WO2013146174A1 - 熱可塑性液晶ポリマーフィルムおよびその製造方法 - Google Patents

熱可塑性液晶ポリマーフィルムおよびその製造方法 Download PDF

Info

Publication number
WO2013146174A1
WO2013146174A1 PCT/JP2013/056387 JP2013056387W WO2013146174A1 WO 2013146174 A1 WO2013146174 A1 WO 2013146174A1 JP 2013056387 W JP2013056387 W JP 2013056387W WO 2013146174 A1 WO2013146174 A1 WO 2013146174A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
liquid crystal
crystal polymer
thermoplastic liquid
temperature
Prior art date
Application number
PCT/JP2013/056387
Other languages
English (en)
French (fr)
Other versions
WO2013146174A8 (ja
Inventor
今野貴文
砂本辰也
小野寺稔
松永修始
大森一行
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to CN201380017961.7A priority Critical patent/CN104220236A/zh
Priority to KR20147030055A priority patent/KR20150001770A/ko
Priority to EP13769770.2A priority patent/EP2832525A4/en
Publication of WO2013146174A1 publication Critical patent/WO2013146174A1/ja
Priority to US14/500,306 priority patent/US20150017413A1/en
Publication of WO2013146174A8 publication Critical patent/WO2013146174A8/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/005Shaping by stretching, e.g. drawing through a die; Apparatus therefor characterised by the choice of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/14Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
    • B29C55/143Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively firstly parallel to the direction of feed and then transversely thereto
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D7/00Producing flat articles, e.g. films or sheets
    • B29D7/01Films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • C09K19/3804Polymers with mesogenic groups in the main chain
    • C09K19/3809Polyesters; Polyester derivatives, e.g. polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0079Liquid crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/20Polymers characterized by their physical structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/22Thermoplastic resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2219/00Aspects relating to the form of the liquid crystal [LC] material, or by the technical area in which LC material are used
    • C09K2219/03Aspects relating to the form of the liquid crystal [LC] material, or by the technical area in which LC material are used in the form of films, e.g. films after polymerisation of LC precursor

Definitions

  • the present invention relates to a film (hereinafter, this may be referred to as a thermoplastic liquid crystal polymer) made of a thermoplastic polymer capable of forming a uniaxially or biaxially stretched optically anisotropic melt phase. May be referred to as a thermoplastic liquid crystal polymer film or a liquid crystal polymer film) and a method for producing the same.
  • a film hereinafter, this may be referred to as a thermoplastic liquid crystal polymer
  • a thermoplastic liquid crystal polymer film or a liquid crystal polymer film a method for producing the same.
  • Thermoplastic liquid crystal polymer films have excellent low moisture absorption, heat resistance, chemical resistance, and electrical properties, and are rapidly commercialized as electrical insulating materials for printed wiring boards and the like. .
  • thermoplastic liquid crystal polymer is made of rigid mesogen groups, and when extrusion molding is performed, the rigid mesogen groups are highly oriented by the shearing force generated in the extrusion. Such orientation of the mesogenic group also contributes to excellent dimensional stability of the liquid crystal polymer film.
  • the liquid crystal polymer film has low elongation as a trade-off excellent in dimensional stability as described above.
  • the liquid crystal polymer flows so that the mesogenic groups are not entangled with each other due to the alignment of the rigid mesogenic groups, the apparent melt viscosity of the liquid crystal polymer is rapidly decreased in a low shear rate region. Therefore, when the temperature is raised to near the melting point for stretching, the fluidity of the polymer is rapidly increased, and it is impossible to stretch the film alone.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-3409178 discloses a method in which a laminate of a raw film made of a liquid crystal polymer and a fluororesin porous film is stretched and then the fluororesin porous film is peeled off.
  • a liquid crystal polymer film having a melting point of 335 ° C. or higher is disclosed.
  • liquid crystal polymer film disclosed in this patent document needs to be stretched using a fluororesin porous film, there is a possibility that fluorine is transferred to the obtained film.
  • fluorine since a special fluorine film is used, it is difficult to achieve mass production and cost reduction of the liquid crystal polymer film.
  • an object of the present invention is to provide a thermoplastic liquid crystal polymer film that is stretched without using a special support.
  • Another object of the present invention is to provide a thermoplastic liquid crystal polymer film with less thickness unevenness.
  • Still another object of the present invention is to provide a thermoplastic liquid crystal polymer film having a thickness of less than 50 ⁇ m (particularly 40 ⁇ m or less) and having a small thickness unevenness.
  • Another object of the present invention is to provide a method for efficiently producing such a thermoplastic liquid crystal polymer film.
  • the inventors of the present invention surprisingly adjusted the dielectric constant in the liquid crystal polymer film to show a specific value in both the TD direction and the MD direction.
  • the elongation of a liquid crystal polymer film having almost no elongation can be significantly increased. This is a very surprising discovery in view of the general knowledge that liquid crystal polymer films have low elongation as a trade-off for high dimensional stability.
  • the liquid crystal polymer film adjusted so that the in-plane dielectric constant becomes a specific value is the same as that of the stretching conditions (that is, the support in the vicinity of the melting point). It is not necessary to stretch by stretching in a laminated state), and by performing specific temperature control, it is possible to stretch the film alone, and the liquid crystal polymer film obtained can be highly controlled in thickness unevenness.
  • the present invention has been completed.
  • the present invention is based on a thermoplastic polymer (hereinafter referred to as a thermoplastic liquid crystal polymer) capable of forming an optically anisotropic melt phase having a dielectric constant of 3.25 or less in both the MD direction and the TD direction.
  • a thermoplastic polymer hereinafter referred to as a thermoplastic liquid crystal polymer
  • Stretching step to stretch Is a method for producing a thermoplastic liquid crystal polymer film. In this stretching step, the film alone may be stretched without using the support.
  • the manufacturing method Prior to the stretching step, includes: A laminating step of obtaining a laminate by joining a raw film made of a thermoplastic liquid crystal polymer and a support such as a metal foil; Heat treating the laminate, and adjusting the dielectric constant of the thermoplastic liquid crystal polymer film after the heat treatment to be 3.25 or less in both the MD direction and the TD direction; A separation step of separating the film having the adjusted dielectric constant and the support.
  • the heat deformation temperature of the heat-treated film may be increased by 40 to 100 ° C. from the heat deformation temperature of the original film.
  • the heating temperature in the stretching step is in the range of 40 ° C. lower than the thermal deformation temperature (Td) of the stretched film (Td ⁇ 40 ° C.) to 10 ° C. lower than Td (Td ⁇ 10 ° C.). Is preferred.
  • the present invention includes a thermoplastic liquid crystal polymer film produced by the above production method.
  • a thermoplastic liquid crystal polymer film produced by the above production method.
  • Such a film may have a thickness unevenness of 10% or less.
  • the width in the TD direction may be in the range of 0.2 to 1.2 m.
  • the thickness of the film after stretching may be, for example, 40 ⁇ m or less.
  • the original film means a film in which a melted resin is formed into a melt sheet by extrusion molding, and then cooled and wound up.
  • the film may be subjected to a stretching process for stretching the melt sheet.
  • the MD direction means the machine axis direction of the film
  • the TD direction means a direction orthogonal to the MD direction.
  • thermoplastic liquid crystal polymer film of the present invention a film having a specific dielectric constant in a plane can be stretched by a specific stretching condition, whereby the film can be stretched by itself, thereby causing uneven thickness.
  • a reduced thermoplastic liquid crystal polymer film can be efficiently produced.
  • the method for producing a thermoplastic liquid crystal polymer film of the present invention not only has little thickness unevenness, but also can efficiently produce a film having a wide range of thickness according to the application.
  • thermoplastic liquid crystal polymer film with little thickness unevenness can improve the reliability of the substrate when used for a printed wiring board, for example.
  • a preparatory step for preparing a film made of a thermoplastic liquid crystal polymer having a dielectric constant of 3.25 or less in both the MD direction and the TD direction, and stretching for heating and stretching the film at a specific temperature Process At least.
  • thermoplastic liquid crystal polymer film has such a dielectric constant
  • it can be used alone for the stretching step.
  • a laminate of a raw film and a support described below is laminated prior to the stretching step. You may provide the process, the dielectric constant adjustment process of a film, and the isolation
  • thermoplastic liquid crystal polymer film (or thermotropic liquid crystal polymer film) of the present invention is composed of a liquid crystalline polymer that can be melt-molded (or a polymer that can form an optically anisotropic molten phase), and this thermoplastic liquid crystal polymer. Is not particularly limited as long as it is a liquid crystalline polymer that can be melt-molded.
  • a thermoplastic liquid crystalline polyester or a thermoplastic liquid crystalline polyester amide having an amide bond introduced thereto may be used. Can be mentioned.
  • the thermoplastic liquid crystal polymer may be a polymer in which an aromatic polyester or an aromatic polyester amide is further introduced with an isocyanate-derived bond such as an imide bond, a carbonate bond, a carbodiimide bond, or an isocyanurate bond.
  • an isocyanate-derived bond such as an imide bond, a carbonate bond, a carbodiimide bond, or an isocyanurate bond.
  • thermoplastic liquid crystal polymer used in the present invention include known thermoplastic liquid crystal polyesters and thermoplastic liquid crystal polyester amides derived from the compounds (1) to (4) listed below and derivatives thereof. Can be mentioned. However, it goes without saying that there is an appropriate range of combinations of various raw material compounds in order to form a polymer capable of forming an optically anisotropic melt phase.
  • Aromatic or aliphatic dihydroxy compounds (see Table 1 for typical examples)
  • Aromatic diamine, aromatic hydroxyamine or aromatic aminocarboxylic acid (see Table 4 for typical examples)
  • a polymer containing p-hydroxybenzoic acid and / or 6-hydroxy-2-naphthoic acid as at least a repeating unit is preferable.
  • at least one aromatic hydroxycarboxylic acid selected from the group consisting of p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid and 4,4 ′ A repeating unit of at least one aromatic diol selected from the group consisting of dihydroxybiphenyl and hydroquinone and at least one aromatic dicarboxylic acid selected from the group consisting of terephthalic acid, isophthalic acid and 2,6-naphthalenedicarboxylic acid Polymers containing are preferred.
  • the repeating unit (A) of p-hydroxybenzoic acid is used.
  • At least one aromatic hydroxycarboxylic acid (C) selected from the group consisting of p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid, and 4,4′-dihydroxy At least one aromatic diol (D) selected from the group consisting of biphenyl and hydroquinone, and at least one aromatic dicarboxylic acid (E) selected from the group consisting of terephthalic acid, isophthalic acid and 2,6-naphthalenedicarboxylic acid.
  • optical anisotropy at the time of melting referred to in the present invention can be recognized by, for example, placing a sample on a hot stage, heating and heating in a nitrogen atmosphere, and observing the transmitted light of the sample.
  • the thermoplastic liquid crystal polymer preferably has a melting point (hereinafter referred to as Tm) in the range of 260 to 360 ° C., more preferably Tm of 270 to 350 ° C.
  • Tm is calculated
  • thermoplastic liquid crystal polymer polyethylene terephthalate, modified polyethylene terephthalate, polyolefin, polycarbonate, polyarylate, polyamide, polyphenylene sulfide, polyester ether ketone, fluororesin, etc., as long as the effects of the present invention are not impaired.
  • thermoplastic polymers, various additives, fillers and the like may be added.
  • thermoplastic liquid crystal polymer Using such a thermoplastic liquid crystal polymer, a target thermoplastic liquid crystal polymer film can be produced through the following steps.
  • the raw film made of the thermoplastic liquid crystal polymer used in the present invention is obtained by extrusion molding of a thermoplastic liquid crystal polymer.
  • Any extrusion molding method can be applied as long as the direction of the rigid rod-like molecules of the thermoplastic liquid crystal polymer can be controlled, but the known T-die method, laminate stretching method, inflation method and the like are industrially advantageous.
  • stress is applied not only in the mechanical axis direction of the film (hereinafter abbreviated as MD direction) but also in the direction orthogonal to this (hereinafter abbreviated as TD direction).
  • MD direction mechanical axis direction of the film
  • TD direction direction orthogonal to this
  • the melt sheet extruded from the T-die is used in the machine axis direction of the film (hereinafter referred to as MD).
  • MD machine axis direction of the film
  • TD direction machine axis direction of the film
  • TD direction melt sheet extruded from a T die is once stretched in the MD direction. Then, it may be stretched in the TD direction.
  • a predetermined draw ratio corresponding to the MD direction draw ratio
  • blow ratio in the TD direction draw ratio
  • the laminate of the obtained raw film and the support can be produced according to a known method.
  • the support is not particularly limited as long as it has a higher melting point than the liquid crystal polymer film being heated, and examples thereof include inorganic substances such as glass and various metal foils.
  • the metal forming the metal foil include copper, gold, silver, nickel, and aluminum. Among them, copper and aluminum are preferable, and aluminum is particularly preferable.
  • Examples of the method for joining the original film and the support include a method in which the original film and the support are thermocompression bonded to form a laminate, and a method in which the two are bonded using an adhesive.
  • the method of thermocompression bonding the raw film and the support is preferable.
  • the thermocompression bonding can be performed using a known means such as a heat press or a heat roller.
  • the layer structure of the laminate is not particularly limited, and a plurality of raw film and a plurality of supports may be laminated.
  • the laminate may have a two-layer structure in which a support is laminated on one side of the original film, or may have a three-layer structure in which a support is laminated on both sides of the original film.
  • the substrate may have a three-layer structure in which a raw film is laminated on both surfaces of the support. Of these, a two-layer structure is preferred.
  • the laminate is heat-treated, and the film after the heat treatment is adjusted to have a specific dielectric constant in both the TD direction and the MD direction.
  • the laminate is continuously fed into the heat treatment apparatus, for example, a temperature 15 ° C. lower than the melting point (Tm) of the raw film (Tm-15) ° C. and a temperature 30 ° C. higher than the melting point. Heat treatment is performed within the range of (Tm + 30) ° C.
  • the heating temperature may be in a range from a temperature (Tm ⁇ 10) ° C. that is 10 ° C. lower than the melting point (Tm) of the raw film to a temperature (Tm + 20) ° C. that is 20 ° C. higher than the melting point.
  • a known apparatus such as a hot air circulating furnace, a hot roll, or a ceramic heater can be used.
  • the heating time may be, for example, a short time of about 3 to 300 seconds, preferably about 5 to 60 seconds.
  • a heat treatment may be performed by combining a short-time heat treatment and a long-time heat treatment. After the short-time heat treatment, if necessary, the laminate may be treated as a long-time heat treatment. In the range from 40 ° C. lower than the melting point (Tm) of the raw film (Tm-40) ° C. to 5 ° C. lower than the melting point (Tm-5) ° C., for a long time (for example, about 2 to 24 hours, Heat treatment may be performed (preferably about 4 to 16 hours).
  • the melting point of the raw film may be increased by heating.
  • the following heat treatment can be used.
  • First time The melting peak temperature TA of the film in a temperature range (Td ⁇ (Tm ⁇ ° C.)) where the heat treatment temperature is from the thermal deformation temperature Td of the film to a temperature lower by ⁇ ° C. than the melting point Tm before the heat treatment of the film.
  • a heat treatment until it reaches a temperature TA 1 from beta ° C. melting point Tm before the heat treatment of the film.
  • 5-20; n-th round in a temperature range of less than TA n-1 at the heat treatment temperature is the melting peak temperature TA n-2 or more, a heat treatment is performed until the TA n-1 reaches a temperature TA n that is increased gamma ° C.
  • an integer n ⁇ 3 and ⁇ 5 to 20.
  • the melting peak temperature means a temperature corresponding to a position during and after the heat treatment of the endothermic peak that appears when the film is heated at a rate of 5 ° C./min.
  • the heat treatment may be performed under tension or without tension in a heat treatment apparatus such as a hot-air circulating furnace, a hot roll, or a ceramic heater.
  • heat treatment is in the form of a roll (prevents contact by providing a gap), casket (wound together with a spacer with good gas permeability, for example, a spacer made of Vectran nonwoven fabric that can absorb expansion and contraction during heat treatment) (Put on a wire mesh etc.).
  • the temperature of the heat treatment apparatus may be increased stepwise.
  • the molecular weight By continuously heating in such a temperature range, the molecular weight can be increased in a state where the molecular orientation is disturbed.
  • the increase in molecular weight can be confirmed by an increase in the thermal deformation temperature of the film.
  • the thermal deformation temperature of the film may be increased by, for example, about 40 to 90 ° C., preferably about 50 to 80 ° C., from the thermal deformation temperature of the raw film.
  • Such film stretching characteristics become particularly prominent when the dielectric constant is in a specific state and the molecular weight of the molecules in the film is increased by heating. That is, in this case, it is possible to increase intermolecular entanglement and improve the stretchability of the film alone by performing high-temperature treatment for a longer time in a state where the molecular orientation is disturbed to the same extent in the plane. is there.
  • Separatation process After the molecular weight of the liquid crystal polymer forming the film has increased, the film is separated from the support.
  • the separation means include separation of the support by etching, physical peeling between the film and the support, and the like.
  • a film separated from a support or a film made of a thermoplastic liquid crystal polymer prepared by a preparation step has a dielectric constant of 3.25 or less in both the MD direction and the TD direction. And within the range of the temperature (Td-60 ° C.) lower by 60 ° C. from the thermal deformation temperature (Td) of the film to be stretched for the stretching treatment to the temperature lower by 5 ° C. (Td-5 ° C.).
  • the film is stretched by heating.
  • the heating temperature may be in the range of a temperature lower by 40 ° C. (Td ⁇ 40 ° C.) to a temperature lower than Td by 10 ° C.
  • Td ⁇ 10 ° C. thermal deformation temperature (Td) of the separated film.
  • the stretching method itself is known, and either biaxial stretching or uniaxial stretching may be adopted, but biaxial stretching is preferred because it is easier to control the degree of molecular orientation.
  • a known uniaxial stretching machine, simultaneous biaxial stretching machine, sequential biaxial stretching machine or the like can be used.
  • the stretching speed may be configured so as to control the stretching speed in one of the MD direction and the TD direction as in the stretching ratio, or the stretching speed in both directions may be controlled simultaneously. May be.
  • the draw ratio can be appropriately set according to the thickness of the raw film and the desired liquid crystal polymer film, and is, for example, in the range of 1.1 to 15 times, preferably 1.5 to 8 times. .
  • the stretching speed is usually in the range of 5 to 100% / second, preferably 10 to 80% / second. Through such a stretching step, the thermoplastic liquid crystal polymer film of the present invention can be obtained.
  • thermoplastic liquid crystal polymer film The thermoplastic liquid crystal polymer film of the present invention thus obtained can be stretched at a low temperature without using a support, so that it becomes a film with little thickness unevenness.
  • the thermoplastic liquid crystal polymer film may have a thickness unevenness of 10% or less, preferably 7% or less, more preferably 5% or less.
  • thickness unevenness is a value measured by the method described in the Example mentioned later here.
  • the thickness of the thermoplastic liquid crystal polymer film can be adjusted not only by adjusting the thickness of the raw film, but also by adjusting the draw ratio, for example, it has been difficult to produce conventionally, It is possible to efficiently produce a film having a thickness of less than 50 ⁇ m.
  • the thickness of the thermoplastic liquid crystal polymer film may be 40 ⁇ m or less, and preferably 30 ⁇ m or less.
  • the lower limit of the thickness of the thermoplastic liquid crystal polymer film can be set as necessary, but may be about 5 ⁇ m.
  • the width in the TD direction of the stretched film is, for example, about 0.2 to 1.5 m. It may be about 0.5 to 1.2 m.
  • the melting point of the thermoplastic liquid crystal polymer film after stretching may be, for example, about 300 to 350 ° C., and preferably about 320 to 340 ° C.
  • the film was obtained by observing the thermal behavior of the film using a differential scanning calorimeter. In other words, the sample film was heated at a rate of 20 ° C./min to be completely melted, and then the melt was rapidly cooled to 50 ° C. at a rate of 50 ° C./min, and again raised at a rate of 20 ° C./min. The position of the endothermic peak that appeared when the film was recorded was recorded as the melting point of the film.
  • thermomechanical analyzer TMA
  • a tensile load of 1 g was applied to both ends of a film having a width of 5 mm and a length of 20 mm, and the temperature was increased from room temperature at a rate of 5 ° C./min until the film was broken. This is the temperature at which sudden expansion (elongation) has occurred, and the temperature at the intersection of the tangent line of the high temperature side base line and the low temperature side base line in the temperature to deformation curve is defined as the heat deformation temperature.
  • the film thickness is measured using a digital thickness meter (manufactured by Mitutoyo Corporation) at a 1 cm interval in the TD direction, and the average value of 10 points arbitrarily selected from the center and the end is taken as the average film thickness. did.
  • the thickness unevenness R is a measurement value of 30 points obtained by measuring the thickness of the center and both ends in the TD direction of the film 10 times per 1 m in the longitudinal direction at an arbitrary position of the roll-shaped film.
  • both ends means the position of the distance of 10% of full width toward the center from the both ends of the film along the TD direction.
  • Example 1 A thermoplastic liquid crystal polymer having a melting point of 280 ° C., which is a copolymer of p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid (molar ratio: 73/27), is heated and kneaded with a single screw extruder to obtain a die diameter. It was melt-extruded at a die shear rate of 500 seconds -1 from an annular inflation die having a die slit interval of 33.5 mm and a longitudinal draw ratio (Dr) of 2.9 and a transverse draw ratio (Bl) of 6.2. A film having a melting point of 280 ° C. and a film thickness of 100 ⁇ m was obtained. The film had a heat distortion temperature of 260 ° C.
  • thermoplastic liquid crystal polymer film and an aluminum foil having a thickness of 50 ⁇ m are heated at 260 ° C. under a pressure of 10 kg /
  • the laminated body of the structure of a thermoplastic liquid crystal polymer film / aluminum foil was produced by pressure bonding at cm 2 and a speed of 3 m / min, and this laminated body was placed in a hot-air circulating heat treatment furnace controlled at 280 ° C. for 30 seconds.
  • this film was stretched by a biaxial stretching machine at a stretching temperature of 300 ° C., a stretching ratio of 2 times in the MD direction, 2.5 times in the TD direction, and a stretching speed of 25% / second, and a liquid crystal polymer film having a thickness of 20 ⁇ m (melting point) 335 ° C.).
  • the thickness tolerance of this film was 1.5 ⁇ m (thickness unevenness 3.75%).
  • thermoplastic liquid crystal polymer having a melting point of 280 ° C. which is a copolymer of p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid (molar ratio: 73/27), is heated and kneaded with a single screw extruder to obtain a die diameter. It was melt-extruded at a die shear rate of 1000 seconds ⁇ 1 from an annular inflation die having a die slit interval of 400 ⁇ m and a longitudinal draw ratio (Dr) of 2.9 and a transverse draw ratio (Bl) of 6.2. A film having a melting point of 280 ° C. and a film thickness of 20 ⁇ m was obtained. The film had a heat distortion temperature of 260 ° C.
  • thermoplastic liquid crystal polymer film and an aluminum foil having a thickness of 50 ⁇ m are heated at 260 ° C. under a pressure of 10 kg /
  • the laminated body of the structure of a thermoplastic liquid crystal polymer film / aluminum foil was produced by pressure bonding at cm 2 and a speed of 3 m / min, and this laminated body was placed in a hot-air circulating heat treatment furnace controlled at 280 ° C. for 30 seconds.
  • thermoplastic liquid crystal polymer having a melting point of 280 ° C. which is a copolymer of p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid (molar ratio: 73/27), is heated and kneaded with a single screw extruder to obtain a die diameter. It was melt-extruded at a die shear rate of 500 seconds -1 from an annular inflation die having a die slit interval of 33.5 mm and a longitudinal draw ratio (Dr) of 2.9 and a transverse draw ratio (Bl) of 6.2. A film having a melting point of 280 ° C. and a film thickness of 100 ⁇ m was obtained. The film had a heat distortion temperature of 260 ° C.
  • thermoplastic liquid crystal polymer film and an aluminum foil having a thickness of 50 ⁇ m are heated at 260 ° C. under a pressure of 10 kg /
  • the laminated body of the structure of a thermoplastic liquid crystal polymer film / aluminum foil was produced by pressure bonding at cm 2 and a speed of 3 m / min, and this laminated body was placed in a hot-air circulating heat treatment furnace controlled at 280 ° C. for 30 seconds.
  • thermoplastic liquid crystal polymer having a melting point of 280 ° C. which is a copolymer of p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid (molar ratio: 73/27), is heated and kneaded with a single screw extruder to obtain a die diameter. It was melt-extruded at a die shear rate of 500 seconds -1 from an annular inflation die having a die slit interval of 33.5 mm and a longitudinal draw ratio (Dr) of 2.9 and a transverse draw ratio (Bl) of 6.2. A film having a melting point of 280 ° C. and a film thickness of 100 ⁇ m was obtained.
  • Dr longitudinal draw ratio
  • Bl transverse draw ratio
  • the film had a heat distortion temperature of 260 ° C. This film had a dielectric constant in the MD direction of 3.34 and a dielectric constant in the TD direction of 3.27. Next, an attempt was made to stretch the film, but the film broke and could not be stretched.
  • thermoplastic liquid crystal polymer film of the present invention can be used as a substrate material for various electric and electronic products. Further, according to the production method of the present invention, a thermoplastic liquid crystal polymer film with reduced thickness unevenness can be efficiently produced in a wide range of thicknesses.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Thermal Sciences (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Laminated Bodies (AREA)

Abstract

 熱可塑性液晶ポリマーフィルムおよびその製造方法を提供する。前記製造方法は、MD方向およびTD方向ともに3.25以下の誘電率を有する、熱可塑性液晶ポリマーフィルムを準備する準備工程、およびフィルムの熱変形温度(Td)から60℃低い温度(Td-60℃)~Tdから5℃低い温度(Td-5℃)の範囲内で、前記フィルムを加熱して延伸する延伸工程、を備える。例えば、延伸工程における加熱温度は、延伸されるフィルムの熱変形温度(Td)から40℃低い温度(Td-40℃)~Tdから10℃低い温度(Td-10℃)の範囲内であってもよい。

Description

熱可塑性液晶ポリマーフィルムおよびその製造方法 関連出願
 本願は2012年3月29日出願の特願2012-075609の優先権を主張するものであり、その全体を参照により本出願の一部をなすものとして引用する。
 本発明は、一軸または二軸延伸された、光学的異方性の溶融相を形成し得る熱可塑性ポリマー(以下、これを、熱可塑性液晶ポリマーと称する場合がある)からなるフィルム(以下、これを熱可塑性液晶ポリマーフィルムまたは液晶ポリマーフィルムと称する場合がある)およびその製造方法に関する。
 熱可塑性液晶ポリマーフィルムは、優れた低吸湿性、耐熱性、耐薬品性、および電気的性質を有しており、プリント配線板等における電気絶縁材料として、急速にその商品化が進められている。
 熱可塑性液晶ポリマーは、剛直なメソゲン基からできており、押し出し成形する際には、この剛直なメソゲン基が押し出しに生じる剪断力によって高度に配向する。そして、このようなメソゲン基の配向性は、液晶ポリマーフィルムの優れた寸法安定性にも貢献している。
 しかしながら、液晶ポリマーフィルムは、上記のように寸法安定性に優れるトレードオフとして、伸度が低いことが知られている。
 また、液晶ポリマーは、剛直なメソゲン基の配向により、メソゲン基同士が互いに絡み合わず滑るように流れるため、液晶ポリマーのみかけの溶融粘度が低剪断速度領域で急激に低下してしまう。そのため、延伸を行うために融点近くまで温度を上げると、急激にポリマーの流動性が高まってしまい、フィルム単独で延伸を行うことが不可能である。
 そこで、特許文献1(特開2003-340918号公報)には、液晶ポリマーからなる原反フィルムとフッ素樹脂多孔質フィルムとのラミネート体を延伸後、該フッ素樹脂多孔質フィルムを剥離させることによって得られる、融点が335℃以上の液晶ポリマーフィルムが開示されている。
特開2003-340918号公報
 しかしながら、この特許文献で開示されている液晶ポリマーフィルムでは、フッ素樹脂多孔質フィルムを用いて延伸することが必要であるため、得られたフィルムにフッ素が転写している可能性がある。また、特殊なフッ素フィルムを用いているため、液晶ポリマーフィルムの大量生産、低コスト化をすることが困難である。
 従って、本発明の目的は、特殊な支持体を利用することなく延伸された熱可塑性液晶ポリマーフィルムを提供することにある。
 本発明の別の目的は、厚みムラの少ない熱可塑性液晶ポリマーフィルムを提供することにある。
 本発明のさらに別の目的は、厚さ50μm未満(特に40μm以下)の薄さを有しつつ、厚みムラの少ない熱可塑性液晶ポリマーフィルムを提供することにある。
 本発明の他の目的は、このような熱可塑性液晶ポリマーフィルムを効率よく製造する方法を提供することにある。
 本発明の発明者らは、上記目的を達成するために鋭意検討した結果、液晶ポリマーフィルム内の誘電率をTD方向およびMD方向の双方において特定の値を示すように調整すると、驚くべきことに一般的には伸度がほとんどない液晶ポリマーフィルムの伸度を大幅に上昇させることが可能であることを見出した。これは、液晶ポリマーフィルムは、寸法安定性が高いことへのトレードオフとして低い伸度を有するという一般的な知見を鑑みると、非常に意外な発見である。
 そしてさらにこの発見に基づいて研究を進めた結果、面内の誘電率が特定の値になるように調整された液晶ポリマーフィルムは、従来採用されていた延伸条件(すなわち、融点付近における支持体とラミネートした状態での延伸)で延伸する必要はなく、特定の温度管理を行うことにより、フィルム単独で延伸が可能であること、さらに得られた液晶ポリマーフィルムは厚みムラを高度に制御できることを見出し、本発明を完成した。
 すなわち、本発明は、MD方向およびTD方向ともに3.25以下の誘電率を有する、光学的異方性の溶融相を形成し得る熱可塑性ポリマー(以下、これを熱可塑性液晶ポリマーと称する)からなるフィルムを準備する準備工程、およびフィルムの熱変形温度(Td)から60℃低い温度(Td-60℃)~Tdから5℃低い温度(Td-5℃)の範囲内で、前記フィルムを加熱して延伸する延伸工程、
を少なくとも備える熱可塑性液晶ポリマーフィルムの製造方法である。この延伸工程では、支持体を利用せずにフィルム単独を延伸してもよい。
 前記延伸工程に先立って、前記製造方法は、
 熱可塑性液晶ポリマーからなる原反フィルムと、金属箔などの支持体とを接合させて積層体を得る積層工程と、
 前記積層体を熱処理して、熱処理後の熱可塑性液晶ポリマーフィルムの誘電率が、MD方向およびTD方向ともに、3.25以下となるように調整する誘電率調整工程と、
 前記誘電率が調整されたフィルムと支持体とを分離する分離工程と、を備えていてもよい。
 前記製造方法において、好ましくは、誘電率調整工程で、熱処理後のフィルムの熱変形温度を、原反フィルムの熱変形温度より40~100℃上昇させてもよい。
 また、延伸工程における加熱温度は、延伸されるフィルムの熱変形温度(Td)から40℃低い温度(Td-40℃)~Tdから10℃低い温度(Td-10℃)の範囲内であるのが好ましい。
 さらに本発明は、前記製造方法により製造された熱可塑性液晶ポリマーフィルムを包含する。このようなフィルムは、厚みムラが10%以下であってもよい。また、TD方向の幅が、0.2~1.2mの範囲であってもよい。さらに、延伸後のフィルムの厚みが、例えば、40μm以下であってもよい。
 なお、本発明において、原反フィルムとは、溶融状態の樹脂が押出成形により溶融体シートになり、次いで冷却されて巻き取られたフィルムを意味しており、原反フィルムは、必要に応じて、溶融体シートを延伸処理する延伸処理を受けていてもよい。MD方向とはフィルムの機械軸方向を意味し、TD方向とはこれと直交する方向を意味する。
 なお、請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成要素のどのような組み合わせも、本発明に含まれる。特に、請求の範囲に記載された請求項の2つ以上のどのような組み合わせも本発明に含まれる。
 本発明の熱可塑性液晶ポリマーフィルムの製造方法では、面内において特定の誘電率を有するフィルムを、特定の延伸条件で延伸することにより、フィルム単独で延伸することが可能となり、これにより厚みムラを低減させた熱可塑性液晶ポリマーフィルムを効率よく製造することができる。
 特に、延伸条件を調節することにより、本発明の熱可塑性液晶ポリマーフィルムの製造方法では、厚みムラが少ないだけでなく、用途に応じた幅広い厚みのフィルムを効率よく製造することが可能となる。
 そして、得られた厚みムラの少ない熱可塑性液晶ポリマーフィルムは、例えば、プリント配線板に対して用いた場合、基板の信頼性を向上させることが可能である。
 本発明の製造方法では、MD方向およびTD方向ともに3.25以下の誘電率を有する熱可塑性液晶ポリマーからなるフィルムを準備する準備工程、および、このフィルムを特定の温度で加熱して延伸する延伸工程、
を少なくとも備えている。
 熱可塑性液晶ポリマーフィルムは、このような誘電率を有する限り、単体で延伸工程へ供する事が可能であるが、延伸工程に先立って、例えば、以下に記載する原反フィルムと支持体との積層工程、フィルムの誘電率調整工程、及び誘電率が調整されたフィルムと支持体との分離工程、を備えていてもよい。
(熱可塑性液晶ポリマー)
 本発明の熱可塑性液晶ポリマーフィルム(またはサーモトロピック液晶ポリマーフィルム)は、溶融成形できる液晶性ポリマー(または光学的に異方性の溶融相を形成し得るポリマー)で構成され、この熱可塑性液晶ポリマーは、溶融成形できる液晶性ポリマーであれば特にその化学的構成については特に限定されるものではないが、例えば、熱可塑性液晶ポリエステル、又はこれにアミド結合が導入された熱可塑性液晶ポリエステルアミドなどを挙げることができる。
 また熱可塑性液晶ポリマーは、芳香族ポリエステルまたは芳香族ポリエステルアミドに、更にイミド結合、カーボネート結合、カルボジイミド結合やイソシアヌレート結合などのイソシアネート由来の結合等が導入されたポリマーであってもよい。
 本発明に用いられる熱可塑性液晶ポリマーの具体例としては、以下に例示する(1)から(4)に分類される化合物およびその誘導体から導かれる公知の熱可塑性液晶ポリエステルおよび熱可塑性液晶ポリエステルアミドを挙げることができる。ただし、光学的に異方性の溶融相を形成し得るポリマーを形成するためには、種々の原料化合物の組合せには適当な範囲があることは言うまでもない。
(1)芳香族または脂肪族ジヒドロキシ化合物(代表例は表1参照)
Figure JPOXMLDOC01-appb-T000001
(2)芳香族または脂肪族ジカルボン酸(代表例は表2参照)
Figure JPOXMLDOC01-appb-T000002
(3)芳香族ヒドロキシカルボン酸(代表例は表3参照)
Figure JPOXMLDOC01-appb-T000003
(4)芳香族ジアミン、芳香族ヒドロキシアミンまたは芳香族アミノカルボン酸(代表例は表4参照)
Figure JPOXMLDOC01-appb-T000004
 これらの原料化合物から得られる液晶ポリマーの代表例として表5および6に示す構造単位を有する共重合体を挙げることができる。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 これらの共重合体のうち、p―ヒドロキシ安息香酸および/または6-ヒドロシキ-2-ナフトエ酸を少なくとも繰り返し単位として含む重合体が好ましく、特に、(i)p-ヒドロキシ安息香酸と6-ヒドロシキ-2-ナフトエ酸との繰り返し単位を含む重合体、(ii)p-ヒドロキシ安息香酸および6-ヒドロシキ-2-ナフトエ酸からなる群から選ばれる少なくとも一種の芳香族ヒドロキシカルボン酸と、4,4’-ジヒドロキシビフェニルおよびヒドロキノンからなる群から選ばれる少なくとも一種の芳香族ジオールと、テレフタル酸、イソフタル酸および2,6-ナフタレンジカルボン酸からなる群から選ばれる少なくとも一種の芳香族ジカルボン酸との繰り返し単位を含む重合体が好ましい。
 例えば、(i)の重合体では、熱可塑性液晶ポリマーが、少なくともp-ヒドロキシ安息香酸と6-ヒドロシキ-2-ナフトエ酸との繰り返し単位を含む場合、繰り返し単位(A)のp-ヒドロキシ安息香酸と、繰り返し単位(B)の6-ヒドロシキ-2-ナフトエ酸とのモル比(A)/(B)は、液晶ポリマー中、(A)/(B)=10/90~90/10程度であるのが望ましく、より好ましくは、(A)/(B)=50/50~85/15程度であってもよく、さらに好ましくは、(A)/(B)=60/40~80/20程度であってもよい。
 また、(ii)の重合体の場合、p-ヒドロキシ安息香酸および6-ヒドロシキ-2-ナフトエ酸からなる群から選ばれる少なくとも一種の芳香族ヒドロキシカルボン酸(C)と、4,4’-ジヒドロキシビフェニルおよびヒドロキノンからなる群から選ばれる少なくとも一種の芳香族ジオール(D)と、テレフタル酸、イソフタル酸および2,6-ナフタレンジカルボン酸からなる群から選ばれる少なくとも一種の芳香族ジカルボン酸(E)の、液晶ポリマーにおける各繰り返し単位のモル比は、芳香族ヒドロキシカルボン酸(C):前記芳香族ジオール(D):前記芳香族ジカルボン酸(E)=30~80:35~10:35~10程度であってもよく、より好ましくは、(C):(D):(E)=35~75:32.5~12.5:32.5~12.5程度であってもよく、さらに好ましくは、(C):(D):(E)=40~70:30~15:30~15程度であってもよい。
 また、芳香族ジカルボン酸に由来する繰り返し構造単位と芳香族ジオールに由来する繰り返し構造単位とのモル比は、(D)/(E)=95/100~100/95であることが好ましい。この範囲をはずれると、重合度が上がらず機械強度が低下する傾向がある。
 なお、本発明にいう溶融時における光学的異方性とは、例えば試料をホットステージにのせ、窒素雰囲気下で昇温加熱し、試料の透過光を観察することにより認定できる。
 熱可塑性液晶ポリマーとして好ましいものは、融点(以下、Tmと称す)が260~360℃の範囲のものであり、さらに好ましくはTmが270~350℃のものである。なお、Tmは示差走査熱量計((株)島津製作所DSC)により主吸熱ピークが現れる温度を測定することにより求められる。
 前記熱可塑性液晶ポリマーには、本発明の効果を損なわない範囲内で、必要に応じて、ポリエチレンテレフタレート、変性ポリエチレンテレフタレート、ポリオレフィン、ポリカーボネート、ポリアリレート、ポリアミド、ポリフェニレンサルファイド、ポリエステルエーテルケトン、フッ素樹脂等の熱可塑性ポリマー、各種添加剤、充填剤などを添加してもよい。
 このような熱可塑性液晶ポリマーを用いて、以下に示す各工程を経て、目的とする熱可塑性液晶ポリマーフィルムを製造することができる。
(積層工程)
 本発明に使用される熱可塑性液晶ポリマーからなる原反フィルムは、熱可塑性液晶ポリマーを押出成形して得られる。熱可塑性液晶ポリマーの剛直な棒状分子の方向を制御できる限り、任意の押出成形法が適用できるが、周知のTダイ法、ラミネート体延伸法、インフレーション法などが工業的に有利である。特にインフレーション法やラミネート体延伸法では、フィルムの機械軸方向(以下、MD方向と略す)だけでなく、これと直交する方向(以下、TD方向と略す)にも応力が加えられ、MD方向とTD方向における誘電特性を制御したフィルムが得られる。
 押出成形では、配向を制御するために、押し出しとともに延伸処理を伴うのが好ましく、例えば、Tダイ法による押出成形では、Tダイから押出した溶融体シートを、フィルムの機械軸方向(以下、MD方向と略す)だけでなく、これと直交する方向(以下、TD方向と略す)の双方に対して同時に延伸してもよいし、またはTダイから押出した溶融体シートを一旦MD方向に延伸し、ついでTD方向に延伸してもよい。
 また、インフレーション法による押出成形では、リングダイから溶融押出された円筒状の溶融体シートに対して、所定のドロー比(MD方向の延伸倍率に相当する)およびブロー比(TD方向の延伸倍率に相当する)で延伸してもよい。
 得られた原反フィルムと、支持体との積層体は、公知の方法に従って製造することができる。支持体としては、加熱中の液晶ポリマーフィルムより高い融点を有していれば特に限定されず、例えば、ガラスなどの無機物質、各種金属箔などを挙げることができる。金属箔を形成する金属としては、銅、金、銀、ニッケル、アルミニウムなどを挙げることができるが、中でも銅、アルミニウムが好適であり、特にアルミニウムが好適である。
 原反フィルムと支持体との接合方法としては、例えば、原反フィルムと支持体を熱圧着して積層体とする方法、両者を接着剤を使用して貼り合わせる方法などが挙げられる。これらのうち、原反フィルムと支持体とを熱圧着する方法が好ましい。熱圧着は、熱プレス、熱ローラー等公知の手段を用いて行うことができる。
 積層体の層構成には特に制限はなく、複数の原反フィルムと複数の支持体が積層されていてもよい。例えば、積層体は、原反フィルムの片面に支持体が積層された2層構造のものであっても、原反フィルムの両面に支持体が積層された3層構造のものであってもよく、支持体の両面に原反フィルムが積層された3層構造のものであってもよい。これらのうち、2層構造のものが好ましい。
(誘電率調整工程)
 誘電率調整工程では、前記積層体を熱処理して、前記熱処理後のフィルムが、TD方向およびMD方向の双方において、特定の誘電率を有するように調整する。例えば、この工程では、積層体を、加熱処理装置に対して連続的に送り込み、例えば、原反フィルムの融点(Tm)より15℃低い温度(Tm-15)℃から、融点より30℃高い温度(Tm+30)℃の範囲内で加熱処理を行う。
 好ましくは、加熱温度は、原反フィルムの融点(Tm)より10℃低い温度(Tm-10)℃から、融点より20℃高い温度(Tm+20)℃の範囲内であってもよい。加熱処理装置としては、例えば、熱風循環炉、熱ロール、セラミックヒータなどの公知の装置を利用することができる。
 加熱時間は、例えば、3~300秒程度、好ましくは5~60秒程度の短時間であってもよい。
 誘電率調整工程では、短時間の熱処理と長時間の熱処理を組合わせて加熱処理をおこなってもよく、前記短時間の熱処理の後、必要に応じて、長時間の熱処理として、前記積層体を、原反フィルムの融点(Tm)より40℃低い温度(Tm-40)℃から、融点より5℃低い温度(Tm-5)℃の範囲内で、長時間(例えば、2~24時間程度、好ましくは4~16時間程度)熱処理してもよい。
 また、このような長時間における熱処理に際し、原反フィルムの融点が加熱によって上昇する場合がある。そのような場合は、加熱されたフィルムの融点の上昇に合わせた多段階の熱処理を行ってもよい。
 例えば、そのような多段階熱処理としては、以下の熱処理を利用することが可能である。
 1回目:熱処理温度がフィルムの熱変形温度Tdから、該フィルムの熱処理前の融点Tmよりα℃低い温度までの温度範囲(Td~(Tm-α℃))で、前記フィルムの融解ピーク温度TAが、該フィルムの熱処理前の融点Tmよりβ℃高い温度TA に到達するまで熱処理を行う。ここで、α=5~35、β=5~30;
 2回目:熱処理温度が前記フィルムの熱処理前の融点Tm以上で融解ピーク温度TA未満の温度範囲で、さらに前記融解ピーク温度TAがγ℃増大する温度TAに到達するまで熱処理を行う。ここで、γ=5~20;
 n回目:熱処理温度が融解ピーク温度TAn-2以上でTAn-1未満の温度範囲で、TAn-1がγ℃増大する温度TA に到達するまで熱処理を行う。ここで、整数n≧3、γ=5~20。
 このような長時間の熱処理を行うことによって、フィルム内の熱可塑性ポリマーの分子量を増加することが可能である。なお、ここで、融解ピーク温度(TA)とは、フィルムを5℃/分の速度で昇温した際に現れる吸熱ピークの熱処理中および熱処理後の位置に対応する温度を意味している。
 熱処理は、熱風循環炉、熱ロール、セラミックヒータなどの加熱処理装置において、緊張下あるいは無緊張下で行ってもよい。また、熱処理はロール状(隙間を設けて触れ合うことを防止する)、カセ状(ガス透過性の良好なスペーサー、例えば、熱処理時の伸縮を吸収可能なベクトラン不織布からなるスペーサーと共に巻く)やトウ状(金網などに載せる)で行ってもよい。また、加熱の際には、加熱処理装置の温度を段階的に高くしてもよい。
 このような温度範囲で連続的に加熱することにより、分子配向を乱した状態で分子量をあげることができる。分子量の増加は、フィルムの熱変形温度の上昇によって確認することが可能である。例えば、フィルムの熱変形温度は、原反フィルムの熱変形温度より、例えば、40~90℃程度、好ましくは、50~80℃程度上昇してもよい。
 今回新たな知見として、MD方向およびTD方向の双方において、誘電率が特定の値となるように制御すると、従来では予想されていなかった、液晶ポリマーフィルム単体を低温で延伸できることが分かった。これはおそらく、本来、剛直で分子間の絡み合いがほとんど発生しない液晶ポリマー分子であっても、面内のMD、TD方向の双方で低い誘電率を有することによって、分子配向が面内において同程度に乱れるように制御されたことと、厚さ方向に関しても分子配向が乱れるように制御されたことのため、分子間の絡み合いが発生し、フィルム単体での延伸を可能にしたのではないかと考えられる。
 このようなフィルムの延伸特性は、誘電率が特定の状態にあるとともに、フィルム内分子の分子量が加熱により増加すると、特に顕著となる。すなわち、この場合、面内で分子配向が同程度に乱れた状態でさらに長時間の高温処理を行うことにより、分子間の絡み合いを増加させ、フィルム単体での延伸性を向上することが可能である。
 (分離工程)
 フィルムを形成する液晶ポリマーの分子量が増加した後、フィルムは支持体から分離される。分離手段としては、支持体のエッチングによる分離や、フィルムと支持体との物理的な剥離などが挙げられる。
(延伸工程)
 支持体から分離されたフィルム、または準備工程により準備された熱可塑性液晶ポリマーからなるフィルムは、MD方向およびTD方向ともに3.25以下の誘電率を有している。
 そして、延伸処理を行うための被処理フィルムの熱変形温度(Td)から60℃低い温度(Td-60℃)~Tdから5℃低い温度(Td-5℃)の範囲内で、前記被処理フィルムは、加熱して延伸される。好ましくは、前記加熱温度は、分離されたフィルムの熱変形温度(Td)から40℃低い温度(Td-40℃)~Tdから10℃低い温度(Td-10℃)の範囲内であってもよい。
 延伸方法自体は公知であり、二軸延伸、一軸延伸のいずれを採用してもよいが、分子配向度を制御することがより容易であることから、二軸延伸が好ましい。また、延伸は、公知の一軸延伸機、同時二軸延伸機、逐次二軸延伸機などが使用できる。
 なお、フィルムに二軸延伸を施す場合、延伸方向は、前記したMD方向、TD方向の2通りがあるが、MD方向、TD方向のいずれか一方向の延伸倍率を制御するように構成してもよいし、両方向の延伸倍率を同時に制御するように構成してもよい。また、延伸速度についても、延伸倍率と同様に、MD方向、TD方向のいずれか一方向の延伸速度を制御するように構成してもよいし、両方向の延伸速度を同時に制御するように構成してもよい。
 また、延伸倍率は、原反フィルムおよび所望の液晶ポリマーフィルムの厚さに応じて適宜設定することができ、例えば、1.1~15倍、好ましくは1.5~8倍の範囲内である。また、延伸速度は通常5~100%/秒、好ましくは10~80%/秒の範囲内である。
 このような延伸工程を経て、本発明の熱可塑性液晶ポリマーフィルムを得ることが可能となる。
(熱可塑性液晶ポリマーフィルム)
 このようにして得られた本発明の熱可塑性液晶ポリマーフィルムは、支持体を用いることなく低温での延伸が可能となるため、厚みムラの少ないフィルムとなる。例えば、熱可塑性液晶ポリマーフィルムは、厚みムラが10%以下であってもよく、好ましくは7%以下、より好ましくは5%以下であってもよい。なお、ここで厚みムラとは、後述する実施例に記載した方法により測定される値である。
 さらに、熱可塑性液晶ポリマーフィルムの厚みは、原反フィルムの厚さを調整するだけでなく、延伸倍率を調整することなどによって調節することが可能であり、例えば、従来製造が困難であった、厚みが50μm未満のフィルムを効率よく製造することが可能である。例えば、熱可塑性液晶ポリマーフィルムの厚みは、40μm以下であってもよく、好ましくは30μm以下であってもよい。なお、熱可塑性液晶ポリマーフィルムの厚みの下限値は必要に応じて設定することが可能であるが、5μm程度であってもよい。
 さらに、熱可塑性液晶ポリマーフィルム単独で支持体の制限をうけることなく延伸することが可能であるため、例えば、延伸後のフィルムのTD方向の幅は、例えば、0.2~1.5m程度であってもよく、好ましくは0.5~1.2m程度であってもよい。
 延伸後の熱可塑性液晶ポリマーフィルムの融点は、例えば、300~350℃程度であってもよく、好ましくは320~340℃程度であってもよい。
 以下、実施例により本発明をより詳細に説明するが、本発明は本実施例により何ら限定されるものではない。なお、以下の実施例及び比較例においては、下記の方法により各種物性を測定した。
[融点]
 示差走査熱量計を用いて、フィルムの熱挙動を観察して得た。つまり、供試フィルムを20℃/分の速度で昇温して完全に溶融させた後、溶融物を50℃/分の速度で50℃まで急冷し、再び20℃/分の速度で昇温した時に現れる吸熱ピークの位置を、フィルムの融点として記録した。
[熱変形温度]
 熱機械分析装置(TMA)を用いて、幅5mm、長さ20mmのフィルムの両端に1gの引張荷重をかけ、室温から5℃/分の速度で、フィルムが破断するまで昇温したときの、急激な膨張(伸び)が発生した温度であり、温度~変形曲線における高温側のベースラインの接線と低温側のベースラインの接線の交点の温度を熱変形温度とする。
[フィルム厚および厚みムラ]
 膜厚は、デジタル厚み計(株式会社ミツトヨ製)を用い、選られたフィルムをTD方向に1cm間隔で測定し、中心部および端部から任意に選んだ10点の平均値を平均フィルム厚みとした。また、厚みムラRは、フィルムのTD方向において、中心部と両端部の厚みを、ロール状のフィルムの任意の位置において、長手方向に1m毎に10回測定して得られる30点の計測値の最大値をLmax、最小値をLmin、平均値をLaとしたときに、
R=(Lmax-Lmin)/2La×100
で表した。なお、両端部とは、TD方向に沿ったフィルムの両末端から中心に向かって全幅の10%の距離の位置のことをいう。
[誘電率]
 王子計測機器(株)製分子配向計「MOA6015」を用いて、採取した各サンプルについて、室温(25℃)において、MD方向、TD方向の15GHzでの誘電率を測定した。
(実施例1)
 p-ヒドロキシ安息香酸と6-ヒドロキシ-2-ナフトエ酸の共重合物(モル比:73/27)で、融点が280℃である熱可塑性液晶ポリマーを単軸押出機で加熱混練し、ダイ直径33.5mm、ダイスリット間隔1mmの環状インフレーションダイから、ダイ剪断速度500秒-1で溶融押出して、縦の延伸比(Dr)2.9、横の延伸比(Bl)6.2の条件で、融点280℃、膜厚100μmのフィルムを得た。上記フィルムの熱変形温度は260℃であった。
 耐熱ゴムロール(硬度90度、JIS A)と加熱金属ロールを取り付けた熱ロールプレス装置に対して、前記熱可塑性液晶ポリマーフィルムと厚さ50μmのアルミニウム箔とを、260℃の加熱状態で圧力10kg/cm、速度3m/分で圧着して、熱可塑性液晶ポリマーフィルム/アルミニウム箔の構成の積層体を作製し、この積層体を280℃に制御した熱風循環式熱処理炉に30秒置いた。
 窒素雰囲気下において、260℃で4時間熱処理後、さらに270℃で8時間熱処理を行った。その後、慎重にアルミニウム箔を剥離し、フィルム単体を得た。得られたフィルムの熱変形温度は330℃であり、MD方向およびTD方向の誘電率はともに3.22であった。
 次に、このフィルムを延伸温度300℃、延伸倍率MD方向2倍、TD方向2.5倍、延伸スピード25%/秒で二軸延伸機にて延伸し、厚さ20μmの液晶ポリマーフィルム(融点335℃)を得た。このフィルムの厚み公差は1.5μm(厚みムラ3.75%)であった。
(比較例1)
 p-ヒドロキシ安息香酸と6-ヒドロキシ-2-ナフトエ酸の共重合物(モル比:73/27)で、融点が280℃である熱可塑性液晶ポリマーを単軸押出機で加熱混練し、ダイ直径33.5mm、ダイスリット間隔400μmの環状インフレーションダイから、ダイ剪断速度1000秒-1で溶融押出して、縦の延伸比(Dr)2.9、横の延伸比(Bl)6.2の条件で、融点280℃、膜厚20μmのフィルムを得た。上記フィルムの熱変形温度は260℃であった。
 耐熱ゴムロール(硬度90度、JIS A)と加熱金属ロールを取り付けた熱ロールプレス装置に対して、前記熱可塑性液晶ポリマーフィルムと厚さ50μmのアルミニウム箔とを、260℃の加熱状態で圧力10kg/cm、速度3m/分で圧着して、熱可塑性液晶ポリマーフィルム/アルミニウム箔の構成の積層体を作製し、この積層体を280℃に制御した熱風循環式熱処理炉に30秒置いた。
 窒素雰囲気下において、260℃で4時間熱処理後、さらに270℃で7時間熱処理を行った。その後、慎重にアルミニウム箔を剥離し、厚さ20μmのフィルム単体を得た。得られたフィルムの熱変形温度は330℃であり、MD方向およびTD方向の誘電率はともに3.23であった。しかし、このフィルムの厚み公差は3μm(厚みムラ7.5%)であった。
(比較例2)
 p-ヒドロキシ安息香酸と6-ヒドロキシ-2-ナフトエ酸の共重合物(モル比:73/27)で、融点が280℃である熱可塑性液晶ポリマーを単軸押出機で加熱混練し、ダイ直径33.5mm、ダイスリット間隔1mmの環状インフレーションダイから、ダイ剪断速度500秒-1で溶融押出して、縦の延伸比(Dr)2.9、横の延伸比(Bl)6.2の条件で、融点280℃、膜厚100μmのフィルムを得た。上記フィルムの熱変形温度は260℃であった。
 耐熱ゴムロール(硬度90度、JIS A)と加熱金属ロールを取り付けた熱ロールプレス装置に対して、前記熱可塑性液晶ポリマーフィルムと厚さ50μmのアルミニウム箔とを、260℃の加熱状態で圧力10kg/cm、速度3m/分で圧着して、熱可塑性液晶ポリマーフィルム/アルミニウム箔の構成の積層体を作製し、この積層体を280℃に制御した熱風循環式熱処理炉に30秒置いた。
 窒素雰囲気下において、260℃で4時間熱処理後、さらに270℃で8時間熱処理を行った。その後、慎重にアルミニウム箔を剥離し、フィルム単体を得た。得られたフィルムの熱変形温度は330℃であり、MD方向およびTD方向の誘電率はともに3.22であった。
 次に、このフィルムを延伸温度350℃で二軸延伸を試みたが、フィルムが溶融し、延伸が不可能であった。
(比較例3)
 p-ヒドロキシ安息香酸と6-ヒドロキシ-2-ナフトエ酸の共重合物(モル比:73/27)で、融点が280℃である熱可塑性液晶ポリマーを単軸押出機で加熱混練し、ダイ直径33.5mm、ダイスリット間隔1mmの環状インフレーションダイから、ダイ剪断速度500秒-1で溶融押出して、縦の延伸比(Dr)2.9、横の延伸比(Bl)6.2の条件で、融点280℃、膜厚100μmのフィルムを得た。上記フィルムの熱変形温度は260℃であった。このフィルムのMD方向の誘電率は3.34、TD方向の誘電率は3.27であった。
 次に、このフィルムの延伸を試みたが、破断してしまい、延伸は不可能であった。
 本発明の熱可塑性液晶ポリマーフィルムは、各種電気・電子製品の基板材料として利用することが可能である。また、本発明の製造方法によれば、厚みムラを低減させた熱可塑性液晶ポリマーフィルムを、幅広い範囲の厚みで効率よく製造することができる。
 以上のとおり、本発明の好適な実施形態を説明したが、本発明の趣旨を逸脱しない範囲で、種々の追加、変更または削除が可能であり、そのようなものも本発明の範囲内に含まれる。

Claims (9)

  1.  MD方向およびTD方向ともに3.25以下の誘電率を有する、光学的異方性の溶融相を形成し得る熱可塑性ポリマー(以下、これを熱可塑性液晶ポリマーと称する)からなるフィルムを準備する準備工程、および
     フィルムの熱変形温度(Td)から60℃低い温度(Td-60℃)~Tdから5℃低い温度(Td-5℃)の範囲内で、前記フィルムを加熱して延伸する延伸工程、
    を少なくとも備える熱可塑性液晶ポリマーフィルムの製造方法。
  2.  請求項1において、延伸工程で、支持体を利用せずにフィルム単独を延伸する熱可塑性液晶ポリマーフィルムの製造方法。
  3.  請求項1または2において、延伸工程に先立って、
     熱可塑性液晶ポリマーからなる原反フィルムと、支持体とを接合させて積層体を得る積層工程と、
     前記積層体を熱処理して、熱処理後の熱可塑性液晶ポリマーフィルムの誘電率が、MD方向およびTD方向ともに、3.25以下となるように調整する誘電率調整工程と、
     前記誘電率が調整されたフィルムと支持体とを分離する分離工程と、を備えている熱可塑性液晶ポリマーフィルムの製造方法。
  4.  請求項3において、誘電率調整工程において、熱処理後のフィルムの熱変形温度を、原反フィルムの熱変形温度より40~100℃上昇させる熱可塑性液晶ポリマーフィルムの製造方法。
  5.  請求項1から4のいずれか一項において、延伸工程における加熱温度が、延伸されるフィルムの熱変形温度(Td)から40℃低い温度(Td-40℃)~Tdから10℃低い温度(Td-10℃)の範囲内である、熱可塑性液晶ポリマーフィルムの製造方法。
  6.  請求項3から5のいずれか一項において、支持体が金属箔からなる、熱可塑性液晶ポリマーフィルムの製造方法。
  7.  請求項1~6のいずれか一項に記載された方法により製造された熱可塑性液晶ポリマーフィルム。
  8.  請求項7において、厚みムラが10%以下である熱可塑性液晶ポリマーフィルム。
  9.  請求項7または8において、TD方向の幅が、0.2~1.2mの範囲である熱可塑性液晶ポリマーフィルム。
PCT/JP2013/056387 2012-03-29 2013-03-08 熱可塑性液晶ポリマーフィルムおよびその製造方法 WO2013146174A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380017961.7A CN104220236A (zh) 2012-03-29 2013-03-08 热塑性液晶聚合物薄膜及其制造方法
KR20147030055A KR20150001770A (ko) 2012-03-29 2013-03-08 열가소성 액정 폴리머 필름 및 그 제조 방법
EP13769770.2A EP2832525A4 (en) 2012-03-29 2013-03-08 THERMOPLASTIC LIQUID CRYSTAL POLYMER FILM AND METHOD FOR PRODUCING THE SAME
US14/500,306 US20150017413A1 (en) 2012-03-29 2014-09-29 Thermoplastic liquid crystal polymer film and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012075609 2012-03-29
JP2012-075609 2012-03-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/500,306 Continuation US20150017413A1 (en) 2012-03-29 2014-09-29 Thermoplastic liquid crystal polymer film and method for producing same

Publications (2)

Publication Number Publication Date
WO2013146174A1 true WO2013146174A1 (ja) 2013-10-03
WO2013146174A8 WO2013146174A8 (ja) 2014-10-16

Family

ID=49259442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/056387 WO2013146174A1 (ja) 2012-03-29 2013-03-08 熱可塑性液晶ポリマーフィルムおよびその製造方法

Country Status (7)

Country Link
US (1) US20150017413A1 (ja)
EP (1) EP2832525A4 (ja)
JP (1) JPWO2013146174A1 (ja)
KR (1) KR20150001770A (ja)
CN (1) CN104220236A (ja)
TW (1) TW201343369A (ja)
WO (1) WO2013146174A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020095988A1 (ja) * 2018-11-08 2020-05-14 株式会社クラレ 熱可塑性液晶ポリマーフィルムおよびそれを用いた回路基板
US11879041B2 (en) 2019-02-15 2024-01-23 Sumitomo Chemical Company, Limited Film and laminate
WO2024162372A1 (ja) * 2023-02-03 2024-08-08 東洋鋼鈑株式会社 液晶ポリマーフィルム延伸用3層フィルム、延伸3層フィルム、および延伸液晶ポリマーフィルム、ならびにこれらの製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113727832B (zh) * 2019-04-23 2022-09-13 株式会社可乐丽 热塑性液晶聚合物膜、层叠体和成形体以及它们的制造方法
CN113727843B (zh) * 2019-04-23 2022-08-16 株式会社可乐丽 热塑性液晶聚合物膜、层叠体和成形体以及它们的制造方法
CN113710462B (zh) * 2019-04-23 2022-08-16 株式会社可乐丽 热塑性液晶聚合物膜、层叠体和成形体以及它们的制造方法
CN110760310B (zh) * 2019-09-27 2021-08-10 深圳市信维通信股份有限公司 一种改善液晶聚合物制品机械性能的方法
CN110978576B (zh) * 2019-12-20 2021-09-10 江门市德众泰工程塑胶科技有限公司 一种液晶聚合物薄膜的制备方法
CN111674007A (zh) * 2020-05-07 2020-09-18 深圳市信维通信股份有限公司 用于5g通信的液晶聚合物薄膜及其制备方法
CN114393858B (zh) * 2021-12-24 2023-10-31 上海普利特化工新材料有限公司 一种高延展性液晶聚酯薄膜的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5741934A (en) * 1980-07-15 1982-03-09 Celanese Corp Working of melting working liquid crystal polymer through control of thermal hysteresis
JPH04168129A (ja) * 1990-10-30 1992-06-16 Unitika Ltd 液晶ポリマーフィルムの製造方法
JPH05186614A (ja) * 1992-01-14 1993-07-27 Kuraray Co Ltd ポリエステルフィルム
JP2001009977A (ja) * 1999-06-30 2001-01-16 Toray Ind Inc 液晶性樹脂積層フィルムおよびその製造方法
JP2002029002A (ja) * 1999-10-07 2002-01-29 Toray Ind Inc 液晶性樹脂積層フィルム、その製造方法および液晶性樹脂積層フィルムを用いた回路基板
JP2003340918A (ja) 2002-05-30 2003-12-02 Japan Gore Tex Inc 液晶ポリマーフィルム及びその製造方法
JP2005001376A (ja) * 2003-05-21 2005-01-06 Kuraray Co Ltd フィルムの製造方法
JP2010229200A (ja) * 2009-03-26 2010-10-14 Kuraray Co Ltd 放熱性シート

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001025007A1 (fr) * 1999-10-07 2001-04-12 Toray Industries, Inc. Film stratifie en resine a cristaux liquides, procede de fabrication de ce film et carte a circuit comprenant un film stratifie en resine a cristaux liquides
JP4381961B2 (ja) * 2004-11-10 2009-12-09 株式会社クラレ 熱可塑性液晶ポリマーフィルムを用いた回路基板の製造方法
JP2007320088A (ja) * 2006-05-30 2007-12-13 Nof Corp プリプレグ及びプリント配線板用金属張り基板
CN101235201B (zh) * 2008-02-02 2011-08-10 上海市合成树脂研究所 聚酰亚胺纳米复合薄膜的制备方法
JP6133782B2 (ja) * 2011-10-31 2017-05-24 株式会社クラレ 熱可塑性液晶ポリマーフィルムならびにこれを用いた積層体および回路基板

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5741934A (en) * 1980-07-15 1982-03-09 Celanese Corp Working of melting working liquid crystal polymer through control of thermal hysteresis
JPH04168129A (ja) * 1990-10-30 1992-06-16 Unitika Ltd 液晶ポリマーフィルムの製造方法
JPH05186614A (ja) * 1992-01-14 1993-07-27 Kuraray Co Ltd ポリエステルフィルム
JP2001009977A (ja) * 1999-06-30 2001-01-16 Toray Ind Inc 液晶性樹脂積層フィルムおよびその製造方法
JP2002029002A (ja) * 1999-10-07 2002-01-29 Toray Ind Inc 液晶性樹脂積層フィルム、その製造方法および液晶性樹脂積層フィルムを用いた回路基板
JP2003340918A (ja) 2002-05-30 2003-12-02 Japan Gore Tex Inc 液晶ポリマーフィルム及びその製造方法
JP2005001376A (ja) * 2003-05-21 2005-01-06 Kuraray Co Ltd フィルムの製造方法
JP2010229200A (ja) * 2009-03-26 2010-10-14 Kuraray Co Ltd 放熱性シート

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2832525A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020095988A1 (ja) * 2018-11-08 2020-05-14 株式会社クラレ 熱可塑性液晶ポリマーフィルムおよびそれを用いた回路基板
JP6764049B1 (ja) * 2018-11-08 2020-09-30 株式会社クラレ 熱可塑性液晶ポリマーフィルムおよびそれを用いた回路基板
US11877395B2 (en) 2018-11-08 2024-01-16 Kuraray Co., Ltd. Thermoplastic liquid crystal polymer film and circuit board using same
JP7526622B2 (ja) 2018-11-08 2024-08-01 株式会社クラレ 熱可塑性液晶ポリマーフィルムの製造方法、熱可塑性液晶ポリマーフィルム、並びにそれを用いた金属張積層体および回路基板
US11879041B2 (en) 2019-02-15 2024-01-23 Sumitomo Chemical Company, Limited Film and laminate
WO2024162372A1 (ja) * 2023-02-03 2024-08-08 東洋鋼鈑株式会社 液晶ポリマーフィルム延伸用3層フィルム、延伸3層フィルム、および延伸液晶ポリマーフィルム、ならびにこれらの製造方法

Also Published As

Publication number Publication date
US20150017413A1 (en) 2015-01-15
WO2013146174A8 (ja) 2014-10-16
CN104220236A (zh) 2014-12-17
EP2832525A1 (en) 2015-02-04
EP2832525A4 (en) 2015-11-25
TW201343369A (zh) 2013-11-01
JPWO2013146174A1 (ja) 2015-12-10
KR20150001770A (ko) 2015-01-06

Similar Documents

Publication Publication Date Title
WO2013146174A1 (ja) 熱可塑性液晶ポリマーフィルムおよびその製造方法
JP6640072B2 (ja) 熱可塑性液晶ポリマーフィルムならびにこれを用いた積層体および回路基板
US9096049B2 (en) Metal-clad laminate and method for production thereof
JP7330968B2 (ja) 熱可塑性液晶ポリマーフィルム、その製造方法およびフレキシブル銅張積層板
JP5308204B2 (ja) 放熱性シート
JP2016107507A (ja) 金属張積層板およびその製造方法
WO2021256491A1 (ja) 熱可塑性液晶ポリマー成形体、金属張積層体および回路基板
JP2009286094A (ja) 多層ポリイミドフィルム
WO2020066880A1 (ja) 金属張積層体の製造方法
JP4184529B2 (ja) 熱可塑性液晶ポリマーフィルムとその改質方法
JP7182030B2 (ja) 金属張積層体の製造方法
JP7458396B2 (ja) 金属張積層体の製造方法
JP7182747B2 (ja) 金属張積層体の製造方法
WO2024166774A1 (ja) Lcpフィルムの製造方法
WO2024176916A1 (ja) 金属張積層板およびその製造方法、ならびに回路基板
WO2024177035A1 (ja) 熱可塑性液晶ポリマーフィルムおよび積層体、ならびにそれらの製造方法
JP2023106954A (ja) 熱可塑性高分子フィルムの製造方法、及び熱可塑性高分子フィルムの配向制御方法
JP2012009621A (ja) フレキシブルプリント基板用シート及びこれを用いたフレキシブルプリント基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13769770

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014507607

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013769770

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013769770

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147030055

Country of ref document: KR

Kind code of ref document: A