WO2017139997A1 - 一种掺杂碳硫化锂核壳结构的正极材料的制备方法 - Google Patents

一种掺杂碳硫化锂核壳结构的正极材料的制备方法 Download PDF

Info

Publication number
WO2017139997A1
WO2017139997A1 PCT/CN2016/074197 CN2016074197W WO2017139997A1 WO 2017139997 A1 WO2017139997 A1 WO 2017139997A1 CN 2016074197 W CN2016074197 W CN 2016074197W WO 2017139997 A1 WO2017139997 A1 WO 2017139997A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium sulfide
carbon
ethanol solution
carbon source
graphene
Prior art date
Application number
PCT/CN2016/074197
Other languages
English (en)
French (fr)
Inventor
肖丽芳
钟玲珑
Original Assignee
肖丽芳
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 肖丽芳 filed Critical 肖丽芳
Priority to PCT/CN2016/074197 priority Critical patent/WO2017139997A1/zh
Publication of WO2017139997A1 publication Critical patent/WO2017139997A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the synthesis of nano materials, in particular to a preparation method of a cathode material for a lithium sulfur battery.
  • the lithium-sulfur battery is a battery system in which lithium metal is used as a negative electrode and elemental sulfur is used as a positive electrode.
  • Lithium-sulfur batteries have two discharge platforms (about 2.4V and 2.1V), but their electrochemical reaction mechanism is complicated. Lithium-sulfur batteries have the advantages of high specific energy (2600Wh/kg), high specific capacity (1675mAh/g), low cost, etc., and are considered to be promising new generation batteries.
  • problems such as low utilization rate of active materials, low cycle life and poor safety, which seriously restricts the development of lithium-sulfur batteries.
  • Elemental sulfur is an electron and ion insulator, and the room temperature conductivity is low (5 ⁇ 10 -30 S ⁇ cm -1 ). Since there is no ionic sulfur, it is used as The activation of the positive electrode material is difficult; (2) the high polylithium polysulfide Li 2 S n (8>n ⁇ 4) generated during the electrode reaction is easily dissolved in the electrolyte, forming a concentration difference between the positive and negative electrodes. Under the action of the concentration gradient, it migrates to the negative electrode, and the high poly lithium polysulfide is reduced by the lithium metal to the oligomeric lithium polysulfide.
  • the oligomeric lithium polysulfide aggregates at the negative electrode, eventually forming a concentration difference between the two electrodes, and then migrating to the positive electrode to be oxidized to a highly polylithium polysulfide.
  • This phenomenon is known as the shuttle effect, which reduces the utilization of sulfur active substances.
  • insoluble Li 2 S and Li 2 S 2 are deposited on the surface of the lithium negative electrode, which further deteriorates the performance of the lithium-sulfur battery;
  • the final product of the reaction, Li 2 S is also an electronic insulator, which is deposited on the sulfur electrode, and lithium
  • the migration speed of ions in solid lithium sulfide is slow, which makes the electrochemical reaction kinetics slower.
  • lithium metal is required as the negative electrode to provide the lithium source.
  • the lithium metal negative electrode is liable to form lithium dendrite and powder on the surface, which not only has safety hazards.
  • the consumption of the electrolyte leads to the premature failure of the lithium-sulfur secondary battery, which limits the application of the lithium-sulfur battery.
  • the researchers used Li 2 S instead of the sulfur-based positive electrode, or pre-lithiated the sulfur-based positive electrode, using a carbon negative electrode or a higher capacity silicon and tin as the negative electrode material, in order to eliminate the influence of the lithium metal negative electrode, the lithium sulfide positive electrode
  • the theoretical capacity is high, 1166 mAh / g, but it is also an insulating material like the sulfur electrode, it needs to add conductive additives, and special coating treatment to improve its electrochemical activity.
  • the invention provides a preparation method of a positive electrode material doped with a lithium sulfide core-shell structure, the preparation method is simple, the conductive and good graphene and the carbon shell provide a conductive network, and the doping metal ions change the lithium sulfide lattice structure, thereby improving Its conductivity, which in turn increases its electrochemical activity.
  • the invention provides a process for preparing a graphene/carbon coated doped lithium sulfide composite material as follows:
  • a carbon source is added to ethanol under stirring to dissolve to form an ethanol solution containing a carbon source.
  • Carbon-coated lithium sulfide and graphene are added to tetrahydrofuran, ultrasonically reacted, and then the solvent is evaporated to obtain a graphene/carbon coated doped lithium sulfide composite.
  • the mass ratio of lithium sulfide to metal oxide in the step (1) is 100:0.5-5; the metal oxide may be one or more of magnesium oxide, manganese dioxide, copper oxide, aluminum oxide and nickel oxide; The time is 0.5-3 hours, and the ball milling speed is 500-3000 rpm;
  • the organic carbon source in the step (2) is one or more of sucrose, glucose, starch, cellulose; the mass concentration of the forming solution is 5-10%;
  • Step (3) The lithium sulfide ethanol solution has a mass concentration of 5-10%; the volume ratio of the carbon source ethanol solution to the lithium sulfide ethanol solution is 1:1-10; the room temperature stirring reaction time is 1-5 hours, in the muffle furnace The reaction temperature is 800-900 ° C; the reaction time is 1-5 hours;
  • the mass ratio of graphene to carbon-coated lithium sulfide in step (4) is 1:10-100; the ultrasonic time is 0.5-3 hours.
  • the invention has the following beneficial effects: (1) both graphene and carbon have ultra-high electrical conductivity, graphene and carbon coating on the surface of lithium sulfide can effectively improve the electrical conductivity of the material; (2) doping metal ions can change The crystal structure of lithium sulfide is beneficial to the improvement of the bulk conductivity of lithium sulfide and the improvement of its electrochemical performance.
  • Figure 1 is an SEM image of a graphene/carbon coated doped lithium sulfide composite prepared in accordance with the present invention.
  • sucrose was added to ethanol under stirring to dissolve to form a sucrose ethanol solution having a mass concentration of 10%.
  • sucrose was added to ethanol under stirring to dissolve to form a sucrose ethanol solution having a mass concentration of 8%.
  • Electrode preparation and performance test electrode material, acetylene black and PVDF were mixed in NMP at a mass ratio of 80:10:10, coated on aluminum foil as electrode film, lithium metal plate as counter electrode, CELGARD 2400 as separator, 1 mol /L LiTFSI/DOL-DME (volume ratio 1:1) is an electrolyte, 1mol/L LiN03 is an additive, assembled into a button-type battery in a filled glove box, and a constant current charge and discharge test is performed using a Land battery test system. .
  • the charge and discharge voltage range is 1-3V
  • the current density is 0.1C
  • performance is shown in Table 1.
  • FIG. 1 is an SEM image of a positive electrode material prepared according to the present invention. It can be seen from the figure that the carbon-coated lithium sulfide particles are uniformly distributed on the surface of the graphene, which is beneficial to improving the electrochemical performance of the material.

Abstract

一种掺杂碳硫化锂核壳结构的正极材料的制备方法,包括以下几个步骤:步骤(1):将硫化锂与金属氧化物粉末混合,然后装入密封的球磨罐中,再装入球磨机进行球磨,得到掺杂纳米硫化锂;步骤(2):将碳源搅拌下加入到乙醇中,溶解形成含有碳源的乙醇溶液;步骤(3):将得到的纳米硫化锂分散到乙醇溶液中,再将含有碳源的乙醇溶液滴加到悬浮液中,加入到惰性气体保护的马弗炉中反应,得到碳包覆的硫化锂;步骤(4):将碳包覆的硫化锂和石墨烯加入到四氢呋喃中,蒸发溶剂得到石墨烯/碳包覆的掺杂硫化锂复合材料。

Description

一种掺杂碳硫化锂核壳结构的正极材料的制备方法 技术领域
本发明涉及纳米材料合成,特别涉及一种锂硫电池正极材料的制备方法。
背景技术
锂硫电池是以金属锂为负极,单质硫为正极的电池体系。锂硫电池的具有两个放电平台(约为2.4V和2.1V),但其电化学反应机理比较复杂。锂硫电池具有比能量高(2600Wh/kg)、比容量高(1675mAh/g)、成本低等优点,被认为是很有发展前景的新一代电池。但是目前其存在着活性物质利用率低、循环寿命低和安全性差等问题,这严重制约着锂硫电池的发展。造成上述问题的主要原因有以下几个方面:(1)单质硫是电子和离子绝缘体,室温电导率低(5×10-30S·cm-1),由于没有离子态的硫存在,因而作为正极材料活化困难;(2)在电极反应过程中产生的高聚态多硫化锂Li2Sn(8>n≥4)易溶于电解液中,在正负极之间形成浓度差,在浓度梯度的作用下迁移到负极,高聚态多硫化锂被金属锂还原成低聚态多硫化锂。随着以上反应的进行,低聚态多硫化锂在负极聚集,最终在两电极之间形成浓度差,又迁移到正极被氧化成高聚态多硫化锂。这种现象被称为飞梭效应,降低了硫活性物质的利用率。同时不溶性的Li2S和Li2S2沉积在锂负极表面,更进一步恶化了锂硫电池的性能;(3)反应最终产物Li2S同样是电子绝缘体,会沉积在硫电极上,而锂离子在固态硫化锂中迁移速度慢,使电化学反应动力学速度变慢;(4)硫和最终产物Li2S的密度不同,当硫被锂化后体积膨胀大约79%,易导致Li2S的粉化,引起锂硫电池的安全问题。上述不足制约着锂硫电池的发展,这也是目前锂硫电池研究需要解决的重点问题。
锂硫电池体系中,由于硫基正极不含锂,需要用金属锂作为负极来提供锂源,然而在循环过程中,金属锂负极易在表面生成锂枝晶和粉化,不但存在安全隐患,而且耗净电解液导致锂硫二次电池提前失效,限制了锂硫电池的应用。研究者采用Li2S代替硫基正极,或将硫基正极预先锂化后,采用碳负极或具有较 高容量的硅、锡作为负极材料,目的在于消除金属锂负极的影响,硫化锂正极的理论容量较高,为1166mAh/g,但它和硫电极一样也是绝缘性材料,需要加入导电添加剂,并进行特殊的包覆处理提高其电化学活性。
技术问题
本发明提供一种掺杂碳硫化锂核壳结构的正极材料的制备方法,制备方法简单,导电性良好的石墨烯和碳壳提供导电网络,同时掺杂金属离子改变硫化锂晶格结构,提高其导电性,进而提高其电化学活性。
问题的解决方案
技术解决方案
本发明提供一种石墨烯/碳包覆的掺杂硫化锂复合材料的制备工艺流程如下:
(1)在惰性气体保护的手套箱内将商用硫化锂与金属氧化物粉末混合,然后装入密封的球磨罐中,再装入球磨机进行球磨,得到掺杂纳米硫化锂。
(2)将碳源搅拌下加入到乙醇中,溶解形成含有碳源的乙醇溶液。
(3)将得到的纳米硫化锂分散到乙醇溶液中,不断搅拌形成悬浮液,再将含有碳源的乙醇溶液滴加到悬浮液中,室温搅拌反应,然后蒸发掉溶剂,加入到惰性气体保护的马弗炉中高温反应,得到碳包覆的硫化锂。
(4)将碳包覆的硫化锂和石墨烯加入到四氢呋喃中,超声反应,然后蒸发溶剂得到石墨烯/碳包覆的掺杂硫化锂复合材料。
步骤(1)中硫化锂与金属氧化物的质量比为100∶0.5-5;金属氧化物可以为氧化镁、二氧化锰、氧化铜、氧化铝、氧化镍中的一种或几种;球磨时间为0.5-3小时,球磨速度为500-3000转/分钟;
步骤(2)中有机碳源为蔗糖、葡萄糖、淀粉、纤维素中的一种或几种;形成溶液的质量浓度为5-10%;
步骤(3)硫化锂乙醇溶液质量浓度为5-10%;含有碳源乙醇溶液与硫化锂乙醇溶液的体积比例为1∶1-10;室温搅拌反应时间为1-5小时,在马弗炉中的反应温度为800-900℃;反应时间为1-5小时;
步骤(4)中石墨烯与碳包覆的硫化锂的质量比为1∶10-100;超声时间为0.5-3小时。
发明的有益效果
有益效果
本发明具有如下有益效果:(1)石墨烯和碳都具有超高的电导率,石墨烯和碳包覆在硫化锂的表面能有效改善材料的电导率;(2)掺杂金属离子能够改变硫化锂晶体结构,有利于硫化锂本体电导率的提高,提高其电化学性能。
对附图的简要说明
附图说明
图1是本发明制备的石墨烯/碳包覆的掺杂硫化锂复合材料的SEM图。
发明实施例
本发明的实施方式
下面结合附图,对本发明的较优的实施例作进一步的详细说明:
实施例1
(1)在惰性气体保护的手套箱内将100mg商用硫化锂与5mg氧化镁粉末混合,然后装入密封的球磨罐中,再装入球磨机进行球磨0.5小时,球磨速度为3000转/分钟,得到纳米硫化锂。
(2)将蔗糖在搅拌下加入到乙醇中,溶解形成质量浓度10%的蔗糖乙醇溶液。
(3)将得到的纳米硫化锂分散到乙醇溶液中,不断搅拌形成质量浓度10%的50ml悬浮液,再将50ml的蔗糖乙醇溶液滴加到悬浮液中,室温搅拌反应5小时,然后蒸发掉溶剂,加入到惰性气体保护的马弗炉中800℃反应5小时,得到碳包覆的硫化锂。
(4)将100mg碳包覆的硫化锂和10mg石墨烯加入到四氢呋喃中,超声反应0.5小时,然后蒸发溶剂得到石墨烯/碳包覆的掺杂硫化锂复合材料。
实施例2
(1)在惰性气体保护的手套箱内将100mg商用硫化锂与0.5mg二氧化锰粉末混合,然后装入密封的球磨罐中,再装入球磨机进行球磨3小时,球磨速度为500 转/分钟,得到纳米硫化锂。
(2)将葡萄糖搅拌下加入到乙醇中,溶解形成质量浓度5%的葡萄糖乙醇溶液。
(3)将得到的纳米硫化锂分散到乙醇溶液中,不断搅拌形成质量浓度5%的50ml悬浮液,再将5ml葡萄糖乙醇溶液滴加到悬浮液中,室温搅拌反应1小时,然后蒸发掉溶剂,加入到惰性气体保护的马弗炉中900℃反应1小时,得到碳包覆的硫化锂。
(4)将100mg碳包覆的硫化锂和1mg石墨烯加入到四氢呋喃中,超声反应3小时,然后蒸发溶剂得到石墨烯/碳包覆的掺杂硫化锂复合材料。
实施例3
(1)在惰性气体保护的手套箱内将100mg商用硫化锂与2.5mg氧化铜粉末混合,然后装入球磨机进行球磨1小时,球磨速度为2000转/分钟,得到纳米硫化锂。
(2)将淀粉搅拌下加入到乙醇中,溶解形成质量浓度7%的淀粉乙醇溶液。
(3)将得到的纳米硫化锂分散到乙醇溶液中,不断搅拌形成质量浓度6%的50ml悬浮液,再将10ml淀粉乙醇溶液滴加到悬浮液中,室温搅拌反应2小时,然后蒸发掉溶剂,加入到惰性气体保护的马弗炉中850℃反应3.5小时,得到碳包覆的硫化锂。
(4)将100mg碳包覆的硫化锂和5mg石墨烯加入到四氢呋喃中,超声反应1小时,然后蒸发溶剂得到石墨烯/碳包覆的掺杂硫化锂复合材料。
实施例4
(1)在惰性气体保护的手套箱内将100mg商用硫化锂与1mg氧化铝粉末混合,然后装入球磨机进行球磨2小时,球磨速度为1000转/分钟,得到纳米硫化锂。
(2)将纤维素搅拌下加入到乙醇中,溶解形成质量浓度6%的纤维素乙醇溶液。
(3)将得到的纳米硫化锂分散到乙醇溶液中,不断搅拌形成质量浓度7%的50ml悬浮液,再将25ml纤维素乙醇溶液滴加到悬浮液中,室温搅拌反应3小时,然 后蒸发掉溶剂,加入到惰性气体保护的马弗炉中820℃反应4小时,得到碳包覆的硫化锂。
(4)将100mg碳包覆的硫化锂和3mg石墨烯加入到四氢呋喃中,超声反应2小时,然后蒸发溶剂得到石墨烯/碳包覆的掺杂硫化锂复合材料。
实施例5
(1)在惰性气体保护的手套箱内将100mg商用硫化锂与3mg氧化镍粉末混合,然后装入球磨机进行球磨1.5小时,球磨速度为1500转/分钟,得到纳米硫化锂。
(2)将蔗糖搅拌下加入到乙醇中,溶解形成质量浓度8%的蔗糖乙醇溶液。
(3)将得到的纳米硫化锂分散到乙醇溶液中,不断搅拌形成质量浓度8%的50ml悬浮液,再将30ml蔗糖乙醇溶液滴加到悬浮液中,室温搅拌反应4小时,然后蒸发掉溶剂,加入到惰性气体保护的马弗炉中870℃高温反应3小时,得到碳包覆的硫化锂。
(4)将100mg碳包覆的硫化锂和7mg石墨烯加入到四氢呋喃中,超声反应2.5小时,然后蒸发溶剂得到石墨烯/碳包覆的掺杂硫化锂复合材料。
电极的制备及性能测试;将电极材料、乙炔黑和PVDF按质量比80∶10∶10在NMP中混合,涂覆在铝箔上为电极膜,金属锂片为对电极,CELGARD 2400为隔膜,1mol/L的LiTFSI/DOL-DME(体积比1∶1)为电解液,1mol/L的LiN03为添加剂,在充满Ar手套箱内组装成扣式电池,采用Land电池测试系统进行恒流充放电测试。充放电电压范围为1-3V,电流密度为0.1C,性能如表1所示。
表1
[Table 1]
Figure PCTCN2016074197-appb-000001
图1为本发明制备出正极材料的SEM图,从图中可以看出碳包覆的硫化锂颗粒均匀的分布在石墨烯表面上,有利于提高材料的电化学性能。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (7)

  1. 一种掺杂碳硫化锂核壳结构的正极材料的制备方法,其特征在于,包括以下几个步骤:
    步骤(1):在惰性气体保护的手套箱内将商用硫化锂与金属氧化物粉末混合,然后装入密封的球磨罐中,再装入球磨机进行球磨,得到掺杂纳米硫化锂;
    步骤(2):将碳源搅拌下加入到乙醇中,溶解形成含有碳源的乙醇溶液;
    步骤(3):将步骤(1)得到的纳米硫化锂分散到乙醇溶液中,不断搅拌形成悬浮液,再将含有碳源的乙醇溶液滴加到悬浮液中,搅拌反应,然后蒸发掉溶剂,加入到惰性气体保护的马弗炉中反应,得到碳包覆的硫化锂;
    步骤(4):将碳包覆的硫化锂和石墨烯加入到四氢呋喃中,超声反应,然后蒸发溶剂得到石墨烯/碳包覆的掺杂硫化锂复合材料。
  2. 如权利要求1所述的制备方法,其特征在于,所述步骤(1)中硫化锂与金属氧化物的质量比为100∶0.5-5;金属氧化物采用氧化镁、二氧化锰、氧化铜、氧化铝、氧化镍中的一种或几种。
  3. 如权利要求1所述的制备方法,其特征在于,所述步骤(1)中球磨时间为0.5-3小时,球磨速度为500-3000转/分钟。
  4. 如权利要求1所述的制备方法,其特征在于,所述步骤(2)中有机碳源为蔗糖、葡萄糖、淀粉、纤维素中的一种或几种;形成含有碳源的乙醇溶液的质量浓度为5-10%。
  5. 如权利要求1所述的制备方法,其特征在于,所述步骤(3)硫化锂乙醇溶液质量浓度为5-10%;含有碳源乙醇溶液与硫化锂乙醇溶液的体积比例为1∶1-10。
  6. 如权利要求1所述的制备方法,其特征在于,所述步骤(3)中,室温搅拌反应时间为1-5小时,在马弗炉中的反应温度为800-900℃;反应时间为1-5小时。
  7. 如权利要求1所述的制备方法,其特征在于,所述步骤(3)步骤(4)中石墨烯与碳包覆的硫化锂的质量比为1∶10-100;超声时间为0.5-3小时。
PCT/CN2016/074197 2016-02-21 2016-02-21 一种掺杂碳硫化锂核壳结构的正极材料的制备方法 WO2017139997A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/074197 WO2017139997A1 (zh) 2016-02-21 2016-02-21 一种掺杂碳硫化锂核壳结构的正极材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/074197 WO2017139997A1 (zh) 2016-02-21 2016-02-21 一种掺杂碳硫化锂核壳结构的正极材料的制备方法

Publications (1)

Publication Number Publication Date
WO2017139997A1 true WO2017139997A1 (zh) 2017-08-24

Family

ID=59625580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/074197 WO2017139997A1 (zh) 2016-02-21 2016-02-21 一种掺杂碳硫化锂核壳结构的正极材料的制备方法

Country Status (1)

Country Link
WO (1) WO2017139997A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108878854A (zh) * 2018-07-20 2018-11-23 西南科技大学 由MOF模板制成锂离子电池负极的空心微结构Co3S4@C@MoS2的制备方法
CN112117453A (zh) * 2020-10-16 2020-12-22 肇庆市华师大光电产业研究院 一种新型锂硫电池正极复合材料及其制备方法
CN114694977A (zh) * 2022-04-22 2022-07-01 江苏科技大学 一种超级电容电极材料及其制备方法
CN116705973A (zh) * 2023-07-20 2023-09-05 天津大学 一种硫化物正极材料

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103165885A (zh) * 2011-12-14 2013-06-19 苏州宝时得电动工具有限公司 正极材料、正极、具有该正极的电池及正极材料制备方法
US20140080009A1 (en) * 2012-05-03 2014-03-20 Ut-Battelle, Llc Lithium sulfide compositions for battery electrolyte and battery electrode coatings
CN104064738A (zh) * 2014-06-27 2014-09-24 哈尔滨工业大学 石墨烯包覆硫/多孔碳复合正极材料的水热制备方法
CN104766957A (zh) * 2014-01-02 2015-07-08 奇瑞汽车股份有限公司 一种锂硫电池正极材料及其制备方法、锂硫电池
CN105609738A (zh) * 2016-02-21 2016-05-25 钟玲珑 一种掺杂碳硫化锂核壳结构的正极材料的制备方法
CN105609768A (zh) * 2016-02-21 2016-05-25 钟玲珑 一种核壳结构的石墨烯/碳包覆的掺杂硫化锂复合材料的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103165885A (zh) * 2011-12-14 2013-06-19 苏州宝时得电动工具有限公司 正极材料、正极、具有该正极的电池及正极材料制备方法
US20140080009A1 (en) * 2012-05-03 2014-03-20 Ut-Battelle, Llc Lithium sulfide compositions for battery electrolyte and battery electrode coatings
CN104766957A (zh) * 2014-01-02 2015-07-08 奇瑞汽车股份有限公司 一种锂硫电池正极材料及其制备方法、锂硫电池
CN104064738A (zh) * 2014-06-27 2014-09-24 哈尔滨工业大学 石墨烯包覆硫/多孔碳复合正极材料的水热制备方法
CN105609738A (zh) * 2016-02-21 2016-05-25 钟玲珑 一种掺杂碳硫化锂核壳结构的正极材料的制备方法
CN105609768A (zh) * 2016-02-21 2016-05-25 钟玲珑 一种核壳结构的石墨烯/碳包覆的掺杂硫化锂复合材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FEIXIANG WU ET AL.: "Graphene-Li2S-Carbon Nanocomposite for Lithium-Sulfur Batteries", ACS NANO, vol. 10, 8 December 2015 (2015-12-08), pages 1333 - 1340, XP055409434, ISSN: 1936-0851 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108878854A (zh) * 2018-07-20 2018-11-23 西南科技大学 由MOF模板制成锂离子电池负极的空心微结构Co3S4@C@MoS2的制备方法
CN112117453A (zh) * 2020-10-16 2020-12-22 肇庆市华师大光电产业研究院 一种新型锂硫电池正极复合材料及其制备方法
CN112117453B (zh) * 2020-10-16 2022-08-09 肇庆市华师大光电产业研究院 一种新型锂硫电池正极复合材料及其制备方法
CN114694977A (zh) * 2022-04-22 2022-07-01 江苏科技大学 一种超级电容电极材料及其制备方法
CN114694977B (zh) * 2022-04-22 2023-09-05 江苏科技大学 一种超级电容电极材料及其制备方法
CN116705973A (zh) * 2023-07-20 2023-09-05 天津大学 一种硫化物正极材料
CN116705973B (zh) * 2023-07-20 2024-02-09 天津大学 一种硫化物正极材料

Similar Documents

Publication Publication Date Title
WO2021109965A1 (zh) 一种锂离子电池电极材料及其制备方法
Qiu et al. Stable lithium metal anode enabled by lithium metal partial alloying
Li et al. One-pot pyrolysis of lithium sulfate and graphene nanoplatelet aggregates: in situ formed Li 2 S/graphene composite for lithium–sulfur batteries
Sun et al. Li2S nano spheres anchored to single-layered graphene as a high-performance cathode material for lithium/sulfur cells
US20170250439A1 (en) Sulfide solid electrolyte material, lithium solid battery, and producing method for sulfide solid electrolyte material
Choi et al. Carbon-coated Li2S cathode for improving the electrochemical properties of an all-solid-state lithium-sulfur battery using Li2S-P2S5 solid electrolyte
WO2017139938A1 (zh) 一种石墨烯/ 聚吡咯/ 硫复合正极材料的制备方法
WO2017139983A1 (zh) 一种三维氮掺杂结构锂硫电池正极材料的制备方法
Wang et al. How to promote the industrial application of SiOx anode prelithiation: capability, accuracy, stability, uniformity, cost, and safety
WO2017139984A1 (zh) 一种硫掺杂三维结构锂硫电池正极材料的制备方法
WO2017139997A1 (zh) 一种掺杂碳硫化锂核壳结构的正极材料的制备方法
WO2017139991A1 (zh) 一种二氧化锰空心球锂硫电池正极材料的制备方法
CN105609768A (zh) 一种核壳结构的石墨烯/碳包覆的掺杂硫化锂复合材料的制备方法
WO2017139993A1 (zh) 一种核壳结构的石墨烯/碳包覆的掺杂硫化锂复合材料的制备方法
WO2017139995A1 (zh) 石墨烯/钛酸锂包覆的硫化锂复合材料的制备方法
WO2017139985A1 (zh) 一种氟掺杂三维结构锂硫电池正极材料的制备方法
CN105609738A (zh) 一种掺杂碳硫化锂核壳结构的正极材料的制备方法
WO2023273265A1 (zh) 一种预锂化石墨烯及其制备方法和应用
Jiang et al. In-situ generated Li2S-based composite cathodes with high mass and capacity loading for all-solid-state Li-S batteries
WO2017139986A1 (zh) 一种磷掺杂三维结构锂硫电池正极材料的制备方法
WO2017139990A1 (zh) 一种氧化铝空心球锂硫电池正极材料的制备方法
Fu et al. Li2Se as cathode additive to prolong the next generation high energy lithium-ion batteries
WO2017139989A1 (zh) 一种石墨烯/二氧化钛空心球/硫复合材料的制备方法技术领域
WO2017139982A1 (zh) 一种硼氮共掺杂三维结构锂硫电池正极材料的制备方法
WO2017139939A1 (zh) 一种石墨烯/ 聚苯胺/ 硫复合正极材料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16890230

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16890230

Country of ref document: EP

Kind code of ref document: A1