WO2017139995A1 - 石墨烯/钛酸锂包覆的硫化锂复合材料的制备方法 - Google Patents

石墨烯/钛酸锂包覆的硫化锂复合材料的制备方法 Download PDF

Info

Publication number
WO2017139995A1
WO2017139995A1 PCT/CN2016/074194 CN2016074194W WO2017139995A1 WO 2017139995 A1 WO2017139995 A1 WO 2017139995A1 CN 2016074194 W CN2016074194 W CN 2016074194W WO 2017139995 A1 WO2017139995 A1 WO 2017139995A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
titanate
lithium sulfide
ethanol solution
coated
Prior art date
Application number
PCT/CN2016/074194
Other languages
English (en)
French (fr)
Inventor
肖丽芳
钟玲珑
Original Assignee
肖丽芳
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 肖丽芳 filed Critical 肖丽芳
Priority to PCT/CN2016/074194 priority Critical patent/WO2017139995A1/zh
Publication of WO2017139995A1 publication Critical patent/WO2017139995A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the synthesis of nano materials, in particular to a preparation method of a cathode material for a lithium sulfur battery.
  • the lithium-sulfur battery is a battery system in which lithium metal is used as a negative electrode and elemental sulfur is used as a positive electrode.
  • Lithium-sulfur batteries have two discharge platforms (about 2.4V and 2.1V), but their electrochemical reaction mechanism is complicated. Lithium-sulfur batteries have the advantages of high specific energy (2600Wh/kg), high specific capacity (1675mAh/g), low cost, etc., and are considered to be promising new generation batteries.
  • problems such as low utilization rate of active materials, low cycle life and poor safety, which seriously restricts the development of lithium-sulfur batteries.
  • Elemental sulfur is an electron and ion insulator, and the room temperature conductivity is low (5 ⁇ 10 -30 S ⁇ cm -1 ). Since there is no ionic sulfur, it is used as The activation of the positive electrode material is difficult; (2) the high polylithium polysulfide Li 2 S n (8>n ⁇ 4) generated during the electrode reaction is easily dissolved in the electrolyte, forming a concentration difference between the positive and negative electrodes. Under the action of the concentration gradient, it migrates to the negative electrode, and the high poly lithium polysulfide is reduced by the lithium metal to the oligomeric lithium polysulfide.
  • the oligomeric lithium polysulfide aggregates at the negative electrode, eventually forming a concentration difference between the two electrodes, and then migrating to the positive electrode to be oxidized to a highly polylithium polysulfide.
  • This phenomenon is known as the shuttle effect, which reduces the utilization of sulfur active substances.
  • insoluble Li 2 S and Li 2 S 2 are deposited on the surface of the lithium negative electrode, which further deteriorates the performance of the lithium-sulfur battery;
  • the final product of the reaction, Li 2 S is also an electronic insulator, which is deposited on the sulfur electrode, and lithium
  • the migration speed of ions in solid lithium sulfide is slow, which makes the electrochemical reaction kinetics slower.
  • lithium metal is required as the negative electrode to provide the lithium source.
  • the lithium metal negative electrode is liable to form lithium dendrite and powder on the surface, which not only has safety hazards.
  • the consumption of the electrolyte leads to the premature failure of the lithium-sulfur secondary battery, which limits the application of the lithium-sulfur battery.
  • the researchers used Li 2 S instead of the sulfur-based positive electrode, or pre-lithiated the sulfur-based positive electrode, using a carbon negative electrode or a higher capacity silicon and tin as the negative electrode material, in order to eliminate the influence of the lithium metal negative electrode, the lithium sulfide positive electrode
  • the theoretical capacity is high, 1166 mAh / g, but it is also an insulating material like the sulfur electrode, it needs to add conductive additives, and special coating treatment to improve its electrochemical activity.
  • the technical problem to be solved by the present invention is to provide a method for preparing a graphene/lithium titanate coated doped lithium sulfide composite material having a core-shell structure, the preparation method is simple, and the conductive conductive graphene provides a conductive network, and the titanic acid Lithium provides a stable coating to keep the sulfur-based positive electrode stable, while the high ionic conductivity of lithium titanate improves the electrochemical performance of sulfur-based materials.
  • the invention provides a process for preparing a graphene/lithium titanate coated lithium sulfide composite material as follows:
  • Tetrabutyl titanate was added to ethanol under stirring to dissolve to form a tetrabutyl titanate ethanol solution.
  • the obtained precursor was mixed with lithium carbonate powder, and added to an inert gas-protected muffle furnace to obtain lithium titanate-coated lithium sulfide.
  • Lithium titanate-coated lithium sulfide and graphene are added to tetrahydrofuran, ultrasonically reacted, and then the solvent is evaporated to obtain a graphene/lithium titanate-coated lithium sulfide composite material.
  • the ball milling time in step (1) is 0.5 to 3 hours, and the ball milling speed is 500 to 3000 rpm;
  • the mass concentration of the tetrabutyl titanate ethanol solution in the step (2) is 5 to 10%;
  • Step (3) lithium sulfide ethanol solution concentration of 5 to 10%; ammonia water volume of ethanol solution of 1 to 5%; titanate tetrabutyl ester ethanol solution and lithium sulfide ethanol solution volume ratio of 1:1 to 10;
  • the temperature of the stirring reaction is 40 to 60 ° C; the reaction time is 24 to 48 hours, the reaction temperature in the muffle furnace is 300 to 400 ° C, and the reaction time is 1 to 3 hours;
  • the ratio of the amount of lithium carbonate added in step (4) to the mass ratio of tetrabutyl titanate is 74:340, which is the inverse in the muffle furnace.
  • the temperature should be 800-900 ° C; the reaction time is 2-5 hours;
  • the mass ratio of graphene to lithium titanate-coated lithium sulfide in the step (5) is 1:10 to 100; and the ultrasonic time is 0.5 to 3 hours.
  • the invention has the following beneficial effects: (1) graphene has ultra-high electrical conductivity, graphene coated on the surface of lithium sulfide can effectively improve the electronic conductivity of the material; (2) lithium titanate has ultra-high ionic conductivity The surface coated with lithium sulfide can effectively improve the lithium ion mobility of the material and improve its electrochemical performance. (3) In the process of charge and discharge, the lithium titanate structure is relatively stable, effectively preventing the loss of sulfur-based materials.
  • FIG. 1 is an SEM image of a graphene/lithium titanate-coated lithium sulfide composite prepared by the present invention.
  • Tetrabutyl titanate was added to ethanol under stirring to dissolve to form a tetrabutyl titanate ethanol solution having a mass concentration of 10%.
  • the obtained precursor was mixed with lithium carbonate powder, and added to an inert gas-protected muffle furnace at a high temperature of 800 ° C for 5 hours to obtain lithium titanate-coated lithium sulfide.
  • Tetrabutyl titanate was added to ethanol under stirring to dissolve to form a tetrabutyl titanate ethanol solution having a mass concentration of 5%.
  • the obtained precursor was mixed with lithium carbonate powder, and added to an inert gas-protected muffle furnace at a high temperature of 900 ° C for 2 hours to obtain lithium titanate-coated lithium sulfide.
  • Tetrabutyl titanate was added to ethanol under stirring to dissolve to form a tetrabutyl titanate ethanol solution having a mass concentration of 7%.
  • the obtained precursor was mixed with lithium carbonate powder, and added to an inert gas-protected muffle furnace at a high temperature of 850 ° C for 3.5 hours to obtain lithium titanate-coated lithium sulfide.
  • Tetrabutyl titanate was added to ethanol under stirring to dissolve to form a tetrabutyl titanate ethanol solution having a mass concentration of 6%.
  • the obtained precursor was mixed with lithium carbonate powder, and added to an inert gas-protected muffle furnace at a high temperature of 820 ° C for 4 hours to obtain lithium titanate-coated lithium sulfide.
  • Tetrabutyl titanate was added to ethanol under stirring to dissolve to form a tetrabutyl titanate ethanol solution having a mass concentration of 8%.
  • the obtained precursor was mixed with lithium carbonate powder, and added to an inert gas-protected muffle furnace at a high temperature of 870 ° C for 3 hours to obtain lithium titanate-coated lithium sulfide.
  • FIG. 1 is an SEM image of a positive electrode material prepared by the present invention. It can be seen from the figure that the lithium titanate-coated lithium sulfide particles are uniformly distributed on the surface of the graphene, which is beneficial to improving the electrochemical performance of the material.

Abstract

提供一种石墨烯/钛酸锂包覆的硫化锂复合材料的制备方法,包括以下几个步骤:步骤(1)将商用硫化锂装入密封的球磨罐中,再装入球磨机进行球磨,得到纳米硫化锂;步骤(2)将钛酸四丁酯搅拌下加入到乙醇中,溶解形成钛酸四丁酯乙醇溶液。步骤(3)将纳米硫化锂分散到含有氨水的乙醇溶液中,再将钛酸四丁酯乙醇溶液滴加到悬浮液中;步骤(4)将得到的前驱体与碳酸锂粉末混合,加入到惰性气体保护的马弗炉中反应,得到钛酸锂包覆的硫化锂;步骤(5)将钛酸锂包覆的硫化锂和石墨烯加入到四氢呋喃中,超声反应,得到石墨烯/钛酸锂包覆的硫化锂复合材料。该材料在充放电过程中,钛酸锂结构较稳定,有效的阻止硫基材料的流失。

Description

一种石墨烯/钛酸锂包覆的硫化锂复合材料的制备方法 技术领域
本发明涉及纳米材料合成,特别涉及一种锂硫电池正极材料的制备方法。
背景技术
锂硫电池是以金属锂为负极,单质硫为正极的电池体系。锂硫电池的具有两个放电平台(约为2.4V和2.1V),但其电化学反应机理比较复杂。锂硫电池具有比能量高(2600Wh/kg)、比容量高(1675mAh/g)、成本低等优点,被认为是很有发展前景的新一代电池。但是目前其存在着活性物质利用率低、循环寿命低和安全性差等问题,这严重制约着锂硫电池的发展。造成上述问题的主要原因有以下几个方面:(1)单质硫是电子和离子绝缘体,室温电导率低(5×10-30S·cm-1),由于没有离子态的硫存在,因而作为正极材料活化困难;(2)在电极反应过程中产生的高聚态多硫化锂Li2Sn(8>n≥4)易溶于电解液中,在正负极之间形成浓度差,在浓度梯度的作用下迁移到负极,高聚态多硫化锂被金属锂还原成低聚态多硫化锂。随着以上反应的进行,低聚态多硫化锂在负极聚集,最终在两电极之间形成浓度差,又迁移到正极被氧化成高聚态多硫化锂。这种现象被称为飞梭效应,降低了硫活性物质的利用率。同时不溶性的Li2S和Li2S2沉积在锂负极表面,更进一步恶化了锂硫电池的性能;(3)反应最终产物Li2S同样是电子绝缘体,会沉积在硫电极上,而锂离子在固态硫化锂中迁移速度慢,使电化学反应动力学速度变慢;(4)硫和最终产物Li2S的密度不同,当硫被锂化后体积膨胀大约79%,易导致Li2S的粉化,引起锂硫电池的安全问题。上述不足制约着锂硫电池的发展,这也是目前锂硫电池研究需要解决的重点问题。
锂硫电池体系中,由于硫基正极不含锂,需要用金属锂作为负极来提供锂源,然而在循环过程中,金属锂负极易在表面生成锂枝晶和粉化,不但存在安全隐患,而且耗净电解液导致锂硫二次电池提前失效,限制了锂硫电池的应用。研究者采用Li2S代替硫基正极,或将硫基正极预先锂化后,采用碳负极或具有较 高容量的硅、锡作为负极材料,目的在于消除金属锂负极的影响,硫化锂正极的理论容量较高,为1166mAh/g,但它和硫电极一样也是绝缘性材料,需要加入导电添加剂,并进行特殊的包覆处理提高其电化学活性。
技术问题
本发明要解决的技术问题是提供一种核壳结构的石墨烯/钛酸锂包覆的掺杂硫化锂复合材料的制备方法,制备方法简单,导电性良好的石墨烯提供导电网络,钛酸锂可提供稳定的包覆层,保持硫基正极的稳定,同时钛酸锂的很高的离子电导率可提高硫基材料的电化学性能。
问题的解决方案
技术解决方案
本发明提供一种石墨烯/钛酸锂包覆的硫化锂复合材料的制备工艺流程如下:
(1)在惰性气体保护的手套箱内将商用硫化锂装入密封的球磨罐中,再装入球磨机进行球磨,得到纳米硫化锂。
(2)将钛酸四丁酯搅拌下加入到乙醇中,溶解形成钛酸四丁酯乙醇溶液。
(3)将得到的纳米硫化锂分散到含有氨水的乙醇溶液中,不断搅拌形成悬浮液,再将钛酸四丁酯乙醇溶液滴加到悬浮液中,搅拌反应,然后蒸发掉溶剂,得到固体粉末加入到惰性气体保护的马弗炉反应,得到前驱体。
(4)将得到的前驱体与碳酸锂粉末混合,加入到惰性气体保护的马弗炉中反应,得到钛酸锂包覆的硫化锂。
(5)将钛酸锂包覆的硫化锂和石墨烯加入到四氢呋喃中,超声反应,然后蒸发溶剂得到石墨烯/钛酸锂包覆的硫化锂复合材料。
步骤(1)中球磨时间为0.5~3小时,球磨速度为500~3000转/分钟;
步骤(2)中钛酸四丁酯乙醇溶液的质量浓度为5~10%;
步骤(3)硫化锂乙醇溶液质量浓度为5~10%;氨水的体积为乙醇溶液的1~5%;钛酸四丁酯乙醇溶液与硫化锂乙醇溶液的体积比例为1∶1~10;搅拌反应的温度为40~60℃;反应时间为24~48小时,在马弗炉中反应温度为300~400℃,反应时间为1~3小时;
步骤(4)中碳酸锂的加入量与钛酸四丁酯的质量比74∶340,在马弗炉中的反 应温度为800~900℃;反应时间为2~5小时;
步骤(5)中石墨烯与钛酸锂包覆的硫化锂的质量比为1∶10~100;超声时间为0.5~3小时。
发明的有益效果
有益效果
本发明具有如下有益效果:(1)石墨烯具有超高的电导率,石墨烯包覆在硫化锂的表面能有效改善材料的电子电导率;(2)钛酸锂具有超高的离子电导率,包覆在硫化锂的表面能有效改善材料的锂离子迁移率,提高其电化学性能;(3)在充放电过程中,钛酸锂结构较稳定,有效的阻止硫基材料的流失。
对附图的简要说明
附图说明
图1是本发明制备的石墨烯/钛酸锂包覆的硫化锂复合材料的SEM图。
发明实施例
本发明的实施方式
下面结合附图,对本发明的较优的实施例作进一步的详细说明:
实施例1
(1)在惰性气体保护的手套箱内将商用硫化锂装入密封的球磨罐中,再装入球磨机进行球磨0.5小时,球磨速度为3000转/分钟,得到纳米硫化锂。
(2)将钛酸四丁酯搅拌下加入到乙醇中,溶解形成质量浓度为10%的钛酸四丁酯乙醇溶液。
(3)将得到的纳米硫化锂分散到含有氨水的乙醇溶液中,不断搅拌形成10%的50ml悬浮液,其中氨水的体积浓度为5%,再将50ml的钛酸四丁酯乙醇溶液滴加到悬浮液中,40℃下搅拌反应48小时,然后蒸发掉溶剂,得到固体粉末加入到惰性气体保护的马弗炉反应,300℃反应3小时得到前驱体。
(4)将得到的前驱体与碳酸锂粉末混合,加入到惰性气体保护的马弗炉中800℃高温反应5小时,得到钛酸锂包覆的硫化锂。
(5)将100mg钛酸锂包覆的硫化锂和10mg石墨烯加入到四氢呋喃中,超声反 应0.5小时,然后蒸发溶剂得到石墨烯/钛酸锂包覆的硫化锂复合材料。
实施例2
(1)在惰性气体保护的手套箱内将商用硫化锂装入密封的球磨罐中,再装入球磨机进行球磨3小时,球磨速度为500转/分钟,得到纳米硫化锂。
(2)将钛酸四丁酯搅拌下加入到乙醇中,溶解形成质量浓度为5%的钛酸四丁酯乙醇溶液。
(3)将得到的纳米硫化锂分散到含有氨水的乙醇溶液中,不断搅拌形成5%的50ml悬浮液,其中氨水的体积浓度为1%,再将5ml钛酸四丁酯乙醇溶液滴加到悬浮液中,60℃下搅拌反应24小时,然后蒸发掉溶剂,得到固体粉末加入到惰性气体保护的马弗炉反应,400℃反应1小时得到前驱体。
(4)将得到的前驱体与碳酸锂粉末混合,加入到惰性气体保护的马弗炉中900℃高温反应2小时,得到钛酸锂包覆的硫化锂。
(5)将100mg钛酸锂包覆的硫化锂和1mg石墨烯加入到四氢呋喃中,超声反应3小时,然后蒸发溶剂得到石墨烯/钛酸锂包覆的硫化锂复合材料。
实施例3
(1)在惰性气体保护的手套箱内将商用硫化锂装入密封的球磨罐中,再装入球磨机进行球磨1小时,球磨速度为2000转/分钟,得到纳米硫化锂。
(2)将钛酸四丁酯搅拌下加入到乙醇中,溶解形成质量浓度为7%的钛酸四丁酯乙醇溶液。
(3)将得到的纳米硫化锂分散到含有氨水的乙醇溶液中,不断搅拌形成6%的50ml悬浮液,其中氨水的体积浓度为2%,再将10ml钛酸四丁酯乙醇溶液滴加到悬浮液中,50℃下搅拌反应36小时,然后蒸发掉溶剂,得到固体粉末加入到惰性气体保护的马弗炉反应,350℃反应2小时得到前驱体。
(4)将得到的前驱体与碳酸锂粉末混合,加入到惰性气体保护的马弗炉中850℃高温反应3.5小时,得到钛酸锂包覆的硫化锂。
(5)将100mg钛酸锂包覆的硫化锂和5mg石墨烯加入到四氢呋喃中,超声反应1小时,然后蒸发溶剂得到石墨烯/钛酸锂包覆的硫化锂复合材料。
实施例4
(1)在惰性气体保护的手套箱内将商用硫化锂装入密封的球磨罐中,再装入球磨机进行球磨2小时,球磨速度为1000转/分钟,得到纳米硫化锂。
(2)将钛酸四丁酯搅拌下加入到乙醇中,溶解形成质量浓度为6%的钛酸四丁酯乙醇溶液。
(3)将得到的纳米硫化锂分散到含有氨水的乙醇溶液中,不断搅拌形成7%的50ml悬浮液,其中氨水的体积浓度为3%,再将25ml钛酸四丁酯乙醇溶液滴加到悬浮液中,45℃下搅拌反应30小时,然后蒸发掉溶剂,得到固体粉末加入到惰性气体保护的马弗炉反应,330℃反应2.5小时得到前驱体。
(4)将得到的前驱体与碳酸锂粉末混合,加入到惰性气体保护的马弗炉中820℃高温反应4小时,得到钛酸锂包覆的硫化锂。
(5)将100mg钛酸锂包覆的硫化锂和3mg石墨烯加入到四氢呋喃中,超声反应2小时,然后蒸发溶剂得到石墨烯/钛酸锂包覆的硫化锂复合材料。
实施例5
(1)在惰性气体保护的手套箱内将商用硫化锂装入密封的球磨罐中,再装入球磨机进行球磨1.5小时,球磨速度为1500转/分钟,得到纳米硫化锂。
(2)将钛酸四丁酯搅拌下加入到乙醇中,溶解形成质量浓度为8%的钛酸四丁酯乙醇溶液。
(3)将得到的纳米硫化锂分散到含有氨水的乙醇溶液中,不断搅拌形成8%的50ml悬浮液,其中氨水的体积浓度为4%,再将30ml钛酸四丁酯乙醇溶液滴加到悬浮液中,55℃下搅拌反应42小时,然后蒸发掉溶剂,得到固体粉末加入到惰性气体保护的马弗炉反应,380℃反应1.5小时得到前驱体。
(4)将得到的前驱体与碳酸锂粉末混合,加入到惰性气体保护的马弗炉中870℃高温反应3小时,得到钛酸锂包覆的硫化锂。
(5)将100mg钛酸锂包覆的硫化锂和7mg石墨烯加入到四氢呋喃中,超声反应2.5小时,然后蒸发溶剂得到石墨烯/钛酸锂包覆的硫化锂复合材料。
电极的制备及性能测试;将电极材料、乙炔黑和PVDF 按质量比80∶10∶10在NMP中混合,涂覆在铝箔上为电极膜,金属锂片为对电极,CELGARD 2400为隔膜,1mol/L的LiTFSI/DOL-DME(体积比1∶1)为电解液,1mol/L的LiNO3为添加剂,在充满Ar手套箱内组装成扣式电池,采用Land电池测试系统进行恒流充放电测试。充放电电压范围为1-3V,电流密度为0.1C,性能如表1所示。
表1
[Table 1]
Figure PCTCN2016074194-appb-000001
图1为本发明制备出正极材料的SEM图,从图中可以看出钛酸锂包覆的硫化锂颗粒均匀的分布在石墨烯表面上,有利于提高材料的电化学性能。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (6)

  1. 一种石墨烯/钛酸锂包覆的硫化锂复合材料的制备方法,其特征在于,包括以下几个步骤:
    步骤(1)在惰性气体保护的手套箱内将商用硫化锂装入密封的球磨罐中,再装入球磨机进行球磨,得到纳米硫化锂;
    步骤(2)将钛酸四丁酯搅拌下加入到乙醇中,溶解形成钛酸四丁酯乙醇溶液;
    步骤(3)将得到的纳米硫化锂分散到含有氨水的乙醇溶液中,不断搅拌形成悬浮液,再将钛酸四丁酯乙醇溶液滴加到悬浮液中,搅拌反应,然后蒸发掉溶剂,得到固体粉末加入到惰性气体保护的马弗炉反应,得到前驱体;
    步骤(4)将得到的前驱体与碳酸锂粉末混合,加入到惰性气体保护的马弗炉中反应,得到钛酸锂包覆的硫化锂;
    步骤(5)将钛酸锂包覆的硫化锂和石墨烯加入到四氢呋喃中,超声反应,然后蒸发溶剂得到石墨烯/钛酸锂包覆的硫化锂复合材料。
  2. 如权利要求1所述的方法,其特征在于,所述步骤(1)中球磨时间为0.5~3小时,球磨速度为500~3000转/分钟。
  3. 如权利要求1所述的方法,其特征在于,所述步骤(2)中钛酸四丁酯乙醇溶液的质量浓度为5~10%。
  4. 如权利要求1所述的方法,其特征在于,所述步骤(3)硫化锂乙醇溶液质量浓度为5~10%;氨水的体积为乙醇溶液的1~5%;钛酸四丁酯乙醇溶液与硫化锂乙醇溶液的体积比例为1∶1~10;搅拌反应的温度为40~60℃;反应时间为24~48小时,在马弗炉中反应温度为300~400℃,反应时间为1~3小时。
  5. 如权利要求1所述的方法,其特征在于,所述步骤(4)中碳酸锂的加入量与钛酸四丁酯的质量比74∶340,在马弗炉中的反应温度为800~900℃;反应时间为2~5小时。
  6. 如权利要求1所述的方法,其特征在于,所述步骤(5)中石墨烯与钛酸锂包覆的硫化锂的质量比为1∶10~100;超声时间为0.5~3小时。
PCT/CN2016/074194 2016-02-21 2016-02-21 石墨烯/钛酸锂包覆的硫化锂复合材料的制备方法 WO2017139995A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/074194 WO2017139995A1 (zh) 2016-02-21 2016-02-21 石墨烯/钛酸锂包覆的硫化锂复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/074194 WO2017139995A1 (zh) 2016-02-21 2016-02-21 石墨烯/钛酸锂包覆的硫化锂复合材料的制备方法

Publications (1)

Publication Number Publication Date
WO2017139995A1 true WO2017139995A1 (zh) 2017-08-24

Family

ID=59624692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/074194 WO2017139995A1 (zh) 2016-02-21 2016-02-21 石墨烯/钛酸锂包覆的硫化锂复合材料的制备方法

Country Status (1)

Country Link
WO (1) WO2017139995A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112340768A (zh) * 2020-08-11 2021-02-09 广州明美新能源股份有限公司 一种石墨烯包覆钛酸锂复合材料及其制备方法
CN112447948A (zh) * 2019-08-28 2021-03-05 深圳市贝特瑞纳米科技有限公司 一种硫化物包覆的正极材料及其制备方法和锂离子电池
CN112928261A (zh) * 2021-02-24 2021-06-08 超威电源集团有限公司 一种氧化铅石墨烯核壳结构的铅粉及其制备方法
CN115504490A (zh) * 2022-09-29 2022-12-23 江西闪凝科技有限公司 一种外场辅助制备电池级碳酸锂的方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102244233A (zh) * 2011-05-18 2011-11-16 刘剑洪 一种类石墨烯掺杂与包覆钛酸锂复合负极材料的制备方法
CN102376937A (zh) * 2010-08-18 2012-03-14 中国科学院金属研究所 一种纳米钛酸锂/石墨烯复合负极材料及其制备方法
CN102468477A (zh) * 2010-11-04 2012-05-23 海洋王照明科技股份有限公司 一种钛酸锂复合材料、其制备方法和应用
CN102683659A (zh) * 2012-05-31 2012-09-19 中国科学院物理研究所 一种锂-硫电池正极材料及其制备方法
CN103296251A (zh) * 2013-05-27 2013-09-11 浙江大学 钛酸锂包覆硫复合的锂离子电池正极材料的制备方法
CN103515587A (zh) * 2012-06-19 2014-01-15 海洋王照明科技股份有限公司 钛酸锂-石墨烯复合材料、锂离子电池的制备方法
CN104064735A (zh) * 2013-03-18 2014-09-24 海洋王照明科技股份有限公司 钛酸锂-石墨烯-碳纳米管复合材料及其制备方法和应用
CN104638255A (zh) * 2015-02-02 2015-05-20 斌源材料科技(上海)有限公司 一种钛酸锂/碳复合材料及其制备方法
CN105609735A (zh) * 2016-02-21 2016-05-25 钟玲珑 一种石墨烯/钛酸锂包覆的硫化锂复合材料的制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102376937A (zh) * 2010-08-18 2012-03-14 中国科学院金属研究所 一种纳米钛酸锂/石墨烯复合负极材料及其制备方法
CN102468477A (zh) * 2010-11-04 2012-05-23 海洋王照明科技股份有限公司 一种钛酸锂复合材料、其制备方法和应用
CN102244233A (zh) * 2011-05-18 2011-11-16 刘剑洪 一种类石墨烯掺杂与包覆钛酸锂复合负极材料的制备方法
CN102683659A (zh) * 2012-05-31 2012-09-19 中国科学院物理研究所 一种锂-硫电池正极材料及其制备方法
CN103515587A (zh) * 2012-06-19 2014-01-15 海洋王照明科技股份有限公司 钛酸锂-石墨烯复合材料、锂离子电池的制备方法
CN104064735A (zh) * 2013-03-18 2014-09-24 海洋王照明科技股份有限公司 钛酸锂-石墨烯-碳纳米管复合材料及其制备方法和应用
CN103296251A (zh) * 2013-05-27 2013-09-11 浙江大学 钛酸锂包覆硫复合的锂离子电池正极材料的制备方法
CN104638255A (zh) * 2015-02-02 2015-05-20 斌源材料科技(上海)有限公司 一种钛酸锂/碳复合材料及其制备方法
CN105609735A (zh) * 2016-02-21 2016-05-25 钟玲珑 一种石墨烯/钛酸锂包覆的硫化锂复合材料的制备方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112447948A (zh) * 2019-08-28 2021-03-05 深圳市贝特瑞纳米科技有限公司 一种硫化物包覆的正极材料及其制备方法和锂离子电池
CN112447948B (zh) * 2019-08-28 2024-01-02 深圳市贝特瑞纳米科技有限公司 一种硫化物包覆的正极材料及其制备方法和锂离子电池
CN112340768A (zh) * 2020-08-11 2021-02-09 广州明美新能源股份有限公司 一种石墨烯包覆钛酸锂复合材料及其制备方法
CN112928261A (zh) * 2021-02-24 2021-06-08 超威电源集团有限公司 一种氧化铅石墨烯核壳结构的铅粉及其制备方法
CN112928261B (zh) * 2021-02-24 2022-08-05 超威电源集团有限公司 一种氧化铅活性炭石墨烯核壳结构的铅粉及其制备方法
CN115504490A (zh) * 2022-09-29 2022-12-23 江西闪凝科技有限公司 一种外场辅助制备电池级碳酸锂的方法
CN115504490B (zh) * 2022-09-29 2023-12-19 江西闪凝科技有限公司 一种外场辅助制备电池级碳酸锂的方法

Similar Documents

Publication Publication Date Title
Sun et al. Li2S nano spheres anchored to single-layered graphene as a high-performance cathode material for lithium/sulfur cells
Jia et al. Pretreatment of lithium surface by using iodic acid (HIO3) to improve its anode performance in lithium batteries
Choi et al. Carbon-coated Li2S cathode for improving the electrochemical properties of an all-solid-state lithium-sulfur battery using Li2S-P2S5 solid electrolyte
WO2017139938A1 (zh) 一种石墨烯/ 聚吡咯/ 硫复合正极材料的制备方法
WO2017139983A1 (zh) 一种三维氮掺杂结构锂硫电池正极材料的制备方法
CN108172893B (zh) 一种锂离子电池
WO2017139991A1 (zh) 一种二氧化锰空心球锂硫电池正极材料的制备方法
US10312515B2 (en) Lithium sulfur cell with dopant
CN106960954A (zh) 一种普鲁士蓝/石墨烯/硫复合材料的制备方法及应用
WO2017139984A1 (zh) 一种硫掺杂三维结构锂硫电池正极材料的制备方法
Wang et al. How to promote the industrial application of SiOx anode prelithiation: capability, accuracy, stability, uniformity, cost, and safety
WO2017139995A1 (zh) 石墨烯/钛酸锂包覆的硫化锂复合材料的制备方法
CN105609768A (zh) 一种核壳结构的石墨烯/碳包覆的掺杂硫化锂复合材料的制备方法
CN111517374B (zh) 一种Fe7S8/C复合材料的制备方法
WO2017139985A1 (zh) 一种氟掺杂三维结构锂硫电池正极材料的制备方法
WO2017139997A1 (zh) 一种掺杂碳硫化锂核壳结构的正极材料的制备方法
Zhou et al. A 20° C operating high capacity solid-state Li-S battery with an engineered carbon support cathode structure
WO2017139982A1 (zh) 一种硼氮共掺杂三维结构锂硫电池正极材料的制备方法
WO2017139941A1 (zh) 一种石墨烯 / 聚蒽醌硫醚 / 硫复合正极材料的制备方法
CN108550848A (zh) 富锂碳材料、其制备方法及应用
Jiang et al. In-situ generated Li2S-based composite cathodes with high mass and capacity loading for all-solid-state Li-S batteries
WO2017139989A1 (zh) 一种石墨烯/二氧化钛空心球/硫复合材料的制备方法技术领域
WO2017139990A1 (zh) 一种氧化铝空心球锂硫电池正极材料的制备方法
Yu et al. Low-cost and highly safe solid-phase sodium ion battery with a Sn–C nanocomposite anode
WO2017139986A1 (zh) 一种磷掺杂三维结构锂硫电池正极材料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16890228

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16890228

Country of ref document: EP

Kind code of ref document: A1