WO2022181163A1 - 窒化物半導体基板およびその製造方法 - Google Patents
窒化物半導体基板およびその製造方法 Download PDFInfo
- Publication number
- WO2022181163A1 WO2022181163A1 PCT/JP2022/002747 JP2022002747W WO2022181163A1 WO 2022181163 A1 WO2022181163 A1 WO 2022181163A1 JP 2022002747 W JP2022002747 W JP 2022002747W WO 2022181163 A1 WO2022181163 A1 WO 2022181163A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- nitride semiconductor
- single crystal
- semiconductor substrate
- silicon single
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 131
- 150000004767 nitrides Chemical class 0.000 title claims abstract description 93
- 239000004065 semiconductor Substances 0.000 title claims abstract description 83
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 17
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 83
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 83
- 239000010703 silicon Substances 0.000 claims abstract description 83
- 239000013078 crystal Substances 0.000 claims abstract description 81
- 239000000919 ceramic Substances 0.000 claims abstract description 41
- 238000007789 sealing Methods 0.000 claims abstract description 28
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 19
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 19
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical group [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910010271 silicon carbide Inorganic materials 0.000 claims abstract description 6
- 238000000034 method Methods 0.000 claims description 32
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 20
- 239000000203 mixture Substances 0.000 claims description 12
- 229930195733 hydrocarbon Natural products 0.000 claims description 9
- 150000002430 hydrocarbons Chemical class 0.000 claims description 9
- 239000004215 Carbon black (E152) Substances 0.000 claims description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 7
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 7
- MDPILPRLPQYEEN-UHFFFAOYSA-N aluminium arsenide Chemical compound [As]#[Al] MDPILPRLPQYEEN-UHFFFAOYSA-N 0.000 claims description 6
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 claims description 6
- 238000010000 carbonizing Methods 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 199
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 15
- 229910002601 GaN Inorganic materials 0.000 description 14
- 230000000052 comparative effect Effects 0.000 description 13
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 12
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 12
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 11
- 239000000463 material Substances 0.000 description 10
- 239000002131 composite material Substances 0.000 description 9
- 239000010408 film Substances 0.000 description 9
- 239000007789 gas Substances 0.000 description 9
- 229910002704 AlGaN Inorganic materials 0.000 description 8
- 125000004429 atom Chemical group 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 8
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 7
- 230000006866 deterioration Effects 0.000 description 6
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 6
- 230000003746 surface roughness Effects 0.000 description 6
- 239000010409 thin film Substances 0.000 description 6
- 238000009792 diffusion process Methods 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 239000012535 impurity Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000003763 carbonization Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 4
- 238000005468 ion implantation Methods 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 239000002344 surface layer Substances 0.000 description 4
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 229910021529 ammonia Inorganic materials 0.000 description 3
- 239000012159 carrier gas Substances 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 229910052733 gallium Inorganic materials 0.000 description 3
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 230000008646 thermal stress Effects 0.000 description 3
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 230000032798 delamination Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 238000000927 vapour-phase epitaxy Methods 0.000 description 2
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 241001124569 Lycaenidae Species 0.000 description 1
- -1 Si 3 N 4 Chemical compound 0.000 description 1
- 238000001505 atmospheric-pressure chemical vapour deposition Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910003465 moissanite Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 230000005533 two-dimensional electron gas Effects 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/02—Elements
- C30B29/06—Silicon
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/18—Epitaxial-layer growth characterised by the substrate
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/36—Carbides
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/40—AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
- C30B29/403—AIII-nitrides
- C30B29/406—Gallium nitride
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B33/00—After-treatment of single crystals or homogeneous polycrystalline material with defined structure
- C30B33/06—Joining of crystals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02002—Preparing wafers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02387—Group 13/15 materials
- H01L21/02389—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/0242—Crystalline insulating materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02441—Group 14 semiconducting materials
- H01L21/02447—Silicon carbide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02441—Group 14 semiconducting materials
- H01L21/0245—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02455—Group 13/15 materials
- H01L21/02458—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02494—Structure
- H01L21/02496—Layer structure
- H01L21/02505—Layer structure consisting of more than two layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/0254—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02656—Special treatments
- H01L21/02658—Pretreatments
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/20—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
- H01L29/2003—Nitride compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/778—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
- H01L29/7786—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
- H01L29/7787—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
Definitions
- the present invention provides a heat-resistant support substrate in which a core made of nitride ceramics is sealed with a sealing layer; a planarization layer provided on the heat-resistant support substrate; a silicon single crystal layer having a carbon concentration of 1 ⁇ 10 17 atoms/cm 3 or more provided on the planarizing layer; a carbonized layer mainly composed of silicon carbide and having a thickness of 4 to 2000 nm provided on the silicon single crystal layer; Provided is a nitride semiconductor substrate comprising a nitride semiconductor layer provided on the carbide layer.
- the thickness of the sealing layer is 0.05 to 1.5 ⁇ m
- the planarization layer may have a thickness of 0.5 to 3.0 ⁇ m.
- the thickness of the silicon single crystal layer can be 100 to 2000 nm.
- the thickness of the sealing layer is set to 0.05 to 1.5 ⁇ m
- the thickness of the flattening layer can be 0.5 to 3.0 ⁇ m.
- the nitride semiconductor substrate and the method of manufacturing the same of the present invention it is possible to relatively inexpensively and easily obtain a nitride semiconductor substrate in which deterioration of device characteristics is suppressed.
- the nitride semiconductor layer has good crystallinity, and a high-quality nitride semiconductor substrate with suppressed surface roughness and warpage can be obtained.
- a planarization layer 8 is laminated on the heat-resistant support substrate 7 .
- the thickness of the flattening layer 8 is preferably 0.5 to 3.0 ⁇ m, for example. That is, when the thickness of the flattening layer 8 is 0.5 ⁇ m or more, the voids and unevenness generated in the heat-resistant support substrate 7 can be more sufficiently filled.
- the thickness of the planarization layer 8 is 3.0 ⁇ m or less, it is possible to effectively suppress the occurrence of warping.
- the planarizing layer 8 preferably contains any one of silicon oxide, silicon oxynitride, and aluminum arsenide.
- the film formation method is not limited to this, but can be formed by, for example, plasma CVD, LPCVD, or low-pressure MOCVD.
- the nitride semiconductor layer 4 can be formed on the composite substrate 3 by vapor deposition, for example.
- FIG. 2 shows a configuration example of the nitride semiconductor layer.
- the intermediate layer 11 functions as a buffer layer inserted to improve the crystallinity of the device layer 14 and control stress, which will be described later. Since this intermediate layer 11 can be produced by the same equipment, it is desirable that it be made of nitride.
- a device layer 14 made of a nitride thin film formed by vapor phase epitaxy such as the MOVPE method or sputtering.
- Nitrides can be, for example, GaN, AlN, InN, AlGaN, InGaN, AlInN, and the like.
- the nitride semiconductor substrate 20 of the present invention as described above has the silicon single crystal layer and the carbonized layer having the above carbon concentration, the change in resistivity in the silicon single crystal layer is suppressed, and the device characteristics are improved. It is possible to obtain a high-quality nitride semiconductor substrate in which deterioration of the surface is suppressed and surface roughness and warpage are suppressed. Moreover, it can be manufactured relatively cheaply and easily.
- a heat-resistant support substrate 7 is prepared by forming a sealing layer 6 so as to enclose the produced ceramic core 5 .
- the film thickness is preferably in the range of 0.05 ⁇ m or more and 1.5 ⁇ m or less.
- Step of cleaning the surface of the substrate with the Si layer in the furnace The substrate with the Si layer is heated in the reactor to clean the surface of the substrate.
- the temperature for cleaning can be determined between 1000° C. and 1200° C. in terms of the surface temperature of the substrate with the Si layer.
- Cleaning is performed after the pressure in the furnace has been reduced, and the pressure in the furnace can be between 200 mbar and 30 mbar (200 hPa and 30 hPa).
- the furnace can be cleaned for about 10 minutes while hydrogen or nitrogen is supplied.
- a step of forming a carbonized layer 10 In this step, a raw material hydrocarbon is introduced into the furnace at a specified furnace pressure and substrate temperature, so that the surface of the substrate with the Si layer is carbonized to a thickness of 4 to 2000 nm. A carbonized layer containing silicon as a main component is formed. In this step, the growth is performed at 1200° C. under normal pressure, for example. As a carbon source, CH4 can be used for carbonization, but not limited to this. Thus, a carbonized layer is formed by performing a carbonization treatment in a hydrocarbon atmosphere, such as heat treatment (hydrocarbon atmosphere) or CVD (raw material gas containing hydrocarbon). As a result, a composite substrate 3 is obtained in which the semiconductor layer 2 (the silicon single crystal layer 9 and the carbonized layer 10) is formed on the ceramic wafer 1.
- a hydrocarbon atmosphere such as heat treatment (hydrocarbon atmosphere) or CVD (raw material gas containing hydrocarbon).
- Step of growing intermediate layer 11 In this step, at a specified furnace pressure and substrate temperature, a gas serving as a source of raw materials Al, Ga, and N is introduced to grow carbonized layer 10 on composite substrate 3. Then, AlN or Al x Ga 1-x N (0 ⁇ x ⁇ 1) is epitaxially grown. In this process, the growth can be performed at a furnace pressure of 50 mbar (50 hPa) and a substrate temperature of 1120° C., for example. Trimethylaluminum (TMAl) can be used as the Al source, trimethylgallium (TMGa) can be used as the Ga source, and ammonia (NH 3 ) can be used as the N source.
- TMAl Trimethylaluminum
- TMGa trimethylgallium
- NH 3 ammonia
- the material efficiency of the source gas is taken into consideration, and the ratio of the source materials TMAl and TMGa is adjusted so that the Al/Ga ratio taken into the thin film becomes a set ratio.
- Set the flow rate For example, AlN can be grown with a TMAl flow rate of 0.24 l/min (240 sccm) and a NH 3 flow rate of 2 l/min (2000 sccm).
- the carrier gas of TMAl, TMGa, NH3 can be hydrogen, for example. These conditions are examples and are not particularly limited.
- a step of growing the gallium nitride layer 12 In this step, GaN or Al x Ga 1-x N (0 ⁇ x ⁇ 1) is epitaxially grown. In this process, the growth can be performed at a furnace pressure of 200 mbar (200 hPa) and a substrate temperature of 1120° C., for example. Trimethylgallium (TMGa) can be used as the Ga source, and ammonia (NH 3 ) can be used as the N source. Also, in order to obtain a mixed crystal with a desired Al composition, the material efficiency of the source gas is taken into consideration, and the ratio of the source materials TMAl and TMGa is adjusted so that the Al/Ga ratio taken into the thin film becomes a set ratio. Set the flow rate.
- the carrier gas of TMAl, TMGa, NH3 can be hydrogen, for example. These conditions are examples and are not particularly limited.
- a source gas of Al, Ga, and N is introduced into the gallium nitride layer 12 at a specified furnace pressure and substrate temperature.
- AlN or Al x Ga 1-x N (0 ⁇ x ⁇ 0.3) is epitaxially grown.
- the growth can be performed at a furnace pressure of 150 mbar (150 hPa) and a substrate temperature of 1120° C., for example.
- Trimethylaluminum (TMAl) can be used as the Al source
- trimethylgallium (TMGa) can be used as the Ga source
- ammonia (NH 3 ) can be used as the N source.
- the material efficiency of the source gas is taken into consideration, and the ratio of the source materials TMAl and TMGa is adjusted so that the Al/Ga ratio taken into the thin film becomes a set ratio.
- the carrier gas of TMAl, TMGa, NH3 can be hydrogen, for example.
- Example 1 A sealing layer (thickness: 0.4 ⁇ m) made of silicon nitride (Si 3 N 4 ) and a planarizing layer made of silicon oxide were formed on a substrate made of AlN ceramics (resistivity: 10 14 ⁇ cm or more) to a thickness of 6 ⁇ m. grown up. After that, it was polished and flattened to a thickness of 2 ⁇ m by CMP polishing, and the surface roughness Ra was set to 0.2 nm.
- the prepared silicon single crystal substrate was attached to the AlN ceramic substrate on which the sealing layer and the flattening layer were laminated, and a part of the silicon single crystal substrate was peeled off to obtain a silicon single crystal layer (thickness: 300 nm) on the AlN ceramic substrate. was made.
- the prepared silicon single crystal substrate had a resistivity of 4000 ⁇ cm, a conductivity type of p-type, and a carbon concentration of 3 ⁇ 10 17 atoms/cm 3 .
- the substrate with the Si layer thus produced was introduced into a heat treatment furnace and heat treated at 1250° C. for 10 seconds to form a carbonized layer with a thickness of 4.5 nm.
- FIG. 4 shows an observation view of a longitudinal section of the wafer. Meltback etching did not occur, a mirror-like surface was obtained, and the device layer was of high quality.
- Example 1 A substrate with a Si layer was produced in the same manner as in Example 1, and a carbonized layer was formed with a thickness of 2 nm.
- An intermediate layer of a superlattice structure made of AlN and AlGaN, a gallium nitride layer serving as a device layer, and an electron supply layer made of AlGaN were grown thereon.
- Example 2 By the same procedure as in Example 1, a substrate with a Si layer having a silicon single crystal layer with a resistivity of 4000 ⁇ cm and a conductivity type of p-type was produced. Then, without forming a carbide layer on the substrate with the Si layer, an intermediate layer of a superlattice structure composed of AlN and AlGaN, a gallium nitride layer serving as a device layer, and AlGaN were formed on the silicon single crystal layer in the same manner as in Example 1. An electron supply layer was grown.
- a coplanar waveguide (CPW) was formed on the manufactured substrate, and the high-frequency characteristics of Example 1 and Comparative Example 2 were measured.
- the high-frequency characteristics the second harmonic and loss, which are typical characteristics, were measured.
- the second harmonic output wave was -73 dBm with respect to the fundamental frequency output, and the loss was 1.9 dBm/mm.
- the secondary harmonic output wave was -45 dBm with respect to the fundamental frequency output, and the loss was 5.1 dBm/mm.
- Example 1 and Comparative Examples 1 and 2 were manufactured so that the resistivity of the silicon single crystal layers was 2000 ⁇ cm or more.
- the resistivity was measured after epitaxial growth in Example 1, the desired resistivity was obtained, but Comparative Examples 1 and 2 were 12 ⁇ cm and 5 ⁇ cm, respectively, deviating from the desired resistivity. Comparative Examples 1 and 2 are considered to be caused by the diffusion of Al and Ga into the underlying silicon single crystal layer during the growth of the device layer.
- Example 2 A nitride semiconductor substrate was manufactured in the same manner as in Example 1, except that the thickness of the carbide layer was 4 nm.
- Example 4 A nitride semiconductor substrate was manufactured in the same manner as in Example 1, except that the carbon concentration in the silicon single crystal substrate (silicon single crystal layer) was set to 1 ⁇ 10 17 atoms/cm 3 .
- Example 3 A nitride semiconductor substrate was manufactured in the same manner as in Example 1, except that the thickness of the carbide layer was 2500 nm.
- Example 4 A nitride semiconductor substrate was manufactured in the same manner as in Example 1, except that the carbon concentration in the silicon single crystal substrate (silicon single crystal layer) was set to 5 ⁇ 10 16 atoms/cm 3 .
- Example 2-4 the wafer surface/longitudinal cross-section appearance, secondary harmonics, and loss are good crystals, and the resistivity of the silicon single crystal layer does not change from the desired resistivity, compared to Example 1.
- a nitride semiconductor substrate having similarly excellent device characteristics could be obtained.
- Comparative Example 3 the wafer surface became rough and warped.
- Comparative Example 4 the resistivity of the silicon single crystal layer deviated from the desired resistivity.
- the present invention is not limited to the above embodiments.
- the above embodiment is an example, and any device that has substantially the same configuration as the technical idea described in the claims of the present invention and produces similar effects is the present invention. It is included in the technical scope of the invention.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Recrystallisation Techniques (AREA)
- Chemical Vapour Deposition (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Junction Field-Effect Transistors (AREA)
Abstract
Description
しかしながら、これらの窒化物半導体基板を作製することは難しく、シリコン単結晶基板のような一般的な融液法での成長は難しい。産業応用上は、サファイヤやSiC、Si基板上への気相成長による薄膜が使用されている。
該耐熱性支持基板の上に設けられた平坦化層と、
該平坦化層上に設けられた、炭素濃度が1×1017atoms/cm3以上のシリコン単結晶層と、
該シリコン単結晶層上に設けられた、厚みが4~2000nmの炭化ケイ素を主成分とする炭化層と、
該炭化層上に設けられた窒化物半導体層を備えたものであることを特徴とする窒化物半導体基板を提供する。
ここで炭化層の厚みが4nm未満であると、島状に成長した炭化層の面方位が異なる部分から成長することによって、欠陥が発生し、結晶性の良い窒化物半導体層を得ることができない。一方、2000nmより厚い膜厚になると、表面の面粗さや基板の反りが増大し、デバイスの歩留まりが低下する。
前記平坦化層の厚みが0.5~3.0μmであるものとすることができる。
また、平坦化層の厚みが0.5μm以上であれば、耐熱性支持基板に生じたボイドや凹凸をより十分に埋めることができる。また、3.0μm以下であれば、反りの発生を効果的に抑制することができる。
前記コアを包み込むように封止層を成膜して耐熱性支持基板とする工程と、
前記耐熱性支持基板の上面に平坦化層を成膜する工程と、
前記平坦化層に、炭素濃度が1×1017atoms/cm3以上のシリコン単結晶基板を接合する工程と、
前記接合したシリコン単結晶基板の厚みを所望の厚みとなるように加工してシリコン単結晶層を形成する工程と、
前記シリコン単結晶層の表面に、炭化水素雰囲気で炭化処理を行うことで厚みが4~2000nmの炭化層を形成する工程と、
前記炭化層上に窒化物半導体層をエピタキシャル成長させる工程からなることを特徴とする窒化物半導体基板の製造方法を提供する。
また、形成する炭化層の厚みを4~2000nmとすることで、結晶性の良い窒化物半導体層を得ることができるし、また、表面の面粗さや基板の反りが増大してデバイスの歩留りが低下するのを抑制することができる。
前記平坦化層の厚みを0.5~3.0μmとすることができる。
また、平坦化層の厚みをこのような範囲とすれば、耐熱性支持基板に生じたボイドや凹凸をより十分に埋めることができ、また、反りの発生を効果的に抑制することができる。
また、封止層6は、SiOxNy(ここで、x=0~2、y=0~1.5、x+y>0)の組成式で表されるものであることが好ましい。セラミックスコア5との親和性や強度の面で好ましいからである。封止層6は、例えばMOCVD法、常圧CVD法、LPCVD(低圧CVD)法、スパッター法などの成膜法を用いて成膜することができる。特にLPCVD法を用いると緻密な膜を形成できる上、膜のカバレッジ性に優れるため好ましい。
また、平坦化層8は、酸化ケイ素、酸窒化ケイ素、砒化アルミニウムのうちのいずれかを含むことが好ましい。成膜方法は、これに限定されないが、例えばプラズマCVDやLPCVD,低圧MOCVDで成膜することができる。
シリコン単結晶層9には、シリコン単結晶層9における抵抗率の変化を防ぐため、表層およびシリコン単結晶中に炭素が1×1017atoms/cm3以上含有されている。なお炭素濃度の値が高いほど窒化物半導体層4からシリコン単結晶層9への不純物の拡散を防ぎやすく、上記のシリコン単結晶層9における抵抗率の変化を防ぎやすいため、炭素濃度の上限値を決めることはできない。炭素の添加方法は、下記に限定されないが、イオン注入や表面からの熱拡散などによって添加されたものとすることができる。特には、接合前のシリコン単結晶基板において添加しておくことができる。
またシリコン単結晶層9の厚みは特に限定されないが、例えば100~2000nmのものとすることができ、このような厚みであればより高品質な窒化物半導体基板を得ることができる。
本発明の窒化物半導体基板20における炭化層10は、後述するような炭化水素雰囲気での炭化処理で形成することができる。例えば、炭化水素を含む雰囲気中での熱処理、あるいは炭化水素を原料ガスとして含むCVD法によって形成することができる。炭化層10は、下記の窒化物半導体層4の形成のプロセスで使用される同一の装置内で形成されたものとすることが汚染防止や生産性の面から望ましい。
中間層11は、後述するデバイス層14の結晶性改善や応力の制御のために挿入される緩衝層として働く。この中間層11は、同一の設備で作製できるので、窒化物で作製されたものであることが望ましい。
上記複合基板3と中間層11の上に、MOVPE法やスパッタリングなどの気相成長による、窒化物の薄膜からなるデバイス層14を有している。窒化物は、例えばGaN,AlN,InN,AlGaN,InGaN,AlInNなどとすることができる。窒化物の薄膜は1~10μmで、デバイスに合わせて設計することができる。
例えば、高移動度トランジスタ(HEMT)構造では、デバイス層14は窒化ガリウム層12とその上に形成されるAlGaNからなる電子供給層13で構成される。デバイス層14は、デバイス特性の向上のため、結晶欠陥が少なく、炭素や酸素などの不純物が少ない結晶が望ましく、例えばMOVPE法を用いて900℃~1350℃で作製されたものとすることができる。
(セラミックスコアの用意工程)
まず、セラミックスコア5を用意する。前述したように、AlN、Si3N4、GaN、BNまたはこれらの混合体などを用いることができるが、特には多結晶AlNが主成分のものとすることが好ましい。
次に、作製したセラミックスコア5を包み込むように封止層6を成膜して耐熱性支持基板7を用意する。前述したように、例えば、SiOxNy(ここで、x=0~2、y=0~1.5、x+y>0)の組成式で表されるものを、MOCVD法、常圧CVD法、LPCVD(低圧CVD)法、スパッター法などの成膜法を用いて成膜する。なお、膜厚としては0.05μm以上1.5μm以下の範囲が好ましい。
次に、耐熱性支持基板7の上面に平坦化層8を成膜する。前述したように、例えば、酸化ケイ素、酸窒化ケイ素、砒化アルミニウムのうちのいずれかを含む層を、プラズマCVDやLPCVD,低圧MOCVDで成膜する。なお、膜厚としては0.5~3.0μmの範囲が好ましい。
これにより、セラミックスウェーハ1を得る。
次に、平坦化層8に、炭素濃度が1×1017atoms/cm3以上のシリコン単結晶基板を接合し、その後、該接合したシリコン単結晶基板の厚みを所望の厚みとなるように薄膜化する加工をしてシリコン単結晶層9を形成する。接合用のシリコン単結晶基板はCZ法等によるシリコン単結晶基板で上記炭素濃度を有するものを準備する。なお炭素濃度の調整は、イオン注入や表面からの熱拡散によるものとすることができる。
そして、前述したように、例えば、準備したシリコン単結晶基板にH2等をイオン注入し(脆弱層の形成)、平坦化層8に対して接合し(貼り合わせ)、その後、一部を脆弱層で剥離することにより、平坦化層8上に所望の厚み(例えば100~2000nm)のシリコン単結晶層9を形成する。接合前のイオン注入の条件の調整により、剥離後に所望の厚みを得られるようにすることができる。薄膜化の加工は、この他、シリコン単結晶基板の表面を研磨やエッチングする加工等により所望の厚みとすることもできるし、これらの手段を両方用いることもできる。
このようにして、セラミックスウェーハ1とシリコン単結晶基板とを複合したものを加工することで、セラミックスウェーハ1上にシリコン単結晶層9を形成したSi層付基板を得る。
以下に、炭化層10の形成方法や、GaN HEMTに好適なエピタキシャル層の成長方法を示す。ただし、本発明において窒化物半導体層4は窒化物半導体であればよく、特に限定されるものではない。
[1]反応炉への導入
上記のSi層付基板を、MOVPE装置の反応炉内に導入する。Si層付基板を反応炉に導入する前に、薬品によりクリーニングを行う。Si層付基板を反応炉内に導入後、窒素などの高純度不活性ガスで炉内を満たして、炉内のガスを排気する。
Si層付基板を反応炉内で加熱して、基板の表面をクリーニングする。クリーニングを行う温度は、Si層付基板表面の温度で1000℃から1200℃の間で決めることができるが、特に1050℃でクリーニングを行うことで清浄な表面を得ることができる。
クリーニングは、炉内の圧力が減圧された後に実施し、炉内圧力は200mbarから30mbar(200hPaから30hPa)の間で決めることができる。炉内には、水素あるいは窒素を供給した状態で例えば10分程度クリーニングを行うことができる。
この工程では、規定の炉内圧力および基板温度において、原料となる炭化水素を炉内に導入することによって、Si層付基板の表面に4~2000nmの炭化ケイ素を主成分とする炭化層を形成する。この工程では、例えば常圧で、1200℃で成長を行う。カーボン源としては、特にこれに限定されないがCH4を用いて炭化することができる。
このように炭化水素雰囲気での炭化処理、例えば、熱処理(炭化水素雰囲気)やCVD(炭化水素を原料ガスに含む)を行うことで炭化層を形成する。これにより、セラミックスウェーハ1上に半導体層2(シリコン単結晶層9および炭化層10)が形成された複合基板3が得られる。
この工程では、規定の炉内圧力および基板温度において、原料であるAl,Ga,N源となるガスを導入することによって、複合基板3における炭化層10上に、AlNあるいはAlxGa1-xN(0<x≦1)をエピタキシャル成長させる。
この工程では、例えば炉内圧力は50mbar(50hPa)、基板温度1120℃で成長を行うことができる。Al源としてはトリメチルアルミニウム(TMAl),Ga源としてはトリメチルガリウム(TMGa),N源としてはアンモニア(NH3)を用いることができる。また、所望のAl組成の混晶を得るために、原料ガスの材料効率を考慮して、薄膜中に取り込まれるAl/Ga比が設定している比率になるように、原料のTMAl,TMGaの流量を設定する。例えば、TMAlの流量を0.24l/min(240sccm),NH3の流量を2l/min(2000sccm)としてAlNの成長を行うことができる。TMAl,TMGa,NH3のキャリアガスは例えば水素を使用することができる。これらの条件は一例であり、特に限定されるものではない。
この工程では、規定の炉内圧力および基板温度において、原料であるGa,N源となるガスを導入することによって、中間層11上に、GaNあるいはAlxGa1-xN(0<x≦1)をエピタキシャル成長させる。
この工程では、例えば炉内圧力は200mbar(200hPa)、基板温度1120℃で成長を行うことができる。Ga源としてはトリメチルガリウム(TMGa),N源としてはアンモニア(NH3)を用いることができる。また、所望のAl組成の混晶を得るために、原料ガスの材料効率を考慮して、薄膜中に取り込まれるAl/Ga比が設定している比率になるように、原料のTMAl,TMGaの流量を設定する。TMAl,TMGa,NH3のキャリアガスは例えば水素を使用することができる。これらの条件は一例であり、特に限定されるものではない。
この工程では、規定の炉内圧力および基板温度において、原料であるAl,Ga,N源となるガスを導入することによって、窒化ガリウム層12上に、AlNあるいはAlxGa1-xN(0<x≦0.3)をエピタキシャル成長させる。
この工程では、例えば炉内圧力は150mbar(150hPa)、基板温度1120℃で成長を行うことができる。Al源としてはトリメチルアルミニウム(TMAl),Ga源としてはトリメチルガリウム(TMGa),N源としてはアンモニア(NH3)を用いることができる。また、所望のAl組成の混晶を得るために、原料ガスの材料効率を考慮して、薄膜中に取り込まれるAl/Ga比が設定している比率になるように、原料のTMAl,TMGaの流量を設定する。TMAl,TMGa,NH3のキャリアガスは例えば水素を使用することができる。これらの条件は一例であり、特に限定されるものではない。
以上の工程により、複合基板3上に窒化物半導体層4を有する本発明の窒化物半導体基板20が得られる。
AlNセラミックス(抵抗率:1014Ωcm以上)で作製された基板上に、窒化ケイ素(Si3N4)からなる封止層(厚み:0.4μm)と、酸化ケイ素からなる平坦化層を6μm成長させた。その後、CMP研磨により2μm厚まで研磨・平坦化して、表面粗さRaを0.2nmにした。続いて、封止層と平坦化層を積層したAlNセラミックス基板に、準備したシリコン単結晶基板を貼り合わせ、一部を剥離することにより、AlNセラミックス基板上にシリコン単結晶層(厚み:300nm)を作製した。なお、準備したシリコン単結晶基板は、抵抗率4000Ωcmで導電型はp型、炭素濃度が3×1017atoms/cm3であった。
このようにして作製したSi層付基板を、熱処理炉に導入して、1250℃で10秒間熱処理を行って、炭化層を4.5nmの厚みで形成した。炉内は、水素にCH4を1.5%混合したガスで充填して熱処理を行った。
このようにして得られた炭化層の上に、AlNとAlGaNからなる超格子構造の中間層とデバイス層となる窒化ガリウム層とAlGaNからなる電子供給層を成長し、窒化物半導体基板を得た。
実施例1と同様にSi層付基板を作製して、炭化層を2nmの厚みで形成した。その上にAlNとAlGaNからなる超格子構造の中間層とデバイス層となる窒化ガリウム層とAlGaNからなる電子供給層を成長した。
実施例1と同様の手順で、シリコン単結晶層の抵抗率が4000Ωcmで、導電型がp型のSi層付基板を作製した。そして、Si層付基板上に炭化層を形成せずに、シリコン単結晶層上に実施例1と同様にAlNとAlGaNからなる超格子構造の中間層とデバイス層となる窒化ガリウム層とAlGaNからなる電子供給層を成長した。
実施例1の場合、2次高調波出力波は基本周波数出力に対し-73dBm、損失は1.9dBm/mmであった。一方、比較例2の場合、2次高調波出力波は基本周波数出力に対し-45dBm、損失は5.1dBm/mmであった。
なお、高周波の歪みや回り込み信号が少ないことは、2次高調波特性(基本周波数の2倍の周波数成分が含まれる割合)を測定することによって確認でき、2次高調波が小さいことを意味する。上記のように実施例1の方が比較例2よりも2次高調波が小さく、基板の高抵抗化によって寄生容量が低下し、優れた高周波特性を有していることが分かる。
炭化層の厚みを4nmとしたこと以外は実施例1と同様にして窒化物半導体基板を製造した。
炭化層の厚みを2000nmとしたこと以外は実施例1と同様にして窒化物半導体基板を製造した。
シリコン単結晶基板(シリコン単結晶層)における炭素濃度を1×1017atoms/cm3としたこと以外は実施例1と同様にして窒化物半導体基板を製造した。
炭化層の厚みを2500nmとしたこと以外は実施例1と同様にして窒化物半導体基板を製造した。
シリコン単結晶基板(シリコン単結晶層)における炭素濃度を5×1016atoms/cm3としたこと以外は実施例1と同様にして窒化物半導体基板を製造した。
一方で、比較例3ではウェーハ表面が粗くなってしまい、また、反りも発生してしまった。また、比較例4ではシリコン単結晶層の抵抗率が所望の抵抗率から外れてしまった。
Claims (12)
- 窒化物セラミックスからなるコアが封止層で封入されている耐熱性支持基板と、
該耐熱性支持基板の上に設けられた平坦化層と、
該平坦化層上に設けられた、炭素濃度が1×1017atoms/cm3以上のシリコン単結晶層と、
該シリコン単結晶層上に設けられた、厚みが4~2000nmの炭化ケイ素を主成分とする炭化層と、
該炭化層上に設けられた窒化物半導体層を備えたものであることを特徴とする窒化物半導体基板。 - 前記封止層の厚みが0.05~1.5μmであり、
前記平坦化層の厚みが0.5~3.0μmであることを特徴とする請求項1に記載の窒化物半導体基板。 - 前記窒化物セラミックスが、多結晶窒化アルミニウムセラミックスが主成分のものであることを特徴とする請求項1または請求項2に記載の窒化物半導体基板。
- 前記封止層が、SiOxNy(ここで、x=0~2、y=0~1.5、x+y>0)の組成式で表されるものであることを特徴とする請求項1から請求項3のいずれか一項に記載の窒化物半導体基板。
- 前記平坦化層が、酸化ケイ素、酸窒化ケイ素、および砒化アルミニウムのうちいずれかを含むことを特徴とする請求項1から請求項4のいずれか一項に記載の窒化物半導体基板。
- 前記シリコン単結晶層の厚みが100~2000nmであることを特徴とする請求項1から請求項5のいずれか一項に記載の窒化物半導体基板。
- 窒化物セラミックスからなるコアを用意する工程と、
前記コアを包み込むように封止層を成膜して耐熱性支持基板とする工程と、
前記耐熱性支持基板の上面に平坦化層を成膜する工程と、
前記平坦化層に、炭素濃度が1×1017atoms/cm3以上のシリコン単結晶基板を接合する工程と、
前記接合したシリコン単結晶基板の厚みを所望の厚みとなるように加工してシリコン単結晶層を形成する工程と、
前記シリコン単結晶層の表面に、炭化水素雰囲気で炭化処理を行うことで厚みが4~2000nmの炭化層を形成する工程と、
前記炭化層上に窒化物半導体層をエピタキシャル成長させる工程からなることを特徴とする窒化物半導体基板の製造方法。 - 前記封止層の厚みを0.05~1.5μmとし、
前記平坦化層の厚みを0.5~3.0μmとすることを特徴とする請求項7に記載の窒化物半導体基板の製造方法。 - 前記窒化物セラミックスを、多結晶窒化アルミニウムセラミックスが主成分のものとすることを特徴とする請求項7または請求項8に記載の窒化物半導体基板の製造方法。
- 前記封止層を、SiOxNy(ここで、x=0~2、y=0~1.5、x+y>0)の組成式で表されるものとすることを特徴とする請求項7から請求項9のいずれか一項に記載の窒化物半導体基板の製造方法。
- 前記平坦化層を、酸化ケイ素、酸窒化ケイ素、および砒化アルミニウムのうちいずれかを含むものとすることを特徴とする請求項7から請求項10のいずれか一項に記載の窒化物半導体基板の製造方法。
- 前記シリコン単結晶層の厚みを100~2000nmとすることを特徴とする請求項7から請求項11のいずれか一項に記載の窒化物半導体基板の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202280014723.XA CN117015840A (zh) | 2021-02-26 | 2022-01-26 | 氮化物半导体基板及其制造方法 |
US18/276,520 US20240117525A1 (en) | 2021-02-26 | 2022-01-26 | Nitride semiconductor substrate and method for producing the same |
EP22759205.2A EP4299802A1 (en) | 2021-02-26 | 2022-01-26 | Nitride semiconductor substrate and manufacturing method therefor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021029830A JP7549549B2 (ja) | 2021-02-26 | 2021-02-26 | 窒化物半導体基板およびその製造方法 |
JP2021-029830 | 2021-02-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022181163A1 true WO2022181163A1 (ja) | 2022-09-01 |
Family
ID=83049090
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/002747 WO2022181163A1 (ja) | 2021-02-26 | 2022-01-26 | 窒化物半導体基板およびその製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20240117525A1 (ja) |
EP (1) | EP4299802A1 (ja) |
JP (1) | JP7549549B2 (ja) |
CN (1) | CN117015840A (ja) |
TW (1) | TW202240655A (ja) |
WO (1) | WO2022181163A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023063046A1 (ja) * | 2021-10-15 | 2023-04-20 | 信越半導体株式会社 | 窒化物半導体基板及びその製造方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005203666A (ja) * | 2004-01-19 | 2005-07-28 | Kansai Electric Power Co Inc:The | 化合物半導体デバイスの製造方法 |
JP2006196713A (ja) * | 2005-01-13 | 2006-07-27 | National Institute Of Advanced Industrial & Technology | 半導体装置及びその作製方法並びに重水素処理装置 |
JP2007087992A (ja) * | 2005-09-20 | 2007-04-05 | Showa Denko Kk | 半導体素子および半導体素子製造方法 |
US20110147772A1 (en) * | 2009-12-16 | 2011-06-23 | Micron Technology, Inc. | Gallium nitride wafer substrate for solid state lighting devices, and associated systems and methods |
JP2012151401A (ja) * | 2011-01-21 | 2012-08-09 | Sumco Corp | 半導体基板及びその製造方法 |
JP2019523994A (ja) | 2016-06-14 | 2019-08-29 | クロミス,インコーポレイテッド | 電力およびrf用途用の設計された基板構造 |
JP2020098839A (ja) | 2018-12-17 | 2020-06-25 | 信越半導体株式会社 | 窒化物半導体ウェーハの製造方法および窒化物半導体ウェーハ |
JP2020184616A (ja) * | 2019-05-03 | 2020-11-12 | 世界先進積體電路股▲ふん▼有限公司 | 基板およびその形成方法 |
-
2021
- 2021-02-26 JP JP2021029830A patent/JP7549549B2/ja active Active
-
2022
- 2022-01-26 EP EP22759205.2A patent/EP4299802A1/en active Pending
- 2022-01-26 CN CN202280014723.XA patent/CN117015840A/zh active Pending
- 2022-01-26 WO PCT/JP2022/002747 patent/WO2022181163A1/ja active Application Filing
- 2022-01-26 US US18/276,520 patent/US20240117525A1/en active Pending
- 2022-02-07 TW TW111104226A patent/TW202240655A/zh unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005203666A (ja) * | 2004-01-19 | 2005-07-28 | Kansai Electric Power Co Inc:The | 化合物半導体デバイスの製造方法 |
JP2006196713A (ja) * | 2005-01-13 | 2006-07-27 | National Institute Of Advanced Industrial & Technology | 半導体装置及びその作製方法並びに重水素処理装置 |
JP2007087992A (ja) * | 2005-09-20 | 2007-04-05 | Showa Denko Kk | 半導体素子および半導体素子製造方法 |
US20110147772A1 (en) * | 2009-12-16 | 2011-06-23 | Micron Technology, Inc. | Gallium nitride wafer substrate for solid state lighting devices, and associated systems and methods |
JP2012151401A (ja) * | 2011-01-21 | 2012-08-09 | Sumco Corp | 半導体基板及びその製造方法 |
JP2019523994A (ja) | 2016-06-14 | 2019-08-29 | クロミス,インコーポレイテッド | 電力およびrf用途用の設計された基板構造 |
JP2020098839A (ja) | 2018-12-17 | 2020-06-25 | 信越半導体株式会社 | 窒化物半導体ウェーハの製造方法および窒化物半導体ウェーハ |
JP2020184616A (ja) * | 2019-05-03 | 2020-11-12 | 世界先進積體電路股▲ふん▼有限公司 | 基板およびその形成方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023063046A1 (ja) * | 2021-10-15 | 2023-04-20 | 信越半導体株式会社 | 窒化物半導体基板及びその製造方法 |
JPWO2023063046A1 (ja) * | 2021-10-15 | 2023-04-20 | ||
JP7533793B2 (ja) | 2021-10-15 | 2024-08-14 | 信越半導体株式会社 | 窒化物半導体基板及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN117015840A (zh) | 2023-11-07 |
US20240117525A1 (en) | 2024-04-11 |
JP2022131086A (ja) | 2022-09-07 |
TW202240655A (zh) | 2022-10-16 |
JP7549549B2 (ja) | 2024-09-11 |
EP4299802A1 (en) | 2024-01-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20090093887A (ko) | 단결정 박막을 갖는 기판의 제조 방법 | |
US9147734B2 (en) | High quality GaN high-voltage HFETs on silicon | |
CN114207825A (zh) | 电子器件用基板及其制造方法 | |
US20240141552A1 (en) | Seed substrate for epitaxial growth use and method for manufacturing same, and semiconductor substrate and method for manufacturing same | |
WO2022181163A1 (ja) | 窒化物半導体基板およびその製造方法 | |
TW201005141A (en) | Method for manufacturing nitrogen compound semiconductor substrate, nitrogen compound semiconductor substrate, method for manufacturing single crystal sic substrate, and single crystal sic substrate | |
CN116590795A (zh) | 一种利用陶瓷衬底生长单晶GaN自支撑衬底的方法 | |
WO2024084836A1 (ja) | 窒化物半導体エピタキシャルウエーハの製造方法及び窒化物半導体エピタキシャルウエーハ用複合基板 | |
WO2024057698A1 (ja) | 窒化物半導体層付き単結晶シリコン基板及び窒化物半導体層付き単結晶シリコン基板の製造方法 | |
EP4424888A1 (en) | Seed substrate for epitaxial growth and method for producing same, and semiconductor substrate and method for producing same | |
WO2023132191A1 (ja) | 窒化物半導体基板及びその製造方法 | |
WO2023233781A1 (ja) | Iii族窒化物単結晶基板の製造方法 | |
WO2022168573A1 (ja) | 窒化物半導体基板及びその製造方法 | |
WO2023127249A1 (ja) | 高特性エピタキシャル成長用基板とその製造方法 | |
TW202432915A (zh) | 氮化物半導體磊晶晶圓的製造方法及氮化物半導體磊晶晶圓用複合基板 | |
WO2023176185A1 (ja) | 高特性エピ用種基板、高特性エピ用種基板の製造方法、半導体基板、および半導体基板の製造方法 | |
WO2023063046A1 (ja) | 窒化物半導体基板及びその製造方法 | |
WO2023063278A1 (ja) | 窒化物半導体基板及びその製造方法 | |
WO2023037838A1 (ja) | 窒化物半導体基板の製造方法 | |
CN116940720A (zh) | 外延生长用种子基板及其制造方法、和半导体基板及其制造方法 | |
CN115148581A (zh) | 一种外延片制备方法、外延片及高电子迁移率晶体管 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22759205 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18276520 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280014723.X Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022759205 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022759205 Country of ref document: EP Effective date: 20230926 |