WO2017139985A1 - 一种氟掺杂三维结构锂硫电池正极材料的制备方法 - Google Patents

一种氟掺杂三维结构锂硫电池正极材料的制备方法 Download PDF

Info

Publication number
WO2017139985A1
WO2017139985A1 PCT/CN2016/074174 CN2016074174W WO2017139985A1 WO 2017139985 A1 WO2017139985 A1 WO 2017139985A1 CN 2016074174 W CN2016074174 W CN 2016074174W WO 2017139985 A1 WO2017139985 A1 WO 2017139985A1
Authority
WO
WIPO (PCT)
Prior art keywords
suspension
fluorine
sulfur
lithium
reaction
Prior art date
Application number
PCT/CN2016/074174
Other languages
English (en)
French (fr)
Inventor
肖丽芳
钟玲珑
Original Assignee
肖丽芳
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 肖丽芳 filed Critical 肖丽芳
Priority to PCT/CN2016/074174 priority Critical patent/WO2017139985A1/zh
Publication of WO2017139985A1 publication Critical patent/WO2017139985A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the synthesis of nano carbon materials, in particular to a preparation method of a cathode material for lithium sulfur batteries.
  • the lithium-sulfur battery is a battery system in which lithium metal is used as a negative electrode and elemental sulfur is used as a positive electrode.
  • Lithium-sulfur batteries have two discharge platforms (about 2.4V and 2.1V), but their electrochemical reaction mechanism is complicated. Lithium-sulfur batteries have the advantages of high specific energy (2600Wh/kg), high specific capacity (1675mAh/g), low cost, etc., and are considered to be promising new generation batteries.
  • problems such as low utilization rate of active materials, low cycle life and poor safety, which seriously restricts the development of lithium-sulfur batteries.
  • Elemental sulfur is an electron and ionic insulator, and the room temperature conductivity is low (5 ⁇ 10 -30 S ⁇ cm -1 ). Since there is no ionic sulfur, it acts as a positive electrode.
  • Lithium polysulfide Li 2 S n (8>n ⁇ 4) produced during the electrode reaction is easily soluble in the electrolyte, forming a concentration difference between the positive and negative electrodes. The gradient migrates to the negative electrode, and the high poly lithium polysulfide is reduced by the lithium metal to the oligomeric lithium polysulfide.
  • the oligomeric lithium polysulfide aggregates at the negative electrode, eventually forming a concentration difference between the two electrodes, and then migrating to the positive electrode to be oxidized to a highly polylithium polysulfide. This phenomenon is known as the shuttle effect, which reduces the utilization of sulfur active substances.
  • insoluble Li 2 S and Li 2 S 2 are deposited on the surface of the lithium negative electrode, which further deteriorates the performance of the lithium-sulfur battery; (3) the final product of the reaction, Li 2 S, is also an electronic insulator, which is deposited on the sulfur electrode, and lithium slow ion mobility in the solid state lithium sulfide, the slow electrochemical reaction kinetics; different density (4) sulfur and Li 2 S final product when sulfur is expanded to about 79% of the volume of lithium, Li 2 easily lead The powdering of S causes safety problems in lithium-sulfur batteries.
  • the above-mentioned shortcomings restrict the development of lithium-sulfur batteries, which is also the key issue that needs to be solved in the research of lithium-sulfur batteries.
  • the present invention provides a three-dimensional structure lithium-sulfur battery cathode material, and a three-dimensional structure of fluorine-doped graphene, nano-sulfur particles and Ketjen black are deposited in a three-dimensional structure of fluorine-doped graphene.
  • This design can improve the electrical conductivity of the sulfur motor and can prevent the dissolution of the polysulfide of the discharge product.
  • the invention provides a preparation process of a three-dimensional lithium-sulfur battery cathode material as follows:
  • the ultrasonic reaction time in the step (1) is 10 to 60 minutes, and the concentration of the graphene oxide suspension is 1 to 10 g/L;
  • the temperature of the hydrothermal reaction in step (2) is 160 ⁇ 200 ° C, the reaction time is 1 ⁇ 6 hours, the mass ratio of graphite oxide and tetrabutyl ammonium fluoride is 1: 0.1 ⁇ 1;
  • the mass ratio of the three-dimensional fluorine-doped graphene to the Ketjen black in the step (3) is 1:0.05 to 0.5, and the concentration of the suspension is 1 to 5 g/L;
  • step (4) the mass-to-mass ratio of elemental sulfur to three-dimensional fluorine-doped graphene and Ketjen black is 10 to 20:1, and the ultrasonic reaction temperature is 40 to 50 ° C.
  • the ultrasonic time is until sulfur is completely dissolved, and sulfur suspension
  • the concentration of the liquid is 10-15 g/L;
  • the invention has the following beneficial effects: (1) the preparation method reduces the graphite oxide, the fluorine doping and the hydrothermal reaction are completed in one step, and improves the reaction efficiency; (2) the high conductivity Ketchen black and the graphene material can effectively improve the electrode The conductivity of the sheet; (3) during the charging and discharging process, the structure of the three-dimensional structure facilitates the shuttle of lithium ions and electrons in the multi-dimensional conduction path, and improves the ion and electron conductivity; (4) the existence of the three-dimensional structure Keqin black further shortens the conduction distance between nano-sulfur particles and nano-sulfur and graphene sheets, which is beneficial to the improvement of electrical conductivity; (5) fluorine atoms in fluorine-doped graphene have the strongest electronegativity The adsorption of sulfur can effectively reduce the shuttle effect and improve the cycle life of the lithium-sulfur battery.
  • 1 is an SEM image of a three-dimensional fluorine-doped graphene sulfur composite prepared by the present invention.
  • Electrode preparation and performance test electrode material, acetylene black and PVDF were mixed in NMP at a mass ratio of 80:10:10, coated on aluminum foil as electrode film, lithium metal plate as counter electrode, CELGARD 2400 as separator, 1 mol /L LiTFSI/DOL-DME (volume ratio 1:1) is an electrolyte, 1 mol/L LiNO 3 is an additive, assembled into a button-type battery in a filled glove box, and a constant current charge and discharge is performed using a Land battery test system. test.
  • the charge and discharge voltage range is 1-3V
  • the current density is 0.01C
  • performance is shown in Table 1.
  • FIG. 1 is an SEM image of a positive electrode material prepared by the present invention. It can be seen from the figure that the positive electrode material has a large number of open three-dimensional pore-like structures, which can provide an ion transport channel and improve the electrochemical performance of the material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种氟掺杂三维结构锂硫电池正极材料的制备方法,包括:(1)将氧化石墨加入到水中超声,形成氧化石墨烯悬浮液;(2)将四丁基氟化铵加入到氧化石墨烯悬浮液中,然后转移到水热釜中进行水热反应,反应完成后乙醇洗、水洗,然后冷冻干燥,得到三维氟掺杂石墨烯;(3)取得到的三维氟掺杂石墨烯与科琴黑加入到N-甲基吡咯烷酮中超声反应形成悬浮液;(4)将单质硫加入到N-甲基吡咯烷酮中超声,直到单质硫完全溶解形成悬浮液;(5)将步骤(3)和(4)得到的两种悬浮液混合,搅拌均匀,然后在搅拌下缓慢地加入蒸馏水,离心、水洗、干燥后得到三维结构的锂硫电池正极材料。所述材料提高了锂硫电池的循环寿命。

Description

一种氟掺杂三维结构锂硫电池正极材料的制备方法 技术领域
本发明涉及纳米碳材料合成,尤其涉及一种锂硫电池正极材料的制备方法。
背景技术
锂硫电池是以金属锂为负极,单质硫为正极的电池体系。锂硫电池的具有两个放电平台(约为2.4V和2.1V),但其电化学反应机理比较复杂。锂硫电池具有比能量高(2600Wh/kg)、比容量高(1675mAh/g)、成本低等优点,被认为是很有发展前景的新一代电池。但是目前其存在着活性物质利用率低、循环寿命低和安全性差等问题,这严重制约着锂硫电池的发展。造成上述问题的主要原因有以下几个方面:(1)单质硫是电子和离子绝缘体,室温电导率低(5×10-30S·cm-1),由于没有离子态的硫存在,因而作为正极材料活化困难;(2)在电极反应过程中产生的高聚态多硫化锂Li2Sn(8>n≥4)易溶于电解液中,在正负极之间形成浓度差,在浓度梯度的作用下迁移到负极,高聚态多硫化锂被金属锂还原成低聚态多硫化锂。随着以上反应的进行,低聚态多硫化锂在负极聚集,最终在两电极之间形成浓度差,又迁移到正极被氧化成高聚态多硫化锂。这种现象被称为飞梭效应,降低了硫活性物质的利用率。同时不溶性的Li2S和Li2S2沉积在锂负极表面,更进一步恶化了锂硫电池的性能;(3)反应最终产物Li2S同样是电子绝缘体,会沉积在硫电极上,而锂离子在固态硫化锂中迁移速度慢,使电化学反应动力学速度变慢;(4)硫和最终产物Li2S的密度不同,当硫被锂化后体积膨胀大约79%,易导致Li2S的粉化,引起锂硫电池的安全问题。上述不足制约着锂硫电池的发展,这也是目前锂硫电池研究需要解决的重点问题。
技术问题
为了解决以上技术问题本发明提供一种三维结构锂硫电池正极材料,同该方法制备出三维结构氟掺杂石墨烯,纳米硫颗粒和科琴黑沉积在氟掺杂石墨烯的三维空间结构中,该设计能改善硫电机的导电性,而且能够阻止放电产物多硫化物的溶解。
问题的解决方案
技术解决方案
本发明提供一种三维结构的锂硫电池正极材料的制备工艺流程如下:
(1)将氧化石墨加入到水中超声,形成氧化石墨烯悬浮液;
(2)将四丁基氟化铵加入到氧化石墨烯悬浮液中,然后转移到水热釜中进行水热反应,反应完成后乙醇洗、水洗,然后冷冻干燥,得到三维氟掺杂石墨烯;
(3)取步骤(2)得到的三维氟掺杂石墨烯与科琴黑加入到N-甲基吡咯烷酮中超声反应形成悬浮液;
(4)将单质硫加入到N-甲基吡咯烷酮中在一定温度下超声,直到单质硫完全溶解形成悬浮液;
(5)将(4)和(3)得到的两种悬浮液混合,搅拌均匀,然后在搅拌下缓慢的加入蒸馏水,离心、水洗、干燥后得到三维结构的锂硫电池正极材料。
步骤(1)中超声反应时间为10~60分钟,氧化石墨烯悬浮液的浓度为1~10g/L;
步骤(2)中水热反应的温度为160~200℃,反应时间为1~6小时,氧化石墨与四丁基氟化铵的质量比为1∶0.1~1;
步骤(3)中三维氟掺杂石墨烯与科琴黑的质量比为1∶0.05~0.5,悬浮液的浓度为1~5g/L;
步骤(4)中单质硫与三维氟掺杂石墨烯和科琴黑总质量和的质量比为10~20∶1,超声的反应温度40~50℃,超声时间为直到硫完全溶解,硫悬浮液的浓度为10~15g/L;
步骤(5)中加入的蒸馏水∶混合后N-甲基吡咯烷酮溶液的体积比为3~5∶1。
发明的有益效果
有益效果
本发明具有如下有益效果:(1)该制备方法将氧化石墨还原、氟掺杂同水热反应一步完成,提高反应效率;(2)高电导率的科琴黑和石墨烯材料能有效提高电极片的电导率;(3)在充放电过程中,三维结构的构造有利于锂离子和电子在多维度传导路径中穿梭,提高离子和电子传导率;(4)三维结构中存在的 科琴黑,进一步缩短了纳米硫颗粒之间以及纳米硫与石墨烯片层的传导距离,有利于电导率的提高;(5)氟掺杂石墨烯中的氟原子具有最强的电负性,对硫的吸附作用能有效减少飞梭效应,提高锂硫电池的循环寿命。
对附图的简要说明
附图说明
图1是本发明制备的三维氟掺杂石墨烯硫复合材料的SEM图。
发明实施例
本发明的实施方式
下面结合附图,对本发明的较优的实施例作进一步的详细说明:
实施例1
(1)将10mg氧化石墨加入到10mL水中超声10分钟,形成1g/L的氧化石墨烯悬浮液;
(2)将1mg四丁基氟化铵加入到氧化石墨烯悬浮液中,然后转移到水热釜中反应,160℃反应6小时,反应完成后乙醇洗、水洗,然后冷冻干燥,得到三维氟掺杂石墨烯;
(3)取(2)得到的10mg三维氟掺杂石墨烯与5mg科琴黑加入到15mL的N-甲基吡咯烷酮中超声形成1g/L悬浮液;
(4)将150mg单质硫加入到15mL N-甲基吡咯烷酮中在一定40℃下超声,直到单质硫完全溶解形成10g/L的悬浮液;
(5)将(4)和(3)得到的两种悬浮液混合,搅拌均匀,然后在搅拌下缓慢的加入90mL蒸馏水,离心、水洗、干燥后得到三维结构的锂硫电池正极材料。
实施例2
(1)将10mg氧化石墨加入到1mL水中超声60分钟,形成10g/L的氧化石墨烯悬浮液;
(2)将10mg四丁基氟化铵加入到氧化石墨烯悬浮液中,然后转移到水热釜中反应,200℃反应1小时,反应完成后乙醇洗、水洗,然后冷冻干燥,得到三维氟掺杂石墨烯;
(3)取(2)得到的10mg三维氟掺杂石墨烯与0.5mg科琴黑加入到2.1mL的N-甲基吡咯烷酮中超声形成5g/L悬浮液;
(4)将210mg单质硫加入到14mL N-甲基吡咯烷酮中在50℃下超声,直到单质硫完全溶解形成15g/L的悬浮液;
(5)将(4)和(3)得到的两种悬浮液混合,搅拌均匀,然后在搅拌下缓慢的加入80.5mL蒸馏水,离心、水洗、干燥后得到三维结构的锂硫电池正极材料。
实施例3
(1)将10mg氧化石墨加入到5mL水中超声30分钟,形成2g/L的氧化石墨烯悬浮液;
(2)将5mg四丁基氟化铵加入到氧化石墨烯悬浮液中,然后转移到水热釜中反应,180℃反应3小时,反应完成后乙醇洗、水洗,然后冷冻干燥,得到三维氟掺杂石墨烯;
(3)取(2)得到的10mg三维氟掺杂石墨烯与1mg科琴黑加入到5.5mL的N-甲基吡咯烷酮中超声形成2g/L悬浮液;
(4)将132mg单质硫加入到11mL N-甲基吡咯烷酮中在45℃下超声,直到单质硫完全溶解形成12g/L的悬浮液;
(5)将(4)和(3)得到的两种悬浮液混合,搅拌均匀,然后在搅拌下缓慢的加入66mL蒸馏水,离心、水洗、干燥后得到三维结构的锂硫电池正极材料。
实施例4
(1)将10mg氧化石墨加入到2mL水中超声20分钟,形成5g/L的氧化石墨烯悬浮液;
(2)将3mg四丁基氟化铵加入到氧化石墨烯悬浮液中,然后转移到水热釜中反应,170℃反应5小时,反应完成后乙醇洗、水洗,然后冷冻干燥,得到三维氟掺杂石墨烯;
(3)取(2)得到的10mg三维氟掺杂石墨烯与2mg科琴黑加入到4mL的N-甲基 吡咯烷酮中超声形成3g/L悬浮液;
(4)将156mg单质硫加入到12mL N-甲基吡咯烷酮中在42℃下超声,直到单质硫完全溶解形成13g/L的悬浮液;
(5)将(4)和(3)得到的两种悬浮液混合,搅拌均匀,然后在搅拌下缓慢的加入72mL蒸馏水,离心、水洗、干燥后得到三维结构的锂硫电池正极材料。
实施例5
(1)将10mg氧化石墨加入到4mL水中超声40分钟,形成2.5g/L的氧化石墨烯悬浮液;
(2)将8mg四丁基氟化铵加入到氧化石墨烯悬浮液中,然后转移到水热釜中反应,190℃反应2小时,反应完成后乙醇洗、水洗,然后冷冻干燥,得到三维氟掺杂石墨烯;
(3)取(2)得到的10mg三维氟掺杂石墨烯与3mg科琴黑加入到3.25mL的N-甲基吡咯烷酮中超声形成4g/L悬浮液;
(4)将182mg单质硫加入到13mL N-甲基吡咯烷酮中在48℃下超声,直到单质硫完全溶解形成14g/L的悬浮液;
(5)将(4)和(3)得到的两种悬浮液混合,搅拌均匀,然后在搅拌下缓慢的加入56.875mL蒸馏水,离心、水洗、干燥后得到三维结构的锂硫电池正极材料。
电极的制备及性能测试;将电极材料、乙炔黑和PVDF按质量比80∶10∶10在NMP中混合,涂覆在铝箔上为电极膜,金属锂片为对电极,CELGARD 2400为隔膜,1mol/L的LiTFSI/DOL-DME(体积比1∶1)为电解液,1mol/L的LiNO3为添加剂,在充满Ar手套箱内组装成扣式电池,采用Land电池测试系统进行恒流充放电测试。充放电电压范围为1-3V,电流密度为0.01C,性能如表1所示。
表1
[Table 1]
Figure PCTCN2016074174-appb-000001
图1为本发明制备出正极材料的SEM图,从图中可以看出该正极材料具备大量开放的三维孔状结构,能够很好的提供离子传输通道,提高材料的电化学性能。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (6)

  1. 一种氟掺杂三维结构锂硫电池正极材料的制备方法,其特征在于,包括:
    (1)将氧化石墨加入到水中超声,形成氧化石墨烯悬浮液;
    (2)将四丁基氟化铵加入到氧化石墨烯悬浮液中,然后转移到水热釜中进行水热反应,反应完成后乙醇洗、水洗,然后冷冻干燥,得到三维氟掺杂石墨烯;
    (3)取步骤(2)得到的三维氟掺杂石墨烯与科琴黑加入到N-甲基吡咯烷酮中超声反应形成悬浮液;
    (4)将单质硫加入到N-甲基吡咯烷酮中在一定温度下超声,直到单质硫完全溶解形成悬浮液;
    (5)将(4)和(3)得到的两种悬浮液混合,搅拌均匀,然后在搅拌下缓慢的加入蒸馏水,离心、水洗、干燥后得到三维结构的锂硫电池正极材料。
  2. 如权利要求1所述的方法,其特征在于,所述步骤(1)中超声反应时间为10~60分钟,氧化石墨烯悬浮液的浓度为1~10g/L。
  3. 如权利要求1所述的方法,其特征在于,步骤(2)中水热反应的温度为160~200℃,反应时间为1~6小时,氧化石墨与四丁基氟化铵的质量比为1∶0.1~1。
  4. 如权利要求1所述的方法,其特征在于,步骤(3)中三维氟掺杂石墨烯与科琴黑的质量比为1∶0.05~0.5,悬浮液的浓度为1~5g/L。
  5. 如权利要求1所述的方法,其特征在于,步骤(4)中单质硫与三维氟掺杂石墨烯和科琴黑总质量和的质量比为10~20∶1,超声的反应温度40~50℃,超声时间为直到硫完全溶解,硫悬浮液的浓度为10~15g/L。
  6. 如权利要求1所述的方法,其特征在于,步骤(5)中加入的蒸馏水∶混合后N-甲基吡咯烷酮溶液的体积比为3~5∶1。
PCT/CN2016/074174 2016-02-19 2016-02-19 一种氟掺杂三维结构锂硫电池正极材料的制备方法 WO2017139985A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/074174 WO2017139985A1 (zh) 2016-02-19 2016-02-19 一种氟掺杂三维结构锂硫电池正极材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/074174 WO2017139985A1 (zh) 2016-02-19 2016-02-19 一种氟掺杂三维结构锂硫电池正极材料的制备方法

Publications (1)

Publication Number Publication Date
WO2017139985A1 true WO2017139985A1 (zh) 2017-08-24

Family

ID=59625134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/074174 WO2017139985A1 (zh) 2016-02-19 2016-02-19 一种氟掺杂三维结构锂硫电池正极材料的制备方法

Country Status (1)

Country Link
WO (1) WO2017139985A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114074952A (zh) * 2021-11-17 2022-02-22 贵州梅岭电源有限公司 一种具有氟掺杂异质结构的花状微球的合成方法
CN114956063A (zh) * 2022-07-27 2022-08-30 湘潭大学 氮掺杂氟化改性石墨烯钾电负极材料的制备方法及电池
CN114975906A (zh) * 2022-07-27 2022-08-30 湘潭大学 氮掺杂氟化改性石墨烯负极材料的制备方法及电池
CN115108861A (zh) * 2022-05-06 2022-09-27 广州大丘有机农产有限公司 一种中药渣的发酵处理工艺
CN115548339A (zh) * 2022-09-26 2022-12-30 陕西科技大学 一种锂硫电池夹层及其制备方法和锂硫电池

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102769126A (zh) * 2012-07-18 2012-11-07 上海大学 一种纳米硫/氧化石墨烯复合电极材料的制备方法
WO2012149672A1 (en) * 2011-05-03 2012-11-08 Shanghai Jiao Tong University Cathode material containing graphene for li-s battery and method for forming the same
CN103288069A (zh) * 2013-05-10 2013-09-11 西北工业大学 一种以微波水热法制备氟化石墨烯的方法
CN103682280A (zh) * 2012-09-07 2014-03-26 中国科学院宁波材料技术与工程研究所 锂硫电池正极材料、其制备方法及锂硫电池
CN103811731A (zh) * 2012-11-09 2014-05-21 中国科学院金属研究所 一种石墨烯-硫复合电极材料及其制备方法和应用
CN103864057A (zh) * 2012-12-07 2014-06-18 北京大学 磷掺杂石墨烯及其制备方法和应用
CN105609774A (zh) * 2016-02-19 2016-05-25 钟玲珑 一种氟掺杂三维结构锂硫电池正极材料的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012149672A1 (en) * 2011-05-03 2012-11-08 Shanghai Jiao Tong University Cathode material containing graphene for li-s battery and method for forming the same
CN102769126A (zh) * 2012-07-18 2012-11-07 上海大学 一种纳米硫/氧化石墨烯复合电极材料的制备方法
CN103682280A (zh) * 2012-09-07 2014-03-26 中国科学院宁波材料技术与工程研究所 锂硫电池正极材料、其制备方法及锂硫电池
CN103811731A (zh) * 2012-11-09 2014-05-21 中国科学院金属研究所 一种石墨烯-硫复合电极材料及其制备方法和应用
CN103864057A (zh) * 2012-12-07 2014-06-18 北京大学 磷掺杂石墨烯及其制备方法和应用
CN103288069A (zh) * 2013-05-10 2013-09-11 西北工业大学 一种以微波水热法制备氟化石墨烯的方法
CN105609774A (zh) * 2016-02-19 2016-05-25 钟玲珑 一种氟掺杂三维结构锂硫电池正极材料的制备方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114074952A (zh) * 2021-11-17 2022-02-22 贵州梅岭电源有限公司 一种具有氟掺杂异质结构的花状微球的合成方法
CN114074952B (zh) * 2021-11-17 2023-12-22 贵州梅岭电源有限公司 一种具有氟掺杂异质结构的花状微球的合成方法
CN115108861A (zh) * 2022-05-06 2022-09-27 广州大丘有机农产有限公司 一种中药渣的发酵处理工艺
CN115108861B (zh) * 2022-05-06 2023-04-07 广州大丘有机农产有限公司 一种中药渣的发酵处理工艺
CN114956063A (zh) * 2022-07-27 2022-08-30 湘潭大学 氮掺杂氟化改性石墨烯钾电负极材料的制备方法及电池
CN114975906A (zh) * 2022-07-27 2022-08-30 湘潭大学 氮掺杂氟化改性石墨烯负极材料的制备方法及电池
CN115548339A (zh) * 2022-09-26 2022-12-30 陕西科技大学 一种锂硫电池夹层及其制备方法和锂硫电池
CN115548339B (zh) * 2022-09-26 2023-10-20 陕西科技大学 一种锂硫电池夹层及其制备方法和锂硫电池

Similar Documents

Publication Publication Date Title
WO2017139983A1 (zh) 一种三维氮掺杂结构锂硫电池正极材料的制备方法
WO2017139984A1 (zh) 一种硫掺杂三维结构锂硫电池正极材料的制备方法
WO2017139938A1 (zh) 一种石墨烯/ 聚吡咯/ 硫复合正极材料的制备方法
WO2017139985A1 (zh) 一种氟掺杂三维结构锂硫电池正极材料的制备方法
CN108269978B (zh) 量子点/碳管载硫复合正极材料及其制备方法与应用
Sun et al. Specially designed carbon black nanoparticle-sulfur composite cathode materials with a novel structure for lithium–sulfur battery application
CN106920936B (zh) 一种高性能有机锂离子电池正极材料及其制备方法
WO2017139986A1 (zh) 一种磷掺杂三维结构锂硫电池正极材料的制备方法
WO2017139991A1 (zh) 一种二氧化锰空心球锂硫电池正极材料的制备方法
WO2017139982A1 (zh) 一种硼氮共掺杂三维结构锂硫电池正极材料的制备方法
CN106960954A (zh) 一种普鲁士蓝/石墨烯/硫复合材料的制备方法及应用
CN111129489B (zh) 一种石墨烯基硫化锑负极材料及其制备方法和应用
CN103762335B (zh) 钛酸锂电极片及锂离子电池
WO2017139941A1 (zh) 一种石墨烯 / 聚蒽醌硫醚 / 硫复合正极材料的制备方法
Zheng et al. Porous Na3V2 (PO4) 3 prepared by freeze-drying method as high performance cathode for sodium-ion batteries
CN108400298B (zh) 一种制备钠离子电池用石墨烯负载锑纳米管负极材料的方法及其应用
CN111446423B (zh) 一种锂离子电池电极材料及其制备方法、锂离子电池
CN110467170B (zh) 一种钾离子电池高电位正极材料及其制备方法
Jiang et al. In-situ generated Li2S-based composite cathodes with high mass and capacity loading for all-solid-state Li-S batteries
WO2017139995A1 (zh) 石墨烯/钛酸锂包覆的硫化锂复合材料的制备方法
WO2017139939A1 (zh) 一种石墨烯/ 聚苯胺/ 硫复合正极材料的制备方法
Wu et al. Tetrathiafulvalene as a multifunctional electrolyte additive for simultaneous interface amelioration, electron conduction, and polysulfide redox regulation in lithium-sulfur batteries
WO2017139990A1 (zh) 一种氧化铝空心球锂硫电池正极材料的制备方法
WO2017139997A1 (zh) 一种掺杂碳硫化锂核壳结构的正极材料的制备方法
WO2017139989A1 (zh) 一种石墨烯/二氧化钛空心球/硫复合材料的制备方法技术领域

Legal Events

Date Code Title Description
WA Withdrawal of international application
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16890218

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE