WO2023090019A1 - 窒化物半導体基板及び窒化物半導体基板の製造方法 - Google Patents

窒化物半導体基板及び窒化物半導体基板の製造方法 Download PDF

Info

Publication number
WO2023090019A1
WO2023090019A1 PCT/JP2022/038552 JP2022038552W WO2023090019A1 WO 2023090019 A1 WO2023090019 A1 WO 2023090019A1 JP 2022038552 W JP2022038552 W JP 2022038552W WO 2023090019 A1 WO2023090019 A1 WO 2023090019A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitride semiconductor
substrate
crystal silicon
single crystal
semiconductor substrate
Prior art date
Application number
PCT/JP2022/038552
Other languages
English (en)
French (fr)
Inventor
和徳 萩本
一平 久保埜
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Priority to CN202280074478.1A priority Critical patent/CN118215987A/zh
Publication of WO2023090019A1 publication Critical patent/WO2023090019A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body

Definitions

  • the present invention relates to a nitride semiconductor substrate and a method for manufacturing a nitride semiconductor substrate.
  • the MOCVD method which is one of the semiconductor thin film manufacturing methods, is widely used because it is excellent in large diameter and mass production, and can form homogeneous thin film crystals.
  • Nitride semiconductors typified by GaN are expected as next-generation semiconductor materials that exceed the limits of Si as a material.
  • GaN, SiC, sapphire, Si, etc. are used as substrates for epitaxial growth of GaN in the MOCVD method.
  • the high-frequency device substrate uses a high-resistivity substrate to prevent the signal from flowing from the epitaxial layer to the underlying Si substrate. Further, when stacking a nitride semiconductor epitaxial layer on a high resistivity silicon substrate, the nitride semiconductor epitaxial layer is stacked by devising a buffer layer as a stress relaxation layer. However, high resistivity silicon substrates undergo plastic deformation during epitaxial growth due to stress. To solve this problem, an SOI substrate made of a stress-resistant low-resistivity substrate (a hard single-crystal silicon substrate exclusively for nitride semiconductor epitaxial growth) and a high-resistivity silicon substrate bonded via a silicon oxide layer is used. preferably.
  • a nitride semiconductor substrate for manufacturing a high-frequency device manufactured in this manner may be plastically deformed during epitaxial growth of the nitride semiconductor.
  • the present invention provides a high-frequency nitride semiconductor substrate comprising: an SOI substrate in which a single crystal silicon thin film is formed on a single crystal silicon substrate with a silicon oxide layer interposed therebetween; a nitride semiconductor layer including a GaN layer formed on the SOI substrate;
  • the single crystal silicon thin film contains nitrogen at a concentration of 2.0 ⁇ 10 14 atoms/cm 3 or more and has a resistivity of 100 ⁇ cm or more,
  • the single crystal silicon substrate has a resistivity of 50 m ⁇ cm or less,
  • a nitride semiconductor substrate is provided, wherein the silicon oxide layer has a thickness of 10 to 400 nm.
  • the single crystal silicon thin film contains nitrogen at a concentration of 2.0 ⁇ 10 14 atoms/cm 3 or more, the single crystal silicon thin film has a resistivity of 100 ⁇ cm or more, and the single crystal silicon substrate has a resistivity of 50 m ⁇ cm or less. If it is a nitride semiconductor substrate in which a nitride semiconductor layer including a GaN layer is formed on an SOI substrate having a silicon oxide layer with a thickness of 10 to 400 nm, the nitride semiconductor is suppressed in plastic deformation. It can be a substrate. Further, by using this nitride semiconductor substrate, a high frequency device with good high frequency characteristics can be manufactured.
  • the thickness of the silicon oxide layer is preferably 10 to 200 nm.
  • the thickness of the silicon oxide layer is 10 to 200 nm, a nitride semiconductor substrate with further suppressed plastic deformation can be obtained.
  • a nitride semiconductor substrate in which plastic deformation is suppressed can be manufactured relatively simply and reliably. Further, by using the nitride semiconductor substrate manufactured in this way, a high frequency device having excellent high frequency characteristics can be manufactured.
  • a silicon oxide layer having a thickness of 10 to 200 nm.
  • a silicon oxide layer having a thickness of 10 to 200 nm is used, a nitride semiconductor substrate with further suppressed plastic deformation can be manufactured.
  • the single crystal silicon substrate which will be the bond wafer, can be prepared by manufacturing it by the FZ method or the MCZ method.
  • the nitride semiconductor substrate of the present invention can be a nitride semiconductor substrate in which plastic deformation is suppressed. Further, by using the nitride semiconductor substrate of the present invention, a high frequency device having good high frequency characteristics can be manufactured.
  • nitride semiconductor substrate manufacturing method of the present invention it is possible to manufacture a nitride semiconductor substrate for high frequencies in which plastic deformation is reliably suppressed in a relatively simple manner. Further, by using the nitride semiconductor substrate manufactured by the nitride semiconductor substrate manufacturing method of the present invention, a high frequency device having excellent high frequency characteristics can be manufactured.
  • FIG. 1 is a schematic cross-sectional view showing an example of a nitride semiconductor substrate of the present invention
  • FIG. 1 is a schematic diagram of a configuration of an example of a nitride semiconductor substrate of the present invention
  • FIG. 5 is a graph showing changes in the state of warpage during epitaxial growth in Examples and Comparative Examples. 5 is a graph showing the relationship between the thickness of a silicon oxide layer and warpage in Examples and Comparative Examples.
  • the inventors of the present invention have extensively studied a nitride semiconductor substrate in which plastic deformation is suppressed and a manufacturing method thereof, and found that a single-crystal silicon thin film of an SOI substrate has a nitrogen concentration of 2.0 ⁇ 10 14 atoms/cm 3 or more.
  • the resistivity of the single-crystal silicon thin film is 100 ⁇ cm or more, the resistivity of the single-crystal silicon substrate is 50 m ⁇ cm or less, and the thickness of the silicon oxide layer of the SOI substrate is 10 to 400 nm.
  • the inventors have found that a nitride semiconductor substrate in which deformation is suppressed can be manufactured, and have completed the present invention.
  • the present invention provides a high frequency nitride semiconductor substrate, an SOI substrate in which a single crystal silicon thin film is formed on a single crystal silicon substrate with a silicon oxide layer interposed therebetween; a nitride semiconductor layer including a GaN layer formed on the SOI substrate;
  • the single crystal silicon thin film contains nitrogen at a concentration of 2.0 ⁇ 10 14 atoms/cm 3 or more and has a resistivity of 100 ⁇ cm or more,
  • the single crystal silicon substrate has a resistivity of 50 m ⁇ cm or less,
  • the nitride semiconductor substrate is characterized in that the silicon oxide layer has a thickness of 10 to 400 nm.
  • the present invention also provides a method for manufacturing a nitride semiconductor substrate for high frequencies, comprising: A step of preparing two single crystal silicon substrates to be a bond wafer and a base wafer; bonding the two single crystal silicon substrates via a silicon oxide layer; a step of thinning the bond wafer into a single crystal silicon thin film to obtain an SOI substrate in which the single crystal silicon thin film is formed on the base wafer via the silicon oxide layer; growing a nitride semiconductor layer including a GaN layer on the single crystal silicon thin film of the SOI substrate to obtain a nitride semiconductor substrate in which the nitride semiconductor layer is formed on the SOI layer;
  • As the single crystal silicon substrate to be the bond wafer using a substrate containing nitrogen at a concentration of 2.0 ⁇ 10 14 atoms/cm 3 or more and having a resistivity of 100 ⁇ cm or more, Using a single crystal silicon substrate having a resistivity of 50 m ⁇ cm or less as the base wafer, The method
  • FIG. 1 shows a schematic cross-sectional view of an example of the nitride semiconductor substrate of the present invention.
  • FIG. 2 shows a schematic diagram of the configuration of one example of the nitride semiconductor substrate of the present invention.
  • a nitride semiconductor substrate 1 shown in FIG. 1 includes an SOI substrate 2 and a nitride semiconductor layer (nitride semiconductor thin film) 3 .
  • the nitride semiconductor layer 3 includes the GaN layer 34 shown in FIG.
  • the nitride semiconductor layer 3 shown in FIG. 2 includes an AlN layer 31, an AlGaN layer 32, and superlattice layers (SLs) 33 in addition to the GaN layer 34.
  • the nitride semiconductor layer 3 includes the GaN layer 34 is not limited to the configuration shown in FIG.
  • Single-crystal silicon thin film 23 of SOI substrate 2 of nitride semiconductor substrate 1 contains nitrogen at a concentration of 2.0 ⁇ 10 14 atoms/cm 3 or more and has a resistivity of 100 ⁇ cm or more. Moreover, the single crystal silicon substrate 21 has a resistivity of 50 m ⁇ cm or less. The thickness of the silicon oxide layer 22 is 10-400 nm.
  • the nitrogen concentration in the single-crystal silicon thin film 23 is less than 2.0 ⁇ 10 14 atoms/cm 3 , plastic deformation cannot be sufficiently suppressed.
  • the upper limit of the nitrogen concentration in the single-crystal silicon thin film 23 is not particularly limited, it can be, for example, 1.0 ⁇ 10 20 atoms/cm 3 .
  • the thickness of the silicon oxide layer 22 exceeds 400 nm, plastic deformation cannot be sufficiently suppressed. Conversely, if the thickness of the silicon oxide layer 22 is less than 10 nm, the bonding will be poor and voids will occur. If the thickness of the silicon oxide layer 22 is 10 to 400 nm, the nitride semiconductor substrate 1 can be further suppressed in plastic deformation.
  • the resistivity of the single crystal silicon substrate 21 exceeds 50 m ⁇ cm, plastic deformation cannot be sufficiently suppressed.
  • the lower limit of the resistivity of the single crystal silicon substrate 21 is not particularly limited, it can be, for example, 2 m ⁇ cm.
  • the resistivity of the single-crystal silicon thin film 23 By setting the resistivity of the single-crystal silicon thin film 23 to 100 ⁇ cm or more, a high-frequency device with excellent high-frequency characteristics can be manufactured.
  • the upper limit of the resistivity of the single-crystal silicon thin film 23 is not particularly limited, it can be, for example, 30000 ⁇ cm.
  • the method for manufacturing a nitride semiconductor substrate of the present invention comprises: A step of preparing two single crystal silicon substrates to be a bond wafer and a base wafer; bonding the two single crystal silicon substrates via a silicon oxide layer; a step of thinning the bond wafer into a single crystal silicon thin film to obtain an SOI substrate in which the single crystal silicon thin film is formed on the base wafer via the silicon oxide layer; growing a nitride semiconductor layer including a GaN layer on the single crystal silicon thin film of the SOI substrate to obtain a nitride semiconductor substrate in which the nitride semiconductor layer is formed on the SOI layer.
  • the single crystal silicon substrates to be bond wafers contain nitrogen at a concentration of 2.0 ⁇ 10 14 atoms/cm 3 or more and have a resistivity of 100 ⁇ cm or more.
  • the upper limit of the nitrogen concentration of the single crystal silicon substrate to be a bond wafer is not particularly limited, it can be, for example, 1.0 ⁇ 10 20 atoms/cm 3 .
  • the upper limit of the resistivity of the single crystal silicon substrate to be a bond wafer is not particularly limited, but can be set to 30000 ⁇ cm, for example.
  • the single-crystal silicon substrate to be a bond wafer is preferably a single-crystal silicon substrate having a plane orientation of (111) manufactured by the FZ method or the MCZ method.
  • a single crystal silicon substrate with a resistivity of 50 m ⁇ cm or less is prepared as a base wafer.
  • the lower limit of the resistivity of the single-crystal silicon substrate to be the base wafer is not particularly limited, it can be, for example, 2 m ⁇ cm.
  • the single-crystal silicon substrate that serves as the base wafer is preferably a single-crystal silicon substrate with a plane orientation of (100) manufactured by the CZ method.
  • the single-crystal silicon substrate that will become the bond wafer is thermally oxidized, for example, to form a silicon oxide layer with a thickness of 10 to 400 nm on the surface.
  • a silicon oxide layer with a thickness of 10-200 nm is formed.
  • the single crystal silicon substrate to be a bond wafer is overlaid and bonded to the single crystal silicon substrate to be a base wafer with a silicon oxide layer having a thickness of 10 to 400 nm interposed therebetween. Heat treatment is performed to bond.
  • an SOI substrate 2 having a single crystal silicon thin film 23 formed on a base wafer (single crystal silicon substrate) 21 with a silicon oxide layer 22 interposed therebetween can be obtained, for example, as shown in FIG.
  • a nitride semiconductor layer including a GaN layer is grown on this SOI substrate 2 .
  • an AlN layer 31 is first formed with a thickness of, for example, 150 nm, and then an AlGaN layer 32 is formed with a thickness of, for example, 160 nm.
  • superlattice layers (SLs) 33 are formed by alternately laminating 40 to 60 sets of GaN layers and AlN layers.
  • a barrier layer made of an AlGaN layer 32 with a thickness of, for example, 3 nm is formed, and a cap layer made of a GaN layer 34 with a thickness of, for example, 3 nm is formed thereon to form a barrier layer on the SOI substrate 2 as shown in FIG.
  • a nitride semiconductor substrate 1 (GaN-HEMT epitaxial growth substrate) 1 having a nitride semiconductor layer 3 formed on the substrate can be manufactured.
  • the nitride semiconductor substrate of the present invention can be manufactured.
  • the method of manufacturing the nitride semiconductor substrate of the present invention is not limited to the manufacturing method described above.
  • Example 1 As shown in FIG. 2, a nitride semiconductor layer 3 having a thickness of 1.8 ⁇ m was epitaxially grown on an SOI substrate 2 to obtain a nitride semiconductor substrate (GaN-HEMT substrate) 1 of Example 1.
  • an SOI substrate with a diameter of 150 mm was used under the following conditions.
  • a single crystal silicon substrate (bond substrate) to be a bond wafer was manufactured by doping nitrogen by the MCZ method, had a plane orientation of (111), contained nitrogen at a concentration of 5 ⁇ 10 14 atoms/cm 3 , and had a resistance.
  • a single crystal silicon substrate having a modulus of 1200 ⁇ cm was prepared.
  • a single crystal silicon substrate manufactured by the CZ method, having a plane orientation of (100), a resistivity of 8 m ⁇ cm, and a thickness of 675 ⁇ m was prepared as a single crystal silicon substrate (Base substrate) serving as a base wafer.
  • the prepared bond wafer was thermally oxidized to form a silicon oxide layer with a thickness of 200 nm on the surface of the bond wafer.
  • SOI layer a single crystal silicon thin film (SOI layer) containing nitrogen at a concentration of 5 ⁇ 10 14 atoms/cm 3 and having a resistivity of 1200 ⁇ cm and a thickness of 100 nm was obtained.
  • an SOI substrate 2 was obtained in which a single crystal silicon thin film 23 was formed on a base wafer (single crystal silicon substrate) 21 with a silicon oxide layer (BOX layer) 22 interposed therebetween.
  • Example 1 the nitride semiconductor layer 3 was formed by epitaxial growth on the SOI substrate 2 obtained as described above according to the procedure described above with reference to FIG.
  • Comparative example 2 A nitride semiconductor substrate of Comparative Example 2 was obtained in the same procedure as in Comparative Example 1 except that the prepared bond wafer was thermally oxidized to form a silicon oxide layer with a thickness of 400 nm on the surface of the bond wafer.
  • Example 2 A nitride semiconductor substrate of Example 2 was obtained in the same manner as in Example 1, except that the prepared bond wafer was thermally oxidized to form a silicon oxide layer having a thickness of 400 nm on the surface of the bond wafer.
  • Comparative Example 3 A nitride semiconductor substrate of Comparative Example 3 was obtained in the same procedure as in Comparative Example 1 except that the prepared bond wafer was thermally oxidized to form a silicon oxide layer having a thickness of 650 nm on the surface of the bond wafer.
  • Comparative Example 4 A nitride semiconductor substrate of Comparative Example 4 was obtained in the same procedure as in Example 1, except that the prepared bond wafer was thermally oxidized to form a silicon oxide layer with a thickness of 650 nm on the surface of the bond wafer.
  • Comparative Example 5 A single crystal silicon substrate serving as a base wafer was manufactured by the CZ method, had a plane orientation of (100), had a resistivity of 8 m ⁇ cm, and had a thickness of 675 ⁇ m.
  • a nitride semiconductor substrate of Comparative Example 5 was obtained in the same procedure as in Comparative Example 4, except that a single crystal silicon substrate having a backside CVD oxide film of 600 nm formed on the surface was used.
  • Table 1 below shows details of SOI substrates and warpage after epitaxial growth of nitride semiconductor layers for Examples 1 and 2 and Comparative Examples 1 to 6.
  • the nitride semiconductor substrates of Comparative Examples 1 and 2 which did not contain nitrogen at a concentration of 5 ⁇ 10 14 atoms/cm 3 as the single crystal silicon substrates serving as bond wafers, had a warpage of ⁇ 50 ⁇ m after epitaxial growth. was exceeded, and plastic deformation was not sufficiently suppressed.
  • Example 3 Example except that a single crystal silicon substrate manufactured by the CZ method, having a plane orientation of (100), a resistivity of 8 m ⁇ cm, and a thickness of 1000 ⁇ m was used as a single crystal silicon substrate serving as a base wafer.
  • a nitride semiconductor substrate of Example 3 was obtained in the same procedure as in Example 1.
  • Example 4 A single crystal silicon substrate to be a bond wafer was manufactured by doping nitrogen by the FZ method, had a plane orientation of (111), contained nitrogen at a concentration of 5 ⁇ 10 14 atoms/cm 3 , and had a resistivity of 3552 ⁇ cm.
  • a nitride semiconductor substrate of Example 4 was obtained in the same procedure as in Example 1, except that a certain single crystal silicon substrate was used. That is, in Example 4, as in Example 1, a silicon oxide layer with a thickness of 200 nm was used.
  • Example 5 A nitride semiconductor substrate of Example 5 was obtained in the same manner as in Example 4, except that the prepared bond wafer was thermally oxidized to form a silicon oxide layer having a thickness of 400 nm on the surface of the bond wafer.
  • Comparative Example 7 A nitride semiconductor substrate of Comparative Example 7 was obtained in the same procedure as in Example 4, except that the prepared bond wafer was thermally oxidized to form a silicon oxide layer with a thickness of 650 nm on the surface of the bond wafer.
  • Table 2 below shows details of SOI substrates and warpage after epitaxial growth of nitride semiconductor layers for Examples 3 to 5 and Comparative Example 7.
  • FIG. 3 shows a part of the log data of the warpage state during epitaxial growth of Examples 1 and 3 and Comparative Examples 3 and 6 obtained by curvature.
  • Comparative Examples 3 and 6 in which the thickness of the silicon oxide layer is 650 nm, are greatly plastically deformed at about 2 hours and 40 minutes.
  • FIG. 4 shows the relationship between the thickness of the silicon oxide layer and the warp in the example and the comparative example.
  • the square plots and the dotted line approximation curve show the thickness of the silicon oxide layer (BOX) of 200 nm (Example 1) and 400 nm (Example 1) using bond wafers prepared by the MCZ method. 2) and 650 nm (comparative example 4).
  • the plotted circles and the approximate curve of the dashed line show the thickness of the silicon oxide layer (BOX) of 200 nm (Example 4), 400 nm (Example 5) and It shows the change in warpage when changed to 650 nm (Comparative Example 7).
  • the present invention is not limited to the above embodiments.
  • the above-described embodiment is an example, and any device having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same effect is the present invention. included in the technical scope of

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

本発明は、高周波用窒化物半導体基板であって、単結晶シリコン基板上に酸化シリコン層を介して単結晶シリコン薄膜が形成されたSOI基板と、該SOI基板上に形成されたGaN層を含む窒化物半導体層とを含み、前記単結晶シリコン薄膜は、窒素を2.0×1014atoms/cm3以上の濃度で含み、抵抗率が100Ωcm以上であり、前記単結晶シリコン基板は抵抗率が50mΩcm以下であり、前記酸化シリコン層の厚さが10~400nmのものであることを特徴とする窒化物半導体基板である。これにより、高周波用デバイスを製造するためのSOI基板上に窒化物半導体層を成長させた窒化物半導体基板であって、塑性変形が抑制された窒化物半導体基板を提供できる。

Description

窒化物半導体基板及び窒化物半導体基板の製造方法
 本発明は、窒化物半導体基板及び窒化物半導体基板の製造方法に関する。
 半導体薄膜製造方法のひとつであるMOCVD法は、大口径化や量産性に優れており、均質な薄膜結晶を成膜できるため、広く用いられている。GaNに代表される窒化物半導体はSiの材料としての限界を超える次世代の半導体材料として期待されている。MOCVD法におけるGaN等のエピタキシャル成長の基板としては、GaN、SiC、サファイア、Siなどが用いられている。
 近年、SOIに代表されるような、絶縁層(SiO等)上に単結晶シリコン基板が貼り合わせられた基板がGaNのエピタキシャル成長用の基板に実際に応用されている。SOI基板に窒化物半導体を成長させることに関しては、例えば特許文献1~4に開示されている。GaN/SOIでは、個別のディスクリート部品を電気的に分離することができ、この絶縁方法ではバックゲート効果(基板の電圧によってMOSFETの閾値電圧が変動すること)の排除やスイッチングノイズが低減されることが証明されている。このような特性はシリコン基板やGaN基板等では現れないメリットである。SOI基板は、例えば、特許文献5及び6に記載されているような基板の貼り合わせによって得ることができる。
 さて、近年、特許文献7に開示されているようにシリコン単結晶シード層に窒化物半導体のエピタキシャル成長を行うことで高周波用デバイスを製造することが行われている。
 高周波用デバイスでは、基板起因による特性劣化、基板による損失及び第2・3高調波特性劣化がみられる。
 高周波デバイス用基板は、一般的に高抵抗率基板を用いてGaN層のエピタキシャル成長を行い、高周波デバイスを作製している。
 高周波デバイス用基板は、高抵抗率基板を用いて、エピタキシャル層から下地Si基板に信号が流れないようにしている。また、高抵抗率シリコン基板上に窒化物半導体エピタキシャル層を積む場合、応力緩和層としてバッファ層を工夫することで窒化物半導体エピタキシャル層を積んでいる。しかし、高抵抗率シリコン基板は、応力によりエピタキシャル成長中に塑性変形してしまう。この問題を解決するために、応力に強い低抵抗率基板(窒化物半導体エピタキシャル成長専用の硬い単結晶シリコン基板)と酸化シリコン層を介して貼り合せた高抵抗率シリコン基板で作製したSOI基板を使用することが好ましい。
 しかし、このようにして製造した高周波用デバイスを製造するための窒化物半導体基板であっても、窒化物半導体のエピタキシャル成長中に塑性変形してしまう場合がある。
特開2010-40737号公報 特開2011-97062号公報 特開2019-208022号公報 特許第5396369号明細書 特許第5233111号明細書 特開2010-278339号公報 特開2021-100087号公報
 本発明は、上記課題を解決するためになされたもので、高周波用デバイスを製造するためのSOI基板上に窒化物半導体層を成長させた窒化物半導体基板及びその製造方法であって、塑性変形が抑制された窒化物半導体基板及びその製造方法を提供することを目的とする。
 上記課題を解決するために、本発明では、高周波用窒化物半導体基板であって、
 単結晶シリコン基板上に酸化シリコン層を介して単結晶シリコン薄膜が形成されたSOI基板と、
 該SOI基板上に形成されたGaN層を含む窒化物半導体層と
を含み、
 前記単結晶シリコン薄膜は、窒素を2.0×1014atoms/cm以上の濃度で含み、抵抗率が100Ωcm以上であり、
 前記単結晶シリコン基板は抵抗率が50mΩcm以下であり、
 前記酸化シリコン層の厚さが10~400nmのものであることを特徴とする窒化物半導体基板を提供する。
 このように単結晶シリコン薄膜が窒素を2.0×1014atoms/cm以上の濃度で含み、単結晶シリコン薄膜の抵抗率が100Ωcm以上であり、単結晶シリコン基板の抵抗率が50mΩcm以下であり、酸化シリコン層の厚さが10~400nmであるSOI基板上に、GaN層を含む窒化物半導体層が成膜されている窒化物半導体基板であれば、塑性変形が抑制された窒化物半導体基板とすることができる。また、この窒化物半導体基板を用いることにより、高周波特性の良好な高周波用デバイスを製造できる。
 前記酸化シリコン層の厚さが10~200nmのものであることが好ましい。
 酸化シリコン層の厚さが10~200nmであれば更に塑性変形が抑制された窒化物半導体基板とすることができる。
 また、本発明では、高周波用窒化物半導体基板の製造方法であって、
 ボンドウェーハ及びベースウェーハとなる2枚の単結晶シリコン基板を準備する工程と、
 前記2枚の単結晶シリコン基板を、酸化シリコン層を介して接合する工程と、
 前記ボンドウェーハを薄く加工して単結晶シリコン薄膜にして、前記ベースウェーハ上に前記酸化シリコン層を介して前記単結晶シリコン薄膜が形成されたSOI基板を得る工程と、
 前記SOI基板の前記単結晶シリコン薄膜上にGaN層を含む窒化物半導体層を成長させて、前記SOI層上に前記窒化物半導体層が形成された窒化物半導体基板を得る工程と
を含み、
 前記ボンドウェーハとなる前記単結晶シリコン基板として、窒素を2.0×1014atoms/cm以上の濃度で含み、抵抗率が100Ωcm以上であるものを用い、
 前記ベースウェーハとなる前記単結晶シリコン基板として、抵抗率が50mΩcm以下であるものを用い、
 前記酸化シリコン層として、厚さが10~400nmであるものを用いることを特徴とする窒化物半導体基板の製造方法を提供する。
 このような窒化物半導体の製造方法であれば、比較的簡便で確実に塑性変形が抑制された窒化物半導体基板を製造することができる。また、このように製造された窒化物半導体基板を用いることにより、高周波特性の良好な高周波用デバイスを製造できる。
 前記酸化シリコン層として、厚さが10~200nmであるものを用いることが好ましい。
 酸化シリコン層として厚さが10~200nmであるものを用いれば更に塑性変形が抑制された窒化物半導体基板を製造することができる。
 前記ボンドウェーハとなる前記単結晶シリコン基板をFZ法またはMCZ法により製造して準備することができる。
 ボンドウェーハとなる単結晶シリコン基板は、例えばFZ法またはMCZ法により製造することができる。
 以上のように、本発明の窒化物半導体基板であれば、塑性変形が抑制された窒化物半導体基板とすることができる。また、本発明の窒化物半導体基板を用いれば、高周波特性の良好な高周波用デバイスを製造できる。
 また、本発明の窒化物半導体基板の製造方法であれば、比較的簡便で確実に塑性変形が抑制された高周波用窒化物半導体基板を製造することができる。また、本発明の窒化物半導体基板の製造方法で製造した窒化物半導体基板を用いれば、高周波特性の良好な高周波用デバイスを製造できる。
本発明の窒化物半導体基板の一例を示す概略断面図である。 本発明の窒化物半導体基板の一例の構成の概略図である。 実施例及び比較例におけるエピタキシャル成長中の反り状態の変化を示すグラフである。 実施例及び比較例における酸化シリコン層の厚さと反りとの関係を示すグラフである。
 上記のように高周波用デバイスを製造するために高抵抗率の単結晶シリコン薄膜を有するSOI基板に窒化物半導体をエピタキシャル成長させた場合、エピタキシャル成長中に塑性変形してしまう場合があった。
 本発明者らは、塑性変形が抑制された窒化物半導体基板及びその製造方法について検討を重ねたところ、SOI基板の単結晶シリコン薄膜が窒素を2.0×1014atoms/cm以上の濃度で含み、単結晶シリコン薄膜の抵抗率が100Ωcm以上であり、単結晶シリコン基板の抵抗率が50mΩcm以下であり、SOI基板の酸化シリコン層の厚さ10~400nmであるものとすることで、塑性変形が抑制された窒化物半導体基板を製造できることを見出し、本発明を完成させた。
 即ち、本発明は、高周波用窒化物半導体基板であって、
 単結晶シリコン基板上に酸化シリコン層を介して単結晶シリコン薄膜が形成されたSOI基板と、
 該SOI基板上に形成されたGaN層を含む窒化物半導体層と
を含み、
 前記単結晶シリコン薄膜は、窒素を2.0×1014atoms/cm以上の濃度で含み、抵抗率が100Ωcm以上であり、
 前記単結晶シリコン基板は抵抗率が50mΩcm以下であり、
 前記酸化シリコン層の厚さが10~400nmのものであることを特徴とする窒化物半導体基板である。
 また、本発明は、高周波用窒化物半導体基板の製造方法であって、
 ボンドウェーハ及びベースウェーハとなる2枚の単結晶シリコン基板を準備する工程と、
 前記2枚の単結晶シリコン基板を、酸化シリコン層を介して接合する工程と、
 前記ボンドウェーハを薄く加工して単結晶シリコン薄膜にして、前記ベースウェーハ上に前記酸化シリコン層を介して前記単結晶シリコン薄膜が形成されたSOI基板を得る工程と、
 前記SOI基板の前記単結晶シリコン薄膜上にGaN層を含む窒化物半導体層を成長させて、前記SOI層上に前記窒化物半導体層が形成された窒化物半導体基板を得る工程と
を含み、
 前記ボンドウェーハとなる前記単結晶シリコン基板として、窒素を2.0×1014atoms/cm以上の濃度で含み、抵抗率が100Ωcm以上であるものを用い、
 前記ベースウェーハとなる前記単結晶シリコン基板として、抵抗率が50mΩcm以下であるものを用い、
 前記酸化シリコン層として、厚さが10~400nmであるものを用いることを特徴とする窒化物半導体基板の製造方法である。
 以下、本発明について図面を参照しながら詳細に説明するが、本発明はこれらに限定されるものではない。
 [窒化物半導体基板]
 図1に、本発明の窒化物半導体基板の一例の概略断面図を示す。図2に、本発明の窒化物半導体基板の一例の構成の概略図を示す。
 図1に示す窒化物半導体基板1は、SOI基板2と、窒化物半導体層(窒化物半導体薄膜)3とを含む。
 SOI基板2では、単結晶シリコン基板21上に酸化シリコン層22を介して単結晶シリコン薄膜23が形成されている。
 窒化物半導体層3は、図2に示すGaN層34を含む。図2に示す窒化物半導体層3は、GaN層34の他に、AlN層31、AlGaN層32、及び超格子層(SLs)33を含んでいるが、窒化物半導体層3は、GaN層34を含んだものであれば、図2に示すような構成に限定されるものではない。
 窒化物半導体基板1のSOI基板2の単結晶シリコン薄膜23は、窒素を2.0×1014atoms/cm以上の濃度で含み、抵抗率が100Ωcm以上である。また、単結晶シリコン基板21は、抵抗率が50mΩcm以下である。そして、酸化シリコン層22の厚さは、10~400nmである。
 このようなSOI基板2は、高い抵抗率のSOI層23を有していても高い強度を示すことができる。本発明の窒化物半導体基板1は、このようなSOI基板2を含むことにより、塑性変形が抑制されたものとすることができる。
 一方、単結晶シリコン薄膜23における窒素濃度が2.0×1014atoms/cm未満であると、塑性変形を十分に抑えることができない。単結晶シリコン薄膜23における窒素濃度の上限は、特に限定されないが、例えば1.0×1020atoms/cmとすることができる。
 また、酸化シリコン層22の厚さが400nmを超えると、塑性変形を十分に抑えることができない。反対に、酸化シリコン層22の厚さが10nm未満の場合、接合がうまくいかず、ボイドが発生する。酸化シリコン層22の厚さが10~400nmであれば、更に塑性変形が抑制された窒化物半導体基板1とすることができる。
 また、単結晶シリコン基板21の抵抗率が50mΩcmを超える場合も、塑性変形を十分に抑えることができない。単結晶シリコン基板21の抵抗率の下限は、特に限定されないが、例えば2mΩcmとすることができる。
 そして、単結晶シリコン薄膜23の抵抗率が100Ωcm以上であることにより、高周波特性の良好な高周波用デバイスを製造することができる。単結晶シリコン薄膜23の抵抗率の上限は、特に限定されないが、例えば30000Ωcmとすることができる。
 [窒化物半導体基板の製造方法]
 本発明の窒化物半導体基板の製造方法は、
 ボンドウェーハ及びベースウェーハとなる2枚の単結晶シリコン基板を準備する工程と、
 前記2枚の単結晶シリコン基板を、酸化シリコン層を介して接合する工程と、
 前記ボンドウェーハを薄く加工して単結晶シリコン薄膜にして、前記ベースウェーハ上に前記酸化シリコン層を介して前記単結晶シリコン薄膜が形成されたSOI基板を得る工程と、
 前記SOI基板の前記単結晶シリコン薄膜上にGaN層を含む窒化物半導体層を成長させて、前記SOI層上に前記窒化物半導体層が形成された窒化物半導体基板を得る工程と
を含む。
 2枚の単結晶シリコン基板を準備する工程では、ボンドウェーハとなる単結晶シリコン基板として、窒素を2.0×1014atoms/cm以上の濃度で含み、抵抗率が100Ωcm以上であるものを準備する。ボンドウェーハとなる単結晶シリコン基板の窒素濃度の上限は、特に限定されないが、例えば1.0×1020atoms/cmとすることができる。また、ボンドウェーハとなる単結晶シリコン基板の抵抗率の上限は、特に限定されないが、例えば30000Ωcmとすることができる。
 ボンドウェーハとなる単結晶シリコン基板は、FZ法またはMCZ法で製造された面方位が(111)の単結晶シリコン基板であることが好ましい。例えば、FZ法またはMCZ法での単結晶シリコンの製造過程で窒素をドープして、窒素を2.0×1014atoms/cm以上の濃度を達成することができる。
 また、ベースウェーハとなる単結晶シリコン基板として、抵抗率が50mΩcm以下であるものを準備する。ベースウェーハとなる単結晶シリコン基板の抵抗率の下限は、特に限定されないが、例えば2mΩcmとすることができる。
 ベースウェーハとなる単結晶シリコン基板は、CZ法で製造された面方位が(100)の単結晶シリコン基板であることが好ましい。
 そして、ボンドウェーハとなる単結晶シリコン基板を例えば熱酸化して、表面に10~400nmの厚さの酸化シリコン層を形成する。好ましくは、10~200nmの厚さの酸化シリコン層を形成する。
 次いで、ボンドウェーハとなる単結晶シリコン基板を、厚さが10~400nmである酸化シリコン層を介してベースウェーハとなる単結晶シリコン基板と重ね合わせて接合し、例えば1150℃で2時間程度の結合熱処理を行い、結合させる。
 その後、ボンドウェーハを加工して、厚さを例えば100~200nm程度にして、単結晶シリコン薄膜を得る。この加工方法は特に限定されないが、水素イオン注入により剥離した後、研磨する方法が容易であり好ましい。
 この加工により、例えば図1に示すような、ベースウェーハ(単結晶シリコン基板)21上に酸化シリコン層22を介して単結晶シリコン薄膜23が形成されたSOI基板2を得ることができる。
 このようにして準備したSOI基板2を出発基板として、このSOI基板2上にGaN層を含む窒化物半導体層を成長させる。例えば図2に示すように、最初にAlN層31を例えば150nmの厚さで形成し、次にAlGaN層32を例えば160nmの厚さで形成する。次に、GaN層とAlN層とを交互に40~60組積層した超格子層(SLs)33を形成する。次に例えば厚さ800~1200nmのGaN層34を形成する。次に例えば厚さ3nmのAlGaN層32からなるバリア層を形成し、その上に例えば厚さ3nmのGaN層34からなるキャップ層を形成することで、図2に示すような、SOI基板2上に窒化物半導体層3が形成された窒化物半導体基板1(GaN-HEMTエピタキシャル成長基板)1を製造することができる。
 このような本発明の窒化物半導体基板の製造方法によれば、本発明の窒化物半導体基板を製造することができる。ただし、本発明の窒化物半導体基板を製造する方法は、以上に説明した製造方法に限定されない。
 このように、本発明の窒化物半導体基板の製造方法では、ベースウェーハとなる単結晶シリコン基板上に酸化シリコン層を介して単結晶シリコン薄膜が形成されたSOI基板2上に、AlN層31、GaN層34およびAlGaN層32を含む窒化物半導体薄膜が成膜される。ボンドウェーハとなる単結晶シリコン基板として、窒素を2.0×1014atoms/cm以上の濃度で含み、抵抗率が100Ωcm以上であるものを用い、ベースウェーハとなる単結晶シリコン基板として、抵抗率が50mΩcm以下であるものを用い、酸化シリコン層として、厚さが10~400nm、好ましくは10~200nmであるものを用いることで、高抵抗率であっても比較的強度を高められ、特に高周波特性の良好な高周波用デバイスに適用でき、塑性変形が抑制された窒化物半導体基板を製造することができる。
 以下、実施例及び比較例を用いて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
 (実施例1)
 図2に示すように1.8μm厚の窒化物半導体層3をSOI基板2上にエピタキシャル成長し、実施例1の窒化物半導体基板(GaN-HEMT基板)1を得た。
 その際、SOI基板2として、以下の条件の直径150mmのSOI基板を使用した。
 ボンドウェーハとなる単結晶シリコン基板(Bond基板)として、窒素をドープしてMCZ法で製造し、面方位が(111)であり、窒素を5×1014atoms/cmの濃度で含み、抵抗率が1200Ωcmである単結晶シリコン基板を準備した。
 ベースウェーハとなる単結晶シリコン基板(Base基板)として、CZ法で製造し、面方位が(100)であり、抵抗率が8mΩcmであり、厚さが675μmである単結晶シリコン基板を準備した。
 準備したボンドウェーハを熱酸化して、ボンドウェーハの表面に厚さ200nmの酸化シリコン層を形成した。
 次いで、ボンドウェーハに酸化膜を通して水素イオンを注入して気泡層を形成した後、酸化シリコン層を介して、ベースウェーハとなる単結晶シリコン基板と重ね合わせて接合した。その後、気泡層でボンドウェーハを剥離する熱処理をした後、1150℃で2時間の結合熱処理を行い、結合させた。
 こうして、窒素を5×1014atoms/cmの濃度で含み、抵抗率が1200Ωcmであり、厚さが100nmの単結晶シリコン薄膜(SOI層)を得た。
 この加工により、図1に示すように、ベースウェーハ(単結晶シリコン基板)21上に酸化シリコン層(BOX層)22を介して単結晶シリコン薄膜23が形成されたSOI基板2を得た。
 実施例1では、以上のようにして得られたSOI基板2上に、図2を参照しながら先に説明した手順で、窒化物半導体層3をエピタキシャル成長により形成した。
 (比較例1)
 ボンドウェーハとなる単結晶シリコン基板として、窒素をドープせずにFZ法で製造し、面方位が(111)であり、抵抗率が5535Ωcmである単結晶シリコン基板を用いたこと以外は実施例1と同様の手順で、比較例1の窒化物半導体基板を得た。
 (比較例2)
 準備したボンドウェーハを熱酸化して、ボンドウェーハの表面に厚さ400nmの酸化シリコン層を形成したこと以外は比較例1と同様の手順で、比較例2の窒化物半導体基板を得た。
 (実施例2)
 準備したボンドウェーハを熱酸化して、ボンドウェーハの表面に厚さ400nmの酸化シリコン層を形成したこと以外は実施例1と同様の手順で、実施例2の窒化物半導体基板を得た。
 (比較例3)
 準備したボンドウェーハを熱酸化して、ボンドウェーハの表面に厚さ650nmの酸化シリコン層を形成したこと以外は比較例1と同様の手順で、比較例3の窒化物半導体基板を得た。
 (比較例4)
 準備したボンドウェーハを熱酸化して、ボンドウェーハの表面に厚さ650nmの酸化シリコン層を形成したこと以外は実施例1と同様の手順で、比較例4の窒化物半導体基板を得た。
 (比較例5)
 ベースウェーハとなる単結晶シリコン基板として、CZ法で製造し、面方位が(100)であり、抵抗率が8mΩcmであり、厚さが675μmであり、ボンドウェーハと接合する面とは反対側の面に600nmの裏面CVD酸化膜を形成した単結晶シリコン基板を用いたこと以外は比較例4と同様の手順で、比較例5の窒化物半導体基板を得た。
 (比較例6)
 単結晶シリコン薄膜の厚さを200nmとしたこと以外は比較例4と同様の手順で、比較例6の窒化物半導体基板を得た。
 以下の表1に、実施例1及び2、並びに比較例1~6についての、SOI基板の詳細及び窒化物半導体層をエピタキシャル成長した後の反りを示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示した結果から明らかなように、実施例1及び2の窒化物半導体基板は、エピタキシャル成長後の反りが一般的なデバイス投入規格である±50μm以下であり、塑性変形が十分に抑制されていることが分かる。
 一方、ボンドウェーハとなる単結晶シリコン基板として、窒素を5×1014atoms/cmの濃度で含むものを用いなかった比較例1及び2の窒化物半導体基板は、エピタキシャル成長後の反りが±50μmを超えてしまい、塑性変形が十分に抑制されなかったことが分かる。
 更に、酸化シリコン層として厚さが400nmを超えたものを用いた比較例3~6の窒化物半導体基板は、エピタキシャル成長後の反りが±50μmを超えてしまい、塑性変形が十分に抑制されなかったことが分かる。
 (実施例3)
 ベースウェーハとなる単結晶シリコン基板として、CZ法で製造し、面方位が(100)であり、抵抗率が8mΩcmであり、厚さが1000μmである単結晶シリコン基板を用いたこと以外は実施例1と同様の手順で、実施例3の窒化物半導体基板を得た。
 (実施例4)
 ボンドウェーハとなる単結晶シリコン基板として、窒素をドープしてFZ法で製造し、面方位が(111)であり、窒素を5×1014atoms/cmの濃度で含み、抵抗率が3552Ωcmである単結晶シリコン基板を用いたこと以外は実施例1と同様の手順で、実施例4の窒化物半導体基板を得た。すなわち、実施例4では、実施例1と同様に、厚さが200nmの酸化シリコン層を用いた。
 (実施例5)
 準備したボンドウェーハを熱酸化して、ボンドウェーハの表面に厚さ400nmの酸化シリコン層を形成したこと以外は実施例4と同様の手順で、実施例5の窒化物半導体基板を得た。
 (比較例7)
 準備したボンドウェーハを熱酸化して、ボンドウェーハの表面に厚さ650nmの酸化シリコン層を形成したこと以外は実施例4と同様の手順で、比較例7の窒化物半導体基板を得た。
 以下の表2に、実施例3~5、及び比較例7についての、SOI基板の詳細及び窒化物半導体層をエピタキシャル成長した後の反りを示す。
Figure JPOXMLDOC01-appb-T000002
 実施例1及び3、並びに比較例3及び6のエピタキシャル成長中の反り状態を曲率にて取得したlogデータの一部を図3に示す。
 図3に示すように、酸化シリコン層の厚さが650nmである比較例3及び比較例6は、2時間40分位のところで大きく塑性変形している。
 一方、図3から、実施例1及び実施例3では、エピタキシャル成長中の基板の反りを、比較例3及び6に比べて抑制できていたことが分かる。
 また、実施例及び比較例での酸化シリコン層の厚さと反りとの関係を図4に示す。
 具体的には、四角のプロット及び点線の近似曲線は、MCZ法で製造して準備したボンドウェーハを用いて、酸化シリコン層(BOX)の厚さを200nm(実施例1)、400nm(実施例2)及び650nm(比較例4)に変化させた際の、反りの変化を示す。
 また、丸のプロット及び破線の近似曲線は、FZ法で製造して準備したボンドウェーハを用いて、酸化シリコン層(BOX)の厚さを200nm(実施例4)、400nm(実施例5)及び650nm(比較例7)に変化させた際の、反りの変化を示す。
 図4から判るように、ボンドウェーハをMCZ法及びFZ法のどちらで製造したかに拘わらず、酸化シリコン層(BOX層)厚400nm以下の実施例において、反りが50μm以下であり、酸化シリコン層厚650nmの比較例に比べて大幅に反りが抑制されている。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (5)

  1.  高周波用窒化物半導体基板であって、
     単結晶シリコン基板上に酸化シリコン層を介して単結晶シリコン薄膜が形成されたSOI基板と、
     該SOI基板上に形成されたGaN層を含む窒化物半導体層と
    を含み、
     前記単結晶シリコン薄膜は、窒素を2.0×1014atoms/cm以上の濃度で含み、抵抗率が100Ωcm以上であり、
     前記単結晶シリコン基板は抵抗率が50mΩcm以下であり、
     前記酸化シリコン層の厚さが10~400nmのものであることを特徴とする窒化物半導体基板。
  2.  前記酸化シリコン層の厚さが10~200nmのものであることを特徴とする請求項1に記載の窒化物半導体基板。
  3.  高周波用窒化物半導体基板の製造方法であって、
     ボンドウェーハ及びベースウェーハとなる2枚の単結晶シリコン基板を準備する工程と、
     前記2枚の単結晶シリコン基板を、酸化シリコン層を介して接合する工程と、
     前記ボンドウェーハを薄く加工して単結晶シリコン薄膜にして、前記ベースウェーハ上に前記酸化シリコン層を介して前記単結晶シリコン薄膜が形成されたSOI基板を得る工程と、
     前記SOI基板の前記単結晶シリコン薄膜上にGaN層を含む窒化物半導体層を成長させて、前記SOI層上に前記窒化物半導体層が形成された窒化物半導体基板を得る工程と
    を含み、
     前記ボンドウェーハとなる前記単結晶シリコン基板として、窒素を2.0×1014atoms/cm以上の濃度で含み、抵抗率が100Ωcm以上であるものを用い、
     前記ベースウェーハとなる前記単結晶シリコン基板として、抵抗率が50mΩcm以下であるものを用い、
     前記酸化シリコン層として、厚さが10~400nmであるものを用いることを特徴とする窒化物半導体基板の製造方法。
  4.  前記酸化シリコン層として、厚さが10~200nmであるものを用いることを特徴とする請求項3に記載の窒化物半導体基板の製造方法。
  5.  前記ボンドウェーハとなる前記単結晶シリコン基板をFZ法またはMCZ法により製造して準備することを特徴とする請求項3または4に記載の窒化物半導体基板の製造方法。
PCT/JP2022/038552 2021-11-17 2022-10-17 窒化物半導体基板及び窒化物半導体基板の製造方法 WO2023090019A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280074478.1A CN118215987A (zh) 2021-11-17 2022-10-17 氮化物半导体基板及氮化物半导体基板的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-186815 2021-11-17
JP2021186815A JP2023074067A (ja) 2021-11-17 2021-11-17 窒化物半導体基板及び窒化物半導体基板の製造方法

Publications (1)

Publication Number Publication Date
WO2023090019A1 true WO2023090019A1 (ja) 2023-05-25

Family

ID=86396851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/038552 WO2023090019A1 (ja) 2021-11-17 2022-10-17 窒化物半導体基板及び窒化物半導体基板の製造方法

Country Status (4)

Country Link
JP (1) JP2023074067A (ja)
CN (1) CN118215987A (ja)
TW (1) TW202329207A (ja)
WO (1) WO2023090019A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10321878A (ja) * 1997-03-18 1998-12-04 Toshiba Corp 高耐圧半導体装置
JP2010040737A (ja) 2008-08-05 2010-02-18 Shin Etsu Handotai Co Ltd 半導体基板及びその製造方法
JP2010278339A (ja) 2009-05-29 2010-12-09 Shin-Etsu Chemical Co Ltd 貼り合わせsoi基板の製造方法
JP2011097062A (ja) 2009-10-30 2011-05-12 Imec 半導体素子およびその製造方法
WO2013002212A1 (ja) * 2011-06-30 2013-01-03 京セラ株式会社 複合基板およびその製造方法
JP5233111B2 (ja) 2006-11-30 2013-07-10 株式会社Sumco 貼り合わせsoiウェーハの製造方法
JP2016058693A (ja) * 2014-09-12 2016-04-21 株式会社東芝 半導体装置、半導体ウェーハ、及び、半導体装置の製造方法
JP2017059830A (ja) * 2015-09-17 2017-03-23 ソワテク 高周波用途のための構造および同構造の製造方法
JP2019208022A (ja) 2018-05-28 2019-12-05 アイメック・ヴェーゼットウェーImec Vzw Iii−n半導体構造およびiii−n半導体構造の形成方法
JP2021100087A (ja) 2019-12-24 2021-07-01 クアーズテック株式会社 窒化物半導体基板

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10321878A (ja) * 1997-03-18 1998-12-04 Toshiba Corp 高耐圧半導体装置
JP5233111B2 (ja) 2006-11-30 2013-07-10 株式会社Sumco 貼り合わせsoiウェーハの製造方法
JP2010040737A (ja) 2008-08-05 2010-02-18 Shin Etsu Handotai Co Ltd 半導体基板及びその製造方法
JP2010278339A (ja) 2009-05-29 2010-12-09 Shin-Etsu Chemical Co Ltd 貼り合わせsoi基板の製造方法
JP2011097062A (ja) 2009-10-30 2011-05-12 Imec 半導体素子およびその製造方法
JP5396369B2 (ja) 2009-10-30 2014-01-22 アイメック 半導体基板構造および半導体素子
WO2013002212A1 (ja) * 2011-06-30 2013-01-03 京セラ株式会社 複合基板およびその製造方法
JP2016058693A (ja) * 2014-09-12 2016-04-21 株式会社東芝 半導体装置、半導体ウェーハ、及び、半導体装置の製造方法
JP2017059830A (ja) * 2015-09-17 2017-03-23 ソワテク 高周波用途のための構造および同構造の製造方法
JP2019208022A (ja) 2018-05-28 2019-12-05 アイメック・ヴェーゼットウェーImec Vzw Iii−n半導体構造およびiii−n半導体構造の形成方法
JP2021100087A (ja) 2019-12-24 2021-07-01 クアーズテック株式会社 窒化物半導体基板

Also Published As

Publication number Publication date
JP2023074067A (ja) 2023-05-29
CN118215987A (zh) 2024-06-18
TW202329207A (zh) 2023-07-16

Similar Documents

Publication Publication Date Title
TWI364777B (en) Multilayered semiconductor wafer and process for manufacturing the same
JP7025773B2 (ja) 半導体基板本体及びその上の機能層を分離する方法
US20220367188A1 (en) Substrate for an electronic device and method for producing the same
JP5297219B2 (ja) 単結晶薄膜を有する基板の製造方法
US7135383B2 (en) Composite structure with high heat dissipation
US11705330B2 (en) Substrate for electronic device and method for producing the same
KR20090093887A (ko) 단결정 박막을 갖는 기판의 제조 방법
CN111540684A (zh) 一种金刚石基异质集成氮化镓薄膜与晶体管的微电子器件及其制备方法
TW200849678A (en) III-V nitride semiconductor layer-bonded substrate and semiconductor device
JP2023109783A (ja) 優れた性能、安定性および製造性を有する無線周波数シリコン・オン・インシュレータ・ウエハ・プラットフォーム
KR20160041840A (ko) 단결정 재료 사용의 개선된 효율을 갖는 유사 기판
JP2002348198A (ja) 半導体素子エピタキシャル成長用基板及びその製造方法
KR20130129817A (ko) Iii족 질화물 복합 기판
WO2022038826A1 (ja) 窒化物半導体ウェーハの製造方法及び窒化物半導体ウェーハ
WO2023090019A1 (ja) 窒化物半導体基板及び窒化物半導体基板の製造方法
JP4853990B2 (ja) 絶縁体上に歪み結晶層を製造する方法、前記方法による半導体構造及び製造された半導体構造
JP6866952B1 (ja) 窒化物半導体ウェーハおよび窒化物半導体ウェーハの製造方法
JP6827442B2 (ja) 貼り合わせsoiウェーハの製造方法及び貼り合わせsoiウェーハ
TWI745110B (zh) 半導體基板及其製造方法
WO2024101019A1 (ja) 高周波デバイス用基板およびその製造方法
CN115863400B (zh) 一种高导热GaN基HEMT器件及其制备方法
TW202417698A (zh) 電子元件用基板及其製造方法
JP2013053021A (ja) 複合体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22895305

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022895305

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022895305

Country of ref document: EP

Effective date: 20240617