WO2021024654A1 - 電子デバイス用基板およびその製造方法 - Google Patents

電子デバイス用基板およびその製造方法 Download PDF

Info

Publication number
WO2021024654A1
WO2021024654A1 PCT/JP2020/025934 JP2020025934W WO2021024654A1 WO 2021024654 A1 WO2021024654 A1 WO 2021024654A1 JP 2020025934 W JP2020025934 W JP 2020025934W WO 2021024654 A1 WO2021024654 A1 WO 2021024654A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
wafer
electronic device
bonded
resistivity
Prior art date
Application number
PCT/JP2020/025934
Other languages
English (en)
French (fr)
Inventor
和徳 萩本
正三郎 後藤
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Priority to US17/628,390 priority Critical patent/US20220367188A1/en
Priority to EP20849816.2A priority patent/EP4012750A4/en
Priority to CN202080055655.2A priority patent/CN114207825A/zh
Publication of WO2021024654A1 publication Critical patent/WO2021024654A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/185Joining of semiconductor bodies for junction formation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/06Joining of crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02389Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • H01L21/76254Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/562Protection against mechanical damage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body

Definitions

  • the present invention relates to a substrate for an electronic device and a method for manufacturing the same.
  • Nitride semiconductors such as GaN and AlN can be used for manufacturing high electron mobility transistors (HEMTs) and high withstand voltage electronic devices using two-dimensional electron gas.
  • HEMTs high electron mobility transistors
  • a nitride wafer in which these nitride semiconductors are grown on a substrate, and a sapphire substrate or a SiC substrate is used as the substrate.
  • epitaxial growth by vapor phase growth on a silicon substrate is used in order to increase the diameter and reduce the cost of the substrate.
  • the fabrication of an epitaxial growth film by vapor phase growth on a silicon substrate is advantageous in terms of device productivity and heat dissipation because a substrate having a larger diameter can be used than a sapphire substrate or a SiC substrate.
  • the stress due to the difference in lattice constant and the difference in coefficient of thermal expansion tends to increase the warp and plastic deformation, and the stress is reduced by the growth conditions and the relaxation layer. Further, it is necessary to use a high resistance silicon substrate as the high frequency substrate.
  • Patent Document 1 As a measure against warpage, in Patent Document 1, a high resistance substrate is bonded to a low resistance substrate as an epitaxial layer AlN / Si (1000 ⁇ cm or more) / Si (100 ⁇ cm or less). Further, in Patent Document 2, a low resistance CZ substrate is bonded to a high resistance FZ substrate as an epitaxial layer AlN / Si (CZ low resistance) / Si (FZ high resistance).
  • the substrate for manufacturing electronic devices has a warp amount of 50 ⁇ m or less, but in the prior art, there is still a problem that the warp amount exceeds 50 ⁇ m.
  • the present invention has been made to solve the above problems, and provides a substrate for a high withstand voltage or high frequency electronic device in which a nitride semiconductor is formed on a silicon substrate in which warpage is suppressed, and a method for manufacturing the same. With the goal.
  • the present invention is a substrate for an electronic device in which a nitride semiconductor film is formed on a silicon single crystal bonded substrate.
  • the bonded substrate is at least a substrate in which a bond wafer made of a silicon single crystal is bonded onto a base wafer made of a silicon single crystal.
  • the base wafer is made of CZ silicon having a resistivity of 0.1 ⁇ cm or less and a crystal orientation of ⁇ 100>.
  • the bond wafer provides a substrate for an electronic device, characterized in that the crystal orientation is ⁇ 111>.
  • Such a substrate for an electronic device includes a hard base wafer made of CZ silicon having a resistivity of 0.1 ⁇ cm or less and a crystal orientation of ⁇ 100>, so that the warp of the substrate for the electronic device is suppressed. Can be. Further, since a bond wafer having a crystal orientation of ⁇ 111> is bonded onto the base wafer, a good nitride semiconductor film is formed. Further, by joining wafers having different crystal orientations ⁇ 100> and ⁇ 111>, the cleavage directions are different from each other, and the substrate for an electronic device is less likely to crack. Further, by setting the crystal orientation of the base wafer to ⁇ 100>, it can be assumed that polycrystallization during the growth of the ingot is suppressed. From these facts, it becomes the most suitable as a substrate for an electronic device for high withstand voltage or high frequency.
  • the bond wafer is preferably a CZ silicon substrate having a resistivity of 0.1 ⁇ cm or less.
  • Such a substrate for an electronic device is particularly suitable for a high withstand voltage device.
  • the bonded wafer is preferably a CZ silicon substrate having a resistivity of 1000 ⁇ cm or more and a nitrogen concentration of 1 ⁇ 10 14 atoms / cm 3 or more.
  • the bond wafer of the CZ silicon substrate is doped with nitrogen to further increase the strength and high resistance, so that it is particularly suitable for high frequency devices.
  • the bonded wafer is preferably an FZ silicon substrate having a resistivity of 1000 ⁇ cm or more and a nitrogen concentration of 8 ⁇ 10 14 atoms / cm 3 or more.
  • the strength is further increased by doping the bonded wafer of the FZ silicon substrate with nitrogen, and the resistance is high, so that it is particularly suitable for high frequency devices.
  • the bonding substrate is preferably one in which the base wafer and the bond wafer are bonded via a SiO 2 film.
  • the stress caused by the nitride semiconductor film can be relaxed, and a thicker nitride semiconductor film can be formed.
  • the present invention is a method for manufacturing a substrate for an electronic device in which a nitride semiconductor film is formed on a silicon single crystal substrate.
  • the base wafer one made of CZ silicon having a resistivity of 0.1 ⁇ cm or less and a crystal orientation of ⁇ 100> was used.
  • a method for manufacturing a substrate for an electronic device which comprises using a bonded wafer having a crystal orientation of ⁇ 111>.
  • a hard base wafer made of CZ silicon having a resistivity of 0.1 ⁇ cm or less and a crystal orientation of ⁇ 100> is used, so that the warp of the substrate for an electronic device is suppressed.
  • a bond wafer having a crystal orientation of ⁇ 111> is bonded onto the base wafer, so that a good nitride semiconductor film can be formed. Further, by joining wafers having different crystal orientations ⁇ 100> and ⁇ 111>, the cleavage directions are different from each other, and the manufactured substrate for an electronic device is less likely to crack.
  • the substrate for an electronic device manufactured by such a method can be particularly suitable for a high withstand voltage device.
  • the bonded wafer it is preferable to use a CZ silicon substrate having a resistivity of 1000 ⁇ cm or more and a nitrogen concentration of 1 ⁇ 10 14 atoms / cm 3 or more.
  • a substrate for an electronic device manufactured by such a method is particularly suitable for a high-frequency device because the bond wafer of the CZ silicon substrate is doped with nitrogen to further increase the strength and high resistance. Can be.
  • the bond wafer it is preferable to use an FZ silicon substrate having a resistivity of 1000 ⁇ cm or more and a nitrogen concentration of 8 ⁇ 10 14 atoms / cm 3 or more.
  • a substrate for an electronic device manufactured by such a method is particularly suitable for a high-frequency device because the bond wafer of the FZ silicon substrate is doped with nitrogen to further increase the strength and high resistance. Can be.
  • the step of forming the bonding substrate it is preferable to bond the base wafer and the bond wafer via a SiO 2 film.
  • the stress due to the nitride semiconductor film can be relaxed, and a thicker nitride semiconductor film can be formed.
  • Such a substrate for an electronic device and its manufacturing method include a hard base wafer having a resistivity of 0.1 ⁇ cm or less and a crystal orientation of ⁇ 100> CZ silicon, so that the warp of the substrate for the electronic device is suppressed. Can be considered. Further, since a bond wafer having a crystal orientation of ⁇ 111> is bonded onto the base wafer, a good nitride semiconductor film is formed. Further, by joining wafers having different crystal orientations ⁇ 100> and ⁇ 111>, the cleavage directions are different from each other, and the substrate for an electronic device is less likely to crack.
  • the crystal orientation of the base wafer is ⁇ 100>, polycrystallization during the growth of the ingot is suppressed, and the ingot can be manufactured at low cost. Therefore, it is most suitable as a substrate for electronic devices for high withstand voltage or high frequency.
  • the present invention is a substrate for an electronic device in which a nitride semiconductor film is formed on a silicon single crystal bonded substrate.
  • the bonded substrate is at least a substrate in which a bond wafer made of a silicon single crystal is bonded onto a base wafer made of a silicon single crystal.
  • the base wafer is made of CZ silicon having a resistivity of 0.1 ⁇ cm or less and a crystal orientation of ⁇ 100>.
  • the bond wafer is a substrate for an electronic device characterized by having a crystal orientation of ⁇ 111>.
  • FIG. 1 shows a conceptual diagram of the substrate for an electronic device of the present invention.
  • the substrate 10 for an electronic device of the present invention includes a base wafer 1 made of a silicon single crystal, a bonding substrate 6 in which a bond wafer 2 made of a silicon single crystal is bonded, and a nitride semiconductor film made of nitride. (Device layer) 5 and is included. At this time, the intermediate layer 4 between the bonding substrate 6 and the device layer 5 may be included. Further, as shown in FIG. 1, a structure may have a structure in which the adhesive layer 3 is provided between the base wafer 1 and the bond wafer 2.
  • the adhesive layer can be, for example, an oxide film (SiO 2 ).
  • the base wafer 1 is a wafer made of a CZ silicon single crystal having a resistivity of 0.1 ⁇ cm or less and having a crystal orientation of ⁇ 100>. With such a wafer having a low resistivity, the strength of the substrate is increased due to the high dopant concentration, and warpage can be suppressed.
  • the lower limit of the resistivity is not particularly limited, but can be, for example, 0.001 ⁇ cm or more.
  • the crystal orientation of the base wafer is set to ⁇ 100> because the crystal orientation of ⁇ 100> is more difficult to polycrystallize during the growth and becomes more remarkable as the dopant concentration is higher. As a result, the base wafer can be constructed at low cost.
  • the oxygen concentration of the base wafer is preferably 1 ⁇ 10 18 studies / cm 3 (ASTM'79) or less.
  • the bonded wafer 2 to be bonded is a wafer having a crystal orientation of ⁇ 111>.
  • the nitride semiconductor film 5 can be formed satisfactorily, and in particular, the nitride-based epitaxial layer can be satisfactorily grown.
  • the cleavage directions are different from each other, and the substrate 10 for an electronic device is less likely to crack.
  • the bonded wafer 2 can be a CZ silicon substrate having a resistivity of 0.1 ⁇ cm or less.
  • the resistivity of the bond wafer 2 By lowering the resistivity of the bond wafer 2 in this way, the strength of the bonded substrate can be further increased, and warpage can be further suppressed.
  • a substrate for an electronic device can be suitably used for a device for high withstand voltage.
  • the lower limit of the resistivity is not particularly limited, but can be, for example, 0.001 ⁇ cm or more.
  • the oxygen concentration of the bond wafer can be, for example, 1 ⁇ 10 18 studies / cm 3 (ASTM'79) or less.
  • the bonded wafer 2 can be a CZ silicon substrate having a resistivity of 1000 ⁇ cm or more and a nitrogen concentration of 1 ⁇ 10 14 atoms / cm 3 or more. Since the bond wafer 2 is doped with nitrogen in this way, the strength is further increased and the resistance is high, so that the bond wafer 2 is suitable for high-frequency devices.
  • the upper limit of the resistivity is not particularly limited, but may be, for example, 10 k ⁇ cm or less.
  • the upper limit of the nitrogen concentration is not particularly limited, but may be, for example, 1 ⁇ 10 16 atoms / cm 3 or less.
  • the oxygen concentration of the bond wafer can be, for example, 1 ⁇ 10 18 studies / cm 3 (ASTM'79) or less.
  • the bonded wafer 2 is an FZ silicon substrate having a resistivity of 1000 ⁇ cm or more and a nitrogen concentration of 8 ⁇ 10 14 atoms / cm 3 or more, the strength is further increased by doping with nitrogen and the resistance is high. It will be suitable for devices.
  • the upper limit of the resistivity is not particularly limited, but may be, for example, 10 k ⁇ cm or less.
  • the upper limit of the nitrogen concentration is not particularly limited, but may be, for example, 8 ⁇ 10 16 atoms / cm 3 or less.
  • the intermediate layer 4 is formed on the bond wafer 2.
  • the intermediate layer 4 functions as a buffer layer inserted for improving the crystallinity of the device layer and controlling the stress. Since the intermediate layer 4 can be manufactured by the same equipment as the nitride semiconductor film 5, it is desirable that the intermediate layer 4 is made of nitride.
  • a device layer 5 made of a thin film of nitrides such as GaN, AlN, InN, AlGaN, InGaN, and AlInN is formed on the bond wafer 2.
  • the intermediate layer 4 it can be assumed that the device layer 5 is formed on the intermediate layer 4.
  • the device layer 5 can be grown by vapor phase growth such as MOVPE method or sputtering.
  • Nitride thin films are 1 to 20 ⁇ m and can be designed for the device.
  • the substrate for electronic devices of the present invention contains a hard base wafer made of CZ silicon having a resistivity of 0.1 ⁇ cm or less and a crystal orientation of ⁇ 100>, the warpage of the substrate for electronic devices is suppressed. can do. Further, since a bond wafer having a crystal orientation of ⁇ 111> is bonded onto the base wafer, a good nitride semiconductor film is formed. Further, by joining wafers having different crystal orientations ⁇ 100> and ⁇ 111>, the cleavage directions are different from each other, and the substrate for an electronic device is less likely to crack. Further, by setting the crystal orientation of the base wafer to ⁇ 100>, it can be assumed that polycrystallization during the growth of the ingot is suppressed. Therefore, it is most suitable as a substrate for electronic devices for high withstand voltage or high frequency.
  • the present invention is a method for manufacturing a substrate for an electronic device in which a nitride semiconductor film is formed on a silicon single crystal substrate.
  • the base wafer one made of CZ silicon having a resistivity of 0.1 ⁇ cm or less and a crystal orientation of ⁇ 100> was used.
  • a method for manufacturing a substrate for an electronic device which comprises using a bonded wafer having a crystal orientation of ⁇ 111>.
  • a bond wafer made of a silicon single crystal is bonded onto a base wafer made of a silicon single crystal to form a bonded substrate.
  • a base wafer made of CZ silicon having a resistivity of 0.1 ⁇ cm or less and a crystal orientation of ⁇ 100> is used.
  • the lower limit of the resistivity is not particularly limited, but can be, for example, 0.001 ⁇ cm or more.
  • a wafer having an oxygen concentration of 1 ⁇ 10 18 studies / cm 3 (ASTM'79) or less can be used.
  • a CZ silicon substrate having a resistivity of 0.1 ⁇ cm or less can be used as the bonded wafer.
  • the lower limit of the resistivity is not particularly limited, but can be, for example, 0.001 ⁇ cm or more.
  • a wafer having an oxygen concentration of 1 ⁇ 10 18 atoms / cm 3 (ASTM'79) or less can be used as the bond wafer.
  • a CZ silicon substrate having a resistivity of 1000 ⁇ cm or more and a nitrogen concentration of 1 ⁇ 10 14 atoms / cm 3 or more can also be used.
  • the upper limit of the resistivity is not particularly limited, but can be, for example, 10 k ⁇ cm or less.
  • the upper limit of the nitrogen concentration is not particularly limited, but can be, for example, 1 ⁇ 10 16 atoms / cm 3 or less.
  • a wafer having an oxygen concentration of 1 ⁇ 10 18 atoms / cm 3 (ASTM'79) or less can be used.
  • an FZ silicon substrate having a resistivity of 1000 ⁇ cm or more and a nitrogen concentration of 8 ⁇ 10 14 atoms / cm 3 or more is used as the bond wafer, the strength is further increased and the resistance becomes high by using the wafer doped with nitrogen. Therefore, it can be suitable for high frequency devices.
  • the upper limit of the resistivity is not particularly limited, but can be, for example, 10 k ⁇ cm or less.
  • the upper limit of the nitrogen concentration is not particularly limited, but can be, for example, 8 ⁇ 10 16 atoms / cm 3 or less.
  • the method of joining the base wafer and the bond wafer is not particularly limited, but it is preferable to bond them with an oxide film. Further, by thinning the oxide film before bonding, only oxygen of the oxide film is diffused by the bonding heat treatment after bonding, and a structure without an oxide film can be formed at the bonding interface. By adhering the silicon single crystal substrate with the oxide film in this way, the stress applied during the growth of the nitride can be relaxed.
  • the nitride semiconductor film is epitaxially grown on the bonded substrate manufactured as described above.
  • the intermediate layer can be formed before the growth of the nitride semiconductor film.
  • a hard base wafer made of CZ silicon having a resistivity of 0.1 ⁇ cm or less and a crystal orientation of ⁇ 100> is used, so that the warp of the substrate for an electronic device is suppressed.
  • a bond wafer having a crystal orientation of ⁇ 111> is bonded onto the base wafer, so that a good nitride semiconductor film can be formed. Further, by joining wafers having different crystal orientations ⁇ 100> and ⁇ 111>, the cleavage directions are different from each other, and the manufactured substrate for an electronic device is less likely to crack.
  • Example 1 (100) surface CZ silicon substrate with resistivity of 0.1 ⁇ cm or less and oxygen concentration of 1 ⁇ 10 18 studies / cm 3 (ASTM'79) or less (resistivity: 0.007 ⁇ cm, oxygen concentration: 7 ⁇ 10 17 atoms / Base wafers (diameter 150 mm) having a substrate thickness of 500 ⁇ m and 1000 ⁇ m were prepared in cm 3 ).
  • 7 ⁇ 10 17 ASTMs / cm 3 two bonded wafers (diameter 150 mm) with a substrate thickness of 500 ⁇ m were prepared.
  • a substrate for an electronic device as shown in FIG. 1 was produced as follows.
  • the two base wafers 1 are each thermally oxidized (thickness 1 ⁇ m), and the two double-sided polished bond wafers 2 are each thermally oxidized (thickness 1 ⁇ m), and the bonding heat treatment is performed at 1150 ° C. for 2 hours through a bonding process. It was.
  • the bond wafer of the bonded substrate is ground and polished to make the thickness of the bond wafer on the substrate 200 ⁇ m, and as an oxide film removal, the surface oxide film is removed by immersing in 10% HF to join the bonds having a thickness of 700 ⁇ m and 1200 ⁇ m.
  • Substrate 6 was obtained.
  • these bonded substrates 6 produced were subjected to GaN epitaxial growth (intermediate layer 2.5 ⁇ m, device layer 2.5 ⁇ m) having a thickness of 5 ⁇ m in a MOVPE furnace.
  • the warpage at that time was 35 ⁇ m when the thickness of the bonding substrate 6 was 700 ⁇ m and 20 ⁇ m when the thickness was 1200 ⁇ m.
  • Example 2 (100) surface CZ silicon substrate with resistivity of 0.1 ⁇ cm or less and oxygen concentration of 1 ⁇ 10 18 studies / cm 3 (ASTM'79) or less (resistivity: 0.007 ⁇ cm, oxygen concentration: 7 ⁇ 10 17 atoms / Base wafers (diameter 150 mm) having thicknesses of cm 3 ) of 500 ⁇ m and 1000 ⁇ m were prepared. Further, for bonding, a high-concentration nitrogen-doped (111) surface CZ silicon substrate (8 ⁇ 10 14 atoms / cm 3 , 5000 ⁇ cm) and a bonded wafer (diameter 150 mm) having a substrate thickness of 500 ⁇ m are used. I prepared a sheet.
  • a substrate for an electronic device as shown in FIG. 1 was produced as follows.
  • the two base wafers 1 were thermally oxidized (thickness 1 ⁇ m), the two bonded wafers 2 polished on both sides were thermally oxidized (thickness 1 ⁇ m), and the bonding heat treatment was performed at 1150 ° C. for 2 hours through a bonding step.
  • the bond wafer of the bonded substrate is ground and polished to make the thickness of the bond wafer on the substrate 200 ⁇ m, and as an oxide film removal, the surface oxide film is removed by immersing in 10% HF to join the bonds having a thickness of 700 ⁇ m and 1200 ⁇ m. Obtained a substrate.
  • GaN epitaxial growth (intermediate layer 2.5 ⁇ m, device layer 2.5 ⁇ m) having a thickness of 5 ⁇ m was performed on the prepared bonded substrate thickness in a MOVPE furnace.
  • the warpage at that time was 40 ⁇ m when the thickness of the bonded substrate was 700 ⁇ m and 20 ⁇ m when the thickness was 1200 ⁇ m.
  • Example 3 (100) surface CZ silicon substrate with resistivity of 0.1 ⁇ cm or less and oxygen concentration of 1 ⁇ 10 18 studies / cm 3 (ASTM'79) or less (resistivity: 0.007 ⁇ cm, oxygen concentration: 7 ⁇ 10 17 atoms / Base wafers (diameter 150 mm) having thicknesses of cm 3 ) of 500 ⁇ m and 1000 ⁇ m were prepared. Further, for bonding, a high-concentration nitrogen-doped (111) surface FZ silicon substrate (8 ⁇ 10 14 atoms / cm 3 , 5000 ⁇ cm) and a bonded wafer (diameter 150 mm) having a substrate thickness of 500 ⁇ m are used. I prepared a sheet.
  • the base wafer 1 was thermally oxidized (thickness 1 ⁇ m)
  • the double-sided polished bond wafer 2 was thermally oxidized (thickness 1 ⁇ m)
  • a bonding heat treatment was performed at 1150 ° C. for 2 hours.
  • the bond wafer of the bonded substrate is ground and polished to make the thickness of the bond wafer on the substrate 200 ⁇ m, and as an oxide film removal, the surface oxide film is removed by immersing in 10% HF to join the bonds having a thickness of 700 ⁇ m and 1200 ⁇ m. Obtained a substrate.
  • GaN epitaxial growth (intermediate layer 2.5 ⁇ m, device layer 2.5 ⁇ m) having a thickness of 5 ⁇ m was carried out on these prepared bonded substrates in a MOVPE furnace.
  • the warpage at that time was 45 ⁇ m when the thickness of the bonded substrate was 700 ⁇ m, and 20 ⁇ m when the thickness was 1200 ⁇ m.
  • a wafer (diameter 150 mm) having a thickness of 700 ⁇ m was prepared from a (111) plane CZ silicon substrate having a resistivity of 20 ⁇ cm and an oxygen concentration of 5 ⁇ 10 18 atoms / cm 3 .
  • GaN epitaxial growth of 5 ⁇ m thickness was performed on this substrate in a MOVPE furnace, the warpage after growth was as large as 130 ⁇ m.
  • the two base wafers are each thermally oxidized (thickness 1 ⁇ m), and the two double-sided polished bond wafers are each thermally oxidized (thickness 1 ⁇ m), and after a bonding step, the bonding heat treatment is performed at 1150 ° C. for 2 hours. went.
  • the bond wafer of the bonded substrate is ground and polished to make the thickness of the bond wafer in the substrate 200 ⁇ m, and as an oxide film removal, the substrate is immersed in 10% HF to remove the surface oxide film, and the substrate has a thickness of 700 ⁇ m and 1200 ⁇ m.
  • GaN epitaxial growth (intermediate layer 2.5 ⁇ m, device layer 2.5 ⁇ m) having a thickness of 5 ⁇ m was performed on these prepared substrates in a MOVPE furnace.
  • the epitaxial growth was carried out on the (100) plane, the formed epitaxial layer had many defects, and the epitaxial growth could not be carried out properly in the first place.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an example, and any object having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same effect and effect is the present invention. Is included in the technical scope of.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Recrystallisation Techniques (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本発明は、シリコン単結晶の接合基板上に窒化物半導体膜が形成された電子デバイス用基板であって、前記接合基板は、少なくとも、シリコン単結晶からなるベースウェーハ上にシリコン単結晶からなるボンドウェーハを接合した基板であって、前記ベースウェーハは、抵抗率が0.1Ωcm以下、結晶方位が<100>のCZシリコンからなり、前記ボンドウェーハは、結晶方位が<111>のものである電子デバイス用基板である。これにより、電子デバイス用基板の反りが抑制されたものを提供する。

Description

電子デバイス用基板およびその製造方法
 本発明は、電子デバイス用基板およびその製造方法に関する。
 GaNやAlNをはじめとする窒化物半導体は、2次元電子ガスを用いた高電子移動度トランジスタ(HEMT)や高耐圧電子デバイスの作製に用いることができる。
 これらの窒化物半導体を基板上に成長させた窒化物ウェーハを製作することは難しく、基板としては、サファイア基板やSiC基板が用いられている。しかし、大口径化や基板のコストを抑えるために、シリコン基板上への気相成長によるエピタキシャル成長が用いられている。シリコン基板上への気相成長によるエピタキシャル成長膜の作製は、サファイア基板やSiC基板に比べて大口径の基板が使用できるのでデバイスの生産性が高く、放熱性の点で有利である。ただし、格子定数差や熱膨張係数差による応力により、反りの増大や塑性変形が起こりやすく、成長条件や緩和層による応力低減が行われている。また、高周波用基板には、高抵抗シリコン基板を用いる必要がある。
 反り対策として特許文献1では、エピタキシャル層AlN/Si(1000Ωcm以上)/Si(100Ωcm以下)として、高抵抗基板を低抵抗基板と接合している。また、特許文献2では、エピタキシャル層AlN/Si(CZ低抵抗)/Si(FZ高抵抗)として、低抵抗CZ基板を高抵抗FZ基板と接合している。
 電子デバイス作製用の基板(高耐圧用・RF(高周波)用)は、反り量が50μm以下であることが望ましいが、従来技術では、未だ反り量が50μmを超えてしまう課題があった。
国際公開第2011/016219号 特開2014-192226号公報
 本発明は、上記課題を解決するためになされたもので、反りを抑制したシリコン基板上に窒化物半導体が形成された高耐圧用あるいは高周波用の電子デバイス用基板及びその製造方法を提供することを目的とする。
 上記課題を解決するために、本発明は、シリコン単結晶の接合基板上に窒化物半導体膜が形成された電子デバイス用基板であって、
 前記接合基板は、少なくとも、シリコン単結晶からなるベースウェーハ上にシリコン単結晶からなるボンドウェーハを接合した基板であって、
 前記ベースウェーハは、抵抗率が0.1Ωcm以下、結晶方位が<100>のCZシリコンからなり、
 前記ボンドウェーハは、結晶方位が<111>のものであることを特徴とする電子デバイス用基板を提供する。
 このような電子デバイス用基板であれば、抵抗率が0.1Ωcm以下の、結晶方位が<100>のCZシリコンからなる、硬いベースウェーハを含むため、電子デバイス用基板の反りが抑制されたものとすることができる。また、そのベースウェーハの上に結晶方位が<111>のボンドウェーハが接合されたものであるため、良好な窒化物半導体膜が形成されたものとなる。更に、結晶方位が<100>と<111>という異なったウェーハを接合することでお互いの劈開方向が異なることとなり、電子デバイス用基板が割れにくくなる。また、ベースウェーハの結晶方位を<100>とすることで、インゴットの成長途中での多結晶化が抑制されたものとすることができる。これらのことから、高耐圧用あるいは高周波用の電子デバイス用基板として最適なものとなる。
 このうち、前記ボンドウェーハは、抵抗率が0.1Ωcm以下のCZシリコン基板であることが好ましい。
 このようなものであれば、更に接合基板の強度を増加させることができる。このような電子デバイス用基板は特に高耐圧デバイス用として適したものとなる。
 また、前記ボンドウェーハは、抵抗率が1000Ωcm以上、窒素濃度が1×1014atoms/cm以上であるCZシリコン基板であることが好ましい。
 このようなものであれば、CZシリコン基板のボンドウェーハに窒素がドープされていることで強度が更に増すとともに、高抵抗であるため、特に高周波デバイス用として適したものとなる。
 また、前記ボンドウェーハは、抵抗率が1000Ωcm以上、窒素濃度8×1014atoms/cm以上のFZシリコン基板であることが好ましい。
 このようなものであれば、FZシリコン基板のボンドウェーハに窒素がドープされていることで強度が更に増すとともに、高抵抗であるため、特に高周波デバイス用として適したものとなる。
 また、前記接合基板は、前記ベースウェーハと前記ボンドウェーハとがSiO膜を介して接合されたものであることが好ましい。
 このようなものであれば、窒化物半導体膜による応力を緩和することができ、より厚い窒化物半導体膜を形成することができる。
 また本発明は、シリコン単結晶基板上に窒化物半導体膜を形成する電子デバイス用基板の製造方法であって、
 シリコン単結晶からなるベースウェーハ上にシリコン単結晶からなるボンドウェーハを接合して接合基板とする工程と、
 前記接合基板の前記ボンドウェーハ上に窒化物半導体をエピタキシャル成長させる工程とを含み、
 前記ベースウェーハとして、抵抗率が0.1Ωcm以下、結晶方位が<100>のCZシリコンからなるものを用い、
 前記ボンドウェーハとして、結晶方位が<111>のものを用いることを特徴とする電子デバイス用基板の製造方法を提供する。
 このような電子デバイス用基板の製造方法であれば、抵抗率が0.1Ωcm以下、結晶方位が<100>のCZシリコンからなる、硬いベースウェーハを使用するので、電子デバイス用基板の反りが抑制され、そのベースウェーハの上に結晶方位が<111>のボンドウェーハが接合されるので、良好な窒化物半導体膜を形成することができる。更に、結晶方位が<100>と<111>という異なったウェーハを接合することでお互いの劈開方向が異なることとなり、製造された電子デバイス用基板が割れにくくなる。また、ベースウェーハの結晶方位を<100>とすることで、インゴットの成長途中での多結晶化が抑制されたものとすることができる。このため、高耐圧用あるいは高周波用の電子デバイス用基板として最適なものを製造することができる。
 このとき、前記ボンドウェーハとして、抵抗率が0.1Ωcm以下のCZシリコン基板を用いることが好ましい。
 このような製造方法であれば、更に接合基板の強度を増加させることができる。このような方法により製造された電子デバイス用基板は、特に高耐圧デバイス用として適したものとすることができる。
 また、前記ボンドウェーハとして、抵抗率が1000Ωcm以上、窒素濃度が1×1014atoms/cm以上であるCZシリコン基板を用いることが好ましい。
 このような方法により製造された電子デバイス用基板であれば、CZシリコン基板のボンドウェーハに窒素がドープされていることで強度が更に増すとともに、高抵抗であるため、特に高周波デバイス用として適したものとすることができる。
 また、前記ボンドウェーハとして、抵抗率が1000Ωcm以上、窒素濃度8×1014atoms/cm以上のFZシリコン基板を用いることが好ましい。
 このような方法により製造された電子デバイス用基板であれば、FZシリコン基板のボンドウェーハに窒素がドープされていることで強度が更に増すとともに、高抵抗であるため、特に高周波デバイス用として適したものとすることができる。
 また、前記接合基板とする工程において、前記ベースウェーハと前記ボンドウェーハとをSiO膜を介して接合することが好ましい。
 このような方法により製造された電子デバイス用基板であれば、窒化物半導体膜による応力を緩和することができ、より厚い窒化物半導体膜を形成することができる。
 このような電子デバイス用基板及びその製造方法であれば、抵抗率が0.1Ωcm以下、結晶方位が<100>CZシリコンからなる、硬いベースウェーハを含むため、電子デバイス用基板の反りが抑制されたものとすることができる。また、そのベースウェーハの上に結晶方位が<111>のボンドウェーハが接合されたものであるため、良好な窒化物半導体膜が形成されたものとなる。更に、結晶方位が<100>と<111>という異なったウェーハを接合することでお互いの劈開方向が異なることとなり、電子デバイス用基板が割れにくくなる。また、ベースウェーハの結晶方位を<100>とすることで、インゴットの成長途中での多結晶化が抑制されたものとなり、安価に製造することができる。このため、高耐圧用あるいは高周波用の電子デバイス用基板として最適なものとなる。
本発明の電子デバイス用基板を示す概念図である。
 以下、本発明について詳細に説明するが、本発明はこれらに限定されるものではない。
 上述したように高耐圧・高周波用電子デバイス用基板では、デバイス特性を向上させるため、エピタキシャル層を厚く積むと、熱膨張係数の違いにより、ウェーハに反りが発生するという問題がある。この課題に対し、本発明者らが鋭意検討を重ねたところ、電子デバイス用基板の反りを抑制するために、結晶方位が<100>で低抵抗率の硬いシリコン基板をベースウェーハとし、その上に結晶方位が<111>のシリコン基板を接合することで窒化物半導体膜を良好に形成させることができることを見出し、本発明を完成させた。
[電子デバイス用基板]
 本発明は、シリコン単結晶の接合基板上に窒化物半導体膜が形成された電子デバイス用基板であって、
 前記接合基板は、少なくとも、シリコン単結晶からなるベースウェーハ上にシリコン単結晶からなるボンドウェーハを接合した基板であって、
 前記ベースウェーハは、抵抗率が0.1Ωcm以下、結晶方位が<100>のCZシリコンからなり、
 前記ボンドウェーハは、結晶方位が<111>のものであることを特徴とする電子デバイス用基板である。
 図1に本発明の電子デバイス用基板の概念図を示す。
 図1に示すように、本発明の電子デバイス用基板10はシリコン単結晶からなるベースウェーハ1と、シリコン単結晶からなるボンドウェーハ2を接合した接合基板6と、窒化物からなる窒化物半導体膜(デバイス層)5とを含む。このとき、上記の接合基板6とデバイス層5の間の中間層4を含んでもよい。また、図1に示すように、ベースウェーハ1とボンドウェーハ2との間に接着層3を有する構造であってもよい。接着層は例えば酸化膜(SiO)とすることができる。
 ここで、ベースウェーハ1は、抵抗率が0.1Ωcm以下のCZシリコン単結晶からなる、結晶方位が<100>のウェーハとする。このような低抵抗率のウェーハであれば、ドーパント濃度が高いため基板の強度が増加し、反りを抑制することができる。また、抵抗率の下限は特に制限されないが、例えば、0.001Ωcm以上のものとすることができる。また、CZ法による結晶成長においては、結晶方位が<100>の方が成長途中で多結晶化しづらく、ドーパント濃度が高くなるほど顕著となることから、ベースウェーハの結晶方位を<100>とする。これにより、ベースウェーハを安価に構成できる。また、ベースウェーハの酸素濃度は1×1018atoms/cm(ASTM’79)以下であることが好ましい。
 また、接合するボンドウェーハ2は結晶方位が<111>のウェーハとする。このようにボンドウェーハ2の結晶方位が<111>であれば窒化物半導体膜5を良好に形成することができ、特に、窒化物系のエピタキシャル層を良好にエピタキシャル成長させることができる。更に結晶方位が<100>と<111>という異なったウェーハを接合することで、お互いの劈開方向が異なり、電子デバイス用基板10が割れにくくなる。
 また、ボンドウェーハ2を抵抗率が0.1Ωcm以下のCZシリコン基板とすることができる。このようにボンドウェーハ2も低抵抗率にすることで更に接合基板の強度が増加し、反りを更に抑制することができる。また、このような電子デバイス用基板は高耐圧用デバイスに好適に用いることができる。また、抵抗率の下限は特に制限されないが、例えば、0.001Ωcm以上のものとすることができる。またこのとき、ボンドウェーハの酸素濃度は、例えば、1×1018atoms/cm(ASTM’79)以下とすることができる。
 また、ボンドウェーハ2を抵抗率1000Ωcm以上、窒素濃度が1×1014atoms/cm以上であるCZシリコン基板とすることができる。このようにボンドウェーハ2に窒素がドープされていることで強度が更に増すとともに高抵抗であるため、高周波デバイス用として適したものとなる。また、抵抗率の上限は特に制限されないが、例えば、10kΩcm以下のものとすることができる。また、窒素濃度の上限は特に制限されないが、例えば、1×1016atoms/cm以下のものとすることができる。またこのとき、ボンドウェーハの酸素濃度は、例えば、1×1018atoms/cm(ASTM’79)以下とすることができる。
 また、ボンドウェーハ2を抵抗率が1000Ωcm以上、窒素濃度8×1014atoms/cm以上のFZシリコン基板とすれば、窒素がドープされることで強度が更に増すとともに高抵抗であるため、高周波デバイス用として適したものとなる。また、抵抗率の上限は特に制限されないが、例えば、10kΩcm以下のものとすることができる。また、窒素濃度の上限は特に制限されないが、例えば、8×1016atoms/cm以下のものとすることができる。
 また、ボンドウェーハ2の上には中間層4が形成されたものとすることができる。中間層4は、デバイス層の結晶性改善や応力の制御のために挿入される緩衝層として働く。上記中間層4は、窒化物半導体膜5と同一の設備で作製できるので、窒化物で作製されたものであることが望ましい。
 ボンドウェーハ2の上には、例えばGaN、AlN、InN、AlGaN、InGaN、AlInN等の窒化物の薄膜からなるデバイス層5が形成されている。ここで、中間層4が形成されている場合は、デバイス層5が中間層4の上に形成されたものとすることができる。デバイス層5はMOVPE法やスパッタリングなどの気相成長で成長させることができる。窒化物の薄膜は1~20μmで、デバイスに合わせて設計することができる。
 本発明の電子デバイス用基板であれば、抵抗率が0.1Ωcm以下、結晶方位が<100>のCZシリコンからなる、硬いベースウェーハを含むため、電子デバイス用基板の反りが抑制されたものとすることができる。また、そのベースウェーハの上に結晶方位が<111>のボンドウェーハが接合されたものであるため、良好な窒化物半導体膜が形成されたものとなる。更に、結晶方位が<100>と<111>という異なったウェーハを接合することでお互いの劈開方向が異なることとなり、電子デバイス用基板が割れにくくなる。また、ベースウェーハの結晶方位を<100>とすることで、インゴットの成長途中での多結晶化が抑制されたものとすることができる。このため、高耐圧用あるいは高周波用の電子デバイス用基板として最適なものとなる。
[電子デバイス用基板の製造方法]
 また、本発明は、シリコン単結晶基板上に窒化物半導体膜を形成する電子デバイス用基板の製造方法であって、
 シリコン単結晶からなるベースウェーハ上にシリコン単結晶からなるボンドウェーハを接合して接合基板とする工程と、
 前記接合基板の前記ボンドウェーハ上に窒化物半導体をエピタキシャル成長させる工程とを含み、
 前記ベースウェーハとして、抵抗率が0.1Ωcm以下、結晶方位が<100>のCZシリコンからなるものを用い、
 前記ボンドウェーハとして、結晶方位が<111>のものを用いることを特徴とする電子デバイス用基板の製造方法を提供する。
 本発明の製造方法では、シリコン単結晶からなるベースウェーハ上にシリコン単結晶からなるボンドウェーハを接合して接合基板とする。
 このとき、ベースウェーハとして、抵抗率が0.1Ωcm以下、結晶方位が<100>のCZシリコンからなるものを用いる。また、抵抗率の下限値は特に制限されないが、例えば、0.001Ωcm以上とすることができる。またこのとき、ベースウェーハとして、酸素濃度が1×1018atoms/cm(ASTM’79)以下のものを用いることができる。
 またこのとき、ボンドウェーハとして、結晶方位が<111>のものを用いる。
 ボンドウェーハとしては、抵抗率が0.1Ωcm以下のCZシリコン基板を用いることができる。このようにボンドウェーハも低抵抗率のものを用いることで更に強度が増加し、反りを更に抑制することができる。また、このようにして製造された電子デバイス用基板は高耐圧用デバイスに好適に用いることができる。また、抵抗率の下限は特に制限されないが、例えば、0.001Ωcm以上とすることができる。またこのとき、ボンドウェーハとして、酸素濃度が1×1018atoms/cm(ASTM’79)以下のものを用いることができる。
 また、ボンドウェーハとして、抵抗率1000Ωcm以上、窒素濃度が1×1014atoms/cm以上であるCZシリコン基板を用いることもできる。このようにボンドウェーハに窒素がドープされたものを用いることで強度が更に増すとともに高抵抗となるため、高周波デバイス用として適したものとすることができる。また、抵抗率の上限は特に制限されないが、例えば、10kΩcm以下とすることができる。また、窒素濃度の上限は特に制限されないが、例えば、1×1016atoms/cm以下とすることができる。またこのとき、ボンドウェーハとして、酸素濃度が1×1018atoms/cm(ASTM’79)以下のものを用いることができる。
 また、ボンドウェーハとして、抵抗率が1000Ωcm以上、窒素濃度8×1014atoms/cm以上のFZシリコン基板を用いれば、窒素がドープされたものを用いることで強度が更に増すとともに高抵抗となるため、高周波デバイス用として適したものとすることができる。また、抵抗率の上限は特に制限されないが、例えば、10kΩcm以下とすることができる。また、窒素濃度の上限は特に制限されないが、例えば、8×1016atoms/cm以下とすることができる。
 ベースウェーハとボンドウェーハとを接合する方法は特に限定されないが、酸化膜により貼り合わせることが好ましい。また、接合前の酸化膜を薄膜化することで接合後の結合熱処理により、酸化膜の酸素のみを拡散させ、接合界面部で酸化膜の無い構造とすることもできる。このように、シリコン単結晶基板の接着を酸化膜により行うことで、窒化物成長時に加わる応力を緩和することができる。
 次に、上記のようにして製造した接合基板上に窒化物半導体膜をエピタキシャル成長させる。ここで、窒化物半導体膜の成長前に中間層を形成することができる。窒化物成長時に中間層を形成して適切な緩衝層を入れることで、冷却後には熱膨張係数差と格子定数差による薄膜からの応力を制御することができ、基板を厚くすることで、高温成長中の塑性変形を防ぎ、さらに反りの小さいウェーハを製造することができる。工程を簡単にするため、中間層を窒化物で作製することが望ましい。
 このような電子デバイス用基板の製造方法であれば、抵抗率が0.1Ωcm以下、結晶方位が<100>のCZシリコンからなる、硬いベースウェーハを使用するので、電子デバイス用基板の反りが抑制され、そのベースウェーハの上に結晶方位が<111>のボンドウェーハが接合されるので、良好な窒化物半導体膜を形成することができる。更に、結晶方位が<100>と<111>という異なったウェーハを接合することでお互いの劈開方向が異なることとなり、製造された電子デバイス用基板が割れにくくなる。また、ベースウェーハの結晶方位を<100>とすることで、インゴットの成長途中での多結晶化が抑制されたものとすることができる。このため、高耐圧用あるいは高周波用の電子デバイス用基板として最適なものを製造することができる。
 以下、実施例及び比較例を示し、本発明をより具体的に説明するが、本発明は下記の実施例に制限されるものではない。
 (実施例1)
 抵抗率が0.1Ωcm以下、酸素濃度が1×1018atoms/cm(ASTM’79)以下の(100)面CZシリコン基板(抵抗率:0.007Ωcm、酸素濃度:7×1017atoms/cm)で、基板の厚みが500μmと1000μmのベースウェーハ(直径150mm)を準備した。また、貼り合わせ用として、抵抗率が0.1Ωcm以下、酸素濃度が1×1018atoms/cm(ASTM’79)以下の(111)面CZシリコン基板(抵抗率:0.007Ωcm、酸素濃度:7×1017atoms/cm)、基板の厚みが500μmのボンドウェーハ(直径150mm)を2枚準備した。
 次に以下のようにして、図1に示すような電子デバイス用基板を作製した。2枚のベースウェーハ1をそれぞれ熱酸化(厚さ1μm)、両面研磨した2枚のボンドウェーハ2をそれぞれ熱酸化(厚さ1μm)し、結合工程を経て、結合熱処理を1150℃で2時間行った。その後、結合した基板のボンドウェーハを研削及びポリッシュすることで基板におけるボンドウェーハの厚みを200μmとし、酸化膜除去として、10%HFに浸漬し表面酸化膜を除去し、厚さ700μm、1200μmの接合基板6を得た。そして、作製したこれらの接合基板6にMOVPE炉で5μm厚のGaNエピタキシャル成長(中間層2.5μm、デバイス層2.5μm)を行った。その時の反りは、接合基板6の厚さが700μmで35μm、厚さが1200μmで20μmであった。
 (実施例2)
 抵抗率が0.1Ωcm以下、酸素濃度が1×1018atoms/cm(ASTM’79)以下の(100)面CZシリコン基板(抵抗率:0.007Ωcm、酸素濃度:7×1017atoms/cm)の厚みが500μmと1000μmのベースウェーハ(直径150mm)を準備した。また、貼り合わせ用として、高濃度の窒素ドープした1000Ωcm以上の(111)面CZシリコン基板(8×1014atoms/cm、5000Ωcm)、基板の厚みが500μmのボンドウェーハ(直径150mm)を2枚準備した。
 次に以下のようにして、図1に示すような電子デバイス用基板を作製した。2枚のベースウェーハ1を熱酸化(厚さ1μm)、両面研磨した2枚のボンドウェーハ2を熱酸化(厚さ1μm)し、結合工程を経て、結合熱処理を1150℃で2時間行った。その後、結合した基板のボンドウェーハを研削及びポリッシュすることで基板におけるボンドウェーハの厚みを200μmとし、酸化膜除去として、10%HFに浸漬し表面酸化膜を除去し、厚さ700μm、1200μmの接合基板を得た。そして、作製したこれらの接合基板厚さにMOVPE炉で5μm厚のGaNエピタキシャル成長(中間層2.5μm、デバイス層2.5μm)を行った。その時の反りは、接合基板の厚さが700μmで40μm、厚さが1200μmで20μmであった。
 (実施例3)
 抵抗率が0.1Ωcm以下、酸素濃度が1×1018atoms/cm(ASTM’79)以下の(100)面CZシリコン基板(抵抗率:0.007Ωcm、酸素濃度:7×1017atoms/cm)の厚みが500μmと1000μmのベースウェーハ(直径150mm)を準備した。また、貼り合わせ用として、高濃度の窒素ドープした1000Ωcm以上の(111)面FZシリコン基板(8×1014atoms/cm、5000Ωcm)、基板の厚みが500μmのボンドウェーハ(直径150mm)を2枚準備した。
 ベースウェーハ1を熱酸化(厚さ1μm)、両面研磨したボンドウェーハ2を熱酸化(厚さ1μm)し、結合工程を経て、結合熱処理を1150℃で2時間行った。その後、結合した基板のボンドウェーハを研削及びポリッシュすることで基板におけるボンドウェーハの厚みを200μmとし、酸化膜除去として、10%HFに浸漬し表面酸化膜を除去し、厚さ700μm、1200μmの接合基板を得た。そして、作製したこれらの接合基板にMOVPE炉で5μm厚のGaNエピタキシャル成長(中間層2.5μm、デバイス層2.5μm)を行った。その時の反りは、接合基板の厚さが700μmで45μm、厚さが1200μmで20μmであった。
 (比較例1)
 抵抗率が20Ωcm、酸素濃度が5×1018atoms/cmの(111)面CZシリコン基板で、基板の厚みが700μmのウェーハ(直径150mm)を準備した。この基板に、MOVPE炉で5μm厚のGaNエピタキシャル成長を行ったところ、成長後の反りが130μmと大きくなった。
 (比較例2)
 抵抗率が0.1Ωcm以下、酸素濃度が1×1018atoms/cm(ASTM’79)以下の(100)面CZシリコン基板(抵抗率:0.007Ωcm、酸素濃度:7×1017atoms/cm)で、基板の厚みが500μmと1000μmのベースウェーハ(直径150mm)を準備した。また、貼り合わせ用として、ベースウェーハと同一の抵抗率及び酸素濃度の(100)面CZシリコン基板、基板の厚みが500μmのボンドウェーハ(直径150mm)を2枚準備した。
 次に、2枚のベースウェーハをそれぞれ熱酸化(厚さ1μm)、両面研磨した2枚のボンドウェーハをそれぞれ熱酸化(厚さ1μm)し、結合工程を経て、結合熱処理を1150℃で2時間行った。その後、結合した基板のボンドウェーハを研削及びポリッシュすることで基板におけるボンドウェーハの厚みを200μmとし、酸化膜除去として、10%HFに浸漬し表面酸化膜を除去し、厚さ700μm、1200μmの基板を得た。そして、作製したこれらの基板にMOVPE炉で5μm厚のGaNエピタキシャル成長(中間層2.5μm、デバイス層2.5μm)を行った。しかしながら、比較例2では(100)面にエピタキシャル成長させたため、形成されたエピタキシャル層は欠陥が多く、そもそもエピタキシャル成長をまともに行うことができなかった。
 上記の結果から、実施例1~3のように、低抵抗率の(100)面CZシリコン基板に、結晶方位が<111>のボンドウェーハを貼り合わせて接合基板としたときは、窒化物半導体膜を形成させた場合に、ウェーハの反りが50μm以下と、電子デバイス作製用の基板として十分に小さいものとなった。一方で、(111)面CZシリコン基板を用いた比較例1では、基板が軟らかいため、窒化物半導体膜を形成させた場合のウェーハの反りが実施例1~3よりも大きい結果となった。また、低抵抗率の(100)面CZシリコン基板同士を貼り合わせた基板を用いた比較例2では、エピタキシャル層に欠陥が多く、また、ウェーハが割れ易いものであった。
 本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (10)

  1.  シリコン単結晶の接合基板上に窒化物半導体膜が形成された電子デバイス用基板であって、
     前記接合基板は、少なくとも、シリコン単結晶からなるベースウェーハ上にシリコン単結晶からなるボンドウェーハを接合した基板であって、
     前記ベースウェーハは、抵抗率が0.1Ωcm以下、結晶方位が<100>のCZシリコンからなり、
     前記ボンドウェーハは、結晶方位が<111>のものであることを特徴とする電子デバイス用基板。
  2.  前記ボンドウェーハは、抵抗率が0.1Ωcm以下のCZシリコン基板であることを特徴とする請求項1に記載の電子デバイス用基板。
  3.  前記ボンドウェーハは、抵抗率が1000Ωcm以上、窒素濃度が1×1014atoms/cm以上であるCZシリコン基板であることを特徴とする請求項1に記載の電子デバイス用基板。
  4.  前記ボンドウェーハは、抵抗率が1000Ωcm以上、窒素濃度8×1014atoms/cm以上のFZシリコン基板であることを特徴とする請求項1に記載の電子デバイス用基板。
  5.  前記接合基板は、前記ベースウェーハと前記ボンドウェーハとがSiO膜を介して接合されたものであることを特徴とする請求項1から請求項4のいずれか一項に記載の電子デバイス用基板。
  6.  シリコン単結晶基板上に窒化物半導体膜を形成する電子デバイス用基板の製造方法であって、
     シリコン単結晶からなるベースウェーハ上にシリコン単結晶からなるボンドウェーハを接合して接合基板とする工程と、
     前記接合基板の前記ボンドウェーハ上に窒化物半導体をエピタキシャル成長させる工程とを含み、
     前記ベースウェーハとして、抵抗率が0.1Ωcm以下、結晶方位が<100>のCZシリコンからなるものを用い、
     前記ボンドウェーハとして、結晶方位が<111>のものを用いることを特徴とする電子デバイス用基板の製造方法。
  7.  前記ボンドウェーハとして、抵抗率が0.1Ωcm以下のCZシリコン基板を用いることを特徴とする請求項6に記載の電子デバイス用基板の製造方法。
  8.  前記ボンドウェーハとして、抵抗率が1000Ωcm以上、窒素濃度が1×1014atoms/cm以上であるCZシリコン基板を用いることを特徴とする請求項6に記載の電子デバイス用基板の製造方法。
  9.  前記ボンドウェーハとして、抵抗率が1000Ωcm以上、窒素濃度8×1014atoms/cm以上のFZシリコン基板を用いることを特徴とする請求項6に記載の電子デバイス用基板の製造方法。
  10.  前記接合基板とする工程において、前記ベースウェーハと前記ボンドウェーハとをSiO膜を介して接合することを特徴とする請求項6から請求項9のいずれか一項に記載の電子デバイス用基板の製造方法。
PCT/JP2020/025934 2019-08-06 2020-07-02 電子デバイス用基板およびその製造方法 WO2021024654A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/628,390 US20220367188A1 (en) 2019-08-06 2020-07-02 Substrate for an electronic device and method for producing the same
EP20849816.2A EP4012750A4 (en) 2019-08-06 2020-07-02 SUBSTRATE FOR ELECTRONIC DEVICE AND PRODUCTION METHOD THEREOF
CN202080055655.2A CN114207825A (zh) 2019-08-06 2020-07-02 电子器件用基板及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-144251 2019-08-06
JP2019144251A JP6863423B2 (ja) 2019-08-06 2019-08-06 電子デバイス用基板およびその製造方法

Publications (1)

Publication Number Publication Date
WO2021024654A1 true WO2021024654A1 (ja) 2021-02-11

Family

ID=74502945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/025934 WO2021024654A1 (ja) 2019-08-06 2020-07-02 電子デバイス用基板およびその製造方法

Country Status (5)

Country Link
US (1) US20220367188A1 (ja)
EP (1) EP4012750A4 (ja)
JP (1) JP6863423B2 (ja)
CN (1) CN114207825A (ja)
WO (1) WO2021024654A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023147834A1 (de) * 2022-02-03 2023-08-10 Azur Space Solar Power Gmbh Iii-n-silizium halbleiterscheibe
WO2023147835A1 (de) * 2022-02-03 2023-08-10 Azur Space Solar Power Gmbh Herstellungsverfahren für eine halbleiterscheibe mit silizium und mit einer iii-n-schicht

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7279552B2 (ja) * 2019-07-11 2023-05-23 信越半導体株式会社 電子デバイス用基板およびその製造方法
WO2023100577A1 (ja) * 2021-12-01 2023-06-08 信越半導体株式会社 電子デバイス用基板及びその製造方法
WO2023199616A1 (ja) * 2022-04-13 2023-10-19 信越半導体株式会社 電子デバイス用基板及びその製造方法
WO2023228868A1 (ja) * 2022-05-27 2023-11-30 信越半導体株式会社 電子デバイス用基板及びその製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0590117A (ja) * 1991-09-27 1993-04-09 Toshiba Corp 単結晶薄膜半導体装置
JPH09246505A (ja) * 1996-03-01 1997-09-19 Hitachi Ltd 半導体集積回路装置
WO2011016219A1 (ja) 2009-08-04 2011-02-10 Dowaエレクトロニクス株式会社 電子デバイス用エピタキシャル基板およびその製造方法
JP2011103380A (ja) * 2009-11-11 2011-05-26 Covalent Materials Corp 化合物半導体基板
JP2014192226A (ja) 2013-03-26 2014-10-06 Sharp Corp 電子デバイス用エピタキシャル基板
JP2014236093A (ja) * 2013-05-31 2014-12-15 サンケン電気株式会社 シリコン系基板、半導体装置、及び、半導体装置の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7999288B2 (en) * 2007-11-26 2011-08-16 International Rectifier Corporation High voltage durability III-nitride semiconductor device
JP2013239474A (ja) * 2012-05-11 2013-11-28 Sanken Electric Co Ltd エピタキシャル基板、半導体装置及び半導体装置の製造方法
CN103681992A (zh) * 2014-01-07 2014-03-26 苏州晶湛半导体有限公司 半导体衬底、半导体器件及半导体衬底制造方法
JP2018041851A (ja) * 2016-09-08 2018-03-15 クアーズテック株式会社 窒化物半導体基板
JP7279552B2 (ja) * 2019-07-11 2023-05-23 信越半導体株式会社 電子デバイス用基板およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0590117A (ja) * 1991-09-27 1993-04-09 Toshiba Corp 単結晶薄膜半導体装置
JPH09246505A (ja) * 1996-03-01 1997-09-19 Hitachi Ltd 半導体集積回路装置
WO2011016219A1 (ja) 2009-08-04 2011-02-10 Dowaエレクトロニクス株式会社 電子デバイス用エピタキシャル基板およびその製造方法
JP2011103380A (ja) * 2009-11-11 2011-05-26 Covalent Materials Corp 化合物半導体基板
JP2014192226A (ja) 2013-03-26 2014-10-06 Sharp Corp 電子デバイス用エピタキシャル基板
JP2014236093A (ja) * 2013-05-31 2014-12-15 サンケン電気株式会社 シリコン系基板、半導体装置、及び、半導体装置の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023147834A1 (de) * 2022-02-03 2023-08-10 Azur Space Solar Power Gmbh Iii-n-silizium halbleiterscheibe
WO2023147835A1 (de) * 2022-02-03 2023-08-10 Azur Space Solar Power Gmbh Herstellungsverfahren für eine halbleiterscheibe mit silizium und mit einer iii-n-schicht

Also Published As

Publication number Publication date
CN114207825A (zh) 2022-03-18
EP4012750A1 (en) 2022-06-15
US20220367188A1 (en) 2022-11-17
JP6863423B2 (ja) 2021-04-21
JP2021027186A (ja) 2021-02-22
EP4012750A4 (en) 2023-10-18

Similar Documents

Publication Publication Date Title
WO2021024654A1 (ja) 電子デバイス用基板およびその製造方法
US20050269671A1 (en) Support for hybrid epitaxy and method of fabrication
WO2021005872A1 (ja) 電子デバイス用基板およびその製造方法
JP6141627B2 (ja) シリコン基板上にGaN層を形成する方法およびGaN基板
JP2019153603A (ja) 半導体基板及びその製造方法
WO2020129540A1 (ja) 窒化物半導体ウェーハの製造方法および窒化物半導体ウェーハ
JP6450086B2 (ja) 化合物半導体基板の製造方法
WO2022181163A1 (ja) 窒化物半導体基板およびその製造方法
WO2022038826A1 (ja) 窒化物半導体ウェーハの製造方法及び窒化物半導体ウェーハ
US10672608B2 (en) Fabrication of a device on a carrier substrate
WO2021210354A1 (ja) 気相成長用のシリコン単結晶基板、気相成長基板及びこれらの製造方法
WO2018107616A1 (zh) 复合衬底及其制造方法
WO2022024729A1 (ja) 窒化物半導体ウェーハおよび窒化物半導体ウェーハの製造方法
WO2023090019A1 (ja) 窒化物半導体基板及び窒化物半導体基板の製造方法
US20240105512A1 (en) Semiconductor substrate
WO2024057698A1 (ja) 窒化物半導体層付き単結晶シリコン基板及び窒化物半導体層付き単結晶シリコン基板の製造方法
TW202417698A (zh) 電子元件用基板及其製造方法
TW202347764A (zh) 電子裝置用基板及其製造方法
TW201812852A (zh) 半導體磊晶基板及其製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20849816

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020849816

Country of ref document: EP

Effective date: 20220307