WO2023132191A1 - 窒化物半導体基板及びその製造方法 - Google Patents

窒化物半導体基板及びその製造方法 Download PDF

Info

Publication number
WO2023132191A1
WO2023132191A1 PCT/JP2022/045748 JP2022045748W WO2023132191A1 WO 2023132191 A1 WO2023132191 A1 WO 2023132191A1 JP 2022045748 W JP2022045748 W JP 2022045748W WO 2023132191 A1 WO2023132191 A1 WO 2023132191A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitride semiconductor
single crystal
silicon single
crystal substrate
substrate
Prior art date
Application number
PCT/JP2022/045748
Other languages
English (en)
French (fr)
Inventor
慶太郎 土屋
偉峰 曲
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Publication of WO2023132191A1 publication Critical patent/WO2023132191A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy

Definitions

  • the present invention relates to a nitride semiconductor substrate and its manufacturing method.
  • High-frequency devices are being developed to integrate devices such as antennas, amplifiers, switches, and filters in order to reduce the size and cost.
  • devices such as antennas, amplifiers, switches, and filters
  • the circuits become more complicated, and the materials used for the devices are diversified, such as silicon CMOS, devices using III-V group semiconductors and nitride semiconductors, and filters using piezoelectric materials.
  • silicon single crystal substrates for which inexpensive large-diameter wafers are available, are suitable for the underlying substrates of these devices.
  • a substrate for high-frequency devices it is considered that a low-oxygen silicon single crystal substrate, which has a high resistance and a small change in resistivity due to thermal donors, is suitable.
  • high-resistance, low-oxygen silicon single crystal substrates have poor mechanical properties compared to low-resistance CZ substrates, and have the problem of being prone to plastic deformation due to elongation of dislocations.
  • GaN gallium-nitride
  • Patent Document 2 discloses a technique for obtaining a silicon single crystal wafer with high strength by performing RTA after carbon doping in the bulk crystal stage, but it is difficult to obtain a crystal with a controlled carbon concentration, and the yield is low. There are concerns about a decline in
  • Patent Document 3 includes a step of removing the surface layer after carbon doping by RTA. There is concern about defects and contamination due to etching residue due to the step of removing the surface layer, and a method of growing a mirror-like GaN epitaxial layer without removing the surface layer is desired.
  • JP 2012-79952 A WO2004/008521 JP 2021-008386 A
  • devices include processes such as epitaxial growth on the substrate, heat treatment, and bonding, and stress is generated in the substrate due to differences in lattice constants and thermal expansion coefficients between different materials during these processes.
  • the high-resistance low-oxygen substrate has the disadvantage of being easily plastically deformed when dislocations occur, as compared with a normal low-resistance substrate. When plastic deformation occurs, the wafer is greatly distorted and cannot return to its original shape.
  • the present invention has been made in order to solve the above problems, and a nitride semiconductor substrate capable of suppressing warping defects due to plastic deformation during epitaxial growth or during device processes when a nitride semiconductor substrate is manufactured using a silicon single crystal substrate; It aims at providing the manufacturing method.
  • a nitride semiconductor substrate comprising a silicon single crystal substrate having a front surface and a back surface, and a nitride semiconductor thin film formed on the surface of the substrate,
  • the silicon single crystal substrate has, on at least the front surface and the back surface, carbon diffusion layers in which carbon is implanted to have a carbon concentration higher than that of a bulk portion of the silicon single crystal substrate, and the carbon diffusion layers.
  • a nitride semiconductor substrate having a carbon concentration of 5E+16 atoms/cm 3 or more is provided.
  • nitride semiconductor substrate With such a nitride semiconductor substrate, warping defects due to plastic deformation during epitaxial growth or device processes can be suppressed when the nitride semiconductor substrate is manufactured using a silicon single crystal substrate.
  • the silicon single crystal substrate preferably has a resistivity of 100 ⁇ cm or more and an oxygen concentration of 7E+17 atoms/cm 3 or less.
  • a nitride semiconductor wafer in which plastic deformation and warpage are suppressed can be obtained.
  • the thickness of the carbon diffusion layer is 1 ⁇ m or more.
  • the carbon concentration in at least the 1 ⁇ m region on the front and back surfaces is 5E+16 atoms/cm 3 or more. Deformation can be prevented.
  • an Al layer be provided between the surface of the silicon single crystal substrate and the nitride semiconductor thin film.
  • the adhesion between the silicon single crystal substrate and the epitaxial layer can be improved.
  • the thickness of the Al layer is preferably 1 to 5 nm.
  • the thickness is 5 nm or less, the unevenness of the Al layer is reduced and the surface roughness of the nitride semiconductor layer grown thereon is also reduced. Moreover, when the thickness is 1 nm or more, the surface of the silicon single crystal substrate is sufficiently covered, and the adhesion of the nitride semiconductor thin film can be further improved.
  • a method for manufacturing a nitride semiconductor substrate comprising a silicon single crystal substrate having a front surface and a back surface and a nitride semiconductor thin film formed on the front surface of the substrate, the method comprising: (1) preparing a silicon single crystal substrate having a front surface and a back surface; (2) implanting carbon into at least the front surface and the back surface of the silicon single crystal substrate by RTA to form a carbon diffusion layer having a carbon concentration of 5E+16 atoms/cm 3 or more; and (3) the carbon.
  • a method for manufacturing a nitride semiconductor substrate comprising the step of growing a nitride semiconductor thin film containing gallium nitride by vapor phase epitaxy on the surface of a silicon single crystal substrate having a diffusion layer formed thereon.
  • the manufacturing method of implanting high-concentration carbon into a silicon single crystal substrate by the RTA method does not interfere with single crystallization unlike the method of doping carbon during the growth of the silicon single crystal. Therefore, it is possible to relatively easily and reliably manufacture a nitride semiconductor wafer in which plastic deformation and warpage are suppressed.
  • the silicon single crystal substrate to be prepared preferably has a resistivity of 100 ⁇ cm or more and an oxygen concentration of 7E+17 atoms/cm 3 or less.
  • the present invention even when a silicon single crystal substrate with high resistivity, low oxygen concentration and low mechanical strength is used, it is possible to manufacture a nitride semiconductor wafer in which plastic deformation and warping are suppressed.
  • the carbon diffusion layer has a thickness of 1 ⁇ m or more.
  • TMA trimethylaluminum
  • the Al layer can be easily formed, and a nitride semiconductor substrate with improved adhesion of the epitaxial layer can be manufactured.
  • the thickness of the Al layer is preferably 1 to 5 nm in the step (2').
  • the thickness is 5 nm or less, the unevenness of the Al layer is reduced and the surface roughness of the nitride semiconductor layer grown thereon is also reduced. Moreover, when the thickness is 1 nm or more, the surface of the silicon single crystal substrate is sufficiently covered, and the adhesion of the nitride semiconductor thin film can be further improved.
  • a nitride semiconductor substrate is manufactured using a high-resistance, low-oxygen silicon single crystal substrate, it is possible to suppress warping defects due to plastic deformation during epitaxial growth or during device processes. and a method for producing the same. Furthermore, by forming an Al layer as an intermediate layer on the epitaxial growth surface of the substrate, the adhesion to the nitride semiconductor thin film can be further improved.
  • FIG. 1 is a schematic diagram showing an example of a silicon single crystal substrate used in the present invention
  • FIG. It is a schematic diagram showing an example of a nitride semiconductor thin film used in the present invention.
  • 4 is a graph showing changes in substrate curvature during growth of nitride semiconductor thin films in Example 1 and Comparative Example 1.
  • a silicon single crystal substrate in which carbon is implanted on the surface by the RTA method can suppress plastic deformation during the growth of a nitride semiconductor thin film. I completed the present invention.
  • the present invention provides a nitride semiconductor substrate comprising a silicon single crystal substrate having a front surface and a back surface and a nitride semiconductor thin film formed on the surface of the silicon single crystal substrate, wherein the silicon single crystal substrate comprises at least the front surface and the back surface.
  • Nitriding having a carbon diffusion layer in which carbon is implanted on the back surface so that the carbon concentration is higher than that of the bulk portion of the silicon single crystal substrate, and the carbon concentration of the carbon diffusion layer is 5E+16 atoms/cm 3 or more. It is a physical semiconductor substrate.
  • the present invention also provides a method for manufacturing a nitride semiconductor substrate, which is obtained by forming a nitride semiconductor thin film on the surface of a silicon single crystal substrate having a front surface and a back surface, comprising: (1) a single silicon substrate having a front surface and a back surface; (2) implanting carbon into at least the front surface and the back surface of the silicon single crystal substrate by RTA to form a carbon diffusion layer having a carbon concentration of 5E+16 atoms/cm 3 or more; and (3) a method for manufacturing a nitride semiconductor substrate, comprising the step of growing a nitride semiconductor thin film containing gallium nitride by vapor phase epitaxy on the surface of the silicon single crystal substrate on which the carbon diffusion layer is formed.
  • a nitride semiconductor substrate 100 of the present invention is obtained by forming a nitride semiconductor thin film 3 on a front surface 1a of a silicon single crystal substrate 1 having a front surface 1a and a rear surface 1b. Further, an Al layer 2 may be provided as an intermediate layer between the surface 1 a of the silicon single crystal substrate 1 and the nitride semiconductor thin film 3 .
  • the silicon single crystal substrate 1 of the present invention at least the front surface 1a and the back surface 1b of the silicon single crystal substrate 1 are implanted with carbon to have a carbon concentration higher than that of the bulk portion 11 of the silicon single crystal substrate 1. It has a diffusion layer 12, and the carbon concentration of the carbon diffusion layer 12 is 5E+16 atoms/cm 3 or more.
  • the silicon single crystal substrate is preferably a silicon single crystal substrate having a resistivity of 100 ⁇ cm or more and an oxygen concentration of 7E+17 atoms/cm 3 or less in order to reduce parasitic capacitance.
  • the silicon single crystal substrate before carbon is implanted is a low-oxygen, high-resistance silicon single crystal substrate that is less affected by thermal donors in order to reduce leakage current through the substrate, particularly by the FZ method.
  • a silicon single crystal substrate with high resistance and low oxygen content, which is manufactured by the CZ method may also be used.
  • the upper limit of the resistivity is not particularly limited, but can be, for example, 10000 ⁇ cm or less.
  • the lower limit of the oxygen concentration is also not particularly limited, but can be, for example, 0 atoms/cm 3 or more.
  • a substrate is used in which a carbon diffusion layer having a carbon concentration of 5E+16 atoms/cm 3 or more is formed on the front and back surfaces.
  • the carbon diffusion layer may also be formed on the side surface of the substrate. If the carbon concentration is less than 5E+16 atoms/cm 3 , the effect of suppressing plastic deformation during epitaxial growth cannot be obtained.
  • the upper limit of the carbon concentration in the carbon diffusion layer is not particularly limited, it can be, for example, 2E+17 atoms/cm 3 or less.
  • the thickness of the carbon diffusion layer is not particularly limited, it can be, for example, 1 ⁇ m or more.
  • the upper limit of the thickness is also not particularly limited, but it can be, for example, 20 ⁇ m or less, preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less.
  • the method for producing the carbon diffusion layer is not particularly limited, it is preferable to produce it by heat treatment in an atmosphere containing hydrocarbons using the RTA method.
  • a trap-rich layer that reduces the lifetime of carriers may be formed on the surface of the silicon single crystal substrate.
  • the formation method is not particularly limited, it can be formed by ion implantation or irradiation with ionizing radiation such as electron beams, X-rays, and ⁇ -rays.
  • an Al layer may be provided as an intermediate layer.
  • the Al layer functions as a buffer layer inserted for improving crystallinity of the nitride semiconductor thin film (device layer) and controlling stress. Crystallinity and crystal morphology of a nitride semiconductor thin film (epitaxial layer) are improved by forming an Al layer containing Al as a main component on the surface (upper surface) of a silicon single crystal substrate implanted with carbon by the RTA method. In addition, adhesion is improved to more reliably prevent peeling of the epitaxial layer.
  • the thickness of the Al layer is preferably 1-5 nm. If the thickness is 5 nm or less, the unevenness of the Al layer is reduced and the surface roughness of the nitride semiconductor layer grown thereon is also reduced. Moreover, when the thickness is 1 nm or more, the surface of the silicon single crystal substrate is sufficiently covered, and the adhesion of the nitride semiconductor thin film can be further improved.
  • Nitride Semiconductor Thin Film A nitride semiconductor thin film is produced on a silicon single crystal substrate or an Al layer by vapor phase epitaxy such as thermal CVD, MOVPE, MBE, vacuum deposition and sputtering.
  • nitrides such as GaN, AlN, InN, AlGaN, InGaN, AlInN, and AlScN, and III-V group semiconductors can be used.
  • the film thickness is not particularly limited, it is, for example, 1 to 10 ⁇ m, and can be designed according to the device.
  • a nitride semiconductor thin film (device layer) 3 is a gallium nitride (GaN) 31 and an electron supply layer 32 made of AlGaN formed thereon. Configured.
  • the nitride semiconductor thin film preferably has crystals with few crystal defects and few impurities such as carbon and oxygen, and is preferably manufactured at 900° C. to 1350° C. using the MOVPE method.
  • Gallium nitride has a lattice constant difference of 17% and a thermal expansion coefficient difference of 116% from Si (111) single crystal, and stress is applied to the thin film and substrate during growth at high temperatures.
  • the wafer is heated to 1000° C. or higher during growth, when stress is applied to the wafer, it does not undergo brittle fracture but exhibits ductility, generates dislocations, and undergoes plastic deformation.
  • the present invention by implanting carbon into the front and back surfaces, it is possible to prevent dislocations from propagating in the silicon single crystal substrate and prevent plastic deformation. By preventing plastic deformation, abnormal warpage can be reduced and yield can be improved.
  • the substrate can withstand stress, the film thickness of the epitaxial layer can be increased, thereby improving the degree of freedom in device design.
  • the nitride semiconductor substrate of the present invention can be manufactured by the method of manufacturing a nitride semiconductor substrate of the present invention including the following steps (1) to (3) and, if necessary, the following step (2').
  • Step (1) is a step of preparing a silicon single crystal substrate having a front surface and a back surface.
  • the silicon single crystal substrate prepared in this step is not particularly limited, but for example, a silicon single crystal substrate having a small parasitic capacitance, a resistivity of 100 ⁇ cm or more, and an oxygen concentration of 7E+17 atoms/cm 3 or less, as described above. can be done.
  • the silicon single crystal may be manufactured by either the FZ method or the CZ method, but the FZ method is more preferable.
  • Step (2) is a step of implanting carbon into at least the front and back surfaces of the silicon single crystal substrate by the RTA method to form a carbon diffusion layer having a carbon concentration of 5E+16 atoms/cm 3 or more.
  • the conditions for the RTA treatment in this process are not particularly limited as long as carbon can be implanted into the front and back surfaces of the silicon single crystal substrate.
  • the atmosphere in the RTA process can be, for example, a mixed atmosphere containing hydrocarbon gas and Ar.
  • the temperature and time of the RTA treatment can be, for example, a temperature of 1100° C. or more and the melting point of silicon or less, and can be set to 10 seconds or more and 150 seconds or less.
  • Step (2′) Between step (2) and step (3), (2′) an Al layer was formed on the surface of the silicon single crystal substrate on which the carbon diffusion layer was formed using trimethylaluminum (TMA) at a temperature of 900° C. or less. may be performed.
  • TMA trimethylaluminum
  • the thickness of the Al layer can be, for example, 1-5 nm.
  • the lower limit of the temperature for forming the Al layer is not particularly limited, but may be, for example, 450° C. or higher.
  • trimethylaluminum is introduced as an Al raw material while the inside of the furnace is kept at a high temperature. to adjust.
  • the carrier gas is not particularly limited, but hydrogen, for example, can be used.
  • Step (3) is a step of growing a nitride semiconductor thin film containing gallium nitride by vapor phase epitaxy on the surface of the silicon single crystal substrate on which the carbon diffusion layer is formed.
  • a device layer made of a nitride semiconductor thin film containing gallium nitride is manufactured by vapor phase epitaxy such as thermal CVD, MOVPE, MBE, vacuum deposition, and sputtering.
  • nitrides such as GaN, AlN, InN, AlGaN, InGaN, AlInN, and AlScN, and III-V group semiconductors can be used.
  • the film thickness is, for example, 1 to 10 ⁇ m, and can be designed according to the device.
  • TMAl can be used as an Al source
  • TMGa can be used as a Ga source
  • NH3 can be used as an N source.
  • the carrier gas can be N 2 and H 2 or either of them, and the process temperature can be about 900-1350.degree.
  • Example 1 A silicon single crystal substrate having a resistivity of 100 ⁇ cm or more and containing no oxygen was prepared by the FZ method.
  • Carbon was implanted into the front and back surfaces of the above silicon single crystal substrate by heat treatment using the RTA method. Heat treatment was performed at 1250° C. for 10 sec in an atmosphere of CH 4 and Ar to form a carbon diffusion layer of 1 ⁇ m with a carbon concentration of 5E+16 atoms/cm 3 on the surface layer of the silicon single crystal substrate.
  • a nitride semiconductor thin film was epitaxially grown by the MOVPE method on a silicon single crystal substrate with an increased carbon concentration in the surface layer.
  • the growth temperature was 1000 to 1200° C., and an epitaxial layer of nitride semiconductor was grown with a total film thickness of 2.8 ⁇ m.
  • a more specific manufacturing method is shown below.
  • [3] Al layer forming step in order to form an Al layer on the substrate, trimethylaluminum is introduced as an Al raw material while the temperature inside the furnace is kept high, and the flow rate and time are adjusted so that the film thickness becomes 2 nm. It was adjusted. Hydrogen was used as the carrier gas.
  • Step of Growing an Epitaxial Layer epitaxial growth of a nitride semiconductor thin film was performed at a furnace pressure of 50 mbar and a substrate temperature of 1120°C.
  • Trimethylaluminum (TMAl) was used as the Al source
  • trimethylgallium (TMGa) as the Ga source
  • ammonia (NH 3 ) as the N source.
  • AlN was grown at a standard flow rate of 0.24 L/min (240 sccm) of TMAl and 2.0 L/min (2000 sccm) of NH 3 .
  • Hydrogen was used as the carrier gas for TMAl, TMGa and NH3 .
  • a buffer layer and a gallium nitride layer were grown by setting the flow rates of TMAl, TMGa and NH 3 , the growth temperature and the growth time.
  • FIG . 4 shows the change in curvature (km ⁇ 1 ) during epitaxial growth. Moreover, the amount of warpage after growth was 41 ⁇ m, which was about 1/5 of that in Comparative Example 1 described later.
  • Example 2 A nitride semiconductor substrate was manufactured in the same manner as in Example 1, except that in the heat treatment of the silicon single crystal substrate by the RTA method, the heat treatment conditions were set to 1250° C. and 30 sec in an atmosphere of CH 4 and Ar. At this time, the carbon concentration of the carbon diffusion layer was 8E+16 atoms/cm 3 . The amount of warpage after growth was 39 ⁇ m, indicating that plastic deformation could be suppressed.
  • Example 3 A nitride semiconductor substrate was manufactured in the same manner as in Example 1, except that in the heat treatment of the silicon single crystal substrate by the RTA method, the heat treatment conditions were set to 1300° C. for 10 sec in an atmosphere of CH 4 and Ar. At this time, the carbon concentration of the carbon diffusion layer was 2E+17 atoms/cm 3 . The amount of warpage after growth was 35 ⁇ m, indicating that plastic deformation could be suppressed.
  • Example 1 A GaN epitaxial layer was grown under the same conditions as in Example 1, except that the step of implanting carbon into the surface layer by the RTA method in Example 1 was not performed. As can be seen from FIG. 4, the substrate was plastically deformed during the growth. The amount of warpage after growth was 213 ⁇ m.
  • Example 2 A nitride semiconductor substrate was manufactured in the same manner as in Example 1, except that in the heat treatment of the silicon single crystal substrate by the RTA method, the heat treatment conditions were set to 1225° C. for 10 sec in an atmosphere of CH 4 and Ar. At this time, the carbon concentration of the carbon diffusion layer was 2E+16 atoms/cm 3 . The amount of warpage after growth was 192 ⁇ m, and it was confirmed that plastic deformation could not be suppressed when the carbon concentration of the carbon diffusion layer was low.
  • the present invention is not limited to the above embodiments.
  • the above-described embodiment is an example, and any device having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same effect is the present invention. included in the technical scope of

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

本発明は、表面と裏面を有するシリコン単結晶基板の表面上に窒化物半導体薄膜が形成されたものである窒化物半導体基板であって、前記シリコン単結晶基板は、少なくとも前記表面と前記裏面に、炭素が注入されて前記シリコン単結晶基板のバルク部に比べて炭素濃度が高くなった炭素拡散層を有し、かつ、前記炭素拡散層の炭素濃度が5E+16atoms/cm以上であることを特徴とする窒化物半導体基板である。これにより、シリコン単結晶基板を用いて窒化物半導体基板を製造した場合にエピタキシャル成長時やデバイス工程中の塑性変形による反り不良を抑制できる窒化物半導体基板及びその製造方法が提供される。

Description

窒化物半導体基板及びその製造方法
 本発明は、窒化物半導体基板及びその製造方法に関する。
 高周波デバイスは、小型化、低コスト化に向けて、アンテナやアンプ、スイッチ、フィルター等のデバイスをインテグレーションする開発が進められている。また、周波数の高周波化に従い、回路が複雑化し、使用されるデバイスの材料もシリコンCMOS、III-V族半導体や窒化物半導体を用いたデバイス、圧電体を用いたフィルターなど多岐にわたっている。
 これらのデバイスの下地となる基板は、安価で大口径のウェーハが流通しているシリコン単結晶基板が適していると考えられる。特に、高周波デバイス用の基板としては、高抵抗で、サーマルドナーによる抵抗率の変化が少ない低酸素のシリコン単結晶基板が適していると考えられる。
 しかしながら、高抵抗低酸素のシリコン単結晶基板は、機械的特性が低抵抗CZ基板と比較して悪く、転位の伸長によって塑性変形を起こしやすいという問題がある。特にシリコン単結晶基板上のGaNの成長では格子定数差や熱膨張係数差による応力によって、反りの増大や塑性変形が起こりやすいので、成長条件や緩和層による応力低減が行われている。
 例えば、特許文献1では、周期的に複数回積層された窒化ガリウム系化合物半導体の中間層を用いて、応力緩和を行い、反りやクラックが小さいウェーハを作製している。しかしながら、複雑な中間層を作製することにより、成長時間が長くなり、設計の自由度が小さくなることが懸念される。
 また、特許文献2では、バルク結晶段階で炭素ドーピングした後、RTAすることで強度の高いシリコン単結晶ウェーハを得る技術が開示されているが、炭素濃度をコントロールした結晶を得ることは難しく、歩留まりの低下が懸念される。
 また、特許文献3では、RTAによる炭素ドーピングの後、表層を除去する工程を入れている。表層を除去する工程により、エッチング残りによる欠陥や汚染が懸念され、表層を除去せずに鏡面状のGaNエピタキシャル層を成長する方法が望まれる。
特開2012-79952号公報 WO2004/008521号公報 特開2021-008386号公報
 高周波デバイスでは、高周波特性を改善するため、デバイスやその支持基板、周辺のパッケージの寄生容量を減少させる必要がある。寄生容量の低減のため、サーマルドナーの発生しない高抵抗シリコン単結晶基板を支持基板やパッケージに利用すると、特性が改善されるとともに、コスト上もメリットがあると考えられる。
 一方、デバイスは基板上へのエピタキシャル成長や熱処理、貼り合わせなどの工程を含むが、その過程で異種の材料間の格子定数差や熱膨張係数差で基板に応力が発生する。しかしながら、高抵抗低酸素基板は、通常の低抵抗基板と比較して、有転位化した時に、塑性変形しやすいデメリットがある。塑性変形が起こるとウェーハが大きく歪み、形状が元に戻らないため、反り異常や接合不良が発生する恐れがある。
 本発明は上記課題を解決するためなされたもので、シリコン単結晶基板を用いて窒化物半導体基板を製造した場合にエピタキシャル成長時やデバイス工程中の塑性変形による反り不良を抑制できる窒化物半導体基板及びその製造方法を提供することを目的とする。
 上記課題を解決するために、本発明では、
 表面と裏面を有するシリコン単結晶基板の表面上に窒化物半導体薄膜が形成されたものである窒化物半導体基板であって、
 前記シリコン単結晶基板は、少なくとも前記表面と前記裏面に、炭素が注入されて前記シリコン単結晶基板のバルク部に比べて炭素濃度が高くなった炭素拡散層を有し、かつ、前記炭素拡散層の炭素濃度が5E+16atoms/cm以上である窒化物半導体基板を提供する。
 このような窒化物半導体基板であれば、シリコン単結晶基板を用いて窒化物半導体基板を製造した場合にエピタキシャル成長時やデバイス工程中の塑性変形による反り不良を抑制できる。
 また、前記シリコン単結晶基板は、抵抗率が100Ωcm以上、かつ、酸素濃度が7E+17atoms/cm以下のものであることが好ましい。
 本発明では、高抵抗率で低酸素濃度の機械的強度が低いシリコン単結晶基板を用いた場合であっても、塑性変形や反りが抑制された窒化物半導体ウェーハとすることができる。
 また、前記炭素拡散層の厚さが1μm以上であることが好ましい。
 このような窒化物半導体基板であれば、少なくとも表裏面の1μmの領域の炭素濃度が5E+16atoms/cm以上となっているため、より確実にシリコン単結晶基板の転位の進展を防止して、塑性変形を防ぐことができる。
 また、前記シリコン単結晶基板の前記表面と前記窒化物半導体薄膜との間に、Al層を有するものであることが好ましい。
 シリコン単結晶基板の成長面側にAl層を有することで、シリコン単結晶基板とエピタキシャル層の密着性を向上させることができる。
 このとき、前記Al層の厚さが1~5nmであることが好ましい。
 厚さが5nm以下であれば、Al層の凹凸が小さくなりその上に成長する窒化物半導体層の表面粗さも小さくなる。また、厚さが1nm以上であれば、シリコン単結晶基板の表面が十分に被覆されて窒化物半導体薄膜の密着性をより向上させることができる。
 また本発明では、
 表面と裏面を有するシリコン単結晶基板の表面上に窒化物半導体薄膜が形成されたものである窒化物半導体基板の製造方法であって、
(1)表面と裏面を有するシリコン単結晶基板を準備する工程、
(2)前記シリコン単結晶基板の少なくとも前記表面と前記裏面に、RTA法により炭素を注入して、炭素濃度が5E+16atoms/cm以上である炭素拡散層を形成する工程、及び
(3)前記炭素拡散層が形成されたシリコン単結晶基板の表面上に、気相成長により窒化ガリウムを含む窒化物半導体薄膜を成長させる工程
を含む窒化物半導体基板の製造方法を提供する。
 このようにシリコン単結晶基板にRTA法により高濃度の炭素を注入する製造方法であれば、シリコン単結晶の成長中に炭素をドープする方法のように単結晶化を阻害するようなこともなく、比較的容易で確実に塑性変形や反りが抑制された窒化物半導体ウェーハを製造することができる。
 また、前記工程(1)において、準備する前記シリコン単結晶基板を、抵抗率が100Ωcm以上、かつ、酸素濃度が7E+17atoms/cm以下のものとすることが好ましい。
 本発明では、高抵抗率で低酸素濃度の機械的強度が低いシリコン単結晶基板を用いた場合であっても、塑性変形や反りが抑制された窒化物半導体ウェーハを製造することができる。
 また、前記工程(2)において、前記炭素拡散層の厚さを1μm以上とすることが好ましい。
 このような厚さとすれば、より確実にシリコン単結晶基板の転位の進展を防止することができるので、反りの抑制された窒化物半導体ウェーハを容易に製造することができる。
 また、前記工程(2)と前記工程(3)の間に、(2’)前記炭素拡散層が形成されたシリコン単結晶基板の前記表面上に、900℃以下の温度でトリメチルアルミニウム(TMA)を用いて、Al層を形成する工程を行うことが好ましい。
 このようにすれば、簡単にAl層を形成することができ、エピタキシャル層の密着性を向上させた窒化物半導体基板を製造することができる。
 このとき、前記工程(2’)において、前記Al層の厚さを1~5nmとすることが好ましい。
 厚さを5nm以下とすれば、Al層の凹凸が小さくなりその上に成長する窒化物半導体層の表面粗さも小さくなる。また、厚さを1nm以上とすれば、シリコン単結晶基板の表面が十分に被覆されて窒化物半導体薄膜の密着性をより向上させることができる。
 以上のように、本発明であれば、高抵抗低酸素シリコン単結晶基板を用いて窒化物半導体基板を製造した場合にエピタキシャル成長時やデバイス工程中の塑性変形による反り不良を抑制できる窒化物半導体基板及びその製造方法を提供することができる。さらに、基板のエピタキシャル成長面上に中間層としてAl層を形成することによって、窒化物半導体薄膜との密着性をより一層向上させることができる。
本発明の窒化物半導体基板の一例を示す概略図である。 本発明に用いるシリコン単結晶基板の一例を示す概略図である。 本発明に用いる窒化物半導体薄膜の一例を示す概略図である。 実施例1と比較例1における、窒化物半導体薄膜の成長中における基板の曲率の変化を示すグラフである。
 上述のように、シリコン単結晶基板を用いて窒化物半導体基板を製造した場合にエピタキシャル成長時やデバイス工程中の塑性変形による反り不良を抑制できる窒化物半導体基板及びその製造方法の開発が求められていた。
 本発明者らは、上記課題について鋭意検討を重ねた結果、RTA法により表面に炭素が注入されたシリコン単結晶基板であれば、窒化物半導体薄膜の成長時における塑性変形を抑制できることを見出し、本発明を完成させた。
 即ち、本発明は、表面と裏面を有するシリコン単結晶基板の表面上に窒化物半導体薄膜が形成されたものである窒化物半導体基板であって、前記シリコン単結晶基板は、少なくとも前記表面と前記裏面に、炭素が注入されて前記シリコン単結晶基板のバルク部に比べて炭素濃度が高くなった炭素拡散層を有し、かつ、前記炭素拡散層の炭素濃度が5E+16atoms/cm以上である窒化物半導体基板である。
 また本発明は、表面と裏面を有するシリコン単結晶基板の表面上に窒化物半導体薄膜が形成されたものである窒化物半導体基板の製造方法であって、(1)表面と裏面を有するシリコン単結晶基板を準備する工程、(2)前記シリコン単結晶基板の少なくとも前記表面と前記裏面に、RTA法により炭素を注入して、炭素濃度が5E+16atoms/cm以上である炭素拡散層を形成する工程、及び(3)前記炭素拡散層が形成されたシリコン単結晶基板の表面上に、気相成長により窒化ガリウムを含む窒化物半導体薄膜を成長させる工程を含む窒化物半導体基板の製造方法である。
 以下、本発明について詳細に説明するが、本発明はこれらに限定されるものではない。
<窒化物半導体基板>
 図1に示すように、本発明の窒化物半導体基板100は、表面1aと裏面1bを有するシリコン単結晶基板1の表面1a上に窒化物半導体薄膜3が形成されたものである。また、シリコン単結晶基板1の表面1aと窒化物半導体薄膜3との間に、中間層としてAl層2を有していてもよい。そして図2に示すように、本発明におけるシリコン単結晶基板1は、少なくとも表面1aと裏面1bに、炭素が注入されてシリコン単結晶基板1のバルク部11に比べて炭素濃度が高くなった炭素拡散層12を有し、かつ、炭素拡散層12の炭素濃度は5E+16atoms/cm以上である。
シリコン単結晶基板
 シリコン単結晶基板は寄生容量を低減させるため、好ましくは抵抗率が100Ωcm以上で、酸素濃度7E+17atoms/cm以下のシリコン単結晶基板である。炭素を注入する前のシリコン単結晶基板は、基板を通したリーク電流を低減するためにサーマルドナーの影響が少ない低酸素で高抵抗なシリコン単結晶基板、特にFZ法で作製されたものであることが望ましいが、高抵抗低酸素のシリコン単結晶基板であればCZ法で作製されたものでも良い。なお、抵抗率の上限には特に制限はないが、例えば、10000Ωcm以下とすることができる。酸素濃度の下限にも特に制限はないが、例えば、0atoms/cm以上とすることができる。
 また、表面と裏面に、炭素濃度が5E+16atoms/cm以上の炭素拡散層を作り込んだ基板を使用する。炭素拡散層は、基板側面にも形成されていてよい。炭素濃度が5E+16atoms/cm未満であれば、エピタキシャル成長中における塑性変形を抑制する効果を得ることができない。炭素拡散層における炭素濃度の上限としては特に制限はないが、例えば、2E+17atoms/cm以下とすることができる。
 炭素拡散層の厚さとしては特に限定されないが、例えば1μm以上とすることができる。厚さの上限にも特に制限はないが、例えば20μm以下、好ましくは10μm以下、より好ましくは5μm以下とすることができる。
 炭素拡散層の作製方法は特に限定されないが、RTA法を用いて、炭化水素を含む雰囲気中で熱処理する方法で作製するのが好ましい。
 シリコン単結晶基板の表面には、キャリアの寿命を低下させるトラップリッチ層が形成されていても良い。形成方法は特に限定されないが、イオン注入や電子線、X線、γ線などの電離放射線の照射によって形成することができる。
Al層
 本発明の窒化物半導体基板では、中間層としてAl層を設けてもよい。Al層は、窒化物半導体薄膜(デバイス層)の結晶性改善や応力の制御のために挿入される緩衝層として働く。RTA法により炭素を注入したシリコン単結晶基板の表面(上面)上に、Alを主成分とするAl層を形成することにより、窒化物半導体薄膜(エピタキシャル層)の結晶性や結晶のモフォロジを改善させるとともに、密着性を上げてエピタキシャル層の剥離をより確実に防止する。
 Al層の厚さは1~5nmであることが好ましい。厚さが5nm以下であれば、Al層の凹凸が小さくなりその上に成長する窒化物半導体層の表面粗さも小さくなる。また、厚さが1nm以上であれば、シリコン単結晶基板の表面が十分に被覆されて窒化物半導体薄膜の密着性をより向上させることができる。
窒化物半導体薄膜
 窒化物半導体薄膜は、シリコン単結晶基板又はAl層の上に、熱CVD法、MOVPE法、MBE法、真空蒸着法、スパッタリング法などの気相成長で作製される。窒化物半導体薄膜は、例えばGaN、AlN、InN、AlGaN、InGaN、AlInN、AlScNなどの窒化物、III-V族半導体を用いることができる。膜厚は特に限定されないが、例えば1~10μmで、デバイスに合わせて設計することができる。
 例えば、図3に示すように、高移動度トランジスタ(HEMT)構造では、窒化物半導体薄膜(デバイス層)3は窒化ガリウム(GaN)31とその上に形成されるAlGaNからなる電子供給層32で構成される。窒化物半導体薄膜は、デバイス特性の向上のため、結晶欠陥が少なく、炭素や酸素などの不純物が少ない結晶が望ましく、MOVPE法を用いて900℃~1350℃で作製されたものが好ましい。
 窒化ガリウムは、Si(111)単結晶と格子定数差が17%、熱膨張係数差が116%あり、高温での成長中に薄膜や基板に応力がかかる。また、成長中1000℃以上に加熱されているため、ウェーハに応力がかかると脆性破壊せずに、延性を示すようになり、転位を発生させて塑性変形する。しかし本発明では、表裏面に炭素を注入することによって、シリコン単結晶基板の転位の進展を防止して、塑性変形を防ぐことができる。塑性変形を防ぐことによって、反り異常を低減して歩留まりを向上させることができる。また、基板が応力に耐えることができるので、エピタキシャル層の膜厚を厚くすることができて、デバイス設計の自由度が向上する。
<窒化物半導体基板の製造方法>
 本発明の窒化物半導体基板は、下記工程(1)~(3)、及び必要に応じて下記工程(2’)を含む本発明の窒化物半導体基板の製造方法によって製造することができる。
工程(1)
 工程(1)は、表面と裏面を有するシリコン単結晶基板を準備する工程である。本工程で準備するシリコン単結晶基板としては特に限定はされないが、例えば上述のような、寄生容量の小さい、抵抗率が100Ωcm以上で、酸素濃度7E+17atoms/cm以下のシリコン単結晶基板とすることができる。シリコン単結晶は、FZ法、CZ法のいずれにより製造されたものであってもよいが、FZ法がより好ましい。
工程(2)
 工程(2)は、シリコン単結晶基板の少なくとも表面と裏面に、RTA法により炭素を注入して、炭素濃度が5E+16atoms/cm以上である炭素拡散層を形成する工程である。
 本工程におけるRTA処理の条件は、シリコン単結晶基板の表面及び裏面に炭素注入が可能であれば特に制限はない。RTA処理における雰囲気は、例えば、炭化水素ガスとArを含む混合雰囲気とすることができる。また、RTA処理の温度及び時間は、例えば、1100℃以上シリコン融点以下の温度で、10秒以上150秒以下とすることができる。
工程(2’)
 工程(2)と工程(3)の間に、(2’)炭素拡散層が形成されたシリコン単結晶基板の表面上に、900℃以下の温度でトリメチルアルミニウム(TMA)を用いて、Al層を形成する工程を行ってもよい。Al層の厚さは、例えば1~5nmとすることができる。また、Al層を形成するときの温度の下限には特に制限はないが、例えば、450℃以上とすることができる。
 本工程では、シリコン単結晶基板の表面上にAl層を形成するために、炉内を高温にした状態で、Al原料としてトリメチルアルミニウムを導入して、所望の膜厚になるように流量、時間を調整する。キャリアガスとしては特に限定はないが、例えば水素を使用することができる。
工程(3)
 工程(3)は、炭素拡散層が形成されたシリコン単結晶基板の表面上に、気相成長により窒化ガリウムを含む窒化物半導体薄膜を成長させる工程である。
 本工程では、熱CVD法、MOVPE法、MBE法、真空蒸着法、スパッタリング法などの気相成長で、窒化ガリウムを含む窒化物半導体薄膜からなるデバイス層を作製する。薄膜は、例えばGaN、AlN、InN、AlGaN、InGaN、AlInN、AlScNなどの窒化物、III-V族半導体を用いることができる。膜厚は例えば1~10μmで、デバイスに合わせて設計することができる。
 エピタキシャル成長の際、Al源としてTMAl、Ga源としてTMGa、N源としてNHを用いることができる。また、キャリアガスはNおよびH、ないしはそのいずれかとし、プロセス温度は900~1350℃程度とすることができる。
 本工程では、シリコン単結晶基板に応力がかかるが、シリコン単結晶基板の表面には上述のような炭素拡散層が形成されているため、シリコン単結晶基板の転位の進展を防止して、塑性変形を防ぐことができる。したがって本発明では、反りの小さい窒化物半導体基板を製造することができる。
 以下、実施例及び比較例を用いて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例1)
 抵抗率が100Ωcm以上で酸素が添加されていないFZ法によるシリコン単結晶基板を準備した。
 上記のシリコン単結晶基板にRTA法による熱処理で、表面と裏面に炭素を注入した。熱処理条件は、CHとArの雰囲気で1250℃・10sec熱処理を行い、シリコン単結晶基板の表層に炭素濃度5E+16atoms/cmの炭素拡散層を1μm形成した。
 表層の炭素濃度を高めたシリコン単結晶基板にMOVPE法で窒化物半導体薄膜のエピタキシャル成長を行った。成長温度は、1000~1200℃で、総膜厚2.8μmの窒化物半導体のエピタキシャル層を成長させた。より具体的な製造方法を以下に示す。
[1]反応炉への導入
 シリコン単結晶基板をMOVPE装置の反応炉内に導入した後、窒素ガスで炉内を満たして炉内のガスを排気した。
[2]基板表面を炉内でクリーニングする工程
 基板を反応炉内で加熱して、基板の表面のクリーニングを行った。クリーニングを行う温度は1050℃、炉内圧力は50mbarとし、炉内には、水素、窒素、アンモニアなどからなる混合ガスを供給した状態で10分間クリーニングを行った。
[3]Al層形成工程
 次に基板上にAl層を形成するために、炉内を高温にした状態で、Al原料としてトリメチルアルミニウムを導入して2nmの膜厚になるように流量、時間を調整した。キャリアガスは、水素を使用した。
[4]エピタキシャル層を成長する工程
 次に、炉内圧力は50mbar、基板温度1120℃で窒化物半導体薄膜のエピタキシャル成長を行った。Al源としてはトリメチルアルミニウム(TMAl)、Ga源としてはトリメチルガリウム(TMGa)、N源としてはアンモニア(NH)を用いた。最初にTMAlの流量を標準状態で0.24L/min(240sccm)、NHの流量は2.0L/min(2000sccm)でAlNの成長を行った。TMAl、TMGa、NHのキャリアガスは水素を使用した。同様にして、TMAl、TMGaとNHの流量と成長温度、成長時間を設定して、緩衝層と窒化ガリウム層を成長した。
 このようにしてGaNエピタキシャル基板を作製することにより、サーマルドナーが発生しづらい高抵抗低酸素シリコン単結晶基板で、高品質なGaNエピタキシャル基板を得ることができた。エピタキシャル成長中の曲率(Curvature(km-1)の変化を図4に示す。シリコン単結晶基板に炭素濃度が5E+16atoms/cm以上の炭素拡散層を設けておくことで、成長中に基板が塑性変形しないことが分かった。また成長後の反り量は41μmと後述する比較例1に比べて1/5程度であった。
(実施例2)
 シリコン単結晶基板のRTA法による熱処理において、熱処理条件をCHとArの雰囲気で1250℃・30secとした以外は、実施例1と同様にして窒化物半導体基板を製造した。このとき炭素拡散層の炭素濃度は8E+16atoms/cmであった。成長後の反り量は39μmであり、塑性変形を抑制できていることが分かる。
(実施例3)
 シリコン単結晶基板のRTA法による熱処理において、熱処理条件をCHとArの雰囲気で1300℃・10secとした以外は、実施例1と同様にして窒化物半導体基板を製造した。このとき炭素拡散層の炭素濃度は2E+17atoms/cmであった。成長後の反り量は35μmであり、塑性変形を抑制できていることが分かる。
(比較例1)
 実施例1のRTA法による表層へ炭素注入する工程を行わないことを除き、実施例1と同じ条件でGaNエピタキシャル層の成長を行った。図4から分かるように成長中に基板が塑性変形していた。成長後の反り量は、213μmであった。
(比較例2)
 シリコン単結晶基板のRTA法による熱処理において、熱処理条件をCHとArの雰囲気で1225℃・10secとした以外は、実施例1と同様にして窒化物半導体基板を製造した。このとき炭素拡散層の炭素濃度は2E+16atoms/cmであった。成長後の反り量は192μmであり、炭素拡散層の炭素濃度が低い場合には塑性変形を抑制できないことが確認された。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (10)

  1.  表面と裏面を有するシリコン単結晶基板の表面上に窒化物半導体薄膜が形成されたものである窒化物半導体基板であって、
     前記シリコン単結晶基板は、少なくとも前記表面と前記裏面に、炭素が注入されて前記シリコン単結晶基板のバルク部に比べて炭素濃度が高くなった炭素拡散層を有し、かつ、前記炭素拡散層の炭素濃度が5E+16atoms/cm以上であることを特徴とする窒化物半導体基板。
  2.  前記シリコン単結晶基板は、抵抗率が100Ωcm以上、かつ、酸素濃度が7E+17atoms/cm以下のものであることを特徴とする請求項1に記載の窒化物半導体基板。
  3.  前記炭素拡散層の厚さが1μm以上であることを特徴とする請求項1又は請求項2に記載の窒化物半導体基板。
  4.  前記シリコン単結晶基板の前記表面と前記窒化物半導体薄膜との間に、Al層を有するものであることを特徴とする請求項1から請求項3のいずれか一項に記載の窒化物半導体基板。
  5.  前記Al層の厚さが1~5nmであることを特徴とする請求項4に記載の窒化物半導体基板。
  6.  表面と裏面を有するシリコン単結晶基板の表面上に窒化物半導体薄膜が形成されたものである窒化物半導体基板の製造方法であって、
    (1)表面と裏面を有するシリコン単結晶基板を準備する工程、
    (2)前記シリコン単結晶基板の少なくとも前記表面と前記裏面に、RTA法により炭素を注入して、炭素濃度が5E+16atoms/cm以上である炭素拡散層を形成する工程、及び
    (3)前記炭素拡散層が形成されたシリコン単結晶基板の表面上に、気相成長により窒化ガリウムを含む窒化物半導体薄膜を成長させる工程
    を含むことを特徴とする窒化物半導体基板の製造方法。
  7.  前記工程(1)において、準備する前記シリコン単結晶基板を、抵抗率が100Ωcm以上、かつ、酸素濃度が7E+17atoms/cm以下のものとすることを特徴とする請求項6に記載の窒化物半導体基板の製造方法。
  8.  前記工程(2)において、前記炭素拡散層の厚さを1μm以上とすることを特徴とする請求項6又は請求項7に記載の窒化物半導体基板の製造方法。
  9.  前記工程(2)と前記工程(3)の間に、(2’)前記炭素拡散層が形成されたシリコン単結晶基板の前記表面上に、900℃以下の温度でトリメチルアルミニウム(TMA)を用いて、Al層を形成する工程を行うことを特徴とする請求項6から請求項8のいずれか一項に記載の窒化物半導体基板の製造方法。
  10.  前記工程(2’)において、前記Al層の厚さを1~5nmとすることを特徴とする請求項9に記載の窒化物半導体基板の製造方法。
PCT/JP2022/045748 2022-01-05 2022-12-12 窒化物半導体基板及びその製造方法 WO2023132191A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022000653A JP2023100164A (ja) 2022-01-05 2022-01-05 窒化物半導体基板及びその製造方法
JP2022-000653 2022-01-05

Publications (1)

Publication Number Publication Date
WO2023132191A1 true WO2023132191A1 (ja) 2023-07-13

Family

ID=87073507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/045748 WO2023132191A1 (ja) 2022-01-05 2022-12-12 窒化物半導体基板及びその製造方法

Country Status (3)

Country Link
JP (1) JP2023100164A (ja)
TW (1) TW202338172A (ja)
WO (1) WO2023132191A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006222402A (ja) * 2005-02-14 2006-08-24 Toshiba Ceramics Co Ltd 窒化ガリウム系化合物半導体および製造方法
JP2011134983A (ja) * 2009-12-25 2011-07-07 Siltronic Ag シリコン半導体基板の製造方法
JP2012151401A (ja) * 2011-01-21 2012-08-09 Sumco Corp 半導体基板及びその製造方法
JP2021008386A (ja) * 2019-07-02 2021-01-28 信越半導体株式会社 炭素ドープシリコン単結晶ウェーハ及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006222402A (ja) * 2005-02-14 2006-08-24 Toshiba Ceramics Co Ltd 窒化ガリウム系化合物半導体および製造方法
JP2011134983A (ja) * 2009-12-25 2011-07-07 Siltronic Ag シリコン半導体基板の製造方法
JP2012151401A (ja) * 2011-01-21 2012-08-09 Sumco Corp 半導体基板及びその製造方法
JP2021008386A (ja) * 2019-07-02 2021-01-28 信越半導体株式会社 炭素ドープシリコン単結晶ウェーハ及びその製造方法

Also Published As

Publication number Publication date
TW202338172A (zh) 2023-10-01
JP2023100164A (ja) 2023-07-18

Similar Documents

Publication Publication Date Title
JP5705399B2 (ja) 転位密度の低いiii族窒化物材料及び当該材料に関連する方法
US9147734B2 (en) High quality GaN high-voltage HFETs on silicon
JP2009505938A (ja) 半導体基板並びにハイドライド気相成長法により自立半導体基板を製造するための方法及びそれに使用されるマスク層
WO2020129540A1 (ja) 窒化物半導体ウェーハの製造方法および窒化物半導体ウェーハ
US20240071756A1 (en) Method for manufacturing group iii nitride semiconductor substrate
KR100682272B1 (ko) 질화물계 기판 제조 방법 및 이에 따른 질화물계 기판
JP4449357B2 (ja) 電界効果トランジスタ用エピタキシャルウェハの製造方法
EP4299802A1 (en) Nitride semiconductor substrate and manufacturing method therefor
WO2023132191A1 (ja) 窒化物半導体基板及びその製造方法
US20230290835A1 (en) Nitride semiconductor wafer and method for producing nitride semiconductor wafer
EP4137617A1 (en) Silicon single crystal substrate for vapor deposition, vapor deposition substrate, and manufacturing methods therefor
JP2005183524A (ja) エピタキシャル基板、エピタキシャル基板の製造方法および転位低減方法
WO2024057698A1 (ja) 窒化物半導体層付き単結晶シリコン基板及び窒化物半導体層付き単結晶シリコン基板の製造方法
WO2023037838A1 (ja) 窒化物半導体基板の製造方法
JP4545389B2 (ja) エピタキシャル基板およびiii族窒化物層群の転位低減方法
JP2015151291A (ja) 窒化物半導体自立基板及びその製造方法並びに半導体デバイス
WO2024084836A1 (ja) 窒化物半導体エピタキシャルウエーハの製造方法及び窒化物半導体エピタキシャルウエーハ用複合基板
JP4206609B2 (ja) 半導体装置およびその製造方法ならびに半導体基板の製造方法
JP4524630B2 (ja) Hemt用エピタキシャルウェハの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22918777

Country of ref document: EP

Kind code of ref document: A1