WO2023037838A1 - 窒化物半導体基板の製造方法 - Google Patents

窒化物半導体基板の製造方法 Download PDF

Info

Publication number
WO2023037838A1
WO2023037838A1 PCT/JP2022/031163 JP2022031163W WO2023037838A1 WO 2023037838 A1 WO2023037838 A1 WO 2023037838A1 JP 2022031163 W JP2022031163 W JP 2022031163W WO 2023037838 A1 WO2023037838 A1 WO 2023037838A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
substrate
nitride semiconductor
semiconductor substrate
aln
Prior art date
Application number
PCT/JP2022/031163
Other languages
English (en)
French (fr)
Inventor
和徳 萩本
一平 久保埜
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Priority to CN202280059910.XA priority Critical patent/CN117916412A/zh
Priority to KR1020247007419A priority patent/KR20240055746A/ko
Publication of WO2023037838A1 publication Critical patent/WO2023037838A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/10Heating of the reaction chamber or the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • H01L21/2003Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate
    • H01L21/2015Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate the substrate being of crystalline semiconductor material, e.g. lattice adaptation, heteroepitaxy

Definitions

  • the present invention relates to a method for manufacturing a nitride semiconductor substrate.
  • it relates to a method of manufacturing a nitride semiconductor substrate for high frequency devices.
  • Nitride semiconductors such as GaN and AlN can be used to fabricate high electron mobility transistors (HEMTs) using two-dimensional electron gas and high withstand voltage electronic devices.
  • HEMTs high electron mobility transistors
  • nitride wafers by growing these nitride semiconductors on a substrate, and sapphire substrates and SiC substrates are used as substrates.
  • epitaxial growth by vapor phase growth on a silicon substrate is used.
  • Production of an epitaxially grown film on a silicon substrate by vapor phase epitaxy is advantageous in terms of device productivity and heat dissipation because a substrate having a larger diameter can be used than a sapphire substrate or a SiC substrate.
  • An AlN buffer layer, a buffer layer, and a GaN-HEMT structure epitaxial layer are stacked on a single crystal silicon substrate to form an epitaxial wafer for power devices and RF devices.
  • a high-resistance substrate is used as a single-crystal silicon substrate for epitaxial wafers for RF devices.
  • An AlN buffer layer is stacked on a high resistance single crystal silicon substrate, superlattice structure buffer layers (SLs) as buffer layers are stacked thereon, and HEMT structures are epitaxially grown thereon.
  • SLs superlattice structure buffer layers
  • the growth rate of AlN is slow, the total epitaxial growth time becomes long, and the Al of the AlN buffer layer becomes a high resistance single crystal. It is known that it diffuses into the silicon substrate, forms a low-resistance layer, and forms a channel.
  • the epitaxial growth technology of 3C--SiC on Si is recently known. That is, the intermediate layer 3C--SiC layer is inserted as AlN/3C--SiC/Si.
  • the 3C-SiC layer introduces an Al diffusion prevention layer more simply and efficiently.
  • Patent Document 1 discloses a semiconductor structure comprising SiN between a silicon substrate and an aluminum nitride layer.
  • SiN can be formed prior to reaction.
  • SiN has an amorphous, single-layer crystal structure, and polycrystal. If amorphous, anything grown on it will polyize and not grow epitaxially.
  • CVD process a CVD process
  • it is formed by a CVD process, but even if a CVD thin film (2 nm) is deposited, it will become polycrystalline.
  • ammonia gas is used as the nitrogen source gas, but if ammonia is used, the epitaxial wafer becomes cloudy.
  • An object of the present invention is to provide a method for manufacturing a nitride semiconductor substrate that can prevent the above.
  • a method for manufacturing a nitride semiconductor substrate in which a nitride semiconductor is formed on a substrate for film formation comprising: (1) a step of heat-treating a film-forming substrate made of single crystal silicon in a nitrogen atmosphere to form a silicon nitride film on the film-forming substrate; (2) growing an AlN film on the silicon nitride film; and (3) growing a GaN film, an AlGaN film, or both on the AlN film.
  • the heat treatment is preferably performed in an RTA furnace at 1100 to 1300° C. for 1 to 120 seconds.
  • the silicon nitride film is a single crystal.
  • such a silicon nitride film can be formed.
  • nitride semiconductor substrate having an Al diffusion concentration of 4e15 atoms/cm 3 or less on the growth substrate surface.
  • a nitride semiconductor substrate in which diffusion of Al to the growth substrate surface is suppressed in this way is particularly useful in fabricating high-frequency devices.
  • AlN layer when an AlN layer is epitaxially grown on a single crystal silicon substrate, particularly a high resistance single crystal silicon substrate, and a GaN or AlGaN layer is epitaxially grown thereon, Al becomes a single crystal. It is possible to provide a method for manufacturing a nitride semiconductor substrate that can prevent diffusion into a silicon substrate and that does not cause fogging.
  • FIG. 4 is a photograph of nitride semiconductor substrates manufactured in Example and Comparative Examples 1 and 2.
  • FIG. 10 shows backside SIMS measurement results of nitride semiconductor substrates manufactured in Example and Comparative Example 3.
  • FIG. 1 is a cross-sectional photograph of a nitride semiconductor substrate manufactured in Example 1.
  • the nitriding is performed to prevent Al from diffusing into the high-resistance single-crystal silicon substrate. It has been desired to develop a method for manufacturing a semiconductor substrate.
  • a process of forming a silicon nitride film by heat-treating a deposition substrate made of single crystal silicon in a nitrogen atmosphere a process of growing an AlN film on the silicon nitride film, and a process of growing an AlN film.
  • a method for manufacturing a nitride semiconductor substrate that includes a step of growing a GaN film, an AlGaN film, or both on a film can prevent Al from diffusing into a high-resistance single-crystal silicon substrate and cause clouding.
  • the inventors have found that it is possible to manufacture a nitride semiconductor substrate free from defects, and completed the present invention.
  • the present invention is a method for manufacturing a nitride semiconductor substrate in which a nitride semiconductor is formed on a film formation substrate, comprising: (1) heat-treating a film formation substrate made of single crystal silicon in a nitrogen atmosphere; (2) growing an AlN film on the silicon nitride film; and (3) a GaN film, an AlGaN film, or both on the AlN film.
  • a method for manufacturing a nitride semiconductor substrate including the step of growing
  • a method for manufacturing a nitride semiconductor substrate according to the present invention includes the following steps (1) to (3). Hereinafter, each step will be described in detail with reference to the flow of the nitride semiconductor manufacturing method of the present invention shown in FIG.
  • Step (1) is a step of heat-treating a film-forming substrate made of single crystal silicon in a nitrogen atmosphere to form a silicon nitride film on the film-forming substrate.
  • a film-forming substrate (silicon substrate) 1 made of single crystal silicon is placed in an RTA (Rapid Thermal Annealing) furnace, and heated at 1100 to 1300° C. for 1 to 10 minutes in a nitrogen atmosphere, for example. Heat treatment is performed for 120 seconds, preferably 1150 to 1250° C. for 2 to 20 seconds, particularly 1200° C. for 10 seconds.
  • a film (SiN film) 2 is formed.
  • the silicon nitride film 2 may be formed only on the front surface side of the film formation substrate, but may also be formed over the entire film formation substrate 1 having a front surface and a back surface.
  • the present invention is particularly characterized by forming a silicon nitride film in a nitrogen atmosphere.
  • the nitrogen atmosphere means a 100% nitrogen gas atmosphere or a mixed atmosphere of nitrogen gas and inert gas. If a silicon nitride film is formed, it is possible to prevent Al from diffusing from an AlN buffer layer, which will be described later, to the surface of the high-resistance single-crystal silicon growth substrate, thereby preventing the formation of a low-resistance layer. If formed by heat treatment, an epitaxial layer of a nitride semiconductor without haze can be grown on the silicon nitride film in subsequent steps.
  • the silicon nitride film is formed by a CVD process or heat treatment in an ammonia gas atmosphere instead of in a nitrogen atmosphere, a polycrystalline layer is formed on the silicon nitride film when the nitride semiconductor is grown in subsequent steps. or haze may occur in the grown epitaxial layer.
  • the film-forming substrate made of single-crystal silicon is not particularly limited, and may be either CZ single-crystal silicon or FZ single-crystal silicon. .
  • the deposition substrate is preferably a high resistance single crystal silicon substrate.
  • the resistivity is not particularly limited, but the lower limit is, for example, 1 ⁇ cm or more, preferably 10 ⁇ cm or more, more preferably 100 ⁇ cm or more, and the upper limit is, for example, 3000 ⁇ cm or less, preferably 1000 ⁇ cm or less, more preferably 500 ⁇ cm or less.
  • Step (2) is a step of growing an AlN film on the silicon nitride film.
  • an AlN film (AlN buffer layer) 3 is formed on the silicon nitride film 2 by MOVPE to a thickness of, for example, 20 to 500 nm, preferably 50 to 300 nm, more preferably 100 to 200 nm, particularly Grow at 160 nm.
  • Step (3) is a step of growing a GaN film, an AlGaN film, or both on the AlN film.
  • a buffer layer 4 made of a multilayer film made of an AlN layer or a GaN layer, and a nitride semiconductor made of a GaN-HEMT layer 5 are made to have a total thickness of 0.1 to 20 ⁇ m, preferably 0 ⁇ m. .5 to 10 ⁇ m, preferably 1 to 5 ⁇ m, particularly about 2.7 ⁇ m, is epitaxially grown.
  • the silicon nitride film can prevent Al from diffusing from the AlN buffer layer to the surface of the high-resistance single-crystal silicon growth substrate to form a low-resistance layer.
  • the epitaxial layer thus obtained can also produce a nitride semiconductor substrate without haze.
  • a nitride semiconductor substrate having an Al diffusion concentration of 4e15 atoms/cm 3 or less, preferably 3e15 atoms/cm 3 or less, more preferably 2e15 atoms/cm 3 or less on the growth substrate surface can be manufactured.
  • the lower limit of the Al diffusion concentration is not particularly limited, it can be, for example, 0 atoms/cm 3 or more, or 1e13 atoms/cm 3 or more.
  • SIMS secondary ion mass spectrometry
  • Example 2 A 2-nm-thick SiN film (placed in an RTA furnace and subjected to SiN conversion at 1200° C. for 10 seconds in an N 2 atmosphere) was applied to the surface of a single crystal silicon substrate having a diameter of 150 mm, a plane orientation (111), and a resistivity of 100 ⁇ cm.
  • An AlN buffer layer, a buffer layer, and a GaN-HEMT structure were epitaxially grown.
  • FIG. 4 shows the observation of the cross section of the wafer after the epitaxial growth. As can be seen from FIG. 4, it can be confirmed that a flat single crystal SiN layer is formed between the silicon substrate and the AlN film. As a result of electron beam diffraction, the AlN layer was a single crystal.
  • FIG. 3 shows the result of investigation by backside SIMS on the Al concentration from the back side of the single crystal silicon substrate to the SiN film.
  • the place where the nitrogen (N) concentration rises sharply represents the interface between the single crystal silicon substrate and the AlN film thereon (the silicon nitride film has a thickness of only 2 nm).
  • the SiN film has a thickness of only 2 nm.
  • (Comparative example 2) A 2-nm-thick SiN film (put in a PE-CVD furnace, SiH 4 +NH 3 +N 2 atmosphere at 300° C. for 3 seconds to convert the surface to SiN film on the surface of a single crystal silicon substrate having a diameter of 150 mm, a plane orientation (111), and a resistivity of 100 ⁇ cm. ), an AlN buffer layer, a buffer layer, and a GaN-HEMT structure were epitaxially grown on the Si substrate. As shown in FIG. 2(c), it can be seen that the epitaxial layer grows cloudy.
  • Comparative Example 3 An AlN buffer layer, a buffer layer, and a GaN-HEMT structure were epitaxially grown directly on the Si substrate surface without forming a SiN film on the Si substrate surface. As shown in FIG. 3, it can be seen that the nitride semiconductor substrate of Comparative Example 3 has a higher Al concentration on the surface of the silicon substrate than that of the Example.
  • the silicon nitride film between the single crystal silicon substrate and the AlN film is formed by heat treatment in a nitrogen atmosphere, so that Al becomes a high resistance single crystal. It can be seen that a nitride semiconductor substrate can be manufactured that can prevent diffusion into the silicon substrate and that does not cause fogging. On the other hand, in Comparative Examples 1 and 2 in which the silicon nitride film was formed using conditions other than the nitrogen atmosphere, fogging occurred in the epitaxial layer. cannot be prevented from spreading to
  • the present invention is not limited to the above embodiments.
  • the above-described embodiment is an example, and any device having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same effect is the present invention. included in the technical scope of

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Recrystallisation Techniques (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本発明は、成膜用基板上に窒化物半導体が形成された窒化物半導体基板の製造方法であって、(1)単結晶シリコンからなる成膜用基板を窒素雰囲気で熱処理することで、前記成膜用基板上にシリコン窒化膜を形成する工程、(2)前記シリコン窒化膜上にAlN膜を成長させる工程、及び(3)前記AlN膜上にGaN膜、AlGaN膜、又はその両方を成長させる工程を含むことを特徴とする窒化物半導体基板の製造方法である。これにより、高抵抗単結晶シリコン基板上にAlN層をエピタキシャル成長させ、その上にGaNやAlGaN層をエピタキシャル成長させた場合にAlが高抵抗単結晶シリコン基板に拡散するのを防止することができる窒化物半導体基板の製造方法が提供される。

Description

窒化物半導体基板の製造方法
 本発明は、窒化物半導体基板の製造方法に関する。特に高周波デバイス用の窒化物半導体基板の製造方法に関する。
 GaNやAlNをはじめとする窒化物半導体は、2次元電子ガスを用いた高電子移動度トランジスタ(HEMT:High Electron Mobility Transistor)や高耐圧電子デバイスの作製に用いることができる。
 これらの窒化物半導体を基板上に成長させた窒化物ウェーハを製作することは難しく、基板としては、サファイア基板やSiC基板が用いられている。しかし、大口径化や基板のコストを抑えるために、シリコン基板上への気相成長によるエピタキシャル成長が用いられている。シリコン基板上への気相成長によるエピタキシャル成長膜の作製は、サファイア基板やSiC基板に比べて大口径の基板が使用できるのでデバイスの生産性が高く、放熱性の点で有利である。
 単結晶シリコン基板上にAlNバッファ層を積み、緩衝層を積み、GaN-HEMT構造エピタキシャル層を積み、パワーデバイス用、RFデバイス用エピタキシャルウェーハとしている。特にRFデバイス用エピタキシャルウェーハの単結晶シリコン基板には、高抵抗基板を用いている。高抵抗単結晶シリコン基板上にAlNバッファ層を積み、その上に緩衝層である超格子構造バッファ層(SLs)、その上にHEMT構造をエピタキシャル成長させている。
 ところで高抵抗単結晶シリコン基板に直接AlNバッファ層を積み、緩衝層、HEMT構造を積んだ場合、AlNの成長レートが遅く、トータルのエピタキシャル成長時間が長くなり、AlNバッファ層のAlが高抵抗単結晶シリコン基板に拡散し、低抵抗層ができチャネルを形成することがわかっている。このAlの拡散を低減する方法として、直近では3C-SiC on Siのエピ成長技術が知られている。つまり、AlN/3C-SiC/Siとして、中間層3C-SiC層を挿入する。3C-SiC層により、より簡便に効率よくAlの拡散抑止層を導入する。
 また、特許文献1では、シリコン基板と窒化アルミニウム層の間にSiNを備える半導体構造が開示されている。SiNは、反応前に形成することができる。SiNは非晶質・単一層結晶構造・多結晶を有する。非晶質の場合、その上に成長するものは、ポリ化して、エピタキシャル成長をしない。また、CVDプロセスで形成との記載もあるが、CVD薄膜(2nm)を積んでも、多結晶化してしまう。また、単一結晶構造SiNにするにしても、窒素ソースガスとしてアンモニアガスを使用することが記載されているがアンモニアを使用した場合、エピタキシャルウェーハに曇りが発生してしまう。
特表2008-522447
 本発明は上記課題を解決するためになされたもので、単結晶シリコン基板上にAlN層をエピタキシャル成長させ、その上にGaNやAlGaN層をエピタキシャル成長させた場合にAlが単結晶シリコン基板に拡散するのを防止することができる窒化物半導体基板の製造方法を提供することを目的とする。
 上記課題を解決するために、本発明では、
 成膜用基板上に窒化物半導体が形成された窒化物半導体基板の製造方法であって、
(1)単結晶シリコンからなる成膜用基板を窒素雰囲気で熱処理することで、前記成膜用基板上にシリコン窒化膜を形成する工程、
(2)前記シリコン窒化膜上にAlN膜を成長させる工程、及び
(3)前記AlN膜上にGaN膜、AlGaN膜、又はその両方を成長させる工程
を含む窒化物半導体基板の製造方法を提供する。
 このような製造方法であれば、AlN層から単結晶シリコン基板へAlが拡散するのを防止することができるとともに曇りの発生のない窒化物半導体基板を製造することができる。
 また、前記工程(1)において、前記熱処理はRTA炉で1100~1300℃で1~120秒の熱処理を行うことが好ましい。
 このような熱処理であれば、比較的容易にシリコン窒化膜を形成することができる。
 また、前記シリコン窒化膜が単結晶であることが好ましい。
 本発明では、このようなシリコン窒化膜を形成することができる。
 また本発明では、成長用基板表面のAl拡散濃度が4e15atoms/cm以下の窒化物半導体基板を製造することが好ましい。
 このように成長用基板表面へのAl拡散が抑制された窒化物半導体基板は、高周波デバイス作製において特に有用である。
 以上のように、本発明であれば、単結晶シリコン基板、特には高抵抗単結晶シリコン基板上にAlN層をエピタキシャル成長させ、その上にGaNやAlGaN層をエピタキシャル成長させた場合に、Alが単結晶シリコン基板に拡散するのを防止することができるとともに曇りの発生のない窒化物半導体基板の製造方法を提供することができる。
本発明の窒化物半導体基板の製造方法のフローの一例を示す概略図である。 実施例、及び比較例1、2において製造した窒化物半導体基板の写真である。 実施例及び比較例3で製造した窒化物半導体基板のバックサイドSIMSの測定結果である。 実施例1で製造した窒化物半導体基板の断面写真である。
 上述したように高抵抗単結晶シリコン基板上にAlNバッファ層、緩衝層、GaN-HEMT構造からなる窒化物半導体のエピタキシャル成長を行なった時にAlが高抵抗単結晶シリコン基板に拡散するのを防止する窒化物半導体基板の製造方法の開発が望まれていた。
 本発明者らが鋭意検討を重ねたところ、単結晶シリコンからなる成膜用基板に窒素雰囲気で熱処理することでシリコン窒化膜を形成する工程、シリコン窒化膜上にAlN膜を成長させる工程、AlN膜上にGaN膜、AlGaN膜、又はその両方を成長させる工程を含む窒化物半導体基板の製造方法であれば、Alが高抵抗単結晶シリコン基板に拡散するのを防止でき、かつ、曇りの発生のない窒化物半導体基板を製造できることが判り、本発明を完成させた。
 即ち、本発明は、成膜用基板上に窒化物半導体が形成された窒化物半導体基板の製造方法であって、(1)単結晶シリコンからなる成膜用基板を窒素雰囲気で熱処理することで、前記成膜用基板上にシリコン窒化膜を形成する工程、(2)前記シリコン窒化膜上にAlN膜を成長させる工程、及び(3)前記AlN膜上にGaN膜、AlGaN膜、又はその両方を成長させる工程を含む窒化物半導体基板の製造方法である。
 以下、本発明について詳細に説明するが、本発明はこれらに限定されるものではない。
[窒化物半導体基板の製造方法]
 本発明の窒化物半導体基板の製造方法は、下記工程(1)~(3)を含む。以下、図1の本発明の窒化物半導体の製造方法のフローを参照しながら、各工程について詳細に説明する。
<工程(1)>
 工程(1)は、単結晶シリコンからなる成膜用基板を窒素雰囲気で熱処理することで、成膜用基板上にシリコン窒化膜を形成する工程である。
 最初に図1(a)に示すように、単結晶シリコンからなる成膜用基板(シリコン基板)1を、RTA(Rapid Thermal Annealing)炉に入れ、窒素雰囲気下で例えば1100~1300℃で1~120秒、好ましくは1150~1250℃で2~20秒、特には1200℃10秒の熱処理を行い、表面に例えば厚さ0.2~20nm、好ましくは1~4nm、特には2nm程度のシリコン窒化膜(SiN膜)2を形成する。シリコン窒化膜2は、成膜用基板の表面側にだけ形成してもよいが、表面と裏面とを有する成膜用基板1の全体に形成することもできる。
 本発明では、特に、窒素雰囲気下でシリコン窒化膜を形成することを特徴とする。ここで窒素雰囲気とは100%窒素ガス雰囲気、又は、窒素ガスと不活性ガスの混合雰囲気のことを言う。シリコン窒化膜を形成すれば、後述のAlNバッファ層からAlが高抵抗単結晶シリコン成長用基板の表面に拡散し、低抵抗層ができるのを防止することができるが、さらに窒素雰囲気下での熱処理で形成すれば、次工程以降で、シリコン窒化膜上に曇りのない窒化物半導体のエピタキシャル層を成長させることができる。窒素雰囲気下ではなくCVDプロセスやアンモニアガス雰囲気下での熱処理によってシリコン窒化膜を形成した場合には、次工程以降で窒化物半導体を成長させる際に、シリコン窒化膜上に多結晶層が形成されたり、成長させたエピタキシャル層に曇りが発生したりする場合がある。
 単結晶シリコンからなる成膜用基板としても特に限定はされず、CZ単結晶シリコンであってもFZ単結晶シリコンであってもよいし、ドーパントの有無や種類、及び濃度についても特に制限はない。また成膜用基板は高抵抗単結晶シリコン基板であることが好ましい。抵抗率としては特に限定はされないが、下限は例えば1Ωcm以上、好ましくは10Ωcm以上、より好ましくは100Ωcm以上であり、上限は例えば3000Ωcm以下、好ましくは1000Ωcm以下、より好ましくは500Ωcm以下である。
<工程(2)>
 工程(2)は、シリコン窒化膜上にAlN膜を成長させる工程である。
 図1(b)に示すように、シリコン窒化膜2上にMOVPE法によりAlN膜(AlNバッファ層)3を例えば厚さ20~500nm、好ましくは50~300nm、より好ましくは100~200nm、特には160nmで成長させる。
<工程(3)>
 工程(3)は、AlN膜上にGaN膜、AlGaN膜、又はその両方を成長させる工程である。
 図1(c)に示すように、例えば、AlN層やGaN層からなる多層膜からなる緩衝層4、さらにGaN-HEMT層5からなる窒化物半導体をトータルで0.1~20μm、好ましくは0.5~10μm、より好ましくは1~5μm、特には2.7μm程度エピタキシャル成長させる。
 以上のようにして、シリコン窒化膜によってAlNバッファ層からAlが高抵抗単結晶シリコン成長用基板の表面に拡散し低抵抗層ができるのを防止することができ、かつ、AlNバッファ層上に成長したエピタキシャル層も曇りのない窒化物半導体基板を製造することができる。
 また本発明では、成長用基板表面のAl拡散濃度が4e15atoms/cm以下、好ましくは3e15atoms/cm以下、より好ましくは2e15atoms/cm以下の窒化物半導体基板を製造することができる。Al拡散濃度の下限値としては特に限定されないが、例えば、0atoms/cm以上、もしくは1e13atoms/cm以上とすることができる。
 成長用基板表面のAl拡散濃度の測定方法としては、例えば、二次イオン質量分析(SIMS)を用いることができる。
 以下、実施例及び比較例を用いて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例)
 直径150mm、面方位(111)、抵抗率100Ωcmの単結晶シリコン基板表面に厚さ2nmのSiN膜(RTA炉に入れ、N雰囲気1200℃10秒で表面をSiN化)を付け、その上にAlNバッファ層、緩衝層、GaN-HEMT構造をエピタキシャル成長させた。エピタキシャル成長後、ウェーハ断面を観察した様子を図4に示す。図4から判るように、シリコン基板とAlN膜の間にフラットな単一結晶SiN層が形成されていることが確認できる。電子線回折の結果、AlN層は単結晶であった。
 また、図2(a)に示すように、エピタキシャル層が鏡面成長しているのが判る。また、図3に単結晶シリコン基板の裏面側からSiN膜までのAl濃度についてバックサイドSIMSで調査した結果を示す。図3中、窒素(N)濃度が急上昇しているところが単結晶シリコン基板とその上のAlN膜との界面(シリコン窒化膜は厚さが2nmしかない)を表しており、界面直下(グラフ横軸のSIMS深さ2.3~2.7μmの辺り)では後述するSiN膜のない比較例3に比べてAl濃度が低いことが判る。
(比較例1)
 直径150mm、面方位(111)、抵抗率100Ωcmの単結晶シリコン基板表面に厚さ2nmのSiN膜(RTA炉に入れ、NH+Ar雰囲気中1175℃10秒で表面をSiN化)を付けたSi基板上にAlNバッファ層、緩衝層、GaN-HEMT構造をエピタキシャル成長させた。図2(b)に示すようにエピタキシャル層が曇り成長しているのが判る。
(比較例2)
 直径150mm、面方位(111)、抵抗率100Ωcmの単結晶シリコン基板表面に厚さ2nmのSiN膜(PE-CVD炉に入れ、SiH+NH+N雰囲気中300℃3秒で表面をSiN化)を付けたSi基板上にAlNバッファ層、緩衝層、GaN-HEMT構造をエピタキシャル成長させた。図2(c)に示すようにエピタキシャル層が曇り成長しているのが判る。
(比較例3)
 Si基板表面にSiN膜を設けることなく、Si基板表面上に直接AlNバッファ層、緩衝層、GaN-HEMT構造をエピタキシャル成長させた。図3に示すように、比較例3の窒化物半導体基板は実施例と比べてシリコン基板表面のAl濃度が高いのが判る。
 以上のように、本発明の窒化物半導体基板の製造方法であれば、単結晶シリコン基板とAlN膜の間の窒化シリコン膜を窒素雰囲気下の熱処理で形成することによって、Alが高抵抗単結晶シリコン基板に拡散するのを防止することができるとともに曇りの発生のない窒化物半導体基板を製造できることがわかる。一方、窒化シリコン膜を窒素雰囲気以外の条件を用いて形成した比較例1と比較例2ではエピタキシャル層に曇りが発生し、窒化シリコン膜を形成しない比較例3ではAlが高抵抗単結晶シリコン基板に拡散するのを防止できない。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (4)

  1.  成膜用基板上に窒化物半導体が形成された窒化物半導体基板の製造方法であって、
    (1)単結晶シリコンからなる成膜用基板を窒素雰囲気で熱処理することで、前記成膜用基板上にシリコン窒化膜を形成する工程、
    (2)前記シリコン窒化膜上にAlN膜を成長させる工程、及び
    (3)前記AlN膜上にGaN膜、AlGaN膜、又はその両方を成長させる工程
    を含むことを特徴とする窒化物半導体基板の製造方法。
  2.  前記工程(1)において、前記熱処理はRTA炉で1100~1300℃で1~120秒の熱処理を行うことを特徴とする請求項1に記載の窒化物半導体基板の製造方法。
  3.  前記シリコン窒化膜が単結晶であることを特徴とする請求項1又は請求項2に記載の窒化物半導体基板の製造方法。
  4.  成長用基板表面のAl拡散濃度が4e15atoms/cm以下の窒化物半導体基板を製造することを特徴とする請求項1から請求項3のいずれか一項に記載の窒化物半導体基板の製造方法。
PCT/JP2022/031163 2021-09-09 2022-08-18 窒化物半導体基板の製造方法 WO2023037838A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280059910.XA CN117916412A (zh) 2021-09-09 2022-08-18 氮化物半导体基板的制造方法
KR1020247007419A KR20240055746A (ko) 2021-09-09 2022-08-18 질화물 반도체기판의 제조방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021147011A JP2023039743A (ja) 2021-09-09 2021-09-09 窒化物半導体基板の製造方法
JP2021-147011 2021-09-09

Publications (1)

Publication Number Publication Date
WO2023037838A1 true WO2023037838A1 (ja) 2023-03-16

Family

ID=85507530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/031163 WO2023037838A1 (ja) 2021-09-09 2022-08-18 窒化物半導体基板の製造方法

Country Status (5)

Country Link
JP (1) JP2023039743A (ja)
KR (1) KR20240055746A (ja)
CN (1) CN117916412A (ja)
TW (1) TW202322198A (ja)
WO (1) WO2023037838A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6272118A (ja) * 1985-09-25 1987-04-02 Fujitsu Ltd 半導体装置の製造方法
JPH0864913A (ja) * 1994-08-26 1996-03-08 Rohm Co Ltd 半導体発光素子およびその製法
JP2004507071A (ja) * 1999-12-21 2004-03-04 マットソン サーマル プロダクツ インコーポレイテッド 急速熱N2処理による、Si(100)上の超薄窒化物の成長
JP2008522447A (ja) 2004-12-03 2008-06-26 ニトロネックス コーポレイション シリコン基板からなるiii族窒化物材料構造体
JP2013033887A (ja) * 2011-08-03 2013-02-14 Covalent Materials Corp 窒化物半導体基板の製造方法
JP2021072441A (ja) * 2019-10-24 2021-05-06 信越半導体株式会社 半導体基板の製造方法及び半導体基板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6272118A (ja) * 1985-09-25 1987-04-02 Fujitsu Ltd 半導体装置の製造方法
JPH0864913A (ja) * 1994-08-26 1996-03-08 Rohm Co Ltd 半導体発光素子およびその製法
JP2004507071A (ja) * 1999-12-21 2004-03-04 マットソン サーマル プロダクツ インコーポレイテッド 急速熱N2処理による、Si(100)上の超薄窒化物の成長
JP2008522447A (ja) 2004-12-03 2008-06-26 ニトロネックス コーポレイション シリコン基板からなるiii族窒化物材料構造体
JP2013033887A (ja) * 2011-08-03 2013-02-14 Covalent Materials Corp 窒化物半導体基板の製造方法
JP2021072441A (ja) * 2019-10-24 2021-05-06 信越半導体株式会社 半導体基板の製造方法及び半導体基板

Also Published As

Publication number Publication date
TW202322198A (zh) 2023-06-01
JP2023039743A (ja) 2023-03-22
CN117916412A (zh) 2024-04-19
KR20240055746A (ko) 2024-04-29

Similar Documents

Publication Publication Date Title
CN109065438B (zh) AlN薄膜的制备方法
US9437688B2 (en) High-quality GaN high-voltage HFETs on silicon
WO2000068474A1 (fr) Plaquette en sic, dispositif a semiconducteur en sic et procede de fabrication de plaquette en sic
JP7290135B2 (ja) 半導体基板の製造方法及びsoiウェーハの製造方法
WO2020129540A1 (ja) 窒化物半導体ウェーハの製造方法および窒化物半導体ウェーハ
JP4468744B2 (ja) 窒化物半導体薄膜の作製方法
CN114899099A (zh) 一种金刚石衬底上生长氮化镓高电子迁移率晶体管的外延方法
TWI699462B (zh) Iii族氮化物半導體基板的製造方法
US20140038329A1 (en) Epitaxial growth on thin lamina
JP2005032823A (ja) 電界効果トランジスタ用エピタキシャルウェハの製造方法
JP5378128B2 (ja) 電子デバイス用エピタキシャル基板およびiii族窒化物電子デバイス用エピタキシャル基板
CN116053120B (zh) 氮化物外延结构及其制备方法和应用
KR20230056686A (ko) 다이아몬드 방열판을 갖는 헤테로에피택셜 구조
WO2023037838A1 (ja) 窒化物半導体基板の製造方法
WO2022181163A1 (ja) 窒化物半導体基板およびその製造方法
WO2023132191A1 (ja) 窒化物半導体基板及びその製造方法
WO2024057698A1 (ja) 窒化物半導体層付き単結晶シリコン基板及び窒化物半導体層付き単結晶シリコン基板の製造方法
KR101517808B1 (ko) 크랙 감소를 위한 실리콘 기판 위 GaN 성장방법
CN112735943B (zh) 硅衬底上生长氮极性ⅲ族氮化物半导体薄膜的制备方法
CN116798856A (zh) SiC基GaN外延结构的制备方法及结构、HBT的制备方法及HBT
CN115148581A (zh) 一种外延片制备方法、外延片及高电子迁移率晶体管
JP2020070196A (ja) 窒化物半導体層の成長方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22867160

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280059910.X

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20247007419

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022867160

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022867160

Country of ref document: EP

Effective date: 20240409