WO2020166644A1 - フィルム及び積層体 - Google Patents

フィルム及び積層体 Download PDF

Info

Publication number
WO2020166644A1
WO2020166644A1 PCT/JP2020/005450 JP2020005450W WO2020166644A1 WO 2020166644 A1 WO2020166644 A1 WO 2020166644A1 JP 2020005450 W JP2020005450 W JP 2020005450W WO 2020166644 A1 WO2020166644 A1 WO 2020166644A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal polyester
film
group
structural unit
Prior art date
Application number
PCT/JP2020/005450
Other languages
English (en)
French (fr)
Other versions
WO2020166644A8 (ja
Inventor
昌平 莇
新治 大友
豊誠 伊藤
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019141071A external-priority patent/JP7210401B2/ja
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN202080012765.0A priority Critical patent/CN113710484B/zh
Priority to KR1020217024429A priority patent/KR20210132014A/ko
Priority to US17/429,700 priority patent/US11879041B2/en
Publication of WO2020166644A1 publication Critical patent/WO2020166644A1/ja
Publication of WO2020166644A8 publication Critical patent/WO2020166644A8/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/60Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds
    • C08G63/605Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds the hydroxy and carboxylic groups being bound to aromatic rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/60Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/386Improvement of the adhesion between the insulating substrate and the metal by the use of an organic polymeric bonding layer, e.g. adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/204Di-electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08J2367/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the hydroxy and the carboxyl groups directly linked to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0326Organic insulating material consisting of one material containing O
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0145Polyester, e.g. polyethylene terephthalate [PET], polyethylene naphthalate [PEN]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0158Polyalkene or polyolefin, e.g. polyethylene [PE], polypropylene [PP]

Definitions

  • the present invention relates to films and laminates.
  • the present application claims priority based on Japanese Patent Application No. 2019-025663 filed in Japan on February 15, 2019 and Japanese Patent Application No. 2019-141071 filed in Japan on July 31, 2019, and The contents are incorporated here.
  • Patent Document 1 describes an insulating resin composition containing an epoxy resin containing a silyl group, a curing agent, and an inorganic filler such as silica for the purpose of reducing dielectric loss.
  • An object of the present invention is to provide a film and a laminate thereof, which have suitable quality as a film for electronic parts.
  • one embodiment of the present invention is the following film and laminate.
  • thermoplastic resin The relative dielectric constant at a frequency of 1 GHz is 3 or less, The dielectric loss tangent at a frequency of 1 GHz is 0.005 or less, A film having a degree of molecular orientation (MOR) measured by a microwave orientation meter in the range of 1 to 1.1.
  • the thermoplastic resin is liquid crystal polyester, The film according to ⁇ 1>, wherein the liquid crystal polyester has a structural unit containing a naphthalene structure.
  • the content of the structural unit containing the naphthalene structure is 40 mol% or more based on 100 mol% of the total amount of the structural units in the liquid crystal polyester.
  • the liquid crystal polyester has a structural unit represented by the following formula (1), a structural unit represented by the following formula (2), and a structural unit represented by the following formula (3), ⁇ 2>> Or ⁇ 3>.
  • Ar2 and Ar3 each independently represent a 2,6-naphthalenediyl group, a 2,7-naphthalenediyl group, a 1,4-phenylene group, a 1,3-phenylene group, or a 4,4'-biphenylylene group.
  • the hydrogen atom in the group represented by Ar1, Ar2 or Ar3 may be independently substituted with a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 20 carbon atoms.
  • the linear expansion coefficient determined in a temperature range of 50 to 100° C. under a condition of a temperature rising rate of 5° C./minute is 85 ppm/° C.
  • Film. ⁇ 6> A laminate comprising a metal layer and the film according to any one of ⁇ 1> to ⁇ 5>, which is laminated on the metal layer. ⁇ 7> The laminated body according to ⁇ 6>, wherein the metal forming the metal layer is copper.
  • a film having a suitable quality as a film for electronic parts and a laminate thereof can be provided.
  • FIG. 1 is a schematic diagram showing the configuration of the film 11 of the embodiment.
  • the film of the embodiment contains a thermoplastic resin, has a relative dielectric constant of 3 or less at a frequency of 1 GHz and a dielectric loss tangent of 0.005 or less at a frequency of 1 GHz, and has a molecular orientation degree (MOR) measured by a microwave orientation meter. The value of is in the range of 1 to 1.1.
  • the film satisfying the above requirements has suitable quality as a film for electronic parts.
  • the quality standard the relative permittivity, dielectric loss tangent, degree of molecular orientation (isotropicity of film), thickness, and appearance (whether holes or through holes are generated) are considered as the quality standards.
  • the relative permittivity and dielectric loss tangent value of the film can be controlled by the type of thermoplastic resin. Further, as an example, the degree of isotropicity of the film can be controlled by the method of manufacturing the film.
  • dielectric property refers to a property relating to relative permittivity and dielectric loss tangent.
  • the film of the embodiment has a relative permittivity at a frequency of 1 GHz of 3 or less, preferably 2.9 or less, more preferably 2.8 or less, further preferably 2.7 or less, It is particularly preferably 2.6 or less.
  • the relative permittivity of the film may be 2.3 or more, 2.4 or more, and 2.5 or more.
  • the upper limit value and the lower limit value of the relative dielectric constant value of the above film can be freely combined.
  • the numerical range of the value of the relative permittivity of the film it may be 2.3 or more and 3 or less, 2.4 or more and 2.9 or less, and 2.5 or more and 2. It may be 8 or less, may be 2.5 or more and 2.7 or less, and may be 2.5 or more and 2.6 or less.
  • the film of the embodiment has a dielectric loss tangent at a frequency of 1 GHz of 0.005 or less, preferably 0.004 or less, more preferably 0.003 or less, and further preferably 0.002 or less. , 0.001 or less is particularly preferable.
  • the dielectric loss tangent of the liquid crystal polyester film may be 0.0003 or more, 0.0005 or more, and 0.0007 or more.
  • the upper limit value and the lower limit value of the dielectric loss tangent value of the above film can be freely combined.
  • An example of the numerical range of the value of the dielectric loss tangent of the above film may be 0.0003 or more and 0.005 or less, 0.0005 or more and 0.004 or less, and 0.0007 or more and 0.
  • the relative permittivity and dielectric loss tangent of the film at a frequency of 1 GHz can be measured under the following conditions by a capacitance method using an impedance analyzer. The film was melted at 350° C. using a flow tester and then cooled and solidified to prepare tablets having a diameter of 1 cm and a thickness of 0.5 cm. The relative permittivity and dielectric loss tangent at 1 GHz of the obtained tablet are measured under the following conditions.
  • -Measurement method capacitance method-electrode type: 16453A ⁇ Measurement environment: 23°C, 50%RH ⁇ Applied voltage: 1V
  • the film of the embodiment has a molecular orientation degree (MOR) value measured by a microwave orientation meter of 1 to 1.1, preferably 1 to 1.08, and preferably 1 to 1.06. Is more preferable, and the range of 1 to 1.04 is even more preferable.
  • MOR molecular orientation degree
  • the degree of molecular orientation is measured by a microwave molecular orientation meter (for example, MOA-5012A manufactured by Oji Scientific Instruments Co., Ltd.).
  • the microwave molecular orientation meter is an apparatus that utilizes the fact that the transmission intensity of microwaves differs depending on the orientation of molecules between the orientation direction and the orthogonal direction. Specifically, while rotating the sample, a microwave having a constant frequency (12 GHz is used) is irradiated, the intensity of the transmitted microwave that changes depending on the orientation of the molecule is measured, and the maximum value/minimum value Let the ratio be MOR.
  • the interaction between the microwave electric field having a constant frequency and the dipoles that compose the molecule is related to the inner product of both vectors. Due to the anisotropy of the dielectric constant of the sample, the intensity of the microwave changes depending on the angle at which the sample is arranged, and thus the degree of orientation can be known.
  • the film of the embodiment preferably has a linear expansion coefficient of 85 ppm/° C. or less, more preferably 50 ppm/° C. or less, determined in the temperature range of 50 to 100° C. under the condition of the temperature rising rate of 5° C./min. It is more preferably 40 ppm/° C. or less, still more preferably 30 ppm/° C. or less.
  • the lower limit of the linear expansion coefficient is not particularly limited, but is, for example, 0 ppm/° C. or higher.
  • the coefficient of linear expansion of the copper foil is 18 ppm/° C., and thus the film of the embodiment preferably has a coefficient of linear expansion close to that.
  • the linear expansion coefficient of the film of the embodiment is preferably 0 ppm/°C or higher and 50 ppm/°C or lower, more preferably 10 ppm/°C or higher and 40 ppm/°C or lower, and 20 ppm/°C or higher and 30 ppm/°C or lower. It is more preferable that there is.
  • the linear expansion coefficient differs depending on the direction and site of the film, the higher value is adopted as the linear expansion coefficient of the film.
  • the linear expansion coefficient of the film can be measured by using a thermomechanical analyzer (for example, manufactured by Rigaku Corporation, model: TMA8310).
  • the film of the embodiment satisfying the above numerical range has a low linear expansion coefficient and high dimensional stability.
  • a film having excellent isotropy has a small difference in linear expansion coefficient depending on the measuring direction.
  • the difference between the linear expansion coefficient of MD and the linear expansion coefficient of TD is 2 ppm/ C. or less is preferable, and 1 ppm/° C. or less is more preferable.
  • MD is the coating direction of the dispersion liquid.
  • MD is set in any direction of the film and 90
  • the directions may be set so that the difference between the linear expansion coefficients in each direction becomes the largest.
  • the film of the embodiment satisfying the above numerical range is excellent in isotropic linear expansion and has high dimensional stability in the machine direction and the transverse direction.
  • the film of the embodiment preferably has no holes or through holes as a suitable appearance as a film for electronic parts. If it has holes or through holes, the plating solution may penetrate into the holes or through holes during plating.
  • the liquid crystal polyester film produced by using the liquid crystal polyester powder of the embodiment as a raw material has a thickness suitable for an electronic component film, and is a high quality product in which generation of holes or through holes is suppressed.
  • the thickness of the film of the embodiment is not particularly limited, but a suitable thickness for a film for electronic parts is preferably 5 to 50 ⁇ m, more preferably 7 to 40 ⁇ m.
  • the thickness is more preferably up to 33 ⁇ m, particularly preferably 15 to 20 ⁇ m.
  • the “thickness” is an average value of the values obtained by measuring the thickness at 10 randomly selected locations according to JIS standard (K7130-1992).
  • thermoplastic resin a film with excellent dielectric properties can be obtained by selecting a raw material resin with excellent dielectric properties from any thermoplastic resin.
  • the content ratio of the thermoplastic resin with respect to 100% by mass of the film of the embodiment may be 50 to 100% by mass, or 80 to 95% by mass.
  • thermoplastic resin examples include polypropylene, polyamide, polyester, polysulfone, polyphenylene sulfide, polyether ketone, polycarbonate, polyphenylene ether, and polyetherimide.
  • liquid crystal polyester is preferable as the thermoplastic resin.
  • a film containing liquid crystal polyester will be referred to as a "liquid crystal polyester film”.
  • the content ratio of the liquid crystal polyester with respect to 100% by mass of the total film of the embodiment may be 50 to 100% by mass, or 80 to 95% by mass.
  • details of the liquid crystal polyester that may be included in the film of the embodiment will be described.
  • the liquid crystal polyester is a liquid crystal polyester that exhibits liquid crystallinity in a molten state, and is preferably one that melts at a temperature of 450° C. or lower.
  • the liquid crystal polyester may be liquid crystal polyester amide, liquid crystal polyester ether, liquid crystal polyester carbonate, or liquid crystal polyester imide.
  • the liquid crystal polyester is preferably a wholly aromatic liquid crystal polyester having only a structural unit derived from an aromatic compound as a raw material monomer.
  • “origin” means that the raw material monomer is polymerized, so that the chemical structure of the functional group contributing to the polymerization is changed and other structural changes are not caused.
  • liquid crystal polyester 1) (i) an aromatic hydroxycarboxylic acid, (ii) an aromatic dicarboxylic acid, and (iii) at least one compound selected from the group consisting of an aromatic diol, an aromatic hydroxyamine and an aromatic diamine. Polymerized (polycondensed). 2) A compound obtained by polymerizing a plurality of aromatic hydroxycarboxylic acids. 3) A compound obtained by polymerizing (i) an aromatic dicarboxylic acid and (ii) at least one compound selected from the group consisting of an aromatic diol, an aromatic hydroxyamine and an aromatic diamine.
  • a product obtained by polymerizing (i) a polyester such as polyethylene terephthalate and (ii) an aromatic hydroxycarboxylic acid.
  • a polyester such as polyethylene terephthalate
  • an aromatic hydroxycarboxylic acid the aromatic hydroxycarboxylic acid, the aromatic dicarboxylic acid, the aromatic diol, the aromatic hydroxyamine and the aromatic diamine each independently have a polymerizable derivative thereof in place of part or all thereof. Good.
  • Examples of the polymerizable derivative of a compound having a carboxy group such as aromatic hydroxycarboxylic acid and aromatic dicarboxylic acid include those obtained by converting a carboxy group into an alkoxycarbonyl group or an aryloxycarbonyl group (ester), carboxy. Examples thereof include those obtained by converting a group into a haloformyl group (acid halide) and those obtained by converting a carboxy group into an acyloxycarbonyl group (acid anhydride).
  • Examples of the polymerizable derivative of a compound having a hydroxy group such as aromatic hydroxycarboxylic acid, aromatic diol, and aromatic hydroxyamine include those obtained by acylating a hydroxy group to convert it into an acyloxy group (acylated product). Is mentioned.
  • Examples of the polymerizable derivative of a compound having an amino group such as aromatic hydroxyamine and aromatic diamine include those obtained by acylating an amino group to convert it into an acylamino group (acyl derivative).
  • the liquid crystal polyester preferably has a structural unit containing a divalent aromatic hydrocarbon group.
  • a liquid crystal polyester having a structural unit containing a divalent aromatic hydrocarbon group Those having a structural unit represented by the following formula (1), a structural unit represented by the following formula (2), and a structural unit represented by the following formula (3), or represented by the following formula (2) A structural unit and a structural unit represented by the following formula (3), Are listed. (1)-O-Ar 1 -CO- (2)-CO-Ar 2 -CO- (3)-O-Ar 3 -O- (Ar 1 , Ar 2 and Ar 3 each independently represent a divalent aromatic hydrocarbon group.
  • the hydrogen atom in the group represented by Ar 1 , Ar 2 or Ar 3 is independently substituted with a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 20 carbon atoms. Good. )
  • Examples of the divalent aromatic hydrocarbon group for Ar 1 , Ar 2 and Ar 3 include a phenylene group, a naphthylene group and a biphenylylene group.
  • examples of the halogen atom in Ar 1 , Ar 2 and Ar 3 include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, n-hexyl group, 2-ethylhexyl group, Examples thereof include n-octyl group and n-decyl group, and the carbon number thereof is usually 1-10.
  • aryl group examples include a phenyl group, an o-tolyl group, an m-tolyl group, a p-tolyl group, a 1-naphthyl group, a 2-naphthyl group and the like, and the number of carbon atoms thereof is usually 6 to 20. is there.
  • the hydrogen atom is substituted with these groups, the number thereof is, independently for each group represented by Ar 1 , Ar 2 or Ar 3 , usually 2 or less, preferably 1 It is the following.
  • the liquid crystal polyester more preferably has a structural unit containing a naphthalene structure.
  • Examples of the liquid crystal polyester having a structural unit containing a divalent naphthalene structure include: Those having a structural unit represented by the following formula (1), a structural unit represented by the following formula (2), and a structural unit represented by the following formula (3), or represented by the following formula (2) A structural unit and a structural unit represented by the following formula (3), Are listed.
  • Ar 1 , Ar 2 and Ar 3 each independently represent a divalent aromatic hydrocarbon group (provided that at least one of the plurality of Ar 1 , Ar 2 and Ar 3 is a naphthylene group).
  • the hydrogen atom in the group represented by Ar 1 , Ar 2 or Ar 3 is independently substituted with a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 20 carbon atoms. Good. ]
  • Ar 1 , Ar 2 and Ar 3 each independently represent a naphthylene group or a phenylene group (provided that at least one of a plurality of Ar 1 , Ar 2 and Ar 3 is a naphthylene group). Good.
  • the liquid crystal polyester has a structural unit represented by the above formula (1), a structural unit represented by the above formula (2), and a structural unit represented by the above (3), and there are a plurality of Ar 1 and Ar 2.
  • Ar 3 and Ar 3 is a naphthylene group
  • the liquid crystal polyester has a structural unit represented by the above formula (2) and a structural unit represented by the above formula (3) and at least one of a plurality of Ar 2 and Ar 3 is a naphthylene group
  • At least one of a plurality of Ar 2 is preferably a naphthylene group.
  • the naphthylene group in Ar 1 , Ar 2 and Ar 3 is preferably a 2,6-naphthalenediyl group or a 2,7-naphthalenediyl group, and more preferably a 2,6-naphthalenediyl group.
  • the content of structural units containing a naphthalene structure in the liquid crystal polyester is 100 mol% of the total amount of all structural units in the liquid crystal polyester (the mass of each structural unit constituting the liquid crystal polyester is divided by the formula weight of each structural unit).
  • the amount of substance (mol) corresponding to each structural unit is calculated by the above, and it is preferably 40 mol% or more, more preferably 50 mol% or more, and 60 mol% or more with respect to the total value). Is more preferable.
  • the content of the structural unit containing a naphthalene structure is at least the above lower limit value, the relative dielectric constant of the liquid crystal polyester can be further reduced.
  • the content of the structural unit containing a naphthalene structure in the liquid crystal polyester is preferably 90 mol% or less, more preferably 80 mol% or less based on 100 mol% of the total amount of all structural units in the liquid crystal polyester. preferable.
  • the content of the structural unit containing a naphthalene structure is at most the above upper limit, the reaction stability during production of the liquid crystal polyester can be ensured.
  • An example of the numerical range of the value of the content of the structural unit containing the naphthalene structure may be 40 mol% or more and 90 mol% or less, or 50 mol% or more and 80 mol% or less, 60 It may be not less than mol% and not more than 80 mol%.
  • the liquid crystal polyester contains the structural unit represented by the above formula (2) and the structural unit represented by the above formula (3) among the structural units represented by the above formulas (1) to (3). Alternatively, it may have all kinds of structural units represented by the above formulas (1) to (3).
  • the liquid crystal polyester is composed of the structural unit represented by the above formula (2) and the structural unit represented by the above formula (3) among the structural units represented by the above formulas (1) to (3). It may be composed of all types of structural units represented by the above formulas (1) to (3).
  • Examples of the liquid crystal polyester having the structural units represented by the above formulas (1) to (3) include, for example, structural units represented by the following formula (1), structural units represented by the following formula (2), and Examples thereof include those having a structural unit represented by the formula (3).
  • the hydrogen atom in the group represented by Ar 1 , Ar 2 or Ar 3 is independently substituted with a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 20 carbon atoms. Good. )
  • the above liquid crystal polyester includes the following liquid crystal polyester.
  • a liquid crystal polyester having a structural unit represented by the following formula (1), a structural unit represented by the following formula (2), and a structural unit represented by the following formula (3).
  • Ar 2 and Ar 3 each independently represent a 2,6-naphthalenediyl group, a 2,7-naphthalenediyl group, a 1,4-phenylene group, a 1,3-phenylene group, or a 4,4′-biphenylylene group.
  • the hydrogen atom in the group represented by Ar 1 , Ar 2 or Ar 3 is independently substituted with a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 20 carbon atoms. Good. )
  • Examples of the liquid crystal polyester having the structural units represented by the above formulas (1) to (3) include, for example, structural units represented by the following formula (1), structural units represented by the following formula (2), and Examples thereof include those having a structural unit represented by the formula (3).
  • the hydrogen atom in the group represented by Ar 1 , Ar 2 or Ar 3 is independently substituted with a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 20 carbon atoms. Good. )
  • liquid crystal polyester has all kinds of structural units represented by the above formulas (1) to (3), a preferable content ratio of each structural unit in the liquid crystal polyester can be exemplified as follows.
  • the content ratio of the structural unit (1) in the liquid crystal polyester is preferably 30 mol% or more and 80 mol% or less, and 40 mol% or more and 70 mol% with respect to 100 mol% of the total amount of all the structural units in the liquid crystal polyester. The following is more preferable, and 45 mol% or more and 65 mol% or less is further preferable.
  • the ratio of the content of the structural unit (2) in the liquid crystal polyester is preferably 10 mol% or more and 35 mol% or less, and 15 mol% or more and 30 mol% or less based on 100 mol% of the total amount of all the structural units in the liquid crystal polyester. It is more preferably not more than mol%, further preferably not less than 17.5 mol% and not more than 27.5 mol%.
  • the content ratio of the structural unit (3) in the liquid crystal polyester is preferably 10 mol% or more and 35 mol% or less, and 15 mol% or more and 30 mol% or less with respect to 100 mol% of the total amount of all the structural units in the liquid crystal polyester. It is more preferably not more than mol%, further preferably not less than 17.5 mol% and not more than 27.5 mol%. Further, the content of the structural unit (2) and the content of the structural unit (3) in the liquid crystal polyester are preferably equal, but when the content is different, the structural unit (2) and the structural unit (3) are different. The difference in the content of is preferably 5 mol% or less.
  • the content of the structural unit (1) in which Ar 1 is a 2,6-naphthalenediyl group (for example, a structural unit derived from 2-hydroxy-6-naphthoic acid) Is preferably 40 mol% or more and 74.8 mol% or less, more preferably 40 mol% or more and 64.5 mol% or less, and 50 mol% or more 58% based on the total amount of all structural units in the liquid crystal polyester. It is more preferably not more than mol %.
  • the content ratio of the structural unit (2) in which Ar 2 is a 2,6-naphthalenediyl group is the whole structure in the liquid crystalline polyester.
  • the total amount of units is preferably 10.0 mol% or more and 35 mol% or less, more preferably 12.5 mol% or more and 30 mol% or less, and further preferably 15 mol% or more and 25 mol% or less.
  • the content ratio of the structural unit (2) in which Ar 2 is a 1,4-phenylene group is equal to the total amount of all structural units in the liquid crystal polyester.
  • it is preferably 0.2 mol% or more and 15 mol% or less, more preferably 0.5 mol% or more and 12 mol% or less, still more preferably 2 mol% or more and 10 mol% or less.
  • the content ratio of the structural unit (3) in which Ar 3 is a 1,4-phenylene group is such that the content ratio of the structural units (3) to the total amount of all structural units in the liquid crystal polyester is 12.5 mol% or more and 30 mol% or less is preferable, 17.5 mol% or more and 30 mol% or less is more preferable, and 20 mol% or more and 25 mol% or less is further preferable.
  • the content of the structural unit (2) in which Ar 2 is a 2,6-naphthalenediyl group is such that the content of Ar 2 is a 2,6-naphthalenediyl group and the content of Ar 2 is 1,4-
  • the content of structural units derived from 2,6-naphthalenedicarboxylic acid relative to the total amount of phenylene groups is less than that of structural units derived from 2,6-naphthalenedicarboxylic acid and structural units derived from terephthalic acid.
  • the amount is preferably 0.5 times or more, and more preferably 0.6 times or more the total amount.
  • the compounding ratio of each structural unit to 100 mol% of the total amount of all the structural units in the liquid crystal polyester is 100% by mol of the total amount of all the structural units derived from the aromatic compound in the liquid crystal polyester. Good. The sum of the content ratios of the above structural units of the liquid crystal polyester does not exceed 100 mol %.
  • the liquid crystal polyester of the embodiment can be produced, for example, by melt-polycondensing each monomer that provides a structural unit. At that time, as each of the above-mentioned monomers, it is preferable to use an ester-forming derivative thereof in order to accelerate the melt polycondensation.
  • ester-forming derivative in the case of a compound having a carboxyl group such as aromatic hydroxycarboxylic acid or aromatic dicarboxylic acid, a compound in which a carboxyl group is converted to a haloformyl group, a carboxyl group is an acyloxycarbonyl group. Examples thereof include those converted into a group and those converted from a carboxyl group into an alkoxycarbonyl group or an aryloxycarbonyl group.
  • a compound having a hydroxyl group such as an aromatic hydroxycarboxylic acid or an aromatic diol
  • a compound in which the hydroxyl group is converted into an acyloxy group can be mentioned.
  • those in which a hydroxyl group is converted to an acyloxy group are preferably used, that is, as the ester-forming derivative of an aromatic hydroxycarboxylic acid, an aromatic acyloxycarboxylic acid obtained by acylating the hydroxyl group is preferably used.
  • an aromatic diacyloxy compound in which the hydroxyl group is acylated is preferably used.
  • the acylation is preferably acetylation with acetic anhydride, and the ester-forming derivative by this acetylation can be deacetic acid polycondensed.
  • Melt polymerization may be carried out in the presence of a catalyst, and examples of this catalyst include magnesium acetate, stannous acetate, tetrabutyl titanate, lead acetate, sodium acetate, potassium acetate, and metal compounds such as antimony trioxide. And nitrogen-containing heterocyclic compounds such as 4-(dimethylamino)pyridine and 1-methylimidazole, and nitrogen-containing heterocyclic compounds are preferably used.
  • the melt polymerization may be further solid-phase polymerized, if necessary.
  • the liquid crystal polyester of the above embodiment may be contained in an amount of more than 70% by mass and 100% by mass or less based on 100% by mass of the liquid crystal polyester contained in the film. It may be contained in an amount of up to 100% by mass.
  • the liquid crystal polyester include those exemplified as the liquid crystal polyester powder of the above-described embodiment.
  • the liquid crystal polyesters of the above 1) to 4 the structural unit represented by the above formula (1), and the above formula (2) ), a structural unit represented by the above formula (3), or a structural unit represented by the above formula (2) and a structural unit represented by the above formula (3). It is a liquid crystal polyester having.
  • the film of the embodiment contains a thermoplastic resin, has a relative dielectric constant of 3 or less at a frequency of 1 GHz and a dielectric loss tangent of 0.005 or less at a frequency of 1 GHz, and has a molecular orientation degree (MOR) measured by a microwave orientation meter.
  • Film having a value of 1 to 1.1 (however, when liquid crystal polyester is included as the thermoplastic resin, the content of the liquid crystal polyester soluble in an aprotic solvent is based on 100% by mass of the liquid crystal polyester). Is less than 5% by weight).
  • the film of the embodiment contains a thermoplastic resin, has a relative dielectric constant of 3 or less at a frequency of 1 GHz and a dielectric loss tangent of 0.005 or less at a frequency of 1 GHz, and has a molecular orientation degree (MOR) measured by a microwave orientation meter.
  • MOR molecular orientation degree
  • the liquid crystalline polyester soluble in an aprotic solvent may be 4-hydroxyacetaminophen or a liquid crystalline polyester containing a structural unit derived from it.
  • the liquid crystalline polyester soluble in an aprotic solvent is a liquid crystal composed of a structural unit derived from 6-hydroxy-2-naphthoic acid, a structural unit derived from 4-hydroxyacetaminophen, and a structural unit derived from isophthalic acid. It may be polyester.
  • Liquid crystal polyesters soluble in aprotic solvents include 6-hydroxy-2-naphthoic acid (5.0 mol), 4-hydroxyacetaminophen (2.5 mol), isophthalic acid (2.5 mol), It may be a liquid crystal polyester which is a polymer obtained by reacting a mixture of styrene and acetic anhydride (8.4 mol).
  • liquid crystal polyester soluble in an aprotic solvent will be described below.
  • the component (X) is a liquid crystalline polyester soluble in an aprotic solvent.
  • “soluble in an aprotic solvent” can be confirmed by conducting the following test.
  • a liquid crystalline polyester is stirred in an aprotic solvent at a temperature of 120°C to 180°C for 1 hour to 6 hours, and then cooled to room temperature (23°C). Then, after filtration using a 5 ⁇ m membrane filter and a pressure type filter, the residue on the membrane filter is confirmed. At this time, when solid matter is not confirmed, it is determined to be soluble in an aprotic solvent. More specifically, 1 part by mass of the liquid crystalline polyester is stirred in 99 parts by mass of an aprotic solvent at 140° C. for 4 hours and then cooled to 23° C. Then, after filtration using a 5 ⁇ m membrane filter and a pressure type filter, the residue on the membrane filter is confirmed. At this time, when solid matter is not confirmed, it is determined to be soluble in an aprotic solvent.
  • the liquid crystalline polyester (X) preferably contains structural units represented by the following formulas (X1), (X2) and (X3) as structural units.
  • the content of the structural unit represented by the formula (X1) is 30 to 80 mol% with respect to the total content of all the structural units constituting the component (X), and is represented by the formula (X2).
  • the content of the structural unit is 35 to 10 mol %
  • the content of the structural unit represented by the formula (X3) is 35 to 10 mol %.
  • the total content of the structural unit represented by the formula (X1), the structural unit represented by the formula (X2) and the structural unit represented by the formula (X3) does not exceed 100 mol %.
  • Ar1 represents a 1,4-phenylene group, a 2,6-naphthalenediyl group, or a 4,4′-biphenylene group.
  • Ar2 represents a 1,4-phenylene group or a 1,3-phenylene group.
  • Ar3 represents a 1,4-phenylene group or a 1,3-phenylene group, X is —NH—, and Y is —O— or NH—.
  • the structural unit (X1) is a structural unit derived from an aromatic hydroxycarboxylic acid
  • the structural unit (X2) is a structural unit derived from an aromatic dicarboxylic acid
  • the structural unit (X3) is an aromatic diamine or an aromatic compound having a phenolic hydroxyl group. It is a structural unit derived from a group amine.
  • an ester- or amide-forming derivative of the above-mentioned structural unit may be used instead of the above-mentioned structural unit.
  • Ar1 is a 2,6-naphthalenediyl group
  • Ar2 is a 1,3-phenylene group
  • Ar3 is a 1,4-phenylene group
  • Y is -O-.
  • Examples of the ester-forming derivative of a carboxylic acid include those in which a carboxy group is a derivative having high reaction activity such as an acid chloride and an acid anhydride, which promotes a reaction to form a polyester, and a carboxy group. Examples thereof include those which form an ester with alcohols, ethylene glycol, etc., which produce polyester by a transesterification reaction. Examples of the ester-forming derivative of the phenolic hydroxyl group include those in which the phenolic hydroxyl group forms an ester with carboxylic acids. Examples of the amide-forming derivative of the amino group include those in which the amino group forms an amide with carboxylic acids.
  • repeating structural unit of the component (X) used in this embodiment the following can be exemplified, but the repeating structural unit is not limited thereto.
  • Examples of the structural unit represented by the formula (X1) include structural units derived from p-hydroxybenzoic acid, 6-hydroxy-2-naphthoic acid or 4′-hydroxy-4-biphenylcarboxylic acid, and the like, Two or more kinds of the structural units may be contained in all structural units. Among these structural units, it is preferable to use the component (X) containing a structural unit derived from 6-hydroxy-2-naphthoic acid.
  • the content of the structural unit (X1) is 30 mol% or more and 80 mol% or less, and 40 mol% or more and 70 mol% or less with respect to the content of all structural units constituting the component (X). It is more preferably 45 mol% or more and 65 mol% or less.
  • the solubility in a solvent tends to be significantly reduced, and when the amount is too small, the liquid crystallinity tends to be lost. That is, when the content of the structural unit (X1) is within the above range, the solubility in a solvent is good and the liquid crystallinity is easily exhibited.
  • Examples of the structural unit represented by the formula (X2) include structural units derived from terephthalic acid, isophthalic acid, or 2,6-naphthalenedicarboxylic acid, and two or more kinds of the structural units are included in all structural units. May be included in. Among these structural units, it is preferable to use a liquid crystalline polyester containing a structural unit derived from isophthalic acid from the viewpoint of solubility in a solvent.
  • the content of the structural unit (X2) is preferably 10 mol% or more and 35 mol% or less, more preferably 15 mol% or more and 30 mol% or less, based on the content of all structural units constituting the component (X). It is particularly preferably 17.5 mol% or more and 27.5 mol% or less.
  • the amount of the structural unit (X2) is too large, the liquid crystallinity tends to decrease, and if it is too small, the solubility in a solvent tends to decrease. That is, when the content of the structural unit (X2) is within the above range, the liquid crystallinity is good and the solubility in the solvent is also good.
  • Examples of the structural unit represented by the formula (X3) include 3-aminophenol, 4-aminophenol, 1,4-phenylenediamine, and structural units derived from 1,3-phenylenediamine.
  • the above structural unit may be contained in all structural units.
  • the content of the structural unit (X3) is preferably 10 mol% or more and 35 mol% or less, more preferably 15 mol% or more and 30 mol% or less, based on the content of all structural units constituting the component (X). It is particularly preferably 17.5 mol% or more and 27.5 mol% or less. If the amount of the structural unit (3) is too large, the liquid crystallinity tends to decrease, and if it is too small, the solubility in a solvent tends to decrease. That is, when the content of the structural unit (X3) is within the above range, the liquid crystallinity becomes good and the solubility in the solvent becomes good.
  • the structural unit (X3) is preferably used in substantially the same amount as the structural unit (X2), but the content of the structural unit (X3) is -10 to +10 mol relative to the content of the structural unit (X2). By setting it as %, the degree of polymerization of the liquid crystalline polyester can be controlled.
  • the method for producing the component (X) according to this embodiment is not particularly limited, but, for example, an aromatic hydroxy acid corresponding to the structural unit (X1) and an aromatic amine having a phenolic hydroxyl group corresponding to the structural unit (X3).
  • the amount of the fatty acid anhydride added is preferably 1.0 to 1.2 times, and more preferably 1.05 to 1 times, the total amount of the phenolic hydroxyl group and the amino group. 1 times equivalent. If the amount of the fatty acid anhydride added is too small, the acylate or the raw material monomer will sublimate during transesterification/amide exchange (polycondensation), and the reaction system will tend to be clogged. The coloration of the volatile polyester tends to be remarkable.
  • the amount of the fatty acid anhydride added is within the above range, the reaction of the acylated product or the raw material monomer during the transesterification/amide exchange (polycondensation) is good, and the resulting liquid crystalline polyester may be too colored. Absent.
  • the acylation reaction is preferably carried out at 130 to 180° C. for 5 minutes to 10 hours, and more preferably at 140 to 160° C. for 10 minutes to 3 hours.
  • the fatty acid anhydride used in the acylation reaction is not particularly limited, and examples thereof include acetic anhydride, propionic anhydride, butyric anhydride, isobutyric anhydride, valeric anhydride, pivalic anhydride, -2 ethylhexanoic anhydride, and monochloroanhydride.
  • acetic anhydride, propionic anhydride, butyric anhydride, or isobutyric anhydride is preferable, and acetic anhydride is more preferable.
  • the acyl group of the acylated product is preferably 0.8 to 1.2 times equivalent to the carboxyl group.
  • Transesterification/amide exchange (polycondensation) is preferably performed while raising the temperature to 400° C. at a rate of 0.1 to 50° C./min, and raising it to 350° C. at a rate of 0.3 to 5° C./min. However, it is more preferable to do so.
  • the by-produced fatty acid and the unreacted fatty acid anhydride are preferably distilled out of the system by evaporating.
  • the acylation reaction and the ester exchange/amide exchange (polycondensation) may be carried out in the presence of a catalyst.
  • a catalyst those conventionally known as catalysts for polymerization of polyester can be used, for example, magnesium acetate, stannous acetate, tetrabutyl titanate, lead acetate, sodium acetate, potassium acetate, antimony trioxide, etc. Examples thereof include metal salt catalysts, organic compound catalysts such as N,N-dimethylaminopyridine, N-methylimidazole, and the like.
  • heterocyclic compounds containing at least two nitrogen atoms such as N,N-dimethylaminopyridine and N-methylimidazole are preferably used (see JP-A-2002-146003).
  • the catalyst is usually added at the time of introducing the monomers, and it is not always necessary to remove it even after the acylation. When the catalyst is not removed, transesterification can be performed as it is.
  • melt polymerization Polycondensation by transesterification/amide exchange is usually carried out by melt polymerization, but melt polymerization and solid phase polymerization may be used in combination.
  • the solid phase polymerization is preferably carried out by a known solid phase polymerization method after extracting the polymer from the melt polymerization step and then pulverizing it into powder or flakes. Specifically, for example, a method of performing heat treatment in a solid state at 20 to 350° C. for 1 to 30 hours in an inert atmosphere such as nitrogen can be mentioned.
  • the solid phase polymerization may be carried out with stirring or in a stationary state without stirring.
  • the melt polymerization tank and the solid-phase polymerization tank can be the same reaction tank by providing an appropriate stirring mechanism.
  • the obtained liquid crystalline polyester may be pelletized and molded by a known method. Moreover, you may grind by a well-known method.
  • the liquid crystalline polyester can be produced using, for example, a batch device or a continuous device.
  • the volume average particle diameter is preferably 100 to 2000 ⁇ m.
  • the volume average particle size of the powdery liquid crystalline polyester (X) can be measured by a dry sieving method (for example, RPS-105 manufactured by Seishin Enterprise Co., Ltd.).
  • the content of the component (X) is preferably 5 to 10 mass% with respect to the total mass of the liquid crystalline polyester liquid composition.
  • the temperature was raised from 150° C. to 300° C. over 5 hours, and the temperature was maintained at 300° C. for 30 minutes. 23° C.).
  • the obtained solid matter can be crushed with a crusher to obtain a powdery liquid crystalline polyester (X-1).
  • the liquid crystal polyester (X-1) may have a flow starting temperature of 193.3°C.
  • the liquid crystalline polyester (X-1) was heated from room temperature (23° C.) to 160° C. in 2 hours and 20 minutes in a nitrogen atmosphere, and then heated from 160° C. to 180° C. in 3 hours and 20 minutes, By holding at 180° C. for 5 hours, solid phase polymerization is carried out, then cooled to 23° C., and then pulverized by a pulverizer to obtain a liquid crystalline polyester (X-2) in powder form.
  • the flow starting temperature of the liquid crystalline polyester (X-2) may be 220°C.
  • the liquid crystalline polyester (X-2) was heated from room temperature to 180° C. in 1 hour and 25 minutes in a nitrogen atmosphere, then from 180° C. to 255° C. in 6 hours and 40 minutes, and at 255° C. for 5 hours.
  • the liquid crystalline polyester (X) having a volume average particle size of 871 ⁇ m can be obtained by solid phase polymerization and then cooling to 23° C.
  • the volume average particle diameter of the liquid crystalline polyester (X) is measured by RPS-105 manufactured by Seishin Enterprise Co., Ltd.
  • the liquid crystal polyester (X) may have a flow starting temperature of 302°C.
  • the method for producing the film of the embodiment is not particularly limited, but the film of the embodiment can be produced by ⁇ Method of producing film>> described below.
  • ⁇ Method of producing film>> one embodiment using a liquid crystal polyester as a raw material is described in detail.
  • the liquid crystal polyester can be read as an arbitrary thermoplastic resin so that any thermoplastic resin can be used.
  • the film of the embodiment including the resin may be manufactured.
  • a film having excellent isotropic property can be manufactured.
  • the film of the embodiment can be suitably used for film applications for electronic parts such as printed wiring boards.
  • the film of the embodiment can be provided as a substrate (for example, a flexible substrate), a laminated board (for example, a flexible copper clad laminated board), a printed board, a printed wiring board, a printed circuit board, or the like, which is provided with it as an insulating material. ..
  • the method for producing a film of the embodiment includes coating a resin composition on a support and heat-treating it to obtain a film containing a thermoplastic resin.
  • the resin composition of the embodiment contains a resin powder and a medium. Details of the resin composition, resin powder and medium will be described later.
  • the thermoplastic resin is preferably liquid crystal polyester. Hereinafter, an embodiment using liquid crystal polyester as the thermoplastic resin will be described.
  • the method for producing a film of the embodiment includes coating a liquid crystal polyester composition on a support and subjecting it to heat treatment to obtain a liquid crystal polyester film containing liquid crystal polyester (hereinafter, referred to as “method for producing liquid crystal polyester film”). That).
  • the manufacturing method may include the following steps.
  • a step of applying the liquid crystal polyester composition according to the embodiment on a support to form a precursor of a liquid crystal polyester film on the support (application step).
  • a step of heat-treating the precursor of the liquid crystal polyester film to obtain a liquid crystal polyester film heat treatment step).
  • the coating step in the method for producing a liquid crystal polyester film includes a step of coating the liquid crystal polyester composition according to the embodiment on a support and then removing the medium from the coated liquid crystal polyester composition (drying step). You may stay. That is, the method for producing a liquid crystal polyester film of the embodiment, on a support, the liquid crystal polyester composition according to the embodiment is applied, the medium is removed from the applied liquid crystal polyester composition, and heat treatment is performed to obtain a liquid crystal polyester. It may include obtaining a liquid crystal polyester film containing.
  • the method for producing a liquid crystal polyester film may further include a step of separating the support from the laminate (separation step). Since the liquid crystal polyester film can be suitably used as a film for electronic parts even when it is formed as a laminate on a support, the separation step is not an essential step in the manufacturing process of the liquid crystal polyester film.
  • FIG. 3 is a schematic view showing an example of a manufacturing process of the liquid crystal polyester film and the laminate of the embodiment.
  • the liquid crystal polyester composition 30 is applied onto the support 12 (FIG. 3(a) applying step).
  • the liquid crystal polyester composition 30 includes the liquid crystal polyester powder 1 and the medium 3.
  • the liquid crystal polyester liquid composition can be applied onto the support by a method such as a roller coating method, a dip coating method, a spray coating method, a spinner coating method, a curtain coating method, a slot coating method, and a screen printing method.
  • a method capable of applying a smooth and even surface on the support can be appropriately selected.
  • an operation of stirring the liquid crystal polyester composition may be performed before coating.
  • the support 12 preferably has a plate shape, a sheet shape, or a film shape, and examples thereof include a glass plate, a resin film, and a metal foil.
  • a resin film or a metal foil is preferable, and a copper foil is particularly preferable because it has excellent heat resistance, is easy to apply the liquid composition, and is easily removed from the liquid crystal polyester film.
  • Examples of commercially available polyimide (PI) films include "U-Pyrex S" and "U-Pyrex R" from Ube Industries, Ltd., “Kapton” from Toray DuPont Co., Ltd., and “Kapton” from SKC Kolon PI. "IF30", “IF70” and “LV300” are mentioned.
  • the thickness of the resin film is preferably 25 ⁇ m or more and 75 ⁇ m or less, more preferably 50 ⁇ m or more and 75 ⁇ m or less.
  • the thickness of the metal foil is preferably 3 ⁇ m or more and 75 ⁇ m or less, more preferably 5 ⁇ m or more and 30 ⁇ m or less, and further preferably 10 ⁇ m or more and 25 ⁇ m or less.
  • the medium 3 is removed from the liquid crystal polyester composition 30 applied on the support 12 (FIG. 3(b) drying step).
  • the liquid crystal polyester composition from which the medium 3 has been removed becomes the liquid crystal polyester film precursor 40 that is the target of the heat treatment.
  • the medium 3 does not have to be completely removed from the liquid crystal polyester composition, and a part of the medium contained in the liquid crystal polyester composition may be removed or the entire medium may be removed.
  • the proportion of the solvent contained in the liquid crystal polyester film precursor 40 is preferably 50 mass% or less, more preferably 3 mass% or more and 12 mass% or less, based on the total mass of the liquid crystal polyester film precursor, It is more preferable that the content is 5% by mass or more and 10% by mass or less.
  • the content of the solvent in the liquid crystal polyester film precursor is at least the above lower limit, the risk that the thermal conductivity of the liquid crystal polyester film will decrease is reduced. Further, when the solvent content in the liquid crystal polyester film precursor is not more than the above upper limit, the risk of the appearance of the liquid crystal polyester film being deteriorated due to foaming during heat treatment is reduced.
  • the removal of the medium is preferably performed by evaporating the medium. Examples of the method include heating, decompression and ventilation, and these may be combined.
  • the medium may be removed by a continuous method or a single-wafer method. From the viewpoint of productivity and operability, the removal of the medium is preferably performed by continuous heating, and more preferably by continuous heating while heating.
  • the temperature for removing the medium is preferably a temperature below the melting point of the liquid crystal polyester powder, and is, for example, 40° C. or higher and 200° C. or lower, preferably 60° C. or higher and 200° C.
  • the time for removing the medium is appropriately adjusted, for example, so that the medium content in the liquid crystal polyester film precursor is 3 to 12% by mass.
  • the time for removing the medium is, for example, 0.2 hours or more and 12 hours or less, preferably 0.5 hours or more and 8 hours or less.
  • the laminate precursor 22 having the support 12 and the liquid crystal polyester film precursor 40 thus obtained is heat-treated to form the support 12 and the liquid crystal polyester film 10 (a film obtained by heat-treating the liquid crystal polyester film precursor 40).
  • a laminated body 20 having is obtained (FIG. 3C heat treatment step).
  • the liquid crystal polyester film 10 formed on the support is obtained.
  • the heat treatment conditions include, for example, increasing the temperature from the boiling point of the medium of ⁇ 50° C. to the heat treatment temperature and then performing heat treatment at a temperature equal to or higher than the melting point of the liquid crystal polyester.
  • the polymerization reaction of the liquid crystal polyester may proceed due to heating, but by increasing the rate of temperature rise until reaching the heat treatment temperature, an increase in the molecular weight of the liquid crystal polyester in the liquid crystal polyester powder can be suppressed to some extent. As a result, the liquid crystal polyester powder is melted well, and a high quality film can be easily obtained.
  • the rate of temperature increase from the boiling point of the solvent of ⁇ 50° C. to the heat treatment temperature is preferably 3° C./min or more, more preferably 5° C./min or more.
  • the heat treatment temperature is preferably equal to or higher than the melting point of the liquid crystal polyester, more preferably higher than the melting point of the liquid crystal polyester, and further preferably the temperature equal to or higher than the melting point of the liquid crystal polyester+5° C. is set as the heat treatment temperature.
  • the heat treatment temperature may be appropriately determined depending on the type of liquid crystal polyester, but as an example, it is preferably 230°C or higher and 400°C or lower, more preferably 300°C or higher and 380°C or lower, and further preferably 320°C or higher and 350°C or lower.
  • the boiling point of the medium here means the boiling point at the pressure when the temperature is raised.
  • the heating rate is set within the range from reaching the boiling point of ⁇ 50° C. of the medium to the heat treatment temperature. Good.
  • the time until the boiling point of the medium reaches ⁇ 50° C. is arbitrary. Further, the time after reaching the heat treatment temperature may be considered as the heat treatment time.
  • the heat treatment time may be, for example, 0.5 hours or more, 1 hour or more and 24 hours or less, and 3 hours or more and 12 hours or less.
  • the heat treatment may be performed in a continuous manner or in a single-wafer manner, but from the viewpoint of productivity and operability, it is preferable to perform the heat treatment in a continuous manner. It is more preferable to carry out the process continuously.
  • the liquid crystal polyester film 10 can be obtained as a single-layer film by separating the liquid crystal polyester film 10 from the laminate 20 having the support 12 and the liquid crystal polyester film 10 (separation step in FIG. 3D). .
  • the liquid crystal polyester film 10 may be separated from the laminate 20 by peeling the liquid crystal polyester film 10 from the laminate 20.
  • a resin film is used as the support 12, it is preferable to peel the resin film or the liquid crystal polyester film 10 from the laminate 20.
  • a metal foil is used as the support 12, it is preferable to separate the metal foil from the laminate 20 by etching and removing the metal foil.
  • the laminate 20 may be used as a metal-clad laminate for a printed wiring board without separating the liquid crystal polyester film from the laminate 20.
  • the method for producing a liquid crystal polyester film of the embodiment it is possible to produce a liquid crystal polyester film having excellent isotropy.
  • a thin film of liquid crystal polyester is manufactured by forming a melted liquid crystal polyester into a film shape.
  • the liquid crystal polyester is thinly preliminarily formed on the support. After the powder is placed, it is melted, which is a big difference from the conventional method for producing a film.
  • the liquid crystal polyester powder is thinly arranged on the support in advance and formed into a film, which is a physical factor that causes a bias in molecular orientation such as extrusion molding.
  • liquid crystal polyester film having excellent isotropy without being applied with a specific force.
  • the liquid crystal polyester since the liquid crystal polyester has a relatively small number average molecular weight of 10,000 or less in the liquid crystal polyester powder, the liquid crystal polyester composition has properties suitable for coating, and the liquid crystal polyester film is in a molten state during heat treatment. It is possible to produce a high-quality liquid crystal polyester film having excellent isotropy, which is suitable for use as a film for electronic parts.
  • a liquid crystal polyester powder having an average particle size of 0.5 to 20 ⁇ m as a raw material it has a thinness suitable for use as a film for electronic parts, and is of high quality in which generation of holes or through holes is suppressed. A polyester film can be easily manufactured.
  • the liquid crystal polyester powder there is no limitation that the liquid crystal polyester powder should be soluble in the medium, and therefore liquid crystal polyester excellent in dielectric properties can be adopted, and liquid crystal polyester excellent in dielectric properties and isotropy. A film can be easily obtained.
  • the laminate of the embodiment includes a metal layer and the film according to the embodiment laminated on the metal layer.
  • FIG. 2 is a schematic diagram showing the configuration of the laminated body 21 according to the embodiment of the present invention.
  • the laminated body 21 includes the metal layer 13 and the film 11 laminated on the metal layer 13.
  • the film included in the laminate includes those exemplified above, and the description thereof will be omitted.
  • Examples of the metal layer included in the laminate include those exemplified as the support in ⁇ Method for producing film>> and ⁇ Method for producing laminate> described below, and a metal foil is preferable. Copper is preferable as the metal constituting the metal layer from the viewpoint of conductivity and cost, and copper foil is preferable as the metal foil.
  • the thickness of the laminate of the embodiment is not particularly limited, but is preferably 5 to 130 ⁇ m, more preferably 10 to 70 ⁇ m, and further preferably 15 to 60 ⁇ m.
  • the method for manufacturing the laminated body of the embodiment is not particularly limited, but the laminated body of the embodiment can be manufactured by the ⁇ method of manufacturing laminated body>> described below.
  • liquid crystal polyester can be read as an arbitrary thermoplastic resin so that an arbitrary heat
  • the laminate of the embodiment provided with a film containing a plastic resin may be manufactured.
  • the laminate of the embodiment can be preferably used for a film application for electronic parts such as a printed wiring board.
  • the method for manufacturing a laminate of the embodiment is a method in which a resin composition is applied onto a support and heat-treated to form a film containing a thermoplastic resin, thereby forming a laminate including the support and the film. It includes getting.
  • the thermoplastic resin is preferably liquid crystal polyester.
  • an embodiment using liquid crystal polyester as the thermoplastic resin will be described.
  • the method for producing a laminate of the embodiment comprises applying a liquid crystal polyester composition onto a support and heat-treating it to form a liquid crystal polyester film containing liquid crystal polyester, thereby forming the support and the liquid crystal polyester film. This includes obtaining a laminated body having the same.
  • the manufacturing method may include the following steps.
  • a step of applying a liquid crystal polyester composition on a support to form a liquid crystal polyester film precursor on the support (application step).
  • a step of heat-treating the liquid crystal polyester film precursor to obtain a laminate including the support and the liquid crystal polyester film (heat treatment step).
  • the applying step after applying the liquid crystal polyester composition according to the embodiment on a support, a medium is applied from the applied liquid crystal polyester composition.
  • a step of removing (drying step) may be included. That is, in the method for manufacturing a laminate of the embodiment, the liquid crystal polyester composition according to the embodiment is applied on a support, the medium is removed from the applied liquid crystal polyester composition, and heat treatment is performed to include the liquid crystal polyester. It may include obtaining a laminate including the support and the liquid crystal polyester film by forming a liquid crystal polyester film.
  • FIG. 3 is a schematic view showing an example of a manufacturing process of the liquid crystal polyester film and the laminate of the embodiment.
  • the method for manufacturing the laminate illustrated in FIG. 3 is the same as that described in the method for manufacturing the liquid crystal polyester film described above, except that the separation step (FIG. 3D) is not performed, and thus the description thereof is omitted. To do.
  • the resin composition of the embodiment contains a medium and a resin powder.
  • the resin composition is suitably used for producing the above film.
  • the resin powder is preferably liquid crystal polyester powder. Details of the resin powder will be described later.
  • the resin composition of the embodiment preferably contains an aprotic solvent and a liquid crystal polyester powder insoluble in the aprotic solvent.
  • an embodiment using liquid crystal polyester as the thermoplastic resin will be described.
  • composition of the embodiment contains a medium and a liquid crystal polyester powder (hereinafter, referred to as “liquid crystal polyester composition”).
  • the liquid crystal polyester powder is explained in ⁇ Resin powder> below.
  • the medium is not particularly limited as long as the liquid crystal polyester powder is insoluble, and is preferably a dispersion medium.
  • the medium is preferably a fluid, more preferably a liquid.
  • the “dispersion” here is a term for distinguishing from a state in which the liquid crystal polyester powder is dissolved (excluding a state in which the liquid crystal polyester powder is dissolved in the liquid crystal polyester composition). There may be a non-uniform portion in the distribution of the liquid crystal polyester powder in the composition.
  • the state of the liquid crystal polyester powder in the composition may be any state as long as the liquid crystal polyester composition can be coated on the support in the above method for producing a liquid crystal polyester film.
  • Examples of the medium include halogenated hydrocarbons such as dichloromethane, chloroform, 1,1-dichloroethane, 1,2-dichloroethane, 1,1,2,2-tetrachloroethane, 1-chlorobutane, chlorobenzene and o-dichlorobenzene; Halogenated phenols such as p-chlorophenol, pentachlorophenol and pentafluorophenol; ethers such as diethyl ether, tetrahydrofuran and 1,4-dioxane; ketones such as acetone and cyclohexanone; esters such as ethyl acetate and ⁇ -butyrolactone; ethylene; Carbonates such as carbonates and propylene carbonates; amines such as triethylamine; nitrogen-containing heterocyclic aromatic compounds such as pyridine; nitriles such as acetonitrile and succinonitrile; N,N-dimethylform
  • aprotic compound particularly a medium containing an aprotic compound having no halogen atom as a main component is preferable, and the proportion of the aprotic compound in the entire medium is The amount is preferably 50 to 100% by mass, more preferably 70 to 100% by mass, and further preferably 90 to 100% by mass.
  • aprotic compound it is preferable to use an amide such as N,N-dimethylformamide, N,N-dimethylacetamide, tetramethylurea, N-methylpyrrolidone or an ester such as ⁇ -butyrolactone. More preferred are N-dimethylformamide, N,N-dimethylacetamide, and N-methylpyrrolidone.
  • a medium containing a compound having a boiling point of 220° C. or less at 1 atmospheric pressure as a main component is preferable because it is easily removed, and the ratio of the compound having a boiling point of 220° C. or less at 1 atmospheric pressure in the entire medium , Preferably 50 to 100% by mass, more preferably 70 to 100% by mass, further preferably 90 to 100% by mass, and using a compound having a boiling point of 220° C. or less at 1 atm as the aprotic compound. Is preferred.
  • the ratio of the liquid crystal polyester powder to the total amount of solids contained in the liquid crystal polyester composition may be, for example, 50 to 100% by mass, 70 to 100% by mass, or 90 to 100% by mass. You may
  • the ratio of the liquid crystal polyester powder contained in the liquid crystal polyester composition is preferably 0.1 to 60 mass% and more preferably 1 to 50 mass% with respect to the total amount of the liquid crystal polyester powder and the medium. It is more preferably 3 to 40% by mass, and particularly preferably 5 to 30% by mass.
  • the liquid crystal polyester composition can be obtained by mixing the liquid crystal polyester powder, the medium, and other components used as necessary, all at once or in an appropriate order.
  • the liquid crystal polyester composition may include one or more kinds of other components such as a filler, an additive, and a resin other than the liquid crystal polyester.
  • the filler examples include inorganic fillers such as silica, alumina, titanium oxide, barium titanate, strontium titanate, aluminum hydroxide and calcium carbonate; and organic fillers such as cured epoxy resin, crosslinked benzoguanamine resin and crosslinked acrylic resin.
  • a material may be used, and the content thereof may be 0, and is preferably 100 parts by mass or less with respect to 100 parts by mass of the liquid crystal polyester.
  • the additives include a leveling agent, a defoaming agent, an antioxidant, an ultraviolet absorber, a flame retardant and a colorant, and the content thereof is 0 based on 100 parts by mass of the liquid crystal polyester. May be used, and preferably 5 parts by mass or less.
  • the resin other than the liquid crystal polyester examples include polypropylene, polyamide, polyesters other than the liquid crystal polyester, polyphenylene sulfide, polyether ketone, polycarbonate, polyether sulfone, polyphenylene ether and its modified products, and polyetherimide and other heat-resistant materials other than the liquid crystal polyester.
  • the resin examples include a thermoplastic resin; an elastomer such as a copolymer of glycidyl methacrylate and polyethylene; and a thermosetting resin such as a phenol resin, an epoxy resin, a polyimide resin, and a cyanate resin. The content thereof is 100 parts by mass of liquid crystal polyester. And may be 0, and preferably 20 parts by mass or less.
  • the resin powder of the embodiment contains a thermoplastic resin having a number average molecular weight of 10,000 or less and an average particle size of 0.5 to 20 ⁇ m.
  • the content ratio of the thermoplastic resin to 100% by mass of the resin powder of the embodiment may be 50 to 100% by mass, or 80 to 95% by mass.
  • the thermoplastic resin is preferably liquid crystal polyester.
  • the content ratio of the liquid crystal polyester with respect to 100% by mass of the resin powder of the embodiment may be 50 to 100% by mass, or 80 to 95% by mass.
  • an embodiment using liquid crystal polyester as the thermoplastic resin will be described.
  • the resin powder of the embodiment contains a liquid crystal polyester having a number average molecular weight of 10,000 or less and an average particle size of 0.5 to 20 ⁇ m (hereinafter, referred to as “liquid crystal polyester powder”).
  • the liquid crystal polyester powder of the embodiment is suitable as a raw material for a method for producing a liquid crystal polyester film or a laminate. With the liquid crystal polyester powder satisfying the above requirements, it is possible to produce a liquid crystal polyester film having suitable quality as a film for electronic parts.
  • the quality standard includes the isotropic property, thickness, and appearance (whether or not holes or through holes are generated) of the film. Examples of the liquid crystal polyester film include those exemplified above in ⁇ Film>>.
  • the “number average molecular weight” is an absolute value measured using a gel permeation chromatograph-multi-angle light scattering photometer.
  • the number average molecular weight of the liquid crystal polyester in the liquid crystal polyester powder of the embodiment is 10,000 or less, more preferably 3,000 to 10,000, further preferably 4,000 to 8,000, and particularly preferably 5,000 to 7,000.
  • the number average molecular weight of the liquid crystal polyester exceeds 10,000, the liquid crystal polyester composition becomes a gel, and it becomes difficult to form a film having excellent isotropy.
  • the thermal conductivity in the thickness direction of the film after heat treatment tends to be improved, preferably, the number average molecular weight of the liquid crystal polyester is the above lower limit or more, the film after heat treatment Has good heat resistance, strength and rigidity.
  • the liquid crystal polyester in the liquid crystal polyester powder of the embodiment has a flow initiation temperature of preferably 250° C. or higher, more preferably 250° C. or higher and 350° C. or lower, and further preferably 260° C. or higher and 330° C. or lower.
  • the higher the flow initiation temperature of the liquid crystal polyester the more easily the heat resistance, strength and rigidity are improved, but if it is too high, the pulverizability deteriorates and it becomes difficult to obtain a powder having a target particle size.
  • the flow start temperature is also called a flow temperature or a flow temperature
  • the liquid crystal polyester is melted by using a capillary rheometer under a load of 9.8 MPa (100 kg/cm 2 ) at a rate of 4° C./min.
  • the temperature at which a viscosity of 4800 Pa ⁇ s (48,000 poise) is exhibited when extruding from a nozzle having an inner diameter of 1 mm and a length of 10 mm which is a measure of the molecular weight of liquid crystalline polyester (edited by Naoyuki Koide, “Liquid Crystal Polymer”). -Synthesis/Molding/Application-", CMC Co., Ltd., June 5, 1987, p.95).
  • the average particle size of the liquid crystal polyester powder is 20 ⁇ m or less, preferably 18 ⁇ m or less, more preferably 15 ⁇ m or less, and further preferably 10 ⁇ m or less.
  • the average particle size of the liquid crystal polyester exceeds 20 ⁇ m, it becomes difficult to obtain a liquid crystal polyester film having a good appearance.
  • through holes may be generated in the manufactured liquid crystal polyester film. The formation of the through holes is likely to occur in a thickness range of 50 ⁇ m or less, which is a preferable thickness range for the electronic component film.
  • the average particle size of the liquid crystal polyester powder is preferably 0.5 ⁇ m or more, more preferably 3 ⁇ m or more, and further preferably 5 ⁇ m or more.
  • the upper limit value and the lower limit value of the average particle diameter of the liquid crystal polyester powder can be freely combined.
  • An example of the numerical range of the value of the average particle diameter of the liquid crystal polyester powder may be 0.5 ⁇ m or more and 20 ⁇ m or less, 3 ⁇ m or more and 18 ⁇ m or less, or 5 ⁇ m or more and 15 ⁇ m or less. It may be 5 ⁇ m or more and 10 ⁇ m or less.
  • the “average particle size” is a particle at a point where the cumulative volume is 50% when the whole is 100% in a cumulative volume-based particle size distribution curve measured by a laser diffraction scattering method. It is the value of the diameter (50% cumulative volume particle size D 50 ).
  • the particle size within the above range for example, when a jet mill is used, it can be controlled by changing the rotation speed of the classification rotor, the crushing nozzle pressure, the processing speed, and the like.
  • the liquid crystal polyester of the above embodiment contains more than 70% by mass and 100% by mass or less based on 100% by mass of the total amount of the liquid crystal polyester contained in the resin composition.
  • the content may be 80 to 100% by mass.
  • the liquid crystal polyester include those exemplified in the film of the embodiment and the resin powder of the embodiment, and among the liquid crystal polyesters described in the section (liquid crystal polyester) of the above embodiment, a liquid crystal that does not correspond to the component (X) above. It may be polyester, for example, the liquid crystal polyester of the above 1) to 4), the structural unit represented by the above formula (1), the structural unit represented by the above formula (2) and the above formula (3).
  • the resin composition of the embodiment contains a medium and a resin powder (however, when liquid crystal polyester powder is contained as the resin powder, liquid crystal soluble in an aprotic solvent is used with respect to 100% by mass of the total amount of the liquid crystal polyester).
  • the content of polyester is less than 5% by mass).
  • the resin composition of the embodiment may be one containing a medium and resin powder (excluding one containing liquid crystalline polyester soluble in an aprotic solvent).
  • examples of the liquid crystal polyester soluble in an aprotic solvent include those exemplified in the film of the embodiment.
  • liquid crystal polyester powder having excellent dielectric properties can be used as a raw material.
  • a liquid crystal polyester film having excellent dielectric properties can be produced from a liquid crystal polyester powder having excellent dielectric properties.
  • the liquid crystal polyester powder of the embodiment has a relative dielectric constant at a frequency of 1 GHz of preferably 3 or less, preferably 2.9 or less, preferably 2.8 or less, and less than 2.8. Is more preferable, it is more preferably 2.78 or less, and particularly preferably 2.76 or less.
  • the relative dielectric constant of the liquid crystal polyester powder may be 2.5 or more, 2.6 or more, or 2.7 or more.
  • the upper limit value and the lower limit value of the relative dielectric constant value of the above liquid crystal polyester powder can be freely combined.
  • An example of the numerical range of the value of the relative dielectric constant of the liquid crystal polyester powder may be 2.5 or more and 3 or less, 2.6 or more and 2.78 or less, and 2.7 or more. It may be 2.76 or less.
  • the liquid crystal polyester powder of the embodiment has a dielectric loss tangent at a frequency of 1 GHz of preferably 0.005 or less, preferably 0.004 or less, more preferably 0.003 or less, and 0.0025 or less. It is more preferable to be present, and it is particularly preferable to be 0.002 or less.
  • the dielectric loss tangent of the liquid crystal polyester powder may be 0.0003 or more, 0.0005 or more, or 0.001 or more.
  • the upper limit value and the lower limit value of the dielectric loss tangent value of the liquid crystal polyester powder can be freely combined.
  • An example of the numerical range of the value of the dielectric loss tangent of the liquid crystal polyester powder may be 0.0003 or more and 0.005 or less, or 0.0005 or more and 0.004 or less, and 0.001
  • the amount may be 0.003 or less, 0.001 or more and 0.0025 or less, or 0.001 or more and 0.002 or less.
  • the relative permittivity and dielectric loss tangent of the liquid crystal polyester powder at a frequency of 1 GHz can be measured by the capacitance method using an impedance analyzer under the following conditions.
  • the liquid crystal polyester fine particle powder is melted at a temperature higher by 5° C.
  • the relative dielectric constant and dielectric loss tangent of the liquid crystal polyester powder of the embodiment may be different from that of the liquid crystal polyester film produced from the powder. This is considered to be due to the difference in the molecular weight of the contained liquid crystal polyester.
  • the liquid crystal polyester powder is preferably insoluble in the medium contained in the liquid crystal polyester composition described above, and more preferably insoluble in the protic solvent.
  • the medium is an aprotic solvent.
  • Test method Liquid crystalline polyester powder (5 parts by weight) was stirred in an aprotic solvent (medium) (95 parts by weight) at a temperature of 180° C. with an anchor blade under stirring conditions of 200 rpm for 6 hours, and then allowed to reach room temperature. Cooling. Then, after filtration using a membrane filter having a mesh size of 5 ⁇ m and a pressure type filter, the residue on the membrane filter is confirmed. At this time, when solid matter is not confirmed, it is judged to be soluble in an aprotic solvent (medium). When a solid substance having a minor axis of 5 ⁇ m or more is confirmed, it is determined to be insoluble in an aprotic solvent (medium). A solid substance having a minor axis of 5 ⁇ m or more can be confirmed by microscopic observation.
  • the content ratio of the liquid crystal polyester to 100 mass% of the liquid crystal polyester powder of the embodiment may be 50 to 100 mass %, or 80 to 95 mass %.
  • the liquid crystal polyester powder of the embodiment is, for example, a liquid crystal polyester powder having a number average molecular weight of 10,000 or less produced by the above-mentioned production method of the liquid crystal polyester, if necessary so that the average particle diameter thereof is 0.5 to 20 ⁇ m. It can be obtained by pulverizing with a jet mill or the like.
  • the liquid crystal polyester powder of the embodiment includes a liquid crystal polyester having a number average molecular weight of 10,000 or less and an average particle size of 0.5 to 20 ⁇ m (provided that the structure derived from 2-hydroxy-6-naphthoic acid is used.
  • Unit a structural unit derived from 2,6-naphthalenedicarboxylic acid, a structural unit derived from terephthalic acid, and a liquid crystalline polyester composed of structural units derived from hydroquinone, except those having a volume average particle diameter of 9 ⁇ m) It may be.
  • the liquid crystal polyester powder of the embodiment includes a liquid crystal polyester powder having a number average molecular weight of 10,000 or less and an average particle diameter of 0.5 to 20 ⁇ m (provided that 2-hydroxy-6-naphthoic acid (5.5 , 2,6-naphthalenedicarboxylic acid (1.75 mol), terephthalic acid (0.5 mol), hydroquinone (2.475 mol), acetic anhydride (12 mol), and 1-methylimidazole as a catalyst. (Excluding liquid crystal polyester powder having a volume average particle size of 9 ⁇ m), which is a polymer obtained by reacting
  • the liquid crystal polyester powder of the embodiment includes a liquid crystal polyester having a number average molecular weight of 10,000 or less and an average particle size of 0.5 to 20 ⁇ m (provided that the structure derived from 2-hydroxy-6-naphthoic acid is used.
  • Unit a structural unit derived from 2,6-naphthalenedicarboxylic acid, a structural unit derived from terephthalic acid, and a structural unit derived from hydroquinone, and a liquid crystal polyester having a flow starting temperature of 265° C. (Excluding liquid crystal polyester powder of 9 ⁇ m).
  • the liquid crystal polyester powder of the embodiment includes a liquid crystal polyester having a number average molecular weight of 10,000 or less and an average particle size of 0.5 to 20 ⁇ m (provided that the structure derived from 2-hydroxy-6-naphthoic acid is used.
  • Unit a structural unit derived from 2,6-naphthalenedicarboxylic acid, a structural unit derived from terephthalic acid, and a structural unit derived from hydroquinone, and excluding liquid crystal polyester powder having a volume average particle diameter of 9 ⁇ m). May be.
  • the liquid crystal polyester powder of the embodiment includes a liquid crystal polyester powder having a number average molecular weight of 10,000 or less and an average particle diameter of 0.5 to 20 ⁇ m (provided that 2-hydroxy-6-naphthoic acid (5.5 , 2,6-naphthalenedicarboxylic acid (1.75 mol), terephthalic acid (0.5 mol), hydroquinone (2.475 mol), acetic anhydride (12 mol), and 1-methylimidazole as a catalyst.
  • the liquid crystal polyester powder of the embodiment includes a liquid crystal polyester having a number average molecular weight of 10,000 or less and an average particle size of 0.5 to 20 ⁇ m (provided that the structure derived from 2-hydroxy-6-naphthoic acid is used.
  • Unit a structural unit derived from 2,6-naphthalenedicarboxylic acid, a structural unit derived from terephthalic acid, and a structural unit derived from hydroquinone, and a liquid crystal polyester having a flow initiation temperature of 265° C. is crushed to obtain a volume average particle size. (Excluding liquid crystal polyester powder having a diameter of 9 ⁇ m).
  • the liquid crystal polyester powder of the embodiment includes a liquid crystal polyester powder having a number average molecular weight of 10,000 or less and an average particle diameter of 0.5 to 20 ⁇ m (provided that 2-hydroxy-6-naphthoic acid (5.5 , 2,6-naphthalenedicarboxylic acid (1.75 mol), terephthalic acid (0.5 mol), hydroquinone (2.475 mol), acetic anhydride (12 mol), and 1-methylimidazole as a catalyst. (Excluding liquid crystal polyester powder having a volume average particle diameter of 9 ⁇ m, which is obtained by pulverizing the above polymer having a flow initiation temperature of 265° C.).
  • volume average particle diameter here is a scattering type particle diameter for a liquid crystal polyester powder dispersion obtained by ultrasonically dispersing 0.01 g of liquid crystal polyester powder in about 10 g of pure water for 5 minutes. It is assumed that the refractive index of pure water is measured to be 1.333 using a distribution measuring device (for example, "LA-950V2" manufactured by HORIBA, Ltd.). "Volume average particle diameter” is a particle diameter at a point where the cumulative volume is 50% when the whole is assumed to be 100% in a volume-based cumulative particle size distribution curve measured by a scattering type particle diameter distribution measuring device. Value (50% cumulative volume particle size D 50 ).
  • the upper limit of the residual acetic acid amount that can be contained in 100% by mass of the liquid crystal polyester powder of the embodiment is processed into a film. From the viewpoint of the subsequent mechanical properties, it is preferably 1 mass% or less, more preferably 500 mass ppm or less, and further preferably 300 mass ppm or less. Further, the lower limit of the amount of residual acetic acid contained in 100% by mass of the liquid crystalline polyester powder of the embodiment is preferably 30 mass ppm or more, more preferably 50 mass ppm or more, and 100 mass ppm or more from the viewpoint of pulverizability.
  • the upper limit value and the lower limit value of the amount of residual acetic acid that can be contained in 100% by mass of the above liquid crystal polyester powder can be freely combined.
  • the numerical range of the value of the amount of residual acetic acid that can be contained in 100% by mass of the above liquid crystal polyester powder it may be 30% by mass or more and 1% by mass or less, and 50% by mass or more and 500% by mass or less. It may be 100 mass ppm or more and 300 mass ppm or less.
  • a liquid crystal polyester film having suitable quality as a film for electronic parts can be manufactured.
  • the quality standard includes the isotropic property, thickness, and appearance (whether or not holes or through holes are generated) of the film. Since the liquid crystal polyester in the liquid crystal polyester powder of the embodiment has a relatively small number average molecular weight of 10,000 or less, the liquid crystal polyester composition has properties suitable for coating and melting of the liquid crystal polyester film during heat treatment. The above condition becomes good, and a film forming process capable of producing a liquid crystal polyester film having excellent isotropy becomes possible. Furthermore, since the liquid crystal polyester powder of the embodiment has an average particle size of 0.5 to 20 ⁇ m, it has a thinness suitable for use as a film for electronic parts, and high quality with suppressed generation of holes or through holes. A polyester film can be obtained.
  • the liquid crystal polyester film is generally produced by a melt molding method or a casting method in which the liquid crystal polyester is melted.
  • the melt molding method is a method of molding a film by extruding a kneaded product from an extruder.
  • the film produced by the melt molding method has a film-forming direction (also referred to as an extrusion direction) rather than a lateral direction with respect to the extrusion direction (a direction perpendicular to the extrusion direction and the thickness direction of the film, Transverse Direction (TD)).
  • the liquid crystal polyester molecules are oriented in the machine direction (MD), and it is difficult to obtain a liquid crystal polyester having excellent isotropy.
  • a liquid crystal polyester film having excellent isotropy can be manufactured.
  • the liquid crystal polyester powder of the embodiment is suitable as a raw material for the method for producing a film according to the embodiment, and by the application of the method, a liquid crystal polyester film having excellent isotropic property without requiring the operation of molding by the above extrusion. It can be easily manufactured.
  • the liquid crystal polyester film is “excellent in isotropicity” means that the value of the molecular orientation degree (MOR) of the liquid crystal polyester film is in the range of 1 to 1.1.
  • liquid crystal polyester powder of the embodiment it is possible to manufacture a liquid crystal polyester film having both dielectric properties and isotropic properties.
  • the liquid crystal polyester film produced by the solution casting method has a more isotropic orientation of the liquid crystal polyester than the liquid crystal polyester film formed by the melt molding method.
  • a liquid crystal polyester having a property of being soluble in a solvent there is a limitation that a liquid crystal polyester having a property of being soluble in a solvent must be used.
  • the dielectric properties may be deteriorated due to, for example, the increased polarity.
  • the liquid crystal polyester powder of the embodiment it is possible to manufacture a liquid crystal polyester film having both dielectric properties and isotropic properties.
  • the liquid crystal polyester powder of the embodiment is suitable as a raw material for the method for producing a film according to the embodiment, and by the application of the method, the operation of dissolving the liquid crystal polyester powder in a solvent is not required, and the isotropic property is excellent.
  • a liquid crystal polyester film can be easily manufactured. Further, since a liquid crystal polyester having excellent dielectric properties can be used as a raw material, a liquid crystal polyester film having excellent dielectric properties and isotropic property can be easily manufactured.
  • the sample solution for measurement was prepared by adding 2 mg of the sample to 1.4 g of pentafluorophenol, dissolving at 80° C. for 2 hours, cooling to room temperature and adding 2.6 g of chloroform, and further adding a solvent (pentafluorophenol/chloroform (weight ratio 35/ 65)) was diluted 2-fold, and then filtered using a filter having a pore size of 0.45 ⁇ m to prepare.
  • the temperature was raised from room temperature to 145° C. over 15 minutes while stirring under a nitrogen gas stream, and the mixture was refluxed at 145° C. for 1 hour.
  • the temperature was raised from 145° C. to 310° C. over 3 hours and 30 minutes, and the temperature was maintained at 310° C. for 3 hours, then the solid liquid crystalline polyester was taken out.
  • the liquid crystal polyester was cooled to room temperature to obtain liquid crystal polyester (A).
  • the liquid crystal polyester (A) had a flow initiation temperature of 268°C.
  • the liquid crystal polyester (A) was crushed with a cutter mill VM-16 manufactured by Orient Grinder Co., Ltd. to obtain a powder of the liquid crystal polyester (A) having an average particle diameter of 394 ⁇ m.
  • Reference Example 2 Liquid crystal polyester powder was crushed by setting the treatment conditions of a jet mill (“KJ-200” manufactured by Kurimoto Teiko Co., Ltd.) such that the number of revolutions of the classification rotor was 10,000 rpm, the crushing nozzle pressure was 0.60 MPa, and the treatment speed was 4.0 kg/hour.
  • a liquid crystal polyester fine particle powder of Reference Example 2 was obtained in the same manner as in the production of the liquid crystal polyester fine particle powder of Example 1 except for the above.
  • the average particle diameter of the liquid crystal polyester fine particle powder was 15 ⁇ m.
  • a liquid crystal polyester fine particle powder of Comparative Example 1 was obtained in the same manner as in the production of the liquid crystal polyester fine particle powder of Example 1 except that the powder of the liquid crystal polyester (D) was crushed.
  • the average particle size of the liquid crystal polyester fine particle powder was 7 ⁇ m.
  • Table 1 shows the above items and their measurement results.
  • Example 1-1 Reference Examples 1-1 to 3-1, Comparative Example 1-1
  • Example 1-1 Preparation of dispersion liquid
  • the temperature was raised from room temperature to 310° C. at 7° C./min in a hot air oven under a nitrogen atmosphere, and heat treatment was performed at that temperature for 6 hours to obtain a liquid crystal polyester film with a copper foil.
  • the obtained liquid crystal polyester film with copper foil was immersed in an aqueous ferric chloride solution, and the copper foil was removed by etching to obtain a single-layer film. The appearance of each film was confirmed.
  • the liquid crystal polyester film of Reference Example 3-1 had a large number of holes on the surface, had a poor appearance, and was not suitable as a film for electronic parts.
  • Table 1 shows the above items and their measurement results.
  • a liquid crystal polyester film could not be produced in Comparative Example 1-1 using the liquid crystal polyester fine particle powder of Comparative Example 1 containing a liquid crystal polyester having a number average molecular weight not exceeding 10,000 as a raw material.
  • Example 1-1 and Reference Example 1-1 by using the liquid crystal polyester fine particle powders of Example 1 and Reference Examples 1 to 3 containing the liquid crystal polyester satisfying the number average molecular weight of 10,000 or less as raw materials, Example 1-1 and Reference Example 1-1. It was possible to produce a liquid crystal polyester film of ⁇ 3-1.
  • the liquid crystal polyester film of Reference Example 3-1 produced by using the liquid crystal polyester fine particle powder of Reference Example 3 having an average particle diameter not satisfying the range of 0.5 to 20 ⁇ m as a raw material has many holes on the surface. And the appearance was poor.
  • Example 1-1 and Reference Examples 1 and 2 satisfying the average particle size in the range of 0.5 to 20 ⁇ m were used as raw materials, and Example 1-1 and Reference Examples 1-1 to The liquid crystal polyester film 2-1 had a small thickness and was excellent in appearance.
  • the appearance evaluation results of the liquid crystal polyester films of Example 1-1 and Reference Examples 1-1 to 3-1 are “G” for those having excellent appearance without occurrence of holes and “Appearance with appearance of many holes” In Table 1, the samples having a poor quality are shown as "F".
  • Example 1 ⁇ Production of liquid crystal polyester film> Using the liquid crystal polyester fine particle powder of the liquid crystal polyester (A) obtained in Example 1 as a raw material and changing the heat treatment conditions, liquid crystal polyester films of Examples 1-1 to 1-5 were produced.
  • the liquid crystal polyester film of Example 1-1 was obtained by the same production method as in Example 1-1.
  • Example 1-1 Preparation of Dispersion 8 parts by weight of the liquid crystal polyester fine particle powder of the liquid crystal polyester (A) produced in Example 1 above was added to 92 parts by weight of N-methyl-2-pyrrolidone, and stirred and removed by Shinky Co., Ltd. The dispersion was obtained by stirring using a foaming machine AR-500.
  • Example 1-2 With the copper foil of Example 1-2, in the same manner as in the production of the liquid crystal polyester film with copper foil of Example 1-1 described above except that the heat treatment conditions were raised from room temperature to 330° C. at 7° C./min. A liquid crystal polyester film was obtained.
  • Example 1-3 With the copper foil of Example 1-3, in the same manner as in the production of the liquid crystal polyester film with copper foil of Example 1-1 described above except that the heat treatment conditions were raised from room temperature to 310° C. at 4° C./min. A liquid crystal polyester film was obtained.
  • Example 1-4 With the copper foil of Example 1-4, in the same manner as in the production of the liquid crystal polyester film with copper foil of Example 1-1 described above except that the heat treatment conditions were raised from room temperature to 300°C at 7°C/min. A liquid crystal polyester film was obtained.
  • Example 1-5 With the copper foil of Example 1-5, in the same manner as in the production of the liquid crystal polyester film with copper foil of Example 1-1 described above except that the heat treatment conditions were raised from room temperature to 310° C. at 3° C./min. A liquid crystal polyester film was obtained.
  • Comparative example 2 A liquid crystal polyester soluble in an organic solvent was produced, and using it as a raw material, a liquid crystal polyester film of Comparative Example 2 was produced as follows.
  • the temperature was raised from 150°C to 300°C over 5 hours and kept at 300°C for 30 minutes, then the contents were taken out from the reactor and allowed to reach room temperature. Cooled.
  • the obtained solid substance was pulverized with a pulverizer to obtain a liquid crystalline polyester (B1) in powder form.
  • the liquid crystal polyester (B1) had a flow initiation temperature of 193.3°C.
  • the liquid crystalline polyester (B1) obtained above was heated from room temperature to 160° C. in 2 hours and 20 minutes in a nitrogen atmosphere, and then heated from 160° C. to 180° C. in 3 hours and 20 minutes at 180° C. After holding for 5 hours, solid phase polymerization was performed, followed by cooling, and then pulverization by a pulverizer to obtain a powdery liquid crystal polyester (B2).
  • the liquid crystal polyester (B2) had a flow initiation temperature of 220°C.
  • the liquid crystalline polyester (B2) obtained above was heated from room temperature to 180° C. in 1 hour and 25 minutes in a nitrogen atmosphere, then from 180° C. to 255° C. in 6 hours and 40 minutes, and at 255° C.
  • the liquid crystal polyester (B) in powder form was obtained by holding for 5 hours for solid phase polymerization and then cooling.
  • the liquid crystal polyester (B) had a flow initiation temperature of 302°C.
  • the melting point of this liquid crystalline polyester (B) was measured using a differential scanning calorimeter, and was 311°C.
  • Liquid Crystal Polyester Solution 8 parts by mass of liquid crystal polyester (B) was added to 92 parts by mass of N-methylpyrrolidone (boiling point (1 atm) 204° C.), and the mixture was stirred at 140° C. for 4 hours in a nitrogen atmosphere to give a liquid crystal polyester. A solution was prepared. The viscosity of this liquid crystal polyester solution was 955 mPa ⁇ s.
  • a liquid crystal polyester solution was applied to a roughened surface of copper foil (3EC-VLP 18 ⁇ m manufactured by Mitsui Mining & Smelting Co., Ltd.) so that the thickness of the casting film was 300 ⁇ m. No. “SA204”) and an automatic coating device (“Type I” of Tester Sangyo Co., Ltd.), and then dried at 40° C. and normal pressure (1 atm) for 4 hours. The solvent was removed from the cast film. Furthermore, the second casting was performed on the surface of the dried liquid crystal polyester (B) so that the thickness of the casting film was 300 ⁇ m, and the coating was dried at 40° C. and normal pressure (1 atm) for 4 hours. The solvent was removed from the cast film.
  • Liquid crystal polyester (C) was obtained by filling the powder of the liquid crystal polyester (A) obtained in Example 1 above in a tray made of SUS and performing heat treatment at 280°C for 6 hours.
  • the liquid crystal polyester (C) thus obtained had a flow initiation temperature of 306°C.
  • liquid crystal polyester film 100 parts by weight of the obtained liquid crystal polyester (C) was granulated at 325°C using a twin-screw extruder ("PCM-30" manufactured by Ikegai Tekko KK) to obtain pellets. It was The melting point of the pellet was measured by using a differential scanning calorimeter, and the result was 319°C.
  • PCM-30 twin-screw extruder manufactured by Ikegai Tekko KK
  • inflation film formation was performed using an annular inflation die having a die diameter of 30 mm and a slit interval of 0.25 mm. At that time, film formation was performed while filtering the dissolved liquid crystalline polyester using a filtration device (leaf disk type filter, manufactured by Nippon Seisen Co., Ltd.) connected to the inlet of the annular inflation die.
  • a filtration device leaf disk type filter, manufactured by Nippon Seisen Co., Ltd.
  • 16 Naslon filters LF4-0 NF2M-05D2 manufactured by Nippon Seisen Co., Ltd., filtration accuracy 5.0 ⁇ m, leaf disk type
  • a liquid crystal polyester film of Comparative Example 3 was obtained by extruding the TD stretching ratio against the MD stretching ratio under a condition of 4.3 from a circular inflation die heated to 340°C.
  • liquid crystal polyester films with copper foil obtained in Examples 1-1 to 1-5 and Comparative Examples 2 to 3 were immersed in an aqueous ferric chloride solution, and the copper foil was removed by etching to obtain a single-layer film.
  • Table 2 shows the above items and their measurement results.
  • the liquid crystal polyester films of Examples 1-1 to 1-5 were obtained by casting a liquid crystal polyester fine particle powder dispersion on a copper foil and then heat-treating it (abbreviated as “dispersion cast” in the table). Therefore, it has excellent dielectric properties, a low degree of molecular orientation (MOR), and excellent properties.
  • the liquid crystal polyester film of Comparative Example 2 was obtained by casting a solution of the liquid crystal polyester fine particle powder on a copper foil (abbreviated as “solution cast” in the table). In the method, there is a limitation that the liquid crystal polyester that can be dissolved in a solvent is used as a raw material, so that the dielectric properties tend to be inferior. Since the liquid crystal polyester film of Comparative Example 3 was obtained by the inflation method, it tended to have a high degree of molecular orientation (MOR), and there was a difference in linear expansion between MD and TD.
  • MOR molecular orientation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

熱可塑性樹脂を含み、周波数1GHzにおける比誘電率が3以下であり、周波数1GHzにおける誘電正接が0.005以下であり、マイクロ波配向計で測定した分子配向度(MOR)の値が1~1.1の範囲であるフィルム。

Description

フィルム及び積層体
 本発明は、フィルム及び積層体に関する。
 本願は、2019年2月15日に日本に出願された特願2019-025663号、及び2019年7月31日に日本に出願された特願2019-141071号に基づき優先権を主張し、その内容をここに援用する。
 電子部品が実装されるプリント回路基板には、絶縁材料が用いられている。近年、通信システムの発達等により、絶縁材料について、更なる誘電特性等の物性改善が望まれている。
 例えば特許文献1には、誘電損失の低減を目的とし、シリル基を含むエポキシ樹脂と、硬化剤と、シリカなどの無機フィラーとを含む絶縁樹脂組成物が記載されている。
特開2017-66360号公報
 しかし、特許文献1に記載の方法のように、樹脂組成物に無機フィラーを添加すると、金属箔との密着強度や絶縁基材の機械強度が低下するという問題があった。
 また、次世代移動通信システムへの適用を考慮すると、従来の基板材料では、高周波における誘電特性が不十分となる可能性が高い。
 本発明は、電子部品用フィルムとして好適な品質を有する、フィルム及びその積層体を提供することを目的とする。
 本発明者らは、上記課題を解決すべく鋭意検討した結果、比誘電率及び誘電正接が低く、等方性に優れたフィルム及びその積層体を得ることを可能とし、本発明を完成するに至った。
 すなわち、本発明の一態様は、下記のフィルム及び積層体である。
<1>熱可塑性樹脂を含み、
 周波数1GHzにおける比誘電率が3以下であり、
 周波数1GHzにおける誘電正接が0.005以下であり、
 マイクロ波配向計で測定した分子配向度(MOR)の値が1~1.1の範囲であるフィルム。
<2>前記熱可塑性樹脂が液晶ポリエステルであり、
 前記液晶ポリエステルが、ナフタレン構造を含む構造単位を有する、前記<1>に記載のフィルム。
<3>前記ナフタレン構造を含む構造単位の含有量が、前記液晶ポリエステル中の構造単位の合計量100モル%に対して40モル%以上である請求項2に記載のフィルム。
<4>前記液晶ポリエステルが、下記式(1)で表される構造単位、下記式(2)で表される構造単位、及び下記式(3)で表される構造単位を有する、前記<2>又は<3>に記載のフィルム。
(1)-O-Ar1-CO-
(2)-CO-Ar2-CO-
(3)-O-Ar3-O-
(Ar1は、2,6-ナフタレンジイル基、1,4-フェニレン基、又は4,4’-ビフェニリレン基を表す。
 Ar2及びAr3は、それぞれ独立に、2,6-ナフタレンジイル基、2,7-ナフタレンジイル基、1,4-フェニレン基、1,3-フェニレン基、又は4,4’-ビフェニリレン基を表す。
 Ar1、Ar2又はAr3で表される前記基にある水素原子は、それぞれ独立に、ハロゲン原子、炭素数1~10のアルキル基、又は炭素数6~20のアリール基で置換されていてもよい。)
<5>昇温速度5℃/分の条件で50~100℃の温度範囲において求められた線膨張係数が85ppm/℃以下である、前記<1>~<4>のいずれか一つに記載のフィルム。
<6>金属層と、前記金属層上に積層された前記<1>~<5>のいずれか一つに記載のフィルムと、を備える積層体。
<7>前記金属層を構成する金属が銅である、前記<6>に記載の積層体。
 本発明によれば、電子部品用フィルムとして好適な品質を有するフィルム及びその積層体を提供できる。
本発明の一実施形態のフィルムの構成を示す模式図である。 本発明の一実施形態の積層体の構成を示す模式図である。 本発明の一実施形態の液晶ポリエステルフィルム及び積層体の製造過程を示す模式図である。
 以下、本発明のフィルム及び積層体の実施形態を説明する。
≪フィルム≫
 図1は、実施形態のフィルム11の構成を示す模式図である。
 実施形態のフィルムは、熱可塑性樹脂を含み、周波数1GHzにおける比誘電率が3以下であり、周波数1GHzにおける誘電正接が0.005以下であり、マイクロ波配向計で測定した分子配向度(MOR)の値が1~1.1の範囲であるものである。
 上記規定を満たすフィルムは、電子部品用フィルムとして好適な品質を有する。当該品質基準としては、上記の、比誘電率、誘電正接、及び分子配向度(フィルムの等方性)であり、その他、厚さ、および外観(孔又は貫通孔の発生の有無)が考慮される。
 一例として、フィルムの比誘電率及び誘電正接の値は、熱可塑性樹脂の種類により制御可能である。また、一例として、フィルムの等方性の程度は、フィルムの製造方法により制御可能である。
 本明細書において、「誘電特性」とは、比誘電率と誘電正接に関する特性をいう。
 実施形態のフィルムは、周波数1GHzにおける比誘電率が3以下であり、2.9以下であることが好ましく、2.8以下であることがより好ましく、2.7以下であることがさらに好ましく、2.6以下であることが特に好ましい。また、フィルムの比誘電率は、2.3以上であってもよく、2.4以上であってもよく、2.5以上であってもよい。
 上記のフィルムの上記比誘電率の値の上限値と下限値とは、自由に組み合わせることができる。上記のフィルムの上記比誘電率の値の数値範囲の一例としては、2.3以上3以下であってもよく、2.4以上2.9以下であってもよく、2.5以上2.8以下であってもよく、2.5以上2.7以下であってもよく、2.5以上2.6以下であってもよい。
 実施形態のフィルムは、周波数1GHzにおける誘電正接が0.005以下であり、0.004以下であることが好ましく、0.003以下であることがより好ましく、0.002以下であることがさらに好ましく、0.001以下であることが特に好ましい。液晶ポリエステルフィルムの誘電正接は、0.0003以上であってもよく、0.0005以上であってもよく、0.0007以上であってもよい。
 上記のフィルムの上記誘電正接の値の上限値と下限値とは、自由に組み合わせることができる。上記のフィルムの上記誘電正接の値の数値範囲の一例としては、0.0003以上0.005以下であってもよく、0.0005以上0.004以下であってもよく、0.0007以上0.003以下であってもよく、0.0007以上0.002以下であってもよく、0.0007以上0.001以下であってもよい。
 なお、フィルムの周波数1GHzにおける比誘電率、及び誘電正接は、インピーダンスアナライザーを用いた容量法にて、下記の条件で測定することができる。
 フィルムをフローテスターを用いて350℃で溶融させた後、冷却固化させることにより、直径1cm、厚さ0.5cmの錠剤を作製した。得られた錠剤に対して、下記条件にて1GHzにおける比誘電率及び誘電正接を測定する。
・測定方法:容量法
・電極型式:16453A
・測定環境:23℃、50%RH
・印加電圧:1V
 実施形態のフィルムは、マイクロ波配向計で測定した分子配向度(MOR)の値が1~1.1の範囲であり、1~1.08の範囲であることが好ましく、1~1.06の範囲であることがより好ましく、1~1.04の範囲であることがさらに好ましい。
 分子配向度(MOR)は、マイクロ波分子配向計(例えば王子計測機器株式会社製、MOA-5012A)により測定される。マイクロ波分子配向計は、分子の配向によって、配向方向と直角方向とでマイクロ波の透過強度が異なることを利用した装置である。具体的には、試料を回転させながら、一定の周波数(12GHzが用いられる)を有するマイクロ波を照射し、分子の配向によって変化する透過マイクロ波の強度を測定し、その最大値/最小値の比をMORとする。一定の周波数を有するマイクロ波電界と、分子を構成する双極子との相互作用は、両者のベクトルの内積に関係する。試料の誘電率の異方性により、試料が配置される角度によってマイクロ波の強度が変化するため、配向度を知ることが可能である。
 実施形態のフィルムは、昇温速度5℃/分の条件で50~100℃の温度範囲において求められた線膨張係数が85ppm/℃以下であることが好ましく、50ppm/℃以下であることがより好ましく、40ppm/℃以下であることがさらに好ましく、30ppm/℃以下であることが特に好ましい。線膨張係数の下限値は特に限定されないが、例えば0ppm/℃以上である。また、例えば銅箔とフィルムとが積層された場合、銅箔の線膨張係数が18ppm/℃であることから、実施形態のフィルムの線膨張係数は、それに近い値であることが好ましい。つまり、実施形態のフィルムの線膨張係数は、0ppm/℃以上50ppm/℃以下であることが好ましく、10ppm/℃以上40ppm/℃以下であることがより好ましく、20ppm/℃以上30ppm/℃以下であることがさらに好ましい。線膨張係数がフィルムの方向や部位により異なる場合は、高いほうの値を、フィルムの線膨張係数として採用するものとする。フィルムの線膨張係数は、熱機械分析装置(例えば(株)リガク製、型式:TMA8310)を用いて測定できる。上記数値範囲を満たす実施形態のフィルムは、低い線膨張係数を有し、寸法安定性が高い。
 等方性に優れるフィルムは、測定方向による線膨張係数の差が小さいものである。
 実施形態のフィルムは、上記線膨張係数において、MDの線膨張係数とTDの線膨張係数の差(MD>TDの場合はMD-TD、TD>MDの場合はTD-MD)が、2ppm/℃以下であることが好ましく、1ppm/℃以下であることがより好ましい。キャスト法により製膜されたルフィルムにおいて、MDとは、分散液の塗工方向とする。上記の線膨張係数の差の計算のとおり、実際は、異なる方向における線膨張係数が判明すればよいので、フィルムのMDとTDが不明である場合は、フィルムの任意の方向をMDとし、それと90°交わる方向をTDとした時、それぞれの方向の線膨張係数の差が最も大きくなる様に方向を設定すればよい。
 上記数値範囲を満たす実施形態のフィルムは、線膨張の等方性に優れ、縦方向及び横方向の寸法安定性が高い。
 実施形態のフィルムは、電子部品用フィルムとして好適な外観として、孔又は貫通孔を有さないものが好ましい。孔又は貫通孔を有していると、めっき時に孔又は貫通孔の中にめっき液がしみ込んでしまう可能性がある。実施形態の液晶ポリエステル粉末を原料として製造された液晶ポリエステルフィルムは、電子部品用フィルムとして好適な厚さを有しつつ孔又は貫通孔の発生が抑制された高品質なものである。
 実施形態のフィルムの厚さは、特に限定されるものではないが、電子部品用フィルムとして好適な厚さとしては、5~50μmであることが好ましく、7~40μmであることがより好ましく、10~33μmであることがさらに好ましく、15~20μmであることが特に好ましい。
 なお、本明細書において、「厚さ」は、JIS規格(K7130-1992)に従い、無作為に選出した10箇所の厚さを測定して得た値の平均値とする。
 熱可塑性樹脂は、任意の熱可塑性樹脂のなかから、誘電特性に優れた原料樹脂を選択することで、誘電特性に優れたフィルムが得られる。
 実施形態のフィルムの総質量100質量%に対する熱可塑性樹脂の含有割合は、50~100質量%であってもよく、80~95質量%であってもよい。
 熱可塑性樹脂としては、ポリプロピレン、ポリアミド、ポリエステル、ポリスルホン、ポリフェニレンスルフィド、ポリエーテルケトン、ポリカーボネート、ポリフェニレンエーテル、ポリエーテルイミド等が挙げられる。
 特に優れた誘電特性を有するとの観点から、熱可塑性樹脂としては、液晶ポリエステルが好ましい。以下、液晶ポリエステルを含むフィルムを「液晶ポリエステルフィルム」という。
 実施形態のフィルムの総質量100質量%に対する液晶ポリエステルの含有割合は、50~100質量%であってもよく、80~95質量%であってもよい。
 以下、実施形態のフィルムが含んでもよい、液晶ポリエステルの詳細について説明する。
 (液晶ポリエステル)
 液晶ポリエステルは、溶融状態で液晶性を示す液晶ポリエステルであり、450℃以下の温度で溶融するものであることが好ましい。なお、液晶ポリエステルは、液晶ポリエステルアミドであってもよいし、液晶ポリエステルエーテルであってもよいし、液晶ポリエステルカーボネートであってもよいし、液晶ポリエステルイミドであってもよい。液晶ポリエステルは、原料モノマーとして芳香族化合物に由来する構造単位のみを有する全芳香族液晶ポリエステルであることが好ましい。
 なお、本明細書において「由来」とは、原料モノマーが重合するために、重合に寄与する官能基の化学構造が変化し、その他の構造変化を生じないことを意味する。
 液晶ポリエステルの典型的な例としては、以下が挙げられる。
 1)(i)芳香族ヒドロキシカルボン酸と、(ii)芳香族ジカルボン酸と、(iii)芳香族ジオール、芳香族ヒドロキシアミン及び芳香族ジアミンからなる群から選ばれる少なくとも1種の化合物と、を重合(重縮合)させてなるもの。
 2)複数種の芳香族ヒドロキシカルボン酸を重合させてなるもの。
 3)(i)芳香族ジカルボン酸と、(ii)芳香族ジオール、芳香族ヒドロキシアミン及び芳香族ジアミンからなる群から選ばれる少なくとも1種の化合物と、を重合させてなるもの。
 4)(i)ポリエチレンテレフタレート等のポリエステルと、(ii)芳香族ヒドロキシカルボン酸と、を重合させてなるもの。
 ここで、芳香族ヒドロキシカルボン酸、芳香族ジカルボン酸、芳香族ジオール、芳香族ヒドロキシアミン及び芳香族ジアミンは、それぞれ独立に、その一部又は全部に代えて、その重合可能な誘導体が用いられてもよい。
 芳香族ヒドロキシカルボン酸及び芳香族ジカルボン酸のようなカルボキシ基を有する化合物の重合可能な誘導体の例としては、カルボキシ基をアルコキシカルボニル基又はアリールオキシカルボニル基に変換してなるもの(エステル)、カルボキシ基をハロホルミル基に変換してなるもの(酸ハロゲン化物)、及びカルボキシ基をアシルオキシカルボニル基に変換してなるもの(酸無水物)が挙げられる。芳香族ヒドロキシカルボン酸、芳香族ジオール及び芳香族ヒドロキシアミンのようなヒドロキシ基を有する化合物の重合可能な誘導体の例としては、ヒドロキシ基をアシル化してアシルオキシ基に変換してなるもの(アシル化物)が挙げられる。芳香族ヒドロキシアミン及び芳香族ジアミンのようなアミノ基を有する化合物の重合可能な誘導体の例としては、アミノ基をアシル化してアシルアミノ基に変換してなるもの(アシル化物)が挙げられる。
 液晶ポリエステルは、2価の芳香族炭化水素基を含む構造単位を有することが好ましい。
 2価の芳香族炭化水素基を含む構造単位を有する液晶ポリエステルとしては、
 下記式(1)で表される構造単位、下記式(2)で表される構造単位、及び下記式(3)で表される構造単位を有するもの、又は
 下記式(2)で表される構造単位、及び下記式(3)で表される構造単位を有するもの、
 が挙げられる。
(1)-O-Ar-CO-
(2)-CO-Ar-CO-
(3)-O-Ar-O-
(Ar、Ar及びArは、それぞれ独立に、2価の芳香族炭化水素基を表す。
 Ar、Ar又はArで表される前記基にある水素原子は、それぞれ独立に、ハロゲン原子、炭素数1~10のアルキル基、又は炭素数6~20のアリール基で置換されていてもよい。)
 Ar、Ar及びArにおける、2価の芳香族炭化水素基としては、フェニレン基、ナフチレン基、ビフェニリレン基等が挙げられる。
 ここで、Ar、Ar及びArにおける、前記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。前記アルキル基の例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ヘキシル基、2-エチルヘキシル基、n-オクチル基、n-デシル基等が挙げられ、その炭素数は、通常1~10である。前記アリール基の例としては、フェニル基、o-トリル基、m-トリル基、p-トリル基、1-ナフチル基、2-ナフチル基等が挙げられ、その炭素数は、通常6~20である。前記水素原子がこれらの基で置換されている場合、その数は、Ar1、Ar2又はAr3で表される前記基毎に、それぞれ独立に、通常2個以下であり、好ましくは1個以下である。
 液晶ポリエステルは、ナフタレン構造を含む構造単位を有することがより好ましい。
 2価のナフタレン構造を含む構造単位を有する液晶ポリエステルとしては、例えば、
 下記式(1)で表される構造単位、下記式(2)で表される構造単位、及び下記式(3)で表される構造単位を有するもの、又は
 下記式(2)で表される構造単位、及び下記式(3)で表される構造単位を有するもの、
 が挙げられる。
(1)-O-Ar-CO-
(2)-CO-Ar-CO-
(3)-O-Ar-O-
[Ar、Ar及びArは、それぞれ独立に、2価の芳香族炭化水素基を表す(ただし、複数あるAr、Ar及びArの少なくとも一つはナフチレン基である)。
 Ar、Ar又はArで表される前記基にある水素原子は、それぞれ独立に、ハロゲン原子、炭素数1~10のアルキル基、又は炭素数6~20のアリール基で置換されていてもよい。]
 前記Ar、Ar及びArは、それぞれ独立に、ナフチレン基又はフェニレン基を表す(ただし、複数あるAr、Ar及びArの少なくとも一つはナフチレン基である)ものであってもよい。
 液晶ポリエステルが、上記式(1)で表される構造単位、上記式(2)で表される構造単位、及び上記(3)で表される構造単位を有し、複数あるAr、Ar及びArの少なくとも一つはナフチレン基である場合、複数あるAr及び/又はArの少なくとも一つがナフチレン基であることが好ましい。
 液晶ポリエステルが、上記式(2)で表される構造単位、及び上記式(3)で表される構造単位を有し、複数あるAr及びArの少なくとも一つはナフチレン基である場合、複数あるArの少なくとも一つがナフチレン基であることが好ましい。
 前記Ar、Ar及びArにおけるナフチレン基は、2,6-ナフタレンジイル基又は2,7-ナフタレンジイル基であることが好ましく、2,6-ナフタレンジイル基であることがより好ましい。
 液晶ポリエステルにおける、ナフタレン構造を含む構造単位の含有量は、液晶ポリエステル中の全構造単位の合計量100モル%(液晶ポリエステルを構成する各構造単位の質量をその各構造単位の式量で割ることにより、各構造単位の物質量相当量(モル)を求め、それらを合計した値)に対して40モル%以上であることが好ましく、50モル%以上であることがより好ましく、60モル%以上であることがさらに好ましい。ナフタレン構造を含む構造単位の含有量が上記下限値以上であることにより、液晶ポリエステルの比誘電率を、より一層低下させることが可能である。
 液晶ポリエステルにおける、ナフタレン構造を含む構造単位の含有量は、液晶ポリエステル中の全構造単位の合計量100モル%に対して90モル%以下であることが好ましく、80モル%以下であることがより好ましい。ナフタレン構造を含む構造単位の含有量が上記上限値以下であることにより、液晶ポリエステルを生産する時の反応安定性を確保できる。
 上記のナフタレン構造を含む構造単位の含有量の値の数値範囲の一例としては、40モル%以上90モル%以下であってもよく、50モル%以上80モル%以下であってもよく、60モル%以上80モル%以下であってもよい。
 液晶ポリエステルは、上記式(1)~(3)で表される構造単位のうち、上記式(2)で表される構造単位及び上記式(3)で表される構造単位を含むものであってもよく、上記式(1)~(3)で表される全ての種類の構造単位を有するものであってもよい。
 液晶ポリエステルは、上記式(1)~(3)で表される構造単位のうち、上記式(2)で表される構造単位及び上記式(3)で表される構造単位からなるものであってもよく、上記式(1)~(3)で表される全ての種類の構造単位からなるものであってもよい。
 上記式(1)~(3)で表される構造単位を有する液晶ポリエステルとしては、例えば、下記式(1)で表される構造単位、下記式(2)で表される構造単位、及び下記式(3)で表される構造単位を有するものが挙げられる。
(1)-O-Ar-CO-
(2)-CO-Ar-CO-
(3)-O-Ar-O-
(Arは、Ar及びArは、それぞれ独立に、ナフタレンジイル基、フェニレン基、又はビフェニリレン基を表す。
 Ar、Ar又はArで表される前記基にある水素原子は、それぞれ独立に、ハロゲン原子、炭素数1~10のアルキル基、又は炭素数6~20のアリール基で置換されていてもよい。)
 上記の液晶ポリエステルは、下記の液晶ポリエステルを包含する。
 下記式(1)で表される構造単位、下記式(2)で表される構造単位、及び下記式(3)で表される構造単位を有する液晶ポリエステル。
(1)-O-Ar-CO-
(2)-CO-Ar-CO-
(3)-O-Ar-O-
(Arは、2,6-ナフタレンジイル基、1,4-フェニレン基、又は4,4’-ビフェニリレン基を表す。
 Ar及びArは、それぞれ独立に、2,6-ナフタレンジイル基、2,7-ナフタレンジイル基、1,4-フェニレン基、1,3-フェニレン基、又は4,4’-ビフェニリレン基を表す。
 Ar、Ar又はArで表される前記基にある水素原子は、それぞれ独立に、ハロゲン原子、炭素数1~10のアルキル基、又は炭素数6~20のアリール基で置換されていてもよい。)
 上記式(1)~(3)で表される構造単位を有する液晶ポリエステルとしては、例えば、下記式(1)で表される構造単位、下記式(2)で表される構造単位、及び下記式(3)で表される構造単位を有するものが挙げられる。
(1)-O-Ar-CO-
(2)-CO-Ar-CO-
(3)-O-Ar-O-
(Arはナフタレンジイル基を表し、Arはナフタレンジイル基又はフェニレン基を表し、Arはフェニレン基を表す。
 Ar、Ar又はArで表される前記基にある水素原子は、それぞれ独立に、ハロゲン原子、炭素数1~10のアルキル基、又は炭素数6~20のアリール基で置換されていてもよい。)
 液晶ポリエステルが、上記式(1)~(3)で表される全ての種類の構造単位を有するものであるとき、液晶ポリエステルにおける各構造単位の好ましい含有量の割合を、以下のとおり例示できる。
 液晶ポリエステルにおける構造単位(1)の含有量の割合は、液晶ポリエステル中の全構造単位の合計量100モル%に対して、30モル%以上80モル%以下が好ましく、40モル%以上70モル%以下がより好ましく、45モル%以上65モル%以下がさらに好ましい。
 また、液晶ポリエステルにおける構造単位(2)の含有量の割合は、液晶ポリエステル中の全構造単位の合計量100モル%に対して、10モル%以上35モル%以下が好ましく、15モル%以上30モル%以下がより好ましく、17.5モル%以上27.5モル%以下がさらに好ましい。
 また、液晶ポリエステルにおける構造単位(3)の含有量の割合は、液晶ポリエステル中の全構造単位の合計量100モル%に対して、10モル%以上35モル%以下が好ましく、15モル%以上30モル%以下がより好ましく、17.5モル%以上27.5モル%以下がさらに好ましい。
 また、液晶ポリエステルにおける、構造単位(2)の含有量と構造単位(3)の含有量とは、等しいことが好ましいが、含有量が異なる場合は、構造単位(2)と構造単位(3)の含有量の差は、5モル%以下が望ましい。
 耐熱性や溶融張力が高い液晶ポリエステルの例では、構造単位(1)のArが2,6-ナフタレンジイル基(例えば2-ヒドロキシ-6-ナフトエ酸に由来する構造単位)であるものの含有量の割合が、液晶ポリエステル中の全構造単位の合計量に対して、40モル%以上74.8モル%以下が好ましく、40モル%以上64.5モル%以下がより好ましく、50モル%以上58モル%以下がさらに好ましい。
 液晶ポリエステルにおいて、構造単位(2)のArが2,6-ナフタレンジイル基(例えば2,6-ナフタレンジカルボン酸に由来する構造単位)であるものの含有量の割合が、液晶ポリエステル中の全構造単位の合計量に対して、10.0モル%以上35モル%以下が好ましく、12.5モル%以上30モル%以下がより好ましく、15モル%以上25モル%以下がさらに好ましい。
 また液晶ポリエステルにおいて、構造単位(2)のArが1,4-フェニレン基(例えばテレフタル酸に由来する構造単位)であるものの含有量の割合が、液晶ポリエステル中の全構造単位の合計量に対して、0.2モル%以上15モル%以下が好ましく、0.5モル%以上12モル%以下がより好ましく、2モル%以上10モル%以下がさらに好ましい。
 液晶ポリエステルにおいて、構造単位(3)のArが1,4-フェニレン基(例えばハイドロキノンに由来する構造単位)であるものの含有量の割合が、液晶ポリエステル中の全構造単位の合計量に対して、12.5モル%以上30モル%以下が好ましく、17.5モル%以上30モル%以下がより好ましく、20モル%以上25モル%以下がさらに好ましい。
 液晶ポリエステルにおいて、構造単位(2)のうち、Arが2,6-ナフタレンジイル基であるものの含有量が、Arが2,6-ナフタレンジイル基であるもの及びArが1,4-フェニレン基であるものの合計量に対して、例えば2,6-ナフタレンジカルボン酸に由来する構造単位の含有量が、2,6-ナフタレンジカルボン酸に由来する構造単位及びテレフタル酸に由来する構造単位の合計量に対して、0.5モル倍以上が好ましく、0.6モル倍以上がより好ましい。
 上記の液晶ポリエステル中の全構造単位の合計量100モル%に対する各構造単位の配合割合は、液晶ポリエステル中の芳香族化合物に由来する全構造単位の合計量100モル%に対する配合割合であってもよい。
 液晶ポリエステルの上記構造単位の含有率の和は、100モル%を超えない。
 実施形態の液晶ポリエステルは、例えば、構造単位を与える各モノマーを溶融重縮合させることにより、製造することができる。
 その際、前記各モノマーとしては、溶融重縮合を速やかに進行させるため、そのエステル形成性誘導体を用いることが好ましい。
 ここで、エステル形成性誘導体の例としては、芳香族ヒドロキシカルボン酸や芳香族ジカルボン酸のようなカルボキシル基を有する化合物であれば、カルボキシル基がハロホルミル基に変換されたもの、カルボキシル基がアシルオキシカルボニル基に変換されたもの、カルボキシル基がアルコキシカルボニル基やアリールオキシカルボニル基に変換されたものが挙げられる。
 また、芳香族ヒドロキシカルボン酸や芳香族ジオールのようなヒドロキシル基を有する化合物であれば、ヒドロキシル基がアシルオキシ基に変換されたものが挙げられる。中でも、ヒドロキシル基がアシルオキシ基に変換されたものは好ましく用いられ、すなわち、芳香族ヒドロキシカルボン酸のエステル形成性誘導体としては、そのヒドロキシル基がアシル化されてなる芳香族アシルオキシカルボン酸が好ましく用いられ、また、芳香族ジオールのエステル形成性誘導体としては、そのヒドロキシル基がアシル化されてなる芳香族ジアシルオキシ化合物が好ましく用いられる。アシル化は、無水酢酸によるアセチル化であることが好ましく、このアセチル化によるエステル形成性誘導体は、脱酢酸重縮合させることができる。
 溶融重合は、触媒の存在下に行ってもよく、この触媒の例としては、酢酸マグネシウム、酢酸第一錫、テトラブチルチタネート、酢酸鉛、酢酸ナトリウム、酢酸カリウム、及び三酸化アンチモン等の金属化合物や、4-(ジメチルアミノ)ピリジン、及び1-メチルイミダゾール等の含窒素複素環式化合物が挙げられ、含窒素複素環式化合物が好ましく用いられる。なお、溶融重合は、必要に応じて、更に固相重合させてもよい。
 実施形態のフィルムが液晶ポリエステルを含む場合、フィルムに含まれる液晶ポリエステルの総和100質量%に対して、上記実施形態の液晶ポリエステルを70質量%超100質量%以下含むものであってもよく、80~100質量%含むものであってもよい。当該液晶ポリエステルは、前述の実施形態の液晶ポリエステル粉末で例示するものが挙げられ、例えば、上記1)~4)の液晶ポリエステルや、上記式(1)で表される構造単位、上記式(2)で表される構造単位、及び上記式(3)で表される構造単位を有するもの、又は上記式(2)で表される構造単位、及び上記式(3)で表される構造単位を有する液晶ポリエステルである。
 実施形態のフィルムは、熱可塑性樹脂を含み、周波数1GHzにおける比誘電率が3以下であり、周波数1GHzにおける誘電正接が0.005以下であり、マイクロ波配向計で測定した分子配向度(MOR)の値が1~1.1の範囲であるフィルム(ただし、熱可塑性樹脂として液晶ポリエステルを含む場合、液晶ポリエステルの総和100質量%に対して、非プロトン性溶媒に可溶な液晶ポリエステルの含有量が5質量%未満である)であってよい。
 実施形態のフィルムは、熱可塑性樹脂を含み、周波数1GHzにおける比誘電率が3以下であり、周波数1GHzにおける誘電正接が0.005以下であり、マイクロ波配向計で測定した分子配向度(MOR)の値が1~1.1の範囲であるフィルム(ただし、非プロトン性溶媒に可溶な液晶ポリエステルを含むものを除く)であってよい。
 非プロトン性溶媒に可溶な液晶ポリエステルとしては、4-ヒドロキシアセトアミノフェン、由来する構造単位を含む液晶ポリエステルであってよい。
 非プロトン性溶媒に可溶な液晶ポリエステルとしては、6-ヒドロキシ-2-ナフトエ酸に由来する構造単位、4-ヒドロキシアセトアミノフェンに由来する構造単位、及びイソフタル酸に由来する構造単位からなる液晶ポリエステルであってよい。
 非プロトン性溶媒に可溶な液晶ポリエステルとしては、6-ヒドロキシ-2-ナフトエ酸(5.0モル)、4-ヒドロキシアセトアミノフェン(2.5モル)、イソフタル酸(2.5モル)、及び無水酢酸(8.4モル)の混合物を反応させて得られる重合物である液晶ポリエステルであってもよい。
 以下、非プロトン性溶媒に可溶な液晶ポリエステルについて説明する。
≪(X)成分≫
 (X)成分は、非プロトン性溶媒に可溶な液晶性ポリエステルである。ここで、「非プロトン性溶媒に可溶である」とは、下記の試験を行うことにより確認できる。
・試験方法
 液晶性ポリエステルを非プロトン性溶媒中で120℃から180℃の温度で、1時間から6時間撹拌した後、室温(23℃)まで冷却する。次いで、5μmのメンブレンフィルター及び加圧式のろ過機を用いてろ過をした後、メンブレンフィルター上の残留物を確認する。この時、固形物が確認されない場合を非プロトン性溶媒に可溶と判断する。
 より具体的には、液晶性ポリエステル1質量部を、非プロトン性溶媒99質量部中で、140℃で、4時間の条件で撹拌した後、23℃まで冷却する。次いで、5μmのメンブレンフィルター及び加圧式のろ過機を用いてろ過をした後、メンブレンフィルター上の残留物を確認する。この時、固形物が確認されない場合を非プロトン性溶媒に可溶と判断する。
 液晶性ポリエステル(X)は、構造単位として以下の式(X1)、(X2)、及び(X3)で示される構造単位を含むことが好ましい。
 1つの側面として(X)成分を構成する全構造単位の合計含有量に対して、式(X1)で示される構造単位の含有量は30~80モル%であり、式(X2)で示される構造単位の含有量は35~10モル%であり、式(X3)で示される構造単位の含有量は35~10モル%である。
 但し、前記式(X1)で示される構造単位、前記式(X2)で示される構造単位及び前記式(X3)で示される構造単位の合計含有量は100モル%を超えない。
(X1) -O-Ar1-CO-
(X2) -CO-Ar2-CO-
(X3) ―X-Ar3-Y-
 (X1~X3において、Ar1は、1,4-フェニレン基、2,6-ナフタレンジイル基、又は4,4’-ビフェニレン基を表わす。Ar2は、1,4-フェニレン基、1,3-フェニレン基、又は2,6-ナフタレンジイル基を表わす。Ar3は、1,4-フェニレン基又は1,3-フェニレン基を表わす。Xは-NH-であり、Yは、-O-又はNH-を表わす。)
 構造単位(X1)は、芳香族ヒドロキシカルボン酸由来の構造単位、構造単位(X2)は、芳香族ジカルボン酸由来の構造単位、構造単位(X3)は、芳香族ジアミン又はフェノール性水酸基を有する芳香族アミン由来の構造単位である。(X)成分は、上述した構成単位の代わりに、上述した構成単位のエステルもしくはアミド形成性誘導体を用いてもよい。
 本実施形態においては、前記Ar1が2,6-ナフタレンジイル基であり、前記Ar2が1,3-フェニレン基であり、前記Ar3が1,4-フェニレン基であり、前記Yが-O-であることが好ましい。
 カルボン酸のエステル形成性誘導体としては、例えば、カルボキシ基が、ポリエステルを生成する反応を促進するような、酸塩化物、酸無水物等の反応活性が高い誘導体となっているもの、カルボキシ基が、エステル交換反応によりポリエステルを生成するようなアルコール類やエチレングリコール等とエステルを形成しているもの等が挙げられる。
 フェノール性水酸基のエステル形成性誘導体としては、例えば、フェノール性水酸基がカルボン酸類とエステルを形成しているもの等が挙げられる。
 アミノ基のアミド形成性誘導体としては、例えばアミノ基がカルボン酸類とアミドを形成しているもの等が挙げられる。
 本実施形態に使用される(X)成分の繰り返し構造単位としては、下記のものを例示することができるが、これらに限定されるものではない。
 式(X1)で示される構造単位としては、例えば、p-ヒドロキシ安息香酸、6-ヒドロキシ-2-ナフトエ酸又は4’-ヒドロキシ-4-ビフェニルカルボン酸、に由来する構造単位等が挙げられ、2種以上の前記構造単位が、全構造単位中に含まれていてもよい。これらの構造単位の中で、6-ヒドロキシ-2-ナフトエ酸由来の構造単位を含む(X)成分を使用することが好ましい。
 構造単位(X1)の含有量は、(X)成分を構成する全構造単位の含有量に対して、30モル%以上80モル%以下であり、40モル%以上70モル%以下であることが好ましく、45モル%以上65モル%以下であることがより好ましい。
 構造単位(X1)が多いと溶媒への溶解性が著しく低下する傾向があり、少なすぎると液晶性を示さなくなる傾向がある。すなわち、構造単位(X1)の含有量が上記範囲内であると、溶媒への溶解性が良好であり、液晶性を示し易くなる。
 式(X2)で示される構造単位としては、例えば、テレフタル酸、イソフタル酸又は2,6-ナフタレンジカルボン酸に由来する構造単位等が挙げられ、2種以上の前記構造単位が、全構造単位中に含まれていてもよい。これらの構造単位の中で、溶媒への溶解性の観点から、イソフタル酸由来の構造単位を含む液晶性ポリエステルを使用することが好ましい。
 構造単位(X2)の含有量は、(X)成分を構成する全構造単位の含有量に対して、10モル%以上35モル%以下が好ましく、15モル%以上30モル%以下がより好ましく、17.5モル%以上27.5モル%以下が特に好ましい。構造単位(X2)が多すぎると、液晶性が低下する傾向があり、少ないと溶媒への溶解性が低下する傾向がある。すなわち、構造単位(X2)の含有量が上記範囲内であると、液晶性が良好であり、溶媒への溶解性も良好となる。
 式(X3)で示される構造単位としては、例えば、3-アミノフェノール、4-アミノフェノール、1,4-フェニレンジアミン又は1,3-フェニレンジアミンに由来する構造単位等が挙げられ、2種以上の前記構造単位が、全構造単位中に含まれていてもよい。
これらの構造単位の中で、反応性の観点から4-アミノフェノール由来の構造単位を含む液晶性ポリエステルを使用することが好ましい。
 構造単位(X3)の含有量は、(X)成分を構成する全構造単位の含有量に対して、10モル%以上35モル%以下が好ましく、15モル%以上30モル%以下がより好ましく、17.5モル%以上27.5モル%以下が特に好ましい。構造単位(3)が多すぎると、液晶性が低下する傾向があり、少ないと溶媒への溶解性が低下する傾向がある。すなわち、構造単位(X3)の含有量が上記範囲内であると液晶性が良好となり、溶媒への溶解性も良好となる。
 構造単位(X3)は構造単位(X2)と実質的に等量用いられることが好ましいが、構造単位(X3)の含有量を構造単位(X2)の含有量に対して、-10~+10モル%とすることにより、液晶性ポリエステルの重合度を制御することもできる。
 本実施形態に係る(X)成分の製造方法は、特に限定されないが、例えば、構造単位(X1)に対応する芳香族ヒドロキシ酸、構成単位(X3)に対応するフェノール性水酸基を有する芳香族アミン、又は芳香族ジアミン、のフェノール性水酸基やアミノ基を過剰量の脂肪酸無水物によりアシル化して得られたアシル化物と、構造単位(X2)に対応する芳香族ジカルボン酸と、をエステル・アミド交換(重縮合)して溶融重合する方法などが挙げられる(特開2002-220444号公報、特開2002-146003号公報参照)。
 アシル化反応においては、脂肪酸無水物の添加量は、フェノール性水酸基とアミノ基の合計量に対して、1.0~1.2倍当量であることが好ましく、より好ましくは1.05~1.1倍当量である。脂肪酸無水物の添加量が少なすぎると、エステル交換・アミド交換(重縮合)時にアシル化物や原料モノマーなどが昇華し、反応系が閉塞し易い傾向があり、また、多すぎると、得られる液晶性ポリエステルの着色が著しくなる傾向がある。すなわち、脂肪酸無水物の添加量が上記範囲内であると、エステル交換・アミド交換(重縮合)時にアシル化物や原料モノマーなどの反応が良好であり、得られる液晶性ポリエステルは着色しすぎることがない。
 アシル化反応は、130~180℃で5分間~10時間反応させることが好ましく、140~160℃で10分間~3時間反応させることがより好ましい。
 アシル化反応に使用される脂肪酸無水物は,特に限定されないが、例えば、無水酢酸、無水プロピオン酸、無水酪酸、無水イソ酪酸、無水吉草酸、無水ピバル酸、無水-2エチルヘキサン酸、無水モノクロル酢酸、無水ジクロル酢酸、無水トリクロル酢酸、無水モノブロモ酢酸、無水ジブロモ酢酸、無水トリブロモ酢酸、無水モノフルオロ酢酸、無水ジフルオロ酢酸、無水トリフルオロ酢酸、無水グルタル酸、無水マレイン酸、無水コハク酸、無水β-ブロモプロピオン酸等が挙げられ、これらは2種類以上を混合して用いてもよい。本実施形態においては、無水酢酸、無水プロピオン酸、無水酪酸、又は無水イソ酪酸が好ましく、より好ましくは、無水酢酸である。
 エステル交換・アミド交換(重縮合)においては、アシル化物のアシル基がカルボキシル基の0.8~1.2倍当量であることが好ましい。
 エステル交換・アミド交換(重縮合)は、400℃まで0.1~50℃/分の割合で昇温しながら行なうことが好ましく、350℃まで0.3~5℃/分の割合で昇温しながら行なうことがより好ましい。
 アシル化物とカルボン酸とをエステル交換・アミド交換(重縮合)させる際、副生する脂肪酸と未反応の脂肪酸無水物は、蒸発させるなどして系外へ留去することが好ましい。
 なお、アシル化反応、エステル交換・アミド交換(重縮合)は、触媒の存在下に行なってもよい。前記触媒としては、従来からポリエステルの重合用触媒として公知のものを使用することができ、例えば、酢酸マグネシウム、酢酸第一錫、テトラブチルチタネート、酢酸鉛、酢酸ナトリウム、酢酸カリウム、三酸化アンチモンなどの金属塩触媒、N,N-ジメチルアミノピリジン、N-メチルイミダゾールなどの有機化合物触媒等を挙げることができる。
 これらの触媒の中で、N,N-ジメチルアミノピリジン、N-メチルイミダゾール等の窒素原子を少なくとも2個含む複素環状化合物が好ましく使用される(特開2002-146003号公報参照)。
 前記触媒は、通常、モノマー類の投入時に投入され、アシル化後も除去することは必ずしも必要ではなく、前記触媒を除去しない場合にはそのままエステル交換を行なうことができる。
 エステル交換・アミド交換による重縮合は、通常、溶融重合により行なわれるが、溶融重合と固相重合とを併用してもよい。固相重合は、溶融重合工程からポリマーを抜き出し、その後、粉砕してパウダー状もしくはフレーク状にした後、公知の固相重合方法により行うことが好ましい。具体的には、例えば、窒素等の不活性雰囲気下、20~350℃で、1~30時間固相状態で熱処理する方法などが挙げられる。固相重合は、攪拌しながらでも、攪拌することなく静置した状態で行ってもよい。なお適当な攪拌機構を備えることにより溶融重合槽と固相重合槽とを同一の反応槽とすることもできる。固相重合後、得られた液晶性ポリエステルは、公知の方法によりペレット化し、成形してもよい。また、公知の方法により粉砕してもよい。
 液晶性ポリエステルの製造は、例えば、回分装置、連続装置などを用いて行うことができる。
 液晶性ポリエステル(X)を粉末状とする場合は、体積平均粒径が100~2000μmであることが好ましい。粉末状の液晶性ポリエステル(X)の体積平均粒径は、乾式ふるい分け法(例えば、(株)セイシン企業製RPS-105)により測定することができる。
 1つの側面として、(X)成分の含有量は、液晶性ポリエステル液状組成物の総質量に対して、5~10質量%であることが好ましい。
 〔液晶性ポリエステル(X)の製造例〕
 攪拌装置、トルクメータ、窒素ガス導入管、温度計及び還流冷却器を備えた反応器に、6-ヒドロキシ-2-ナフトエ酸940.9g(5.0モル)、4-ヒドロキシアセトアミノフェン377.9g(2.5モル)、イソフタル酸415.3g(2.5モル)及び無水酢酸867.8g(8.4モル)を入れ、反応器内のガスを窒素ガスで置換した後、窒素ガス気流下、撹拌しながら、室温(23℃)から140℃まで60分間かけて昇温し、140℃で3時間還流させる。次いで、副生酢酸及び未反応の無水酢酸を留去しながら、150℃から300℃まで5時間かけて昇温し、300℃で30分間保持した後、反応器から内容物を取り出し、室温(23℃)まで冷却する。得られた固形物を、粉砕機で粉砕して、粉末状の液晶性ポリエステル(X-1)を得ることができる。この液晶性ポリエステル(X-1)の流動開始温度は、193.3℃であってよい。
 液晶性ポリエステル(X-1)を、窒素雰囲気下、室温(23℃)から160℃まで2時間20分かけて昇温し、次いで160℃から180℃まで3時間20分かけて昇温し、180℃で5時間保持することにより、固相重合させた後、23℃まで冷却し、次いで、粉砕機で粉砕して、粉末状の液晶性ポリエステル(X-2)を得ることができる。この液晶性ポリエステル(X-2)の流動開始温度は、220℃であってよい。
 液晶性ポリエステル(X-2)を窒素雰囲気下、室温から180℃まで1時間25分かけて昇温し、次いで180℃から255℃まで6時間40分かけて昇温し、255℃で5時間保持することにより、固相重合させた後、23℃まで冷却して、体積平均粒径871μmの粉末状の液晶性ポリエステル(X)を得ることができる。液晶性ポリエステル(X)の体積平均粒径は、(株)セイシン企業製RPS-105にて測定する。液晶性ポリエステル(X)の流動開始温度は、302℃であってよい。
〔液晶性ポリエステル溶液(X’)の調製〕
 液晶性ポリエステル(X)8質量部を、N-メチルピロリドン(沸点(1気圧)204℃)92質量部に加え、窒素雰囲気下、140℃で4時間攪拌して、液晶性ポリエステル溶液(X’)を調製することができる。この液晶性ポリエステル溶液(X’)の粘度は、955mPa・sであってよい。
 実施形態のフィルムの製造方法は特に限定されるものではないが、実施形態のフィルムは、後述の≪フィルムの製造方法≫により製造可能である。後述の≪フィルムの製造方法≫では、液晶ポリエステルを原料とした一実施形態を詳細に説明しているが、当該方法において、液晶ポリエステルを任意の熱可塑性樹脂として読みかえることで、任意の熱可塑性樹脂を含む実施形態のフィルムを製造すればよい。
 実施形態のフィルムの製造方法によれば、等方性に優れたフィルムを製造可能である。
 実施形態のフィルムの製造方法によれば、誘電特性及び等方性に優れたフィルムを製造可能である。
 実施形態のフィルムは、プリント配線板などの電子部品用フィルム用途に好適に使用することができる。実施形態のフィルムは、それを絶縁材として備える、基板(例えば、フレキシブル基板)や、積層板(例えば、フレキシブル銅張積層板)、プリント基板、プリント配線板、プリント回路板等として提供可能である。
≪フィルムの製造方法≫
 実施形態のフィルムの製造方法は、支持体上に、樹脂組成物を塗布し、熱処理して、熱可塑性樹脂を含むフィルムを得ることを含むものである。
 実施形態の樹脂組成物は、樹脂粉末と、媒体と、を含有するものである。樹脂組成物、樹脂粉末及び媒体の詳細については後述する。
 熱可塑性樹脂は、液晶ポリエステルであることが好ましい。
 以下、熱可塑性樹脂として液晶ポリエステルを用いた実施形態について説明する。
 実施形態のフィルムの製造方法は、支持体上に、液晶ポリエステル組成物を塗布し、熱処理して、液晶ポリエステルを含む液晶ポリエステルフィルムを得ることを含むものである(以下、「液晶ポリエステルフィルムの製造方法」という)。
 当該製造方法は以下の工程を含んでいてもよい。
 支持体上に、実施形態に係る液晶ポリエステル組成物を塗布して、支持体上に液晶ポリエステルフィルムの前駆体を形成する工程(塗布工程)。
 前記液晶ポリエステルフィルムの前駆体を熱処理して、液晶ポリエステルフィルムを得る工程(熱処理工程)。
 液晶ポリエステルフィルムの製造方法における、塗布工程では、支持体上に、実施形態に係る液晶ポリエステル組成物を塗布した後、塗布された液晶ポリエステル組成物から媒体を除去する工程(乾燥工程)を含んでいてもよい。
 すなわち、実施形態の液晶ポリエステルフィルムの製造方法は、支持体上に、実施形態に係る液晶ポリエステル組成物を塗布し、塗布された液晶ポリエステル組成物から媒体を除去し、熱処理して、液晶ポリエステルを含む液晶ポリエステルフィルムを得ることを含むものであってもよい。
 また、液晶ポリエステルフィルムの製造方法において、更に、前記積層体から支持体を分離する工程(分離工程)を含んでいてもよい。なお、液晶ポリエステルフィルムは、積層体として支持体上に形成されたままでも電子部品用フィルムとして好適に使用可能であるので、分離工程は、液晶ポリエステルフィルムの製造工程において必須の工程ではない。
 以下、図面を参照して、実施形態の液晶ポリエステルフィルムの製造方法の一例を説明する。
 図3は、実施形態の液晶ポリエステルフィルム及び積層体の製造過程の一例を示す模式図である。
 まず、液晶ポリエステル組成物30を支持体12上に塗布する(図3(a)塗布工程)。液晶ポリエステル組成物30は、液晶ポリエステル粉末1と媒体3とを含む。液晶ポリエステル液状組成物の支持体上への塗布は、ローラーコート法、ディップコート法、スプレイコート法、スピナーコート法、カーテンコート法、スロットコート法、及びスクリーン印刷法等の方法により行うことができ、支持体上に表面平滑かつ均一に塗布できる方法を適宜選択できる。また、液晶ポリエステル粉末の分布を均一化させるため、塗布の前に、液晶ポリエステル組成物を攪拌する操作を行ってもよい。
 支持体12としては、板状、シート状又はフィルム状の形状であることが好ましく、例えば、ガラス板、樹脂フィルム又は金属箔が挙げられる。中でも、樹脂フィルム又は金属箔が好ましく、特に、耐熱性に優れ、液状組成物を塗布し易く、また、液晶ポリエステルフィルムから除去し易いことから、銅箔が好ましい。
 ポリイミド(PI)フィルムの市販品の例としては、宇部興産(株)の「U-ピレックスS」及び「U-ピレックスR」、東レデュポン(株)の「カプトン」、並びにSKCコーロンPI社の「IF30」、「IF70」及び「LV300」が挙げられる。樹脂フィルムの厚さは、好ましくは25μm以上75μm以下であり、より好ましくは50μm以上75μm以下である。金属箔の厚さは、好ましくは3μm以上75μm以下であり、より好ましくは5μm以上30μm以下であり、さらに好ましくは10μm以上25μm以下ある。
 次に、支持体12上に塗布された液晶ポリエステル組成物30から媒体3を除去する(図3(b)乾燥工程)。媒体3が除去された液晶ポリエステル組成物は、熱処理の対象である液晶ポリエステルフィルム前駆体40となる。なお、媒体3は液晶ポリエステル組成物から完全に除去される必要はなく、液晶ポリエステル組成物に含まれる媒体の一部が除去されてもよく、媒体の全部が除去されていもよい。液晶ポリエステルフィルム前駆体40に含まれる溶媒の割合は、液晶ポリエステルフィルム前駆体の総質量に対し、50質量%以下であることが好ましく、3質量%以上12質量%以下であることがより好ましく、5質量%以上10質量%以下であることがさらに好ましい。液晶ポリエステルフィルム前駆体中の溶媒含有量が上記下限値以上であることにより、液晶ポリエステルフィルムの熱伝導性が低下する恐れが低減される。また、液晶ポリエステルフィルム前駆体中の溶媒含有量が上記上限値以下であることにより、熱処理時の発泡等により液晶ポリエステルフィルムの外観が低下する恐れが低減される。
 媒体の除去は、媒体を蒸発させることにより行うことが好ましく、その方法としては、例えば、加熱、減圧及び通風が挙げられ、これらを組み合わせてもよい。また、媒体の除去は、連続式で行ってもよいし、枚葉式で行ってもよい。生産性や操作性の点から、媒体の除去は、連続式で加熱することにより行うことが好ましく、連続式で通風しながら加熱することにより行うことがより好ましい。媒体の除去温度は、液晶ポリエステル粉末の融点未満の温度が好ましく、例えば40℃以上200℃以下であり、好ましくは60℃以上200℃である。媒体除去の時間は、例えば、液晶ポリエステルフィルム前駆体中の媒体含有量が3~12質量%になるように、適宜調整される。媒体除去の時間は、例えば0.2時間以上12時間以下であり、好ましくは0.5時間以上8時間以下である。
 こうして得られる支持体12と液晶ポリエステルフィルム前駆体40とを有する積層体前駆体22を、熱処理して、支持体12と液晶ポリエステルフィルム10(液晶ポリエステルフィルム前駆体40が熱処理されてなるフィルム)とを有する積層体20を得る(図3(c)熱処理工程)。このとき、支持体上に形成された、液晶ポリエステルフィルム10が得られる。
 熱処理条件は、例えば、媒体の沸点の-50℃から熱処理温度に達するまで昇温した後、液晶ポリエステルの融点以上の温度で熱処理することが挙げられる。
 この昇温時に、加熱により液晶ポリエステルの重合反応が進行する場合があるが、熱処理温度に達するまでの昇温速度を速くすることで、液晶ポリエステル粉末中の液晶ポリエステルの分子量の増加をある程度抑えることができ、液晶ポリエステル粉末の融解が良好となり、高品質のフィルムを容易に得ることができる。溶媒の沸点の-50℃から熱処理温度までの昇温速度は、3℃/分以上が好ましく、5℃/分以上がより好ましい。
 熱処理温度は、液晶ポリエステルの融点以上が好ましく、液晶ポリエステルの融点より高い温度がより好ましく、液晶ポリエステルの融点+5℃以上の温度を熱処理温度とすることがさらに好ましい。熱処理温度は液晶ポリエステルの種類によって適宜定めればよいが、一例として230℃以上400℃以下が好ましく、300℃以上380℃以下がより好ましく、320℃以上350℃以下がさらに好ましい。液晶ポリエステルの融点より高い温度で熱処理を行うことで、液晶ポリエステル粉末の融解が良好となり、高品質な液晶ポリエステルフィルムを形成できる。液晶ポリエステル粉末が融解できたことは、液晶ポリエステルフィルム前駆体40が透明化したことで確認できる。
 なお、ここでいう媒体の沸点とは、昇温時の圧力における沸点をいう。また、積層体前駆体22の加熱を、媒体の沸点の-50℃未満から開始する場合は、媒体の沸点の-50℃に達してから熱処理温度に達するまでの範囲で昇温速度を定めればよい。媒体の沸点-50℃に達するまでの時間は、任意である。また、熱処理温度に達した後の時間を熱処理時間として考えればよい。熱処理時間は、例えば0.5時間以上であってよく、1時間以上24時間以下であってよく、3時間以上12時間以下であってよい。
 熱処理は、媒体の除去同様、連続式で行ってもよいし、枚葉式で行ってもよいが、生産性や操作性の点から、連続式で行うことが好ましく、媒体の除去に続けて連続式で行うことがより好ましい。
 次いで、支持体12と液晶ポリエステルフィルム10とを有する積層体20から、液晶ポリエステルフィルム10を分離することにより、液晶ポリエステルフィルム10を単層フィルムとして得ることができる(図3(d)分離工程)。積層体20からの液晶ポリエステルフィルム10の分離は、支持体12としてガラス板を用いた場合は、積層体20から液晶ポリエステルフィルム10を剥離することにより行うのがよい。支持体12として樹脂フィルムを用いた場合は、積層体20から樹脂フィルム又は液晶ポリエステルフィルム10を剥離することにより行うのがよい。支持体12として金属箔を用いた場合は、金属箔をエッチングして除去することにより積層体20から分離するのがよい。支持体として樹脂フィルム、特にポリイミドフィルムを用いると、積層体20からポリイミドフィルム又は液晶ポリエステルフィルムが剥離され易く、外観が良好な液晶ポリエステルフィルムが得られる。支持体として金属箔を用いた場合、積層体20から液晶ポリエステルフィルムを分離することなく、積層体20をプリント配線板用の金属張積層板として用いてもよい。
 実施形態の液晶ポリエステルフィルムの製造方法によれば、等方性に優れた液晶ポリエステルフィルムを製造可能である。
 従来の溶融成形法では、融解させた液晶ポリエステルをフィルム状にすることで、液晶ポリエステルの薄膜を製造していたが、対して、実施形態の上記製造方法では、支持体上に予め薄く液晶ポリエステル粉末を配置した後、それを融解させる点で従来のフィルムの製造方法とは大きく異なる。
 実施形態の液晶ポリエステルフィルム又は積層体の製造方法では、予め液晶ポリエステル粉末を支持体上に薄く配置して、それをフィルム化するので、押出成形等の分子配向に偏りを生じさせる要因となる物理的な力が加えられず、等方性に優れた液晶ポリエステルフィルムを製造可能である。
 また、液晶ポリエステル粉末における前記液晶ポリエステルの数平均分子量が10000以下と比較的小さな値であることで、液晶ポリエステル組成物が塗布に適した性状となるとともに、熱処理時の液晶ポリエステルフィルムの融解の状態が良好となり、電子部品用フィルム用途として好適な、等方性に優れた高品質な液晶ポリエステルフィルムを製造可能である。
 さらには、平均粒径が0.5~20μmの液晶ポリエステル粉末を原料として用いることにより、電子部品用フィルム用途として好適な薄さを有し、孔又は貫通孔の発生が抑制された高品質なポリエステルフィルムを容易に製造可能である。
 尚且つ、液晶ポリエステル組成物においては、液晶ポリエステル粉末を媒体に溶解可能なものとすべき制限が無いため、誘電特性に優れた液晶ポリエステルを採用でき、誘電特性及び等方性に優れた液晶ポリエステルフィルムを容易に得ることが可能である。
≪積層体≫
 実施形態の積層体は、金属層と、前記金属層上に積層された実施形態に係るフィルムと、を備えるものである。
 図2は、本発明の一実施形態の積層体21の構成を示す模式図である。積層体21は、金属層13と、金属層13上に積層されたフィルム11と、を備える。
 積層体が備えるフィルムについては、上記に例示したものが挙げられ、説明を省略する。
 積層体が備える金属層については、上記の≪フィルムの製造方法≫及び後述の≪積層体の製造方法≫において支持体として例示するものが挙げられ、金属箔が好ましい。金属層を構成する金属としては導電性やコストの観点で銅が好ましく、金属箔としては銅箔が好ましい。
 実施形態の積層体の厚さは、特に限定されるものではないが、5~130μmであることが好ましく、10~70μmであることがより好ましく、15~60μmであることがさらに好ましい。
 実施形態の積層体の製造方法は特に限定されるものではないが、実施形態の積層体は、後述の≪積層体の製造方法≫により製造可能である。後述の≪積層体の製造方法≫では、液晶ポリエステルを原料とした一実施形態を詳細に説明しているが、当該方法において、液晶ポリエステルを任意の熱可塑性樹脂と読みかえることで、任意の熱可塑性樹脂を含むフィルムを備えた、実施形態の積層体を製造すればよい。
 実施形態の積層体は、プリント配線板などの電子部品用フィルム用途に好適に使用することができる。
≪積層体の製造方法≫
 実施形態の積層体の製造方法は、支持体上に、樹脂組成物を塗布し、熱処理して、熱可塑性樹脂を含むフィルムを形成することにより、前記支持体と前記フィルムとを備える積層体を得ることを含むものである。
 熱可塑性樹脂は、液晶ポリエステルであることが好ましい。
 以下、熱可塑性樹脂として液晶ポリエステルを用いた実施形態について説明する。
 実施形態の積層体の製造方法は、支持体上に、液晶ポリエステル組成物を塗布し、熱処理して、液晶ポリエステルを含む液晶ポリエステルフィルムを形成することにより、前記支持体と前記液晶ポリエステルフィルムとを備える積層体を得ることを含むものである。
 当該製造方法は以下の工程を含んでいてもよい。
 支持体上に、液晶ポリエステル組成物を塗布して、支持体上に液晶ポリエステルフィルム前駆体を形成する工程(塗布工程)。
 前記液晶ポリエステルフィルム前駆体を熱処理して、前記支持体と前記液晶ポリエステルフィルムとを備える積層体を得る工程(熱処理工程)。
 上述の液晶ポリエステルフィルムの製造方法と同じく、積層体の製造方法における、塗布工程では、支持体上に、実施形態に係る液晶ポリエステル組成物を塗布した後、塗布された液晶ポリエステル組成物から媒体を除去する工程(乾燥工程)を含んでいてもよい。
 すなわち、実施形態の積層体の製造方法は、支持体上に、実施形態に係る液晶ポリエステル組成物を塗布し、塗布された液晶ポリエステル組成物から媒体を除去し、熱処理して、液晶ポリエステルを含む液晶ポリエステルフィルムを形成することにより、前記支持体と前記液晶ポリエステルフィルムとを備える積層体を得ることを含むものであってもよい。
 図3は、実施形態の液晶ポリエステルフィルム及び積層体の製造過程の一例を示す模式図である。図3で例示する積層体の製造方法については、上述の分離工程(図3(d))を行わないこと以外は、上述の液晶ポリエステルフィルムの製造方法において説明したとおりであるので、説明を省略する。
 実施形態の積層体の製造方法によれば、実施形態の液晶ポリエステルフィルムを有する積層体を製造可能である。
≪樹脂組成物≫
 実施形態の樹脂組成物は、媒体と、樹脂粉末と、を含有するものである。樹脂組成物は、上記のフィルムの製造に好適に用いられる。
 樹脂粉末は、液晶ポリエステル粉末であることが好ましい。樹脂粉末の詳細については後述する。
 実施形態の樹脂組成物は、非プロトン性溶媒と、前記非プロトン性溶媒に不溶な液晶ポリエステル粉末と、を含有するものであることが好ましい。
 以下、熱可塑性樹脂として液晶ポリエステルを用いた実施形態について説明する。
 実施形態の組成物は、媒体と、液晶ポリエステル粉末と、を含有するものである(以下、「液晶ポリエステル組成物」という)。
 液晶ポリエステル粉末については、下記<樹脂粉末>で説明する。
 媒体は、液晶ポリエステル粉末が不溶なものであれば特に限定されず、分散媒であることが好ましい。また媒体は流体であることが好ましく、液体であることがより好ましい。
 ここでの「分散」とは、液晶ポリエステル粉末が溶解した状態と区別する(液晶ポリエステル組成物中で液晶ポリエステル粉末が溶解した状態を除く)ための用語である。組成物中の液晶ポリエステル粉末の分布に、不均一な部分があってもよい。組成物中の液晶ポリエステル粉末の状態は、上記の液晶ポリエステルフィルムの製造方法において、支持体上に液晶ポリエステル組成物を塗布可能な状態であればよい。
 媒体の例としては、ジクロロメタン、クロロホルム、1,1-ジクロロエタン、1,2-ジクロロエタン、1,1,2,2-テトラクロロエタン、1-クロロブタン、クロロベンゼン、o-ジクロロベンゼン等のハロゲン化炭化水素;p-クロロフェノール、ペンタクロロフェノール、ペンタフルオロフェノール等のハロゲン化フェノール;ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン等のエーテル;アセトン、シクロヘキサノン等のケトン;酢酸エチル、γ-ブチロラクトン等のエステル;エチレンカーボネート、プロピレンカーボネート等のカーボネート;トリエチルアミン等のアミン;ピリジン等の含窒素複素環芳香族化合物;アセトニトリル、スクシノニトリル等のニトリル;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド、テトラメチル尿素等の尿素化合物;ニトロメタン、ニトロベンゼン等のニトロ化合物;ジメチルスルホキシド、スルホラン等の硫黄化合物;及びヘキサメチルリン酸アミド、トリn-ブチルリン酸等のリン化合物が挙げられ、それらの2種以上を用いてもよい。
 媒体としては、腐食性が低く、取り扱い易いことから、非プロトン性化合物、特にハロゲン原子を有しない非プロトン性化合物を主成分とする媒体が好ましく、媒体全体に占める非プロトン性化合物の割合は、好ましくは50~100質量%、より好ましくは70~100質量%、さらに好ましくは90~100質量%である。また、前記非プロトン性化合物としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、テトラメチル尿素、N-メチルピロリドン等のアミド又はγ-ブチロラクトン等のエステルを用いることが好ましく、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、及びN-メチルピロリドンがさらに好ましい。
 また、媒体としては、除去し易いことから、1気圧における沸点が220℃以下である化合物を主成分とする媒体が好ましく、媒体全体に占める1気圧における沸点が220℃以下である化合物の割合は、好ましくは50~100質量%、より好ましくは70~100質量%、さらに好ましくは90~100質量%であり、前記非プロトン性化合物として、1気圧における沸点が220℃以下である化合物を用いることが好ましい。
 液晶ポリエステル組成物に含まれる固形分の総量に対する、液晶ポリエステル粉末の割合は、一例として、50~100質量%であってよく、70~100質量%であってよく、90~100質量%であってよい。
 液晶ポリエステル組成物に含まれる液晶ポリエステル粉末の割合は、液晶ポリエステル粉末及び媒体の合計量に対して、0.1~60質量%であることが好ましく、1~50質量%であることがより好ましく、3~40質量%であることがさらに好ましく、5~30質量%であることが特に好ましい。
 液晶ポリエステル組成物は、液晶ポリエステル粉末、媒体、及び必要に応じて用いられる他の成分を、一括で又は適当な順序で混合して得ることができる。
 液晶ポリエステル組成物は、充填材、添加剤、及び液晶ポリエステル以外の樹脂等の他の成分を1種以上含んでもよい。
 充填材の例としては、シリカ、アルミナ、酸化チタン、チタン酸バリウム、チタン酸ストロンチウム、水酸化アルミニウム、炭酸カルシウム等の無機充填材;及び硬化エポキシ樹脂、架橋ベンゾグアナミン樹脂、架橋アクリル樹脂等の有機充填材が挙げられ、その含有量は、液晶ポリエステル100質量部に対して、0であってもよく、好ましくは100質量部以下である。
 添加剤の例としては、レべリング剤、消泡剤、酸化防止剤、紫外線吸収剤、難燃剤及び着色剤が挙げられ、その含有量は、液晶ポリエステル100質量部に対して、0であってもよく、好ましくは5質量部以下である。
 液晶ポリエステル以外の樹脂の例としては、ポリプロピレン、ポリアミド、液晶ポリエステル以外のポリエステル、ポリフェニレンスルフィド、ポリエーテルケトン、ポリカーボネート、ポリエーテルスルホン、ポリフェニレンエーテル及びその変性物、ポリエーテルイミド等の液晶ポリエステル以外の熱可塑性樹脂;グリシジルメタクリレートとポリエチレンとの共重合体等のエラストマー;及びフェノール樹脂、エポキシ樹脂、ポリイミド樹脂、シアネート樹脂等の熱硬化性樹脂が挙げられ、その含有量は、液晶ポリエステル100質量部に対して、0であってもよく、好ましくは20質量部以下である。
<樹脂粉末>
 実施形態の樹脂粉末は、数平均分子量が10000以下の熱可塑性樹脂を含み、平均粒径が0.5~20μmであるものである。
 実施形態の樹脂粉末100質量%に対する熱可塑性樹脂の含有割合は、50~100質量%であってもよく、80~95質量%であってもよい。
 熱可塑性樹脂は、液晶ポリエステルであることが好ましい。
 実施形態の樹脂粉末100質量%に対する液晶ポリエステルの含有割合は、50~100質量%であってもよく、80~95質量%であってもよい。
 以下、熱可塑性樹脂として液晶ポリエステルを用いた実施形態について説明する。
 実施形態の樹脂粉末は、数平均分子量が10000以下の液晶ポリエステルを含み、平均粒径が0.5~20μmであるものである(以下、「液晶ポリエステル粉末」という)。実施形態の液晶ポリエステル粉末は、液晶ポリエステルフィルム又は積層体の製造方法の原料として好適である。上記規定を満たす液晶ポリエステル粉末によれば、電子部品用フィルムとして好適な品質を有する液晶ポリエステルフィルムを製造可能である。当該品質基準としては、フィルムの等方性、厚さ、および外観(孔又は貫通孔の発生の有無)が挙げられる。液晶ポリエステルフィルムとしては、上記≪フィルム≫において例示したものが挙げられる。
 本明細書において、「数平均分子量」とは、ゲル浸透クロマトグラフ―多角度光散乱光度計を用いて測定された絶対値である。
 実施形態の液晶ポリエステル粉末における液晶ポリエステルの数平均分子量は、10000以下であり、3000~10000であることがより好ましく、4000~8000であることがさらに好ましく、5000~7000であることが特に好ましい。液晶ポリエステルの数平均分子量が10000を超えると、液晶ポリエステル組成物がゲル状になり、等方性に優れたフィルム化加工が困難となる。また液晶ポリエステルの数平均分子量が小さいほど、熱処理後のフィルムの厚さ方向の熱伝導性が向上する傾向にあり好ましく、液晶ポリエステルの数平均分子量が上記下限値以上であると、熱処理後のフィルムの耐熱性や強度・剛性が良好である。
 実施形態の液晶ポリエステル粉末における液晶ポリエステルは、その流動開始温度が、好ましくは250℃以上、より好ましくは250℃以上350℃以下、さらに好ましくは260℃以上330℃以下である。液晶ポリエステルの流動開始温度が高いほど、耐熱性や強度及び剛性が向上し易いが、あまり高いと、粉砕性が悪くなり目標粒径の粉末を得られ難くなる。
 流動開始温度は、フロー温度又は流動温度とも呼ばれ、毛細管レオメーターを用いて、9.8MPa(100kg/cm2)の荷重下、4℃/分の速度で昇温しながら、液晶ポリエステルを溶融させ、内径1mm及び長さ10mmのノズルから押し出すときに、4800Pa・s(48000ポイズ)の粘度を示す温度であり、液晶ポリエステルの分子量の目安となるものである(小出直之編、「液晶ポリマー-合成・成形・応用-」、株式会社シーエムシー、1987年6月5日、p.95参照)。
 液晶ポリエステル粉末の平均粒径は、20μm以下であり、18μm以下であることが好ましく、15μm以下であることがより好ましく、10μm以下であることがさらに好ましい。液晶ポリエステルの平均粒径が20μmを超えると、外観が良好な液晶ポリエステルフィルムを得ることが困難となる。例えば、後述する実施例で示されるように、液晶ポリエステルの平均粒径が20μmを超えると、製造された液晶ポリエステルフィルムに、貫通孔が発生する場合がある。貫通孔の形成は、電子部品用フィルムとして好適な厚さの範囲である50μm以下で発生しやすい。つまり、液晶ポリエステルの平均粒径が20μm以下であることにより、電子部品用フィルムとして好適な厚さ及び外観が両立されたフィルムを、容易に製造可能である。
 また、粉末の取り扱い易さの観点から、液晶ポリエステル粉末の平均粒径は、0.5μm以上であることが好ましく、3μm以上であることがより好ましく、5μm以上であることがさらに好ましい。
 上記の液晶ポリエステル粉末の平均粒径の値の上限値と下限値とは、自由に組み合わせることができる。上記の液晶ポリエステル粉末の平均粒径の値の数値範囲の一例としては、0.5μm以上20μm以下であってもよく、3μm以上18μm以下であってもよく、5μm以上15μm以下であってもよく、5μm以上10μm以下であってもよい。
 本明細書において、「平均粒径」とは、レーザー回折散乱法によって測定された、体積基準の累積粒度分布曲線において、全体を100%としたときに、累積体積が50%となる点の粒子径の値(50%累積体積粒度D50)である。
 前記範囲の粒径に制御する方法として、例えば、ジェットミルを使用する場合は、分級ローターの回転速度や粉砕ノズル圧、処理速度等を変更することで制御可能である。
 実施形態の樹脂組成物が液晶ポリエステルを含む場合、樹脂組成物に含まれる液晶ポリエステルの総和100質量%に対して、上記実施形態の液晶ポリエステルを70質量%超100質量%以下含むものであってもよく、80~100質量%含むものであってもよい。当該液晶ポリエステルは、実施形態のフィルム及び実施形態の樹脂粉末で例示するものが挙げられ、上記実施形態の(液晶ポリエステル)の段で説明した液晶ポリエステルのうち、上記(X)成分に該当しない液晶ポリエステルであってよく、例えば、上記1)~4)の液晶ポリエステルや、上記式(1)で表される構造単位、上記式(2)で表される構造単位、及び上記式(3)で表される構造単位を有するもの、又は上記式(2)で表される構造単位、及び上記式(3)で表される構造単位を有する液晶ポリエステルである。
 実施形態の樹脂組成物は、媒体と樹脂粉末とを含有するもの(ただし、樹脂粉末として液晶ポリエステル粉末を含む場合、液晶ポリエステルの総和100質量%に対して、非プロトン性溶媒に可溶な液晶ポリエステルの含有量が5質量%未満である)であってよい。
 実施形態の樹脂組成物は、媒体と樹脂粉末とを含有するもの(ただし、非プロトン性溶媒に可溶な液晶ポリエステルを含むものを除く)であってよい。
 ここで、非プロトン性溶媒に可溶な液晶ポリエステルとしては、実施形態のフィルムで例示するものが挙げられる。
 また、上記の液晶ポリエステルフィルム又は積層体の製造方法においては、液晶ポリエステル粉末を溶媒に溶解させる必要がないため、誘電特性に優れた液晶ポリエステルの粉末を原料として採用できる。優れた誘電特性を有する液晶ポリエステル粉末からは、優れた誘電特性を有する液晶ポリエステルフィルムを製造可能である。
 実施形態の液晶ポリエステル粉末は、周波数1GHzにおける比誘電率が3以下であることが好ましく、2.9以下であることが好ましく、2.8以下であることが好ましく、2.8未満であることがより好ましく、2.78以下であることがさらに好ましく、2.76以下であることが特に好ましい。また、液晶ポリエステル粉末の比誘電率は、2.5以上であってもよく、2.6以上であってもよく、2.7以上であってもよい。
 上記の液晶ポリエステル粉末の上記比誘電率の値の上限値と下限値とは、自由に組み合わせることができる。上記の液晶ポリエステル粉末の上記比誘電率の値の数値範囲の一例としては、2.5以上3以下であってもよく、2.6以上2.78以下であってもよく、2.7以上2.76以下であってもよい。
 実施形態の液晶ポリエステル粉末は、周波数1GHzにおける誘電正接が0.005以下であることが好ましく、0.004以下であることが好ましく、0.003以下であることがより好ましく、0.0025以下であることがさらに好ましく、0.002以下であることが特に好ましい。また、液晶ポリエステル粉末の誘電正接は、0.0003以上であってもよく、0.0005以上であってもよく、0.001以上であってもよい。
 上記の液晶ポリエステル粉末の上記誘電正接の値の上限値と下限値とは、自由に組み合わせることができる。上記の液晶ポリエステル粉末の上記誘電正接の値の数値範囲の一例としては、0.0003以上0.005以下であってもよく、0.0005以上0.004以下であってもよく、0.001以上0.003以下であってもよく、0.001以上0.0025以下であってもよく、0.001以上0.002以下であってもよい。
 なお、液晶ポリエステル粉末の周波数1GHzにおける比誘電率、及び誘電正接は、インピーダンスアナライザーを用いた容量法にて、以下の条件で測定することができる。
 液晶ポリエステル微粒子粉末をフローテスターを用いて測定された融点よりも5℃高い温度で溶融させた後、冷却固化させることにより、直径1cm、厚さ0.5cmの錠剤を作製する。得られた錠剤に対して、下記条件にて1GHzにおける比誘電率及び誘電正接を測定する。
・測定方法:容量法
・電極型式:16453A
・測定環境:23℃、50%RH
・印加電圧:1V
 なお、実施形態の液晶ポリエステル粉末の比誘電率及び誘電正接は、当該粉末を原料として製造した液晶ポリエステルフィルムのそれとは異なる場合がある。これは含有される液晶ポリエステルの分子量の違いに起因するものと考えられる。
 液晶ポリエステル粉末は、前述の液晶ポリエステル組成物に含有される媒体に不溶であることが好ましく、プロトン性溶媒に不溶であることがより好ましい。
 ここで、媒体に不溶であるか否かは、下記の試験を行うことにより確認できる。以下の試験方法では、媒体が非プロトン性溶媒である場合について説明する。
・試験方法
 液晶ポリエステル粉末(5重量部)を非プロトン性溶媒(媒体)(95重量部)中で180℃の温度で、アンカー翼を用いて200rpmの撹拌条件で6時間撹拌した後、室温まで冷却する。次いで、目開き5μmのメンブレンフィルターおよび加圧式のろ過機を用いてろ過をした後、メンブレンフィルター上の残留物を確認する。この時、固形物が確認されない場合を非プロトン性溶媒(媒体)に可溶と判断する。短径5μm以上の固形物が確認された場合は非プロトン性溶媒(媒体)に不溶と判断する。短径5μm以上の固形物は、顕微鏡観察により確認することができる。
 実施形態の液晶ポリエステル粉末100質量%に対する液晶ポリエステルの含有割合は、50~100質量%であってもよく、80~95質量%であってもよい。
 液晶ポリエステルの詳細については、上記≪フィルム≫で説明したものを例示でき、説明を省略する。
 実施形態の液晶ポリエステル粉末は、例えば、上記液晶ポリエステルの製造法により製造された、数平均分子量が10000以下の液晶ポリエステルの粉末を、その平均粒径が0.5~20μmとなるよう、必要によりジェットミル等による粉砕処理をして、得ることができる。
 実施形態の液晶ポリエステル粉末は、数平均分子量が10000以下の液晶ポリエステルを含み、平均粒径が0.5~20μmである、液晶ポリエステル粉末(ただし、2-ヒドロキシ-6-ナフトエ酸に由来する構造単位、2,6-ナフタレンジカルボン酸に由来する構造単位、テレフタル酸に由来する構造単位、及びヒドロキノンに由来する構造単位からなる液晶ポリエステルからなり、体積平均粒径が9μmであるものを除く)であってもよい。
 実施形態の液晶ポリエステル粉末は、数平均分子量が10000以下の液晶ポリエステルを含み、平均粒径が0.5~20μmである、液晶ポリエステル粉末(ただし、2-ヒドロキシ-6-ナフトエ酸(5.5モル)、2,6-ナフタレンジカルボン酸(1.75モル)、テレフタル酸(0.5モル)、ヒドロキノン(2.475モル)、無水酢酸(12モル)、及び触媒として1-メチルイミダゾールの混合物を反応させて得られる重合物である液晶ポリエステルからなり、体積平均粒径が9μmの液晶ポリエステル粉末を除く)であってもよい。
 実施形態の液晶ポリエステル粉末は、数平均分子量が10000以下の液晶ポリエステルを含み、平均粒径が0.5~20μmである、液晶ポリエステル粉末(ただし、2-ヒドロキシ-6-ナフトエ酸に由来する構造単位、2,6-ナフタレンジカルボン酸に由来する構造単位、テレフタル酸に由来する構造単位、及びヒドロキノンに由来する構造単位からなる流動開始温度が265℃の液晶ポリエステルを粉砕した、体積平均粒径が9μmの液晶ポリエステル粉末を除く)であってもよい。
 実施形態の液晶ポリエステル粉末は、数平均分子量が10000以下の液晶ポリエステルを含み、平均粒径が0.5~20μmである、液晶ポリエステル粉末(ただし、2-ヒドロキシ-6-ナフトエ酸に由来する構造単位、2,6-ナフタレンジカルボン酸に由来する構造単位、テレフタル酸に由来する構造単位、及びヒドロキノンに由来する構造単位を含み、かつ体積平均粒径が9μmである液晶ポリエステル粉末を除く)であってもよい。
 実施形態の液晶ポリエステル粉末は、数平均分子量が10000以下の液晶ポリエステルを含み、平均粒径が0.5~20μmである、液晶ポリエステル粉末(ただし、2-ヒドロキシ-6-ナフトエ酸(5.5モル)、2,6-ナフタレンジカルボン酸(1.75モル)、テレフタル酸(0.5モル)、ヒドロキノン(2.475モル)、無水酢酸(12モル)、及び触媒として1-メチルイミダゾールの混合物を反応させて得られる重合物であり、かつ体積平均粒径が9μmである液晶ポリエステル粉末を除く)であってもよい。
 実施形態の液晶ポリエステル粉末は、数平均分子量が10000以下の液晶ポリエステルを含み、平均粒径が0.5~20μmである、液晶ポリエステル粉末(ただし、2-ヒドロキシ-6-ナフトエ酸に由来する構造単位、2,6-ナフタレンジカルボン酸に由来する構造単位、テレフタル酸に由来する構造単位、及びヒドロキノンに由来する構造単位を含み、かつ流動開始温度が265℃の液晶ポリエステルを粉砕した、体積平均粒径が9μmの液晶ポリエステル粉末を除く)であってもよい。
 実施形態の液晶ポリエステル粉末は、数平均分子量が10000以下の液晶ポリエステルを含み、平均粒径が0.5~20μmである、液晶ポリエステル粉末(ただし、2-ヒドロキシ-6-ナフトエ酸(5.5モル)、2,6-ナフタレンジカルボン酸(1.75モル)、テレフタル酸(0.5モル)、ヒドロキノン(2.475モル)、無水酢酸(12モル)、及び触媒として1-メチルイミダゾールの混合物を反応させて得られる重合物であり、かつ流動開始温度が265℃の前記重合物を粉砕した、体積平均粒径が9μmの液晶ポリエステル粉末を除く)であってもよい。
 なお、ここでの「体積平均粒径」は、液晶性ポリエステル粉末0.01gを純水約10g中で5分間超音波により分散して得られた液晶性ポリエステル粉末の分散液について散乱式粒子径分布測定装置(例えば、(株)HORIBAの「LA-950V2」)を用いて、純水の屈折率を1.333として測定したものとする。「体積平均粒径」とは、散乱式粒子径分布測定装置によって測定された、体積基準の累積粒度分布曲線において、全体を100%としたときに、累積体積が50%となる点の粒子径の値(50%累積体積粒度D50)である。
 また、液晶ポリエステルの原料である無水酢酸由来の酢酸が、液晶ポリエステル粉末に残留することがあるが、実施形態の液晶ポリエステル粉末100質量%に含まれ得る残存酢酸量の上限値は、フィルムに加工後の機械物性の観点から1質量%以下であることが好ましく、500質量ppm以下であることがより好ましく、300質量ppm以下であることがさらに好ましい。また、実施形態の液晶ポリエステル粉末100質量%に含まれる残存酢酸量の下限値は、粉砕性の観点から30質量ppm以上が好ましく、50質量ppm以上であることがより好ましく、100質量ppm以上であることがさらに好ましい。
 上記の液晶ポリエステル粉末100質量%に含まれ得る残存酢酸量の値の上限値と下限値とは、自由に組み合わせることができる。上記の液晶ポリエステル粉末100質量%に含まれ得る残存酢酸量の値の数値範囲の一例としては、30質量ppm以上以上1質量%以下であってもよく、50質量ppm以上500質量ppm以下であってもよく、100質量ppm以上300質量ppm以下であってもよい。
 実施形態の液晶ポリエステル粉末によれば、電子部品用フィルムとして好適な品質を有する液晶ポリエステルフィルムを製造可能である。当該品質基準としては、フィルムの等方性、厚さ、および外観(孔又は貫通孔の発生の有無)が挙げられる。
 実施形態の液晶ポリエステル粉末中の液晶ポリエステルの、数平均分子量が10000以下と比較的小さな値であることで、液晶ポリエステル組成物が塗布に適した性状となるとともに、熱処理時の液晶ポリエステルフィルムの融解の状態が良好となり、等方性に優れた液晶ポリエステルフィルムを製造可能な、フィルム化加工が可能となる。更に、実施形態の液晶ポリエステル粉末の、平均粒径が0.5~20μmであることで、電子部品用フィルム用途として好適な薄さを有し、孔又は貫通孔の発生が抑制された高品質なポリエステルフィルムが得られる。
 実施形態の液晶ポリエステル粉末によれば、等方性に優れた液晶ポリエステルフィルムを製造可能である。
 従来、液晶ポリエステルフィルムは、液晶ポリエステルを溶融させる溶融成形法又はキャスト法により製造されることが一般的である。
 溶融成形法は、混練物を押出機から押し出すことにより、フィルムを成形する方法である。しかし、溶融成形法により製造されたフィルムは、押出方向に対する横方向(押出方向及びフィルムの厚さ方向に対して直角方向、Transverse Direction(TD))よりも、製膜方向(押出方向ともいう、Machine Direction(MD))に液晶ポリエステル分子が配向してしまい、等方性に優れた液晶ポリエステルを得ることが難しい。
 対して、実施形態の液晶ポリエステル粉末によれば、等方性に優れた液晶ポリエステルフィルムを製造可能である。実施形態の液晶ポリエステル粉末は、実施形態に係るフィルムの製造方法の原料として好適であり、当該方法の適用により、上記押出による成形の操作を必要とせず、等方性に優れた液晶ポリエステルフィルムを容易に製造可能である。
 ここで、液晶ポリエステルフィルムが「等方性に優れる」とは、液晶ポリエステルフィルムの分子配向度(MOR)の値が1~1.1の範囲であることを意味する。
 実施形態の液晶ポリエステル粉末によれば、誘電特性と等方性とが両立された液晶ポリエステルフィルムを製造可能である。
 溶液キャスト法により製造された液晶ポリエステルフィルムは、溶融成形法により形成された液晶ポリエステルフィルムよりも、液晶ポリエステルの配向が等方的である。しかしながら、溶液キャスト法を適用するには、溶媒に溶解可能な性質を有する液晶ポリエステルを用いなければならないという制限がある。溶媒への溶解性が高められた液晶ポリエステルでは、例えば極性が高められたことなどにより、誘電特性が低下する場合がある。
このように、液晶ポリエステルフィルムの誘電特性と等方性とを高水準で両立させることは困難であった。
 対して、実施形態の液晶ポリエステル粉末によれば、誘電特性と等方性とが両立された液晶ポリエステルフィルムを製造可能である。実施形態の液晶ポリエステル粉末は、実施形態に係るフィルムの製造方法の原料として好適であり、当該方法の適用により、液晶ポリエステル粉末の溶媒への溶解の操作を必要とせず、等方性に優れた液晶ポリエステルフィルムを容易に製造可能である。また、誘電特性の優れた液晶ポリエステルを原料に用いることができるため、誘電特性及び等方性に優れた液晶ポリエステルフィルムを容易に製造可能である。
 次に実施例を示して本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。
<測定方法>
〔液晶ポリエステルの流動開始温度の測定〕
 フローテスター((株)島津製作所の「CFT-500型」)を用いて、液晶ポリエステル約2gを、内径1mm及び長さ10mmのノズルを有するダイを取り付けたシリンダーに充填し、9.8MPa(100kg/cm)の荷重下、4℃/分の速度で昇温しながら、液晶ポリエステルを溶融させ、ノズルから押し出し、4800Pa・s(48000P)の粘度を示す温度(FT)を測定した。
〔液晶ポリエステルの融点測定〕
 示差走査熱量分析装置((株)島津製作所の「DSC-50」)を用いて、昇温速度10℃/分で昇温させ、吸熱ピークの位置を確認し、該吸熱ピークの頂点位置の温度を液晶ポリエステルの融点として測定した。
〔液晶ポリエステル微粒子粉末に含まれる液晶ポリエステルの分子量測定〕
 ゲル浸透クロマトグラフ―多角度光散乱光度計(示差屈折率計(島津製作所製:RID-20A)、多角度光散乱検出器(Wyatt Technology製EOS)、カラム(昭和電工製:Shodex K-G、K-806M(2本)、K-802(1本)(φ8.0mm×30cm))、溶媒(ペンタフルオロフェノール/クロロホルム(重量比 35/65)))を用いて、液晶ポリエステル微粒子粉末に含まれる液晶ポリエステルの数平均分子量を測定した。測定用試料溶液は、試料2mgをペンタフルオロフェノール1.4gに添加し、80℃2時間溶解させ、室温まで冷却後クロロホルム2.6gを添加、さらに溶媒(ペンタフルオロフェノール/クロロホルム(重量比 35/65))で2倍希釈した後、孔径0.45μmのフィルターを用いてろ過し、調製した。
〔液晶ポリエステル微粒子粉末に含まれる残存酢酸量の分析〕
 ヘッドスペースガスクロマトグラフ装置(島津製作所製:GC-2014)を用いて、120℃、20hの抽出条件、200℃、1hの分析条件で液晶ポリエステル微粒子粉末中の残存酢酸量を分析した。
〔液晶ポリエステル微粒子粉末の比誘電率、誘電正接測定〕
 液晶ポリエステル微粒子粉末をフローテスター((株)島津製作所の「CFT-500型」)を用いて測定された融点よりも5℃高い温度で溶融させた後、冷却固化させることにより、直径1cm、厚さ0.5cmの錠剤を作製した。得られた錠剤に対して、下記条件にて1GHzにおける比誘電率及び誘電正接を測定した。
・測定方法:容量法(装置:インピーダンスアナライザー(Agilent社製 型式:E4991A))
・電極型式:16453A
・測定環境:23℃、50%RH
・印加電圧:1V
〔液晶ポリエステル微粒子粉末の平均粒径の測定〕
 液晶ポリエステル微粒子粉末を0.01g秤量し、純水約10g中に分散させた。調整した液晶ポリエステル微粒子粉末の分散液を5分間超音波で分散した。散乱式粒子径分布測定装置((株)HORIBAの「LA-950V2」)を用いて、純水の屈折率を1.333として、液晶ポリエステル微粒子粉末の体積基準の累積粒度分布を測定し、平均粒径(D50)を算出した。
〔液晶ポリエステルフィルムの比誘電率、誘電正接測定〕
 液晶ポリエステルフィルムをフローテスター((株)島津製作所の「CFT-500型」)を用いて350℃で溶融させた後、冷却固化させることにより、直径1cm、厚さ0.5cmの錠剤を作製した。得られた錠剤に対して、下記条件にて1GHzにおける比誘電率及び誘電正接を測定した。
・測定方法:容量法(装置:インピーダンスアナライザー(Agilent社製 型式:E4991A))
・電極型式:16453A
・測定環境:23℃、50%RH
・印加電圧:1V
〔液晶ポリエステルフィルムの分子配向度測定〕
 フィルムを5cmの正方形にカットしホルダーに設置して、分子配向計(王子計測機器(株)製、型式:MOA-5012A)を用いて周波数12GHz、回転速度1rpmの条件で分子配向度の測定を行った。
〔液晶ポリエステルフィルムの線膨張係数測定〕
 熱機械分析装置((株)リガク製、型式:TMA8310)を用いて、昇温速度5℃/分で50℃から100℃までの線膨張係数を測定した。測定は、液晶ポリエステルフィルムの流れ方向(MD)とその直角方向(TD)に対して行った。なお、キャスト法により製膜された各実施例、参考例又は比較例の液晶ポリエステルフィルムにおいて、流れ方向(MD)とは、分散液の塗工方向とした。
<液晶ポリエステル微粒子粉末の製造>
[実施例1]
・液晶ポリエステル(A)の製造
 攪拌装置、トルクメータ、窒素ガス導入管、温度計及び還流冷却器を備えた反応器に、2-ヒドロキシ-6-ナフトエ酸1034.99g(5.5モル)、2,6-ナフタレンジカルボン酸378.33g(1.75モル)、テレフタル酸83.07g(0.5モル)、ヒドロキノン272.52g(2.475モル、2,6-ナフタレンジカルボン酸及びテレフタル酸の合計モル量に対して0.225モル過剰)、無水酢酸1226.87g(12モル)、及び触媒として1-メチルイミダゾール0.17gを入れた。反応器内のガスを窒素ガスで置換した後、窒素ガス気流下、攪拌しながら、室温から145℃まで15分かけて昇温し、145℃で1時間還流させた。
 次いで、副生した酢酸及び未反応の無水酢酸を留去しながら、145℃から310℃まで3時間30分かけて昇温し、310℃で3時間保持した後、固形状の液晶ポリエステルを取り出し、この液晶ポリエステルを室温まで冷却し、液晶ポリエステル(A)を得た。
この液晶ポリエステル(A)の流動開始温度は、268℃であった。この液晶ポリエステル(A)を、オリエント粉砕機(株)製のカッターミルVM-16で粉砕し、平均粒径394μmの液晶ポリエステル(A)の粉末を得た。
・液晶ポリエステル微粒子粉末の製造
 次いで、ジェットミル(栗本鐡工製の「KJ-200」、粉砕ノズル径:4.5mm)を用いて、分級ローター回転数10000rpm、粉砕ノズル圧0.64MPa、処理速度を2.1kg/時間に設定して、液晶ポリエステル(A)の粉末を粉砕し、実施例1の液晶ポリエステル微粒子粉末を得た。この液晶ポリエステル微粒子粉末の平均粒径は8μmであった。また、実施例1の液晶ポリエステル微粒粉末子を、示差走査熱量分析装置を用いて融点を測定した結果、290℃であった。
[参考例1]
 ジェットミル(栗本鐡工製の「KJ-200」)の処理条件を、分級ローター回転数10000rpm、粉砕ノズル圧0.63MPa、処理速度を2.6kg/時間に設定して液晶ポリエステル粉末を粉砕した以外は、実施例1の液晶ポリエステル微粒子粉末の製造と同様にして、参考例1の液晶ポリエステル微粒子粉末を得た。この液晶ポリエステル微粒子粉末の平均粒径は10μmであった。
[参考例2]
 ジェットミル(栗本鐡工製の「KJ-200」)の処理条件を、分級ローター回転数10000rpm、粉砕ノズル圧0.60MPa、処理速度を4.0kg/時間に設定して液晶ポリエステル粉末を粉砕した以外は、実施例1の液晶ポリエステル微粒子粉末の製造と同様にして、参考例2の液晶ポリエステル微粒子粉末を得た。この液晶ポリエステル微粒子粉末の平均粒径は15μmであった。
[参考例3]
 ジェットミルに代えて、凍結・衝撃式粉砕機(ホソカワミクロン製リンレックスミル)を用い、処理速度を10kg/時間に設定して液晶ポリエステル粉末を粉砕した以外は、実施例1の液晶ポリエステル微粒子粉末の製造と同様にして、参考例3の液晶ポリエステル微粒子粉末を得た。この液晶ポリエステル微粒子粉末の平均粒径は27μmであった。
[比較例1]
・液晶ポリエステル(D)の製造
 実施例1で得た液晶ポリエステル(A)の粉末をSUS製トレイに充填し、290℃6時間の熱処理を行い、液晶ポリエステル(D)を得た。
・液晶ポリエステル微粒子粉末の製造
 次いでジェットミル(栗本鐡工製の「KJ-200」)を用いて、分級ローター回転数10000rpm、粉砕ノズル圧0.60MPa、処理速度を0.1kg/時間に設定してこの液晶ポリエステル(D)の粉末を粉砕した以外は、実施例1の液晶ポリエステル微粒子粉末の製造と同様にして、比較例1の液晶ポリエステル微粒子粉末を得た。この液晶ポリエステル微粒子粉末の平均粒径は7μmであった。
 得られた各液晶ポリエステル微粒子粉末について、比誘電率および誘電正接の測定を行った。
 表1に、上記の各項目とその測定結果を示す。
<液晶ポリエステルフィルムの製造>
[実施例1-1、参考例1-1~3-1、比較例1-1]・分散液の調製
 上記の実施例1、参考例1~3、及び比較例1のそれぞれの液晶ポリエステル微粒子粉末8重量部を、N-メチル2-ピロリドン(沸点(1気圧)204℃)92重量部に加え、(株)シンキー製の撹拌脱泡機AR-500を用いて撹拌し、各分散液を得た。
・液晶ポリエステルフィルムの製造
 上記の各分散液を、銅箔(三井金属鉱業製 3EC-VLP 18μm)の粗化面に、流延膜の厚さが300μmとなるように、マイクロメーター付フィルムアプリケーター(SHEEN社の「SA204」)と自動塗工装置(テスター産業(株)の「I型」)とを用いて流延した後、40℃、常圧(1気圧)にて、4時間乾燥することにより、流延膜から溶媒を除去した。比較例1-1については、分散液がゲル状になり流延できず、フィルム化できなかった。
 上記の乾燥後、さらに窒素雰囲気下熱風オーブン中で室温から310℃まで7℃/分で昇温し、その温度で6時間保持する熱処理を行い、銅箔付き液晶ポリエステルフィルムを得た。
 得られた銅箔付き液晶ポリエステルフィルムを第二塩化鉄水溶液に浸漬し、銅箔をエッチング除去し、単層のフィルムを得た。
 各フィルムの外観を確認した。参考例3-1の液晶ポリエステルフィルムは、表面に多数の穴が発生しており、外観が不良であり、電子部品用フィルムとして好適でない品質であった。
 表1に、上記の各項目とその測定結果を示す。
Figure JPOXMLDOC01-appb-T000001
 数平均分子量が10000以下の範囲を満たさない液晶ポリエステルを含む比較例1の液晶ポリエステル微粒子粉末を原料とした比較例1-1では、液晶ポリエステルフィルムを製造することができなかった。対して、数平均分子量が10000以下の範囲を満たす液晶ポリエステルを含む実施例1、参考例1~3の液晶ポリエステル微粒子粉末を原料にすることで、実施例1-1、及び参考例1-1~3-1の液晶ポリエステルフィルムを製造可能であった。
 また、平均粒径が0.5~20μmの範囲を満たさない参考例3の液晶ポリエステル微粒子粉末を原料に製造された、参考例3-1の液晶ポリエステルフィルムは、表面に多数の穴が発生しており、外観が不良であった。対して、平均粒径が0.5~20μmの範囲を満たす実施例1、参考例1~2の液晶ポリエステル微粒子粉末を原料に製造された、実施例1-1、及び参考例1-1~2-1の液晶ポリエステルフィルムは、厚みが薄くかつ外観にも優れたものであった。実施例1-1および参考例1-1~3-1の液晶ポリエステルフィルムの外観評価の結果を、穴の発生が見られず外観に優れたものを「G」、多数の穴が発生し外観が不良であるものを「F」として表1に記載した。
<液晶ポリエステルフィルムの製造>
 上記実施例1で得られた液晶ポリエステル(A)の液晶ポリエステル微粒子粉末を原料として、熱処理条件を変えて、実施例1-1~1-5の液晶ポリエステルフィルムを製造した。なお、実施例1-1の液晶ポリエステルフィルムは、上記実施例1-1と同じ製法により得られたものである。
[実施例1-1]
・分散液の調製
 上記の実施例1で製造した液晶ポリエステル(A)の液晶ポリエステル微粒子粉末8重量部を、92重量部のN-メチル2-ピロリドンに投入し、(株)シンキー製の撹拌脱泡機AR-500を用いて撹拌し、分散液を得た。
・液晶ポリエステルフィルムの製造
 上記の各分散液を、銅箔(三井金属鉱業製 3EC-VLP 18μm)の粗化面に、流延膜の厚さが300μmとなるように、マイクロメーター付フィルムアプリケーター(SHEEN社の「SA204」)と自動塗工装置(テスター産業(株)の「I型」)とを用いて流延した後、40℃、常圧(1気圧)にて、4時間乾燥することにより、流延膜から溶媒を除去した。
 上記の乾燥後、さらに窒素雰囲気下熱風オーブン中で室温から310℃まで7℃/分で昇温し、その温度で6時間保持する熱処理を行い、実施例1-1の銅箔付き液晶ポリエステルフィルムを得た。
[実施例1-2]
 上記熱処理条件を、室温から330℃まで7℃/分で昇温した以外は、上記実施例1-1の銅箔付き液晶ポリエステルフィルムの製造と同様にして、実施例1-2の銅箔付き液晶ポリエステルフィルムを得た。
[実施例1-3]
 上記熱処理条件を、室温から310℃まで4℃/分で昇温した以外は、上記実施例1-1の銅箔付き液晶ポリエステルフィルムの製造と同様にして、実施例1-3の銅箔付き液晶ポリエステルフィルムを得た。
[実施例1-4]
 上記熱処理条件を、室温から300℃まで7℃/分で昇温した以外は、上記実施例1-1の銅箔付き液晶ポリエステルフィルムの製造と同様にして、実施例1-4の銅箔付き液晶ポリエステルフィルムを得た。
[実施例1-5]
 上記熱処理条件を、室温から310℃まで3℃/分で昇温した以外は、上記実施例1-1の銅箔付き液晶ポリエステルフィルムの製造と同様にして、実施例1-5の銅箔付き液晶ポリエステルフィルムを得た。
[比較例2]
 有機溶媒に溶解可能な液晶ポリエステルを製造し、それを原料として、以下のとおり比較例2の液晶ポリエステルフィルムを製造した。
・液晶ポリエステル(B)の製造
 攪拌装置、トルクメータ、窒素ガス導入管、温度計及び還流冷却器を備えた反応器に、6-ヒドロキシ-2-ナフトエ酸940.9g(5.0モル)、4-ヒドロキシアセトアミノフェン377.9g(2.5モル)、イソフタル酸415.3g(2.5モル)及び無水酢酸867.8g(8.4モル)を入れ、反応器内のガスを窒素ガスで置換した後、窒素ガス気流下、撹拌しながら、室温から140℃まで60分かけて昇温し、140℃で3時間還流させた。
 次いで、副生酢酸及び未反応の無水酢酸を留去しながら、150℃から300℃まで5時間かけて昇温し、300℃で30分保持した後、反応器から内容物を取り出し、室温まで冷却した。得られた固形物を、粉砕機で粉砕して、粉末状の液晶ポリエステル(B1)を得た。この液晶ポリエステル(B1)の流動開始温度は、193.3℃であった。
 上記で得た液晶ポリエステル(B1)を、窒素雰囲気下、室温から160℃まで2時間20分かけて昇温し、次いで160℃から180℃まで3時間20分かけて昇温し、180℃で5時間保持することにより、固相重合させた後、冷却し、次いで、粉砕機で粉砕して、粉末状の液晶ポリエステル(B2)を得た。この液晶ポリエステル(B2)の流動開始温度は、220℃であった。
 上記で得た液晶ポリエステル(B2)を、窒素雰囲気下、室温から180℃まで1時間25分かけて昇温し、次いで180℃から255℃まで6時間40分かけて昇温し、255℃で5時間保持することにより、固相重合させた後、冷却して、粉末状の液晶ポリエステル(B)を得た。液晶ポリエステル(B)の流動開始温度は、302℃であった。また、この液晶ポリエステル(B)を、示差走査熱量分析装置を用いて融点を測定した結果、311℃であった。
・液晶ポリエステル溶液の調製
 液晶ポリエステル(B)8質量部を、N-メチルピロリドン(沸点(1気圧)204℃)92質量部に加え、窒素雰囲気下、140℃で4時間攪拌して、液晶ポリエステル溶液を調製した。この液晶ポリエステル溶液の粘度は、955mPa・sであった。
・液晶ポリエステルフィルムの製造
 液晶ポリエステル溶液を、銅箔(三井金属鉱業製 3EC-VLP 18μm)の粗化面に、流延膜の厚さが300μmとなるように、マイクロメーター付フィルムアプリケーター(SHEEN社の「SA204」)と自動塗工装置(テスター産業(株)の「I型」)とを用いて流延した後、40℃、常圧(1気圧)にて、4時間乾燥することにより、流延膜から溶媒を除去した。さらに、乾燥した液晶ポリエステル(B)の表面に流延膜の厚さが300μmとなるように2回目の流延を行い、40℃、常圧(1気圧)にて、4時間乾燥することにより、流延膜から溶媒を除去した。
 上記の乾燥後、さらに窒素雰囲気下熱風オーブン中で室温から270℃まで1℃/分で昇温し、その温度で2時間保持する熱処理を行い、比較例2の銅箔付き液晶ポリエステルフィルムを得た。
[比較例3]
・液晶ポリエステル(C)の製造
 上記実施例1で得られた液晶ポリエステル(A)の粉末をSUS製トレイに充填し、280℃6時間の熱処理を行い、液晶ポリエステル(C)を得た。得られた液晶ポリエステル(C)の流動開始温度は306℃であった。
・液晶ポリエステルフィルムの製造
 得られた液晶ポリエステル(C)100重量部を、2軸押出機(池貝鉄工(株)製「PCM-30」)を用いて、325℃で造粒し、ペレットを得た。また、このペレットを、示差走査熱量分析装置を用いて融点を測定した結果、319℃であった。
 得られたペレットを単軸押出し機で溶融押出した後、ダイ径30mm、スリット間隔0.25mmの環状インフレーションダイを用いてインフレーション製膜を行った。その際、環状インフレーションダイの入口に接続したろ過装置(リーフディスク型フィルタ、日本精線社製)を用いて、溶解した液晶ポリエステルをろ過しながら製膜を行った。ろ過装置には、ナスロンフィルタLF4-0 NF2M-05D2(日本精線社製、ろ過精度5.0μm、リーフディスク型)を16枚積層して用いた。
 340℃に加熱された環状インフレーションダイから、MDの延伸倍率に対してTDの延伸倍率を4.3の条件下で押し出して、比較例3の液晶ポリエステルフィルムを得た。
 実施例1-1~1-5及び比較例2~3で得られた銅箔付き液晶ポリエステルフィルムを第二塩化鉄水溶液に浸漬し、銅箔をエッチング除去し、単層のフィルムを得た。
 表2に、上記の各項目とその測定結果を示す。
Figure JPOXMLDOC01-appb-T000002
 実施例1-1~1-5の液晶ポリエステルフィルムは、液晶ポリエステル微粒子粉末の分散液を銅箔上にキャストした後、熱処理すること(表中「分散液キャスト」と略する)により得られたものであるため、誘電特性に優れ、且つ分子配向度(MOR)が低く、優れた性質を有していた。
 比較例2の液晶ポリエステルフィルムは、液晶ポリエステル微粒子粉末の溶液を銅箔上にキャスト(表中「溶液キャスト」と略する)して得られたものであるため、無配向ではあるが、溶液キャスト法においては溶媒に溶解可能な液晶ポリエステルを原料とする制限があるため、誘電特性に劣る傾向にあった。
 比較例3の液晶ポリエステルフィルムは、インフレーション法により得られたものであるため、分子配向度(MOR)が高い傾向にあり、MDとTDとで線膨張にも差が生じるものであった。
 各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。また、本発明は各実施形態によって限定されることはなく、請求項(クレーム)の範囲によってのみ限定される。
1…液晶ポリエステル粉末、3…媒体、30…液晶ポリエステル組成物、10…液晶ポリエステルフィルム、11…フィルム、12…支持体、13…金属層、20,21…積層体、22…積層体前駆体、40…液晶ポリエステルフィルム前駆体

Claims (7)

  1.  熱可塑性樹脂を含み、
     周波数1GHzにおける比誘電率が3以下であり、
     周波数1GHzにおける誘電正接が0.005以下であり、
     マイクロ波配向計で測定した分子配向度(MOR)の値が1~1.1の範囲であるフィルム。
  2.  前記熱可塑性樹脂が液晶ポリエステルであり、
     前記液晶ポリエステルが、ナフタレン構造を含む構造単位を有する、請求項1に記載のフィルム。
  3.  前記ナフタレン構造を含む構造単位の含有量が、前記液晶ポリエステル中の構造単位の合計量100モル%に対して40モル%以上である請求項2に記載のフィルム。
  4.  前記液晶ポリエステルが、下記式(1)で表される構造単位、下記式(2)で表される構造単位、及び下記式(3)で表される構造単位を有する、請求項2又は3に記載のフィルム。
    (1)-O-Ar1-CO-
    (2)-CO-Ar2-CO-
    (3)-O-Ar3-O-
    (Ar1は、2,6-ナフタレンジイル基、1,4-フェニレン基、又は4,4’-ビフェニリレン基を表す。
     Ar2及びAr3は、それぞれ独立に、2,6-ナフタレンジイル基、2,7-ナフタレンジイル基、1,4-フェニレン基、1,3-フェニレン基、又は4,4’-ビフェニリレン基を表す。
     Ar1、Ar2又はAr3で表される前記基にある水素原子は、それぞれ独立に、ハロゲン原子、炭素数1~10のアルキル基、又は炭素数6~20のアリール基で置換されていてもよい。)
  5.  昇温速度5℃/分の条件で50~100℃の温度範囲において求められた線膨張係数が85ppm/℃以下である、請求項1~4のいずれか一項に記載のフィルム。
  6.  金属層と、前記金属層上に積層された請求項1~5のいずれか一項に記載のフィルムと、を備える積層体。
  7.  前記金属層を構成する金属が銅である、請求項6に記載の積層体。
PCT/JP2020/005450 2019-02-15 2020-02-13 フィルム及び積層体 WO2020166644A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080012765.0A CN113710484B (zh) 2019-02-15 2020-02-13 膜和层叠体
KR1020217024429A KR20210132014A (ko) 2019-02-15 2020-02-13 필름 및 적층체
US17/429,700 US11879041B2 (en) 2019-02-15 2020-02-13 Film and laminate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-025663 2019-02-15
JP2019025663 2019-02-15
JP2019141071A JP7210401B2 (ja) 2019-02-15 2019-07-31 フィルム及び積層体
JP2019-141071 2019-07-31

Publications (2)

Publication Number Publication Date
WO2020166644A1 true WO2020166644A1 (ja) 2020-08-20
WO2020166644A8 WO2020166644A8 (ja) 2021-10-07

Family

ID=72045583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005450 WO2020166644A1 (ja) 2019-02-15 2020-02-13 フィルム及び積層体

Country Status (2)

Country Link
US (1) US11879041B2 (ja)
WO (1) WO2020166644A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022124308A1 (ja) * 2020-12-09 2022-06-16 デンカ株式会社 Lcp押出フィルム及びその製造方法、延伸処理用lcp押出フィルム、lcp延伸フィルム、熱収縮性lcp延伸フィルム、回路基板用絶縁材料、並びに金属箔張積層板
WO2022131045A1 (ja) * 2020-12-14 2022-06-23 株式会社バルカー 液晶ポリマーフィルムおよび液晶ポリマーフィルムの製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020116306A1 (ja) * 2018-12-04 2020-06-11 株式会社クラレ 高電圧用回路基板およびそれを用いた高電圧デバイス

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011063699A (ja) * 2009-09-16 2011-03-31 Jx Nippon Oil & Energy Corp 液晶ポリエステル樹脂組成物の成形方法および成形体
JP2011062987A (ja) * 2009-09-18 2011-03-31 Sumitomo Chemical Co Ltd 液晶ポリエステルフィルムの製造方法および液晶ポリエステルフィルム
JP2011157533A (ja) * 2010-02-04 2011-08-18 Sumitomo Chemical Co Ltd 液晶ポリエステル組成物及びそのフィルム
JP2012082857A (ja) * 2010-10-07 2012-04-26 Sumitomo Chemical Co Ltd 断熱体用外装フィルム及び断熱体
JP2012149232A (ja) * 2010-12-27 2012-08-09 Sumitomo Chemical Co Ltd 液晶ポリエステルフィルムの製造方法
JP2012169535A (ja) * 2011-02-16 2012-09-06 Sumitomo Chemical Co Ltd タブ用キャリアテープ及びタブテープ
JP2013189534A (ja) * 2012-03-13 2013-09-26 Sumitomo Chemical Co Ltd 液晶ポリエステルフィルムの製造方法及び液晶ポリエステルフィルム

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2921670B2 (ja) 1995-09-08 1999-07-19 ジャパンゴアテックス株式会社 等方向性液晶ポリマーフィルム及びその積層体の製造方法と、等方向性液晶ポリマーフィルム及びその積層体
US5529740A (en) 1994-09-16 1996-06-25 Jester; Randy D. Process for treating liquid crystal polymer film
JP3795966B2 (ja) 1996-07-19 2006-07-12 ジャパンゴアテックス株式会社 液晶ポリマーフィルム及びその積層体
JPH10338755A (ja) 1997-06-09 1998-12-22 Teijin Ltd 金属板貼合せ成形加工用白色ポリエステルフィルム
US6042902A (en) 1997-10-20 2000-03-28 Hoechst Celanese Corporation Adhesives for making multilayer films comprising liquid crystalline polymers and poly(ethylene terephthalate) or polycarbonate
JPH11147963A (ja) 1997-11-17 1999-06-02 Sumitomo Chem Co Ltd 易引裂フィルム、それよりなる易引裂包装用フィルム、それを用いてなる易引裂包装袋および易引裂蓋
JP2000269616A (ja) 1999-03-17 2000-09-29 Kuraray Co Ltd 高周波回路基板
US6761834B2 (en) 2000-09-20 2004-07-13 World Properties, Inc. Electrostatic deposition of high temperature, high performance liquid crystalline polymers
JP4008249B2 (ja) 2001-01-31 2007-11-14 住友ベークライト株式会社 絶縁樹脂組成物及び絶縁樹脂シート並びにプリント配線板
JP2002326312A (ja) 2001-04-27 2002-11-12 Sumitomo Chem Co Ltd 芳香族液晶ポリエステルフィルムと金属箔との積層体及びそれを用いたプリント配線板
JP4259029B2 (ja) 2002-03-20 2009-04-30 住友化学株式会社 マイクロパウダーおよびその製造方法
JP4483208B2 (ja) 2002-06-14 2010-06-16 東レ株式会社 液晶性ポリマー粉末の製造方法
JP4040923B2 (ja) 2002-07-19 2008-01-30 デュプロ精工株式会社 印刷装置
JP2004189867A (ja) 2002-12-11 2004-07-08 Sumitomo Chem Co Ltd 芳香族液晶ポリエステル溶液組成物
JP4269675B2 (ja) 2002-12-18 2009-05-27 住友化学株式会社 芳香族液晶ポリエステルおよびそのフィルム
JP4529480B2 (ja) 2003-02-28 2010-08-25 住友化学株式会社 芳香族液晶ポリエステル溶液組成物
JP2004285301A (ja) 2003-03-25 2004-10-14 Sumitomo Chem Co Ltd 芳香族液晶ポリエステル溶液組成物
TWI359159B (en) 2003-11-05 2012-03-01 Sumitomo Chemical Co Aromatic liquid-crystalline polyester
JP4639756B2 (ja) 2003-11-05 2011-02-23 住友化学株式会社 芳香族液晶ポリエステルおよびそのフィルムならびにそれらの用途
JP4479355B2 (ja) 2004-06-02 2010-06-09 住友化学株式会社 芳香族液晶ポリエステルフィルム積層体およびそれを用いてなるフレキシブルプリント配線板
KR101214419B1 (ko) 2004-12-20 2012-12-21 아사히 가라스 가부시키가이샤 플렉시블 프린트 배선판용 적층체
JP4946065B2 (ja) 2005-01-18 2012-06-06 住友化学株式会社 液晶ポリエステル及びそれを用いたフィルム
JP2007154169A (ja) 2005-11-08 2007-06-21 Sumitomo Chemical Co Ltd 液晶ポリエステル樹脂組成物及び電子部品用成形品
JP2008075063A (ja) 2006-08-22 2008-04-03 Sumitomo Chemical Co Ltd 液晶性ポリマー成形体
JP2008248015A (ja) 2007-03-29 2008-10-16 Unitika Ltd 共重合ポリエステル樹脂ペレットとその製造方法
JP2008248016A (ja) 2007-03-29 2008-10-16 Unitika Ltd 共重合ポリエステル微粒子およびその製造方法
JP2008100528A (ja) 2007-12-21 2008-05-01 Sumitomo Chemical Co Ltd 芳香族液晶ポリエステルおよびそのフィルム
JP5396764B2 (ja) 2008-07-28 2014-01-22 住友化学株式会社 液晶ポリエステル粒子及びその成形体
JP2010077397A (ja) 2008-08-25 2010-04-08 Sumitomo Chemical Co Ltd 液晶ポリエステル粒子及びそれを用いる改質液晶ポリエステル粒子の製造方法
JP2010168576A (ja) 2008-12-25 2010-08-05 Sumitomo Chemical Co Ltd 液晶ポリエステル粉末及びその製造方法
JP2010149411A (ja) 2008-12-25 2010-07-08 Sumitomo Chemical Co Ltd 板状成形体及びその製造方法
JP2011006629A (ja) 2009-06-29 2011-01-13 Sumitomo Chemical Co Ltd 液晶ポリエステル粉体及びその成形体
JP2011096471A (ja) 2009-10-29 2011-05-12 Sumitomo Chemical Co Ltd シールド層付き携帯電話用ケーブル
JP2011213802A (ja) 2010-03-31 2011-10-27 Sumitomo Chemical Co Ltd 液晶ポリエステル粉体の製造方法
JP2013032484A (ja) 2011-06-27 2013-02-14 Sumitomo Chemical Co Ltd 樹脂組成物、成形体および摺動用部材
JP2013194225A (ja) 2012-03-22 2013-09-30 Sumitomo Chemical Co Ltd 液晶ポリエステルフィルムの製造方法及び液晶ポリエステルフィルム
WO2013146174A1 (ja) 2012-03-29 2013-10-03 株式会社クラレ 熱可塑性液晶ポリマーフィルムおよびその製造方法
JP6080434B2 (ja) 2012-08-30 2017-02-15 住友化学株式会社 液晶ポリエステルフィルムの製造方法
EP2834290A1 (en) 2012-09-27 2015-02-11 Ticona LLC Thermotropic liquid crystalline powder
WO2014188830A1 (ja) 2013-05-22 2014-11-27 株式会社村田製作所 フィブリル化液晶ポリマーパウダー、フィブリル化液晶ポリマーパウダーの製造方法、ペースト、樹脂多層基板、および、樹脂多層基板の製造方法
KR102483625B1 (ko) 2015-10-01 2023-01-02 삼성전기주식회사 저유전손실 절연 수지 조성물, 그 조성물로 제조된 절연필름 및 그 절연필름을 포함하는 인쇄회로기판
JP2017101200A (ja) 2015-12-04 2017-06-08 株式会社プライマテック 長尺液晶ポリマーフィルム
JP6688105B2 (ja) 2016-02-29 2020-04-28 ポリプラスチックス株式会社 液晶ポリマー粒子の製造方法
JP6854124B2 (ja) 2016-12-28 2021-04-07 株式会社クラレ 熱可塑性液晶ポリマーフィルムおよびそれを用いた回路基板
JP6590113B2 (ja) 2017-03-06 2019-10-16 株式会社村田製作所 金属張積層板、回路基板、および多層回路基板

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011063699A (ja) * 2009-09-16 2011-03-31 Jx Nippon Oil & Energy Corp 液晶ポリエステル樹脂組成物の成形方法および成形体
JP2011062987A (ja) * 2009-09-18 2011-03-31 Sumitomo Chemical Co Ltd 液晶ポリエステルフィルムの製造方法および液晶ポリエステルフィルム
JP2011157533A (ja) * 2010-02-04 2011-08-18 Sumitomo Chemical Co Ltd 液晶ポリエステル組成物及びそのフィルム
JP2012082857A (ja) * 2010-10-07 2012-04-26 Sumitomo Chemical Co Ltd 断熱体用外装フィルム及び断熱体
JP2012149232A (ja) * 2010-12-27 2012-08-09 Sumitomo Chemical Co Ltd 液晶ポリエステルフィルムの製造方法
JP2012169535A (ja) * 2011-02-16 2012-09-06 Sumitomo Chemical Co Ltd タブ用キャリアテープ及びタブテープ
JP2013189534A (ja) * 2012-03-13 2013-09-26 Sumitomo Chemical Co Ltd 液晶ポリエステルフィルムの製造方法及び液晶ポリエステルフィルム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022124308A1 (ja) * 2020-12-09 2022-06-16 デンカ株式会社 Lcp押出フィルム及びその製造方法、延伸処理用lcp押出フィルム、lcp延伸フィルム、熱収縮性lcp延伸フィルム、回路基板用絶縁材料、並びに金属箔張積層板
WO2022131045A1 (ja) * 2020-12-14 2022-06-23 株式会社バルカー 液晶ポリマーフィルムおよび液晶ポリマーフィルムの製造方法

Also Published As

Publication number Publication date
WO2020166644A8 (ja) 2021-10-07
US20220153937A1 (en) 2022-05-19
US11879041B2 (en) 2024-01-23

Similar Documents

Publication Publication Date Title
WO2020166651A1 (ja) 液晶ポリエステル粉末、液晶ポリエステル組成物、フィルムの製造方法、及び積層体の製造方法
JP7390127B2 (ja) 液晶ポリエステル組成物、フィルムの製造方法、及び積層体の製造方法
WO2020166644A1 (ja) フィルム及び積層体
JP6619487B1 (ja) 液晶ポリエステルフィルム、液晶ポリエステル液状組成物及び液晶ポリエステルフィルムの製造方法
TWI811422B (zh) 積層體用液晶聚酯樹脂、液晶聚酯樹脂組成物、積層體、液晶聚酯樹脂薄膜、以及積層體及液晶聚酯樹脂薄膜之製造方法
JP5899887B2 (ja) 液晶ポリエステルフィルムの製造方法
CN113710484B (zh) 膜和层叠体
WO2022030494A1 (ja) 液状組成物、液状組成物の製造方法、液晶ポリエステルフィルムの製造方法及び積層体の製造方法
WO2021235427A1 (ja) 液晶ポリエステル液状組成物、液晶ポリエステルフィルム、積層体及び液晶ポリエステルフィルムの製造方法
TWI837303B (zh) 液晶聚酯粉末、液晶聚酯組成物、薄膜的製造方法及積層體的製造方法
WO2023022081A1 (ja) 液晶ポリエステル粉末及びその製造方法、並びに、液晶ポリエステル組成物、液晶ポリエステルフィルムの製造方法、及び積層体の製造方法
WO2023022083A1 (ja) 液晶ポリエステル粉末及びその製造方法、液晶ポリエステル組成物、液晶ポリエステルフィルム及びその製造方法、並びに積層体及びその製造方法
US20240101904A1 (en) Liquid crystal polyester powder, composition, method for producing composition, method for producing film, and method for producing laminated body
WO2022168855A1 (ja) 液晶ポリエステル粉末、粉末の製造方法、組成物、組成物の製造方法、フィルムの製造方法及び積層体の製造方法
JP2022031116A (ja) 液状組成物、液状組成物の製造方法、液晶ポリエステルフィルムの製造方法及び積層体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20755577

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20755577

Country of ref document: EP

Kind code of ref document: A1