WO2023022081A1 - 液晶ポリエステル粉末及びその製造方法、並びに、液晶ポリエステル組成物、液晶ポリエステルフィルムの製造方法、及び積層体の製造方法 - Google Patents

液晶ポリエステル粉末及びその製造方法、並びに、液晶ポリエステル組成物、液晶ポリエステルフィルムの製造方法、及び積層体の製造方法 Download PDF

Info

Publication number
WO2023022081A1
WO2023022081A1 PCT/JP2022/030522 JP2022030522W WO2023022081A1 WO 2023022081 A1 WO2023022081 A1 WO 2023022081A1 JP 2022030522 W JP2022030522 W JP 2022030522W WO 2023022081 A1 WO2023022081 A1 WO 2023022081A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystalline
crystalline polyester
group
liquid crystal
less
Prior art date
Application number
PCT/JP2022/030522
Other languages
English (en)
French (fr)
Inventor
昌平 莇
豊誠 伊藤
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN202280055784.0A priority Critical patent/CN117980370A/zh
Priority to JP2023542367A priority patent/JPWO2023022081A1/ja
Priority to KR1020247008258A priority patent/KR20240046758A/ko
Publication of WO2023022081A1 publication Critical patent/WO2023022081A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/24Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/60Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes

Definitions

  • the present invention relates to a liquid crystalline polyester powder, a method for producing the same, a liquid crystalline polyester composition, a method for producing a liquid crystalline polyester film, and a method for producing a laminate.
  • Liquid crystalline polyester film is attracting attention as an electronic substrate material because it has excellent high-frequency characteristics and low water absorption.
  • Patent Document 1 For example, in Patent Document 1, according to the inventors' studies so far, a liquid crystal polyester composition containing a medium and a liquid crystal polyester powder containing a liquid crystal polyester is applied on a support and heat treated to obtain an electronic It has been shown that it is possible to produce a liquid crystalline polyester film with suitable quality as a component film.
  • Liquid crystal polyester film is a laminate having it as an insulating material (for example, copper clad laminate: Copper Clad Laminate, CCL, flexible copper clad laminate: Flexible Copper Clad Laminate, FCCL, double-sided CCL having copper foil on both sides, etc.) It is possible to provide as
  • FIG. 5 is a schematic diagram showing an example of the method for producing the liquid crystal polyester film shown in Patent Document 1, and a schematic diagram showing an example of the method for producing the laminate when the laminate is subsequently produced.
  • a liquid crystalline polyester composition 30 containing a medium and liquid crystalline polyester powder is applied onto the first metal layer 14, and the liquid crystalline polyester composition 30 is dried and heat-treated to form a liquid crystalline polyester film 10 on the first metal layer 14. can get.
  • solid phase polymerization of the liquid crystalline polyester contained in the liquid crystalline polyester powder can be advanced.
  • the first metal layer 14, the liquid crystal polyester film 10, and the second metal layer 15 are laminated by a lamination method or the like, the liquid crystal polyester film 10 is heated to melt the liquid crystal polyester, and the liquid crystal polyester film 10 and the second metal layer 15 are laminated.
  • the two metal layers 15 can be bonded together.
  • the present inventors considered that insufficient melting of the liquid crystalline polyester contained in the liquid crystalline polyester film during heating during lamination is one of the factors that reduce the adhesion strength of the liquid crystalline polyester film. This is because the solid-phase polymerization of the liquid crystalline polyester that can occur during the above heat treatment in the step of obtaining the liquid crystalline polyester film is the temperature of the endothermic peak detected by differential scanning calorimetry of the liquid crystalline polyester (which is an index of the temperature at which the liquid crystalline polyester melts). The inventors have found that the temperature at which the liquid crystalline polyester is formed is increased, and that this is a factor that tends to cause insufficient melting of the liquid crystalline polyester during lamination.
  • the present invention has been made to solve the above-described problems, and a liquid crystal comprising a liquid crystalline polyester in which the temperature rise of the endothermic peak detected by differential scanning calorimetry is less likely to occur even after solid phase polymerization.
  • the object is to provide a polyester powder.
  • the present inventors found that the molar ratio of the acyl group terminal/hydroxyl group terminal of the liquid crystalline polyester contained in the liquid crystalline polyester powder is within a specific numerical range, solid phase polymerization
  • the present inventors have found that a liquid crystalline polyester powder containing a liquid crystalline polyester in which the temperature rise at the endothermic peak is difficult to occur can be obtained even after undergoing the above steps, and have completed the present invention. That is, the present invention has the following aspects.
  • a liquid crystalline polyester powder comprising a liquid crystalline polyester having a molar ratio of acyl group terminal/hydroxy group terminal of 10 or less as analyzed by 1 H-NMR.
  • ⁇ 5> The liquid crystalline polyester powder according to any one of ⁇ 1> to ⁇ 4>, wherein the liquid crystalline polyester has a number average molecular weight of 7000 or less as measured using polystyrene as a standard substance.
  • ⁇ 6> The liquid crystalline polyester powder according to any one of ⁇ 1> to ⁇ 5>, wherein the liquid crystalline polyester has a structural unit containing a naphthalene structure.
  • ⁇ 7> The liquid crystalline polyester powder according to ⁇ 6>, wherein the content of the structural unit containing the naphthalene structure is 40 mol% or more with respect to 100 mol% of the total amount of all structural units in the liquid crystalline polyester.
  • the liquid crystal polyester has a structural unit represented by the following formula (1), a structural unit represented by the following formula (2), and a structural unit represented by the following formula (3), >
  • the liquid crystalline polyester powder according to any one of ⁇ 7>.
  • Ar2 and Ar3 each independently represent a 2,6-naphthylene group, a 2,7-naphthylene group, a 1,4-phenylene group, a 1,3-phenylene group or a 4,4'-biphenylylene group.
  • Each hydrogen atom in the group represented by Ar1, Ar2 or Ar3 may be independently substituted with a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 20 carbon atoms.
  • a method for producing a liquid crystalline polyester powder according to any one of ⁇ 1> to ⁇ 8> A step (i) of subjecting at least one of an aromatic hydroxycarboxylic acid and an aromatic diol to an acylation reaction with a fatty acid anhydride to obtain an acylated product; a step (ii) of subjecting the acylated product to an ester exchange reaction with at least one of an aromatic hydroxycarboxylic acid and an aromatic dicarboxylic acid to obtain a liquid crystalline polyester;
  • the amount of the fatty acid anhydride used in the step (i) is less than 1 equivalent with respect to 1 equivalent of the phenolic hydroxyl group of at least one of the aromatic hydroxycarboxylic acid and the aromatic diol.
  • the acylation reaction is an acetylation reaction, a step (i) of acetylating at least one of an aromatic hydroxycarboxylic acid and an aromatic diol with acetic anhydride to obtain an acetylated product; a step (ii) of subjecting the acetylated product to a transesterification reaction with at least one of an aromatic hydroxycarboxylic acid and an aromatic dicarboxylic acid to obtain a liquid crystalline polyester;
  • the amount of the acetic anhydride used in the step (i) is less than 1 equivalent with respect to 1 equivalent of the phenolic hydroxyl group of at least one of the aromatic hydroxycarboxylic acid and the aromatic diol.
  • the method for producing a liquid crystalline polyester powder is a structural unit represented by the following formula (1) derived from the aromatic hydroxycarboxylic acid, and represented by the following formula (2) derived from the aromatic dicarboxylic acid. and a structural unit represented by the following formula (3) derived from the aromatic diol.
  • Ar2 and Ar3 each independently represent a 2,6-naphthylene group, a 2,7-naphthylene group, a 1,4-phenylene group, a 1,3-phenylene group or a 4,4'-biphenylylene group.
  • Each hydrogen atom in the group represented by Ar1, Ar2 or Ar3 may be independently substituted with a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 20 carbon atoms.
  • a liquid crystalline polyester composition comprising a medium and the liquid crystalline polyester powder according to any one of ⁇ 1> to ⁇ 8>.
  • a method for producing a liquid crystalline polyester film which comprises applying the liquid crystalline polyester composition according to ⁇ 12> on a first support and heat-treating to obtain a liquid crystalline polyester film containing the liquid crystalline polyester.
  • the first support and the liquid crystal are formed by applying the liquid crystalline polyester composition according to ⁇ 12> on the first support and heat-treating to form a liquid crystalline polyester film containing the liquid crystalline polyester.
  • a method of manufacturing a laminate comprising obtaining a first laminate comprising a polyester film.
  • a second support is laminated on the surface of the liquid crystal polyester film of the first laminate opposite to the side on which the first support is laminated, and the liquid crystal polyester film is heated to
  • the liquid crystalline polyester powder containing the liquid crystalline polyester which the temperature rise of the endothermic peak detected by a differential scanning calorimetry hardly produces even if it passes through solid phase polymerization can be provided.
  • the manufacturing method of the said liquid crystalline polyester powder can be provided.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram which shows the manufacturing process of the liquid crystal polyester film of one Embodiment of this invention, a 1st laminated body, and a 2nd laminated body.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram which shows the manufacturing process of the liquid crystal polyester film of one Embodiment of this invention, a 1st laminated body, and a 2nd laminated body.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram which shows the manufacturing process of the liquid crystal polyester film of one Embodiment of this invention, a 1st laminated body, and a 2nd laminated body.
  • Embodiments of the liquid crystalline polyester powder of the present invention, a method for producing the same, a liquid crystalline polyester composition, a method for producing a liquid crystalline polyester film, and a method for producing a laminate are described below.
  • the liquid crystalline polyester powder of the embodiment includes a liquid crystalline polyester having a molar ratio of acyl group terminal/hydroxy group terminal of 10 or less as analyzed by 1 H-NMR.
  • the molar ratio related to the acyl group end can be calculated from the relative substance amount of the acyl group end.
  • the molar ratio related to the terminal hydroxyl group can be calculated from the relative substance amount of the terminal hydroxyl group.
  • liquid crystalline polyester and the method for producing the liquid crystalline polyester according to the liquid crystalline polyester powder of the embodiment will be described below.
  • the liquid crystalline polyester according to the present embodiment is a polyester that exhibits liquid crystal in a molten state, and preferably melts at a temperature of 450° C. or less.
  • the liquid crystalline polyester may be a liquid crystalline polyester amide, a liquid crystalline polyester ether, a liquid crystalline polyester carbonate, or a liquid crystalline polyester imide.
  • the liquid crystalline polyester is preferably a wholly aromatic liquid crystalline polyester having only structural units derived from aromatic compounds as raw material monomers.
  • liquid crystalline polyesters include polycondensation of aromatic hydroxycarboxylic acids, aromatic dicarboxylic acids, and at least one compound selected from the group consisting of aromatic diols, aromatic hydroxylamines and aromatic diamines.
  • the liquid crystal polyester is obtained by condensation polymerization (polymerization) of an aromatic hydroxycarboxylic acid, an aromatic dicarboxylic acid, and at least one compound selected from the group consisting of an aromatic diol, an aromatic hydroxyamine and an aromatic diamine.
  • a polymer obtained by condensation polymerization is preferable, and a polymer obtained by condensation polymerization (polycondensation) of an aromatic hydroxycarboxylic acid, an aromatic dicarboxylic acid, and an aromatic diol is more preferable.
  • aromatic hydroxycarboxylic acids, aromatic dicarboxylic acids, aromatic diols, aromatic hydroxyamines and aromatic diamines independently of each other, in part or in whole, are polymerizable ester-forming derivatives thereof.
  • Examples of polymerizable derivatives of compounds having a carboxy group include esters, acid halides, and acid anhydrides.
  • Examples of the above esters include compounds obtained by converting a carboxy group to an alkoxycarbonyl group or an aryloxycarbonyl group.
  • Examples of the above acid halides include compounds obtained by converting a carboxy group to a haloformyl group.
  • Examples of the above acid anhydrides include compounds obtained by converting a carboxy group to an acyloxycarbonyl group.
  • polymerizable derivatives of compounds having a hydroxyl group such as aromatic hydroxycarboxylic acids, aromatic diols and aromatic hydroxylamines
  • examples of polymerizable derivatives of compounds having an amino group such as aromatic hydroxylamines and aromatic diamines, include compounds (acylates) obtained by acylating an amino group to convert it to an acylamino group.
  • acylated products obtained by acylating aromatic hydroxycarboxylic acids and aromatic diols are preferable as raw material monomers for liquid crystal polyesters.
  • the hydroxyl group ends of the raw material monomers for the liquid crystal polyester can be converted to acyl group ends with higher reactivity.
  • the liquid crystalline polyester of the embodiment can contain an acylated product obtained by acylating at least one of an aromatic hydroxycarboxylic acid and an aromatic diol in raw material monomers.
  • the molar ratio of the acyl group terminal derived from the acylated acylated product and the hydroxyl group terminal remaining without being acylated is the acyl group terminal and the hydroxyl group terminal in the liquid crystalline polyester after polymerization. affects the molar ratio of
  • the molar ratio of acyl group terminal/hydroxy group terminal is 10 or less, preferably 8 or less, more preferably 6 or less.
  • the molar ratio of the acyl group terminal/hydroxy group terminal is 10 or less, preferably 8 or less, more preferably 6 or less.
  • the lower limit of the molar ratio of the acyl group terminal/hydroxy group terminal of the liquid crystal polyester according to the embodiment may be 1 or more, or may be 1.1 or more, from the viewpoint of efficiency of production of the liquid crystal polyester. It may be 2 or more.
  • An example of the above numerical range of the molar ratio of acyl group terminal/hydroxy group terminal of the liquid crystalline polyester according to the present embodiment may be 1 or more and 10 or less, 1.1 or more and 8 or less, or 1.2. It may be more than or equal to 6 or less.
  • the acyl group in the molar ratio of acyl group terminal/hydroxy group terminal of the liquid crystalline polyester is preferably an acetyl group.
  • the molar ratio of acyl group terminal/hydroxy group terminal is calculated by 1 H-NMR measurement.
  • a specific calculation method is as follows. (i) From the 1 H-NMR spectrum, the peak area A attributed to the hydrogen atoms derived from the acyl group terminal of the main chain of the liquid crystalline polyester is determined. (ii) By dividing the peak area A by the number of hydrogen atoms per structural unit having an acyl group, the relative amount of substance (IntAc) at the end of the acyl group can be calculated. (iii) From the same 1 H-NMR spectrum as in (i), the peak area B attributed to the hydrogen atom present in the ortho position to the terminal hydroxyl group of the main chain of the liquid crystalline polyester is determined.
  • 1 H-NMR measurement As the solvent for measurement in 1 H-NMR measurement, 1 H-NMR measurement is possible and any solvent capable of dissolving the liquid crystalline polyester may be used. -tetrachloroethane is preferred. Examples of the 1 H-NMR measurement apparatus and measurement conditions when deuterated pentafluorophenol and deuterated 1,1,2,2-tetrachloroethane are used as measurement solvents include the following.
  • NMR equipment AVANCE III manufactured by Bruker Magnetic field strength: 14.1T
  • Probe TCI cryoprobe
  • the sample solution for measurement was prepared by adding 0.5 mL of deuterated pentafluorophenol to 10 mg of the sample, dissolving it at 100° C. for 2 hours, and further adding deuterated 1,1,2,2-tetrachloroethane to 10 mg of sample. Add .3 mL and mix to prepare. NMR measurement is performed under the following conditions. Measurement method: 1H -1D (presaturation method) Measurement temperature: 30°C Accumulated times: 64 Waiting time: 4 seconds
  • the liquid crystalline polyester according to the embodiment preferably has a structural unit represented by the following formula (1) (hereinafter sometimes referred to as "structural unit (1)").
  • structural unit (1) a structural unit represented by the following formula (1) (hereinafter sometimes referred to as "structural unit (1)").
  • Ar1 represents a divalent aromatic hydrocarbon group,
  • One or more hydrogen atoms in the above group represented by Ar1 may be independently substituted with a halogen atom, an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 20 carbon atoms.
  • Ar1 preferably represents a phenylene group, a naphthylene group or a biphenylylene group. From the viewpoint that the liquid crystal polyester according to the embodiment is more excellent in dielectric properties, the structural unit (1) and the structural unit represented by the following formula (2) (hereinafter sometimes referred to as “structural unit (2)” ) and a structural unit represented by the following formula (3) (hereinafter sometimes referred to as “structural unit (3)”).
  • Ar1, Ar2 and Ar3 each independently represent a naphthylene group, a phenylene group or a biphenylylene group.
  • Each hydrogen atom in the group represented by Ar1, Ar2 or Ar3 may be independently substituted with a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 20 carbon atoms.
  • halogen atoms that can be substituted with hydrogen atoms include fluorine atoms, chlorine atoms, bromine atoms and iodine atoms.
  • alkyl group having 1 to 10 carbon atoms which can be substituted with a hydrogen atom examples include methyl group, ethyl group, 1-propyl group, isopropyl group, 1-butyl group, isobutyl group, sec-butyl group and tert-butyl. group, 1-hexyl group, 2-ethylhexyl group, 1-octyl group and 1-decyl group.
  • one or more hydrogen atoms in the group represented by Ar1, Ar2, or Ar3 is substituted with the halogen atom, the alkyl group having 1 to 10 carbon atoms, or the aryl group having 6 to 20 carbon atoms;
  • the number of groups substituting the hydrogen atom is preferably 1 or 2, more preferably 1, independently for each group represented by Ar1, Ar2, or Ar3.
  • the liquid crystal polyester according to the embodiment preferably contains a structural unit containing a naphthalene structure. Liquid crystalline polyesters containing a structural unit containing a naphthalene structure tend to have excellent dielectric properties.
  • a plurality of Ar1, Ar2, and Ar3 is preferably a naphthylene group.
  • the content of structural units containing a naphthalene structure in the liquid crystalline polyester is 100 mol% of the total amount of all structural units in the liquid crystalline polyester (the mass of each structural unit constituting the liquid crystalline polyester is divided by the formula weight of each structural unit is preferably 40 mol% or more, preferably 50 mol% or more, preferably 55 mol% or more of more preferably 60 mol % or more.
  • the dielectric constant of the liquid crystalline polyester can be further reduced.
  • the content of structural units containing a naphthalene structure in the liquid crystal polyester is preferably 90 mol% or less, more preferably 85 mol% or less, relative to the total amount of all structural units in the liquid crystal polyester, 100 mol%. It is preferably 80 mol % or less, more preferably 80 mol % or less.
  • An example of the numerical range of the content value of the structural unit containing the naphthalene structure may be 40 mol % or more and 90 mol % or less, or may be 50 mol % or more and 85 mol % or less. It may be mol % or more and 85 mol % or less, or may be 60 mol % or more and 80 mol % or less.
  • the liquid crystal polyester having the above structural units (1) to (3) includes a structural unit represented by the following formula (1), a structural unit represented by the following formula (2), and a structural unit represented by the following formula (3). It is more preferable to have a structural unit of (1) -O-Ar1-CO- (2) -CO-Ar2-CO- (3) -O-Ar3-O- (Ar1 represents a 2,6-naphthylene group, a 1,4-phenylene group, or a 4,4′-biphenylylene group.
  • Ar2 and Ar3 each independently represent a 2,6-naphthylene group, a 2,7-naphthylene group, a 1,4-phenylene group, a 1,3-phenylene group or a 4,4'-biphenylylene group.
  • Each hydrogen atom in the group represented by Ar1, Ar2 or Ar3 may be independently substituted with a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 20 carbon atoms.
  • Ar1 and/or Ar2 are preferably 2,6-naphthylene groups.
  • the structural units in which Ar1 and / or Ar2 in the structural units represented by the above formulas (1) and (2) are 2,6-naphthylene groups are added to the entire structure in the liquid crystal polyester.
  • Structural unit (1) is a structural unit derived from an aromatic hydroxycarboxylic acid.
  • aromatic hydroxycarboxylic acid include parahydroxybenzoic acid, metahydroxybenzoic acid, 2-hydroxy-6-naphthoic acid, 2-hydroxy-3-naphthoic acid, 1-hydroxy-5-naphthoic acid, 4- Hydroxy-4'-carboxydiphenyl ether and aromatics in which some of the hydrogen atoms in the aromatic ring of these aromatic hydroxycarboxylic acids are substituted with substituents selected from the group consisting of alkyl groups, aryl groups and halogen atoms group hydroxycarboxylic acids.
  • Structural units (1) include those in which Ar1 is a 1,4-phenylene group (e.g., a structural unit derived from 4-hydroxybenzoic acid) and those in which Ar1 is a 2,6-naphthylene group (e.g., 6 -Structural unit derived from hydroxy-2-naphthoic acid) is preferred.
  • Structural unit (2) is a structural unit derived from an aromatic dicarboxylic acid.
  • aromatic dicarboxylic acid include terephthalic acid, isophthalic acid, biphenyl-4,4′-dicarboxylic acid, 2,6-naphthalenedicarboxylic acid, diphenyl ether-4,4′-dicarboxylic acid, diphenylthioether-4,4 '-dicarboxylic acids and aromatic dicarboxylic acids in which some of the hydrogen atoms in the aromatic rings of these aromatic dicarboxylic acids are substituted with substituents selected from the group consisting of alkyl groups, aryl groups and halogen atoms. mentioned.
  • Structural units (2) include those in which Ar2 is a 1,4-phenylene group (eg, a structural unit derived from terephthalic acid), those in which Ar2 is a 1,3-phenylene group (eg, structural units derived from isophthalic acid).
  • Ar2 is a 2,6-naphthylene group (for example, a structural unit derived from 2,6-naphthalene dicarboxylic acid), and those in which Ar2 is a diphenyl ether-4,4′-diyl group (for example, Structural units derived from diphenyl ether-4,4'-dicarboxylic acid) are preferred.
  • Structural unit (3) is a structural unit derived from an aromatic diol, aromatic hydroxylamine or aromatic diamine.
  • aromatic diols, aromatic hydroxylamines or aromatic diamines include 4,4′-dihydroxybiphenyl, hydroquinone, methylhydroquinone, resorcinol, 4,4′-dihydroxydiphenylketone, 4,4′-dihydroxydiphenyl ether, bis (4-hydroxyphenyl)methane, 1,2-bis(4-hydroxyphenyl)ethane, 4,4'-dihydroxydiphenylsulfone, 4,4'-dihydroxydiphenylthioether, 2,6-dihydroxynaphthalene, 1,5- dihydroxynaphthalene, 4-aminophenol, 1,4-phenylenediamine, 4-amino-4'-hydroxybiphenyl, 4,4'-diaminobiphenyl.
  • Structural units (3) include those in which Ar3 is a 1,4-phenylene group (for example, structural units derived from hydroquinone, 4-aminophenol or 1,4-phenylenediamine), and Ar3 in which 4,4'- Those which are biphenylylene groups (eg structural units derived from 4,4′-dihydroxybiphenyl, 4-amino-4′-hydroxybiphenyl or 4,4′-diaminobiphenyl) are preferred.
  • oil means that the chemical structure is changed due to the polymerization of the raw material monomer, and no other structural change occurs.
  • each structural unit is an acylated product of an aromatic hydroxycarboxylic acid, an aromatic diol, and an aromatic hydroxylamine may be a structural unit derived from
  • the liquid crystal polyester film of the embodiment is required to have particularly good heat resistance, it is preferable that the number of these substituents is small, and it is particularly preferable that the liquid crystal polyester film does not have a substituent such as an alkyl group.
  • liquid crystalline polyesters to be applied to the liquid crystalline polyester powder of the embodiment are exemplified below.
  • Specific examples of preferred liquid crystalline polyesters include copolymers composed of structural units derived from the following combinations of monomers.
  • the content of the structural unit (1) of the liquid crystalline polyester is the total amount of all structural units that make up the liquid crystalline polyester (by dividing the mass of each structural unit that makes up the liquid crystalline polyester by the formula weight of each structural unit, each structure
  • the amount (mol) corresponding to the amount of substance of the unit is obtained, and the total value thereof) is preferably 30 mol% or more, more preferably 30 to 90 mol%, more preferably 30 to 85 mol%, still more preferably 40 to 75 mol %, particularly preferably 50 to 70 mol %, particularly preferably 55 to 70 mol %.
  • the content of the structural unit (1) of the liquid crystal polyester is 30 mol % or more, the heat resistance and hardness of the film obtained using the liquid crystal polyester composition of the present embodiment are likely to be improved. Further, when the content of the structural unit (1) is 80 mol% or less, the melt viscosity can be lowered. Therefore, the temperature required for molding the liquid crystalline polyester tends to be low.
  • the content of the structural unit (2) of the liquid crystalline polyester is preferably 35 mol% or less, more preferably 10 to 35 mol%, still more preferably 15 to 35, based on the total amount of all structural units constituting the liquid crystalline polyester. mol %, particularly preferably 17.5 to 32.5 mol %.
  • the content of the structural unit (3) of the liquid crystalline polyester is preferably 35 mol% or less, more preferably 10 to 35 mol%, still more preferably 15 to 35, based on the total amount of all structural units constituting the liquid crystalline polyester. mol %, particularly preferably 17.5 to 32.5 mol %.
  • the ratio of the content of structural unit (2) to the content of structural unit (3) is [content of structural unit (2)]/[content of structural unit (3)] (mol /mol), it is preferably 0.9 or more and 1.1 or less, more preferably 0.95 or more and 1.05 or less, and still more preferably 0.98 or more and 1.02 or less.
  • the ratio of the content of structural unit (3) to the content of structural unit (1) is [content of structural unit (3)]/[content of structural unit (1)] (mol /mol), it is preferably 0.2 or more and 1.0 or less, more preferably 0.25 or more and 0.85 or less, and still more preferably 0.3 or more and 0.75 or less.
  • the liquid crystal polyester may independently have one type of structural units (1) to (3), or may have two or more types thereof.
  • the liquid crystal polyester may have one or more structural units other than the structural units (1) to (3), but the content thereof is based on the total amount of all structural units of the liquid crystal polyester , preferably 10 mol % or less, more preferably 5 mol % or less.
  • liquid crystal polyester resin mixture in which a plurality of types of liquid crystal polyesters are mixed.
  • the liquid crystal polyester resin mixture is a mixture of liquid crystal polyester resins having different flow initiation temperatures.
  • the one with the highest flow initiation temperature is defined as the first liquid crystal polyester resin
  • the one with the lowest flow initiation temperature is defined as the second liquid crystal polyester resin.
  • a liquid crystalline polyester resin mixture consisting essentially of a first liquid crystalline polyester and a second liquid crystalline polyester is preferred.
  • the content of the second liquid crystalline polyester is preferably 10 to 150 parts by mass, more preferably 30 to 120 parts by mass, with respect to 100 parts by mass of the first liquid crystalline polyester. It is more preferably 100 parts by mass.
  • the liquid crystalline polyester in the liquid crystalline polyester powder according to the embodiment has a flow initiation temperature of preferably 240° C. or lower, more preferably 200° C. or higher and 238° C. or lower, still more preferably 210° C. or higher and 236° C. or lower, most preferably 225° C. or higher. 236°C or less.
  • the flow initiation temperature of the liquid crystalline polyester in the liquid crystalline polyester powder is equal to or lower than the above upper limit, the temperature of the endothermic peak detected by differential scanning calorimetry of the liquid crystalline polyester does not become too high even after the solid phase polymerization. It is easy to bond the liquid crystal polyester film and another layer by melting the polyester. Further, the higher the flow initiation temperature of the liquid crystalline polyester is, the easier it is to improve the heat resistance, strength and rigidity.
  • the flow initiation temperature is also called flow temperature or flow temperature
  • the liquid crystalline polyester is melted while the temperature is raised at a rate of 4°C/min under a load of 9.8 MPa (100 kg/cm 2 ) using a capillary rheometer. It is the temperature at which the viscosity of 4800 Pa s (48000 poise) is exhibited when extruded from a nozzle with an inner diameter of 1 mm and a length of 10 mm, and is a measure of the molecular weight of liquid crystalline polyester (Edited by Naoyuki Koide, "Liquid Crystal Polymer -Synthesis/Molding/Application-", CMC Co., Ltd., June 5, 1987, p.95).
  • the weight average molecular weight of the liquid crystalline polyester powder according to the embodiment is preferably 20000 or less, preferably 4000 to 20000, more preferably 6000 to 19000, more preferably 8000 to It is more preferably 18,000, and particularly preferably 13,000 to 18,000.
  • the weight-average molecular weight of the liquid crystalline polyester in the liquid crystalline polyester powder is equal to or less than the above upper limit, the endothermic peak temperature detected by differential scanning calorimetry of the liquid crystalline polyester does not become too high even after solid phase polymerization, and the liquid crystal It is easy to bond the liquid crystal polyester film and another layer by melting the polyester. In addition, it is easy to process into a film having excellent isotropy.
  • the smaller the weight-average molecular weight of the liquid crystalline polyester the more the heat conductivity in the thickness direction of the film after heat treatment tends to be improved, which is preferable. Good heat resistance, strength and rigidity.
  • the number average molecular weight of the liquid crystalline polyester in the liquid crystalline polyester powder according to the embodiment measured using polystyrene as a standard substance is preferably 7000 or less, preferably 1500 to 7000, more preferably 2000 to 6000, more preferably 2500 to 5,500 is more preferred, and 4,000 to 5,500 is particularly preferred.
  • the number average molecular weight of the liquid crystalline polyester in the liquid crystalline polyester powder is equal to or less than the above upper limit, the temperature of the endothermic peak detected by differential scanning calorimetry of the liquid crystalline polyester does not become too high even after solid phase polymerization, and the liquid crystal It is easy to bond the liquid crystal polyester film and another layer by melting the polyester. In addition, it is easily processed into a film having excellent isotropy.
  • the smaller the number average molecular weight of the liquid crystalline polyester the more the heat conductivity in the thickness direction of the film after heat treatment tends to be improved, which is preferable. Good heat resistance, strength and rigidity.
  • weight average molecular weight and “number average molecular weight” can be determined by gel permeation chromatography (GPC) analysis, and based on a calibration curve obtained by measuring the molecular weight of standard polystyrene, It means the value obtained by standard polystyrene conversion.
  • the temperature of the endothermic peak detected by differential scanning calorimetry of the liquid crystalline polyester is preferably 280 ° C. or less, and at 230 to 280 ° C. It is more preferably 250 to 270°C, and particularly preferably 260 to 270°C.
  • the temperature rise at the endothermic peak hardly occurs even after solid state polymerization.
  • the value of the endothermic peak temperature (A) of the liquid crystalline polyester in the liquid crystalline polyester powder is equal to or less than the above upper limit, even if a liquid crystalline polyester film is obtained through solid phase polymerization, the liquid crystalline polyester in the film does not melt. is easy. For example, it is easy to bond the liquid crystal polyester film and another layer by melting the liquid crystal polyester by a lamination method or the like.
  • the temperature of the endothermic peak of the liquid crystalline polyester is obtained by raising the temperature from room temperature (23°C) at a rate of 10°C/min using a differential scanning calorimeter (for example, Shimadzu Corporation's "DSC-60A Plus"). It can be measured as the temperature (° C.) at the apex position of the endothermic peak due to the melting of the liquid crystalline polyester.
  • a differential scanning calorimeter for example, Shimadzu Corporation's "DSC-60A Plus”
  • the liquid crystalline polyester in the liquid crystalline polyester powder according to the embodiment has an excellent property that temperature rise at the endothermic peak detected by differential scanning calorimetry of the liquid crystalline polyester hardly occurs even after solid-phase polymerization.
  • the value (B) of the temperature rise from the endothermic peak temperature (A) of the liquid crystalline polyester before the solid phase polymerization of the endothermic peak temperature (B) of the liquid crystalline polyester after solid phase polymerization - (A) is preferably 16°C or less, more preferably 3 to 14°C, even more preferably 5 to 12°C.
  • heat treatment is performed in which the temperature is raised from room temperature (23° C.) to 290° C. over 4 hours and held at 290° C. for 2 hours in a nitrogen atmosphere.
  • liquid crystal polyester examples include those exemplified above, and a polymer obtained by condensation polymerization (polycondensation) of an aromatic hydroxycarboxylic acid, an aromatic dicarboxylic acid, and an aromatic diol is preferable.
  • the liquid crystalline polyester of the present embodiment is preferably produced by the following acylation step and polymerization step using the monomers of the liquid crystalline polyester to be produced.
  • the acylation step is a step of obtaining an acylated product by acylating a phenolic hydroxyl group of a raw material monomer with a fatty acid anhydride (such as acetic anhydride).
  • a fatty acid anhydride such as acetic anhydride
  • the aromatic hydroxycarboxylic acid is p-hydroxybenzoic acid and the fatty acid anhydride is acetic anhydride
  • the hydrogen atom of the phenolic hydroxyl group of p-hydroxybenzoic acid is substituted with the acetyl group of acetic anhydride, resulting in an acyl compounds are produced.
  • acetic acid is by-produced from the hydrogen ion (H + ) of the phenolic hydroxyl group of p-hydroxybenzoic acid and the anion (CH 3 COO ⁇ ) generated from the acetyloxy group of acetic anhydride.
  • the acyl group of the acylated product obtained in the acylation step and the carboxy group of the acylated product of the aromatic dicarboxylic acid and the aromatic hydroxycarboxylic acid are polymerized so as to cause transesterification to obtain a liquid crystalline polyester. can be obtained.
  • the amount of the fatty acid anhydride used is preferably less than 1 equivalent with respect to 1 equivalent of the phenolic hydroxyl group contained in the raw material monomer.
  • phenolic hydroxyl group refers to a hydroxyl group directly bonded to an aromatic ring.
  • the equivalent of the fatty acid anhydride to be used is 0.90 equivalent or more and less than 1 equivalent with respect to 1 equivalent of the phenolic hydroxyl group contained in the raw material monomer, from the viewpoint of efficiently advancing the reaction in the subsequent polymerization step. may be 0.91 equivalent or more and less than 1 equivalent, may be 0.92 equivalent or more and less than 1 equivalent, or may be 0.96 equivalent or more and less than 1 equivalent.
  • At least one of an aromatic hydroxycarboxylic acid and an aromatic diol is subjected to an acylation reaction with a fatty acid anhydride to obtain an acylated product (i); a step (ii) of subjecting the acylated product to an ester exchange reaction with at least one of an aromatic hydroxycarboxylic acid and an aromatic dicarboxylic acid to obtain a liquid crystalline polyester;
  • the amount of the fatty acid anhydride used in the step (i) is less than 1 equivalent with respect to 1 equivalent of the phenolic hydroxyl group of at least one of the aromatic hydroxycarboxylic acid and the aromatic diol.
  • the equivalent of the fatty acid anhydride may be 0.90 equivalent or more and less than 1 equivalent, and may be 0.91 equivalent with respect to 1 equivalent of the phenolic hydroxyl group possessed by at least one of the aromatic hydroxycarboxylic acid and the aromatic diol. It may be 0.92 equivalents or more and less than 1 equivalent, or it may be 0.96 equivalents or more and less than 1 equivalent.
  • the phenolic hydroxyl group possessed by at least one of the aromatic hydroxycarboxylic acid and the aromatic diol means, when both the aromatic hydroxycarboxylic acid and the aromatic diol are used in step (i), aromatic It is a phenolic hydroxyl group possessed by hydroxycarboxylic acid and the aromatic diol.
  • step (i) When only the aromatic hydroxycarboxylic acid is used in step (i), it is a phenolic hydroxyl group of the aromatic hydroxycarboxylic acid.
  • step (i) When only the aromatic diol is used in step (i), it is the phenolic hydroxyl group of the aromatic diol.
  • the amount of the fatty acid anhydride used is less than 1 equivalent with respect to the total number of phenolic hydroxyl groups contained in the raw material monomers, highly reactive acyl groups are unlikely to remain in the liquid crystalline polyester obtained through the polymerization process. Therefore, when solid-phase polymerization is performed for subsequent film production, the polymerization reaction of the liquid crystalline polyester does not progress easily, and the temperature rise at the endothermic peak detected by differential scanning calorimetry of the liquid crystalline polyester hardly occurs.
  • fatty acid anhydride examples include fatty acid anhydrides having 9 or less carbon atoms.
  • fatty acid anhydrides having 9 or less carbon atoms include acetic anhydride, propionic anhydride, butyric anhydride (butyric anhydride), 2-methylpropionic anhydride (isobutyric anhydride), pentanoic anhydride (valeric anhydride), anhydride 2, 2-dimethylpropionic acid (pivalic anhydride), 2-ethylhexanoic anhydride, monochloroacetic anhydride, dichloroacetic anhydride, trichloroacetic anhydride, monobromoacetic anhydride, dibromoacetic anhydride, tribromoacetic anhydride, monofluoroacetic anhydride, difluoroacetic anhydride , trifluoroacetic anhydride, pentane-1,5-dicarboxylic anhydride (glutaric anhydride), maleic
  • the acylation reaction is preferably an acetylation reaction, and the fatty acid anhydride is preferably acetic anhydride.
  • the acylation reaction in the acylation step described above is preferably carried out at a temperature of 130°C to 180°C for 30 minutes to 20 hours, more preferably at 140°C to 160°C for 1 to 5 hours.
  • the aromatic dicarboxylic acid that can be used in the above polymerization step may be present in the reaction system during the acylation step. That is, in the acylation step, the aromatic diol, aromatic hydroxycarboxylic acid and aromatic dicarboxylic acid may be present in the same reaction system. This is because both the carboxy group and the optionally substituted substituents on the aromatic dicarboxylic acid are unaffected by the fatty acid anhydride.
  • the acylation step and the polymerization step may be sequentially performed after charging the aromatic diol, the aromatic hydroxycarboxylic acid and the aromatic dicarboxylic acid into the reactor, or the aromatic diol and the aromatic dicarboxylic acid may be charged into the reactor.
  • a method may also be used in which after charging and performing the acylation step, the aromatic dicarboxylic acid is further charged into the reactor and the polymerization step is performed.
  • the former method is preferable from the viewpoint of simplifying the manufacturing process.
  • the acylation step and the polymerization step may be performed in the presence of a heterocyclic organic base compound represented by the following formula (5).
  • R 1 to R 4 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a hydroxymethyl group, a cyano group, or a cyanoalkyl group having 1 to 4 carbon atoms in the alkyl group.
  • an imidazole derivative in which R 1 is an alkyl group having 1 to 4 carbon atoms and R 2 to R 4 are each hydrogen atoms is preferable.
  • R 1 is an alkyl group having 1 to 4 carbon atoms
  • R 2 to R 4 are each hydrogen atoms.
  • the reactivity of the acylation reaction in the acylation step and the transesterification reaction in the polymerization step can be further improved.
  • the color tone of the liquid crystal polyester film obtained by using the liquid crystal polyester composition of the present embodiment can be improved.
  • heterocyclic organic base compounds either one or both of 1-methylimidazole and 1-ethylimidazole are particularly preferable because they are readily available.
  • the amount of the heterocyclic organic base compound used is 0.005 to 0.005 when the total amount of the raw material monomers of the liquid crystal polyester (that is, the aromatic dicarboxylic acid, the aromatic diol and the aromatic hydroxycarboxylic acid) is 100 parts by mass. It is preferable to make it 1 part by mass. From the viewpoint of the color tone of the molded product and productivity, it is more preferable to use 0.05 to 0.5 parts by mass with respect to 100 parts by mass of the raw material monomer.
  • the heterocyclic organic base compound may be present during the acylation reaction and the transesterification reaction at one time, and the addition time may be immediately before the start of the acylation reaction or during the acylation reaction. or between the acylation reaction and the transesterification reaction.
  • the liquid crystalline polyester thus obtained has very high melt fluidity and excellent thermal stability.
  • the transesterification reaction in the polymerization step described above is preferably carried out while raising the temperature from 130° C. to 400° C. at a temperature elevation rate of 0.1 to 50° C./min. C. to 350.degree. C. while raising the temperature is more preferable.
  • a batch apparatus or a continuous apparatus may be used as the reactor.
  • Liquid crystalline polyesters that can be used in the present embodiment can be obtained using any reactor.
  • the target liquid crystal polyester powder can be obtained by pulverizing.
  • the liquid crystalline polyester obtained in this polymerization step can be made to have a high molecular weight by performing a heat treatment such as solid phase polymerization.
  • a heat treatment such as solid phase polymerization.
  • the liquid crystalline polyester contained in the liquid crystalline polyester powder it is desirable not to carry out a process for increasing the molecular weight such as solid phase polymerization.
  • the liquid crystalline polyester having the preferred flow initiation temperature described above can be easily obtained by appropriately optimizing the structural units constituting the liquid crystalline polyester. That is, when the linearity of the molecular chains of the liquid crystalline polyester is improved, the flow initiation temperature tends to increase.
  • structural units derived from terephthalic acid improve the linearity of liquid crystal polyester molecular chains.
  • structural units derived from isophthalic acid improve the flexibility of the liquid crystal polyester molecular chain (reduce the linearity). Therefore, by controlling the copolymerization ratio of terephthalic acid and isophthalic acid, a liquid crystalline polyester having a desired flow initiation temperature can be obtained.
  • At least one kind of liquid crystalline polyester is preferably a polymer obtained by polymerizing a raw material monomer containing an aromatic hydroxycarboxylic acid in the presence of an imidazole compound.
  • the liquid crystalline polyester thus obtained has very high fluidity when melted and excellent thermal stability.
  • liquid crystal polyester used in the present embodiment it is preferable to optimize the copolymerization ratio of terephthalic acid and isophthalic acid. Thereby, the linearity of the molecular chain of the liquid crystalline polyester can be controlled as described above. As a result, it is possible to manufacture a plurality of types of liquid crystalline polyesters having different flow initiation temperatures.
  • the average particle size ( D50 ) of the liquid crystalline polyester powder is preferably 30 ⁇ m or less, preferably 20 ⁇ m or less, more preferably 18 ⁇ m or less, still more preferably 15 ⁇ m or less, and particularly preferably 10 ⁇ m or less.
  • the average particle size of the liquid crystalline polyester powder exceeds 30 ⁇ m, it becomes difficult to obtain a liquid crystalline polyester composition in which the liquid crystalline polyester powder is dispersed well.
  • the average particle size of the liquid crystal polyester is 20 ⁇ m or less, it is possible to produce a liquid crystal polyester film having a suitable thickness (for example, 50 ⁇ m or less) as a film for electronic parts and good smoothness of the film surface.
  • the average particle size (D 50 ) of the liquid crystalline polyester powder is preferably 0.5 ⁇ m or more, more preferably 3 ⁇ m or more, and further preferably 5 ⁇ m or more. preferable.
  • the upper limit and lower limit of the average particle size (D 50 ) of the liquid crystal polyester powder can be freely combined.
  • An example of the numerical range of the average particle size of the liquid crystal polyester powder may be 0.5 ⁇ m or more and 30 ⁇ m or less, 0.5 ⁇ m or more and 20 ⁇ m or less, or 3 ⁇ m or more and 18 ⁇ m or less. 5 ⁇ m or more and 15 ⁇ m or less, 5 ⁇ m or more and 12 ⁇ m or less, or 5 ⁇ m or more and 10 ⁇ m or less.
  • the particle size (D 10 ) of the liquid crystalline polyester powder is preferably 1 ⁇ m or more and 20 ⁇ m or less, more preferably 2 ⁇ m or more and 18 ⁇ m or less, and even more preferably 3 ⁇ m or more and 15 ⁇ m or less.
  • a liquid crystalline polyester powder having a D10 value within the above range is preferable because it improves dispersibility in a medium.
  • the particle size (D 90 ) of the liquid crystalline polyester powder is preferably 5 ⁇ m or more and 100 ⁇ m or less, more preferably 10 ⁇ m or more and 80 ⁇ m or less, and even more preferably 15 ⁇ m or more and 60 ⁇ m or less.
  • a liquid crystalline polyester powder having a D 90 value within the above range is preferable because it improves dispersibility in a medium.
  • the "average particle size" is measured by a laser diffraction scattering method, in a volume-based cumulative particle size distribution curve, when the whole is 100%, the cumulative volume is 50% Particles at the point Diameter value (50% cumulative volume particle size D 50 ).
  • the particle diameter at which the cumulative volume ratio from the small particle side is 10% is D 10
  • the particle diameter at which the cumulative volume ratio is 90% is D 90 .
  • the liquid crystalline polyester composition of the embodiment described later may be a dispersion liquid in which the liquid crystalline polyester powder is insoluble in a medium and the liquid crystalline polyester powder is dispersed in the liquid medium.
  • ⁇ Test method Liquid crystalline polyester powder (5 parts by mass) is stirred in a medium (95 parts by mass) at a temperature of 180 ° C. under stirring conditions of 200 rpm using an anchor blade for 6 hours, and then cooled to room temperature (23 ° C.). .
  • the residue on the membrane filter is checked. At this time, if no solid matter is confirmed, it is judged to be soluble in the medium. If solid matter is confirmed, it is judged to be insoluble in the medium. Solid matter can be confirmed by microscopic observation.
  • liquid crystalline polyester powder Since the liquid crystalline polyester powder is insoluble in the medium, it is not necessary to dissolve the liquid crystalline polyester powder in a solvent in each method for producing a liquid crystalline polyester film or laminate according to the embodiments described later.
  • a liquid crystalline polyester powder having excellent dielectric properties such as those exemplified as those having (3), can be used as a raw material.
  • a liquid crystalline polyester film having excellent dielectric properties can be produced from a liquid crystalline polyester powder having excellent dielectric properties.
  • dielectric properties refer to properties relating to dielectric constant and dielectric loss tangent.
  • the liquid crystal polyester powder according to the embodiment preferably has a dielectric constant of 3 or less at a frequency of 1 GHz, preferably 2.9 or less, preferably 2.8 or less, and less than 2.8. is more preferably 2.78 or less, and particularly preferably 2.76 or less.
  • the dielectric constant of the liquid crystalline polyester powder may be 2.5 or more, 2.6 or more, or 2.7 or more.
  • the upper limit and lower limit of the dielectric constant of the liquid crystalline polyester powder can be freely combined.
  • An example of the numerical range of the value of the dielectric constant of the liquid crystal polyester powder may be 2.5 or more and 3 or less, 2.6 or more and 2.78 or less, or 2.7 or more. It may be 2.76 or less.
  • the liquid crystal polyester powder according to the embodiment preferably has a dielectric loss tangent at a frequency of 1 GHz of 0.005 or less, preferably 0.004 or less, more preferably 0.003 or less, and 0.0025 or less. is more preferable, and 0.002 or less is particularly preferable.
  • the dielectric loss tangent of the liquid crystalline polyester powder may be 0.0003 or more, 0.0005 or more, or 0.001 or more.
  • An example of the numerical range of the dielectric loss tangent value of the liquid crystal polyester powder may be 0.0003 or more and 0.005 or less, 0.0005 or more and 0.004 or less, or 0.001 0.003 or less, 0.001 or more and 0.0025 or less, or 0.001 or more and 0.002 or less.
  • the dielectric constant and dielectric loss tangent of the liquid crystalline polyester powder at a frequency of 1 GHz can be measured under the following conditions by a capacitance method using an impedance analyzer. Liquid crystalline polyester fine particles are melted at a temperature 5° C. higher than the flow initiation temperature measured using a flow tester, and then solidified by cooling to prepare tablets with a diameter of 1 cm and a thickness of 0.5 cm. The relative permittivity and dielectric loss tangent at 1 GHz of the obtained tablets are measured under the following conditions.
  • ⁇ Measurement method capacitance method
  • ⁇ Measurement environment 23°C, 50% RH ⁇ Applied voltage: 1V
  • the dielectric constant and dielectric loss tangent of the liquid crystal polyester powder according to the embodiment may differ from those of the liquid crystal polyester film produced using the powder as a raw material. It is considered that this is due to the difference in molecular weight of the contained liquid crystalline polyester.
  • the content of the liquid crystalline polyester with respect to 100% by mass of the liquid crystalline polyester powder according to the embodiment may be 80 to 100% by mass, or may be 90 to 98% by mass.
  • the content of the liquid crystalline polyester having an acyl group terminal/hydroxy group terminal molar ratio of 10 or less as analyzed by 1 H-NMR with respect to 100% by mass of the liquid crystalline polyester powder according to the embodiment is 80 to 100% by mass. may be 90 to 98% by mass.
  • acetic acid derived from acetic anhydride that can be used in the production of liquid crystalline polyester may remain in the liquid crystalline polyester powder according to the embodiment.
  • the content is preferably 1% by mass or less, more preferably 500 mass ppm or less, and even more preferably 300 mass ppm or less.
  • the amount of residual acetic acid contained in 100% by mass of the liquid crystal polyester powder according to the embodiment is preferably 30 mass ppm or more, more preferably 50 mass ppm or more, and 100 mass ppm or more from the viewpoint of grindability. is more preferred.
  • An example of the numerical range of the value of the residual acetic acid amount that can be contained in 100% by mass of the liquid crystal polyester powder may be 30 mass ppm or more and 1 mass% or less, or 50 mass ppm or more and 500 mass ppm or less. may be 100 mass ppm or more and 300 mass ppm or less.
  • the liquid crystalline polyester powder according to the embodiment can be obtained, for example, by pulverizing the liquid crystalline polyester produced by the method for producing the liquid crystalline polyester described above with a jet mill or the like, if necessary.
  • the particle size can be controlled by changing the rotation speed of the classifying rotor, the pulverization nozzle pressure, the processing speed, and the like.
  • the particles may be classified using a sieve having openings corresponding to the desired particle size.
  • the acyl group terminal analyzed by 1 H-NMR A liquid crystalline polyester powder containing a liquid crystalline polyester having a hydroxyl terminal molar ratio of 10 or less can be easily obtained.
  • a method for producing a liquid crystal polyester powder at least one of an aromatic hydroxycarboxylic acid and an aromatic diol is subjected to an acylation reaction with a fatty acid anhydride to obtain an acylated product (i); a step (ii) of subjecting the acylated product to an ester exchange reaction with at least one of an aromatic hydroxycarboxylic acid and an aromatic dicarboxylic acid to obtain a liquid crystalline polyester;
  • the amount of the fatty acid anhydride used in the step (i) is less than 1 equivalent with respect to 1 equivalent of the phenolic hydroxyl group of at least one of the aromatic hydroxycarboxylic acid and the aromatic diol.
  • the acylation is preferably acetylation.
  • the liquid crystal polyester powder of the above embodiment can be produced.
  • the liquid crystal polyester composition of the embodiment contains a medium and the liquid crystal polyester powder of the above embodiment.
  • the medium contained in the liquid crystal polyester composition of the embodiment is preferably a substance that takes a liquid state at 1 atm (1013.25 hPa) and 25°C.
  • the medium is preferably a volatile component that is a substance that can be volatilized during the formation of the liquid crystal polyester film.
  • the medium is preferably a dispersion medium in which the liquid crystalline polyester powder is insoluble and which disperses the liquid crystalline polyester powder.
  • the liquid crystalline polyester composition of the embodiment is preferably a liquid dispersion in which the liquid crystalline polyester powder is insoluble in the medium and the liquid crystalline polyester powder is dispersed in the liquid medium.
  • the term "dispersed” as used herein refers to a state in which the liquid crystalline polyester powder is suspended or suspended in a dispersion medium, and is distinguished from a state in which the liquid crystalline polyester powder is dissolved (in which the liquid crystalline polyester powder is dissolved in the liquid crystalline polyester composition, (except in a completely dissolved state).
  • the distribution of the liquid crystalline polyester powder in the composition may have non-uniform portions.
  • the liquid crystalline polyester powder in the composition may be in a state in which the liquid crystalline polyester composition can be applied onto a support in the method for producing a liquid crystalline polyester film described below.
  • media examples include aliphatic polyhydric alcohols such as glycerin, neopentyl glycol, ethylene glycol, propylene glycol, butanediol, hexylene glycol, polyethylene glycol, polypropylene glycol; dichloromethane, chloroform, 1,1-dichloroethane, 1,1-dichloroethane, Halogenated hydrocarbons such as 2-dichloroethane, 1,1,2,2-tetrachloroethane, 1-chlorobutane, chlorobenzene and o-dichlorobenzene; Halogenated phenols such as p-chlorophenol, pentachlorophenol and pentafluorophenol; Ethers such as diethyl ether, di-(2-chloroethyl) ether, tetrahydrofuran and 1,4-dioxane; Ketones such as acetone, cyclohexanone and isophor
  • the medium may be an aprotic solvent.
  • Aprotic solvents are solvents that contain aprotic compounds.
  • the aprotic solvent include halogen solvents such as 1-chlorobutane, chlorobenzene, 1,1-dichloroethane, 1,2-dichloroethane, chloroform, 1,1,2,2-tetrachloroethane, diethyl ether, tetrahydrofuran, ether solvents such as 1,4-dioxane, ketone solvents such as acetone and cyclohexanone, ester solvents such as ethyl acetate, lactone solvents such as ⁇ -butyrolactone, carbonate solvents such as ethylene carbonate and propylene carbonate, triethylamine, Amine solvents such as pyridine, nitrile solvents such as acetonitrile and succinonitrile, amide solvents such as N,N-dimethylformamide, N,N-d
  • the liquid crystalline polyester composition of the embodiment may contain a medium having a specific gravity of 0.90 or more as a medium having excellent dispersibility of the liquid crystalline polyester powder.
  • the "specific gravity" of the medium in this specification shall be measured in conformity with JIS Z 8804:2012 (sea hail) using water as a reference substance. The specific gravity here is defined as the density of the sample liquid divided by the density of water under a pressure of 101325 Pa (1 atm).
  • the liquid crystal polyester composition of the embodiment contains a medium having a specific gravity of 0.90 or more, preferably a medium having a specific gravity of 0.95 or more, and more preferably a medium having a specific gravity of 1.03 or more.
  • the liquid crystalline polyester composition of the embodiment may contain a medium with a specific gravity of 1.84 or less, may contain a medium with a specific gravity of 1.68 or less, or may contain a medium with a specific gravity of 1.58 or less. May include media below 1.48.
  • the liquid crystalline polyester composition of the embodiment may contain a medium having a specific gravity of 0.90 or more and 1.84 or less, and a specific gravity of 0.95 or more and 1.68 or less. , a medium having a specific gravity of 1.03 or more and 1.58 or less, or a medium having a specific gravity of 1.1 or more and 1.48 or less.
  • the specific gravity of the liquid crystalline polyester powder according to the embodiment measured by JIS K 7112 (method A) is, for example, 1.35 or more and 1.40 or less.
  • the ratio of the liquid crystal polyester powder content to the total mass of the liquid crystal polyester composition of the embodiment is preferably 1 to 40% by mass, more preferably 5 to 30% by mass, and even more preferably 7 to 20% by mass.
  • the ratio of the content of the medium to the total mass of the liquid crystal polyester composition of the embodiment is preferably 50 to 99% by mass, more preferably 60 to 95% by mass, and even more preferably 70 to 90% by mass.
  • the liquid crystalline polyester composition of one embodiment preferably contains 1 to 40% by mass of the liquid crystalline polyester powder and 50 to 99% by mass of the medium relative to the total mass of the liquid crystalline polyester composition.
  • the liquid crystalline polyester composition may, if necessary, contain other components such as fillers, additives, and other resins not applicable to the liquid crystalline polyester powder, and the total content (% by mass) may contain one or more so that does not exceed 100% by mass.
  • fillers include inorganic fillers such as silica, alumina, titanium oxide, barium titanate, strontium titanate, aluminum hydroxide, and calcium carbonate; and organic fillers such as cured epoxy resins, crosslinked benzoguanamine resins, and crosslinked acrylic resins.
  • the content thereof may be 0, preferably 100 parts by mass or less, relative to 100 parts by mass of the liquid crystal polyester.
  • additives include leveling agents, antifoaming agents, antioxidants, ultraviolet absorbers, flame retardants and colorants. , preferably 5 parts by mass or less.
  • resins other than liquid crystalline polyester include polypropylene, polyamide, polyester other than liquid crystalline polyester, liquid crystalline polyester not corresponding to liquid crystalline polyester contained in liquid crystalline polyester powder, polyphenylene sulfide, polyether ketone, polycarbonate, polyether sulfone, Thermoplastic resins other than liquid crystalline polyester such as polyphenylene ether and modified products thereof, polyetherimide; elastomers such as copolymers of glycidyl methacrylate and polyethylene; and thermosetting resins such as phenolic resins, epoxy resins, polyimide resins and cyanate resins. resin.
  • fluororesins can also be exemplified as preferable ones.
  • a "fluororesin” means a resin containing a fluorine atom in its molecule, and includes a polymer having a structural unit containing a fluorine atom.
  • the content of other resins may be 0, preferably 20 parts by mass or less, with respect to 100 parts by mass of the liquid crystal polyester powder.
  • Other resins are preferably soluble in the medium.
  • the liquid crystalline polyester composition of the embodiment can be obtained by mixing the medium, the liquid crystalline polyester powder, and other optional components all at once or in an appropriate order.
  • a liquid crystal comprising a step of mixing a liquid crystalline polyester powder containing a liquid crystalline polyester having a molar ratio of acyl group terminal/hydroxy group terminal of 10 or less as analyzed by 1 H-NMR, and a medium.
  • a method for making a polyester composition is provided.
  • a method for producing a liquid crystalline polyester film of an embodiment includes applying a liquid crystalline polyester composition according to an embodiment onto a first support, followed by heat treatment to obtain a liquid crystalline polyester film containing the liquid crystalline polyester.
  • liquid crystal polyester composition those explained in the above ⁇ liquid crystal polyester composition>> can be exemplified.
  • the manufacturing method may include the following steps.
  • a step of applying the liquid crystal polyester composition according to the embodiment onto a first support to form a precursor of a liquid crystal polyester film on the first support (coating step).
  • a step of heat-treating the precursor of the liquid crystal polyester film to obtain a liquid crystal polyester film heat treatment step).
  • a step of removing the medium from the coated liquid crystal polyester composition may contain. That is, in the method for producing a liquid crystal polyester film of the embodiment, the liquid crystal polyester composition of the embodiment is applied onto a first support, the medium is removed from the applied liquid crystal polyester composition, heat treatment is performed, and the liquid crystal polyester is It may include obtaining a liquid crystal polyester film containing.
  • the heat treatment preferably includes performing a polymerization reaction (solid phase polymerization) of the liquid crystalline polyester contained in the liquid crystalline polyester film precursor.
  • a polymerization reaction solid phase polymerization
  • the liquid crystalline polyester powder is melted to form a film, and the liquid crystalline polyester is polymerized to a desired molecular weight by performing solid phase polymerization of the liquid crystalline polyester.
  • a liquid crystal polyester film can be obtained as a first laminate comprising the first support and the liquid crystal polyester film.
  • the method for producing a liquid crystal polyester film may further include a step (separation step) of separating the first support from the first laminate in which the first support and the liquid crystal polyester film are laminated.
  • a step (separation step) of separating the first support from the first laminate in which the first support and the liquid crystal polyester film are laminated since the liquid crystal polyester film can be suitably used as a film for electronic parts even when it is formed on the first support as the first laminate, the separation step is an essential step in the manufacturing process of the liquid crystal polyester film. isn't it.
  • FIG. 1 is a schematic diagram showing an example of the manufacturing process of the liquid crystal polyester film, the first laminate, and the second laminate of the embodiment.
  • the liquid crystal polyester composition 30 is applied onto the first support 12 (FIG. 1A coating step).
  • Liquid crystalline polyester composition 30 includes liquid crystalline polyester powder 1 and medium 3 .
  • Application of the liquid crystalline polyester composition onto the first support can be carried out by a method such as a roller coating method, a dip coating method, a spray coating method, a spinner coating method, a curtain coating method, a slot coating method, or a screen printing method.
  • a method capable of coating the first support with a smooth surface and uniformity can be appropriately selected.
  • the liquid crystal polyester composition may be stirred before application.
  • the first support 12 preferably has a plate-like, sheet-like, or film-like shape, and examples thereof include a glass plate, a resin film, and a metal foil.
  • a resin film or a metal foil is preferable, and a copper foil is particularly preferable because of its excellent heat resistance, easy application of the liquid crystalline polyester composition, and easy removal from the liquid crystalline polyester film.
  • resin films include polyimide (PI) films.
  • PI polyimide
  • the thickness of the resin film is preferably 25 ⁇ m or more and 75 ⁇ m or less, more preferably 50 ⁇ m or more and 75 ⁇ m or less.
  • the thickness of the metal foil is preferably 3 ⁇ m or more and 75 ⁇ m or less, more preferably 5 ⁇ m or more and 30 ⁇ m or less, and still more preferably 10 ⁇ m or more and 25 ⁇ m or less.
  • the medium 3 is removed from the liquid crystalline polyester composition 30 applied on the first support 12 (FIG. 1B drying step) to obtain a liquid crystalline polyester film precursor 40 to be heat-treated.
  • the medium 3 does not have to be completely removed from the liquid crystal polyester composition, and a part of the medium contained in the liquid crystal polyester composition may be removed, or the entire medium may be removed.
  • the ratio of the medium contained in the liquid crystal polyester film precursor 40 is preferably 50% by mass or less, more preferably 3% by mass or more and 12% by mass or less, relative to the total mass of the liquid crystal polyester film precursor. More preferably, it is 5% by mass or more and 10% by mass or less.
  • the content of the medium in the liquid crystalline polyester film precursor is at least the above lower limit, the risk of lowering the thermal conductivity of the liquid crystalline polyester film is reduced.
  • the content of the medium in the liquid crystal polyester film precursor is equal to or less than the above upper limit value, the risk of deterioration of the appearance of the liquid crystal polyester film due to foaming or the like during heat treatment is reduced.
  • the removal of the medium is preferably carried out by evaporating the medium, and examples of such methods include heating, pressure reduction, and ventilation, which may be combined. Further, the removal of the medium may be performed by a continuous method or by a single substrate method. From the viewpoint of productivity and operability, the removal of the medium is preferably carried out by continuous heating, and more preferably carried out by continuous ventilation while heating.
  • the temperature for removing the medium is preferably lower than the endothermic peak temperature detected by differential scanning calorimetry of the liquid crystalline polyester powder, for example, 40° C. or higher and 200° C. or lower, preferably 40° C. or higher and 100° C. or lower.
  • the medium removal time is, for example, 0.2 hours or more and 12 hours or less, preferably 0.5 hours or more and 8 hours or less.
  • the laminate precursor 22 having the first support 12 and the liquid crystal polyester film precursor 40 obtained in this way is heat-treated, and the first support 12 and the liquid crystal polyester film 10 (the liquid crystal polyester film precursor 40 is heat-treated A first laminate 20 having a film) is obtained (FIG. 1C heat treatment step). At this time, a liquid crystal polyester film 10 formed on the first support is obtained.
  • the heat treatment conditions include, for example, heating from the boiling point of the medium of ⁇ 50° C. to the heat treatment temperature, followed by heat treatment at a temperature equal to or higher than the temperature of the endothermic peak detected by differential scanning calorimetry of the liquid crystalline polyester.
  • the polymerization reaction of the liquid crystalline polyester may progress due to heating, but by increasing the temperature rising rate until the heat treatment temperature is reached, the increase in the molecular weight of the liquid crystalline polyester in the liquid crystalline polyester powder can be suppressed to some extent. can be obtained, the liquid crystalline polyester powder melts well, and a high-quality film can be easily obtained.
  • the heating rate from the boiling point of the solvent of ⁇ 50° C. to the heat treatment temperature is preferably 3° C./min or more, more preferably 5° C./min or more.
  • the heat treatment temperature is preferably at least the endothermic peak temperature detected by differential scanning calorimetry of the liquid crystalline polyester, more preferably higher than the endothermic peak temperature detected by differential scanning calorimetry of the liquid crystalline polyester. It is more preferable to set the temperature of the endothermic peak detected by calorimetry plus 5° C. or higher as the heat treatment temperature.
  • the heat treatment temperature may be appropriately determined depending on the type of the liquid crystal polyester, but as an example, the temperature is preferably 230° C. or higher and 400° C. or lower, more preferably 250° C. or higher and 380° C. or lower, and even more preferably 290° C. or higher and 330° C. or lower.
  • the liquid crystalline polyester powder melts well and a high quality liquid crystalline polyester film can be formed.
  • the melting of the liquid crystal polyester powder can be confirmed by the fact that the liquid crystal polyester film precursor 40 has become transparent.
  • the boiling point of the medium refers to the boiling point at the pressure when the temperature is raised.
  • the heating rate should be set within the range from when the boiling point of ⁇ 50° C. of the medium is reached until the heat treatment temperature is reached. Just do it.
  • the time required to reach the boiling point of the medium at ⁇ 50° C. is arbitrary. Also, the time after reaching the heat treatment temperature may be considered as the heat treatment time.
  • the heat treatment time may be, for example, 0.5 hours or more, 1 hour or more and 24 hours or less, or 2 hours or more and 12 hours or less.
  • the heat treatment may be performed in a continuous manner or in a single-wafer manner. It is more preferable to carry out in a continuous mode.
  • the liquid crystalline polyester powder contained in the liquid crystalline polyester composition used has a molar ratio of acyl group terminal/hydroxy group terminal analyzed by 1 H-NMR of 10 or less.
  • a liquid crystal polyester film having excellent isotropy can be produced.
  • a thin film of the liquid crystalline polyester is produced by forming the melted liquid crystalline polyester into a film. This method is very different from the conventional film manufacturing method in that the powder is melted after being placed.
  • the liquid crystalline polyester powder is thinly placed on the support in advance and formed into a film. is not added, it is possible to produce a liquid crystalline polyester film excellent in isotropy.
  • liquid crystalline polyester composition since there is no restriction that the liquid crystalline polyester powder should be soluble in the medium, a liquid crystalline polyester having excellent dielectric properties can be used, and a liquid crystalline polyester having excellent dielectric properties and isotropy can be used. Films can be easily obtained.
  • the liquid crystalline polyester composition according to the embodiment is applied onto the first support and heat-treated to form a liquid crystalline polyester film containing the liquid crystalline polyester. obtaining a first laminate comprising a support and said liquid crystalline polyester film.
  • the manufacturing method may include the following steps.
  • the liquid crystal polyester composition according to the embodiment is applied on the first support, and then the applied liquid crystal polyester composition A step of removing the medium from the object (drying step) may be included. That is, in the method for producing the first laminate of the embodiment, the liquid crystalline polyester composition according to the embodiment is applied onto the first support, the medium is removed from the applied liquid crystalline polyester composition, heat treatment is performed, The method may include obtaining a first laminate comprising the first support and the liquid crystal polyester film by forming a liquid crystal polyester film containing the liquid crystal polyester.
  • FIGS. 1A to 1C are schematic diagrams showing an example of the manufacturing process of the first laminate of the embodiment.
  • the method for producing the first laminate exemplified in FIGS. 1A to 1C is as explained in the above ⁇ Method for producing liquid crystal polyester film>>, so the explanation is omitted.
  • the method for manufacturing the first laminate of the embodiment it is possible to manufacture the first laminate having the liquid crystal polyester film of the embodiment.
  • the reaction of the solid phase polymerization of the liquid crystalline polyester in the heat treatment step is difficult to progress, and the temperature rise of the endothermic peak detected by the differential scanning calorimetry of the liquid crystalline polyester is suppressed. It is possible to provide a first laminate comprising a liquid crystalline polyester film. As a result, good adhesion can be achieved between the liquid crystal polyester film and the second support, which are laminated together through the subsequent lamination step.
  • the first support of the liquid crystal polyester film of the first laminate is laminated. Laminating a second support on the side opposite the side to obtain a second laminate.
  • the manufacturing method may include the following steps.
  • a step of obtaining a second laminate by laminating a second support on the surface of the liquid crystal polyester film opposite to the side on which the first support is laminated laminated.
  • a second support is laminated on the surface of the liquid crystal polyester film opposite to the side on which the first support is laminated, the liquid crystal polyester film is heated to melt the liquid crystal polyester, and the liquid crystal polyester is melted. It is preferable to obtain a second laminate by laminating the film and the second support.
  • a method of heating the liquid crystalline polyester film to melt the liquid crystalline polyester and laminating it on the second support there is a lamination method. Examples of the lamination method include a method of thermocompression bonding using a roller, a method of thermocompression bonding using a press device, and a vacuum lamination method of thermocompression bonding using a vacuum heat press device.
  • the heating temperature (setting temperature of the heating device) of the liquid crystal polyester film may be, for example, 300 to 350°C, 310 to 340°C, or 320 to 330°C.
  • the liquid crystalline polyester composition according to claim 11 is applied on the first support and heat-treated to form a liquid crystalline polyester film containing the liquid crystalline polyester. obtaining a first laminate comprising the first support and the liquid crystal polyester film; A second support is laminated on the surface of the liquid crystal polyester film of the first laminate opposite to the side on which the first support is laminated, and the liquid crystal polyester film is heated to obtain a liquid crystal polyester film. and obtaining a second laminate by bonding together the second support and the second support.
  • FIG. 1A to 1D are schematic diagrams showing an example of the manufacturing process of the second laminate of the embodiment.
  • the steps up to the heat treatment step in FIG. 1C are as explained in the above ⁇ Method for producing liquid crystal polyester film>>, so the explanation is omitted.
  • the first support 12 and the liquid crystal polyester film 10 are applied to the first laminate 20 having the liquid crystal polyester film 10 opposite to the side where the first support 12 is laminated.
  • a second support 13 can be laminated (FIG. 1D lamination step).
  • a second support 13 is laminated on the surface of the liquid crystal polyester film 10 opposite to the side on which the first support 12 is laminated, and the liquid crystal polyester film 10 is heated to melt the liquid crystal polyester, The liquid crystal polyester film 10 and the second support 13 are bonded together.
  • a second laminate 21 is obtained in which the first support 12, the liquid crystal polyester film 10, and the second support 13 are laminated in this order.
  • the second support 13 those exemplified above as the first support can be employed, and examples thereof include a glass plate, a resin film, and a metal foil, with copper foil being preferred.
  • the second laminate it is preferable to laminate a copper foil, a liquid crystal polyester film, and a copper foil in this order.
  • the method for manufacturing the second laminate of the embodiment it is possible to manufacture the second laminate having the liquid crystal polyester film of the embodiment.
  • the reaction of the solid phase polymerization of the liquid crystalline polyester in the heat treatment step is difficult to proceed, and the temperature rise at the endothermic peak of the liquid crystalline polyester is difficult to occur.
  • FIG. 2 is a schematic diagram showing the configuration of the liquid crystal polyester film 10 of the embodiment.
  • the liquid crystal polyester film of the embodiment contains liquid crystal polyester, has a dielectric constant of 3 or less at a frequency of 1 GHz, and has a dielectric loss tangent of 0.005 or less at a frequency of 1 GHz.
  • the value of the degree of molecular orientation (MOR) measured with a microwave orienter is in the range of 1 to 1.3.
  • a film that satisfies the above requirements has suitable quality as a film for electronic parts.
  • the quality criteria are the dielectric constant, dielectric loss tangent, and degree of molecular orientation (isotropy of the film), as well as the thickness and appearance (whether or not holes or through holes are generated). be done.
  • the dielectric constant and dielectric loss tangent values of the film can be controlled by the type of liquid crystalline polyester.
  • the degree of isotropy of the film can be controlled by the method of manufacturing the film.
  • the film of the embodiment has a dielectric constant of 3 or less at a frequency of 1 GHz, preferably 2.9 or less, more preferably 2.8 or less, and even more preferably 2.7 or less. 2.6 or less is particularly preferable.
  • the dielectric constant of the film may be 2.3 or more, 2.4 or more, or 2.5 or more. Examples of the numerical range of the value of the dielectric constant of the film are 2.3 or more and 3 or less, 2.4 or more and 2.9 or less, or 2.5 or more and 2.5 or less. It may be 8 or less, 2.5 or more and 2.7 or less, or 2.5 or more and 2.6 or less.
  • the film of the embodiment has a dielectric loss tangent at a frequency of 1 GHz of 0.005 or less, preferably 0.004 or less, more preferably 0.003 or less, and even more preferably 0.002 or less. , 0.001 or less.
  • the dielectric loss tangent of the liquid crystal polyester film may be 0.0003 or more, 0.0005 or more, or 0.0007 or more. Examples of the numerical range of the value of the dielectric loss tangent of the film may be 0.0003 or more and 0.005 or less, 0.0005 or more and 0.004 or less, or 0.0007 or more and 0.0005 or more and 0.004 or less.
  • the dielectric constant and dielectric loss tangent of the film at a frequency of 1 GHz can be measured under the following conditions by a capacitance method using an impedance analyzer.
  • a tablet having a diameter of 1 cm and a thickness of 0.5 cm is produced by melting the film at 350° C. using a flow tester and solidifying it by cooling.
  • the relative permittivity and dielectric loss tangent at 1 GHz of the obtained tablets are measured under the following conditions.
  • ⁇ Measurement method Capacitance method ⁇ Electrode model: 16453A ⁇ Measurement environment: 23°C, 50% RH ⁇ Applied voltage: 1V
  • the value of the degree of molecular orientation (MOR) measured with a microwave orienter is in the range of 1 to 1.3, preferably in the range of 1 to 1.1, and 1 to 1.08. is preferably in the range of , more preferably in the range of 1 to 1.06, even more preferably in the range of 1 to 1.04.
  • the degree of molecular orientation is measured by a microwave molecular orientation meter (eg MOA-5012A manufactured by Oji Keisoku Kiki Co., Ltd.).
  • a microwave molecular orientation meter is a device that utilizes the fact that the transmission intensity of microwaves differs between the orientation direction and the perpendicular direction, depending on the orientation of molecules. Specifically, while rotating the sample, a microwave having a constant frequency (12 GHz is used) is irradiated, and the intensity of the transmitted microwave that changes depending on the orientation of the molecules is measured. Let the ratio be MOR.
  • the interaction between a microwave electric field of constant frequency and a molecular dipole is related to the inner product of their vectors. Due to the anisotropy of the dielectric constant of the sample, the intensity of the microwave changes with the angle at which the sample is placed, so it is possible to know the degree of orientation.
  • the film of the embodiment preferably has a coefficient of linear expansion of 85 ppm/° C. or less, more preferably 50 ppm/° C. or less, in a temperature range of 50 to 100° C. at a temperature increase rate of 5° C./min. It is preferably 40 ppm/°C or less, more preferably 30 ppm/°C or less.
  • the lower limit of the coefficient of linear expansion is not particularly limited, it is, for example, 0 ppm/°C or more.
  • the coefficient of linear expansion of the film of the embodiment is preferably close to that value.
  • the linear expansion coefficient of the film of the embodiment is preferably 0 ppm/° C. or more and 50 ppm/° C. or less, more preferably 10 ppm/° C. or more and 40 ppm/° C. or less, and 20 ppm/° C. or more and 30 ppm/° C. or less. It is even more preferable to have If the coefficient of linear expansion differs depending on the direction or location of the film, the higher value shall be adopted as the coefficient of linear expansion of the film.
  • the coefficient of linear expansion of the film can be measured using a thermomechanical analyzer (for example, model: TMA8310 manufactured by Rigaku Corporation). Films of embodiments satisfying the above numerical ranges have a low coefficient of linear expansion and high dimensional stability.
  • a film with excellent isotropy has a small difference in coefficient of linear expansion depending on the measurement direction.
  • the difference between the linear expansion coefficient of MD and the linear expansion coefficient of TD is 2 ppm / °C or less, and more preferably 1 ppm/°C or less.
  • MD is the coating direction of the dispersion.
  • the directions should be set so that the difference in coefficient of linear expansion in each direction is maximized.
  • the film of the embodiment that satisfies the above numerical range has excellent linear expansion isotropy and high dimensional stability in the longitudinal and transverse directions.
  • the film of the embodiment preferably has no holes or through-holes as an appearance suitable as a film for electronic parts. If there are holes or through-holes, there is a possibility that the plating solution will seep into the holes or through-holes during plating.
  • the liquid crystal polyester film manufactured using the liquid crystal polyester powder according to the embodiment as a raw material has a thickness suitable for use as a film for electronic parts and is of high quality in which the generation of holes or through holes is suppressed.
  • the thickness of the film of the embodiment is not particularly limited. It is more preferably ⁇ 33 ⁇ m, particularly preferably 15 to 20 ⁇ m.
  • the “thickness” is the average value obtained by measuring the thickness at 10 randomly selected points according to JIS (K7130-1992).
  • a film with excellent dielectric properties can be obtained by selecting a raw material with excellent dielectric properties from any liquid crystalline polyester.
  • the content of the liquid crystalline polyester may be 50 to 100% by mass or 80 to 95% by mass with respect to 100% by mass of the total mass of the film of the embodiment.
  • the liquid crystalline polyester of the above embodiment may be included in more than 70% by mass and 100% by mass or less, and 80 to 100% by mass.
  • the liquid crystalline polyester include those exemplified in the liquid crystalline polyester powder according to the above-described embodiment, for example, those having a structural unit represented by the above formula (1), and those having a structural unit represented by the above formula (1) , a structural unit represented by the above formula (2), and a liquid crystalline polyester having a structural unit represented by the above formula (3).
  • At least one copolymer selected from the group consisting of 1) to 34) mentioned above as specific examples of preferred liquid crystalline polyesters can also be exemplified.
  • the film of the embodiment contains a liquid crystal polyester, has a dielectric constant of 3 or less at a frequency of 1 GHz, a dielectric loss tangent of 0.005 or less at a frequency of 1 GHz, and a degree of molecular orientation (MOR) measured with a microwave orientation meter.
  • a film having a value in the range of 1 to 1.3 (however, the content of the liquid crystalline polyester soluble in the aprotic solvent is less than 5% by mass with respect to the total 100% by mass of the liquid crystalline polyester) good.
  • the film of the embodiment contains a liquid crystal polyester, has a dielectric constant of 3 or less at a frequency of 1 GHz, a dielectric loss tangent of 0.005 or less at a frequency of 1 GHz, and a degree of molecular orientation (MOR) measured with a microwave orientation meter.
  • a film having a value in the range of 1 to 1.3 (however, the content of the liquid crystalline polyester soluble in the medium related to the liquid crystalline polyester composition of the embodiment is less than 5% by mass with respect to the total 100% by mass of the liquid crystalline polyester is).
  • the film of the embodiment contains a liquid crystal polyester, has a dielectric constant of 3 or less at a frequency of 1 GHz, a dielectric loss tangent of 0.005 or less at a frequency of 1 GHz, and a degree of molecular orientation (MOR) measured with a microwave orientation meter. It may be a film with a value in the range of 1 to 1.3, except for those containing liquid crystalline polyesters soluble in aprotic solvents.
  • the film of the embodiment contains a liquid crystal polyester, has a dielectric constant of 3 or less at a frequency of 1 GHz, a dielectric loss tangent of 0.005 or less at a frequency of 1 GHz, and a degree of molecular orientation (MOR) measured with a microwave orientation meter. It may be a film having a value in the range of 1 to 1.3 (excluding those containing a liquid crystalline polyester soluble in the medium related to the liquid crystalline polyester composition of the embodiment).
  • examples of the liquid crystalline polyester soluble in an aprotic solvent or medium include those exemplified in the liquid crystalline polyester powder according to the embodiment.
  • the method for producing the film of the embodiment is not particularly limited, the film of the embodiment can be produced by the above ⁇ method for producing a liquid crystal polyester film>>.
  • the film of the embodiment can be suitably used as a film for electronic parts such as printed wiring boards.
  • the films of the embodiments can be provided as substrates (e.g., flexible substrates), laminates (e.g., flexible copper-clad laminates), printed substrates, printed wiring boards, printed circuit boards, etc., which comprise the film as an insulating material. .
  • a first laminate of an embodiment includes a first metal layer and a film according to an embodiment laminated on the first metal layer.
  • FIG. 3 is a schematic diagram showing the configuration of the first laminate 23 of one embodiment of the present invention.
  • the first laminate 23 includes a first metal layer 14 and a liquid crystal polyester film 10 laminated on the first metal layer 14 .
  • the liquid crystal polyester film included in the laminate includes those exemplified above, and the description thereof is omitted.
  • the first metal layer included in the laminate those exemplified as the first support in the above ⁇ Method for producing liquid crystal polyester film>> and ⁇ Method for producing first laminate>> can be mentioned, and a metal foil is preferable. From the viewpoint of conductivity and cost, copper is preferable as the metal constituting the first metal layer, and copper foil is preferable as the metal foil.
  • the thickness of the first laminate of the embodiment is not particularly limited, it is preferably 5 to 130 ⁇ m, more preferably 10 to 70 ⁇ m, even more preferably 15 to 60 ⁇ m.
  • the method for manufacturing the first laminate of the embodiment is not particularly limited, the first laminate of the embodiment can be manufactured by the above ⁇ method for manufacturing the first laminate>>.
  • the first laminate of the embodiment can be suitably used as laminates for electronic components such as laminates (for example, flexible copper-clad laminates).
  • the second laminate of the embodiment includes a first metal layer, a liquid crystal polyester film laminated on the first metal layer, and a surface of the liquid crystal polyester film opposite to the side where the first metal layer is laminated and a second metal layer laminated thereon.
  • FIG. 4 is a schematic diagram showing the configuration of the second laminate 24 of one embodiment of the present invention.
  • the second laminate 24 includes the first metal layer 14, the liquid crystal polyester film 10 laminated on the first metal layer 14, and the liquid crystal polyester film 10 on the side opposite to the side on which the first metal layer 14 is laminated. and a second metal layer 15 laminated on the surface.
  • the liquid crystal polyester film included in the second laminate includes those exemplified in the above ⁇ Method for producing liquid crystal polyester film>>, and description thereof is omitted.
  • the first metal layer and the second metal layer included in the second laminate those exemplified as the first support in the above ⁇ Method for producing liquid crystal polyester film>> can be mentioned, and metal foil is preferable. From the viewpoint of conductivity and cost, copper is preferable as the metal forming the first metal layer and the second metal layer, and copper foil is preferable as the metal foil of the first metal layer and the second metal layer.
  • the thickness of the second laminate of the embodiment is not particularly limited, it is preferably 5 to 130 ⁇ m, more preferably 10 to 70 ⁇ m, and even more preferably 15 to 60 ⁇ m.
  • the manufacturing method of the second laminate of the embodiment is not particularly limited, the second laminate of the embodiment can be produced by the above ⁇ second laminate manufacturing method>>.
  • the second laminate of the embodiment can be suitably used as a laminate for electronic parts, such as a laminate (for example, a double-sided flexible copper-clad laminate).
  • the acetic anhydride ratio represented by the ratio of the equivalent of acetic anhydride to 1 equivalent of the phenolic hydroxyl group of the monomer is 0.93.
  • the temperature was raised from 145° C. to 310° C. over 3 hours and 30 minutes while distilling off the by-produced acetic acid and unreacted acetic anhydride, and the temperature was maintained at 310° C. for 120 minutes. to obtain a solid liquid crystalline polyester (A1).
  • the flow initiation temperature of this liquid crystalline polyester (A1) was 221.0°C.
  • the resulting liquid crystalline polyester was pulverized with a 2 mm punching metal screen (pulverizing screen) and a pulverizer manufactured by Orient (model: VM-16, number of revolutions: 1500 rpm) to obtain the liquid crystalline polyester powder of Example 1. Obtained.
  • Example 2 1034.99 g (5.5 mol) of 2-hydroxy-6-naphthoic acid and 378 g of 2,6-naphthalenedicarboxylic acid were placed in a reactor equipped with a stirrer, torque meter, nitrogen gas inlet tube, thermometer and reflux condenser. .33 g (1.75 mol), 83.07 g (0.5 mol) of terephthalic acid, 255.2 g (2.318 mol) of hydroquinone, 982.90 g (9.63 mol) of acetic anhydride, and 1-methyl as catalyst 0.17 g of imidazole was added. After replacing the gas in the reactor with nitrogen gas, the temperature was raised from room temperature to 145° C.
  • the acetic anhydride ratio represented by the ratio of the equivalent of acetic anhydride to 1 equivalent of the phenolic hydroxyl group of the monomer is 0.95.
  • the temperature was raised from 145° C. to 310° C. over 3 hours and 30 minutes while distilling off the by-produced acetic acid and unreacted acetic anhydride, and the temperature was maintained at 310° C. for 120 minutes.
  • the liquid crystal polyester (A2) was obtained as a solid by cooling to solidification.
  • the flow initiation temperature of this liquid crystalline polyester (A2) was 222.7°C.
  • the obtained liquid crystalline polyester was pulverized with a 2 mm punching metal screen (pulverizing screen) and a pulverizer manufactured by Orient (model: VM-16, number of revolutions: 1500 rpm) to obtain the liquid crystalline polyester powder of Example 2. Obtained.
  • Example 3 1034.99 g (5.5 mol) of 2-hydroxy-6-naphthoic acid and 378 g of 2,6-naphthalenedicarboxylic acid were placed in a reactor equipped with a stirrer, torque meter, nitrogen gas inlet tube, thermometer and reflux condenser. .33 g (1.75 mol), 83.07 g (0.5 mol) of terephthalic acid, 255.2 g (2.318 mol) of hydroquinone, 1003.60 g (9.83 mol) of acetic anhydride, and 1-methyl as catalyst 0.17 g of imidazole was added. After replacing the gas in the reactor with nitrogen gas, the temperature was raised from room temperature to 145° C.
  • the acetic anhydride ratio represented by the ratio of the equivalent of acetic anhydride to 1 equivalent of phenolic hydroxyl group of the monomer is 0.97.
  • the temperature was raised from 145° C. to 310° C. over 3 hours and 30 minutes while distilling off the by-produced acetic acid and unreacted acetic anhydride, and the temperature was maintained at 310° C. for 120 minutes.
  • the liquid crystal polyester (A3) was obtained as a solid by cooling to solidification.
  • the flow initiation temperature of this liquid crystalline polyester (A3) was 230.5°C.
  • the resulting liquid crystalline polyester was pulverized with a 2 mm punching metal screen (pulverizing screen) and a pulverizer manufactured by Orient (model: VM-16, number of revolutions: 1500 rpm) to obtain the liquid crystalline polyester powder of Example 3. Obtained.
  • Example 4 1034.99 g (5.5 mol) of 2-hydroxy-6-naphthoic acid and 378 g of 2,6-naphthalenedicarboxylic acid were placed in a reactor equipped with a stirrer, torque meter, nitrogen gas inlet tube, thermometer and reflux condenser. .33 g (1.75 mol), 83.07 g (0.5 mol) of terephthalic acid, 255.2 g (2.318 mol) of hydroquinone, 1014.00 g (9.94 mol) of acetic anhydride, and 1-methyl as catalyst 0.17 g of imidazole was added. After replacing the gas in the reactor with nitrogen gas, the temperature was raised from room temperature to 145° C.
  • the acetic anhydride ratio represented by the ratio of the equivalent of acetic anhydride to 1 equivalent of the phenolic hydroxyl group of the monomer is 0.98.
  • the temperature was raised from 145° C. to 310° C. over 3 hours and 30 minutes while distilling off the by-produced acetic acid and unreacted acetic anhydride, held at 310° C. for 120 minutes, discharged to a SUS tray, and room temperature.
  • the liquid crystal polyester (A4) in a solid state was obtained by cooling to solidification.
  • the flow initiation temperature of this liquid crystalline polyester (A4) was 235.2°C.
  • the resulting liquid crystalline polyester was pulverized with a 2 mm punching metal screen (pulverizing screen) and a pulverizer manufactured by Orient (model: VM-16, number of revolutions: 1500 rpm) to obtain the liquid crystalline polyester powder of Example 4. Obtained.
  • Example 5 1034.99 g (5.5 mol) of 2-hydroxy-6-naphthoic acid and 378 g of 2,6-naphthalenedicarboxylic acid were placed in a reactor equipped with a stirrer, torque meter, nitrogen gas inlet tube, thermometer and reflux condenser. .33 g (1.75 mol), 83.07 g (0.5 mol) of terephthalic acid, 255.2 g (2.318 mol) of hydroquinone, 1024.30 g (10.03 mol) of acetic anhydride, and 1-methyl as catalyst 0.17 g of imidazole was added. After replacing the gas in the reactor with nitrogen gas, the temperature was raised from room temperature to 145° C.
  • the acetic anhydride ratio represented by the ratio of the equivalent of acetic anhydride to 1 equivalent of phenolic hydroxyl group of the monomer is 0.99.
  • the temperature was raised from 145° C. to 310° C. over 3 hours and 30 minutes while distilling off the by-produced acetic acid and unreacted acetic anhydride, and the temperature was maintained at 310° C. for 120 minutes. to obtain a solid liquid crystalline polyester (A5).
  • the flow initiation temperature of this liquid crystalline polyester (A5) was 231.8°C.
  • the resulting liquid crystalline polyester was pulverized with a 2 mm punching metal screen (pulverizing screen) and a pulverizer manufactured by Orient (model: VM-16, number of revolutions: 1500 rpm) to obtain the liquid crystalline polyester powder of Example 5. Obtained.
  • Example 6 1034.99 g (5.5 mol) of 2-hydroxy-6-naphthoic acid and 378 g of 2,6-naphthalenedicarboxylic acid were placed in a reactor equipped with a stirrer, torque meter, nitrogen gas inlet tube, thermometer and reflux condenser. .33 g (1.75 mol), 83.07 g (0.5 mol) of terephthalic acid, 255.2 g (2.318 mol) of hydroquinone, 1033.60 g (10.13 mol) of acetic anhydride, and 1-methyl as catalyst 0.17 g of imidazole was added. After replacing the gas in the reactor with nitrogen gas, the temperature was raised from room temperature to 145° C.
  • the acetic anhydride ratio represented by the ratio of the equivalent of acetic anhydride to 1 equivalent of the phenolic hydroxyl group of the monomer is 0.999.
  • the temperature was raised from 145° C. to 310° C. over 3 hours and 30 minutes while distilling off the by-produced acetic acid and unreacted acetic anhydride, held at 310° C. for 120 minutes, discharged to a SUS tray, and room temperature.
  • the liquid crystal polyester (A6) was obtained as a solid by cooling to solidification.
  • the flow initiation temperature of this liquid crystalline polyester (A6) was 235.1°C.
  • the resulting liquid crystalline polyester was pulverized with a 2 mm punching metal screen (pulverizing screen) and a pulverizer manufactured by Orient (model: VM-16, number of revolutions: 1500 rpm) to obtain the liquid crystalline polyester powder of Example 6. Obtained.
  • the acetic anhydride ratio represented by the ratio of the equivalent of acetic anhydride to 1 equivalent of the phenolic hydroxyl group of the monomer is 1.05.
  • the temperature was raised from 145° C. to 310° C. over 3 hours and 30 minutes while distilling off the by-produced acetic acid and unreacted acetic anhydride, and the temperature was maintained at 310° C. for 120 minutes.
  • the liquid crystal polyester (A7) was obtained as a solid by cooling to solidification.
  • the flow initiation temperature of this liquid crystalline polyester (A7) was 244.1°C.
  • the resulting liquid crystalline polyester was pulverized with a 2 mm punching metal screen (pulverizing screen) and a pulverizer manufactured by Orient (model: VM-16, rotation speed: 1500 rpm) to obtain a liquid crystalline polyester powder of Comparative Example 1. Obtained.
  • the acetic anhydride ratio represented by the ratio of the equivalent of acetic anhydride to 1 equivalent of the phenolic hydroxyl group of the monomer is 1.10.
  • the temperature was raised from 145° C. to 310° C. over 3 hours and 30 minutes while distilling off the by-produced acetic acid and unreacted acetic anhydride, and the temperature was maintained at 310° C. for 120 minutes.
  • the liquid crystal polyester (A8) was obtained as a solid by cooling to solidification.
  • the flow initiation temperature of this liquid crystalline polyester (A8) was 251.7°C.
  • the resulting liquid crystalline polyester was pulverized with a 2 mm punching metal screen (pulverizing screen) and a pulverizer manufactured by Orient (model: VM-16, number of revolutions: 1500 rpm) to obtain a liquid crystalline polyester powder of Comparative Example 2. Obtained.
  • the acetic anhydride ratio represented by the ratio of the equivalent of acetic anhydride to 1 equivalent of the phenolic hydroxyl group of the monomer is 1.15.
  • the temperature was raised from 145° C. to 310° C. over 3 hours and 30 minutes while distilling off the by-produced acetic acid and unreacted acetic anhydride, and the temperature was maintained at 310° C. for 120 minutes. to obtain a solid liquid crystalline polyester (A9).
  • the flow initiation temperature of this liquid crystalline polyester (A9) was 261.6°C.
  • the resulting liquid crystalline polyester was pulverized with a 2 mm punching metal screen (pulverizing screen) and a pulverizer manufactured by Orient (model: VM-16, rotation speed: 1500 rpm) to obtain a liquid crystalline polyester powder of Comparative Example 3. Obtained.
  • Table 1 shows the measurement results for each of the above items.
  • the ratio of the equivalent of acetic anhydride to 1 equivalent of the phenolic hydroxyl group of the raw material monomer is set to less than 1 to suppress the acetylation of the raw material monomer.
  • the molar ratio of the terminal acetyl group/terminal hydroxyl group of the liquid crystalline polyester could be effectively suppressed.
  • the liquid crystalline polyester powders of Examples 1 to 6 containing a liquid crystalline polyester having a molar ratio of acetyl group terminal/hydroxy group terminal (molar ratio of acyl group terminal/hydroxy group terminal) of 10 or less are Comparative Examples 1 to 3 that do not satisfy the conditions.
  • the temperature change (high temperature shift) of the endothermic peak detected by differential scanning calorimetry after solid phase polymerization was suppressed compared to the liquid crystalline polyester powder.
  • the fact that the endothermic peak of the liquid crystalline polyester is difficult to shift to a high temperature reflects the tendency of the melting temperature of the liquid crystalline polyester to be difficult to rise.
  • a liquid crystalline polyester film obtained from a liquid crystalline polyester powder having such properties suppresses the temperature rise at the endothermic peak of the liquid crystalline polyester. Even in this case, the liquid crystalline polyester is easily melted at a low temperature, and the adhesion strength between the liquid crystalline polyester film and the copper foil after lamination is easily increased.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)

Abstract

1H-NMRにより分析される、アシル基末端/水酸基末端のモル比が、10以下である液晶ポリエステルを含む、液晶ポリエステル粉末。

Description

液晶ポリエステル粉末及びその製造方法、並びに、液晶ポリエステル組成物、液晶ポリエステルフィルムの製造方法、及び積層体の製造方法
 本発明は、液晶ポリエステル粉末及びその製造方法、並びに、液晶ポリエステル組成物、液晶ポリエステルフィルムの製造方法、及び積層体の製造方法に関する。
 本願は、2021年8月17日に、日本に出願された特願2021-132631号に基づき優先権を主張し、その内容をここに援用する。
 液晶ポリエステルフィルムは、優れた高周波特性を有し且つ低吸水性であることから、エレクトロニクス基板材料として注目されている。
 例えば特許文献1には、これまでの発明者らの検討により、媒体と、液晶ポリエステルを含む液晶ポリエステル粉末と、を含有する液晶ポリエステル組成物を支持体上に塗布し、熱処理することで、電子部品用フィルムとして好適な品質を有する液晶ポリエステルフィルムを製造可能であることが示されている。
国際公開第2020/166651号
 液晶ポリエステルフィルムは、それを絶縁材として備える積層体(例えば、銅張積層板:Copper Clad Laminate,CCL、フレキシブル銅張積層板:Flexible Copper Clad Laminate,FCCL、両面に銅箔を有する両面CCLなど)として提供することが可能である。
 図5は、特許文献1に示される液晶ポリエステルフィルムの製造方法の一例を示す模式図と、次いで積層体を製造する場合の積層体の製造方法の一例を示す模式図である。媒体と液晶ポリエステル粉末とを含む液晶ポリエステル組成物30を第1金属層14上に塗布し、液晶ポリエステル組成物30を乾燥させ、熱処理することで、第1金属層14上に液晶ポリエステルフィルム10が得られる。ここでの熱処理において、液晶ポリエステル粉末に含有される液晶ポリエステルの固相重合を進行させることができる。
 次いで、ラミネート法などにより、上記の第1金属層14と液晶ポリエステルフィルム10と第2金属層15とを積層し、液晶ポリエステルフィルム10を加熱して液晶ポリエステルを溶融させ、液晶ポリエステルフィルム10と第2金属層15とを貼り合わせることができる。
 しかし、例えば、このように貼り合わせを行う場合、貼り合わせた第2金属層と液晶ポリエステルフィルムとの間の接着状態(例えば、密着強度)については、未だ検討の余地がある。
 本発明者らは、ラミネート時の加熱において、液晶ポリエステルフィルムに含まれる液晶ポリエステルの溶融が不十分であることが、液晶ポリエステルフィルムの密着強度を低下させる一因であると考えた。これは、液晶ポリエステルフィルムを得る段階での上記の熱処理時に生じ得る液晶ポリエステルの固相重合が、液晶ポリエステルの示差走査熱量測定で検出される吸熱ピークの温度(液晶ポリエステルが溶融する温度の指標となる温度)を上昇させ、このことがラミネート時の液晶ポリエステルの溶融が不十分となり易い要因であることを見出した。
 本発明は、上記のような問題点を解消するためになされたものであり、固相重合を経ても、示差走査熱量測定で検出される吸熱ピークの温度上昇が生じ難い液晶ポリエステルを含む、液晶ポリエステル粉末の提供を目的とする。
 本発明者らは、上記課題を解決すべく鋭意検討した結果、液晶ポリエステル粉末に含まれる液晶ポリエステルの、アシル基末端/水酸基末端のモル比を特定の数値範囲内とすることで、固相重合を経ても、前記吸熱ピークの温度上昇が生じ難い液晶ポリエステルを含む、液晶ポリエステル粉末が得られることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下の態様を有する。
<1> H-NMRにより分析される、アシル基末端/水酸基末端のモル比が、10以下である液晶ポリエステルを含む、液晶ポリエステル粉末。
<2> 前記アシル基がアセチル基である、前記<1>に記載の液晶ポリエステル粉末。
<3> 前記液晶ポリエステルの流動開始温度が240℃以下である、前記<1>又は<2>に記載の液晶ポリエステル粉末。
<4> 前記液晶ポリエステルの、ポリスチレンを標準物質として測定される重量平均分子量が20000以下である、前記<1>~<3>のいずれか一つに記載の液晶ポリエステル粉末。
<5> 前記液晶ポリエステルの、ポリスチレンを標準物質として測定される数平均分子量が7000以下である、前記<1>~<4>のいずれか一つに記載の液晶ポリエステル粉末。
<6> 前記液晶ポリエステルが、ナフタレン構造を含む構造単位を有する、前記<1>~<5>のいずれか一つに記載の液晶ポリエステル粉末。
<7> 前記ナフタレン構造を含む構造単位の含有量が、前記液晶ポリエステル中の全構造単位の合計量100モル%に対して40モル%以上である、前記<6>に記載の液晶ポリエステル粉末。
<8> 前記液晶ポリエステルが、下記式(1)で表される構造単位、下記式(2)で表される構造単位、及び下記式(3)で表される構造単位を有する、前記<1>~<7>のいずれか一つに記載の液晶ポリエステル粉末。
(1)-O-Ar1-CO-
(2)-CO-Ar2-CO-
(3)-O-Ar3-O-
(Ar1は、2,6-ナフチレン基、1,4-フェニレン基、又は4,4’-ビフェニリレン基を表す。
 Ar2及びAr3は、それぞれ独立に、2,6-ナフチレン基、2,7-ナフチレン基、1,4-フェニレン基、1,3-フェニレン基、又は4,4’-ビフェニリレン基を表す。
 Ar1、Ar2又はAr3で表される前記基にある水素原子は、それぞれ独立に、ハロゲン原子、炭素数1~10のアルキル基、又は炭素数6~20のアリール基で置換されていてもよい。)
<9> 前記<1>~<8>のいずれか一つに記載の液晶ポリエステル粉末の製造方法であって、
 芳香族ヒドロキシカルボン酸及び芳香族ジオールの少なくとも一方と、脂肪酸無水物とをアシル化反応させて、アシル化物を得る工程(i)、並びに、
 前記アシル化物と、芳香族ヒドロキシカルボン酸及び芳香族ジカルボン酸の少なくとも一方とをエステル交換反応させて、液晶ポリエステルを得る工程(ii)を含み、
 前記工程(i)における前記脂肪酸無水物の使用量が、前記芳香族ヒドロキシカルボン酸及び前記芳香族ジオールの少なくとも一方の有するフェノール性水酸基1当量に対して、前記脂肪酸無水物が1当量未満の量である、液晶ポリエステル粉末の製造方法。
<10> 前記アシル化反応がアセチル化反応であり、
 芳香族ヒドロキシカルボン酸及び芳香族ジオールの少なくとも一方と、酢酸無水物とをアセチル化反応させて、アセチル化物を得る工程(i)、並びに、
 前記アセチル化物と、芳香族ヒドロキシカルボン酸及び芳香族ジカルボン酸の少なくとも一方とをエステル交換反応させて、液晶ポリエステルを得る工程(ii)を含み、
 前記工程(i)における前記酢酸無水物の使用量が、前記芳香族ヒドロキシカルボン酸及び前記芳香族ジオールの少なくとも一方の有するフェノール性水酸基1当量に対して、前記酢酸無水物が1当量未満の量である、前記<9>に記載の液晶ポリエステル粉末の製造方法。
<11> 前記液晶ポリエステル粉末が含む液晶ポリエステルが、前記芳香族ヒドロキシカルボン酸に由来する下記式(1)で表される構造単位、前記芳香族ジカルボン酸に由来する下記式(2)で表される構造単位、及び前記芳香族ジオールに由来する下記式(3)で表される構造単位を有する、前記<9>又は<10>に記載の液晶ポリエステル粉末の製造方法。
(1)-O-Ar1-CO-
(2)-CO-Ar2-CO-
(3)-O-Ar3-O-
(Ar1は、2,6-ナフチレン基、1,4-フェニレン基、又は4,4’-ビフェニリレン基を表す。
 Ar2及びAr3は、それぞれ独立に、2,6-ナフチレン基、2,7-ナフチレン基、1,4-フェニレン基、1,3-フェニレン基、又は4,4’-ビフェニリレン基を表す。
 Ar1、Ar2又はAr3で表される前記基にある水素原子は、それぞれ独立に、ハロゲン原子、炭素数1~10のアルキル基、又は炭素数6~20のアリール基で置換されていてもよい。)
<12> 媒体と、前記<1>~<8>のいずれか一つに記載の液晶ポリエステル粉末と、を含有する、液晶ポリエステル組成物。
<13> 第1支持体上に、前記<12>に記載の液晶ポリエステル組成物を塗布し、熱処理して、液晶ポリエステルを含む液晶ポリエステルフィルムを得ることを含む、液晶ポリエステルフィルムの製造方法。
<14> 第1支持体上に、前記<12>に記載の液晶ポリエステル組成物を塗布し、熱処理して、液晶ポリエステルを含む液晶ポリエステルフィルムを形成することにより、前記第1支持体と前記液晶ポリエステルフィルムとを備える第1積層体を得ることを含む、積層体の製造方法。
<15> 前記第1積層体の前記液晶ポリエステルフィルムの前記第1支持体が積層された側とは反対側の面上に、第2支持体を積層し、前記液晶ポリエステルフィルムを加熱して、液晶ポリエステルフィルムと第2支持体とを貼り合わせて第2積層体を得ることを含む、前記<14>に記載の積層体の製造方法。
 本発明によれば、固相重合を経ても、示差走査熱量測定で検出される吸熱ピークの温度上昇が生じ難い液晶ポリエステルを含む、液晶ポリエステル粉末を提供できる。
 また本発明によれば、前記液晶ポリエステル粉末の製造方法を提供できる。
 また本発明によれば、媒体と、前記液晶ポリエステル粉末と、を含有する、液晶ポリエステル組成物を提供できる。
 また本発明によれば、前記液晶ポリエステル組成物を用いる液晶ポリエステルフィルムの製造方法、及び積層体の製造方法を提供可能である。
本発明の一実施形態の液晶ポリエステルフィルム、第1積層体、及び第2積層体の製造過程を示す模式図である。 本発明の一実施形態の液晶ポリエステルフィルム、第1積層体、及び第2積層体の製造過程を示す模式図である。 本発明の一実施形態の液晶ポリエステルフィルム、第1積層体、及び第2積層体の製造過程を示す模式図である。 本発明の一実施形態の第2積層体の製造過程を示す模式図である。 本発明の一実施形態の液晶ポリエステルフィルムの構成を示す模式図である。 本発明の一実施形態の第1積層体の構成を示す模式図である。 本発明の一実施形態の第2積層体の構成を示す模式図である。 特許文献1に示される液晶ポリエステルフィルムの製造方法の一例と、次いで積層体を製造する場合の積層体の製造方法の一例を示す模式図である。
 以下、本発明の液晶ポリエステル粉末及びその製造方法、並びに、液晶ポリエステル組成物、液晶ポリエステルフィルムの製造方法、及び積層体の製造方法の実施形態を説明する。
≪液晶ポリエステル粉末≫
 実施形態の液晶ポリエステル粉末は、H-NMRにより分析されるアシル基末端/水酸基末端のモル比が、10以下である液晶ポリエステルを含む。前記アシル基末端に係るモル比は、アシル基末端の相対物質量から算出できる。前記水酸基末端に係るモル比は、水酸基末端の相対物質量から算出できる。
 以下、実施形態の液晶ポリエステル粉末に係る液晶ポリエステル及び液晶ポリエステルの製造方法について説明する。
(液晶ポリエステル)
 本実施形態に係る液晶ポリエステルは、溶融状態で液晶を示すポリエステルであり、450℃以下の温度で溶融するものであることが好ましい。なお、液晶ポリエステルは、液晶ポリエステルアミドであってもよいし、液晶ポリエステルエーテルであってもよいし、液晶ポリエステルカーボネートであってもよいし、液晶ポリエステルイミドであってもよい。液晶ポリエステルは、原料モノマーとして芳香族化合物に由来する構造単位のみを有する全芳香族液晶ポリエステルであることが好ましい。
 液晶ポリエステルの典型的な例としては、芳香族ヒドロキシカルボン酸と、芳香族ジカルボン酸と、芳香族ジオール、芳香族ヒドロキシアミン及び芳香族ジアミンからなる群から選ばれる少なくとも1種の化合物とを縮重合(重縮合)させてなる重合体;複数種の芳香族ヒドロキシカルボン酸を重合させてなる重合体;芳香族ジカルボン酸と、芳香族ジオール、芳香族ヒドロキシアミン及び芳香族ジアミンからなる群から選ばれる少なくとも1種の化合物とを重合させてなる重合体;及びポリエチレンテレフタレート等のポリエステルと、芳香族ヒドロキシカルボン酸と、を重合させてなる重合体が挙げられる。
 なかでも、液晶ポリエステルとしては、芳香族ヒドロキシカルボン酸と、芳香族ジカルボン酸と、芳香族ジオール、芳香族ヒドロキシアミン及び芳香族ジアミンからなる群から選ばれる少なくとも1種の化合物とを縮重合(重縮合)させてなる重合体が好ましく、芳香族ヒドロキシカルボン酸と、芳香族ジカルボン酸と、芳香族ジオールとを縮重合(重縮合)させてなる重合体がより好ましい。
 ここで、芳香族ヒドロキシカルボン酸、芳香族ジカルボン酸、芳香族ジオール、芳香族ヒドロキシアミン及び芳香族ジアミンは、互いに独立に、その一部又は全部に代えて、その重合可能なエステル形成誘導体であってもよい。
 芳香族ヒドロキシカルボン酸および芳香族ジカルボン酸のような、カルボキシ基を有する化合物の重合可能な誘導体の例としては、エステル、酸ハロゲン化物、および酸無水物が挙げられる。上述のエステルとしては、カルボキシ基をアルコキシカルボニル基またはアリールオキシカルボニル基に変換してなる化合物が挙げられる。上述の酸ハロゲン化物としては、カルボキシ基をハロホルミル基に変換してなる化合物が挙げられる。上述の酸無水物としては、カルボキシ基をアシルオキシカルボニル基に変換してなる化合物が挙げられる。
 芳香族ヒドロキシカルボン酸、芳香族ジオール及び芳香族ヒドロキシアミンのような、水酸基を有する化合物の重合可能な誘導体の例としては、水酸基をアシル化してアシルオキシ基に変換してなるもの(アシル化物)が挙げられる。
 芳香族ヒドロキシアミンおよび芳香族ジアミンのような、アミノ基を有する化合物の重合可能な誘導体の例としては、アミノ基をアシル化してアシルアミノ基に変換してなる化合物(アシル化物)が挙げられる。
 例示した重合可能な誘導体の例の中でも、液晶ポリエステルの原料モノマーとしては、芳香族ヒドロキシカルボン酸及び芳香族ジオールをアシル化して得られるアシル化物が好ましい。
 上記のアシル化を行うことで、液晶ポリエステルの原料モノマーの水酸基末端を、より反応活性の高いアシル基末端へと変換できる。
 実施形態の液晶ポリエステルは、芳香族ヒドロキシカルボン酸及び芳香族ジオールの少なくとも一方をアシル化して得られるアシル化物を原料モノマーに含むことができる。ここでの原料モノマーにおける、アシル化されたアシル化物に由来するアシル基末端と、アシル化されずに残った水酸基末端とのモル比が、重合後の液晶ポリエステルにおける、アシル基末端と水酸基末端とのモル比に影響する。
 本実施形態に係る液晶ポリエステルは、アシル基末端/水酸基末端のモル比が10以下であり、8以下が好ましく、6以下がより好ましい。
 アシル基末端/水酸基末端のモル比を上記上限値以下とすることで、液晶ポリエステルに残る反応活性の高い末端のアシル基の量を低減させることができるため、その後に、液晶ポリエステルが固相重合された場合には液晶ポリエステルの重合反応が進み難い。そのため、固相重合を経ても、示差走査熱量測定で検出される吸熱ピークの温度上昇が生じ難い液晶ポリエステルを含む、液晶ポリエステル粉末を提供できる。
 実施形態に係る液晶ポリエステルのアシル基末端/水酸基末端のモル比の下限値は、液晶ポリエステルの製造の効率化の観点から、1以上であってよく、1.1以上であってよく、1.2以上であってよい。
 本実施形態に係る液晶ポリエステルの、アシル基末端/水酸基末端のモル比の上記数値範囲の一例としては、1以上10以下であってよく、1.1以上8以下であってよく、1.2以上6以下であってよい。
 安価に且つ効率的なアシル化が可能であるとの観点から、上記の液晶ポリエステルのアシル基末端/水酸基末端のモル比における前記アシル基は、アセチル基であることが好ましい。
 アシル基末端/水酸基末端のモル比は、H-NMR測定によって算出される。具体的な算出方法は、以下の通りである。
 (i)H-NMRスペクトルから、液晶ポリエステルの主鎖の、アシル基末端由来の水素原子に帰属されるピーク面積Aを求める。
 (ii)ピーク面積Aを、アシル基を有する構造単位あたりの水素原子数で割ることにより、アシル基末端の相対物質量(IntAc)を算出することができる。
 (iii)(i)と同一のH-NMRスペクトルから、液晶ポリエステルの主鎖の、水酸基末端に対してオルト位に存在する水素原子に帰属されるピーク面積Bを求める。
 (iv)ピーク面積Bを、水酸基を有する構造単位あたりの水素原子数で割ることにより、水酸基末端の相対物質量(IntOH)を算出することができる。
 (v)(ii)で求めた(IntAc)を(iv)で求めた(IntOH)で割ることにより、アシル基末端/水酸基末端のモル比を算出することができる。
 H-NMR測定における測定溶媒としては、H-NMR測定が可能であり、液晶ポリエステルを溶解し得る溶媒であればよく、重水素化ペンタフルオロフェノール及び重水素化1,1,2,2-テトラクロロエタンが好適である。
 測定溶媒として重水素化ペンタフルオロフェノール及び重水素化1,1,2,2-テトラクロロエタンを用いた場合のH-NMRの測定装置及び測定条件としては、以下のものが挙げられる。
 NMR装置:Bruker社製 AVANCE III
 磁場強度:14.1T
 プローブ:TCIクライオプローブ
 測定用試料溶液は、試料10mgに重水素化ペンタフルオロフェノール0.5mLを添加し、100℃で2時間溶解させ、さらに重水素化1,1,2,2-テトラクロロエタン0.3mLを加えて混合し調製する。NMR測定は下記条件で行う。
 測定法: H―1D (プレサチュレーション法)
 測定温度:30℃
 積算回数:64回
 待ち時間:4秒
 実施形態に係る液晶ポリエステルは、下記式(1)で表される構造単位(以下、「構造単位(1)」ということがある。)を有することが好ましい。
(1)-O-Ar1-CO-
(Ar1は、2価の芳香族炭化水素基を表し、
 Ar1で表される前記基中の1個以上の水素原子は、互いに独立に、ハロゲン原子、炭素数1~10のアルキル基又は炭素数6~20のアリール基で置換されていてもよい。)
 実施形態に係る液晶ポリエステルは、下記式(1)で表される構造単位において、Ar1は、フェニレン基、ナフチレン基又はビフェニリレン基を表すことが好ましい。実施形態に係る液晶ポリエステルは、誘電特性により一層優れるとの観点から、構造単位(1)と、下記式(2)で表される構造単位(以下、「構造単位(2)」ということがある。)と、下記式(3)で表される構造単位(以下、「構造単位(3)」ということがある。)と、を有することがより好ましい。
(1)-O-Ar1-CO-
(2)-CO-Ar2-CO-
(3)-O-Ar3-O-
(Ar1、Ar2及びAr3は、それぞれ独立に、ナフチレン基、フェニレン基、又はビフェニリレン基を表す。
 Ar1、Ar2又はAr3で表される前記基にある水素原子は、それぞれ独立に、ハロゲン原子、炭素数1~10のアルキル基、又は炭素数6~20のアリール基で置換されていてもよい。)
 水素原子と置換可能な前記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。
 水素原子と置換可能な前記炭素数1~10のアルキル基の例としては、メチル基、エチル基、1-プロピル基、イソプロピル基、1-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、1-ヘキシル基、2-エチルヘキシル基、1-オクチル基及び1-デシル基等が挙げられる。
 水素原子と置換可能な前記炭素数6~20のアリール基の例としては、フェニル基、オルトトリル基、メタトリル基、パラトリル基等のような単環式芳香族基や、1-ナフチル基、2-ナフチル基等のような縮環式芳香族基が挙げられる。
 Ar1、Ar2、又はAr3で表される前記基中の1個以上の水素原子が、前記ハロゲン原子、前記炭素数1~10のアルキル基又は前記炭素数6~20のアリール基で置換されている場合、前記水素原子を置換する基の数は、Ar1、Ar2、又はAr3で表される基毎に、互いに独立に、好ましくは1個又は2個であり、より好ましくは1個である。
 実施形態に係る液晶ポリエステルは、ナフタレン構造を含む構造単位を含有することが好ましい。ナフタレン構造を含む構造単位を含有する液晶ポリエステルは、誘電特性に優れる傾向にある。
 2価のナフタレン構造を含む構造単位を有する液晶ポリエステルとして上記構造単位(1)と、上記構造単位(2)と、上記構造単位(3)と、を有する液晶ポリエステルにおいて、複数あるAr1、Ar2、及びAr3の少なくとも一つはナフチレン基であることが好ましい。
 液晶ポリエステルにおける、ナフタレン構造を含む構造単位の含有量は、液晶ポリエステル中の全構造単位の合計量100モル%(液晶ポリエステルを構成する各構造単位の質量をその各構造単位の式量で割ることにより、各構造単位の物質量相当量(モル)を求め、それらを合計した値)に対して40モル%以上であることが好ましく、50モル%以上であることが好ましく、55モル%以上であることがより好ましく、60モル%以上であることがさらに好ましい。ナフタレン構造を含む構造単位の含有量が上記下限値以上であることにより、液晶ポリエステルの比誘電率を、より一層低下させることが可能である。
 液晶ポリエステルにおける、ナフタレン構造を含む構造単位の含有量は、液晶ポリエステル中の全構造単位の合計量100モル%に対して90モル%以下であることが好ましく、85モル%以下であることがより好ましく、80モル%以下であることがさらに好ましい。ナフタレン構造を含む構造単位の含有量が上記上限値以下であることにより、液晶ポリエステルを生産する時の反応安定性を確保できる。
 上記のナフタレン構造を含む構造単位の含有量の値の数値範囲の一例としては、40モル%以上90モル%以下であってもよく、50モル%以上85モル%以下であってもよく、55モル%以上85モル%以下であってもよく、60モル%以上80モル%以下であってもよい。
 上記の構造単位(1)~(3)を有する液晶ポリエステルとしては、下記式(1)で表される構造単位、下記式(2)で表される構造単位、及び下記式(3)で表される構造単位を有することがより好ましい。
(1)-O-Ar1-CO-
(2)-CO-Ar2-CO-
(3)-O-Ar3-O-
(Ar1は、2,6-ナフチレン基、1,4-フェニレン基、又は4,4’-ビフェニリレン基を表す。
 Ar2及びAr3は、それぞれ独立に、2,6-ナフチレン基、2,7-ナフチレン基、1,4-フェニレン基、1,3-フェニレン基、又は4,4’-ビフェニリレン基を表す。
 Ar1、Ar2又はAr3で表される前記基にある水素原子は、それぞれ独立に、ハロゲン原子、炭素数1~10のアルキル基、又は炭素数6~20のアリール基で置換されていてもよい。)
 上記の構造単位(1)~(3)を有する液晶ポリエステルは、Ar1及び/又はAr2が2,6-ナフチレン基であることが好ましい。
 実施形態に係る液晶ポリエステルは、上記式(1)及び上記式(2)で表される構造単位においてAr1及び/又はAr2が2,6-ナフチレン基である構造単位を、液晶ポリエステル中の全構造単位の合計量に対して40モル%以上含有してもよく40モル%以上90モル%以下含有してもよく、50モル%以上85モル%以下含有してもよく、55モル%以上85モル%以下含有してもよく、60モル%以上80モル%以下含有してもよい。
 構造単位(1)は、芳香族ヒドロキシカルボン酸に由来する構造単位である。
 前記芳香族ヒドロキシカルボン酸としては、例えば、パラヒドロキシ安息香酸、メタヒドロキシ安息香酸、2-ヒドロキシ-6-ナフトエ酸、2-ヒドロキシ-3-ナフトエ酸、1-ヒドロキシ-5-ナフトエ酸、4-ヒドロキシ-4’-カルボキシジフェニルエーテルや、これらの芳香族ヒドロキシカルボン酸の芳香環にある水素原子の一部が、アルキル基、アリール基及びハロゲン原子からなる群より選ばれる置換基で置換されてなる芳香族ヒドロキシカルボン酸が挙げられる。前記芳香族ヒドロキシカルボン酸は、液晶ポリエステルの製造において、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 構造単位(1)としては、Ar1が1,4-フェニレン基であるもの(例えば、4-ヒドロキシ安息香酸に由来する構造単位)、及びAr1が2,6-ナフチレン基であるもの(例えば、6-ヒドロキシ-2-ナフトエ酸に由来する構造単位)が好ましい。
 構造単位(2)は、芳香族ジカルボン酸に由来する構造単位である。
 前記芳香族ジカルボン酸としては、例えば、テレフタル酸、イソフタル酸、ビフェニル-4,4’-ジカルボン酸、2,6-ナフタレンジカルボン酸、ジフェニルエーテル-4,4’-ジカルボン酸、ジフェニルチオエーテル-4,4’-ジカルボン酸や、これらの芳香族ジカルボン酸の芳香環にある水素原子の一部が、アルキル基、アリール基及びハロゲン原子からなる群より選ばれる置換基で置換されてなる芳香族ジカルボン酸が挙げられる。
 前記芳香族ジカルボン酸は、液晶ポリエステルの製造において、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 構造単位(2)としては、Ar2が1,4-フェニレン基であるもの(例えば、テレフタル酸に由来する構造単位)、Ar2が1,3-フェニレン基であるもの(例えば、イソフタル酸に由来する構造単位)、Ar2が2,6-ナフチレン基であるもの(例えば、2,6-ナフタレンジカルボン酸に由来する構造単位)、及びAr2がジフェニルエーテル-4,4’-ジイル基であるもの(例えば、ジフェニルエーテル-4,4’-ジカルボン酸に由来する構造単位)が好ましい。
 構造単位(3)は、芳香族ジオール、芳香族ヒドロキシアミン又は芳香族ジアミンに由来する構造単位である。
 芳香族ジオール、芳香族ヒドロキシアミン又は芳香族ジアミンとしては、例えば、4,4’-ジヒドロキシビフェニル、ハイドロキノン、メチルハイドロキノン、レゾルシン、4,4’-ジヒドロキシジフェニルケトン、4,4’-ジヒドロキシジフェニルエーテル、ビス(4-ヒドロキシフェニル)メタン、1,2-ビス(4-ヒドロキシフェニル)エタン、4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシジフェニルチオエーテル、2,6-ジヒドロキシナフタレン、1,5-ジヒドロキシナフタレン、4-アミノフェノール、1,4-フェニレンジアミン、4-アミノ-4’-ヒドロキシビフェニル、4,4’-ジアミノビフェニルが挙げられる。
 前記芳香族ジオール、芳香族ヒドロキシアミン又は芳香族ジアミンは、液晶ポリエステルの製造において、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 構造単位(3)としては、Ar3が1,4-フェニレン基であるもの(例えば、ハイドロキノン、4-アミノフェノール又は1,4-フェニレンジアミンに由来する構造単位)、及びAr3が4,4’-ビフェニリレン基であるもの(例えば、4,4’-ジヒドロキシビフェニル、4-アミノ-4’-ヒドロキシビフェニル又は4,4’-ジアミノビフェニルに由来する構造単位)が好ましい。
 本明細書において、「由来」とは、原料モノマーが重合するために化学構造が変化し、その他の構造変化を生じないことを意味する。
 ここでの由来は、当該化合物の重合可能な誘導体を由来とする場合も包含する概念であり、例えば、各構造単位は、芳香族ヒドロキシカルボン酸、芳香族ジオール、及び芳香族ヒドロキシアミンのアシル化物に由来する構造単位であってよい。
 なお、実施形態の液晶ポリエステルフィルムが、特に良好な耐熱性が要求される場合には、これらの置換基の数は少ない方が好ましく、特にアルキル基のような置換基は有しないことが好ましい。
 次に、実施形態の液晶ポリエステル粉末に適用するうえで特に好適な液晶ポリエステルを以下に例示する。
 好ましい液晶ポリエステルの具体例としては、例えば下記の組み合わせのモノマーに由来する構造単位からなる共重合体が挙げられる。
 1)4-ヒドロキシ安息香酸/2-ヒドロキシ-6-ナフトエ酸共重合体
 2)4-ヒドロキシ安息香酸/テレフタル酸/4,4'-ジヒドロキシビフェニル共重合体
 3)4-ヒドロキシ安息香酸/テレフタル酸/イソフタル酸/4,4'-ジヒドロキシビフェニル共重合体
 4)4-ヒドロキシ安息香酸/テレフタル酸/イソフタル酸/4,4'-ジヒドロキシビフェニル/ハイドロキノン共重合体
 5)4-ヒドロキシ安息香酸/テレフタル酸/ハイドロキノン共重合体
 6)2-ヒドロキシ-6-ナフトエ酸/テレフタル酸/ハイドロキノン共重合体
 7)2-ヒドロキシ-6-ナフトエ酸/テレフタル酸/2,6-ナフタレンジカルボン酸/ハイドロキノン共重合体
 8)4-ヒドロキシ安息香酸/2-ヒドロキシ-6-ナフトエ酸/テレフタル酸共重合体
 9)4-ヒドロキシ安息香酸/2-ヒドロキシ-6-ナフトエ酸/イソフタル酸共重合体
 10)4-ヒドロキシ安息香酸/2-ヒドロキシ-6-ナフトエ酸/テレフタル酸/4,4'-ジヒドロキシビフェニル共重合体
 11)4-ヒドロキシ安息香酸/2-ヒドロキシ-6-ナフトエ酸/イソフタル酸/4,4'-ジヒドロキシビフェニル共重合体
 12)4-ヒドロキシ安息香酸/2-ヒドロキシ-6-ナフトエ酸/テレフタル酸/2,6-ナフタレンジカルボン酸/4,4'-ジヒドロキシビフェニル共重合体
 13)4-ヒドロキシ安息香酸/2-ヒドロキシ-6-ナフトエ酸/テレフタル酸/4,4'-ジヒドロキシビフェニル/メチルハイドロキノン共重合体
 14)2-ヒドロキシ-6-ナフトエ酸/テレフタル酸/4,4'-ジヒドロキシビフェニル共重合体
 15)2-ヒドロキシ-6-ナフトエ酸/テレフタル酸/イソフタル酸/4,4'-ジヒドロキシビフェニル共重合体
 16)2-ヒドロキシ-6-ナフトエ酸/テレフタル酸/2,6-ナフタレンジカルボン酸/4,4'-ジヒドロキシビフェニル共重合体
 17)2-ヒドロキシ-6-ナフトエ酸/テレフタル酸/イソフタル酸/2,6-ナフタレンジカルボン酸/4,4'-ジヒドロキシビフェニル共重合体
 18)4-ヒドロキシ安息香酸/2-ヒドロキシ-6-ナフトエ酸/テレフタル酸/ハイドロキノン共重合体
 19)4-ヒドロキシ安息香酸/2-ヒドロキシ-6-ナフトエ酸/テレフタル酸/3,3’-ジメチル-1,1’-ビフェニル-4,4’-ジオール共重合体
 20)4-ヒドロキシ安息香酸/2-ヒドロキシ-6-ナフトエ酸/テレフタル酸/ハイドロキノン/4,4'-ジヒドロキシビフェニル共重合体
 21)4-ヒドロキシ安息香酸/2,6-ナフタレンジカルボン酸/4,4'-ジヒドロキシビフェニル共重合体
 22)4-ヒドロキシ安息香酸/テレフタル酸/2,6-ナフタレンジカルボン酸/ハイドロキノン共重合体
 23)4-ヒドロキシ安息香酸/2,6-ナフタレンジカルボン酸/ハイドロキノン共重合体
 24)4-ヒドロキシ安息香酸/2-ヒドロキシ-6-ナフトエ酸/2,6-ナフタレンジカルボン酸/ハイドロキノン共重合体
 25)4-ヒドロキシ安息香酸/テレフタル酸/2,6-ナフタレンジカルボン酸/ハイドロキノン/4,4'-ジヒドロキシビフェニル共重合体
 26)4-ヒドロキシ安息香酸/テレフタル酸/4-アミノフェノール共重合体
 27)2-ヒドロキシ-6-ナフトエ酸/テレフタル酸/4-アミノフェノール共重合体
 28)4-ヒドロキシ安息香酸/2-ヒドロキシ-6-ナフトエ酸/テレフタル酸/4-アミノフェノール共重合体
 29)4-ヒドロキシ安息香酸/テレフタル酸/4,4'-ジヒドロキシビフェニル/4-アミノフェノール共重合体
 30)4-ヒドロキシ安息香酸/テレフタル酸/エチレングリコール共重合体
 31)4-ヒドロキシ安息香酸/テレフタル酸/4,4'-ジヒドロキシビフェニル/エチレングリコール共重合体
 32)4-ヒドロキシ安息香酸/2-ヒドロキシ-6-ナフトエ酸/テレフタル酸/エチレングリコール共重合体
 33)4-ヒドロキシ安息香酸/2-ヒドロキシ-6-ナフトエ酸/テレフタル酸/4,4'-ジヒドロキシビフェニル/エチレングリコール共重合体
 34)4-ヒドロキシ安息香酸/テレフタル酸/2,6-ナフタレンジカルボン酸/4,4'-ジヒドロキシビフェニル共重合体。
 液晶ポリエステルの構造単位(1)の含有率は、液晶ポリエステルを構成する全構造単位の合計量(液晶ポリエステルを構成する各構造単位の質量をその各構造単位の式量で割ることにより、各構造単位の物質量相当量(モル)を求め、それらを合計した値)に対して、好ましくは30モル%以上、より好ましくは30~90モル%、より好ましくは30~85モル%、さらに好ましくは40~75モル%、とりわけ好ましくは50~70モル%、特に好ましくは、55~70モル%である。
 液晶ポリエステルの構造単位(1)の含有率が30モル%以上であると、本実施形態の液晶ポリエステル組成物を用いて得られるフィルムの耐熱性と硬度が向上し易い。また、構造単位(1)の含有率が80モル%以下であると、溶融粘度を低くすることができる。そのため、液晶ポリエステルの成形に必要な温度が低くなりやすい。
 液晶ポリエステルの構造単位(2)の含有率は、液晶ポリエステルを構成する全構造単位の合計量に対して、好ましくは35モル%以下、より好ましくは10~35モル%、さらに好ましくは15~35モル%、とりわけ好ましくは17.5~32.5モル%である。
 液晶ポリエステルの構造単位(3)の含有率は、液晶ポリエステルを構成する全構造単位の合計量に対して、好ましくは35モル%以下、より好ましくは10~35モル%、さらに好ましくは15~35モル%、とりわけ好ましくは17.5~32.5モル%である。
 液晶ポリエステルにおいては、構造単位(2)の含有率と構造単位(3)の含有率との割合は、[構造単位(2)の含有率]/[構造単位(3)の含有率](モル/モル)で表して、好ましくは0.9以上1.1以下、より好ましくは0.95以上1.05以下、さらに好ましくは0.98以上1.02以下である。
 液晶ポリエステルにおいては、構造単位(3)の含有率と構造単位(1)の含有率との割合は、[構造単位(3)の含有率]/[構造単位(1)の含有率](モル/モル)で表して、好ましくは0.2以上1.0以下、より好ましくは0.25以上0.85以下、さらに好ましくは0.3以上0.75以下である。
 なお、前記液晶ポリエステルは、構造単位(1)~(3)を、それぞれ独立に、1種のみ有してもよいし、2種以上有してもよい。また、液晶ポリエステルは、構造単位(1)~(3)以外の構造単位を1種または2種以上有してもよいが、その含有率は、液晶ポリエステルの全構造単位の合計量に対して、好ましく10モル%以下、より好ましくは5モル%以下である。
 本実施形態では、複数種の液晶ポリエステルが混合された液晶ポリエステル樹脂混合物を使用することも可能である。
 ここで、液晶ポリエステル樹脂混合物とは、流動開始温度が互いに異なる液晶ポリエステル樹脂の混合物である。液晶ポリエステル樹脂混合物において、流動開始温度が最も高い方を第1液晶ポリエステル樹脂とし、流動開始温度が最も低い方を第2液晶ポリエステル樹脂とする。実質的に第1液晶ポリエステルと第2液晶ポリエステルからなる液晶ポリエステル樹脂混合物が好適である。
 また、液晶ポリエステル混合物において、上記第1液晶ポリエステル100質量部に対して、上記第2液晶ポリエステルの含有量が10~150質量部であることが好ましく、30~120質量部がより好ましく、50~100質量部であることがさらに好ましい。
 実施形態に係る液晶ポリエステル粉末における液晶ポリエステルは、その流動開始温度が、好ましくは240℃以下、より好ましくは200℃以上238℃以下、さらに好ましくは210℃以上236℃以下、最も好ましくは225℃以上236℃以下である。
 液晶ポリエステル粉末における液晶ポリエステルの流動開始温度が上記上限値以下であると、固相重合を経ても、液晶ポリエステルの示差走査熱量測定で検出される吸熱ピークの温度の値が高くなりすぎず、液晶ポリエステルを溶融させて、液晶ポリエステルフィルムと別層とを貼り合わせることが容易である。また、液晶ポリエステルの流動開始温度が高いほど、耐熱性や強度及び剛性が向上し易いが、あまり高いと、粉砕性が悪くなり目標粒径の粉末を得られ難くなる。
 流動開始温度は、フロー温度又は流動温度とも呼ばれ、毛細管レオメーターを用いて、9.8MPa(100kg/cm2)の荷重下、4℃/分の速度で昇温しながら、液晶ポリエステルを溶融させ、内径1mm及び長さ10mmのノズルから押し出すときに、4800Pa・s(48000ポイズ)の粘度を示す温度であり、液晶ポリエステルの分子量の目安となるものである(小出直之編、「液晶ポリマー-合成・成形・応用-」、株式会社シーエムシー、1987年6月5日、p.95参照)。
 実施形態に係る液晶ポリエステル粉末における液晶ポリエステルのポリスチレンを標準物質として測定される重量平均分子量は、20000以下が好ましく、4000~20000であることが好ましく、6000~19000であることがより好ましく、8000~18000であることがさらに好ましく、13000~18000であることが特に好ましい。
 液晶ポリエステル粉末における液晶ポリエステルの重量平均分子量が上記上限値以下であると、固相重合を経ても、液晶ポリエステルの示差走査熱量測定で検出される吸熱ピークの温度の値が高くなりすぎず、液晶ポリエステルを溶融させて、液晶ポリエステルフィルムと別層とを貼り合わせることが容易である。また、等方性に優れたフィルム化加工が容易である。液晶ポリエステルの重量平均分子量が小さいほど、熱処理後のフィルムの厚さ方向の熱伝導性が向上する傾向にあり好ましく、液晶ポリエステルの数平均分子量が上記下限値以上であると、熱処理後のフィルムの耐熱性や強度・剛性が良好である。
 実施形態に係る液晶ポリエステル粉末における液晶ポリエステルのポリスチレンを標準物質として測定される数平均分子量は、7000以下が好ましく、1500~7000であることが好ましく、2000~6000であることがより好ましく、2500~5500であることがさらに好ましく、4000~5500であることが特に好ましい。
 液晶ポリエステル粉末における液晶ポリエステルの数平均分子量が上記上限値以下であると、固相重合を経ても、液晶ポリエステルの示差走査熱量測定で検出される吸熱ピークの温度の値が高くなりすぎず、液晶ポリエステルを溶融させて、液晶ポリエステルフィルムと別層とを貼り合わせることが容易である。また、等方性に優れたフィルム化加工が容易である。液晶ポリエステルの数平均分子量が小さいほど、熱処理後のフィルムの厚さ方向の熱伝導性が向上する傾向にあり好ましく、液晶ポリエステルの数平均分子量が上記下限値以上であると、熱処理後のフィルムの耐熱性や強度・剛性が良好である。
 本明細書において、「重量平均分子量」及び「数平均分子量」とは、ゲル浸透クロマトグラフィー(GPC)分析により求めることができ、標準ポリスチレンの分子量を測定して得られた検量線に基づいて、標準ポリスチレン換算で求めた値を意味する。
 実施形態に係る液晶ポリエステル粉末における、液晶ポリエステルの示差走査熱量測定で検出される吸熱ピークの温度(固相重合前の吸熱ピーク温度(A))は、280℃以下が好ましく、230~280℃であることがより好ましく、250~270℃であることがさらに好ましく、260~270℃であることが特に好ましい。
 実施形態の液晶ポリエステル粉末における液晶ポリエステルは、固相重合を経ても前記吸熱ピークの温度上昇が生じ難い。そのため、液晶ポリエステル粉末における液晶ポリエステルの前記吸熱ピークの温度(A)の値が上記上限値以下であると、固相重合を経て液晶ポリエステルフィルムが得られたとしても、当該フィルムにおける液晶ポリエステルの溶融が容易である。例えば、ラミネート法などにより液晶ポリエステルを溶融させて、液晶ポリエステルフィルムと別層とを貼り合わせることが容易である。
 液晶ポリエステルの吸熱ピークの温度は、示差走査熱量測定装置(例えば株式会社島津製作所の「DSC-60A Plus」)を用いて、室温(23℃)から10℃/分の速度で昇温して得られた、液晶ポリエステルの溶融による吸熱ピークの頂点位置の温度(℃)として測定できる。
 実施形態に係る液晶ポリエステル粉末における液晶ポリエステルは、固相重合を経ても、液晶ポリエステルの示差走査熱量測定で検出される吸熱ピークの温度上昇が生じ難いという優れた性質を有する。
 液晶ポリエステル粉末における、固相重合後の液晶ポリエステルの前記吸熱ピークの温度(B)の、該固相重合前の液晶ポリエステルの前記吸熱ピークの温度(A)からの温度上昇の値(B)-(A)は、16℃以下であることが好ましく、3~14℃であることがより好ましく、5~12℃であることがさらに好ましい。ここでの固相重合は、窒素雰囲気下で、室温(23℃)から290℃まで4時間かけて昇温し、290℃で2時間保持する熱処理を行うものとする。
(液晶ポリエステルの製造方法)
 次に、本実施形態に係る液晶ポリエステルの製造方法の一例について説明する。液晶ポリエステルとしては、上記に例示したものが挙げられ、芳香族ヒドロキシカルボン酸と、芳香族ジカルボン酸と、芳香族ジオールとを縮重合(重縮合)させてなる重合体が好ましい。
 本実施形態の液晶ポリエステルは、製造する液晶ポリエステルのモノマーを用いて、以下のアシル化工程および重合工程によって製造することが好ましい。
 アシル化工程とは、原料のモノマーが有するフェノール性の水酸基を脂肪酸無水物(例えば無水酢酸等)によってアシル化することにより、アシル化物を得る工程である。
 例えば、芳香族ヒドロキシカルボン酸がp-ヒドロキシ安息香酸であり、脂肪酸無水物が無水酢酸である場合、p-ヒドロキシ安息香酸のフェノール性水酸基の水素原子が、無水酢酸のアセチル基に置換され、アシル化物が生じる。
 また、p-ヒドロキシ安息香酸のフェノール性水酸基の水素イオン(H)と、無水酢酸のアセチルオキシ基から生じる陰イオン(CHCOO)とから、酢酸が副生する。
 重合工程では、アシル化工程で得られたアシル化物のアシル基と、芳香族ジカルボン酸および芳香族ヒドロキシカルボン酸のアシル化物のカルボキシ基とを、エステル交換を起こすように重合することにより、液晶ポリエステルを得ることができる。
 脂肪酸無水物の使用量は、原料モノマーに含まれるフェノール性水酸基1当量に対して、前記脂肪酸無水物が1当量未満である量が好ましい。本明細書において、「フェノール性水酸基」とは、芳香族環に直接結合した水酸基を指す。
 原料モノマーに含まれるフェノール性水酸基1当量に対して、使用する前記脂肪酸無水物の当量は、その後の重合工程の反応を効率的に進めるとの観点から、0.90当量以上1当量未満であってよく、0.91当量以上1当量未満であってよく、0.92当量以上1当量未満であってよく、0.96当量以上1当量未満であってよい。
 実施形態の液晶ポリエステルの製造方法として、芳香族ヒドロキシカルボン酸及び芳香族ジオールの少なくとも一方と、脂肪酸無水物とをアシル化反応させて、アシル化物を得る工程(i)、並びに、
 前記アシル化物と、芳香族ヒドロキシカルボン酸及び芳香族ジカルボン酸の少なくとも一方とをエステル交換反応させて、液晶ポリエステルを得る工程(ii)を含み、
 前記工程(i)における前記脂肪酸無水物の使用量が、前記芳香族ヒドロキシカルボン酸及び前記芳香族ジオールの少なくとも一方の有するフェノール性水酸基1当量に対して、前記脂肪酸無水物が1当量未満の量である方法を例示する。
 前記芳香族ヒドロキシカルボン酸及び前記芳香族ジオールの少なくとも一方の有するフェノール性水酸基1当量に対して、前記脂肪酸無水物の当量が、0.90当量以上1当量未満であってよく、0.91当量以上1当量未満であってよく、0.92当量以上1当量未満であってよく、0.96当量以上1当量未満であってよい。
 ここで、前記芳香族ヒドロキシカルボン酸及び前記芳香族ジオールの少なくとも一方の有するフェノール性水酸基とは、工程(i)において芳香族ヒドロキシカルボン酸及び芳香族ジオールの両方を使用する場合には、芳香族ヒドロキシカルボン酸及び前記芳香族ジオールの有するフェノール性水酸基である。工程(i)において芳香族ヒドロキシカルボン酸のみを使用する場合には、芳香族ヒドロキシカルボン酸の有するフェノール性水酸基である。工程(i)において芳香族ジオールのみを使用する場合には、記芳香族ジオールの有するフェノール性水酸基である。
 従来の液晶ポリエステルの製造法では、フェノール性水酸基1当量に対して脂肪酸無水物が過剰になるよう、脂肪酸無水物を使用するのが通常であった。対して、本実施形態では、フェノール性水酸基1当量に対して脂肪酸無水物が1当量未満の条件で脂肪酸無水物を使用する点で、従来法とは大きく異なる。
 原料モノマーに含まれるフェノール性水酸基の合計に対して、使用する前記脂肪酸無水物が1当量未満であると、重合工程を経て得られた液晶ポリエステルにおいて反応活性の高いアシル基が残存しにくい。そのため、その後のフィルム製造に用いて固相重合を行う場合に液晶ポリエステルの重合反応が進み難く、液晶ポリエステルの示差走査熱量測定で検出される吸熱ピークの温度上昇が生じ難い。
 前記脂肪酸無水物としては、炭素数9以下の脂肪酸無水物が挙げられる。炭素数9以下の脂肪酸無水物としては、無水酢酸、無水プロピオン酸、無水ブタン酸(無水酪酸)、無水2-メチルプロピオン酸(無水イソ酪酸)、無水ペンタン酸(無水吉草酸)、無水2,2-ジメチルプロピオン酸(無水ピバル酸)、無水2-エチルヘキサン酸、無水モノクロル酢酸、無水ジクロル酢酸、無水トリクロル酢酸、無水モノブロモ酢酸、無水ジブロモ酢酸、無水トリブロモ酢酸、無水モノフルオロ酢酸、無水ジフルオロ酢酸、無水トリフルオロ酢酸、無水ペンタン-1,5-ジカルボン酸(無水グルタル酸)、無水マレイン酸、無水コハク酸、無水β-ブロモプロピオン酸等が挙げられる。
 安価に且つ効率的なアシル化が可能であるとの観点から、前記アシル化反応がアセチル化反応であることが好ましく、前記脂肪酸無水物としては無水酢酸が好ましい。
 上述のアシル化工程におけるアシル化反応は、130℃~180℃の温度範囲で30分~20時間行うことが好ましく、140℃~160℃で1~5時間行うことがより好ましい。
 上述の重合工程で使用可能な芳香族ジカルボン酸は、アシル化工程の際に反応系中に存在させておいてもよい。すなわち、アシル化工程において、芳香族ジオール、芳香族ヒドロキシカルボン酸および芳香族ジカルボン酸を、同一の反応系中に存在させておいてもよい。これは、芳香族ジカルボン酸にあるカルボキシ基および任意に置換されてもよい置換基は、いずれも、脂肪酸無水物によって何ら影響を受けないからである。
 従って、芳香族ジオール、芳香族ヒドロキシカルボン酸および芳香族ジカルボン酸を反応器に仕込んだ後でアシル化工程および重合工程を順次行う方法でもよいし、芳香族ジオールおよび芳香族ジカルボン酸を反応器に仕込んでアシル化工程を行った後で芳香族ジカルボン酸をさらに反応器に仕込んで重合工程を行う方法でもよい。製造工程を簡便化するという観点からは、前者の方法が好ましい。
 前記アシル化工程および重合工程は、下記式(5)で表される複素環状有機塩基化合物の存在下に行ってもよい。
Figure JPOXMLDOC01-appb-C000001
 上記式(5)において、R~Rは、それぞれ独立に、水素原子、炭素数1~4のアルキル基、ヒドロキシメチル基、シアノ基、アルキル基の炭素数が1~4であるシアノアルキル基、アルコキシ基の炭素数が1~4であるシアノアルコキシ基、カルボキシ基、アミノ基、炭素数1~4のアミノアルキル基、炭素数1~4のアミノアルコキシ基、フェニル基、ベンジル基、フェニルプロピル基またはホルミル基を表している。
 上記式(5)の複素環状有機塩基化合物としては、Rが炭素数1~4のアルキル基であり、R~Rがそれぞれ水素原子であるイミダゾール誘導体であることが好ましい。
これにより、前記アシル化工程におけるアシル化反応や前記重合工程におけるエステル交換反応の反応性をより向上できる。また、本実施形態の液晶ポリエステル組成物を用いて得られる液晶ポリエステルフィルムの色調をより良好にすることができる。
 複素環状有機塩基化合物の中でも、入手が容易であることから、1-メチルイミダゾールと1-エチルイミダゾールとのいずれか一方または両方が特に好ましい。
 また、複素環状有機塩基化合物の使用量は、液晶ポリエステルの原料モノマー(すなわち、芳香族ジカルボン酸、芳香族ジオールおよび芳香族ヒドロキシカルボン酸)の総量を100質量部としたときに、0.005~1質量部となるようにすることが好ましい。また、成形体の色調や生産性の観点からは、原料モノマー100質量部に対して0.05~0.5質量部とすることが、より好ましい。
 前記複素環状有機塩基化合物は、アシル化反応およびエステル交換反応の際の一時期に存在していればよく、その添加時期は、アシル化反応開始の直前であってもよいし、アシル化反応の途中であってもよいし、アシル化反応とエステル交換反応の間であってもよい。このようにして得られる液晶ポリエステルは、溶融流動性が非常に高く、かつ、熱安定性に優れる。
 上述の重合工程におけるエステル交換反応は、昇温速度0.1~50℃/分で130℃から400℃まで昇温しながら行うことが好ましく、昇温速度0.3~5℃/分で150℃から350℃まで昇温しながら行うことがさらに好ましい。
 また、重合工程のエステル交換反応を行う際には、平衡をずらすために、副生する脂肪酸(例えば酢酸等)および未反応の脂肪酸無水物(例えば無水酢酸等)を、蒸発させて系外に留去させることが好ましい。このとき、留出する脂肪酸の一部を還流させて反応器に戻すことにより、脂肪酸と同伴して蒸発または昇華する原料モノマー等を凝縮または逆昇華させて反応器に戻すこともできる。
 アシル化工程のアシル化反応および重合工程のエステル交換反応では、反応器として、回分装置を用いてもよいし、連続装置を用いてもよい。いずれの反応装置を用いても、本実施形態に使用することが可能な液晶ポリエステルを得られる。
 上述した重合工程の後に、粉砕することにより目的の液晶ポリエステル粉末を得ることができる。なお、重合工程の後に、固相重合等の熱処理を行うことにより、この重合工程で得られた液晶ポリエステルを高分子量化することもできるが、粉砕する前の液晶ポリエステルの粉砕性を考慮して、液晶ポリエステル粉末が含有する液晶ポリエステルについては、固相重合等の分子量を上げる工程は行わないことが望ましい。
 上述の好適な流動開始温度の液晶ポリエステルは、前記液晶ポリエステルを構成する構造単位を適宜最適化することで容易に得ることが可能である。すなわち、液晶ポリエステルの分子鎖の直線性を向上させるようにすると、その流動開始温度が上がる傾向がある。
 例えば、テレフタル酸に由来する構造単位は液晶ポリエステル分子鎖の直線性を向上させる。一方、イソフタル酸に由来する構造単位は液晶ポリエステル分子鎖の屈曲性を向上させる(直線性を低下させる)。そのため、このテレフタル酸とイソフタル酸の共重合比をコントロールすることにより、所望の流動開始温度の液晶ポリエステルを得ることができる。
 上述した液晶ポリエステル混合物を使用する場合、少なくとも1種の液晶ポリエステルは、芳香族ヒドロキシカルボン酸を含む原料モノマーをイミダゾール化合物の存在下に重合させて得られた重合体であることが好ましい。このようにして得られる液晶ポリエステルは、溶融時の流動性が非常に高く、かつ、熱安定性に優れる。
 また、本実施形態に用いられる液晶ポリエステルにおいては、テレフタル酸およびイソフタル酸の共重合比を最適化することが好ましい。これにより、上述のように液晶ポリエステルの分子鎖の直線性をコントロールできる。その結果、流動開始温度が互いに異なる複数種の液晶ポリエステルを各々製造できる。
(液晶ポリエステル粉末)
 液晶ポリエステル粉末の平均粒径(D50)は、30μm以下が好ましく、20μm以下が好ましく、18μm以下であることがより好ましく、15μm以下であることがさらに好ましく、10μm以下であることが特に好ましい。液晶ポリエステル粉末の平均粒径が30μmを超えると、液晶ポリエステル粉末の分散状態が良好な液晶ポリエステル組成物を得ることが困難となる。また、液晶ポリエステルの平均粒径が20μm以下であると、電子部品用フィルムとして好適な厚さ(例えば50μm以下)で、フィルム表面の平滑性が良好な液晶ポリエステルフィルムを製造可能である。
 また、粉末の取り扱い易さの観点から、液晶ポリエステル粉末の平均粒径(D50)は、0.5μm以上であることが好ましく、3μm以上であることがより好ましく、5μm以上であることがさらに好ましい。
 上記の液晶ポリエステル粉末の平均粒径(D50)の値の上限値と下限値とは、自由に組み合わせることができる。上記の液晶ポリエステル粉末の平均粒径の値の数値範囲の一例としては、0.5μm以上30μm以下であってもよく、0.5μm以上20μm以下であってもよく、3μm以上18μm以下であってもよく、5μm以上15μm以下であってもよく、5μm以上12μm以下であってもよく、5μm以上10μm以下であってもよい。
 液晶ポリエステル粉末の粒径(D10)は、1μm以上20μm以下が好ましく、2μm以上18μm以下がより好ましく、3μm以上15μm以下がさらに好ましい。D10の値が上記の範囲内である液晶ポリエステル粉末は、媒体への分散性が向上するため好ましい。
 液晶ポリエステル粉末の粒径(D90)は、5μm以上100μm以下が好ましく、10μm以上80μm以下がより好ましく、15μm以上60μm以下がさらに好ましい。
90の値が上記の範囲内である液晶ポリエステル粉末は、媒体への分散性が向上するため好ましい。
 本明細書において、「平均粒径」とは、レーザー回折散乱法によって測定された、体積基準の累積粒度分布曲線において、全体を100%としたときに、累積体積が50%となる点の粒子径の値(50%累積体積粒度D50)である。
 また、小粒子側からの累積体積割合が10%となる粒子径をD10、90%となる粒子径をD90とする。
 後述の実施形態の液晶ポリエステル組成物は、液晶ポリエステル粉末が媒体に不溶であり、前記液晶ポリエステル粉末が液体の前記媒体に分散した分散液であってよい。
 ここで、液晶ポリエステル粉末が媒体に不溶であるか否かは、下記の試験を行うことにより確認できる。
・試験方法
 液晶ポリエステル粉末(5質量部)を媒体(95質量部)中で180℃の温度で、アンカー翼を用いて200rpmの撹拌条件で6時間撹拌した後、室温(23℃)まで冷却する。次いで、目開き5μmのメンブレンフィルターおよび加圧式のろ過機を用いてろ過をした後、メンブレンフィルター上の残留物を確認する。この時、固形物が確認されない場合を媒体に可溶と判断する。固形物が確認された場合は媒体に不溶と判断する。固形物は、顕微鏡観察により確認することができる。
 液晶ポリエステル粉末が媒体に不溶であることで、後述する実施形態に係る液晶ポリエステルフィルム又は積層体の各製造方法においては、液晶ポリエステル粉末を溶媒に溶解させる必要がないため、構造単位(1)~(3)を有するものとして例示したような、誘電特性に優れた液晶ポリエステルの粉末を原料として採用できる。優れた誘電特性を有する液晶ポリエステル粉末からは、優れた誘電特性を有する液晶ポリエステルフィルムを製造可能である。
 本明細書において、「誘電特性」とは、比誘電率と誘電正接に関する特性をいう。
 実施形態に係る液晶ポリエステル粉末は、周波数1GHzにおける比誘電率が3以下であることが好ましく、2.9以下であることが好ましく、2.8以下であることが好ましく、2.8未満であることがより好ましく、2.78以下であることがさらに好ましく、2.76以下であることが特に好ましい。また、液晶ポリエステル粉末の比誘電率は、2.5以上であってもよく、2.6以上であってもよく、2.7以上であってもよい。
 上記の液晶ポリエステル粉末の上記比誘電率の値の上限値と下限値とは、自由に組み合わせることができる。上記の液晶ポリエステル粉末の上記比誘電率の値の数値範囲の一例としては、2.5以上3以下であってもよく、2.6以上2.78以下であってもよく、2.7以上2.76以下であってもよい。
 実施形態に係る液晶ポリエステル粉末は、周波数1GHzにおける誘電正接が0.005以下であることが好ましく、0.004以下であることが好ましく、0.003以下であることがより好ましく、0.0025以下であることがさらに好ましく、0.002以下であることが特に好ましい。また、液晶ポリエステル粉末の誘電正接は、0.0003以上であってもよく、0.0005以上であってもよく、0.001以上であってもよい。
 上記の液晶ポリエステル粉末の上記誘電正接の値の数値範囲の一例としては、0.0003以上0.005以下であってもよく、0.0005以上0.004以下であってもよく、0.001以上0.003以下であってもよく、0.001以上0.0025以下であってもよく、0.001以上0.002以下であってもよい。
 なお、液晶ポリエステル粉末の周波数1GHzにおける比誘電率、及び誘電正接は、インピーダンスアナライザーを用いた容量法にて、以下の条件で測定することができる。
 液晶ポリエステル微粒子粉末を、フローテスターを用いて測定された流動開始温度よりも5℃高い温度で溶融させた後、冷却固化させることにより、直径1cm、厚さ0.5cmの錠剤を作製する。得られた錠剤に対して、下記条件にて1GHzにおける比誘電率及び誘電正接を測定する。
・測定方法:容量法
・電極型式:16453A
・測定環境:23℃、50%RH
・印加電圧:1V
 なお、実施形態に係る液晶ポリエステル粉末の比誘電率及び誘電正接は、当該粉末を原料として製造した液晶ポリエステルフィルムのそれとは異なる場合がある。これは含有される液晶ポリエステルの分子量の違いに起因するものと考えられる。
 実施形態に係る液晶ポリエステル粉末100質量%に対する液晶ポリエステルの含有割合は、80~100質量%であってもよく、90~98質量%であってもよい。
 実施形態に係る液晶ポリエステル粉末100質量%に対する、H-NMRにより分析される、アシル基末端/水酸基末端のモル比が10以下である液晶ポリエステルの含有割合は、80~100質量%であってもよく、90~98質量%であってもよい。
 また、液晶ポリエステルの製造に用いられ得る無水酢酸由来の酢酸が、実施形態に係る液晶ポリエステル粉末に残留することがあるが、実施形態に係る液晶ポリエステル粉末100質量%に含まれ得る残存酢酸量は、フィルムに加工後の機械物性の観点から1質量%以下であることが好ましく、500質量ppm以下であることがより好ましく、300質量ppm以下であることがさらに好ましい。また、実施形態に係る液晶ポリエステル粉末100質量%に含まれる残存酢酸量は、粉砕性の観点から30質量ppm以上が好ましく、50質量ppm以上であることがより好ましく、100質量ppm以上であることがさらに好ましい。
 上記の液晶ポリエステル粉末100質量%に含まれ得る残存酢酸量の値の数値範囲の一例としては、30質量ppm以上1質量%以下であってもよく、50質量ppm以上500質量ppm以下であってもよく、100質量ppm以上300質量ppm以下であってもよい。
≪液晶ポリエステル粉末の製造方法≫
 実施形態に係る液晶ポリエステル粉末は、例えば、上記の液晶ポリエステルの製造方法により製造された液晶ポリエステルを、必要によりジェットミル等による粉砕処理をして、得ることができる。
 前記範囲の粒径に制御する方法として、例えば、ジェットミルを使用して液晶ポリエステルを破砕する方法がある。その場合、分級ローターの回転速度や粉砕ノズル圧、処理速度等を変更することで粒径を制御可能である。また、所望の粒径に対応する目開きを有する篩を用いて、粒子を分級する操作を行ってもよい。
 液晶ポリエステルの製造方法として上述した、以下の工程(i)における前記脂肪酸無水物の使用量を採用することにより、本発明の一実施形態に係る、H-NMRにより分析される、アシル基末端/水酸基末端のモル比が、10以下である液晶ポリエステルを含む、液晶ポリエステル粉末が容易に得られる。
 液晶ポリエステル粉末の製造方法の一例として、芳香族ヒドロキシカルボン酸及び芳香族ジオールの少なくとも一方と、脂肪酸無水物とをアシル化反応させて、アシル化物を得る工程(i)、並びに、
 前記アシル化物と、芳香族ヒドロキシカルボン酸及び芳香族ジカルボン酸の少なくとも一方とをエステル交換反応させて、液晶ポリエステルを得る工程(ii)を含み、
 前記工程(i)における前記脂肪酸無水物の使用量が、前記芳香族ヒドロキシカルボン酸及び前記芳香族ジオールの少なくとも一方の有するフェノール性水酸基1当量に対して、前記脂肪酸無水物が1当量未満の量である方法を例示する。
 安価に且つ効率的なアシル化が可能であるとの観点から、前記アシル化はアセチル化であることが好ましい。
 実施形態のポリエステル粉末の製造方法によれば、上記実施形態の液晶ポリエステル粉末を製造可能である。
≪液晶ポリエステル組成物≫
 実施形態の液晶ポリエステル組成物は、媒体と、上記実施形態の液晶ポリエステル粉末と、を含有するものである。
<媒体>
 実施形態の液晶ポリエステル組成物に含まれる媒体は、1atm(1013.25hPa)、25℃において液体状態をとる物質であることが好ましい。媒体は、液晶ポリエステルフィルムの製膜時に揮発可能な物質である揮発成分であることが好ましい。
 媒体は、液晶ポリエステル粉末が不溶で、液晶ポリエステル粉末を分散させる分散媒であることが好ましい。
 実施形態の液晶ポリエステル組成物は、前記液晶ポリエステル粉末が、前記媒体に不溶であり、前記液晶ポリエステル粉末が、液体の前記媒体に分散した分散液であることが好ましい。
 ここでの「分散」とは、液晶ポリエステル粉末が分散媒中に浮遊あるいは懸濁している状態のことをいい、液晶ポリエステル粉末が溶解した状態と区別する(液晶ポリエステル組成物中で液晶ポリエステル粉末が完全に溶解した状態を除く)ための用語である。組成物中の液晶ポリエステル粉末の分布に、不均一な部分があってもよい。組成物中の液晶ポリエステル粉末の状態は、後述の液晶ポリエステルフィルムの製造方法において、支持体上に液晶ポリエステル組成物を塗布可能な状態であればよい。
 媒体の例としては、グリセリン、ネオペンチルグリコール、エチレングリコール、プロピレングリコール、ブタンジオール、ヘキシレングリコール、ポリエチレングリコール、ポリプロピレングリコール等の脂肪族多価アルコール;ジクロロメタン、クロロホルム、1,1-ジクロロエタン、1,2-ジクロロエタン、1,1,2,2-テトラクロロエタン、1-クロロブタン、クロロベンゼン、o-ジクロロベンゼン等のハロゲン化炭化水素;p-クロロフェノール、ペンタクロロフェノール、ペンタフルオロフェノール等のハロゲン化フェノール;ジエチルエーテル、ジ-(2-クロロエチル)エーテル、テトラヒドロフラン、1,4-ジオキサン等のエーテル;アセトン、シクロヘキサノン、イソホロン等のケトン;酢酸エチル、乳酸ブチル、γ-ブチロラクトン等のエステル;エチレンカーボネート、プロピレンカーボネート等のカーボネート;トリエチルアミン等のアミン;ピリジン等の含窒素複素環芳香族化合物;アセトニトリル、スクシノニトリル等のニトリル;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド、テトラメチル尿素等の尿素化合物;ニトロメタン、ニトロベンゼン等のニトロ化合物;ジメチルスルホキシド、スルホラン等の硫黄化合物;及びヘキサメチルリン酸アミド、トリn-ブチルリン酸等のリン化合物が挙げられ、それらの2種以上を用いてもよい。
 媒体は、非プロトン性溶媒であってもよい。非プロトン性溶媒とは、非プロトン性化合物を含む溶媒である。該非プロトン性溶媒としては、例えば、1-クロロブタン、クロロベンゼン、1,1-ジクロロエタン、1,2-ジクロロエタン、クロロホルム、1,1,2,2-テトラクロロエタンなどのハロゲン系溶媒、ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサンなどのエーテル系溶媒、アセトン、シクロヘキサノンなどのケトン系溶媒、酢酸エチルなどのエステル系溶媒、γ-ブチロラクトンなどのラクトン系溶媒、エチレンカーボネート、プロピレンカーボネートなどのカーボネート系溶媒、トリエチルアミン、ピリジンなどのアミン系溶媒、アセトニトリル、サクシノニトリルなどのニトリル系溶媒、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、テトラメチル尿素、N-メチルピロリドンなどのアミド系溶媒、ニトロメタン、ニトロベンゼンなどのニトロ系溶媒、ジメチルスルホキシド、スルホランなどのスルフィド系溶媒、ヘキサメチルリン酸アミド、トリn-ブチルリン酸などのリン酸系溶媒などが挙げられる。
 実施形態の液晶ポリエステル組成物は、液晶ポリエステル粉末の分散性に優れた媒体として、比重が0.90以上の媒体を含んでもよい。
 本明細書における媒体の「比重」とは、水を基準物質としてJIS Z 8804:2012の(浮ひょう)に準拠して測定されたものとする。ここでの比重は、試料液体の密度を、圧力101325Pa(1気圧)の下における水の密度で除したものと定義される。
 実施形態の液晶ポリエステル組成物は、比重が0.90以上の媒体を含み、比重が0.95以上の媒体を含むことが好ましく、比重が1.03以上の媒体を含むことがより好ましく、比重が1.1以上の媒体を含むことがさらに好ましく、比重が1.3以上の媒体を含むことが特に好ましい。媒体の比重が上記下限値以上であると、液晶ポリエステル粉末の分散性に優れる。
 上記比重の上限値は、一例として1.84以下であってもよい。実施形態の液晶ポリエステル組成物は、比重が1.84以下の媒体を含んでもよく、比重が1.68以下の媒体を含んでもよく、比重が1.58以下の媒体を含んでもよく、比重が1.48以下の媒体を含んでもよい。
 媒体の比重が上記上限値以下であると、液晶ポリエステル粉末が媒体の液面に浮いてしまい分散が困難となることが防止される。
 上記の媒体の比重の値の上限値と下限値とは、自由に組み合わせることができる。上記の媒体の比重の値の数値範囲の一例として、実施形態の液晶ポリエステル組成物は、比重が0.90以上1.84以下の媒体を含んでもよく、比重が0.95以上1.68以下の媒体を含んでもよく、比重が1.03以上1.58以下の媒体を含んでもよく、比重が1.1以上1.48以下の媒体を含んでもよい。
 実施形態に係る液晶ポリエステル粉末の、JIS K 7112(A法)で測定された比重は、一例として、1.35以上1.40以下を例示できる。
 実施形態の液晶ポリエステル組成物の総質量に対する、液晶ポリエステル粉末の含有量の割合は、1~40質量%が好ましく、5~30質量%がより好ましく、7~20質量%がさらに好ましい。
 実施形態の液晶ポリエステル組成物の総質量に対する、媒体の含有量の割合は、50~99質量%が好ましく、60~95質量%がより好ましく、70~90質量%がさらに好ましい。
 一実施形態の液晶ポリエステル組成物として、液晶ポリエステル組成物の総質量に対し、液晶ポリエステル粉末を1~40質量%含有し、媒体を50~99質量%含有することが好ましい。
 液晶ポリエステル組成物は、媒体及び液晶ポリエステル粉末以外に、必要に応じて、充填材や、添加剤、液晶ポリエステル粉末に該当しないその他の樹脂等の他の成分を、含有量(質量%)の合計が100質量%を超えないように1種以上含んでもよい。
 充填材の例としては、シリカ、アルミナ、酸化チタン、チタン酸バリウム、チタン酸ストロンチウム、水酸化アルミニウム、炭酸カルシウム等の無機充填材;及び硬化エポキシ樹脂、架橋ベンゾグアナミン樹脂、架橋アクリル樹脂等の有機充填材が挙げられ、その含有量は、液晶ポリエステル100質量部に対して、0であってもよく、好ましくは100質量部以下である。
 添加剤の例としては、レべリング剤、消泡剤、酸化防止剤、紫外線吸収剤、難燃剤及び着色剤が挙げられ、その含有量は、液晶ポリエステル100質量部に対して、0であってもよく、好ましくは5質量部以下である。
 液晶ポリエステル以外のその他の樹脂の例としては、ポリプロピレン、ポリアミド、液晶ポリエステル以外のポリエステル、液晶ポリエステル粉末に含有される液晶ポリエステルに該当しない液晶ポリエステル、ポリフェニレンスルフィド、ポリエーテルケトン、ポリカーボネート、ポリエーテルスルホン、ポリフェニレンエーテル及びその変性物、ポリエーテルイミド等の液晶ポリエステル以外の熱可塑性樹脂;グリシジルメタクリレートとポリエチレンとの共重合体等のエラストマー;及びフェノール樹脂、エポキシ樹脂、ポリイミド樹脂、シアネート樹脂等の熱硬化性樹脂が挙げられる。その他の樹脂としては、フッ素樹脂も好ましいものとして例示できる。「フッ素樹脂」とは、分子中にフッ素原子を含む樹脂を意味し、フッ素原子を含む構造単位を有するポリマーが挙げられる。その他の樹脂の含有量は、液晶ポリエステル粉末100質量部に対して、0であってもよく、好ましくは20質量部以下である。その他の樹脂は、前記媒体に可溶であることが好ましい。
(液晶ポリエステル組成物の製造方法)
 実施形態の液晶ポリエステル組成物は、媒体、液晶ポリエステル粉末、及び必要に応じて用いられる他の成分を、一括で又は適当な順序で混合して得ることができる。
 媒体、および液晶ポリエステル粉末については、上記≪液晶ポリエステル組成物≫で説明したものを例示できる。
 一実施形態として、H-NMRにより分析される、アシル基末端/水酸基末端のモル比が、10以下である液晶ポリエステルを含む、液晶ポリエステル粉末と、媒体と、を混合する工程を含む、液晶ポリエステル組成物の製造方法を提供する。
≪液晶ポリエステルフィルムの製造方法≫
 実施形態の液晶ポリエステルフィルムの製造方法は、第1支持体上に、実施形態に係る液晶ポリエステル組成物を塗布し、熱処理して、液晶ポリエステルを含む液晶ポリエステルフィルムを得ることを含む。
 液晶ポリエステル組成物については、上記≪液晶ポリエステル組成物≫で説明したものを例示できる。
 当該製造方法は以下の工程を含んでいてもよい。
 第1支持体上に、実施形態に係る液晶ポリエステル組成物を塗布して、前記第1支持体上に液晶ポリエステルフィルムの前駆体を形成する工程(塗布工程)。
 前記液晶ポリエステルフィルムの前駆体を熱処理して、液晶ポリエステルフィルムを得る工程(熱処理工程)。
 液晶ポリエステルフィルムの製造方法における、塗布工程では、第1支持体上に、実施形態に係る液晶ポリエステル組成物を塗布した後、塗布された液晶ポリエステル組成物から媒体を除去する工程(乾燥工程)を含んでいてもよい。
 すなわち、実施形態の液晶ポリエステルフィルムの製造方法は、第1支持体上に、実施形態の液晶ポリエステル組成物を塗布し、塗布された液晶ポリエステル組成物から媒体を除去し、熱処理して、液晶ポリエステルを含む液晶ポリエステルフィルムを得ることを含むものであってもよい。
 前記熱処理は、液晶ポリエステルフィルム前駆体に含まれる液晶ポリエステルの重合反応(固相重合)行うことを含むものであることが好ましい。
 前記熱処理工程により、液晶ポリエステル粉末を溶融させてフィルム化させるとともに、液晶ポリエステルの固相重合を行うことで液晶ポリエステルを所望の分子量に高分子化できる。このようにして、液晶ポリエステルフィルムを、前記第1支持体と前記液晶ポリエステルフィルムとを備える第1積層体として得ることができる。
 なお、液晶ポリエステルフィルムの製造方法において、更に、前記第1支持体及び液晶ポリエステルフィルムが積層された第1積層体から第1支持体を分離する工程(分離工程)を含んでいてもよい。ただし、液晶ポリエステルフィルムは、第1積層体として第1支持体上に形成されたままでも電子部品用フィルムとして好適に使用可能であるので、分離工程は、液晶ポリエステルフィルムの製造工程において必須の工程ではない。
 以下、図面を参照して、実施形態の液晶ポリエステルフィルムの製造方法の一例を説明する。
 図1は、実施形態の液晶ポリエステルフィルム、第1積層体及び第2積層体の製造過程の一例を示す模式図である。
 まず、液晶ポリエステル組成物30を第1支持体12上に塗布する(図1A 塗布工程)。液晶ポリエステル組成物30は、液晶ポリエステル粉末1と媒体3とを含む。液晶ポリエステル組成物の第1支持体上への塗布は、ローラーコート法、ディップコート法、スプレイコート法、スピナーコート法、カーテンコート法、スロットコート法、及びスクリーン印刷法等の方法により行うことができ、第1支持体上に表面平滑かつ均一に塗布できる方法を適宜選択できる。また、液晶ポリエステル粉末の分布を均一化させるため、塗布の前に、液晶ポリエステル組成物を撹拌する操作を行ってもよい。
 第1支持体12としては、板状、シート状又はフィルム状の形状であることが好ましく、例えば、ガラス板、樹脂フィルム又は金属箔が挙げられる。中でも、樹脂フィルム又は金属箔が好ましく、特に、耐熱性に優れ、液晶ポリエステル組成物を塗布し易く、また、液晶ポリエステルフィルムから除去し易いことから、銅箔が好ましい。
 樹脂フィルムとしては、ポリイミド(PI)フィルムが挙げられる。その市販品の例としては、宇部興産株式会社製の「ユ-ピレックスS」及び「ユ-ピレックスR」、東レデュポン株式会社製の「カプトン」、並びにSKCコーロンPI社の「IF30」、「IF70」及び「LV300」が挙げられる。樹脂フィルムの厚さは、好ましくは25μm以上75μm以下であり、より好ましくは50μm以上75μm以下である。金属箔の厚さは、好ましくは3μm以上75μm以下であり、より好ましくは5μm以上30μm以下であり、さらに好ましくは10μm以上25μm以下ある。
 次に、第1支持体12上に塗布された液晶ポリエステル組成物30から媒体3を除去し(図1B 乾燥工程)、熱処理の対象である液晶ポリエステルフィルム前駆体40を得る。なお、媒体3は液晶ポリエステル組成物から完全に除去される必要はなく、液晶ポリエステル組成物に含まれる媒体の一部が除去されてもよく、媒体の全部が除去されていもよい。液晶ポリエステルフィルム前駆体40に含まれる媒体の割合は、液晶ポリエステルフィルム前駆体の総質量に対し、50質量%以下であることが好ましく、3質量%以上12質量%以下であることがより好ましく、5質量%以上10質量%以下であることがさらに好ましい。液晶ポリエステルフィルム前駆体中の媒体の含有量が上記下限値以上であることにより、液晶ポリエステルフィルムの熱伝導性が低下する恐れが低減される。また、液晶ポリエステルフィルム前駆体中の媒体の含有量が上記上限値以下であることにより、熱処理時の発泡等により液晶ポリエステルフィルムの外観が低下する恐れが低減される。
 媒体の除去は、媒体を蒸発させることにより行うことが好ましく、その方法としては、例えば、加熱、減圧及び通風が挙げられ、これらを組み合わせてもよい。また、媒体の除去は、連続式で行ってもよいし、枚葉式で行ってもよい。生産性や操作性の点から、媒体の除去は、連続式で加熱することにより行うことが好ましく、連続式で通風しながら加熱することにより行うことがより好ましい。媒体の除去温度は、液晶ポリエステル粉末の示差走査熱量測定で検出される吸熱ピークの温度未満の温度が好ましく、例えば40℃以上200℃以下であり、好ましくは40℃以上100℃以下である。媒体除去の時間は、例えば0.2時間以上12時間以下であり、好ましくは0.5時間以上8時間以下である。
 こうして得られる第1支持体12と液晶ポリエステルフィルム前駆体40とを有する積層体前駆体22を、熱処理して、第1支持体12と液晶ポリエステルフィルム10(液晶ポリエステルフィルム前駆体40が熱処理されてなるフィルム)とを有する第1積層体20を得る(図1C 熱処理工程)。このとき、第1支持体上に形成された、液晶ポリエステルフィルム10が得られる。
 熱処理により、液晶ポリエステルフィルム前駆体に含まれる液晶ポリエステルの重合反応(固相重合)を行うことができる。
 熱処理条件は、例えば、媒体の沸点の-50℃から熱処理温度に達するまで昇温した後、液晶ポリエステルの示差走査熱量測定で検出される吸熱ピークの温度以上の温度で熱処理することが挙げられる。
 この昇温時に、加熱により液晶ポリエステルの重合反応が進行する場合があるが、熱処理温度に達するまでの昇温速度を速くすることで、液晶ポリエステル粉末中の液晶ポリエステルの分子量の増加をある程度抑えることができ、液晶ポリエステル粉末の融解が良好となり、高品質のフィルムを容易に得ることができる。溶媒の沸点の-50℃から熱処理温度までの昇温速度は、3℃/分以上が好ましく、5℃/分以上がより好ましい。
 熱処理温度は、液晶ポリエステルの示差走査熱量測定で検出される吸熱ピークの温度以上が好ましく、液晶ポリエステルの示差走査熱量測定で検出される吸熱ピークの温度より高い温度がより好ましく、液晶ポリエステルの示差走査熱量測定で検出される吸熱ピークの温度+5℃以上の温度を熱処理温度とすることがさらに好ましい。熱処理温度は液晶ポリエステルの種類によって適宜定めればよいが、一例として230℃以上400℃以下が好ましく、250℃以上380℃以下がより好ましく、290℃以上330℃以下がさらに好ましい。液晶ポリエステルの示差走査熱量測定で検出される吸熱ピークの温度より高い温度で熱処理を行うことで、液晶ポリエステル粉末の融解が良好となり、高品質な液晶ポリエステルフィルムを形成できる。液晶ポリエステル粉末が融解できたことは、液晶ポリエステルフィルム前駆体40が透明化したことで確認できる。
 なお、ここでいう媒体の沸点とは、昇温時の圧力における沸点をいう。また、積層体前駆体22の加熱を、媒体の沸点の-50℃未満から開始する場合は、媒体の沸点の-50℃に達してから熱処理温度に達するまでの範囲で昇温速度を定めればよい。媒体の沸点-50℃に達するまでの時間は、任意である。また、熱処理温度に達した後の時間を熱処理時間として考えればよい。熱処理時間は、例えば0.5時間以上であってよく、1時間以上24時間以下であってよく、2時間以上12時間以下であってよい。
 熱処理は、媒体の除去同様、連続式で行ってもよいし、枚葉式で行ってもよいが、生産性や操作性の点から、連続式で行うことが好ましく、媒体の除去に続けて連続式で行うことがより好ましい。
 実施形態の液晶ポリエステルフィルムの製造方法によれば、使用される液晶ポリエステル組成物が含有する液晶ポリエステル粉末の、H-NMRにより分析される、アシル基末端/水酸基末端のモル比が10以下であることにより、上記の熱処理工程での液晶ポリエステルの固相重合の反応が進み難く、液晶ポリエステルの示差走査熱量測定で検出される吸熱ピークの温度上昇が抑制された液晶ポリエステルフィルムを提供できる。そのため、後に積層工程を経て第2積層体を製造する場合に、加熱により液晶ポリエステルが容易に溶融し、積層された液晶ポリエステルフィルムと第2支持体との密着が良好である。
 また、実施形態の液晶ポリエステルフィルムの製造方法によれば、等方性に優れた液晶ポリエステルフィルムを製造可能である。
 従来の溶融成形法では、融解させた液晶ポリエステルをフィルム状にすることで、液晶ポリエステルの薄膜を製造していたが、対して、実施形態の上記製造方法では、支持体上に予め薄く液晶ポリエステル粉末を配置した後、それを融解させる点で従来のフィルムの製造方法とは大きく異なる。
 実施形態の液晶ポリエステルフィルムの製造方法では、予め液晶ポリエステル粉末を支持体上に薄く配置して、それをフィルム化させるので、押出成形等の分子配向に偏りを生じさせる要因となる物理的な力が加えられず、等方性に優れた液晶ポリエステルフィルムを製造可能である。
 尚且つ、液晶ポリエステル組成物においては、液晶ポリエステル粉末を媒体に溶解可能なものとすべき制限が無いため、誘電特性に優れた液晶ポリエステルを採用でき、誘電特性及び等方性に優れた液晶ポリエステルフィルムを容易に得ることが可能である。
≪第1積層体の製造方法≫
 実施形態の第1積層体の製造方法は、第1支持体上に、実施形態に係る液晶ポリエステル組成物を塗布し、熱処理して、液晶ポリエステルを含む液晶ポリエステルフィルムを形成することにより、前記第1支持体と前記液晶ポリエステルフィルムとを備える第1積層体を得ることを含むものである。
 当該製造方法は以下の工程を含んでいてもよい。
 第1支持体上に、実施形態に係る液晶ポリエステル組成物を塗布して、第1支持体上に液晶ポリエステルフィルム前駆体を形成する工程(塗布工程)。
 前記液晶ポリエステルフィルム前駆体を熱処理して、前記第1支持体と前記液晶ポリエステルフィルムとを備える第1積層体を得る工程(熱処理工程)。
 上述の液晶ポリエステルフィルムの製造方法と同じく、第1積層体の製造方法における、塗布工程では、第1支持体上に、実施形態に係る液晶ポリエステル組成物を塗布した後、塗布された液晶ポリエステル組成物から媒体を除去する工程(乾燥工程)を含んでいてもよい。
 すなわち、実施形態の第1積層体の製造方法は、第1支持体上に、実施形態に係る液晶ポリエステル組成物を塗布し、塗布された液晶ポリエステル組成物から媒体を除去し、熱処理して、液晶ポリエステルを含む液晶ポリエステルフィルムを形成することにより、前記第1支持体と前記液晶ポリエステルフィルムとを備える第1積層体を得ることを含むものであってもよい。
 図1A~Cは、実施形態の第1積層体の製造過程の一例を示す模式図である。図1A~Cで例示する第1積層体の製造方法については、上述の≪液晶ポリエステルフィルムの製造方法≫において説明したとおりであるので、説明を省略する。
 実施形態の第1積層体の製造方法によれば、実施形態の液晶ポリエステルフィルムを有する第1積層体を製造可能である。
 実施形態の第1積層体の製造方法によれば上記の熱処理工程での液晶ポリエステルの固相重合の反応が進み難く、液晶ポリエステルの示差走査熱量測定で検出される吸熱ピークの温度上昇が抑制された液晶ポリエステルフィルムを備える第1積層体を提供できる。これにより、その後の積層工程を経て貼り合わせられた液晶ポリエステルフィルムと第2支持体との密着を良好なものとできる。
≪第2積層体の製造方法≫
 実施形態の第2積層体の製造方法は、前記第1積層体の製造方法により第1積層体を得た後、前記第1積層体の前記液晶ポリエステルフィルムの前記第1支持体が積層された側とは反対側の面上に、第2支持体を積層して第2積層体を得ることを含むものである。
 当該製造方法は以下の工程を含んでいてもよい。
 第1支持体上に、実施形態に係る液晶ポリエステル組成物を塗布して、第1支持体上に液晶ポリエステルフィルム前駆体を形成する工程(塗布工程)。
 前記液晶ポリエステルフィルム前駆体を熱処理して、前記第1支持体と前記液晶ポリエステルフィルムとを備える第1積層体を得る工程(熱処理工程)。
 前記液晶ポリエステルフィルムの第1支持体が積層された側とは反対側の面上に、第2支持体を積層して第2積層体を得る工程(積層工程)。
 積層工程では、前記液晶ポリエステルフィルムの第1支持体が積層された側とは反対側の面上に、第2支持体を積層し、液晶ポリエステルフィルムを加熱して液晶ポリエステルを溶融させ、液晶ポリエステルフィルムと、第2支持体とを貼り合わせて第2積層体を得ることが好ましい。液晶ポリエステルフィルムを加熱して液晶ポリエステルを溶融させ、前記第2支持体と積層する方法として、ラミネート法が挙げられる。ラミネート法としては、ローラーを使用して加熱圧着する方法や、プレス装置を使用して加熱圧着する方法、真空熱プレス装置を使用して加熱圧着する真空ラミネート法などの方法が挙げられる。
 積層工程における、液晶ポリエステルフィルムの加熱温度(加熱装置の設定温度)としては、一例として、300~350℃であってよく、310~340℃であってよく、320~330℃であってよい。
 実施形態の第2積層体の製造方法は、第1支持体上に、請求項11に記載の液晶ポリエステル組成物を塗布し、熱処理して、液晶ポリエステルを含む液晶ポリエステルフィルムを形成することにより、前記第1支持体と前記液晶ポリエステルフィルムとを備える第1積層体を得ることと、
 前記第1積層体の前記液晶ポリエステルフィルムの前記第1支持体が積層された側とは反対側の面上に、第2支持体を積層し、前記液晶ポリエステルフィルムを加熱して、液晶ポリエステルフィルムと第2支持体とを貼り合わせて第2積層体を得ることと、を含むものであってよい。
 図1A~Dは、実施形態の第2積層体の製造過程の一例を示す模式図である。図1Cの熱処理工程までについては、上述の≪液晶ポリエステルフィルムの製造方法≫に説明したとおりであるので、説明を省略する。
 次いで、熱処理工程(図1C)の後、第1支持体12と液晶ポリエステルフィルム10とを有する第1積層体20に対し、液晶ポリエステルフィルム10の第1支持体12が積層された側とは反対側の面上に、第2支持体13を積層することができる(図1D 積層工程)。好ましくは、液晶ポリエステルフィルム10の第1支持体12が積層された側とは反対側の面上に、第2支持体13を積層し、液晶ポリエステルフィルム10を加熱して液晶ポリエステルを溶融させ、液晶ポリエステルフィルム10と第2支持体13とを貼り合わせる。これにより、第1支持体12と、液晶ポリエステルフィルム10と、第2支持体13と、がこの順に積層された第2積層体21が得られる。
 第2支持体13としては、上記に第1支持体として例示したものを採用でき、例えば、ガラス板、樹脂フィルム又は金属箔が挙げられ、銅箔が好ましい。
 第2積層体としては、銅箔と、液晶ポリエステルフィルムと、銅箔とがこの順に積層されたものが好ましい。
 実施形態の第2積層体の製造方法によれば、実施形態の液晶ポリエステルフィルムを有する第2積層体を製造可能である。
 実施形態の第2積層体の製造方法によれば、上記の熱処理工程での液晶ポリエステルの固相重合の反応が進み難く、液晶ポリエステルの前記吸熱ピークの温度上昇が生じ難い。これにより、積層工程を経た液晶ポリエステルフィルムと第2支持体との密着が良好な第2積層体を提供できる。
≪液晶ポリエステルフィルム≫
 図2は、実施形態の液晶ポリエステルフィルム10の構成を示す模式図である。
 実施形態の液晶ポリエステルフィルム(以下、単に「フィルム」と称することがある)は、液晶ポリエステルを含み、周波数1GHzにおける比誘電率が3以下であり、周波数1GHzにおける誘電正接が0.005以下であり、マイクロ波配向計で測定した分子配向度(MOR)の値が1~1.3の範囲であるものである。
 上記規定を満たすフィルムは、電子部品用フィルムとして好適な品質を有する。当該品質基準としては、上記の、比誘電率、誘電正接、及び分子配向度(フィルムの等方性)であり、その他、厚さ、および外観(孔又は貫通孔の発生の有無)等が考慮される。
 一例として、フィルムの比誘電率及び誘電正接の値は、液晶ポリエステルの種類により制御可能である。また、一例として、フィルムの等方性の程度は、フィルムの製造方法により制御可能である。
 実施形態のフィルムは、周波数1GHzにおける比誘電率が3以下であり、2.9以下であることが好ましく、2.8以下であることがより好ましく、2.7以下であることがさらに好ましく、2.6以下であることが特に好ましい。また、フィルムの比誘電率は、2.3以上であってもよく、2.4以上であってもよく、2.5以上であってもよい。
 上記のフィルムの上記比誘電率の値の数値範囲の一例としては、2.3以上3以下であってもよく、2.4以上2.9以下であってもよく、2.5以上2.8以下であってもよく、2.5以上2.7以下であってもよく、2.5以上2.6以下であってもよい。
 実施形態のフィルムは、周波数1GHzにおける誘電正接が0.005以下であり、0.004以下であることが好ましく、0.003以下であることがより好ましく、0.002以下であることがさらに好ましく、0.001以下であることが特に好ましい。液晶ポリエステルフィルムの誘電正接は、0.0003以上であってもよく、0.0005以上であってもよく、0.0007以上であってもよい。
 上記のフィルムの上記誘電正接の値の数値範囲の一例としては、0.0003以上0.005以下であってもよく、0.0005以上0.004以下であってもよく、0.0007以上0.003以下であってもよく、0.0007以上0.002以下であってもよく、0.0007以上0.001以下であってもよい。
 なお、フィルムの周波数1GHzにおける比誘電率、及び誘電正接は、インピーダンスアナライザーを用いた容量法にて、下記の条件で測定することができる。
 フィルムをフローテスターを用いて350℃で溶融させた後、冷却固化させることにより、直径1cm、厚さ0.5cmの錠剤を作製する。得られた錠剤に対して、下記条件にて1GHzにおける比誘電率及び誘電正接を測定する。
・測定方法:容量法
・電極型式:16453A
・測定環境:23℃、50%RH
・印加電圧:1V
 実施形態のフィルムは、マイクロ波配向計で測定した分子配向度(MOR)の値が1~1.3の範囲であり、1~1.1の範囲であることが好ましく、1~1.08の範囲であることが好ましく、1~1.06の範囲であることがより好ましく、1~1.04の範囲であることがさらに好ましい。
 分子配向度(MOR)は、マイクロ波分子配向計(例えば王子計測機器株式会社製、MOA-5012A)により測定される。マイクロ波分子配向計は、分子の配向によって、配向方向と直角方向とでマイクロ波の透過強度が異なることを利用した装置である。具体的には、試料を回転させながら、一定の周波数(12GHzが用いられる)を有するマイクロ波を照射し、分子の配向によって変化する透過マイクロ波の強度を測定し、その最大値/最小値の比をMORとする。一定の周波数を有するマイクロ波電界と、分子を構成する双極子との相互作用は、両者のベクトルの内積に関係する。試料の誘電率の異方性により、試料が配置される角度によってマイクロ波の強度が変化するため、配向度を知ることが可能である。
 実施形態のフィルムは、昇温速度5℃/分の条件で50~100℃の温度範囲において求められた線膨張係数が85ppm/℃以下であることが好ましく、50ppm/℃以下であることがより好ましく、40ppm/℃以下であることがさらに好ましく、30ppm/℃以下であることが特に好ましい。線膨張係数の下限値は特に限定されないが、例えば0ppm/℃以上である。また、例えば銅箔とフィルムとが積層された場合、銅箔の線膨張係数が18ppm/℃であることから、実施形態のフィルムの線膨張係数は、それに近い値であることが好ましい。つまり、実施形態のフィルムの線膨張係数は、0ppm/℃以上50ppm/℃以下であることが好ましく、10ppm/℃以上40ppm/℃以下であることがより好ましく、20ppm/℃以上30ppm/℃以下であることがさらに好ましい。線膨張係数がフィルムの方向や部位により異なる場合は、高いほうの値を、フィルムの線膨張係数として採用するものとする。フィルムの線膨張係数は、熱機械分析装置(例えば株式会社リガク製、型式:TMA8310)を用いて測定できる。上記数値範囲を満たす実施形態のフィルムは、低い線膨張係数を有し、寸法安定性が高い。
 等方性に優れるフィルムは、測定方向による線膨張係数の差が小さいものである。
 実施形態のフィルムは、上記線膨張係数において、MDの線膨張係数とTDの線膨張係数の差(MD>TDの場合はMD-TD、TD>MDの場合はTD-MD)が、2ppm/℃以下であることが好ましく、1ppm/℃以下であることがより好ましい。キャスト法により製膜されたフィルムにおいて、MDとは、分散液の塗工方向とする。上記の線膨張係数の差の計算のとおり、実際は、異なる方向における線膨張係数が判明すればよいので、フィルムのMDとTDが不明である場合は、フィルムの任意の方向をMDとし、それと90°交わる方向をTDとした時、それぞれの方向の線膨張係数の差が最も大きくなる様に方向を設定すればよい。
 上記数値範囲を満たす実施形態のフィルムは、線膨張の等方性に優れ、縦方向及び横方向の寸法安定性が高い。
 実施形態のフィルムは、電子部品用フィルムとして好適な外観として、孔又は貫通孔を有さないものが好ましい。孔又は貫通孔を有していると、めっき時に孔又は貫通孔の中にめっき液がしみ込んでしまう可能性がある。実施形態に係る液晶ポリエステル粉末を原料として製造された液晶ポリエステルフィルムは、電子部品用フィルムとして好適な厚さを有しつつ孔又は貫通孔の発生が抑制された高品質なものである。
 実施形態のフィルムの厚さは、特に限定されるものではないが、電子部品用フィルムとして好適な厚さとしては、5~50μmであることが好ましく、7~40μmであることがより好ましく、10~33μmであることがさらに好ましく、15~20μmであることが特に好ましい。
 なお、本明細書において、「厚さ」は、JIS規格(K7130-1992)に従い、無作為に選出した10箇所の厚さを測定して得た値の平均値とする。
 任意の液晶ポリエステルのなかから、誘電特性に優れた原料を選択することで、誘電特性に優れたフィルムが得られる。
 実施形態のフィルムの総質量100質量%に対する液晶ポリエステルの含有割合は、50~100質量%であってもよく、80~95質量%であってもよい。
 実施形態のフィルムに含まれる液晶ポリエステルの総和100質量%に対して、上記実施形態の液晶ポリエステルを70質量%超100質量%以下含むものであってもよく、80~100質量%含むものであってもよい。当該液晶ポリエステルは、前述の実施形態に係る液晶ポリエステル粉末で例示するものが挙げられ、例えば、上記式(1)で表される構造単位を有するもの、上記式(1)で表される構造単位、上記式(2)で表される構造単位、及び上記式(3)で表される構造単位を有する液晶ポリエステルである。上記の好ましい液晶ポリエステルの具体例として挙げた1)~34)からなる群から選ばれる少なくとも一種の共重合体も例示できる。
 実施形態のフィルムは、液晶ポリエステルを含み、周波数1GHzにおける比誘電率が3以下であり、周波数1GHzにおける誘電正接が0.005以下であり、マイクロ波配向計で測定した分子配向度(MOR)の値が1~1.3の範囲であるフィルム(ただし、液晶ポリエステルの総和100質量%に対して、非プロトン性溶媒に可溶な液晶ポリエステルの含有量が5質量%未満である)であってよい。
 実施形態のフィルムは、液晶ポリエステルを含み、周波数1GHzにおける比誘電率が3以下であり、周波数1GHzにおける誘電正接が0.005以下であり、マイクロ波配向計で測定した分子配向度(MOR)の値が1~1.3の範囲であるフィルム(ただし、液晶ポリエステルの総和100質量%に対して、実施形態の液晶ポリエステル組成物に係る媒体に可溶な液晶ポリエステルの含有量が5質量%未満である)であってよい。
 実施形態のフィルムは、液晶ポリエステルを含み、周波数1GHzにおける比誘電率が3以下であり、周波数1GHzにおける誘電正接が0.005以下であり、マイクロ波配向計で測定した分子配向度(MOR)の値が1~1.3の範囲であるフィルム(ただし、非プロトン性溶媒に可溶な液晶ポリエステルを含むものを除く)であってよい。
 実施形態のフィルムは、液晶ポリエステルを含み、周波数1GHzにおける比誘電率が3以下であり、周波数1GHzにおける誘電正接が0.005以下であり、マイクロ波配向計で測定した分子配向度(MOR)の値が1~1.3の範囲であるフィルム(ただし、実施形態の液晶ポリエステル組成物に係る媒体に可溶な液晶ポリエステルを含むものを除く)であってよい。
 ここで、非プロトン性溶媒や媒体に可溶な液晶ポリエステルとしては、実施形態に係る液晶ポリエステル粉末で例示するものが挙げられる。
 実施形態のフィルムの製造方法は特に限定されるものではないが、実施形態のフィルムは、上記≪液晶ポリエステルフィルムの製造方法≫により製造可能である。
 実施形態のフィルムは、プリント配線板などの電子部品用フィルム用途に好適に使用することができる。実施形態のフィルムは、それを絶縁材として備える、基板(例えば、フレキシブル基板)や、積層板(例えば、フレキシブル銅張積層板)、プリント基板、プリント配線板、プリント回路板等として提供可能である。
≪第1積層体≫
 実施形態の第1積層体は、第1金属層と、前記第1金属層上に積層された実施形態に係るフィルムと、を備えるものである。
 図3は、本発明の一実施形態の第1積層体23の構成を示す模式図である。第1積層体23は、第1金属層14と、第1金属層14上に積層された液晶ポリエステルフィルム10と、を備える。
 積層体が備える液晶ポリエステルフィルムについては、上記に例示したものが挙げられ、説明を省略する。
 積層体が備える第1金属層については、上記の≪液晶ポリエステルフィルムの製造方法≫及び≪第1積層体の製造方法≫において第1支持体として例示したものが挙げられ、金属箔が好ましい。第1金属層を構成する金属としては導電性やコストの観点で銅が好ましく、金属箔としては銅箔が好ましい。
 実施形態の第1積層体の厚さは、特に限定されるものではないが、5~130μmであることが好ましく、10~70μmであることがより好ましく、15~60μmであることがさらに好ましい。
 実施形態の第1積層体の製造方法は特に限定されるものではないが、実施形態の第1積層体は、上記の≪第1積層体の製造方法≫により製造可能である。
 実施形態の第1積層体は、積層板(例えば、フレキシブル銅張積層板)等の電子部品用の積層板用途に好適に使用することができる。
≪第2積層体≫
 実施形態の第2積層体は、第1金属層と、前記第1金属層上に積層された液晶ポリエステルフィルムと、前記液晶ポリエステルフィルムの第1金属層が積層された側とは反対側の面上に積層された第2金属層と、を備えるものである。
 図4は、本発明の一実施形態の第2積層体24の構成を示す模式図である。第2積層体24は、第1金属層14と、第1金属層14上に積層された液晶ポリエステルフィルム10と、液晶ポリエステルフィルム10の第1金属層14が積層された側とは反対側の面上に積層された第2金属層15と、を備える。
 第2積層体が備える液晶ポリエステルフィルムについては、上記の≪液晶ポリエステルフィルムの製造方法≫に例示したものが挙げられ、説明を省略する。
 第2積層体が備える第1金属層及び第2金属層については、上記の≪液晶ポリエステルフィルムの製造方法≫において第1支持体として例示したものが挙げられ、金属箔が好ましい。第1金属層及び第2金属層を構成する金属としては導電性やコストの観点で銅が好ましく、第1金属層及び第2金属層の金属箔としては銅箔が好ましい。
 実施形態の第2積層体の厚さは、特に限定されるものではないが、5~130μmであることが好ましく、10~70μmであることがより好ましく、15~60μmであることがさらに好ましい。
 実施形態の第2積層体の製造方法は特に限定されるものではないが、実施形態の第2積層体は、上記の≪第2積層体の製造方法≫により製造可能である。
 実施形態の第2積層体は、積層板(例えば、両面フレキシブル銅張積層板)等の電子部品用の積層板用途に好適に使用することができる。
 次に実施例を示して本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。
≪測定方法≫
〔液晶ポリエステルの吸熱ピークの測定〕
 液晶ポリエステルを試料として、示差走査熱量測定装置(株式会社島津製作所の「DSC-60A Plus」)を用いて、室温(23℃)から10℃/分の速度で昇温して、液晶ポリエステルの吸熱ピークの頂点位置の温度(℃)を測定した。
〔液晶ポリエステルの流動開始温度の測定〕
 フローテスター(株式会社島津製作所の「CFT-500型」)を用いて、液晶ポリエステル約2gを、内径1mm及び長さ10mmのノズルを有するダイを取り付けたシリンダーに充填し、9.8MPa(100kg/cm)の荷重下、4℃/分の速度で昇温しながら、液晶ポリエステルを溶融させ、ノズルから押し出し、4800Pa・s(48000P)の粘度を示す温度(℃)を液晶ポリエステルの流動開始温度として測定した。
〔液晶ポリエステルの分子量の測定〕
 高速GPC装置(東ソー製 HLC-8220)、カラム[東ソー製:TSKgel SuperHM-H(2本)、(φ6.0mm×15cm)]、溶媒[ペンタフルオロフェノール/クロロホルム(重量比35/65)]を用いて、液晶ポリエステル粉末に含まれる液晶ポリエステルの数平均分子量(Mn)および重量平均分子量(Mw)を測定した。
 測定用試料溶液は、試料2mgをペンタフルオロフェノール1.4gに添加し、80℃2時間溶解させ、室温まで冷却後、クロロホルム2.6gを添加し、さらに溶媒[ペンタフルオロフェノール/クロロホルム(重量比35/65)]で2倍希釈した後、孔径0.45μmのフィルターを用いてろ過し、調製した。分子量はポリスチレンを標準物質として用い、算出した。
〔液晶ポリエステルのアセチル基末端/水酸基末端のモル比の測定〕
 以下のNMR測定により、液晶ポリエステルのアセチル基末端および水酸基末端の比率を測定した。
 NMR装置:Bruker社製 AVANCE III
 磁場強度:14.1T
 プローブ:TCIクライオプローブ
 測定用試料溶液は、試料10mgに重水素化ペンタフルオロフェノール0.5mLを添加し、100℃2時間溶解させ、さらに重水素化1,1,2,2-テトラクロロエタン0.3mLを加えて混合し、調製した。NMR測定は下記条件で行った。
 測定法  : H-1D (プレサチュレーション法)
 測定温度: 30℃
 積算回数: 64回
 待ち時間: 4秒
〔液晶ポリエステルのアセチル基末端/水酸基末端のモル比の解析〕
 得られたHスペクトルについて、7.6ppm付近の2-ヒドロキシ-6-ナフトエ酸由来のシグナルの化学シフトを7.64ppmに補正し、ベースライン補正を施したうえで、各領域に検出されるシグナルの積分値(ピーク面積)を末端ユニットあたりの水素原子数で除して、アセチル基末端と水酸基末端とのモル比を得た。
 2.66ppm~2.54ppmおよび2.52ppm~2.45ppmの領域には、アセチル基末端由来の水素原子(A)が検出される。この領域をそれぞれ積分して得た値を足し合わせ、さらに、末端構造単位あたりの水素原子数である3で除して、アセチル基末端の相対物質量(IntAc)を得た。
 7.00ppm~6.91ppmの領域には、ハイドロキノンに由来する構造単位の水酸基末端の水酸基に対してオルト位に存在する水素原子(B)が検出される。この領域を積分し、さらに、この末端構造単位あたりの水素原子数である2で除して、ハイドロキノンに由来する構造単位の水酸基末端の相対物質量(IntOH-1)を得た。
 7.33ppm~7.24ppmの領域には、2-ヒドロキシ-6-ナフトエ酸水酸基末端の水酸基に対してオルト位に存在する水素原子(D)および水素原子(E)、ハイドロキノンユニットの水素原子(X)が検出される。この領域の積分値から、別の領域に検出されるハイドロキノンに由来する構造単位の水素原子(Y)の積分値を差し引き、さらに、この末端構造単位あたりの水素原子数である2で除して、2-ヒドロキシ-6-ナフトエ酸に由来する構造単位の水酸基末端の相対物質量(IntOH-2)を得た。
Figure JPOXMLDOC01-appb-C000002
 液晶ポリエステルのアセチル基末端/水酸基末端のモル比は、下記式により求めた。
 アセチル基末端の相対物質量/水酸基末端の相対物質量
=(IntAc)/{(IntOH-1)+(IntOH-2)}
≪液晶ポリエステル粉末の製造≫
 〔実施例1〕
 撹拌装置、トルクメータ、窒素ガス導入管、温度計及び還流冷却器を備えた反応器に、2-ヒドロキシ-6-ナフトエ酸1034.99g(5.5モル)、2,6-ナフタレンジカルボン酸378.33g(1.75モル)、テレフタル酸83.07g(0.5モル)、ハイドロキノン255.2g(2.318モル)、無水酢酸962.30g(9.43モル)、及び触媒として1-メチルイミダゾール0.17gを入れた。反応器内のガスを窒素ガスで置換した後、窒素ガス気流下、撹拌しながら、室温から145℃まで15分かけて昇温し、145℃で1時間還流させた。
 上記モノマーのフェノール性水酸基1当量に対する無水酢酸の当量の比で表される無水酢酸比は、0.93である。
 次いで、副生した酢酸及び未反応の無水酢酸を留去しながら、145℃から310℃まで3時間30分かけて昇温し、310℃で120分保持した後、SUSトレイへ排出し、室温まで冷却固化して固形状の液晶ポリエステル(A1)を得た。この液晶ポリエステル(A1)の流動開始温度は、221.0℃であった。
 得られた液晶ポリエステルを、2mmのパンチングメタルスクリーン(粉砕スクリーン)を用い、オリエント社製の粉砕機(型式:VM-16、回転数:1500rpm)で粉砕して、実施例1の液晶ポリエステル粉末を得た。
 〔実施例2〕
 撹拌装置、トルクメータ、窒素ガス導入管、温度計及び還流冷却器を備えた反応器に、2-ヒドロキシ-6-ナフトエ酸1034.99g(5.5モル)、2,6-ナフタレンジカルボン酸378.33g(1.75モル)、テレフタル酸83.07g(0.5モル)、ハイドロキノン255.2g(2.318モル)、無水酢酸982.90g(9.63モル)、及び触媒として1-メチルイミダゾール0.17gを入れた。反応器内のガスを窒素ガスで置換した後、窒素ガス気流下、撹拌しながら、室温から145℃まで15分かけて昇温し、145℃で1時間還流させた。
 上記モノマーのフェノール性水酸基1当量に対する無水酢酸の当量の比で表される無水酢酸比は、0.95である。
 次いで、副生した酢酸及び未反応の無水酢酸を留去しながら、145℃から310℃まで3時間30分かけて昇温し、310℃で120分保持した後、SUSトレイへ排出し、室温まで冷却固化して固形状の液晶ポリエステル(A2)を得た。この液晶ポリエステル(A2)の流動開始温度は、222.7℃であった。
 得られた液晶ポリエステルを、2mmのパンチングメタルスクリーン(粉砕スクリーン)を用い、オリエント社製の粉砕機(型式:VM-16、回転数:1500rpm)で粉砕して、実施例2の液晶ポリエステル粉末を得た。
 〔実施例3〕
 撹拌装置、トルクメータ、窒素ガス導入管、温度計及び還流冷却器を備えた反応器に、2-ヒドロキシ-6-ナフトエ酸1034.99g(5.5モル)、2,6-ナフタレンジカルボン酸378.33g(1.75モル)、テレフタル酸83.07g(0.5モル)、ハイドロキノン255.2g(2.318モル)、無水酢酸1003.60g(9.83モル)、及び触媒として1-メチルイミダゾール0.17gを入れた。反応器内のガスを窒素ガスで置換した後、窒素ガス気流下、撹拌しながら、室温から145℃まで15分かけて昇温し、145℃で1時間還流させた。
 上記モノマーのフェノール性水酸基1当量に対する無水酢酸の当量の比で表される無水酢酸比は、0.97である。
 次いで、副生した酢酸及び未反応の無水酢酸を留去しながら、145℃から310℃まで3時間30分かけて昇温し、310℃で120分保持した後、SUSトレイへ排出し、室温まで冷却固化して固形状の液晶ポリエステル(A3)を得た。この液晶ポリエステル(A3)の流動開始温度は、230.5℃であった。
 得られた液晶ポリエステルを、2mmのパンチングメタルスクリーン(粉砕スクリーン)を用い、オリエント社製の粉砕機(型式:VM-16、回転数:1500rpm)で粉砕して、実施例3の液晶ポリエステル粉末を得た。
 〔実施例4〕
 撹拌装置、トルクメータ、窒素ガス導入管、温度計及び還流冷却器を備えた反応器に、2-ヒドロキシ-6-ナフトエ酸1034.99g(5.5モル)、2,6-ナフタレンジカルボン酸378.33g(1.75モル)、テレフタル酸83.07g(0.5モル)、ハイドロキノン255.2g(2.318モル)、無水酢酸1014.00g(9.94モル)、及び触媒として1-メチルイミダゾール0.17gを入れた。反応器内のガスを窒素ガスで置換した後、窒素ガス気流下、撹拌しながら、室温から145℃まで15分かけて昇温し、145℃で1時間還流させた。
 上記モノマーのフェノール性水酸基1当量に対する無水酢酸の当量の比で表される無水酢酸比は、0.98である。
 次いで、副生した酢酸及び未反応の無水酢酸を留去しながら、145℃から310℃まで3時間30分かけて昇温し、310℃で120分保持した後、SUSトレイへ排出し、室温まで冷却固化して固形状の液晶ポリエステル(A4)を得た。この液晶ポリエステル(A4)の流動開始温度は、235.2℃であった。
 得られた液晶ポリエステルを、2mmのパンチングメタルスクリーン(粉砕スクリーン)を用い、オリエント社製の粉砕機(型式:VM-16、回転数:1500rpm)で粉砕して、実施例4の液晶ポリエステル粉末を得た。
 〔実施例5〕
 撹拌装置、トルクメータ、窒素ガス導入管、温度計及び還流冷却器を備えた反応器に、2-ヒドロキシ-6-ナフトエ酸1034.99g(5.5モル)、2,6-ナフタレンジカルボン酸378.33g(1.75モル)、テレフタル酸83.07g(0.5モル)、ハイドロキノン255.2g(2.318モル)、無水酢酸1024.30g(10.03モル)、及び触媒として1-メチルイミダゾール0.17gを入れた。反応器内のガスを窒素ガスで置換した後、窒素ガス気流下、撹拌しながら、室温から145℃まで15分かけて昇温し、145℃で1時間還流させた。
 上記モノマーのフェノール性水酸基1当量に対する無水酢酸の当量の比で表される無水酢酸比は、0.99である。
 次いで、副生した酢酸及び未反応の無水酢酸を留去しながら、145℃から310℃まで3時間30分かけて昇温し、310℃で120分保持した後、SUSトレイへ排出し、室温まで冷却固化して固形状の液晶ポリエステル(A5)を得た。この液晶ポリエステル(A5)の流動開始温度は、231.8℃であった。
 得られた液晶ポリエステルを、2mmのパンチングメタルスクリーン(粉砕スクリーン)を用い、オリエント社製の粉砕機(型式:VM-16、回転数:1500rpm)で粉砕して、実施例5の液晶ポリエステル粉末を得た。
 〔実施例6〕
 撹拌装置、トルクメータ、窒素ガス導入管、温度計及び還流冷却器を備えた反応器に、2-ヒドロキシ-6-ナフトエ酸1034.99g(5.5モル)、2,6-ナフタレンジカルボン酸378.33g(1.75モル)、テレフタル酸83.07g(0.5モル)、ハイドロキノン255.2g(2.318モル)、無水酢酸1033.60g(10.13モル)、及び触媒として1-メチルイミダゾール0.17gを入れた。反応器内のガスを窒素ガスで置換した後、窒素ガス気流下、撹拌しながら、室温から145℃まで15分かけて昇温し、145℃で1時間還流させた。
 上記モノマーのフェノール性水酸基1当量に対する無水酢酸の当量の比で表される無水酢酸比は、0.999である。
 次いで、副生した酢酸及び未反応の無水酢酸を留去しながら、145℃から310℃まで3時間30分かけて昇温し、310℃で120分保持した後、SUSトレイへ排出し、室温まで冷却固化して固形状の液晶ポリエステル(A6)を得た。この液晶ポリエステル(A6)の流動開始温度は、235.1℃であった。
 得られた液晶ポリエステルを、2mmのパンチングメタルスクリーン(粉砕スクリーン)を用い、オリエント社製の粉砕機(型式:VM-16、回転数:1500rpm)で粉砕して、実施例6の液晶ポリエステル粉末を得た。
 〔比較例1〕
 撹拌装置、トルクメータ、窒素ガス導入管、温度計及び還流冷却器を備えた反応器に、2-ヒドロキシ-6-ナフトエ酸1034.99g(5.5モル)、2,6-ナフタレンジカルボン酸378.33g(1.75モル)、テレフタル酸83.07g(0.5モル)、ハイドロキノン255.2g(2.318モル)、無水酢酸1086.40g(10.64モル)、及び触媒として1-メチルイミダゾール0.17gを入れた。反応器内のガスを窒素ガスで置換した後、窒素ガス気流下、撹拌しながら、室温から145℃まで15分かけて昇温し、145℃で1時間還流させた。
 上記モノマーのフェノール性水酸基1当量に対する無水酢酸の当量の比で表される無水酢酸比は、1.05である。
 次いで、副生した酢酸及び未反応の無水酢酸を留去しながら、145℃から310℃まで3時間30分かけて昇温し、310℃で120分保持した後、SUSトレイへ排出し、室温まで冷却固化して固形状の液晶ポリエステル(A7)を得た。この液晶ポリエステル(A7)の流動開始温度は、244.1℃であった。
 得られた液晶ポリエステルを、2mmのパンチングメタルスクリーン(粉砕スクリーン)を用い、オリエント社製の粉砕機(型式:VM-16、回転数:1500rpm)で粉砕して、比較例1の液晶ポリエステル粉末を得た。
 〔比較例2〕
 撹拌装置、トルクメータ、窒素ガス導入管、温度計及び還流冷却器を備えた反応器に、2-ヒドロキシ-6-ナフトエ酸1034.99g(5.5モル)、2,6-ナフタレンジカルボン酸378.33g(1.75モル)、テレフタル酸83.07g(0.5モル)、ハイドロキノン255.2g(2.318モル)、無水酢酸1138.20g(11.15モル)、及び触媒として1-メチルイミダゾール0.17gを入れた。反応器内のガスを窒素ガスで置換した後、窒素ガス気流下、撹拌しながら、室温から145℃まで15分かけて昇温し、145℃で1時間還流させた。
 上記モノマーのフェノール性水酸基1当量に対する無水酢酸の当量の比で表される無水酢酸比は、1.10である。
 次いで、副生した酢酸及び未反応の無水酢酸を留去しながら、145℃から310℃まで3時間30分かけて昇温し、310℃で120分保持した後、SUSトレイへ排出し、室温まで冷却固化して固形状の液晶ポリエステル(A8)を得た。この液晶ポリエステル(A8)の流動開始温度は、251.7℃であった。
 得られた液晶ポリエステルを、2mmのパンチングメタルスクリーン(粉砕スクリーン)を用い、オリエント社製の粉砕機(型式:VM-16、回転数:1500rpm)で粉砕して、比較例2の液晶ポリエステル粉末を得た。
 〔比較例3〕
 撹拌装置、トルクメータ、窒素ガス導入管、温度計及び還流冷却器を備えた反応器に、2-ヒドロキシ-6-ナフトエ酸1034.99g(5.5モル)、2,6-ナフタレンジカルボン酸378.33g(1.75モル)、テレフタル酸83.07g(0.5モル)、ハイドロキノン255.2g(2.318モル)、無水酢酸1189.90g(11.66モル)、及び触媒として1-メチルイミダゾール0.17gを入れた。反応器内のガスを窒素ガスで置換した後、窒素ガス気流下、撹拌しながら、室温から145℃まで15分かけて昇温し、145℃で1時間還流させた。
 上記モノマーのフェノール性水酸基1当量に対する無水酢酸の当量の比で表される無水酢酸比は、1.15である。
 次いで、副生した酢酸及び未反応の無水酢酸を留去しながら、145℃から310℃まで3時間30分かけて昇温し、310℃で120分保持した後、SUSトレイへ排出し、室温まで冷却固化して固形状の液晶ポリエステル(A9)を得た。この液晶ポリエステル(A9)の流動開始温度は、261.6℃であった。
 得られた液晶ポリエステルを、2mmのパンチングメタルスクリーン(粉砕スクリーン)を用い、オリエント社製の粉砕機(型式:VM-16、回転数:1500rpm)で粉砕して、比較例3の液晶ポリエステル粉末を得た。
≪液晶ポリエステル粉末の固相重合≫
 実施例及び比較例の各液晶ポリエステル粉末30gに対して、窒素雰囲気下で、室温(23℃)から290℃まで4時間かけて昇温し、290℃で2時間保持する熱処理を行い、液晶ポリエステルの固相重合を行った。
 固相重合後の液晶ポリエステル粉末について、示差走査熱量測定装置を用いて吸熱ピーク位置を測定し、固相重合後の液晶ポリエステルの吸熱ピークの温度(B)を得た。そして、固相重合後の液晶ポリエステルの吸熱ピークの温度(B)-固相重合前の液晶ポリエステルの吸熱ピークの温度(A)の値を求め、固相重合前からの温度変化量(高温シフト)を算出した。
 上記の各項目の測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000003
 表1に示されるように、液晶ポリエステルの製造において、原料モノマーのフェノール性水酸基1当量に対する、無水酢酸の当量の比“無水酢酸比”を1未満とすることで、原料モノマーのアセチル化が抑制され、その結果、液晶ポリエステルのアセチル基末端/水酸基末端のモル比を効果的に抑制できていた。
 アセチル基末端/水酸基末端のモル比(アシル基末端/水酸基末端のモル比)が10以下である液晶ポリエステルを含む実施例1~6の液晶ポリエステル粉末は、該条件を満たさない比較例1~3の液晶ポリエステル粉末と比べ、固相重合後の示差走査熱量測定で検出される吸熱ピークの温度変化(高温シフト)が抑えられていた。
 液晶ポリエステルの前記吸熱ピークの高温シフトが生じ難いことは、液晶ポリエステルの溶融温度の温度上昇が生じ難い傾向を反映したものといえる。かかる性質を有する液晶ポリエステル粉末から得られた液晶ポリエステルフィルムは、液晶ポリエステルの前記吸熱ピークの温度上昇が抑制されているため、例えば、その後の工程で更に別の層(例えば銅箔)とラミネートさせる場合であっても、低温で液晶ポリエステルが溶融し易く、ラミネート後の液晶ポリエステルフィルムと銅箔との密着強度が高められ易いという優れた利点を有する。
 各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。また、本発明は各実施形態によって限定されることはなく、請求項(クレーム)の範囲によってのみ限定される。
1…液晶ポリエステル粉末、3…媒体、30…液晶ポリエステル組成物、10…液晶ポリエステルフィルム、12…第1支持体、13…第2支持体、14…第1金属層、15…第2金属層、22…積層体前駆体、40…液晶ポリエステルフィルム前駆体、20,23…第1積層体、21,24…第2積層体

Claims (15)

  1.  H-NMRにより分析される、アシル基末端/水酸基末端のモル比が、10以下である液晶ポリエステルを含む、液晶ポリエステル粉末。
  2.  前記アシル基がアセチル基である、請求項1に記載の液晶ポリエステル粉末。
  3.  前記液晶ポリエステルの流動開始温度が240℃以下である、請求項1又は2に記載の液晶ポリエステル粉末。
  4.  前記液晶ポリエステルの、ポリスチレンを標準物質として測定される重量平均分子量が20000以下である、請求項1~3のいずれか一項に記載の液晶ポリエステル粉末。
  5.  前記液晶ポリエステルの、ポリスチレンを標準物質として測定される数平均分子量が7000以下である、請求項1~4のいずれか一項に記載の液晶ポリエステル粉末。
  6.  前記液晶ポリエステルが、ナフタレン構造を含む構造単位を有する、請求項1~5のいずれか一項に記載の液晶ポリエステル粉末。
  7.  前記ナフタレン構造を含む構造単位の含有量が、前記液晶ポリエステル中の全構造単位の合計量100モル%に対して40モル%以上である、請求項6に記載の液晶ポリエステル粉末。
  8.  前記液晶ポリエステルが、下記式(1)で表される構造単位、下記式(2)で表される構造単位、及び下記式(3)で表される構造単位を有する、請求項1~7のいずれか一項に記載の液晶ポリエステル粉末。
    (1)-O-Ar1-CO-
    (2)-CO-Ar2-CO-
    (3)-O-Ar3-O-
    (Ar1は、2,6-ナフチレン基、1,4-フェニレン基、又は4,4’-ビフェニリレン基を表す。
     Ar2及びAr3は、それぞれ独立に、2,6-ナフチレン基、2,7-ナフチレン基、1,4-フェニレン基、1,3-フェニレン基、又は4,4’-ビフェニリレン基を表す。
     Ar1、Ar2又はAr3で表される前記基にある水素原子は、それぞれ独立に、ハロゲン原子、炭素数1~10のアルキル基、又は炭素数6~20のアリール基で置換されていてもよい。)
  9.  請求項1~8のいずれか一項に記載の液晶ポリエステル粉末の製造方法であって、
     芳香族ヒドロキシカルボン酸及び芳香族ジオールの少なくとも一方と、脂肪酸無水物とをアシル化反応させて、アシル化物を得る工程(i)、並びに、
     前記アシル化物と、芳香族ヒドロキシカルボン酸及び芳香族ジカルボン酸の少なくとも一方とをエステル交換反応させて、液晶ポリエステルを得る工程(ii)を含み、
     前記工程(i)における前記脂肪酸無水物の使用量が、前記芳香族ヒドロキシカルボン酸及び前記芳香族ジオールの少なくとも一方の有するフェノール性水酸基1当量に対して、前記脂肪酸無水物が1当量未満の量である、液晶ポリエステル粉末の製造方法。
  10.  前記アシル化反応がアセチル化反応であり、
     芳香族ヒドロキシカルボン酸及び芳香族ジオールの少なくとも一方と、酢酸無水物とをアセチル化反応させて、アセチル化物を得る工程(i)、並びに、
     前記アセチル化物と、芳香族ヒドロキシカルボン酸及び芳香族ジカルボン酸の少なくとも一方とをエステル交換反応させて、液晶ポリエステルを得る工程(ii)を含み、
     前記工程(i)における前記酢酸無水物の使用量が、前記芳香族ヒドロキシカルボン酸及び前記芳香族ジオールの少なくとも一方の有するフェノール性水酸基1当量に対して、前記酢酸無水物が1当量未満の量である、請求項9に記載の液晶ポリエステル粉末の製造方法。
  11.  前記液晶ポリエステル粉末が含む液晶ポリエステルが、前記芳香族ヒドロキシカルボン酸に由来する下記式(1)で表される構造単位、前記芳香族ジカルボン酸に由来する下記式(2)で表される構造単位、及び前記芳香族ジオールに由来する下記式(3)で表される構造単位を有する、請求項9又は10に記載の液晶ポリエステル粉末の製造方法。
    (1)-O-Ar1-CO-
    (2)-CO-Ar2-CO-
    (3)-O-Ar3-O-
    (Ar1は、2,6-ナフチレン基、1,4-フェニレン基、又は4,4’-ビフェニリレン基を表す。
     Ar2及びAr3は、それぞれ独立に、2,6-ナフチレン基、2,7-ナフチレン基、1,4-フェニレン基、1,3-フェニレン基、又は4,4’-ビフェニリレン基を表す。
     Ar1、Ar2又はAr3で表される前記基にある水素原子は、それぞれ独立に、ハロゲン原子、炭素数1~10のアルキル基、又は炭素数6~20のアリール基で置換されていてもよい。)
  12.  媒体と、請求項1~8のいずれか一項に記載の液晶ポリエステル粉末と、を含有する、液晶ポリエステル組成物。
  13.  第1支持体上に、請求項12に記載の液晶ポリエステル組成物を塗布し、熱処理して、液晶ポリエステルを含む液晶ポリエステルフィルムを得ることを含む、液晶ポリエステルフィルムの製造方法。
  14.  第1支持体上に、請求項12に記載の液晶ポリエステル組成物を塗布し、熱処理して、液晶ポリエステルを含む液晶ポリエステルフィルムを形成することにより、前記第1支持体と前記液晶ポリエステルフィルムとを備える第1積層体を得ることを含む、積層体の製造方法。
  15.  前記第1積層体の前記液晶ポリエステルフィルムの前記第1支持体が積層された側とは反対側の面上に、第2支持体を積層し、前記液晶ポリエステルフィルムを加熱して、液晶ポリエステルフィルムと第2支持体とを貼り合わせて第2積層体を得ることを含む、請求項14に記載の積層体の製造方法。
PCT/JP2022/030522 2021-08-17 2022-08-10 液晶ポリエステル粉末及びその製造方法、並びに、液晶ポリエステル組成物、液晶ポリエステルフィルムの製造方法、及び積層体の製造方法 WO2023022081A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280055784.0A CN117980370A (zh) 2021-08-17 2022-08-10 液晶聚酯粉末及其制造方法、以及液晶聚酯组合物、液晶聚酯膜的制造方法及层叠体的制造方法
JP2023542367A JPWO2023022081A1 (ja) 2021-08-17 2022-08-10
KR1020247008258A KR20240046758A (ko) 2021-08-17 2022-08-10 액정 폴리에스테르 분말 및 그 제조 방법, 그리고 액정 폴리에스테르 조성물, 액정 폴리에스테르 필름의 제조 방법, 및 적층체의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-132631 2021-08-17
JP2021132631 2021-08-17

Publications (1)

Publication Number Publication Date
WO2023022081A1 true WO2023022081A1 (ja) 2023-02-23

Family

ID=85240724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/030522 WO2023022081A1 (ja) 2021-08-17 2022-08-10 液晶ポリエステル粉末及びその製造方法、並びに、液晶ポリエステル組成物、液晶ポリエステルフィルムの製造方法、及び積層体の製造方法

Country Status (4)

Country Link
JP (1) JPWO2023022081A1 (ja)
KR (1) KR20240046758A (ja)
CN (1) CN117980370A (ja)
WO (1) WO2023022081A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02235922A (ja) * 1989-03-08 1990-09-18 Sumitomo Chem Co Ltd 芳香族ポリエステルの製造方法
JP2011116834A (ja) * 2009-12-02 2011-06-16 Toray Ind Inc 液晶性ポリエステル、その樹脂組成物およびそれらからなる成形品
JP2012251130A (ja) * 2011-05-31 2012-12-20 Samsung Electro-Mechanics Co Ltd 印刷回路基板用絶縁性樹脂組成物及びこれを含む印刷回路基板
JP2015044397A (ja) * 2013-08-28 2015-03-12 サムソン エレクトロ−メカニックス カンパニーリミテッド. 印刷回路基板用の銅張積層板およびその製造方法
JP2021098366A (ja) * 2019-12-23 2021-07-01 長春人造樹脂廠股▲分▼有限公司 積層体、回路基板、及びそれらに適用する液晶ポリマーフィルム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020166651A1 (ja) 2019-02-15 2020-08-20 住友化学株式会社 液晶ポリエステル粉末、液晶ポリエステル組成物、フィルムの製造方法、及び積層体の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02235922A (ja) * 1989-03-08 1990-09-18 Sumitomo Chem Co Ltd 芳香族ポリエステルの製造方法
JP2011116834A (ja) * 2009-12-02 2011-06-16 Toray Ind Inc 液晶性ポリエステル、その樹脂組成物およびそれらからなる成形品
JP2012251130A (ja) * 2011-05-31 2012-12-20 Samsung Electro-Mechanics Co Ltd 印刷回路基板用絶縁性樹脂組成物及びこれを含む印刷回路基板
JP2015044397A (ja) * 2013-08-28 2015-03-12 サムソン エレクトロ−メカニックス カンパニーリミテッド. 印刷回路基板用の銅張積層板およびその製造方法
JP2021098366A (ja) * 2019-12-23 2021-07-01 長春人造樹脂廠股▲分▼有限公司 積層体、回路基板、及びそれらに適用する液晶ポリマーフィルム

Also Published As

Publication number Publication date
CN117980370A (zh) 2024-05-03
KR20240046758A (ko) 2024-04-09
JPWO2023022081A1 (ja) 2023-02-23

Similar Documents

Publication Publication Date Title
US20220089899A1 (en) Liquid crystal polyester powder, liquid crystal polyester composition, film producing method, and laminate producing method
JP7390127B2 (ja) 液晶ポリエステル組成物、フィルムの製造方法、及び積層体の製造方法
TWI811422B (zh) 積層體用液晶聚酯樹脂、液晶聚酯樹脂組成物、積層體、液晶聚酯樹脂薄膜、以及積層體及液晶聚酯樹脂薄膜之製造方法
JP6619487B1 (ja) 液晶ポリエステルフィルム、液晶ポリエステル液状組成物及び液晶ポリエステルフィルムの製造方法
US11879041B2 (en) Film and laminate
WO2022030494A1 (ja) 液状組成物、液状組成物の製造方法、液晶ポリエステルフィルムの製造方法及び積層体の製造方法
WO2023022081A1 (ja) 液晶ポリエステル粉末及びその製造方法、並びに、液晶ポリエステル組成物、液晶ポリエステルフィルムの製造方法、及び積層体の製造方法
JP7210401B2 (ja) フィルム及び積層体
WO2023022083A1 (ja) 液晶ポリエステル粉末及びその製造方法、液晶ポリエステル組成物、液晶ポリエステルフィルム及びその製造方法、並びに積層体及びその製造方法
JP6705537B2 (ja) 積層体用液晶ポリエステル樹脂、液晶ポリエステル樹脂組成物、積層体および液晶ポリエステル樹脂フィルム
TW202212408A (zh) 液晶聚酯液狀組成物、液晶聚酯薄膜、層合體及液晶聚酯薄膜的製造方法
WO2022168855A1 (ja) 液晶ポリエステル粉末、粉末の製造方法、組成物、組成物の製造方法、フィルムの製造方法及び積層体の製造方法
WO2022168853A1 (ja) 液晶ポリエステル粉末、組成物、組成物の製造方法、フィルムの製造方法及び積層体の製造方法
TWI837303B (zh) 液晶聚酯粉末、液晶聚酯組成物、薄膜的製造方法及積層體的製造方法
JP2022031116A (ja) 液状組成物、液状組成物の製造方法、液晶ポリエステルフィルムの製造方法及び積層体の製造方法
JP2013048155A (ja) 金属ベース基板の製造方法及び液晶ポリエステルフィルムの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22858402

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023542367

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20247008258

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE