WO2023063278A1 - 窒化物半導体基板及びその製造方法 - Google Patents

窒化物半導体基板及びその製造方法 Download PDF

Info

Publication number
WO2023063278A1
WO2023063278A1 PCT/JP2022/037756 JP2022037756W WO2023063278A1 WO 2023063278 A1 WO2023063278 A1 WO 2023063278A1 JP 2022037756 W JP2022037756 W JP 2022037756W WO 2023063278 A1 WO2023063278 A1 WO 2023063278A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
substrate
nitride semiconductor
adhesive layer
thin film
Prior art date
Application number
PCT/JP2022/037756
Other languages
English (en)
French (fr)
Inventor
一平 久保埜
和徳 萩本
康 水澤
達夫 阿部
寿樹 松原
温 鈴木
剛 大槻
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Priority to JP2023532641A priority Critical patent/JPWO2023063278A1/ja
Publication of WO2023063278A1 publication Critical patent/WO2023063278A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • H01L21/2003Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate
    • H01L21/2015Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate the substrate being of crystalline semiconductor material, e.g. lattice adaptation, heteroepitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body

Definitions

  • the present invention relates to a nitride semiconductor substrate and its manufacturing method.
  • the MOCVD method which is one of the semiconductor thin film manufacturing methods, is widely used because it is excellent in large diameter and mass production, and can form homogeneous thin film crystals.
  • Nitride semiconductors typified by GaN are expected as next-generation semiconductor materials that exceed the limits of Si as a material.
  • GaN has a high saturation electron velocity, making it possible to fabricate devices that can operate at high frequencies, and since it also has a large breakdown electric field, it can operate at high output. In addition, weight reduction, miniaturization, and low power consumption can be expected. In recent years, GaN HEMTs capable of operating at high frequencies and high power have been attracting attention due to the demand for higher communication speeds, as typified by 5G, and higher power.
  • Si substrates are the cheapest and advantageous for increasing the diameter. SiC substrates are also used because of their high thermal conductivity and good heat dissipation. However, since these substrates have different coefficients of thermal expansion from GaN, stress is applied in the cooling process after the epitaxial film formation, and cracks are likely to occur. In addition, the application of strong stress may cause wafer cracking during the device process. In addition, it is impossible to form a thick GaN film, and even if a complex stress relaxation layer is formed in the epitaxial layer, the crack-free thickness is at most about 5 ⁇ m.
  • the GaN substrate has the same (or very close to) thermal expansion coefficient as the GaN epitaxial layer, the above-mentioned problems are less likely to occur. It is not suitable for mass production because substrates with large diameters cannot be produced.
  • Patent Document 1 discloses a large-diameter substrate for GaN epitaxial use (hereinafter referred to as a support substrate for GaN or simply a growth substrate) having a large diameter and a coefficient of thermal expansion close to that of GaN.
  • This support substrate for GaN comprises a support structure including a polycrystalline ceramic core, a first adhesion layer, a conductive layer, a second adhesion layer, and a barrier layer; It is composed of a single crystal silicon layer laminated on a silicon layer.
  • GaN support substrate By using this GaN support substrate, a GaN epitaxial substrate having a large diameter, a large epitaxial thickness, and no cracks can be produced.
  • the difference in thermal expansion coefficient from GaN is extremely small, warping is less likely to occur during GaN growth and cooling. Since there is no need to provide a layer, the epitaxial film formation time is shortened, and the cost of epitaxial growth can be greatly reduced.
  • the GaN support substrate is made of ceramics, the substrate itself is very hard and resistant to plastic deformation.
  • Patent Document 1 discloses an epitaxial growth technique on a GaN support substrate, but the substrate surface layer of the GaN support substrate is Si single crystal.
  • Patent Document 2 discloses forming a silicon carbide layer on a Si substrate by CVD and epitaxially growing a nitride semiconductor thereon. I have a problem.
  • Patent Document 3 discloses epitaxial growth of a nitride semiconductor on a silicon carbide substrate.
  • GaN on Si devices used for high-frequency applications use high-resistance Si substrates.
  • Al and Ga diffuse into the Si substrate, and the surface layer of the Si substrate (near the interface with the GaN epitaxial layer) becomes low in resistance, degrading the high-frequency characteristics. I have a problem.
  • the present invention has been made to solve the above-mentioned problems, and is capable of suppressing the diffusion of Al into the seed crystal layer of the growth substrate and preventing the deterioration of the crystallinity of the nitride semiconductor thin film on the growth substrate. It is an object of the present invention to provide a nitride semiconductor substrate and a method for manufacturing the same.
  • a growth substrate in which a seed crystal layer is bonded via a planarization layer to a composite substrate in which a plurality of layers are laminated; and a nitride semiconductor thin film formed on the seed crystal layer of the growth substrate.
  • a nitride semiconductor substrate, The composite substrate includes a polycrystalline ceramic core, a first adhesive layer laminated over the entire polycrystalline ceramic core, a second adhesive layer laminated over the first adhesive layer, and the second adhesive layer a barrier layer laminated over the adhesive layer;
  • Said seed crystal layer provides a nitride semiconductor substrate which is of a silicon carbide layer.
  • the diffusion of Al and Ga into the seed crystal layer of the growth substrate can be suppressed, and the deterioration of the crystallinity of the nitride semiconductor thin film on the growth substrate can be prevented. becomes a semiconductor substrate.
  • the composite substrate may have a conductive layer laminated on the whole or one side of the first adhesive layer between the first adhesive layer and the second adhesive layer.
  • the composite substrate can be given conductivity as needed.
  • a growth substrate in which a seed crystal layer is bonded to a composite substrate in which a plurality of layers are laminated via a planarizing layer, and a nitride semiconductor film formed on the seed crystal layer of the growth substrate are provided.
  • a nitride semiconductor substrate comprising a thin film
  • the composite substrate includes a polycrystalline ceramic core, a first adhesive layer laminated over the polycrystalline ceramic core, a barrier layer laminated over the first adhesive layer, and a back surface of the barrier layer. and a conductive layer laminated on the back surface of the second adhesive layer, Said seed crystal layer provides a nitride semiconductor substrate which is of a silicon carbide layer.
  • a nitride semiconductor substrate using such a growth substrate does not generate a leak path due to the surface-side conductive layer of the growth substrate, and can have excellent high-frequency characteristics.
  • a growth substrate in which a seed crystal layer is bonded to a composite substrate in which a plurality of layers are laminated via a planarizing layer, and a nitride semiconductor film formed on the seed crystal layer of the growth substrate are provided.
  • a nitride semiconductor substrate comprising a thin film
  • the composite substrate includes a polycrystalline ceramic core, a first adhesive layer laminated on the entire polycrystalline ceramic core, a conductive layer laminated on the back surface of the first adhesive layer, and a conductive layer on the back surface of the conductive layer.
  • the conductive layer preferably includes a polysilicon layer.
  • the conductive layer can be such a layer.
  • the nitride semiconductor thin film preferably contains one or more of GaN, AlN, and AlGaN.
  • the silicon carbide layer has a thickness of 100 to 500 nm, and the total thickness of the nitride semiconductor thin film is 2 ⁇ m or more and 10 ⁇ m or less.
  • the silicon carbide layer and the nitride semiconductor thin film can have such thicknesses.
  • the polycrystalline ceramic core preferably contains aluminum nitride.
  • the difference in thermal expansion coefficient from the nitride semiconductor can be made extremely small.
  • the first adhesive layer and the second adhesive layer include a tetraethylorthosilicate (TEOS) layer or a silicon oxide (SiO 2 ) layer, and the barrier layer includes silicon nitride.
  • TEOS tetraethylorthosilicate
  • SiO 2 silicon oxide
  • the first adhesive layer, the second adhesive layer, and the barrier layer can be such layers.
  • the planarization layer preferably contains tetraethylorthosilicate (TEOS) or silicon oxide (SiO 2 ) and has a thickness of 500 to 3000 nm.
  • TEOS tetraethylorthosilicate
  • SiO 2 silicon oxide
  • the planarization layer can be such a layer.
  • a method for manufacturing a nitride semiconductor substrate comprising a growth substrate and a nitride semiconductor thin film formed on the growth substrate, comprising: (1) Performing the following steps (1-1) to (1-5) to form a growth substrate in which a silicon carbide layer is bonded as a seed crystal layer via a planarization layer to a composite substrate having a plurality of layers laminated.
  • Preparing step (1-1) As the composite substrate, a polycrystalline ceramic core, a first adhesive layer laminated over the entire polycrystalline ceramic core, and a second adhesive layer laminated over the entire first adhesive layer providing a composite substrate comprising an adhesive layer and a barrier layer laminated over the second adhesive layer; (1-2) laminating a flattening layer only on one side of the composite substrate; (1-3) preparing a single crystal silicon substrate having a silicon carbide thin film as a donor substrate; (1-4) bonding the silicon carbide thin film of the donor substrate to the planarizing layer; and (1-5) removing the single crystal silicon substrate of the donor substrate and further carbonizing the donor substrate.
  • the composite substrate is placed between the first adhesive layer and the second adhesive layer, and a conductive layer laminated on the whole or one side of the first adhesive layer may have
  • the composite substrate can be given conductivity as needed.
  • a method for manufacturing a nitride semiconductor substrate comprising a growth substrate and a nitride semiconductor thin film formed on the growth substrate, comprising: (1) Performing the following steps (1-1) to (1-5) to form a growth substrate in which a silicon carbide layer is bonded as a seed crystal layer via a planarization layer to a composite substrate having a plurality of layers laminated.
  • Preparing step (1-1) As the composite substrate, a polycrystalline ceramic core, a first adhesive layer laminated over the polycrystalline ceramic core, and a barrier layer laminated over the first adhesive layer providing a composite substrate comprising a second adhesive layer laminated to the back surface of the barrier layer and a conductive layer laminated to the back surface of the second adhesive layer; (1-2) laminating a planarizing layer on the surface of the barrier layer of the composite substrate; (1-3) preparing a single crystal silicon substrate having a silicon carbide thin film as a donor substrate; (1-4) bonding the silicon carbide thin film of the donor substrate to the planarizing layer; and (1-5) removing the single crystal silicon substrate of the donor substrate and further carbonizing the donor substrate.
  • a nitride semiconductor substrate using such a growth substrate does not generate a leak path due to the surface-side conductive layer of the growth substrate, and can have excellent high-frequency characteristics.
  • a method for manufacturing a nitride semiconductor substrate comprising a growth substrate and a nitride semiconductor thin film formed on the growth substrate, comprising: (1) Performing the following steps (1-1) to (1-5) to form a growth substrate in which a silicon carbide layer is bonded as a seed crystal layer via a planarization layer to a composite substrate having a plurality of layers laminated.
  • Preparing step (1-1) As the composite substrate, a polycrystalline ceramic core, a first adhesive layer laminated over the entire polycrystalline ceramic core, and a conductive layer laminated on the back surface of the first adhesive layer a second adhesive layer laminated on the back surface of the conductive layer; a barrier laminated on the front and side surfaces of the first adhesive layer, the side surfaces of the conductive layer, and the side surfaces and the back surface of the second adhesive layer; providing a composite substrate comprising a layer; (1-2) laminating a planarizing layer on the surface of the barrier layer of the composite substrate; (1-3) preparing a monocrystalline silicon substrate having a silicon carbide thin film as a donor substrate; (1-4) bonding the silicon carbide thin film of the donor substrate to the planarizing layer; and (1-5) removing the single crystal silicon substrate of the donor substrate and further carbonizing the donor substrate.
  • the conductive layer preferably includes a polysilicon layer.
  • Such a layer can be used as the conductive layer.
  • the silicon carbide thin film is preferably formed on the single crystal silicon substrate by CVD.
  • the nitride semiconductor thin film preferably contains one or more of GaN, AlN, and AlGaN.
  • the first adhesive layer and the second adhesive layer include a tetraethylorthosilicate (TEOS) layer or a silicon oxide (SiO 2 ) layer, and the barrier layer is silicon nitride. It is preferable to include
  • Such layers can be used for the first adhesive layer, the second adhesive layer, and the barrier layer.
  • the planarization layer preferably contains tetraethylorthosilicate (TEOS) or silicon oxide (SiO 2 ) and has a thickness of 500 to 3000 nm.
  • TEOS tetraethylorthosilicate
  • SiO 2 silicon oxide
  • Such a layer can be used as the planarization layer.
  • the diffusion of Al and Ga into the seed crystal layer of the growth substrate can be suppressed, and the deterioration of the crystallinity of the nitride semiconductor thin film on the growth substrate can be prevented.
  • a physical semiconductor substrate and a method for manufacturing the same can be provided.
  • 5 is a graph showing the results of backside SIMS for a growth substrate provided with a silicon carbide layer of a nitride semiconductor substrate of an example and a growth substrate provided with a normal single crystal silicon layer of a nitride semiconductor substrate of a comparative example;
  • 5 is a graph showing the half width of the diffraction peak of the GaN (0002) plane in XRD measurement of GaN epitaxially grown on the growth substrate of the surface single crystal silicon layer and the growth substrate of the surface silicon carbide layer in Examples and Comparative Examples.
  • FIG. 5 is a graph showing the number of reaction scars generated on the surface of GaN epitaxially grown on a surface single crystal silicon layer growth substrate and a surface silicon carbide layer growth substrate in Examples and Comparative Examples.
  • FIG. 4 is a schematic diagram showing another example of a growth substrate used in the present invention.
  • FIG. 4 is a schematic diagram showing still another example of the growth substrate used in the present invention.
  • the inventors of the present invention have repeatedly studied a method for suppressing the deterioration of high-frequency characteristics due to the diffusion of Al and Ga into the single crystal silicon layer during the growth of GaN, resulting in a low resistivity.
  • SiC silicon carbide
  • the present invention provides a growth substrate in which a seed crystal layer is bonded to a composite substrate in which a plurality of layers are laminated via a planarizing layer, and a nitride film formed on the seed crystal layer of the growth substrate.
  • a nitride semiconductor substrate comprising a semiconductor thin film, the composite substrate comprising: a polycrystalline ceramic core; a first adhesive layer laminated over the entire polycrystalline ceramic core;
  • a nitride semiconductor substrate comprising a laminated second adhesion layer and a barrier layer laminated over the second adhesion layer, wherein the seed layer is of a silicon carbide layer.
  • the present invention also provides a method for manufacturing a nitride semiconductor substrate comprising a growth substrate and a nitride semiconductor thin film formed on the growth substrate, comprising: (1) the following steps (1-1) to (1) -5) to prepare a growth substrate in which a silicon carbide layer as a seed crystal layer is bonded to a composite substrate in which a plurality of layers are laminated via a planarization layer.
  • the nitride semiconductor substrate of the present invention includes, for example, a growth substrate 100 in which a seed crystal layer 7 is bonded to a composite substrate 200 in which a plurality of layers are stacked as shown in FIG.
  • a nitride semiconductor substrate (300) comprising a nitride semiconductor thin film (8) formed on a seed crystal layer (7) of a growth substrate (100).
  • the seed crystal layer 7 is a silicon carbide layer.
  • the seed crystal layer 7 is a silicon carbide layer, it is possible to suppress the diffusion of Al and Ga and suppress the resistance of the growth substrate 100 from being lowered. Moreover, since the lattice constants of silicon carbide and GaN are close to each other, it is possible to suppress deterioration in the crystallinity of the deposited GaN. As a result, it is possible to provide a nitride semiconductor substrate with good high frequency characteristics. In addition, since most of the growth substrate is made of ceramics, the substrate itself is very hard and resistant to plastic deformation. In addition, since the nitride semiconductor is grown on the silicon carbide layer, it is possible to prevent the generation of reaction marks due to meltback etching of Ga, which is a problem when the nitride semiconductor is grown on the single crystal silicon layer.
  • a growth substrate 100 comprises a polycrystalline ceramic core 1, a first adhesive layer 2 laminated over the polycrystalline ceramic core 1, and a laminate laminated over the first adhesive layer 2.
  • a composite substrate 200 including a conductive layer 3 coated with a conductive layer 3, a second adhesive layer 4 laminated over the conductive layer 3, and a barrier layer 5 laminated over the second adhesive layer 4; 200 and a seed crystal layer (substantially a silicon carbide layer) 7 laminated on the flattened layer 6 .
  • the conductive layer 3 is formed as necessary, and is not necessarily required, and may be formed only on one side.
  • the polycrystalline ceramic core 1 contains aluminum nitride, is sintered at a high temperature of, for example, 1800 degrees with a sintering aid, and can have a thickness of about 600 to 1150 ⁇ m. Basically, it is often formed with a thickness of the SEMI standard for the Si substrate.
  • the first adhesion layer 2 and the second adhesion layer 4 are layers including a tetraethylorthosilicate (TEOS) layer, a silicon oxide ( SiO2 ) layer, or both, and are deposited by an LPCVD process, a CVD process, or the like. It can be 50-200 nm thick.
  • TEOS tetraethylorthosilicate
  • SiO2 silicon oxide
  • the conductive layer 3 comprises polysilicon, is deposited by an LPCVD process or the like, and can be about 150-500 nm thick. This is a layer for imparting electrical conductivity, and is doped with, for example, boron (B) or phosphorus (P).
  • the conductive layer 3 containing polysilicon is provided as required, and may be omitted or may be formed only on one side.
  • the barrier layer 5 includes a silicon nitride layer, is deposited by an LPCVD process or the like, and has a thickness of, for example, 100-1000 nm.
  • the planarization layer 6 is deposited by an LPCVD process or the like, and has a thickness of about 500 to 3000 nm, for example.
  • This planarization layer 6 is deposited for planarization of the top surface and preferably comprises tetraethylorthosilicate (TEOS) or silicon oxide ( SiO2 ), but also SiO2 , Al2O3 , Si3N4 , or Ordinary ceramic film materials such as silicon oxynitride (Si x O y N z ) can also be selected.
  • the seed crystal layer (silicon carbide layer) 7 has a thickness of, for example, about 100 to 500 nm, and is a layer used as a growth surface for epitaxial growth of other materials such as GaN. It is bonded to a planarization layer 6, such as a silicon oxide layer. Note that the silicon carbide layer is a single crystal.
  • each layer the manufacturing method, the materials used, etc. are not limited to those described above.
  • a composite substrate comprising a barrier layer 5 bonded over the layers, a second adhesive layer 4 bonded to the back surface of said barrier layer, and a conductive layer 3 bonded to the back surface of said second adhesive layer; It can be composed of a planarization layer 6 bonded only to the surface of the composite substrate and a seed crystal layer 7 bonded to the planarization layer.
  • a conductive layer 3 bonded to the back surface of the adhesive layer; a second adhesive layer 4 bonded to the back surface of said conductive layer; a barrier layer 5 bonded to the side and back surfaces of the adhesive layer of the composite substrate, a planarization layer 6 bonded only to the surface of the composite substrate, and a seed crystal layer 7 bonded to the planarization layer can be configured.
  • the nitride semiconductor thin film 8 formed on the seed crystal layer (silicon carbide layer) 7 of the nitride semiconductor thin film growth substrate 100 is not particularly limited, but includes, for example, one or more of GaN, AlN, and AlGaN. be able to.
  • the nitride semiconductor thin film can be an epitaxially grown layer of AlN, AlGaN, GaN, or the like, but the structure of the epitaxial layer is not limited to this. sometimes. In some cases, multiple layers of AlGaN with different Al compositions are deposited.
  • a device layer can be provided on the surface layer side of the epitaxial layer.
  • the device layer can have a structure comprising a highly crystalline layer (channel layer) for generating a two-dimensional electron gas, a layer (barrier layer) for generating a two-dimensional electron gas, and a cap layer as the outermost layer.
  • the channel layer can be, for example, a GaN layer, but is not limited to this.
  • AlGaN with an Al composition of about 20% can be used for the barrier layer, but, for example, InGaN or the like can also be used, and the material is not limited to this.
  • the cap layer can be, for example, a GaN layer or a SiN layer, but is not limited thereto.
  • the thickness of these device layers and the Al composition of the barrier layer are changed according to the design of the device.
  • the thickness of the nitride semiconductor thin film is not particularly limited because it changes depending on the application, but the total thickness of the nitride semiconductor thin film is preferably 2 ⁇ m or more and 10 ⁇ m or less.
  • the nitride semiconductor substrate of the present invention described above can be manufactured as follows. A method for manufacturing a nitride semiconductor substrate according to the present invention will be described below.
  • a growth substrate is prepared by bonding a silicon carbide layer as a seed crystal layer to a composite substrate in which a plurality of layers are laminated via a planarization layer.
  • Embodiments of step (1) include the following first, second, and third aspects.
  • step (1) the following steps (1-1) to (1-5) are performed, and a seed crystal layer is formed on a composite substrate in which a plurality of layers are laminated via a planarizing layer.
  • This is a step of preparing a growth substrate to which a silicon carbide layer is bonded.
  • the step (1-1) includes a composite substrate including a polycrystalline ceramic core, a first adhesive layer laminated over the polycrystalline ceramic core, and a second adhesive laminated over the first adhesive layer. providing a composite substrate including a layer and a barrier layer laminated over the second adhesive layer.
  • the composite substrate prepared here may be the one described above.
  • Step (1-2) is a step of laminating a planarizing layer only on one side of the composite substrate.
  • the planarization layer may be deposited using the materials and methods described above.
  • Step (1-3) is a step of preparing a single crystal silicon substrate (SiC/Si substrate) provided with a silicon carbide thin film as a donor substrate. More specifically, the donor substrate can be produced as follows.
  • a single-crystal silicon substrate is prepared, and a silicon carbide thin film is deposited on the single-crystal silicon substrate by a CVD method using a CVD film forming apparatus.
  • the raw material gas used for film formation can use trimethylsilane as a carbon source, but the raw material gas is not limited to this.
  • the film formation temperature can be, for example, 600 to 1200° C., but is not limited to this.
  • the thickness of the silicon carbide thin film can be adjusted by the flow rate of the source gas and the film formation time.
  • the thickness of the silicon carbide thin film to be deposited is not limited to a thick one, but must be at least as thick as the silicon carbide (SiC) layer bonded to the outermost layer of the growth substrate.
  • the silicon carbide thin film formed on the single crystal silicon substrate in this process is single crystal.
  • the conductivity type of the donor substrate manufactured in this step may be non-doped, n-type, or p-type, but is preferably an n-type single crystal silicon substrate.
  • Step (1-4) is a step of bonding the silicon carbide thin film of the donor substrate to the planarizing layer.
  • the substrate used as the donor substrate here is the SiC/Si substrate produced in the above step (1-3), and is bonded so that the silicon carbide thin film is in contact with the planarization layer on the composite substrate.
  • Step (1-5) the single crystal silicon substrate of the donor substrate is removed, and the silicon carbide thin film of the donor substrate is processed to a desired thickness to form a silicon carbide seed crystal layer of 100 to 500 nm. It is a process of forming a layer.
  • the single-crystal silicon substrate and the unnecessary silicon carbide thin film are separated while leaving a silicon carbide thin film having a desired thickness, and the surface of the remaining silicon carbide thin film is removed. Polish to improve flatness.
  • a known technique such as a hydrogen ion implantation delamination method may be used.
  • the thickness of the silicon carbide layer of the surface layer of the growth substrate formed on the planarizing layer in this step is preferably 100 to 500 nm. As described above, a growth substrate can be manufactured.
  • step (1) the following steps (1-1) to (1-5) are performed, and a seed crystal layer is formed on a composite substrate in which a plurality of layers are laminated via a planarizing layer.
  • This is a step of preparing a growth substrate to which a silicon carbide layer is bonded.
  • the step (1-1) comprises a composite substrate comprising a polycrystalline ceramic core, a first adhesive layer laminated over the polycrystalline ceramic core, a barrier layer laminated over the first adhesive layer, A step of preparing a composite substrate including a second adhesive layer laminated on the back surface of the barrier layer and a conductive layer laminated on the back surface of the second adhesive layer.
  • the composite substrate prepared here may be the one described above.
  • Step (1-2) is a step of laminating a planarization layer on the surface of the barrier layer of the composite substrate.
  • the planarization layer may be deposited using the materials and methods described above.
  • Step (1-3) is a step of preparing a single crystal silicon substrate provided with a silicon carbide thin film as a donor substrate. Step (1-3) may be performed in the same manner as in the first aspect.
  • Step (1-4) is a step of bonding the silicon carbide thin film of the donor substrate to the planarizing layer. Step (1-4) may be performed in the same manner as in the first aspect.
  • Step (1-5) the single crystal silicon substrate of the donor substrate is removed, and the silicon carbide thin film of the donor substrate is processed to a desired thickness to form a silicon carbide seed crystal layer of 100 to 500 nm. It is a process of forming a layer. Step (1-5) may be performed in the same manner as in the first aspect.
  • step (1) the following steps (1-1) to (1-5) are performed, and a seed crystal layer is formed on a composite substrate in which a plurality of layers are laminated via a planarizing layer.
  • This is a step of preparing a growth substrate to which a silicon carbide layer is bonded.
  • the composite substrate includes a polycrystalline ceramic core, a first adhesive layer laminated over the entire polycrystalline ceramic core, and a conductive layer laminated on the back surface of the first adhesive layer. a second adhesive layer laminated on the back surface of the conductive layer; a barrier layer laminated on the front and side surfaces of the first adhesive layer, the side surfaces of the conductive layer, and the side surfaces and the back surface of the second adhesive layer; It is a step of preparing a composite substrate including The composite substrate prepared here may be the one described above.
  • Step (1-2) is a step of laminating a planarization layer on the surface of the barrier layer of the composite substrate.
  • the planarization layer may be deposited using the materials and methods described above.
  • Step (1-3) is a step of preparing a single crystal silicon substrate provided with a silicon carbide thin film as a donor substrate. Step (1-3) may be performed in the same manner as in the first aspect.
  • Step (1-4) is a step of bonding the silicon carbide thin film of the donor substrate to the planarization layer. Step (1-4) may be performed in the same manner as in the first aspect.
  • Step (1-5) the single crystal silicon substrate of the donor substrate is removed, and the silicon carbide thin film of the donor substrate is processed to a desired thickness to form a silicon carbide seed crystal layer of 100 to 500 nm. It is a process of forming a layer. Step (1-5) may be performed in the same manner as in the first aspect.
  • Step (2) is a step of epitaxially growing a nitride semiconductor thin film on the silicon carbide layer, which is the seed crystal layer of the growth substrate, to manufacture a nitride semiconductor substrate.
  • nitride semiconductor thin films such as AlN, AlGaN and GaN is performed on the silicon carbide layer of the growth substrate produced in step (1).
  • the nitride semiconductor thin film as described above can be epitaxially grown.
  • TMAl can be used as an Al source
  • TMGa can be used as a Ga source
  • NH3 can be used as an N source.
  • the carrier gas can be N 2 and H 2 or any of them, and the process temperature can be about 900-1200.degree.
  • a nitride semiconductor substrate can be manufactured by depositing a nitride semiconductor thin film as described above.
  • Example 2 A single-crystal silicon substrate having a diameter of 200 mm and a plane orientation of (111) was prepared, and a silicon carbide thin film was formed on the single-crystal silicon substrate by a CVD film forming apparatus to produce a SiC/Si substrate. Trimethylsilane was used as a carbon source for the raw material gas used for film formation. The deposition temperature of the silicon carbide thin film was 1130°C. A silicon carbide thin film having a thickness of 300 nm was formed by controlling the film formation time.
  • a growth substrate which is a substrate for epitaxial growth
  • the growth substrate comprises a polycrystalline ceramic core containing aluminum nitride, a first adhesion layer made of silicon oxide laminated over the polycrystalline ceramic core, and a conductive layer made of polysilicon laminated over the first adhesion layer.
  • a composite substrate comprising: a second adhesion layer made of silicon oxide laminated over the entire conductive layer; a barrier layer made of silicon nitride laminated over the entire second adhesion layer; A planarization layer consisting of stacked silicon oxide was constructed.
  • the SiC/Si substrate produced above was attached as a donor substrate to the flattening layer.
  • hydrogen ions were implanted in advance from the surface of the silicon carbide thin film, and then the flattening layer and the silicon carbide thin film were bonded together so that they were in contact with each other.
  • the ion-implanted layer was peeled off, leaving a silicon carbide thin film of 250 nm.
  • the silicon carbide thin film was polished to a thickness of 150 nm to form a silicon carbide layer on the surface of the growth substrate.
  • a growth substrate was produced as described above.
  • This growth substrate was placed in an MOCVD reactor, and nitride semiconductor thin films such as AlN, AlGaN and GaN were epitaxially grown on the growth substrate.
  • the growth substrate was placed in a wafer pocket called satellite.
  • TMAl was used as an Al source
  • TMGa was used as a Ga source
  • NH3 was used as an N source.
  • Both N2 and H2 were used as the carrier gas.
  • the process temperature was 1000°C.
  • AlN and AlGaN were deposited in order from the substrate side toward the growth direction, and then GaN was epitaxially grown.
  • a device layer was provided on the surface layer side of the epitaxial layer.
  • the device layers consist of a highly crystalline layer (channel layer) for generating a two-dimensional electron gas with a thickness of about 400 nm, a layer (barrier layer) for generating a two-dimensional electron gas with a thickness of 20 nm, and an outermost layer made of GaN with a thickness of 3 nm. It has a layered structure.
  • AlGaN with an Al composition of 20% was used for the barrier layer, InGaN, for example, can also be used, and is not limited to this.
  • the total film thickness of the epitaxial layers including the device layer was set to 3.5 ⁇ m.
  • a nitride semiconductor substrate was manufactured as described above.
  • Example 2 A nitride semiconductor substrate was manufactured in the same manner as in Example, except that instead of forming a silicon carbide layer as a seed crystal layer of the growth substrate in Example, a single crystal silicon layer was formed.
  • the second harmonic characteristics, the concentration of Al diffused in the seed crystal layer of the growth substrate, the crystallinity of the GaN epitaxial layer, and the occurrence in the plane of the epitaxial layer was evaluated as follows.
  • the seed crystal layer of the growth substrate was a silicon carbide layer
  • diffusion of Al was not observed in the seed crystal layer (silicon carbide layer).
  • the seed crystal layer of the growth substrate was a conventional single crystal silicon layer, it can be seen that Al is diffused in the seed crystal layer (single crystal silicon layer). Further, in the example, diffusion of Ga was not observed in the seed crystal layer (silicon carbide layer).
  • the crystallinity XRD measurement of the GaN epitaxial layer was performed, and the crystallinity of the GaN epitaxial layer was evaluated from the half width of the diffraction peak of the GaN (0002) plane. The results are shown in FIG.
  • the GaN epitaxially grown on the silicon carbide layer of the surface layer of the growth substrate of the example has a narrower half width and better crystallinity than the GaN epitaxially grown on the conventional single crystal silicon layer of the comparative example. It turns out good.
  • the diffusion of Al into the seed crystal layer of the growth substrate can be suppressed, and the crystallinity of the nitride semiconductor thin film on the growth substrate is deteriorated. It has become clear that a nitride semiconductor substrate and a method for manufacturing the same can be prevented.
  • the present invention is not limited to the above embodiments.
  • the above-described embodiment is an example, and any device having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same effects is the present invention. included in the technical scope of

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

本発明は、複数の層が積層された複合基板上に平坦化層を介して種結晶層が接合された成長基板と、該成長基板の前記種結晶層上に成膜された窒化物半導体薄膜とを具備する窒化物半導体基板であって、前記複合基板は、多結晶セラミックコアと、該多結晶セラミックコア全体に積層された第1の接着層と、該第1の接着層全体に積層された第2の接着層と、該第2の接着層全体に積層されたバリア層とを含むものであり、前記種結晶層は、炭化シリコン層のものであることを特徴とする窒化物半導体基板である。これにより、成長基板の種結晶層中へのAlの拡散を抑制でき、かつ成長基板上の窒化物半導体薄膜の結晶性の悪化を防止することができる窒化物半導体基板及びその製造方法が提供される。

Description

窒化物半導体基板及びその製造方法
 本発明は、窒化物半導体基板及びその製造方法に関する。
 半導体薄膜製造方法のひとつであるMOCVD法は、大口径化や量産性に優れており、均質な薄膜結晶を成膜できるため、広く用いられている。GaNに代表される窒化物半導体はSiの材料としての限界を超える次世代の半導体材料として期待されている。
 GaNは飽和電子速度が大きいという特性から高周波動作可能なデバイスの作製が可能であり、また絶縁破壊電界も大きいことから、高出力での動作が可能である。また、軽量化や小型化、低消費電力化も見込める。近年、5G等に代表されるような通信速度の高速化、また、それに伴う高出力化の要求により、高周波、且つ高出力で動作可能なGaN HEMTが注目されている。
 GaNデバイスを作製するためのGaNエピタキシャルウェーハに用いられる基板としては、Si基板が最も安価であり且つ大口径化に有利である。また、熱伝導率が高く放熱性が良いことから、SiC基板も用いられている。しかしこれらの基板は、GaNとの熱膨張係数が異なるため、エピ成膜後の冷却工程で応力が印加し、クラックが発生しやすい。また強い応力が印加していることで、デバイスプロセス中にウェーハ割れが発生してしまう事がある。また、厚いGaNを成膜する事が不可能であり、エピ層内に複雑な応力緩和層を成膜してもクラックフリーではせいぜい5μm程度が限界である。
 一方、GaN基板はGaNエピタキシャル層と同じ(または非常に近い)熱膨張係数を有する為、上記のような問題は発生しにくいが、自立GaN基板は作製が困難であるだけでなく、極めて高価であり口径の大きい基板が作製できない事から、量産化には不適切である。
 そのため、大口径で且つGaNと熱膨張係数が近いGaNエピタキシャル用の大口径基板(以下、GaN用支持基板または単に成長基板)が特許文献1に開示されている。このGaN用支持基板は、多結晶セラミックコア、第1の接着層、導電層、第2の接着層、バリア層を含む支持構造と、該支持構造の片面に積層された平坦化層、該平坦化層に積層された単結晶シリコン層により構成される。
 このGaN用支持基板を用いることで、大口径で且つエピタキシャル厚が厚く、且つクラックの発生しないGaNエピタキシャル基板を作製できる。また、GaNと熱膨張係数差が極めて小さい事から、GaN成長中や冷却中に反りが発生しにくいため、成膜後の基板の反りを小さく制御できるだけでなく、エピタキシャル層中に複雑な応力緩和層を設ける必要が無いため、エピタキシャル成膜時間が短くなり、エピタキシャル成長のコストを大幅に削減できる。さらに、GaN用支持基板は大部分がセラミックスであるため、基板自体が非常に硬く塑性変形しにくいだけでなく、口径の大きいGaN on Siで解決されていないウェーハ割れが発生しない。
特表2020-505767 特開2009-208989 特開2009-117583
 特許文献1にはGaN用支持基板上のエピタキシャル成長技術が公開されているが、GaN用支持基板の基板表層はSi単結晶である。特許文献2にはSi基板上にCVDで炭化シリコン層を形成しその上に窒化物半導体をエピタキシャル成長させることが開示されているが、基板は単結晶シリコンであるため、エピタキシャル成長中のウェーハ割れ等の課題がある。特許文献3には炭化シリコン基板上に窒化物半導体をエピタキシャル成長させることが開示されている。
 高周波用途で用いられるGaN on Siデバイスでは、高抵抗のSi基板が用いられる。しかし、Si基板上にGaNを成膜する過程で、AlとGaがSi基板中に拡散し、Si基板表層(GaNエピタキシャル層との界面付近)が低抵抗化してしまい、高周波特性が劣化するという課題がある。
 また、Si基板上のGaN成長では、Gaのメルトバックエッチングにより形成される共晶反応物(反応痕)がデバイスプロセスでの歩留まり低下といった課題となっている。さらに、Si単結晶とGaNには大きな格子定数差があり、Si基板上のGaNは結晶性が悪化するといった問題がある。GaN用支持基板の表層もSi層であるため、上記と同様の問題が発生し、解決されていない。
 本発明は上記課題を解決するためになされたもので、成長基板の種結晶層中へのAlの拡散を抑制でき、かつ成長基板上の窒化物半導体薄膜の結晶性の悪化を防止することができる窒化物半導体基板及びその製造方法を提供することを目的とする。
 上記課題を解決するために、本発明では、
 複数の層が積層された複合基板上に平坦化層を介して種結晶層が接合された成長基板と、該成長基板の前記種結晶層上に成膜された窒化物半導体薄膜とを具備する窒化物半導体基板であって、
 前記複合基板は、多結晶セラミックコアと、該多結晶セラミックコア全体に積層された第1の接着層と、該第1の接着層全体に積層された第2の接着層と、該第2の接着層全体に積層されたバリア層とを含むものであり、
 前記種結晶層は、炭化シリコン層のものである窒化物半導体基板を提供する。
 このような窒化物半導体基板であれば、成長基板の種結晶層中へのAlとGaの拡散を抑制でき、かつ成長基板上の窒化物半導体薄膜の結晶性の悪化を防止することができる窒化物半導体基板となる。
 また、前記複合基板が、前記第1の接着層と前記第2の接着層との間に、前記第1の接着層の全体もしくは片側に積層された導電層を有するものであってもよい。
 複合基板には、必要に応じて導電性を付与することができる。
 また本発明では、複数の層が積層された複合基板上に平坦化層を介して種結晶層が接合された成長基板と、該成長基板の前記種結晶層上に成膜された窒化物半導体薄膜とを具備する窒化物半導体基板であって、
 前記複合基板は、多結晶セラミックコアと、該多結晶セラミックコア全体に積層された第1の接着層と、該第1の接着層全体に積層されたバリア層と、該バリア層の裏面に積層された第2の接着層と、該第2の接着層の裏面に積層された導電層とを含むものであり、
 前記種結晶層は、炭化シリコン層のものである窒化物半導体基板を提供する。
 このような成長基板を用いた窒化物半導体基板であれば、成長基板の表面側導電層によるリークパスが生じず、高周波特性に優れたものとすることができる。
 また本発明では、複数の層が積層された複合基板上に平坦化層を介して種結晶層が接合された成長基板と、該成長基板の前記種結晶層上に成膜された窒化物半導体薄膜とを具備する窒化物半導体基板であって、
 前記複合基板は、多結晶セラミックコアと、該多結晶セラミックコア全体に積層された第1の接着層と、該第1の接着層の裏面に積層された導電層と、該導電層の裏面に積層された第2の接着層と、前記第1の接着層の表面及び側面と前記導電層の側面と前記第2の接着層の側面及び裏面に積層されたバリア層とを含むものであり、
 前記種結晶層は、炭化シリコン層のものである窒化物半導体基板を提供する。
 このような成長基板を用いた窒化物半導体基板であっても、成長基板の表面側導電層によるリークパスが生じず、高周波特性に優れたものとすることができる。
 このとき、前記導電層が、ポリシリコン層を含むものとすることが好ましい。
 導電層は、このような層とすることができる。
 また、前記窒化物半導体薄膜は、GaN、AlN、及びAlGaNのうち1つ以上を含むものであることが好ましい。
 このような窒化物半導体薄膜であれば、確実に高周波特性の良い窒化物半導体基板を提供する事ができる。
 また、前記炭化シリコン層が100~500nmの厚さを有し、前記窒化物半導体薄膜の総膜厚は2μm以上10μm以下であることが好ましい。
 本発明では、炭化シリコン層及び窒化物半導体薄膜をこのような厚さとすることができる。
 また、前記多結晶セラミックコアが、窒化アルミニウムを含むものであることが好ましい。
 このような複合基板とすれば、窒化物半導体との熱膨張係数差を極めて小さくできる。
 また、前記第1の接着層及び前記第2の接着層はテトラエチルオルトシリケート(TEOS)層又は酸化シリコン(SiO)層を含み、前記バリア層は窒化シリコンを含むものであることが好ましい。
 第1の接着層及び第2の接着層、及びバリア層は、このような層とすることができる。
 また、前記平坦化層はテトラエチルオルトシリケート(TEOS)又は酸化シリコン(SiO)を含み、かつ、500~3000nmの厚さを有するものであることが好ましい。
 平坦化層は、このような層とすることができる。
 また本発明では、成長基板と、該成長基板上に成膜された窒化物半導体薄膜とを具備する窒化物半導体基板の製造方法であって、
(1)下記工程(1-1)~(1-5)を行い、複数の層が積層された複合基板上に平坦化層を介して種結晶層として炭化シリコン層が接合された成長基板を準備する工程
 (1-1)前記複合基板として、多結晶セラミックコアと、該多結晶セラミックコア全体に積層された第1の接着層と、該第1の接着層全体に積層された第2の接着層と、該第2の接着層全体に積層されたバリア層とを含む複合基板を準備する工程、
 (1-2)前記複合基板の片面のみに平坦化層を積層する工程、
 (1-3)ドナー基板として、炭化シリコン薄膜を備えた単結晶シリコン基板を準備する工程、
 (1-4)前記ドナー基板の前記炭化シリコン薄膜を前記平坦化層に貼り合わせる工程、及び
 (1-5)前記ドナー基板の前記単結晶シリコン基板を除去し、さらに、前記ドナー基板の前記炭化シリコン薄膜を所望の厚みとなるように加工して、100~500nmの種結晶層となる前記炭化シリコン層を形成する工程、及び
(2)前記成長基板の種結晶層である前記炭化シリコン層上に前記窒化物半導体薄膜をエピタキシャル成長させて、窒化物半導体基板を製造する工程
を含む窒化物半導体基板の製造方法を提供する。
 このような窒化物半導体基板の製造方法であれば、比較的容易にかつ確実に結晶性が良い高周波特性に優れた窒化物半導体基板を製造することができる。
 また、前記工程(1-1)において、前記複合基板を、前記第1の接着層と前記第2の接着層との間に、前記第1の接着層の全体もしくは片側に積層された導電層を有するものとしてもよい。
 複合基板には、必要に応じて導電性を付与することができる。
 また本発明では、成長基板と、該成長基板上に成膜された窒化物半導体薄膜とを具備する窒化物半導体基板の製造方法であって、
(1)下記工程(1-1)~(1-5)を行い、複数の層が積層された複合基板上に平坦化層を介して種結晶層として炭化シリコン層が接合された成長基板を準備する工程
 (1-1)前記複合基板として、多結晶セラミックコアと、該多結晶セラミックコア全体に積層された第1の接着層と、該第1の接着層全体に積層されたバリア層と、該バリア層の裏面に積層された第2の接着層と、該第2の接着層の裏面に積層された導電層とを含む複合基板を準備する工程、
 (1-2)前記複合基板の前記バリア層の表面に平坦化層を積層する工程、
 (1-3)ドナー基板として、炭化シリコン薄膜を備えた単結晶シリコン基板を準備する工程、
 (1-4)前記ドナー基板の前記炭化シリコン薄膜を前記平坦化層に貼り合わせる工程、及び
 (1-5)前記ドナー基板の前記単結晶シリコン基板を除去し、さらに、前記ドナー基板の前記炭化シリコン薄膜を所望の厚みとなるように加工して、100~500nmの種結晶層となる前記炭化シリコン層を形成する工程、及び
(2)前記成長基板の種結晶層である前記炭化シリコン層上に前記窒化物半導体薄膜をエピタキシャル成長させて、窒化物半導体基板を製造する工程
を含む窒化物半導体基板の製造方法を提供する。
 このような成長基板を用いた窒化物半導体基板であれば、成長基板の表面側導電層によるリークパスが生じず、高周波特性に優れたものとすることができる。
 また本発明では、成長基板と、該成長基板上に成膜された窒化物半導体薄膜とを具備する窒化物半導体基板の製造方法であって、
(1)下記工程(1-1)~(1-5)を行い、複数の層が積層された複合基板上に平坦化層を介して種結晶層として炭化シリコン層が接合された成長基板を準備する工程
 (1-1)前記複合基板として、多結晶セラミックコアと、該多結晶セラミックコア全体に積層された第1の接着層と、該第1の接着層の裏面に積層された導電層と、該導電層の裏面に積層された第2の接着層と、前記第1の接着層の表面及び側面と前記導電層の側面と前記第2の接着層の側面及び裏面に積層されたバリア層とを含む複合基板を準備する工程、
 (1-2)前記複合基板の前記バリア層の表面に平坦化層を積層する工程、
 (1-3)ドナー基板として、炭化シリコン薄膜を備えた単結晶シリコン基板を準備する工程、
 (1-4)前記ドナー基板の前記炭化シリコン薄膜を前記平坦化層に貼り合わせる工程、及び
 (1-5)前記ドナー基板の前記単結晶シリコン基板を除去し、さらに、前記ドナー基板の前記炭化シリコン薄膜を所望の厚みとなるように加工して、100~500nmの種結晶層となる前記炭化シリコン層を形成する工程、及び
(2)前記成長基板の種結晶層である前記炭化シリコン層上に前記窒化物半導体薄膜をエピタキシャル成長させて、窒化物半導体基板を製造する工程
を含む窒化物半導体基板の製造方法を提供する。
 このような成長基板を用いた窒化物半導体基板であっても、成長基板の表面側導電層によるリークパスが生じず、高周波特性に優れたものとすることができる。
 このとき、前記導電層を、ポリシリコン層を含むものとすることが好ましい。
 導電層は、このような層を用いることができる。
 また、前記工程(1-3)において、前記炭化シリコン薄膜をCVD法によって前記単結晶シリコン基板上に成膜することが好ましい。
 このように炭化シリコン層はCVD法によって単結晶シリコン基板上に成膜することで、炭化処理で炭化シリコン層を形成するよりも厚さを厚くすることが容易にできる。
 前記工程(2)において、前記窒化物半導体薄膜を、GaN、AlN、及びAlGaNのうち1つ以上を含むものとすることが好ましい。
 このような窒化物半導体薄膜であれば、確実に高周波特性の良い窒化物半導体基板を製造する事ができる。
 また、前記工程(1-1)において、前記第1の接着層及び前記第2の接着層をテトラエチルオルトシリケート(TEOS)層又は酸化シリコン(SiO)層を含むものとし、前記バリア層を窒化シリコンを含むものとすることが好ましい。
 第1の接着層及び第2の接着層、及びバリア層は、このような層を用いることができる。
 また、前記工程(1-2)において、前記平坦化層をテトラエチルオルトシリケート(TEOS)又は酸化シリコン(SiO)を含み、かつ、500~3000nmの厚さを有するものとすることが好ましい。
 平坦化層は、このような層を用いることができる。
 以上のように、本発明であれば、成長基板の種結晶層中へのAlとGaの拡散を抑制でき、かつ成長基板上の窒化物半導体薄膜の結晶性の悪化を防止することができる窒化物半導体基板及びその製造方法を提供することができる。
本発明の窒化物半導体基板の一例を示す概略図である。 実施例の窒化物半導体基板の炭化シリコン層を備えた成長基板、および比較例の窒化物半導体基板の通常の単結晶シリコン層を備えた成長基板におけるバックサイドSIMSの結果を示すグラフである。 実施例及び比較例において、表層単結晶シリコン層の成長基板と表層炭化シリコン層の成長基板上にエピタキシャル成長させたGaNのXRD測定におけるGaN(0002)面の回折ピークの半値幅を示すグラフである。 実施例及び比較例において、表層単結晶シリコン層の成長基板と表層炭化シリコン層の成長基板上にエピタキシャル成長させたGaNの表面に発生した反応痕の個数を示すグラフである。 本発明に用いる成長基板の別の一例を示す概略図である。 本発明に用いる成長基板のさらに別の一例を示す概略図である。
 上述したように、単結晶シリコン層上に窒化物半導体を成膜する過程で、AlとGaが単結晶シリコン層中に拡散し、単結晶シリコン層の表層(GaNエピタキシャル層との界面付近)が低抵抗率化してしまい、高周波特性が劣化するという問題がある。
 本発明者らは、GaN成長中に単結晶シリコン層内にAlとGaが拡散して低抵抗率化して、高周波特性が劣化することを抑制する方法について検討を重ねたところ、GaN用支持基板の種結晶層を炭化シリコン(SiC)とすることで、AlとGaの種結晶層への拡散を防止でき、高周波特性の良い窒化物半導体基板とすることができることが判り、本発明を完成させた。
 即ち、本発明は、複数の層が積層された複合基板上に平坦化層を介して種結晶層が接合された成長基板と、該成長基板の前記種結晶層上に成膜された窒化物半導体薄膜とを具備する窒化物半導体基板であって、前記複合基板は、多結晶セラミックコアと、該多結晶セラミックコア全体に積層された第1の接着層と、該第1の接着層全体に積層された第2の接着層と、該第2の接着層全体に積層されたバリア層とを含むものであり、前記種結晶層は、炭化シリコン層のものである窒化物半導体基板である。
 また本発明は、成長基板と、該成長基板上に成膜された窒化物半導体薄膜とを具備する窒化物半導体基板の製造方法であって、(1)下記工程(1-1)~(1-5)を行い、複数の層が積層された複合基板上に平坦化層を介して種結晶層として炭化シリコン層が接合された成長基板を準備する工程
 (1-1)前記複合基板として、多結晶セラミックコアと、該多結晶セラミックコア全体に積層された第1の接着層と、該第1の接着層全体に積層された第2の接着層と、該第2の接着層全体に積層されたバリア層とを含む複合基板を準備する工程、
 (1-2)前記複合基板の片面のみに平坦化層を積層する工程、
 (1-3)ドナー基板として、炭化シリコン薄膜を備えた単結晶シリコン基板を準備する工程、
 (1-4)前記ドナー基板の前記炭化シリコン薄膜を前記平坦化層に貼り合わせる工程、及び
 (1-5)前記ドナー基板の前記単結晶シリコン基板を除去し、さらに、前記ドナー基板の前記炭化シリコン薄膜を所望の厚みとなるように加工して、100~500nmの種結晶層となる前記炭化シリコン層を形成する工程、及び
(2)前記成長基板の種結晶層である前記炭化シリコン層上に前記窒化物半導体薄膜をエピタキシャル成長させて、窒化物半導体基板を製造する工程を含む窒化物半導体基板の製造方法である。
 以下、本発明について詳細に説明するが、本発明はこれらに限定されるものではない。
[窒化物半導体基板]
 本発明の窒化物半導体基板は、例えば、図1に示すような複数の層が積層された複合基板200上に平坦化層6を介して種結晶層7が接合された成長基板100と、該成長基板100の種結晶層7上に成膜された窒化物半導体薄膜8とを具備する窒化物半導体基板300であって、複合基板200は、多結晶セラミックコア1と、該多結晶セラミックコア1全体に積層された第1の接着層2と、該第1の接着層2全体に積層された第2の接着層4と、該第2の接着層4全体に積層されたバリア層5とを含むものであり、種結晶層7は、炭化シリコン層である。
 このように種結晶層7が炭化シリコン層であれば、AlとGaの拡散を抑制し、成長基板100の低抵抗化を抑制する事ができる。また、炭化シリコンとGaNの格子定数も近いことから成膜されるGaNの結晶性低下を抑制することができる。その結果、高周波特性の良い窒化物半導体基板を提供する事ができる。また、成長基板の大部分がセラミックスであるため、基板自体が非常に硬く塑性変形しにくいだけでなく、シリコン基板で解決されていないウェーハ割れも発生しない。また、単結晶シリコン層に窒化物半導体を成長させた場合に問題となるGaのメルトバックエッチングによる反応痕の発生も炭化シリコン層に窒化物半導体を成長させるため防ぐことができる。
成長基板
 図1に示すように、成長基板100は、多結晶セラミックコア1と、該多結晶セラミックコア1全体に積層された第1の接着層2と、該第1の接着層2全体に積層された導電層3と、該導電層3全体に積層された第2の接着層4と、該第2の接着層4全体に積層されたバリア層5とを含む複合基板200と、該複合基板200の片面のみに積層された平坦化層6と、該平坦化層6に積層された種結晶層(実質的には炭化シリコン層)7により構成される。尚、導電層3は必要に応じて成膜されるものであり、必ずしも必要なわけではなく、また片面のみに成膜されていても良い。
 ここで、多結晶セラミックコア1は窒化アルミニウムを含み、焼結助剤によって例えば1800度の高温で焼結され、約600~1150μmの厚さとすることができる。基本的にはSi基板のSEMI規格の厚さで形成される場合が多い。
 第1の接着層2および第2の接着層4は、テトラエチルオルトシリケート(TEOS)層ないしは酸化シリコン(SiO)層、またはその両方を含む層で、LPCVDプロセスやCVDプロセス等によって堆積され、おおよそ50~200nmの厚さとすることができる。
 導電層3は、ポリシリコンを含み、LPCVDプロセス等によって堆積され、約150~500nmの厚さとすることができる。これは導電性を付与するための層であり、例えばホウ素(B)やリン(P)等がドープされる。このポリシリコンを含む導電層3は、必要に応じて設けるものであって、なくても良く、また片面のみに成膜されていても良い。
 バリア層5は、窒化シリコン層を含み、LPCVDプロセス等によって堆積され、例えば、100~1000nmの厚さを有する。
 平坦化層6は、LPCVDプロセス等によって堆積され、厚さは例えば500~3000nm程度である。この平坦化層6は上面の平坦化のために堆積され、好ましくはテトラエチルオルトシリケート(TEOS)又は酸化シリコン(SiO)を含むものであるが、SiO、Al、Si、あるいは酸窒化シリコン(Si)等の通常のセラミックスの膜材等を選択することもできる。
 種結晶層(炭化シリコン層)7は、例えば、約100~500nmの厚さを有し、GaNなどの他のエピタキシャル成長のための成長面として利用される層であり、層転写プロセス等を用いて酸化シリコン層等の平坦化層6に接合される。なお、炭化シリコン層は単結晶である。
 尚、各層の厚さや製造方法、用いられる物質等は、上記のものに限定されない。
 また、前記成長基板の別の例としては、例えば図5に示すように多結晶セラミックコア1と、前記多結晶セラミックコアに全体に結合された第1の接着層2と、前記第1の接着層全体に結合されたバリア層5と、前記バリア層の裏面に結合された第2の接着層4と、前記第2の接着層の裏面に結合された導電層3とを含む複合基板と、前記複合基板の表面のみに結合された平坦化層6と、前記平坦化層に結合された種結晶層7により構成されることができる。
 このような導電層3が裏面側にだけに成膜されている構造の成長基板を用いた窒化物半導体基板であれば、高周波デバイスを作製する場合に成長基板の表面側導電層によるリークパスが生じず、高周波特性に優れたものとすることができる。
 また、前記成長基板のさらに別の例としては、例えば図6に示すように多結晶セラミックコア1と、前記多結晶セラミックコアに全体に結合された第1の接着層2と、前記第1の接着層の裏面に結合された導電層3と、前記導電層の裏面に結合された第2の接着層4と、前記第1の接着層の表面及び側面と前記導電層の側面と前記第2の接着層の側面及び裏面に結合されたバリア層5とを含む複合基板と、前記複合基板の表面のみに結合された平坦化層6と、前記平坦化層に結合された種結晶層7により構成されることができる。
 このような導電層3が裏面側にだけに成膜されている構造の成長基板を用いた窒化物半導体基板であっても、高周波デバイスを作製する場合に成長基板の表面側導電層によるリークパスが生じず、高周波特性に優れたものとすることができる。
窒化物半導体薄膜
 成長基板100の種結晶層(炭化シリコン層)7の上に形成する窒化物半導体薄膜8としては特に限定されないが、例えば、GaN、AlN、及びAlGaNのうち1つ以上を含むものとすることができる。
 すなわち窒化物半導体薄膜は、AlN、AlGaNおよびGaN等のエピタキシャル成長層とすることができるが、エピタキシャル層の構造はこれに限らず、AlGaNを成膜しない場合や、AlGaN成膜後さらにAlNを成膜する場合もある。また、Al組成を変化させたAlGaNを複数層成膜させる場合もある。
 エピタキシャル層の表層側にはデバイス層を設けることができる。デバイス層は、2次元電子ガスが発生する結晶性の高い層(チャネル層)、2次元電子ガスを発生させるための層(バリア層)、最表層にキャップ層を設けた構造とすることができる。チャネル層は例えばGaN層とすることができるが、これに限定されない。バリア層はAl組成が20%程度のAlGaNを用いることができるが、例えばInGaN等も用いることができ、これに限定されない。キャップ層は例えばGaN層やSiN層とすることもでき、これに限定されない。また、これらのデバイス層の厚さやバリア層のAl組成は、デバイスの設計によって変更される。
 窒化物半導体薄膜の膜厚は用途によって変更されるため、特に限定されないが、窒化物半導体薄膜の総膜厚は2μm以上10μm以下であることが好ましい。
[窒化物半導体基板の製造方法]
 上述の本発明の窒化物半導体基板は、以下のように製造することができる。以下、本発明の窒化物半導体基板の製造方法について説明する。
<工程(1)>
 工程(1)では、複数の層が積層された複合基板上に平坦化層を介して種結晶層として炭化シリコン層が接合された成長基板を準備する。工程(1)の実施態様としては、以下のような第一態様、第二態様、及び第三態様が挙げられる。
第一態様
 工程(1)の第一態様は、下記工程(1-1)~(1-5)を行い、複数の層が積層された複合基板上に平坦化層を介して種結晶層として炭化シリコン層が接合された成長基板を準備する工程である。
工程(1-1)
 工程(1-1)は、複合基板として、多結晶セラミックコアと、該多結晶セラミックコア全体に積層された第1の接着層と、該第1の接着層全体に積層された第2の接着層と、該第2の接着層全体に積層されたバリア層とを含む複合基板を準備する工程である。ここで準備する複合基板は、上述のものとすればよい。
工程(1-2)
 工程(1-2)は、複合基板の片面のみに平坦化層を積層する工程である。平坦化層は、上述の材料及び方法によって積層すればよい。
工程(1-3)
 工程(1-3)は、ドナー基板として、炭化シリコン薄膜を備えた単結晶シリコン基板(SiC/Si基板)を準備する工程である。より具体的には、ドナー基板は以下のようにして作製することができる。
 単結晶シリコン基板を準備し、CVD成膜装置で単結晶シリコン基板上に炭化シリコン薄膜をCVD法によって成膜する。成膜に使用する原料ガスは、炭素源としてトリメチルシランを使用することができるが、原料ガスはこれに限定されない。成膜温度は例えば600~1200℃とすることができるが、これに限定されない。
 炭化シリコン薄膜の厚さは、原料ガスの流量や成膜時間によって調整する事ができる。成膜する炭化シリコン薄膜の厚さは、厚い方には限定されないが、必ず成長基板の最表層に貼り合わせられる炭化シリコン(SiC)層以上の厚さは必要である。
 また、本工程で単結晶シリコン基板上に形成する炭化シリコン薄膜は単結晶である。
 なお、本工程で作製するドナー基板の導電型としては、ノンドープ、n型、p型のいずれであってもよいが、n型単結晶シリコン基板であることが好ましい。
工程(1-4)
 工程(1-4)は、ドナー基板の炭化シリコン薄膜を平坦化層に貼り合わせる工程である。
 ここでドナー基板として用いる基板は、上述の工程(1-3)で作製したSiC/Si基板を使用し、炭化シリコン薄膜が複合基板上の平坦化層に接するように貼り合わせを行う。
工程(1-5)
 工程(1-5)は、ドナー基板の単結晶シリコン基板を除去し、さらに、ドナー基板の炭化シリコン薄膜を所望の厚みとなるように加工して、100~500nmの種結晶層となる炭化シリコン層を形成する工程である。
 本工程では、ドナー基板を平坦化層と貼り合わせた後、目的の厚さの炭化シリコン薄膜を残して、単結晶シリコン基板と不要な炭化シリコン薄膜を剥離し、残した炭化シリコン薄膜の表面を研磨し平坦度を向上させる。剥離には、水素イオン注入剥離法等の公知の技術を用いればよい。本工程で平坦化層上に形成される成長基板表層の炭化シリコン層の厚さは、100~500nmとすることが好ましい。以上のようにして、成長基板を作製することができる。
第二態様
 工程(1)の第二態様は、下記工程(1-1)~(1-5)を行い、複数の層が積層された複合基板上に平坦化層を介して種結晶層として炭化シリコン層が接合された成長基板を準備する工程である。
工程(1-1)
 工程(1-1)は、複合基板として、多結晶セラミックコアと、該多結晶セラミックコア全体に積層された第1の接着層と、該第1の接着層全体に積層されたバリア層と、該バリア層の裏面に積層された第2の接着層と、該第2の接着層の裏面に積層された導電層とを含む複合基板を準備する工程である。ここで準備する複合基板は、上述のものとすればよい。
工程(1-2)
 工程(1-2)は、複合基板のバリア層の表面に平坦化層を積層する工程である。平坦化層は、上述の材料及び方法によって積層すればよい。
工程(1-3)
 工程(1-3)は、ドナー基板として、炭化シリコン薄膜を備えた単結晶シリコン基板を準備する工程である。工程(1-3)は、第一態様と同様にして行えばよい。
工程(1-4)
 工程(1-4)は、ドナー基板の炭化シリコン薄膜を平坦化層に貼り合わせる工程である。工程(1-4)は、第一態様と同様にして行えばよい。
工程(1-5)
 工程(1-5)は、ドナー基板の単結晶シリコン基板を除去し、さらに、ドナー基板の炭化シリコン薄膜を所望の厚みとなるように加工して、100~500nmの種結晶層となる炭化シリコン層を形成する工程である。工程(1-5)は、第一態様と同様にして行えばよい。
第三態様
 工程(1)の第三態様は、下記工程(1-1)~(1-5)を行い、複数の層が積層された複合基板上に平坦化層を介して種結晶層として炭化シリコン層が接合された成長基板を準備する工程である。
工程(1-1)
 工程(1-1)は、複合基板として、多結晶セラミックコアと、該多結晶セラミックコア全体に積層された第1の接着層と、該第1の接着層の裏面に積層された導電層と、該導電層の裏面に積層された第2の接着層と、前記第1の接着層の表面及び側面と前記導電層の側面と前記第2の接着層の側面及び裏面に積層されたバリア層とを含む複合基板を準備する工程である。ここで準備する複合基板は、上述のものとすればよい。
工程(1-2)
 工程(1-2)は、複合基板のバリア層の表面に平坦化層を積層する工程である。平坦化層は、上述の材料及び方法によって積層すればよい。
工程(1-3)
 工程(1-3)は、ドナー基板として、炭化シリコン薄膜を備えた単結晶シリコン基板を準備する工程である。工程(1-3)は、第一態様と同様にして行えばよい。
工程(1-4)
 工程(1-4)は、ドナー基板の炭化シリコン薄膜を平坦化層に貼り合わせる工程である。工程(1-4)は、第一態様と同様にして行えばよい。
工程(1-5)
 工程(1-5)は、ドナー基板の単結晶シリコン基板を除去し、さらに、ドナー基板の炭化シリコン薄膜を所望の厚みとなるように加工して、100~500nmの種結晶層となる炭化シリコン層を形成する工程である。工程(1-5)は、第一態様と同様にして行えばよい。
<工程(2)>
 工程(2)は、成長基板の種結晶層である炭化シリコン層上に窒化物半導体薄膜をエピタキシャル成長させて、窒化物半導体基板を製造する工程である。
 MOCVD反応炉において、工程(1)で作製した成長基板の炭化シリコン層上にAlN、AlGaNおよびGaN等の窒化物半導体薄膜のエピタキシャル成長を行う。本工程では、上述のような窒化物半導体薄膜をエピタキシャル成長させることができる。
 エピタキシャル成長の際、Al源としてTMAl、Ga源としてTMGa、N源としてNHを用いることができる。また、キャリアガスはNおよびH、ないしはそのいずれかとし、プロセス温度は900~1200℃程度とすることができる。
 以上のようにして窒化物半導体薄膜を成膜し、窒化物半導体基板を製造することができる。
 以下、実施例及び比較例を用いて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例)
 直径200mm、面方位(111)の単結晶シリコン基板を準備し、CVD成膜装置で単結晶シリコン基板上に炭化シリコン薄膜を成膜して、SiC/Si基板を作製した。成膜に使用する原料ガスは、炭素源としてトリメチルシランを使用した。炭化シリコン薄膜の成膜温度は1130℃とした。成膜時間を制御し、300nmの炭化シリコン薄膜を成膜した。
 次に、エピタキシャル成長用の基板である、成長基板を作製した。成長基板は、窒化アルミニウムを含む多結晶セラミックコアと、多結晶セラミックコア全体に積層された酸化シリコンからなる第1の接着層と、第1の接着層全体に積層されたポリシリコンからなる導電層と、導電層全体に積層された酸化シリコンからなる第2の接着層と、第2の接着層全体に積層された窒化シリコンからなるバリア層とを含む複合基板と、該複合基板の片面のみに積層された酸化シリコンからなる平坦化層を構成した。
 次に上記平坦化層に、上記で作製したSiC/Si基板をドナー基板として貼り合わせた。この際、予め炭化シリコン薄膜の表面から水素イオンを注入しておき、その後、平坦化層と炭化シリコン薄膜が接触する様に貼り合わせを行った。
 その後、250nmの炭化シリコン薄膜を残し、イオン注入層で剥離を行った。剥離後、炭化シリコン薄膜が150nmになるように研磨を行い、成長基板表層の炭化シリコン層を形成した。以上のようにして成長基板を作製した。
 この成長基板をMOCVD反応炉に載置し、成長基板上にAlN、AlGaNおよびGaN等の窒化物半導体薄膜のエピタキシャル成長を行った。成長基板はサテライトと呼ばれるウェーハポケットに載置した。エピタキシャル成長の際、Al源としてTMAl、Ga源としてTMGa、N源としてNHを用いた。
 また、キャリアガスはNおよびHのいずれも使用した。プロセス温度は1000℃とした。サテライトの上に成長基板を載置し、エピタキシャル成長を行う際、エピタキシャル層は基板側から成長方向に向かって順にAlN、AlGaNを成膜し、その後GaNをエピタキシャル成長させた。
 エピタキシャル層の表層側にはデバイス層を設けた。デバイス層は、2次元電子ガスが発生する結晶性の高い層(チャネル層)を約400nm、2次元電子ガスを発生させるための層(バリア層)を20nm、最表層に3nmのGaNからなるキャップ層を設けた構造とした。バリア層はAl組成を20%としたAlGaNを用いたが、例えばInGaN等も用いることができ、これに限定されない。
 デバイス層を含むエピタキシャル層の総膜厚は3.5μmとした。以上のようにして、窒化物半導体基板を製造した。
(比較例)
 実施例で成長基板の種結晶層として炭化シリコン層を形成する代わりに単結晶シリコン層を形成したことを除いて、実施例と同様に窒化物半導体基板を製造した。
 実施例及び比較例で製造した窒化物半導体基板について、二次高調波特性、成長基板の種結晶層内に拡散するAlの濃度、GaNエピタキシャル層の結晶性、及びエピタキシャル層の面内に発生した反応痕の個数を以下のようにして評価した。
二次高調波特性
 エピタキシャル成長終了後、エピタキシャル層表面に電極(CPW:コプレーナ導波路)を形成し、周波数1GHzの高周波信号を入力し、二次高調波特性を評価した。二次高調波特性は、Pin=15dBmの際の値を用いた。
 その結果、二次高調波特性は、実施例が2HD=-105@Pin=15dBm、比較例が2HD=-45@Pin=15dBmであり、実施例は種結晶層を炭化シリコン層とすることによって二次高調波特性が改善されていることが分かる。
成長基板の種結晶層内に拡散するAlの濃度
 バックサイドSIMSにより、成長基板表層の種結晶層内に拡散するAlの濃度を調査した。結果を図2に示す。
 実施例では、成長基板の種結晶層を炭化シリコン層としたことから、種結晶層(炭化シリコン層)内にはAlの拡散が見られない。一方、比較例では成長基板の種結晶層を従来の単結晶シリコン層としたことから、種結晶層(単結晶シリコン層)内にはAlが拡散しているのが判る。また実施例では、種結晶層(炭化シリコン層)内にはGaの拡散も見られなかった。
GaNエピタキシャル層の結晶性
 XRD測定を行い、GaN(0002)面の回折ピークの半値幅からGaNエピタキシャル層の結晶性を評価した。結果を図3に示す。
 図3に示す通り、実施例の成長基板表層の炭化シリコン層上にエピタキシャル成長させたGaNの方が、比較例の従来の単結晶シリコン層上にエピタキシャル成長させたGaNよりも半値幅が狭く結晶性が良いことが判る。
反応痕の個数
 同様のサンプルを10枚作製し、それぞれのウェーハにおいて、面内に発生した反応痕の個数を調査した。結果を図4に示す。
 図4のように、比較例の表層単結晶シリコン層の成長基板上のGaNでは反応痕が多数発生したが、実施例の表層炭化シリコン層の成長基板上のGaNでは反応痕が発生しないことが確認された。
 以上のように、本発明の窒化物半導体基板及びその製造方法であれば、成長基板の種結晶層中へのAlの拡散を抑制でき、かつ成長基板上の窒化物半導体薄膜の結晶性の悪化を防止することができる窒化物半導体基板及びその製造方法となることが明らかになった。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (19)

  1.  複数の層が積層された複合基板上に平坦化層を介して種結晶層が接合された成長基板と、該成長基板の前記種結晶層上に成膜された窒化物半導体薄膜とを具備する窒化物半導体基板であって、
     前記複合基板は、多結晶セラミックコアと、該多結晶セラミックコア全体に積層された第1の接着層と、該第1の接着層全体に積層された第2の接着層と、該第2の接着層全体に積層されたバリア層とを含むものであり、
     前記種結晶層は、炭化シリコン層のものであることを特徴とする窒化物半導体基板。
  2.  前記複合基板が、前記第1の接着層と前記第2の接着層との間に、前記第1の接着層の全体もしくは片側に積層された導電層を有するものであることを特徴とする請求項1に記載の窒化物半導体基板。
  3.  複数の層が積層された複合基板上に平坦化層を介して種結晶層が接合された成長基板と、該成長基板の前記種結晶層上に成膜された窒化物半導体薄膜とを具備する窒化物半導体基板であって、
     前記複合基板は、多結晶セラミックコアと、該多結晶セラミックコア全体に積層された第1の接着層と、該第1の接着層全体に積層されたバリア層と、該バリア層の裏面に積層された第2の接着層と、該第2の接着層の裏面に積層された導電層とを含むものであり、
     前記種結晶層は、炭化シリコン層のものであることを特徴とする窒化物半導体基板。
  4.  複数の層が積層された複合基板上に平坦化層を介して種結晶層が接合された成長基板と、該成長基板の前記種結晶層上に成膜された窒化物半導体薄膜とを具備する窒化物半導体基板であって、
     前記複合基板は、多結晶セラミックコアと、該多結晶セラミックコア全体に積層された第1の接着層と、該第1の接着層の裏面に積層された導電層と、該導電層の裏面に積層された第2の接着層と、前記第1の接着層の表面及び側面と前記導電層の側面と前記第2の接着層の側面及び裏面に積層されたバリア層とを含むものであり、
     前記種結晶層は、炭化シリコン層のものであることを特徴とする窒化物半導体基板。
  5.  前記導電層が、ポリシリコン層を含むものであることを特徴とする請求項2から請求項4のいずれか一項に記載の窒化物半導体基板。
  6.  前記窒化物半導体薄膜は、GaN、AlN、及びAlGaNのうち1つ以上を含むものであることを特徴とする請求項1から請求項5のいずれか一項に記載の窒化物半導体基板。
  7.  前記炭化シリコン層が100~500nmの厚さを有し、前記窒化物半導体薄膜の総膜厚は2μm以上10μm以下であることを特徴とする請求項1から請求項6のいずれか一項に記載の窒化物半導体基板。
  8.  前記多結晶セラミックコアが、窒化アルミニウムを含むものであることを特徴とする請求項1から請求項7のいずれか一項に記載の窒化物半導体基板。
  9.  前記第1の接着層及び前記第2の接着層はテトラエチルオルトシリケート(TEOS)層又は酸化シリコン(SiO)層を含み、前記バリア層は窒化シリコンを含むものであることを特徴とする請求項1から請求項8のいずれか一項に記載の窒化物半導体基板。
  10.  前記平坦化層はテトラエチルオルトシリケート(TEOS)又は酸化シリコン(SiO)を含み、かつ、500~3000nmの厚さを有するものであることを特徴とする請求項1から請求項9のいずれか一項に記載の窒化物半導体基板。
  11.  成長基板と、該成長基板上に成膜された窒化物半導体薄膜とを具備する窒化物半導体基板の製造方法であって、
    (1)下記工程(1-1)~(1-5)を行い、複数の層が積層された複合基板上に平坦化層を介して種結晶層として炭化シリコン層が接合された成長基板を準備する工程
     (1-1)前記複合基板として、多結晶セラミックコアと、該多結晶セラミックコア全体に積層された第1の接着層と、該第1の接着層全体に積層された第2の接着層と、該第2の接着層全体に積層されたバリア層とを含む複合基板を準備する工程、
     (1-2)前記複合基板の片面のみに平坦化層を積層する工程、
     (1-3)ドナー基板として、炭化シリコン薄膜を備えた単結晶シリコン基板を準備する工程、
     (1-4)前記ドナー基板の前記炭化シリコン薄膜を前記平坦化層に貼り合わせる工程、及び
     (1-5)前記ドナー基板の前記単結晶シリコン基板を除去し、さらに、前記ドナー基板の前記炭化シリコン薄膜を所望の厚みとなるように加工して、100~500nmの種結晶層となる前記炭化シリコン層を形成する工程、及び
    (2)前記成長基板の種結晶層である前記炭化シリコン層上に前記窒化物半導体薄膜をエピタキシャル成長させて、窒化物半導体基板を製造する工程
    を含むことを特徴とする窒化物半導体基板の製造方法。
  12.  前記工程(1-1)において、前記複合基板を、前記第1の接着層と前記第2の接着層との間に、前記第1の接着層の全体もしくは片側に積層された導電層を有するものとすることを特徴とする請求項11に記載の窒化物半導体基板の製造方法。
  13.  成長基板と、該成長基板上に成膜された窒化物半導体薄膜とを具備する窒化物半導体基板の製造方法であって、
    (1)下記工程(1-1)~(1-5)を行い、複数の層が積層された複合基板上に平坦化層を介して種結晶層として炭化シリコン層が接合された成長基板を準備する工程
     (1-1)前記複合基板として、多結晶セラミックコアと、該多結晶セラミックコア全体に積層された第1の接着層と、該第1の接着層全体に積層されたバリア層と、該バリア層の裏面に積層された第2の接着層と、該第2の接着層の裏面に積層された導電層とを含む複合基板を準備する工程、
     (1-2)前記複合基板の前記バリア層の表面に平坦化層を積層する工程、
     (1-3)ドナー基板として、炭化シリコン薄膜を備えた単結晶シリコン基板を準備する工程、
     (1-4)前記ドナー基板の前記炭化シリコン薄膜を前記平坦化層に貼り合わせる工程、及び
     (1-5)前記ドナー基板の前記単結晶シリコン基板を除去し、さらに、前記ドナー基板の前記炭化シリコン薄膜を所望の厚みとなるように加工して、100~500nmの種結晶層となる前記炭化シリコン層を形成する工程、及び
    (2)前記成長基板の種結晶層である前記炭化シリコン層上に前記窒化物半導体薄膜をエピタキシャル成長させて、窒化物半導体基板を製造する工程
    を含むことを特徴とする窒化物半導体基板の製造方法。
  14.  成長基板と、該成長基板上に成膜された窒化物半導体薄膜とを具備する窒化物半導体基板の製造方法であって、
    (1)下記工程(1-1)~(1-5)を行い、複数の層が積層された複合基板上に平坦化層を介して種結晶層として炭化シリコン層が接合された成長基板を準備する工程
     (1-1)前記複合基板として、多結晶セラミックコアと、該多結晶セラミックコア全体に積層された第1の接着層と、該第1の接着層の裏面に積層された導電層と、該導電層の裏面に積層された第2の接着層と、前記第1の接着層の表面及び側面と前記導電層の側面と前記第2の接着層の側面及び裏面に積層されたバリア層とを含む複合基板を準備する工程、
     (1-2)前記複合基板の前記バリア層の表面に平坦化層を積層する工程、
     (1-3)ドナー基板として、炭化シリコン薄膜を備えた単結晶シリコン基板を準備する工程、
     (1-4)前記ドナー基板の前記炭化シリコン薄膜を前記平坦化層に貼り合わせる工程、及び
     (1-5)前記ドナー基板の前記単結晶シリコン基板を除去し、さらに、前記ドナー基板の前記炭化シリコン薄膜を所望の厚みとなるように加工して、100~500nmの種結晶層となる前記炭化シリコン層を形成する工程、及び
    (2)前記成長基板の種結晶層である前記炭化シリコン層上に前記窒化物半導体薄膜をエピタキシャル成長させて、窒化物半導体基板を製造する工程
    を含むことを特徴とする窒化物半導体基板の製造方法。
  15.  前記導電層を、ポリシリコン層を含むものとすることを特徴とする請求項12から請求項14のいずれか一項に記載の窒化物半導体基板の製造方法。
  16.  前記工程(1-3)において、前記炭化シリコン薄膜をCVD法によって前記単結晶シリコン基板上に成膜することを特徴とする請求項11から請求項15のいずれか一項に記載の窒化物半導体基板の製造方法。
  17.  前記工程(2)において、前記窒化物半導体薄膜を、GaN、AlN、及びAlGaNのうち1つ以上を含むものとすることを特徴とする請求項11から請求項16のいずれか一項に記載の窒化物半導体基板の製造方法。
  18.  前記工程(1-1)において、前記第1の接着層及び前記第2の接着層をテトラエチルオルトシリケート(TEOS)層又は酸化シリコン(SiO)層を含むものとし、前記バリア層を窒化シリコンを含むものとすることを特徴とする請求項11から請求項17のいずれか一項に記載の窒化物半導体基板の製造方法。
  19.  前記工程(1-2)において、前記平坦化層をテトラエチルオルトシリケート(TEOS)又は酸化シリコン(SiO)を含み、かつ、500~3000nmの厚さを有するものとすることを特徴とする請求項11から請求項18のいずれか一項に記載の窒化物半導体基板の製造方法。
PCT/JP2022/037756 2021-10-15 2022-10-11 窒化物半導体基板及びその製造方法 WO2023063278A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023532641A JPWO2023063278A1 (ja) 2021-10-15 2022-10-11

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-169906 2021-10-15
JP2021169906 2021-10-15

Publications (1)

Publication Number Publication Date
WO2023063278A1 true WO2023063278A1 (ja) 2023-04-20

Family

ID=85987755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037756 WO2023063278A1 (ja) 2021-10-15 2022-10-11 窒化物半導体基板及びその製造方法

Country Status (3)

Country Link
JP (1) JPWO2023063278A1 (ja)
TW (1) TW202331817A (ja)
WO (1) WO2023063278A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005203666A (ja) * 2004-01-19 2005-07-28 Kansai Electric Power Co Inc:The 化合物半導体デバイスの製造方法
JP2007087992A (ja) * 2005-09-20 2007-04-05 Showa Denko Kk 半導体素子および半導体素子製造方法
US20110147772A1 (en) * 2009-12-16 2011-06-23 Micron Technology, Inc. Gallium nitride wafer substrate for solid state lighting devices, and associated systems and methods
JP2019523994A (ja) * 2016-06-14 2019-08-29 クロミス,インコーポレイテッド 電力およびrf用途用の設計された基板構造
JP2020184616A (ja) * 2019-05-03 2020-11-12 世界先進積體電路股▲ふん▼有限公司 基板およびその形成方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005203666A (ja) * 2004-01-19 2005-07-28 Kansai Electric Power Co Inc:The 化合物半導体デバイスの製造方法
JP2007087992A (ja) * 2005-09-20 2007-04-05 Showa Denko Kk 半導体素子および半導体素子製造方法
US20110147772A1 (en) * 2009-12-16 2011-06-23 Micron Technology, Inc. Gallium nitride wafer substrate for solid state lighting devices, and associated systems and methods
JP2019523994A (ja) * 2016-06-14 2019-08-29 クロミス,インコーポレイテッド 電力およびrf用途用の設計された基板構造
JP2020184616A (ja) * 2019-05-03 2020-11-12 世界先進積體電路股▲ふん▼有限公司 基板およびその形成方法

Also Published As

Publication number Publication date
JPWO2023063278A1 (ja) 2023-04-20
TW202331817A (zh) 2023-08-01

Similar Documents

Publication Publication Date Title
TWI793755B (zh) 用於功率及rf應用的工程基板結構
KR102458634B1 (ko) 전력 디바이스를 위한 질화 갈륨 에피택셜 구조
US10734303B2 (en) Power and RF devices implemented using an engineered substrate structure
CN111540684A (zh) 一种金刚石基异质集成氮化镓薄膜与晶体管的微电子器件及其制备方法
US11335557B2 (en) Multi-deposition process for high quality gallium nitride device manufacturing
WO2022191079A1 (ja) エピタキシャル成長用種基板およびその製造方法、ならびに半導体基板およびその製造方法
TW201413783A (zh) 碳化矽紋層
KR101942528B1 (ko) 에피텍셜 기판 및 그 제조 방법
CN112585305B (zh) GaN层叠基板的制造方法
WO2023063278A1 (ja) 窒化物半導体基板及びその製造方法
WO2022181163A1 (ja) 窒化物半導体基板およびその製造方法
WO2023063046A1 (ja) 窒化物半導体基板及びその製造方法
WO2023047864A1 (ja) 窒化物半導体基板及びその製造方法
WO2022259651A1 (ja) 窒化物半導体基板及びその製造方法
WO2023119916A1 (ja) 窒化物半導体基板および窒化物半導体基板の製造方法
JP7290182B2 (ja) 窒化物半導体基板及びその製造方法
JP7215630B1 (ja) 窒化物半導体基板及びその製造方法
WO2023100540A1 (ja) 窒化物半導体基板及びその製造方法
WO2022168573A1 (ja) 窒化物半導体基板及びその製造方法
JP2023092416A (ja) 窒化物半導体基板および窒化物半導体基板の製造方法
JP2002261011A (ja) デバイス用多層構造基板
TW202410159A (zh) 氮化物半導體基板及其製造方法
CN111129111A (zh) 半导体器件及其制作方法和集成电路

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023532641

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22880973

Country of ref document: EP

Kind code of ref document: A1