剂例如可以为导电炭黑(Super P),粘结剂例如可以为PAA;在铜箔表面涂布该浆料,在120℃温度下真空烘烤12h后,进行辊压、裁切,得到负极电极片;配合镍钴锰酸锂正极,使用摩尔浓度为1mol/L的LiPF6/(EC+DEC,1:1)电解液,采用聚丙烯PP或聚乙烯单层或多层隔膜,制作成130mAh左右的软包电池,用于电池测试和使用。
其次,针对由核体材料为氧化亚硅和碳纳米管复合材料SiOx/CNT,涂层为金属锂和保护涂层材料为PAA的锂离子电池电极材料的制备过程进行介绍。
本实施例提供一种由PAA作为保护涂层、金属锂作为补锂涂层以及氧化亚硅和碳纳米管复合材料作为核体的锂离子电池电极材料。其中,制备具有PAA保护层、金属锂涂层和氧化亚硅和碳纳米管复合材料核体的复合材料以及包括该复合材料的锂离子电池的过程,可以包括如下步骤:
(1)制备具有金属锂涂层结构的氧化亚硅和碳纳米管复合材料的前驱体材料。
示例性的,取氧化亚硅(粒径为3-10um)和单壁碳纳米管分散液进行混合,搅拌均匀后喷雾干燥,得到碳纳米管交联包覆的氧化亚硅二次颗粒(粒径为0-9um)复合材料;将一定量金属锂箔或金属锂粉置于坩埚中进行程序升温,加热金属锂至熔融状态,其中,升温速度可以设置为2℃/min,加热温度可以设置为450℃;按照Si和Li摩尔比1:1称取氧化亚硅和碳纳米管复合材料加入到熔融金属锂中,混合均匀,搅拌时间为0.3h,之后程序急速降温(降温速度可以设置为30℃/min)到室温,得到具有金属锂涂层结构的氧化亚硅和碳纳米管复合材料的前驱体材料。
(2)制备聚丙烯酸PAA包覆具有金属锂涂层的氧化亚硅和碳纳米管复合材料。
示例性的,取聚丙烯酸PAA(分子量Mw~450000)溶解到DMSO,加热温度60℃,搅拌时间8h,配制0.3%PAA的DMSO溶液;将(1)中得到的具有金属锂涂层的氧化亚硅和碳纳米管复合材料的前驱体材料加入PAA/DMSO中,混合搅拌1h后,过滤,在60℃的温度下进行真空干燥,并收集产物,得到聚丙烯酸PAA包覆具有金属锂涂层的氧化亚硅和碳纳米管复合材料。
(3)制备二次电池
示例性的,使用步骤(2)制备得到的复合材料,与导电剂、粘结剂,按照质量比75:10:15搅拌均匀,得到浆料,其中,导电剂例如可以为导电炭黑(Super P),粘结剂例如可以为PAA;在铜箔表面涂布该浆料,并在120℃温度下真空烘烤12h后,进行辊压、裁切,得到负极电极片;配合镍钴锰酸锂正极,使用1mol/L LiPF6/(EC+DEC,1:1)电解液,并采用材料为聚丙烯PP或聚乙烯单层或多层的电池隔膜,制作成130mAh左右的软包电池,用于电池测试和使用。
再次,针对由核体材料为硅碳材料Si/C,涂层为金属锂和保护涂层材料为PAA的锂离子电池电极材料的制备过程进行介绍。
本实施例提供一种由PAA作为保护涂层、金属锂作为补锂涂层以及硅碳材料Si/C作为核体的锂离子电池电极材料。其中,制备具有PAA保护涂层、金属锂涂层和硅碳材料Si/C核体的复合材料以及包括该复合材料的锂离子电池的过程,可以包括如下步骤:
(1)制备具有金属锂涂层的硅碳材料Si/C的前驱体材料。
示例性的,取硅碳原材料(粒径例如可以为3-10um)和沥青按比例(如1:0.05)进行 混合,以5℃/min的加热速度加热至600℃,搅拌1h进行包覆造粒,得到具有碳包覆的硅碳二次颗粒(粒径为0-12um)电池材料Si/C;在充满氩气的环境中(水和氧含量<0.1ppm),按照体积比1:1分别量取联苯和二甲基甲酰胺,混合均匀,得到联苯、二甲基甲酰胺混合溶液;将一定量金属锂箔或金属锂粉置于包括联苯、二氧戊环混合溶液中,溶解反应1h,得到锂浓度1mol/L的含锂溶液;取上述含锂溶液滴涂到Si/C上,重复滴涂数次,直至Si/C颗粒表面完全浸润,然后进行真空干燥,得到具有金属锂涂层的硅碳Si/C材料的前驱体材料。
(2)制备聚丙烯酸PAA包覆具有金属锂涂层的硅碳材料Si/C的复合材料。
示例性的,取聚丙烯酸PAA(分子量Mw~450000)溶解到DMSO,加热温度60℃,搅拌时间8h,配制0.3%PAA的DMSO溶液;将(1)中得到的具有金属锂涂层的硅碳材料Si/C的前驱体材料加入PAA/DMSO中,混合搅拌1h后,过滤,在60℃的温度下进行真空干燥,并收集产物,得到聚丙烯酸PAA包覆的具有金属锂涂层的硅碳Si/C复合材料。
(3)制备二次电池。
示例性的,使用步骤(2)制备得到的复合材料,与导电剂、粘结剂,按照质量比75:10:15搅拌均匀,得到浆料,其中,导电剂例如可以为导电炭黑(Super P),粘结剂例如可以为PAA;在铜箔表面涂布该浆料,在120℃温度下真空烘烤12h后,进行辊压、裁切,得到负极电极片;配合镍钴锰酸锂正极,使用摩尔浓度为1mol/L的LiPF6/(EC+DEC,1:1)作为电解液,并采用聚丙烯PP或聚乙烯单层或多层作为电池隔膜,制作成130mAh左右的软包电池,用于电池测试和使用。
最后,针对由核体材料为钴酸锂LCO,涂层为金属锂和保护涂层材料为锂磷氧氮LiPON的锂离子电池电极材料的制备过程进行介绍。
本实施例提供一种由锂磷氧氮LiPON作为保护涂层、金属锂作为补锂涂层以及钴酸锂LCO作为核体的锂离子电池电极材料。其中,制备具有LiPON保护涂层、金属锂涂层和LCO核体的复合材料以及包括该复合材料的锂离子电池的过程,可以包括如下步骤:
(1)制备具有金属锂涂层的钴酸锂LCO的前驱体材料。
示例性的,取一定量钴酸锂LCO颗粒平铺于真空室内的蒸镀区,通入氩气调节控制蒸镀区压力约为200Pa,设置锂源加热温度为500℃、蒸镀时间为2h,得到具有金属锂涂层的钴酸锂LCO的前驱体材料。
(2)制备锂磷氧氮LIPON包覆的具有金属锂涂层的钴酸锂LCO的复合材料。
示例性的,将具有金属锂涂层的钴酸锂LCO前驱体材料转移到含有Li 3PO 4靶材(例如为纯度99.9%,直径50mm,厚度4mm的Li 3PO 4)的蒸发镀膜室,抽真空使该镀膜室中的气压达到1×10 -4Pa,然后在高纯氮气中蒸镀20min,通过充入氮气的量控制工作气压例如为1.5Pa;此外,控制靶材与核体颗粒的距离可以为100mm,蒸发功率可以为100W,得到锂磷氧氮LiPON包覆的具有金属锂涂层的钴酸锂LCO的复合材料。
(3)制备二次电池
示例性的,使用步骤(2)制备得到的复合材料,与导电剂、粘结剂,按照质量比75:10:15搅拌均匀,得到浆料,其中,导电剂例如可以为导电炭黑(Super P),粘结剂例如可以为聚偏二氟乙烯(polyvinylidene difluoride,PVDF);在铜箔表面涂布该浆料,并在120℃温度下真空烘烤12h后,进行辊压、裁切,得到负极电极片;配合石墨负极,使 用摩尔浓度为1mol/L的LiPF6/(EC+DEC,1:1)作为电解液,并采用聚丙烯PP或聚乙烯单层或多层作为电池隔膜,制作成130mAh左右的软包电池,用于电池测试和使用。
应理解,本申请实施例提供的锂离子电池电极材料不仅限于上述列举的几种,在补锂涂层为金属锂的基础上,其核体材料和金属锂保护涂层的材料还可以包括其他多种,本申请对此并不限定。
通过本申请实施例提供的制备锂离子电池电极材料的方法可以获得在核体外包覆有金属锂涂层以及保护涂层的锂离子电池电极材料,其中由于金属锂涂层的存在具有高效补锂功能,因为相对于含锂化合物作为补锂涂层而言,金属锂涂层中的锂含量更高且不产生副产物,因此,能够在电池化学反应中有效地补充活性锂离子,减少首次充放电过程中形成SEI等消耗的活性锂离子,提高电池材料的库伦效率。此外,采用金属锂涂层作为补充锂离子的原料,可以降低锂离子扩散势垒,提高锂离子迁移数,提高锂离子的脱出或嵌入效率,提高电池材料的倍率性能,从而提高锂离子电池的能量密度和循环稳定性。
此外,金属锂保护层(即保护涂层)的存在可以避免锂金属涂层结构与空气中的水、氧、氮等发生副反应,提高安全性,同时还能缓解金属锂涂层结构与电解液的副反应,从而提高电池材料稳定性,提升电池循环稳定性。并且,本申请实施例提供的该具有金属锂涂层结构的锂离子电池电极材料制备方法简单、重复性好,具有较高的经济效益。
应理解,本申请实施例中的金属锂涂层还可以是其他金属涂层结构,如金属钠涂层结构。金属钾涂层结构或金属锡涂层结构等,其具体金属元素种类可以根据需要进行选择。但在锂离子电池领域,主要涉及的为金属锂涂层。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (25)

  1. 一种锂离子电池电极材料,其特征在于,包括:
    一个或多个第一核体;
    金属锂涂层,所述金属锂涂层包覆在所述一个或多个第一核体表面;
    保护涂层,所述保护涂层包覆在所述金属锂涂层外侧,使得所述金属锂涂层与空气隔绝。
  2. 根据权利要求1所述的锂离子电池电极材料,其特征在于,所述保护涂层的材料为无机物或聚合物。
  3. 根据权利要求2所述的锂离子电池电极材料,其特征在于,所述无机物包括以下任意一种或多种:
    石墨、介孔碳球、氮化硼、硬碳、软碳、中间相碳微球、碳纳米管CNT、石墨烯、碳纤维、活性碳、多孔碳、乙炔黑AB、科琴黑、沥青、氧化硅、氧化铝、氧化镁、氧化镧、氧化钛、氧化锌、钛酸钡、氮化锂、锂磷氧氮LIPON、磷酸钛铝锂LATP、磷酸锗铝锂LAGP、锂镧锆氧LLZO、锂镧钛氧LLTO、锂锗磷硫Li 10GeP 2S 12、Li 9.54Si 1.74P 1.44S 11.7Cl 0.3、碳酸锂Li 2CO 3、四氟硼酸锂LiBF 4、硫酸锂Li 4SiO 4、钛酸锂Li 2TiO 3、铌酸锂LiNbO 3、磷酸锂Li 3PO 4、氟化锂LiF、石蜡以及金属-有机骨架材料。
  4. 根据权利要求2所述的锂离子电池电极材料,其特征在于,所述聚合物包括以下任意一种或多种:
    聚吡咯、聚丙烯酸PAA、聚乙烯醇PVA、聚甲基丙烯酸甲酯PMMA、聚丙烯酸甲酯、聚甲基丙烯酸乙酯、聚丙烯酸乙酯、聚甲基丙烯酸丙酯、聚丙烯酸丙酯、聚丙烯酸丁酯、聚甲基丙烯酸丁酯、聚甲基丙烯酸戊酯、聚丙烯酸戊酯、聚甲基丙烯酸环己酯、聚丙烯酸环己酯、聚甲基丙烯酸己酯、聚丙烯酸己酯、聚丙烯酸缩水甘油酯、丙烯酸缩水甘油酯、聚甲基丙烯缩水甘油酯、聚偏氟乙烯PVDF、聚苯乙烯、氢化聚苯乙烯、聚乙烯基吡啶、聚乙烯基环己烷、聚酰亚胺PI、聚酰胺、聚乙烯、聚丁烯、聚丙烯、聚二甲基硅氧烷PDMS、聚丙烯腈、聚马来酸、聚甲基丙烯酸、聚叔丁基乙烯基醚、叔丁基乙烯基醚、聚环己基乙烯基醚、环己基乙烯基醚、聚二乙烯基苯、聚环氧乙烷PEO、聚环氧丙烷、聚乙烯乙酸乙烯酯、聚胺、聚腈、聚烯烃、聚异戊二烯、聚丁二烯、聚氨酯、十八烷基磷酸。
  5. 根据权利要求1-4中任一项所述的锂离子电池电极材料,其特征在于,所述第一核体的材料包括SiOx,其中,0<x<2,所述保护涂层的材料包括聚丙烯酸PAA;或者,
    所述第一核体的材料包括SiOx及石墨,其中,0<x<2,所述保护涂层的材料包括碳C;或者,
    所述第一核体的材料包括SiOx、CNT和石墨,其中,0<x<2,所述保护涂层的材料包括聚丙烯酸PAA;或者,
    所述第一核体的材料包括SiOx和C,其中,0<x<2,所述保护涂层的材料包括碳酸锂Li 2CO 3;或者,
    所述第一核体的材料包括SiOx和C,其中,0<x<2,所述保护涂层的材料包括PAA;或者,
    所述第一核体的材料包括SiOx、C和CNT,其中,0<x<2,所述保护涂层的材料包括 Li 2CO 3;或者,
    所述第一核体的材料包括SiOx、C和石墨,其中,0<x<2,所述保护涂层的材料包括聚二甲基硅氧烷PDMS;或者,
    所述第一核体的材料包括硅Si,所述保护涂层的材料包括磷酸锂Li 3PO 4;或者,
    所述第一核体的材料包括硅碳材料Si/C,所述保护涂层的材料包括聚丙烯酸PAA;或者,
    所述第一核体的材料包括硅碳材料Si/C,所述保护涂层的材料包括C;或者,
    所述第一核体的材料包括钴酸锂LCO,所述保护涂层的材料包括磷酸锗铝锂LAGP;或者,
    所述第一核体的材料包括镍钴锰酸锂NCM,所述保护涂层的材料包括Li 3PO 4;或者,
    所述第一核体的材料包括镍钴铝酸锂NCA,所述保护涂层的材料包括Li 3PO 4;或者,
    所述第一核体的材料包括硬碳,所述保护涂层的材料包括聚丙烯酸PAA。
  6. 一种锂离子电池电极材料的制备方法,其特征在于,包括:
    将金属锂加热至熔融状态,获得熔融金属锂;
    将第一核体浸入所述熔融金属锂中,使所述第一核体表面包覆金属锂涂层;
    在所述金属锂涂层的表面涂覆第一溶液,形成包覆在所述金属锂涂层外侧的保护涂层。
  7. 根据权利要求6所述的制备方法,其特征在于,所述将金属锂加热至熔融状态,包括:
    将金属锂箔和/或金属锂粉和/或金属锂锭置于坩埚中;
    将所述坩埚置于充满惰性气体保护气氛中进行加热,其中,所述加热温度为150-500℃。
  8. 根据权利要求6或7所述的制备方法,其特征在于,所述将第一核体浸入所述熔融金属锂中,获得具有金属锂涂层的核体,包括:
    将所述第一核体浸入所述熔融金属锂中,并进行搅拌;
    降温至第一温度,获得具有金属锂涂层的核体。
  9. 根据权利要求8所述的制备方法,其特征在于,所述降温的速度为5-20℃/min。
  10. 根据权利要求6-9中任一项所述的制备方法,其特征在于,在所述金属锂涂层的表面涂覆第一溶液,形成保护涂层,包括:
    将所述具有金属锂涂层的核体浸入所述第一溶液;
    对所述第一溶液中的所述具有金属锂涂层的核体进行搅拌、过滤以及真空干燥,使得在所述金属锂涂层表面形成所述保护涂层;或者,
    在所述具有金属锂涂层表面涂覆所述第一溶液;
    对涂覆的所述第一溶液进行真空干燥,使得在所述金属锂涂层表面形成所述保护涂层。
  11. 根据权利要求10所述的制备方法,其特征在于,所述第一溶液为聚丙烯酸PAA的二甲基亚砜DMSO溶液,其中,PAA/DMSO溶液的制备过程包括:
    将所述PAA溶解至所述DMSO形成第二溶液,并将所述第二溶液的加热温度设置为30-80℃;
    对所述第二溶液搅拌1-2h,形成所述PAA/DMSO溶液。
  12. 根据权利要求11所述的制备方法,其特征在于,所述真空干燥的温度为50-80℃。
  13. 根据权利要求12所述的制备方法,其特征在于,所述PAA/DMSO溶液的浓度为0.1-0.5%。
  14. 一种锂离子电池电极材料的制备方法,其特征在于,包括:
    将金属锂溶解于第一溶液,形成第二溶液,其中,所述第一溶液为包括非质子极性溶剂的溶液;
    将所述第二溶液涂覆至第一核体表面,获得具有金属锂涂层的核体;
    在具有所述第二溶液涂层的表面涂覆第三溶液,形成保护涂层。
  15. 根据权利要求14所述的制备方法,其特征在于,所述制备方法还包括:
    在惰性气体的保护气氛中,将无水含共轭双键的苯环类化合物溶于无水非质子极性溶剂,获得所述第一溶液。
  16. 根据权利要求15所述的制备方法,其特征在于,所述无水含共轭双键的苯环类化合物包括以下任意一种或多种:
    芳香族化合物、联苯类、稠环芳烃类化合物,优选二联苯及其衍生物、三联苯、四联苯、萘、蒽、菲、二苯甲酮。
  17. 根据权利要求16所述的制备方法,其特征在于,所述非质子极性溶剂包括以下任意一种或多种:
    乙腈CH3CN、二甲基甲酰胺DMF、1,3-二甲基-2-咪唑啉酮DMI、二甲基亚砜DMSO、六甲基磷酰三胺HMPA、四氢呋喃、二氧戊环、二甲醚、甘醇二甲醚、冠醚、二乙醚、甲乙醚、甲戊醚、乙二醇二甲醚、乙二醇二丁醚、二乙二醇二丁醚、乙二醇二乙醚、四甲基乙二胺、四甲基丙二胺、五甲基二乙撑三胺。
  18. 根据权利要求14-17中任一项所述的制备方法,其特征在于,所述将金属锂溶解于第一溶液,形成第二溶液,包括:
    将金属锂箔或者金属锂粉溶解于所述第一溶液,形成所述第二溶液,其中,所述第二溶液中锂浓度为0.1-0.2mol/L。
  19. 根据权利要求14-18中任一项所述的制备方法,其特征在于,所述方法还包括:
    将无机-有机复合物与所述非质子极性溶剂混合后搅拌,形成所述第三溶液;
    将所述第三溶液涂覆于所述第二溶液涂层的表面,使所述第三溶液完全覆盖所述核体和所述第二涂层,其中,涂覆时间为0.2-2h;
    对涂覆所述第三溶液后的核体进行真空干燥,其中,所述真空干燥的温度为50-80℃。
  20. 一种锂离子电池电极材料的制备方法,其特征在于,包括:
    对第一核体进行一次蒸镀,使得所述第一核体外包覆金属锂涂层,所述一次蒸镀的蒸发源为金属锂;
    对具有金属锂涂层的核体进行二次蒸镀,在所述金属锂涂层表面形成保护涂层。
  21. 根据权利要求20所述的制备方法,其特征在于,所述对第一核体进行一次蒸镀,使得所述第一核体外包覆金属锂涂层,包括:
    将多个所述第一核体置于第一真空蒸镀区,其中,所述第一真空蒸镀区包括金属锂;
    对所述第一真空蒸镀区加热,使所述金属锂蒸发;
    当所述金属锂完全包覆住所述第一核体时,获得所述具有金属锂涂层的核体。
  22. 根据权利要求21所述的制备方法,其特征在于,所述制备方法还包括:
    向所述第一真空蒸镀区充入惰性保护气体,使得所述第一真空蒸镀区的气压保持在10-300Pa范围内;和/或,
    将对所述金属锂的加热温度设置为200-900℃;和/或,
    所述一次蒸镀的时间设置为0.5-24h。
  23. 根据权利要求20-22中任一项所述的制备方法,其特征在于,所述二次蒸镀的靶材为磷酸锂Li 3PO 4
  24. 根据权利要求21-23中任一项所述的制备方法,其特征在于,所述对具有金属锂涂层的核体进行二次蒸镀,包括:
    将所述具有金属锂涂层的核体置于含有所述Li 3PO 4的第二真空蒸镀室,并控制所述具有金属锂涂层的核体与所述靶材的距离保持在50-100mm的范围内;
    对所述蒸镀室抽真空,并充入惰性保护气体,使得所述第二真空蒸镀区的气压保持在1.5-100Pa的范围内;
    设置所述二次蒸镀的蒸发功率为100-500W;和/或,
    设置所述二次蒸镀的时间为5-30min。
  25. 一种锂离子电池,其特征在于,所述锂离子电池包括正极极片、负极极片、隔膜、电解液和外壳,其中,所述正极极片或负极极片的材料包括如权利要求1至5中任一项所述的锂离子电池电极材料。
PCT/CN2020/132694 2019-12-04 2020-11-30 一种锂离子电池电极材料及其制备方法 WO2021109965A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911229146.2A CN112909224A (zh) 2019-12-04 2019-12-04 一种锂离子电池电极材料及其制备方法
CN201911229146.2 2019-12-04

Publications (1)

Publication Number Publication Date
WO2021109965A1 true WO2021109965A1 (zh) 2021-06-10

Family

ID=76111064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/132694 WO2021109965A1 (zh) 2019-12-04 2020-11-30 一种锂离子电池电极材料及其制备方法

Country Status (2)

Country Link
CN (1) CN112909224A (zh)
WO (1) WO2021109965A1 (zh)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113690427A (zh) * 2021-08-24 2021-11-23 蜂巢能源科技(无锡)有限公司 一种锂硅合金极片的制备方法、锂硅合金极片及锂电池
CN113871683A (zh) * 2021-09-18 2021-12-31 宁波行殊新能源科技有限公司 一种改善非水电解质电池高温性能的方法
CN114015231A (zh) * 2021-11-12 2022-02-08 安徽国风塑业股份有限公司 一种高导热聚酰亚胺薄膜及其制备方法
CN114122372A (zh) * 2021-11-10 2022-03-01 云南中晟新材料有限责任公司 一种锂离子电池所用低膨胀硅碳负极材料及其制备方法
CN114146739A (zh) * 2021-12-17 2022-03-08 北京理工大学 一种dmf介电层覆膜方法、系统及数字微流控芯片
CN114204009A (zh) * 2021-12-08 2022-03-18 万华化学(四川)有限公司 一种锂离子电池正极补锂添加剂及包括其的锂离子电池
CN114212766A (zh) * 2021-11-04 2022-03-22 湖南金硅科技有限公司 一种补锂改性硅材料及其制备方法和应用
CN114300665A (zh) * 2021-12-30 2022-04-08 华南师范大学 一种铌基金属氧化物介孔碳球复合材料及包含其的钠离子电池负极材料
CN114314577A (zh) * 2021-12-30 2022-04-12 上海杉杉新材料有限公司 一种生料前驱体、石墨负极材料及其制备方法和应用
CN114400329A (zh) * 2022-01-19 2022-04-26 厦门厦钨新能源材料股份有限公司 一种快离子导体包覆钴酸锂正极材料及其制备方法与应用
CN114420915A (zh) * 2022-01-17 2022-04-29 厦门海辰新能源科技有限公司 锂电池补锂和制作方法
CN114497507A (zh) * 2022-01-29 2022-05-13 辽宁中宏能源新材料股份有限公司 一种快充石墨复合材料及其制备方法
CN114566645A (zh) * 2022-01-27 2022-05-31 厦门厦钨新能源材料股份有限公司 补锂材料及其制备方法、锂离子电池及其补锂方法
CN114590838A (zh) * 2022-03-24 2022-06-07 中南大学 一种无定型金属硫化物包覆改性二元锰基钠电前驱体及其制备方法
CN114639812A (zh) * 2022-03-24 2022-06-17 河北科技大学 一种补锂材料和正极极片及其制备方法
CN114709389A (zh) * 2022-03-30 2022-07-05 浙江锂宸新材料科技有限公司 一种预锂化负极材料及其制备方法和应用
CN114806332A (zh) * 2022-04-25 2022-07-29 东莞市瑞盟涂料有限公司 一种车用耐磨型环保涂料及其制作工艺
CN114864873A (zh) * 2022-04-20 2022-08-05 江苏正力新能电池技术有限公司 一种负极片预锂化方法及该方法得到的负极片、二次电池
CN114899359A (zh) * 2022-06-27 2022-08-12 中国科学院化学研究所 一种改进的锂/硅/碳复合负极及其制备方法
CN114899408A (zh) * 2022-07-14 2022-08-12 四川新能源汽车创新中心有限公司 一种稳定锂金属粉及其制备方法和应用
CN115036485A (zh) * 2022-06-24 2022-09-09 中山烯利来设备科技有限公司 一种硅碳负极的制造方法
CN115286043A (zh) * 2021-11-29 2022-11-04 深圳市德方创域新能源科技有限公司 补锂添加剂前驱体及其制备方法、补锂添加剂
CN115504517A (zh) * 2022-08-18 2022-12-23 大连理工大学 在碳包覆双金属硫化物外壳生长金属水滑石纳米刺微球、制备方法及其应用
CN115646447A (zh) * 2022-11-09 2023-01-31 北京大学 一种碳微球/钛酸盐复合吸附材料的制备方法与应用
CN115744895A (zh) * 2022-11-29 2023-03-07 广东凯金新能源科技股份有限公司 氮掺杂多元碳包覆石墨复合材料,复合材料和二次电池
CN115954467A (zh) * 2023-03-15 2023-04-11 成都工业学院 一种锂金属负极保护层及其制备方法
CN116014220A (zh) * 2021-11-18 2023-04-25 深圳市德方创域新能源科技有限公司 正极补锂添加剂及其制备方法、正极片、二次电池
CN116002764A (zh) * 2021-10-27 2023-04-25 深圳市德方创域新能源科技有限公司 补锂添加剂及其制备方法和应用
CN115036485B (zh) * 2022-06-24 2024-05-03 广州碳导科技有限公司 一种硅碳负极的制造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114639816B (zh) * 2022-04-13 2022-11-01 晖阳(贵州)新能源材料有限公司 一种高首次效率硬碳复合材料及其制备方法
CN114583302B (zh) * 2022-05-05 2022-08-02 华中科技大学 Mof基单原子补锂复合材料及其制备方法和正极材料与电池
CN114944477A (zh) * 2022-05-25 2022-08-26 珠海鹏辉能源有限公司 一种金属锂碳复合材料的制备方法及锂电池
CN115360478B (zh) * 2022-07-13 2024-03-29 南昌大学 一种原位生长碳纳米管型磷酸铁改性的锂硫电池隔膜及其制备方法以及锂硫电池
CN115871290B (zh) * 2023-02-10 2023-07-07 天津中能锂业有限公司 一种锂碳复合带及其制备方法
CN117038938B (zh) * 2023-10-07 2023-12-08 深圳中芯能科技有限公司 一种正极补锂剂及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105932224A (zh) * 2016-05-23 2016-09-07 深圳大学 改性硅基负极材料及其制备方法与应用
CN106711428A (zh) * 2017-03-22 2017-05-24 江苏元景锂粉工业有限公司 一种富锂三元复合材料及其制备方法
KR20170058798A (ko) * 2015-11-19 2017-05-29 한국과학기술원 실리콘 혹은 실리콘산화물을 포함하는 전극의 전―리튬화 방법, 장치, 이에 의하여 제조된 전극 및 이를 포함하는 리튬이차전지
CN108232145A (zh) * 2017-10-23 2018-06-29 中航锂电(洛阳)有限公司 一种空间缓冲、掺杂锂的硅氧化物复合材料及其制备方法、锂离子电池
CN110010863A (zh) * 2019-03-19 2019-07-12 合肥国轩高科动力能源有限公司 一种锂离子电池负极材料预锂化的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1913200B (zh) * 2006-08-22 2010-05-26 深圳市贝特瑞电子材料有限公司 锂离子电池硅碳复合负极材料及其制备方法
CN105355849B (zh) * 2015-11-18 2017-11-03 中航锂电(洛阳)有限公司 锂电池负极添加剂、锂离子电池、制备方法及应用
CN110148734B (zh) * 2019-05-30 2021-12-21 蜂巢能源科技有限公司 硬碳负极材料及其制备方法和应用
CN110350202A (zh) * 2019-07-24 2019-10-18 江苏塔菲尔新能源科技股份有限公司 一种集流体及其制备方法和锂离子电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170058798A (ko) * 2015-11-19 2017-05-29 한국과학기술원 실리콘 혹은 실리콘산화물을 포함하는 전극의 전―리튬화 방법, 장치, 이에 의하여 제조된 전극 및 이를 포함하는 리튬이차전지
CN105932224A (zh) * 2016-05-23 2016-09-07 深圳大学 改性硅基负极材料及其制备方法与应用
CN106711428A (zh) * 2017-03-22 2017-05-24 江苏元景锂粉工业有限公司 一种富锂三元复合材料及其制备方法
CN108232145A (zh) * 2017-10-23 2018-06-29 中航锂电(洛阳)有限公司 一种空间缓冲、掺杂锂的硅氧化物复合材料及其制备方法、锂离子电池
CN110010863A (zh) * 2019-03-19 2019-07-12 合肥国轩高科动力能源有限公司 一种锂离子电池负极材料预锂化的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI SHIHENG: "Preparation and Properties of Prelithiation of Tin-based Anode Materials", CHINESE MASTER’S THESES FULL-TEXT DATABASE, ENGINEERING SCIENCE AND TECHNOLOGY II, 1 May 2019 (2019-05-01), XP055818846 *

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113690427A (zh) * 2021-08-24 2021-11-23 蜂巢能源科技(无锡)有限公司 一种锂硅合金极片的制备方法、锂硅合金极片及锂电池
CN113690427B (zh) * 2021-08-24 2023-03-31 蜂巢能源科技(无锡)有限公司 一种锂硅合金极片的制备方法、锂硅合金极片及锂电池
CN113871683A (zh) * 2021-09-18 2021-12-31 宁波行殊新能源科技有限公司 一种改善非水电解质电池高温性能的方法
CN113871683B (zh) * 2021-09-18 2022-06-17 宁波梅山保税港区锂泰企业管理合伙企业(有限合伙) 一种改善非水电解质电池高温性能的方法
CN116002764A (zh) * 2021-10-27 2023-04-25 深圳市德方创域新能源科技有限公司 补锂添加剂及其制备方法和应用
CN116002764B (zh) * 2021-10-27 2023-12-29 深圳市德方创域新能源科技有限公司 补锂添加剂及其制备方法和应用
CN114212766A (zh) * 2021-11-04 2022-03-22 湖南金硅科技有限公司 一种补锂改性硅材料及其制备方法和应用
CN114212766B (zh) * 2021-11-04 2024-02-13 湖南金硅科技有限公司 一种补锂改性硅材料及其制备方法和应用
CN114122372A (zh) * 2021-11-10 2022-03-01 云南中晟新材料有限责任公司 一种锂离子电池所用低膨胀硅碳负极材料及其制备方法
CN114122372B (zh) * 2021-11-10 2024-03-29 云南中晟新材料有限责任公司 一种锂离子电池所用低膨胀硅碳负极材料及其制备方法
CN114015231B (zh) * 2021-11-12 2023-06-02 安徽国风新材料股份有限公司 一种高导热聚酰亚胺薄膜及其制备方法
CN114015231A (zh) * 2021-11-12 2022-02-08 安徽国风塑业股份有限公司 一种高导热聚酰亚胺薄膜及其制备方法
CN116014220A (zh) * 2021-11-18 2023-04-25 深圳市德方创域新能源科技有限公司 正极补锂添加剂及其制备方法、正极片、二次电池
CN116014220B (zh) * 2021-11-18 2023-11-03 深圳市德方创域新能源科技有限公司 正极补锂添加剂及其制备方法、正极片、二次电池
CN115286043A (zh) * 2021-11-29 2022-11-04 深圳市德方创域新能源科技有限公司 补锂添加剂前驱体及其制备方法、补锂添加剂
CN115286043B (zh) * 2021-11-29 2023-12-15 深圳市德方创域新能源科技有限公司 补锂添加剂前驱体及其制备方法、补锂添加剂
CN114204009A (zh) * 2021-12-08 2022-03-18 万华化学(四川)有限公司 一种锂离子电池正极补锂添加剂及包括其的锂离子电池
CN114204009B (zh) * 2021-12-08 2023-12-19 万华化学(四川)有限公司 一种锂离子电池正极补锂添加剂及包括其的锂离子电池
CN114146739A (zh) * 2021-12-17 2022-03-08 北京理工大学 一种dmf介电层覆膜方法、系统及数字微流控芯片
CN114300665A (zh) * 2021-12-30 2022-04-08 华南师范大学 一种铌基金属氧化物介孔碳球复合材料及包含其的钠离子电池负极材料
CN114300665B (zh) * 2021-12-30 2024-04-09 华南师范大学 一种铌基金属氧化物介孔碳球复合材料及包含其的钠离子电池负极材料
CN114314577A (zh) * 2021-12-30 2022-04-12 上海杉杉新材料有限公司 一种生料前驱体、石墨负极材料及其制备方法和应用
CN114420915A (zh) * 2022-01-17 2022-04-29 厦门海辰新能源科技有限公司 锂电池补锂和制作方法
CN114420915B (zh) * 2022-01-17 2023-04-25 厦门海辰储能科技股份有限公司 锂电池补锂和制作方法
CN114400329A (zh) * 2022-01-19 2022-04-26 厦门厦钨新能源材料股份有限公司 一种快离子导体包覆钴酸锂正极材料及其制备方法与应用
CN114566645A (zh) * 2022-01-27 2022-05-31 厦门厦钨新能源材料股份有限公司 补锂材料及其制备方法、锂离子电池及其补锂方法
CN114497507A (zh) * 2022-01-29 2022-05-13 辽宁中宏能源新材料股份有限公司 一种快充石墨复合材料及其制备方法
CN114639812A (zh) * 2022-03-24 2022-06-17 河北科技大学 一种补锂材料和正极极片及其制备方法
CN114590838A (zh) * 2022-03-24 2022-06-07 中南大学 一种无定型金属硫化物包覆改性二元锰基钠电前驱体及其制备方法
CN114709389A (zh) * 2022-03-30 2022-07-05 浙江锂宸新材料科技有限公司 一种预锂化负极材料及其制备方法和应用
CN114864873A (zh) * 2022-04-20 2022-08-05 江苏正力新能电池技术有限公司 一种负极片预锂化方法及该方法得到的负极片、二次电池
CN114806332B (zh) * 2022-04-25 2023-03-10 东莞市瑞盟涂料有限公司 一种车用耐磨型环保涂料及其制作工艺
CN114806332A (zh) * 2022-04-25 2022-07-29 东莞市瑞盟涂料有限公司 一种车用耐磨型环保涂料及其制作工艺
CN115036485A (zh) * 2022-06-24 2022-09-09 中山烯利来设备科技有限公司 一种硅碳负极的制造方法
CN115036485B (zh) * 2022-06-24 2024-05-03 广州碳导科技有限公司 一种硅碳负极的制造方法
CN114899359A (zh) * 2022-06-27 2022-08-12 中国科学院化学研究所 一种改进的锂/硅/碳复合负极及其制备方法
CN114899359B (zh) * 2022-06-27 2023-06-09 中国科学院化学研究所 一种改进的锂/硅/碳复合负极及其制备方法
CN114899408B (zh) * 2022-07-14 2022-11-01 四川新能源汽车创新中心有限公司 一种稳定锂金属粉及其制备方法和应用
CN114899408A (zh) * 2022-07-14 2022-08-12 四川新能源汽车创新中心有限公司 一种稳定锂金属粉及其制备方法和应用
CN115504517B (zh) * 2022-08-18 2023-07-04 大连理工大学 在碳包覆双金属硫化物外壳生长金属水滑石纳米刺微球、制备方法及其应用
CN115504517A (zh) * 2022-08-18 2022-12-23 大连理工大学 在碳包覆双金属硫化物外壳生长金属水滑石纳米刺微球、制备方法及其应用
CN115646447B (zh) * 2022-11-09 2023-12-22 北京大学 一种碳微球/钛酸盐复合吸附材料的制备方法与应用
CN115646447A (zh) * 2022-11-09 2023-01-31 北京大学 一种碳微球/钛酸盐复合吸附材料的制备方法与应用
CN115744895A (zh) * 2022-11-29 2023-03-07 广东凯金新能源科技股份有限公司 氮掺杂多元碳包覆石墨复合材料,复合材料和二次电池
CN115954467B (zh) * 2023-03-15 2023-05-16 成都工业学院 一种锂金属负极保护层及其制备方法
CN115954467A (zh) * 2023-03-15 2023-04-11 成都工业学院 一种锂金属负极保护层及其制备方法

Also Published As

Publication number Publication date
CN112909224A (zh) 2021-06-04

Similar Documents

Publication Publication Date Title
WO2021109965A1 (zh) 一种锂离子电池电极材料及其制备方法
Zhan et al. Promises and challenges of the practical implementation of prelithiation in lithium‐ion batteries
Wang et al. Li-free cathode materials for high energy density lithium batteries
US10686186B2 (en) Solid-state battery positive electrode material, production method for solid-state battery positive electrode material, all-solid-state lithium-sulfur battery using solid-state battery positive electrode material, and production method for all-solid-state lithium-sulfur battery using solid-state battery positive electrode material
Lin et al. Constructing a uniform lithium iodide layer for stabilizing lithium metal anode
CN110120502B (zh) 一种锂金属合金负极材料及其制备方法和应用
KR20220092556A (ko) 전지를 위한 음극활물질 및 그 제조 방법, 전지 음극, 전지
US20150000118A1 (en) Method for manufacturing graphene-incorporated rechargeable li-ion battery
Liu et al. Ultra-stable lithium plating/stripping in garnet-based lithium-metal batteries enabled by a SnO2 nanolayer
Meng et al. Planting CuGa2 seeds assisted with liquid metal for selective wrapping deposition of lithium
EP3216071A1 (en) Pre-lithiation of electrode materials in a semi-solid electrode
CN111900333B (zh) 一种碳纳米管膜直接复合熔融锂金属的无锂枝晶阳极及其制备方法
Si et al. High performance Si/C@ CNF composite anode for solid-polymer lithium-ion batteries
CN112928381A (zh) 锂离子电池的补锂电极片、补锂隔膜及其制备方法
WO2020125560A1 (zh) 预嵌钾负极、制备方法和应用、钾基双离子电池及其制备方法和用电设备
Liu et al. Low-temperature and high-performance Si/graphite composite anodes enabled by sulfite additive
JP2015088437A (ja) 非水系二次電池のプリドープ方法及びプリドープ方法により得られる電池
Ren et al. A safe and efficient lithiated silicon-sulfur battery enabled by a bi-functional composite interlayer
Xu et al. Sub-zero temperature electrolytes for lithium-sulfur batteries: Functional mechanisms, challenges and perspectives
KR101429763B1 (ko) 이차전지용 음극활물질 및 이를 포함하는 리튬이차전지
Liu et al. In situ construction of PVA/LiF composite artificial protective layer to assist dendrite-free Li metal anode
WO2017139997A1 (zh) 一种掺杂碳硫化锂核壳结构的正极材料的制备方法
CN112349894B (zh) 一种锂电池电极材料的制备方法及快速锂离子传导界面的构筑方法
US20230034396A1 (en) Anode active material for batteries, and method for preparing same
WO2023208007A1 (zh) 复合材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20895942

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20895942

Country of ref document: EP

Kind code of ref document: A1