WO2020134773A1 - Méthode de récupération et de préparation de matériau de cathode de phosphate de fer-lithium - Google Patents

Méthode de récupération et de préparation de matériau de cathode de phosphate de fer-lithium Download PDF

Info

Publication number
WO2020134773A1
WO2020134773A1 PCT/CN2019/120509 CN2019120509W WO2020134773A1 WO 2020134773 A1 WO2020134773 A1 WO 2020134773A1 CN 2019120509 W CN2019120509 W CN 2019120509W WO 2020134773 A1 WO2020134773 A1 WO 2020134773A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
lithium
iron phosphate
lithium iron
liquid phase
Prior art date
Application number
PCT/CN2019/120509
Other languages
English (en)
Chinese (zh)
Inventor
林永寿
赵丰刚
刘晓梅
郑先锋
王国宝
王凡
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Publication of WO2020134773A1 publication Critical patent/WO2020134773A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the invention relates to the field of electrochemistry, in particular to a method for recovering and preparing lithium iron phosphate cathode material.
  • an object of the present invention is to provide a method for recovering and preparing lithium iron phosphate cathode material and the recovered lithium iron phosphate cathode material obtained by the preparation, and further to provide the recovered iron phosphate Lithium ion batteries with lithium cathode materials are used to solve the problems in the prior art.
  • one aspect of the present invention provides a method for recovering and preparing lithium iron phosphate cathode material, including:
  • step b) Adjust the pH value of the first liquid phase provided in step a), and obtain the first lithium-containing solution and the first precipitate by solid-liquid separation;
  • step b) Adjust the pH value of the first lithium-containing solution provided in step b), and obtain the second lithium-containing solution and the second precipitate by solid-liquid separation;
  • step d) mixing the first precipitation provided in step b) and the second lithium-containing solution provided in step c) with an auxiliary agent to obtain a second liquid phase;
  • step d) Adjust the content of Li element, Fe element, P element, and C element in the second liquid phase provided in step d) to obtain a third liquid phase;
  • step f) removing the solvent in the third liquid phase provided in step e) to obtain a lithium iron phosphate precursor
  • step f) The lithium iron phosphate precursor provided in step f) is calcined under a reducing environment to obtain a lithium iron phosphate cathode material.
  • Another aspect of the present invention provides a recovered lithium iron phosphate cathode material prepared and obtained by the foregoing method for recycling lithium iron phosphate cathode material.
  • Another aspect of the present invention provides a lithium ion battery including the recovered lithium iron phosphate cathode material.
  • the present invention has the following beneficial effects:
  • the recovery method is simple. After disassembling the cell, it is directly contacted with the acid solution, and the simple separation directly synthesizes the lithium iron phosphate cathode material without the steps of mechanical separation of the positive and negative plates, the separation membrane, and the separation of the pole piece and the active material. .
  • the recycling rate is high, the lithium iron phosphate battery has a stoichiometric ratio of lithium source, iron source, and phosphorus source, and the lithium salt in the electrolyte supplements the available lithium salt, the organic matter in the battery, and the carbon material on the negative electrode. , To supplement the available carbon source.
  • the present invention makes full use of the lithium element in the electrolyte and the carbon material in the negative electrode sheet, so that only a small amount of elements lost in the recovery process need to be added in step d, and even no additional elements need to be added to synthesize the lithium iron phosphate cathode material.
  • the lithium iron phosphate cathode material used in the battery needs to limit the content of heavy metal impurity ions, and the present invention is equivalent to the further recovery and purification on the basis of the system that controls the content of heavy metal ions, and the impurity metal is newly added in the recovery process
  • the ions come only from copper and aluminum in the substrate, and they are basically free of other transition metal impurity elements, which is easy to handle.
  • Recycled synthetic lithium iron phosphate cathode material has very good comprehensive performance.
  • Figure 1 shows a schematic diagram of the results of an embodiment of the present invention.
  • the lithium ion battery of the present invention and its preparation method are described in detail below.
  • a first aspect of the present invention provides a method for recovering and preparing lithium iron phosphate cathode material, including:
  • step b) Adjust the pH value of the first liquid phase provided in step a), and obtain the first lithium-containing solution and the first precipitate by solid-liquid separation;
  • step b) Adjust the pH value of the first lithium-containing solution provided in step b), and obtain the second lithium-containing solution and the second precipitate by solid-liquid separation;
  • step d) mixing the first precipitation provided in step b) and the second lithium-containing solution provided in step c) with an auxiliary agent to obtain a second liquid phase;
  • step d) Adjust the content of Li element, Fe element, P element, and C element in the second liquid phase provided in step d) to obtain a third liquid phase;
  • step f) removing the solvent in the third liquid phase provided in step e) to obtain a lithium iron phosphate precursor
  • step f) calcining the lithium iron phosphate precursor provided in step f) in the presence of a reducing gas to obtain a lithium iron phosphate cathode material
  • the method for recovering and preparing lithium iron phosphate cathode material provided by the present invention can be directly contacted with an acid solution after disassembling the battery cell, and can be directly separated and directly synthesized in one step to synthesize lithium iron phosphate cathode material, which can be fully utilized by recycling in the entire preparation process
  • the lithium element in the electrolyte and the final preparation of the lithium iron phosphate cathode material have less impurity content.
  • the lithium iron phosphate battery generally refers to a lithium ion battery using lithium iron phosphate as a positive electrode material, and the chemical formula of the lithium iron phosphate may be LiFe y Mn 1-yz M” z PO 4 /C b (b ⁇ 0, M” One or more combinations selected from Cr, Mg, Ti, Al, Zn, W, Nb, and Zr (0.1 ⁇ y ⁇ 1.0, 0 ⁇ z ⁇ 0.9).
  • the method for recovering and preparing lithium iron phosphate cathode material may include: contacting the recovered battery core material with an acid solution, and solid-liquid separation to obtain a first liquid phase.
  • Those skilled in the art can choose a suitable way to obtain recycled battery core materials, and the recycled battery core materials usually include positive pole pieces.
  • those skilled in the art can use lithium iron phosphate battery cells without removing the casing.
  • the cell material includes a battery metal (usually Al or steel) shell or polymer case, positive and negative electrode plates, separators and electrolyte; for another example, those skilled in the art can use a lithium iron phosphate battery with the case removed Core to obtain a cell including a positive pole piece, more specifically a bare cell including a positive pole piece; for another example, the cell material may be a positive pole piece, and a person skilled in the art may obtain the positive pole piece
  • the cells of the sheet are further separated to obtain a positive pole piece.
  • the recovered battery cell is usually a discharged battery cell, for example, the battery cell can be discharged to 2.5 V or less to ensure the safety of the treatment process.
  • the recovered battery cell may be a whole-recovered battery cell, that is, after disassembly, the components of the battery cell are not further separated.
  • the recovered battery cell material may generally include a positive pole piece, and may also include an isolation film and / Or negative electrode, etc., may also include electrolyte, because the electrolyte is recovered electrolyte, so the electrolyte usually contains a certain amount of lithium element, the content of lithium element in the electrolyte is usually in the electrolyte The content in is 0.5% ⁇ 2%. Due to the difference in the amount of liquid injected into the battery cell, the element content in the electrolyte is also different.
  • the lithium element content is 0.2% ⁇ 0.8%, 0.2% ⁇ 0.4 relative to the positive electrode active material percentage %, 0.4% to 0.6%, or 0.6% to 0.8%.
  • the acid solution is usually an aqueous solution, and the molar concentration of the acid solution may be 0.5 to 10M, 0.5 to 1M, 1 to 2M, 2 to 3M, 3 to 4M, 4 to 5M, 5 to 6M, 6 to 8M, or 8 to 10M, preferably 1 to 6M.
  • the acid in the acid solution may be an inorganic acid and/or an organic acid.
  • the inorganic acid in the acid solution is preferably an inorganic strong acid, which may specifically include but not limited to hydrochloric acid, nitric acid, sulfuric acid, perchloric acid, chloric acid, etc. One or more combinations.
  • the organic acid in the acid solution is preferably an organic strong acid, which may specifically include but not limited to 2,4,6-trinitrophenol, 2,4,6-trinitrobenzoic acid, tri A combination of one or more of fluoroacetic acid, trichloroacetic acid, methanesulfonic acid, benzenesulfonic acid, KMD acid, etc.
  • the acid solution may also have oxidizing properties.
  • the acid in the acid solution may be an oxidizing acid.
  • the acid solution may include hydrogen peroxide, specifically an acidic hydrogen peroxide solution.
  • the molar concentration of hydrogen peroxide in the acid solution may be 0.5 to 10M, 0.5 to 1M, 1 to 2M, 2 to 3M, 3 to 4M, 4 to 5M, 5 to 6M, 6 to 8M, or 8 to 10M, preferably It can be 1 ⁇ 6M.
  • the concentration of Fe 2+ in the first liquid phase may be ⁇ 30 ppm, ⁇ 40 ppm, ⁇ 50 ppm, ⁇ 60 ppm, ⁇ 80 ppm, or ⁇ 100 ppm, preferably, preferably, the concentration of Fe 2+ in the first liquid phase is ⁇ 50 ppm.
  • Skill in the art can select a suitable adjusting the concentration of Fe 2+ in the first liquid phase, for example, may have the acid solution by using an oxidizing, reducing to Fe 2+ solution, and then, for example, a step ) May also include: performing oxidation treatment on the first liquid phase.
  • the oxidation treatment generally refers to a treatment method of contacting the first liquid phase with an oxidizing substance, thereby oxidizing a reducing substance (for example, ferrous ion Fe 2+ ) in the first liquid phase.
  • a reducing substance for example, ferrous ion Fe 2+
  • the recovery rate of the separated Fe element in the subsequent pH adjustment is higher, because the pH is less than 3, the iron phosphate is basically completely precipitated, and the ferrous phosphate is completely precipitated.
  • the pH needs to be> 5 , Al and Cu precipitation cross.
  • the concentration of Fe 2+ can be measured using phenanthroline spectrophotometry.
  • the method of oxidizing the first liquid phase should be known to those skilled in the art.
  • the first liquid phase may be contacted with an oxidant, and the oxidant may be, for example, oxygen, etc.
  • the oxidant may be, for example, oxygen, etc.
  • a gas containing oxygen may be introduced into the first liquid phase, and the gas containing oxygen may include but is not limited to Combination of one or more of oxygen, air, a mixture of oxygen and other suitable gases (eg, inert gas, etc.), etc.
  • the temperature conditions of the contact between the recovery cell and the acid solution may be 10°C to 60°C, 10°C to 20°C, 20°C to 30°C, 30°C to 40°C, 40°C to 50°C, or 50 °C ⁇ 60 °C, preferably 15 °C ⁇ 40 °C, more preferably 20 °C ⁇ 35 °C, for example, the recovery battery and acid contact time can be 0.5h ⁇ 5h, 0.5h ⁇ 1h, 1h ⁇ 2h , 2h to 3h, 3h to 4h, or 4h to 5h, preferably 1h to 3h.
  • first liquid phase usually It can dissolve the lithium iron phosphate active material in the recovered battery, lithium in the graphite negative electrode, aluminum foil, copper foil and other components.
  • the main elements in the first liquid phase can be Fe, P, Li, Al, Cu, C, O, H, etc.
  • the second precipitate obtained by separation can generally include graphite, conductive carbon, binder, separator, substrate, etc.
  • the second precipitate obtained by separation can be further separated to obtain Graphite, these methods should be known to those skilled in the art, for example, it can be filtered with a filter of different pore sizes to obtain graphite by sieving.
  • the method for recovering and preparing the lithium iron phosphate cathode material provided by the present invention may further include: adjusting the pH value of the first liquid phase provided in step a), and solid-liquid separation to obtain the first lithium-containing solution and the first precipitate.
  • the pH value of the first liquid phase provided in step a) is generally strongly acidic, and those skilled in the art can appropriately adjust the amount of the acid solution according to the pH value of the first liquid phase, for example, the The pH value may be ⁇ 0.8, ⁇ 1, ⁇ 1.2, ⁇ 1.4., ⁇ 1.6, ⁇ 1.8, or ⁇ 2.
  • the pH value of the first liquid phase may be ⁇ 1.
  • the components in the solution can be sequentially precipitated to achieve the purpose of separating the components.
  • a person skilled in the art can select suitable pH treatment conditions.
  • the pH of the first liquid phase can be adjusted, and solid-liquid separation (for example, filtration or the like) can be performed to obtain the first precipitate and the first lithium-containing solution.
  • the main component of the first precipitation is usually iron phosphate, and the first lithium-containing solution may be a treatment liquid after the iron phosphate is fully analyzed.
  • the pH of the first liquid phase can be adjusted to 1 to 3, 1 to 1.5, 1.5 to 2, 2 to 2.5, or 2.5 to 3, and preferably the pH of the first liquid phase can be adjusted to 1.5 to 2.5 , So that components such as iron phosphate in the first liquid phase can be fully precipitated, while the remaining components are still dissolved in the solution.
  • the method for recovering a lithium iron phosphate cathode material provided by the invention may further include: adjusting the pH value of the first lithium-containing solution provided in step b), and solid-liquid separation to obtain a second lithium-containing solution and a second precipitate.
  • adjusting the pH value of the first lithium-containing solution with the gradual increase of the pH value, the components in the solution can be successively precipitated to achieve the purpose of separating the components.
  • a person skilled in the art can select suitable pH treatment conditions.
  • the pH of the first lithium-containing solution can be adjusted, and solid-liquid separation (eg, filtration or the like) can be performed to obtain the second lithium-containing solution and the second precipitate.
  • the second lithium-containing solution is a lithium salt solution whose main component is a lithium salt.
  • the lithium salt contained in the second lithium-containing solution may be LiCl, LiNO 3, etc.
  • the second precipitation may mainly be Including aluminum phosphate, copper phosphate, copper hydroxide, etc.
  • the pH of the first lithium-containing solution can be adjusted to 4-11, 4-5, 5-6, 6-7, 7-8, 8-9, 9-10, or 10-11, preferably it can be adjusted
  • the pH value of the first lithium-containing solution is 6 to 10, so that metals such as Al and Cu (usually impurity components) can be fully precipitated to form a second precipitate, while most lithium-containing compounds are still dissolved in the solution
  • the Al element content in the second lithium-containing solution is not higher than 30 ppm.
  • the base may be an inorganic base and/or an organic base.
  • the inorganic base may include but not limited to a combination of one or more of ammonia, sodium hydroxide, potassium hydroxide, etc.
  • the organic base may include but not Limited to methylamine, ethylamine, ethanolamine, ethylenediamine, dimethylamine, trimethylamine, triethylamine, propylamine, isopropylamine, 1,3-propanediamine, tripropylamine, butylamine, isobutylamine, tert-butylamine, hexylamine A combination of one or more of amine, octylamine, cyclohexylamine, etc.
  • the method for recovering and preparing lithium iron phosphate cathode material provided by the present invention may further include: mixing the first precipitation provided in step b) and the second lithium-containing solution provided in step c) with an auxiliary agent to obtain a second Liquid phase.
  • the second liquid phase may be a uniform solution or a uniformly dispersed suspension.
  • the auxiliary agent is generally used to increase the solubility of the solution system to iron phosphate, which can help to form a solution with a uniform distribution of various ions.
  • the quality of the auxiliary agent can be 0.1% to 20%, 0.1% to 0.5%, 0.5% to 1%, 1% to 2%, 2% to 3%, 3% of the mass of iron phosphate and lithium-containing solution ⁇ 5%, 5% ⁇ 10%, 10% ⁇ 15%, or 15% ⁇ 20%
  • the components constituting the auxiliary agent can usually include but not limited to acids, dispersants, surfactants, chelating agents, etc. One or more combinations.
  • the acid in the auxiliary agent may be an inorganic acid and/or an organic acid
  • the inorganic acid in the auxiliary agent is preferably a strong inorganic acid, which may specifically include but not limited to one of hydrochloric acid, nitric acid, sulfuric acid, perchloric acid, chloric acid, etc.
  • the organic acid in the auxiliary agent is preferably a strong organic acid, which may specifically include but not limited to 2,4,6-trinitrophenol, 2,4,6-trinitrobenzoic acid, trifluoroacetic acid , Trichloroacetic acid, methanesulfonic acid, benzenesulfonic acid, KMD acid, etc. one or more combinations.
  • the dispersing agent may include but not limited to water, ethanol, acetone, propanol, isopropanol, methanol, n-butanol, acetonitrile, tetrahydrofuran, diethyl ether methylene chloride, chloroform, dimethyl sulfoxide, dimethyl methyl alcohol A combination of one or more of amides and the like.
  • the surfactant may include but is not limited to cetyltrimethylammonium bromide, cetyltrimethylammonium chloride, sodium dodecyl sulfate, sodium dodecylbenzenesulfonate, poly A combination of one or more of ethylene glycol, polyethylene oxide, polyacrylamide or carboxymethyl cellulose, polyvinylpyrrolidone, ethylene-acrylic acid copolymer, ethylene-vinyl acetate copolymer, and the like.
  • the chelating agent may be one of but not limited to nitrilotriacetic acid, 1,2-cyclohexanediaminetetraacetic acid, ethylenediaminetetraacetic acid, citric acid, malic acid, oxalic acid, acetic acid, salicylic acid, etc. Or a combination of multiple.
  • the method for recovering and preparing lithium iron phosphate cathode material provided by the present invention may further include: adjusting the content of Li element, Fe element, P element and C element in the second liquid phase provided in step d) to obtain a third liquid phase.
  • a person skilled in the art can determine the content of Li, Fe, P, and C elements in the third liquid phase according to the type of lithium iron phosphate cathode material to be prepared, for example, the molar ratio between Fe and P elements Usually it is basically the same amount.
  • the molar ratio between Fe and P can be 1:0.95 ⁇ 1.05.
  • Li and C have a certain loss (volatility) during the final heat treatment, so the amount of Li used It is usually excessive, specifically, the molar ratio between Li element and Fe element can be (1 to 1.5): (0.95 to 1.05), and the molar ratio between Li element and P element can be (1 to 1.5): (0.95 to 1.05), the molar ratio between the Li element and the C element may be (1 to 1.5): (0.5 to 4).
  • the content of elements in the system can be determined by a suitable analytical method.
  • analytical methods may include but are not limited to ICP , One or more of chemical titration, liquid chromatography, precipitation method, carbon and sulfur analysis method to determine the element content in the system.
  • the method of adjusting each element in the liquid phase should be known to those skilled in the art, and can usually be adjusted by introducing one or more combinations of corresponding lithium source, iron source, phosphorus source, carbon source, etc.
  • the content of each element in the second liquid phase, the lithium source, iron source, phosphorus source, and carbon source may generally be various raw materials suitable for preparing lithium iron phosphate cathode materials, for example, the lithium source used may include but Not limited to one or more combinations of lithium carbonate, lithium dihydrogen phosphate, lithium phosphate, lithium acetate, lithium hydroxide, lithium oxalate, lithium nitrate, etc.
  • the iron source used may include but is not limited to dioxide One or more of iron, ferric oxide, ferric phosphate, ferrous phosphate, ferric nitrate, ferric chloride, ferrous nitrate, ferrous chloride, ferric acetate, ferric carbonate, ferrous carbonate, ferric acetylacetonate, etc.
  • a combination of species, the phosphorus source used may be one or more combinations including but not limited to ammonium dihydrogen phosphate, lithium dihydrogen phosphate, iron phosphate, ferrous phosphate, phosphoric acid, etc.
  • the carbon source used may be Is a combination of one or more of graphite, conductive carbon, acetylene black, conductive carbon black, carbon fiber, carbon nanotubes, nanocarbon microspheres, glucose, sucrose, fructose, polyacrylonitrile, etc.
  • the carbon source is preferably a soluble carbon source.
  • the iron source for adjusting the content of the iron element in the second liquid phase may include at least part of the first precipitate provided in the step b), so that sufficient recovery and application of iron phosphate can be achieved.
  • the carbon source for adjusting the content of the carbon element in the second liquid phase may include at least a part of the carbon source obtained by sieving the insoluble matter in the step a), so that sufficient material can be achieved Recycling.
  • the Fe element introduced when adjusting the element ratio usually does not exceed 25%, 20%, 15%, 10%, or 5% of the total Fe element in the third liquid phase.
  • the introduced Li element usually does not exceed 25%, 20%, 15%, 10%, or 5% of the total Li element in the third liquid phase
  • the P element introduced when adjusting the element ratio usually does not exceed the third liquid phase 25%, 20%, 15%, 10%, or 5% of the total amount of P element
  • the C element introduced when adjusting the element ratio may account for 50% to 100%, 50% of the total amount of C element in the third liquid phase ⁇ 60%, 60% ⁇ 70%, 70% ⁇ 80%, 80% ⁇ 90%, or 90% ⁇ 100%.
  • the method for recovering and preparing a lithium iron phosphate cathode material provided by the present invention may further include: removing the solvent in the third liquid phase provided in step e) to obtain a lithium iron phosphate precursor.
  • a person skilled in the art may select a suitable method to remove the solvent of the third liquid phase provided in step e), for example, the method of removing the solvent may be dried, etc., and more specifically may include, but not limited to, atmospheric drying and vacuum drying , Spray drying, boiling drying, freeze drying, etc. one or more combinations.
  • the method for recovering and preparing a lithium iron phosphate cathode material provided by the present invention may further include: calcining the lithium iron phosphate precursor provided in step f) under a reducing environment to obtain a lithium iron phosphate cathode material.
  • the reducing environment may be provided by a reducing gas and/or a reducing liquid, specifically by hydrogen And/or carbon monoxide, or those gases and/or liquids capable of generating hydrogen and/or carbon monoxide under heating conditions
  • the reducing gas and/or reducing liquid used to provide the reducing environment may include but is not limited to hydrogen, A combination of one or more of carbon monoxide, acetylene, methanol, ethanol, methane, ethane, etc.
  • the calcination temperature may be 500° C. to 700° C., 500° C.
  • the calcination time may be 10 min to 300 min, 10 min ⁇ 20min, 20min ⁇ 30min, 30min ⁇ 50min, 50min ⁇ 100min, 100min ⁇ 150min, 150min ⁇ 200min, or 200min ⁇ 300min.
  • the impurity metal ions of the recovered recovered lithium iron phosphate cathode material only come from copper and aluminum in the substrate, and are substantially free of other transition metal impurity elements, such as , Basically does not contain Ni, Co, Mn, K and other metal ions, specifically, the sum of Cu, Al impurity ion content ⁇ 200ppm, the sum of heavy metal impurity ion content except Cu, Al can be less than 200ppm, sodium potassium content The sum can be less than 300ppm.
  • the second aspect of the present invention provides a recovered lithium iron phosphate cathode material prepared by the method provided in the first aspect of the present invention.
  • the impurity metal ions only come from copper and aluminum in the base material, and basically do not contain other transition metal impurity elements.
  • the sum of Cu and Al impurity ion content is less than 200ppm, except Cu,
  • the sum of the content of heavy metal impurities ions other than Al may be less than 200 ppm, and the sum of the content of sodium and potassium elements may be less than 300 ppm.
  • a third aspect of the present invention provides a lithium ion battery, including the lithium iron phosphate cathode material prepared and recovered as provided in the second aspect of the present invention.
  • the lithium ion battery generally includes a positive electrode tab, and the positive electrode tab generally includes a positive electrode current collector and a positive electrode active material layer on the positive electrode current collector, and the positive electrode active material layer may generally include as provided in the first aspect of the present invention Of recycled lithium iron phosphate cathode material.
  • the lithium-ion battery may also include other components that can be used in the lithium-ion battery, for example, it may also include a negative pole piece, a battery separator, an electrolyte, an external electrode, a tab, a packaging case, and the like.
  • one or more of the method steps mentioned in the present invention does not exclude that there may be other method steps before or after the combination step or that other method steps may be inserted between these explicitly mentioned steps unless otherwise Explained; It should also be understood that the combined connection relationship between one or more devices/devices mentioned in the present invention does not exclude that there may be other devices/devices or those mentioned explicitly in these before and after the combined device/device Other devices/apparatuses can also be inserted between the two devices/apparatuses unless otherwise stated.
  • each method step is only a convenient tool to identify each method step, not to limit the order of each method step or to limit the scope of the present invention, the change or adjustment of its relative relationship, in If the technical content is not substantially changed, it should be regarded as the scope of the invention.
  • Step a) Dismantle a 35Ah lithium iron phosphate hard shell battery with 80% capacity reduction, cut off the pole ears, put the winding core ( ⁇ 600g) and residual electrolyte ( ⁇ 20g) into 1.5L of 5M hydrochloric acid Then, add 250ml of 3M hydrogen peroxide solution to the solution, and stir and soak for 2h at 25°C.
  • Step d) The separated first precipitate and the second lithium-containing solution are mixed, and a mixed solution containing 5M hydrochloric acid, 1M polyethylene glycol and 1M citric acid is added dropwise during the stirring process until the solution becomes a uniform suspension.
  • Step e) Test the content of lithium, iron and phosphorus by ICP, use a carbon-sulfur analyzer to test the content of element C, add 18g of the carbon source (mainly graphite) obtained in the previous step a), and 1g of iron phosphate to make the suspension
  • the molar ratio of lithium element: iron element: phosphorus element: carbon element is 1.12:1:1:1:0.8.
  • Step f) After the above solution is fully stirred, a spray drying method is used to heat the spray drying furnace to 200° C. for spray drying to obtain a precursor powder.
  • Step g) The above precursor powder is placed in an atmosphere furnace, and heated to 600° C. at 5° C./min for 5 hours, during which hydrogen-argon mixed gas is introduced to prepare a recovered lithium iron phosphate cathode material 1.
  • Step a) Dismantle a 35Ah lithium iron phosphate hard shell battery with 80% capacity reduction, cut off the pole ears, put the winding core ( ⁇ 600g) and residual electrolyte ( ⁇ 20g) into 1.5L of 3M nitric acid In the solution, at 30°C, stir and soak for 3h.
  • the above mixture is sieved through a 100-mesh screen to remove insoluble impurities to obtain a suspension; the suspension is filtered under reduced pressure to obtain a recovered carbon source and a first liquid phase.
  • Step d) The separated first precipitate and second lithium-containing solution are mixed, and a mixed solution containing 2M nitric acid, 1M polyethylene oxide, and 1M malic acid is added dropwise during the stirring process until the solution becomes a uniform suspension.
  • Step e) Test the content of lithium, iron and phosphorus by ICP, use a carbon and sulfur analyzer to test the content of element C, add 17g of the carbon source (mainly graphite) obtained in the previous step a), and 0.8g of ferric oxide and 1.0g Phosphoric acid is such that the molar ratio of lithium element: iron element: phosphorus element: carbon element in the solution is 1.12:1:1:1:0.5.
  • Step f) After fully stirring the above solution, it is dried under reduced pressure at 90°C to obtain a precursor powder.
  • Step g) The above precursor powder is placed in an atmosphere furnace, and heated to 600° C. at 5° C./min for 3 hours, during which a mixture of carbon monoxide and argon gas is introduced to prepare a recovered lithium iron phosphate cathode material 2.
  • Step a) Dismantle a 35Ah lithium iron phosphate hard shell battery with 80% capacity reduction, cut off the tabs, put the winding core ( ⁇ 600g) and residual electrolyte ( ⁇ 20g) into 1.5L, and the concentration is 3M. Then add 250ml of 1M hydrogen peroxide solution to the chloroacetic acid solution, and immerse for 5 hours under stirring at 20°C.
  • the above mixture is sieved through a 100-mesh screen to remove insoluble impurities to obtain a suspension; the suspension is filtered under reduced pressure to obtain a recovered carbon source and a first liquid phase.
  • Step d) The separated first precipitate and second lithium-containing solution are mixed, and a mixed solution containing 3M trichloroacetic acid, 1M cetyltrimethylammonium bromide and 1M oxalic acid is added dropwise during the stirring process until the solution becomes Even suspension.
  • Step e) Test the content of lithium, iron and phosphorus by ICP, use a carbon-sulfur analyzer to test the content of element C, add 25g of the carbon source (mainly graphite) obtained in the previous step a), 2.3g of iron nitrate and 0.9g of phosphoric acid, so that The molar ratio of lithium element: iron element: phosphorus element: carbon element in the solution is 1.11:1:1:1:1:1.
  • Step f) After fully stirring the above solution, directly evaporate and dry at 100°C to obtain a precursor powder.
  • Step g) The above precursor powder is placed in an atmosphere furnace, and the temperature is raised to 600°C at 5°C/min and calcined for 3 hours, during which methane and argon gas mixture is passed to prepare a recovered lithium iron phosphate cathode material 3.
  • Step a) Dismantle a 35Ah lithium iron phosphate hard shell battery with 80% attenuation, cut off the pole ears, put the winding core ( ⁇ 600g) and the residual electrolyte ( ⁇ 20g) into 3L of hydrochloric acid with a concentration of 0.8M In the solution, at 30 °C, stir and soak for 5h.
  • the above mixture is sieved through a 100-mesh screen to remove insoluble impurities to obtain a suspension; the suspension is filtered under reduced pressure to obtain a recovered carbon source and a first liquid phase.
  • Step d) The separated first precipitate and the second lithium-containing solution are mixed, and a mixed solution containing 5M hydrochloric acid, 1M polyethylene glycol and 1M citric acid is added dropwise during the stirring process until the solution becomes a uniform suspension.
  • Step e) Test the content of lithium, iron and phosphorus by ICP, use a carbon and sulfur analyzer to test the content of element C, add 18g of the carbon source (mainly graphite) obtained in the previous step a), 2g of ferric oxide and 3.1g of diphosphate
  • the ammonium hydrogen and phosphorus elements make the molar ratio of lithium element: iron element: phosphorus element: carbon element in the solution 1.13:1:1:1:0.7.
  • Step f) After the above solution is fully stirred, a spray drying method is used to heat the spray drying furnace to 200° C. for spray drying to obtain a precursor powder.
  • Step g) The above precursor powder is placed in an atmosphere furnace, and heated to 600° C. at 5° C./min for 3 h, during which hydrogen-argon mixed gas is introduced to prepare the recovered lithium iron phosphate cathode material 4.
  • Step a) Dismantle a 35Ah lithium iron phosphate hard shell battery with 80% capacity reduction, cut off the tabs, put the winding core ( ⁇ 600g) and the residual electrolyte ( ⁇ 20g) into 1.5L of 2M hydrochloric acid In the solution, at 30°C, stir and soak for 3h.
  • the above mixture is sieved through a 100-mesh screen to remove insoluble impurities to obtain a suspension; the suspension is filtered under reduced pressure to obtain a recovered carbon source and a first liquid phase.
  • Step d) The separated first precipitate and the second lithium-containing solution are mixed, and a mixed solution containing 5M hydrochloric acid, 1M polyethylene glycol and 1M citric acid is added dropwise during the stirring process until the solution becomes a uniform suspension.
  • Step e) Test the content of lithium, iron and phosphorus by ICP, use a carbon-sulfur analyzer to test the content of element C, add 18g of the carbon source (mainly graphite) obtained in the previous step a), and 2.5g of iron phosphate to make lithium in the solution
  • iron element: phosphorus element: carbon element molar ratio is 1.12:1:1:1:1:0.7.
  • Step f) After the above solution is fully stirred, a spray drying method is used to heat the spray drying furnace to 200° C. for spray drying to obtain a precursor powder.
  • Step g) The above precursor powder is placed in an atmosphere furnace, and heated to 600° C. at 5° C./min for 3 h, during which hydrogen-argon mixed gas is passed to prepare a recovered lithium iron phosphate cathode material 5.
  • Step a) Dismantle a 35Ah lithium iron phosphate hard shell battery with 80% capacity reduction, cut off the tabs, put the winding core ( ⁇ 600g) and residual electrolyte ( ⁇ 20g) into 1.5L of 3M hydrochloric acid In the solution, at 30°C, stir and soak for 3h.
  • the above mixture is sieved through a 100-mesh screen to remove insoluble impurities to obtain a suspension; the suspension is filtered under reduced pressure to obtain a recovered carbon source and a first liquid phase.
  • Step d) The separated first precipitate and the second lithium-containing solution are mixed, and a mixed solution containing 5M hydrochloric acid, 1M polyethylene glycol and 1M citric acid is added dropwise during the stirring process until the solution becomes a uniform suspension.
  • Step e) Test the content of lithium, iron and phosphorus by ICP, use a carbon sulfur analyzer to test the content of element C, add 18g of the carbon source (mainly graphite) obtained in the previous step a), and 2.1g of iron phosphate to make lithium in the solution
  • iron element: phosphorus element: carbon element molar ratio is 1.11:1:1:1:1:0.7.
  • Step f) After fully stirring the above solution, it is dried at 90°C under reduced pressure to obtain a precursor powder.
  • Step g) Put the above-mentioned precursor powder in an atmosphere furnace, raise the temperature at 5°C/min to 600°C and calcine for 3 hours, during which hydrogen-argon mixed gas is introduced to prepare the recovered lithium iron phosphate cathode material 6.
  • the pH adjustment changes are shown in the following table, in which the pH value is measured using a pH meter, and the ion concentration is detected using ICP:
  • the content of metal impurity ions in lithium iron phosphate synthesized in Example 1 was synthesized by ICP. The results are shown in Table 2. It can be seen that the concentration of each metal impurity ion is at a very low content level, and Ni and Co are not detected. , Mn, K metal ions, Li element recovery rate is 93%, iron element recovery rate is 96%, phosphorus element recovery rate is 96%.
  • the present invention effectively overcomes various shortcomings in the prior art and has high industrial utilization value.

Abstract

L'invention concerne une méthode de récupération et de préparation d'un matériau de cathode de phosphate de fer-lithium, comprenant la mise en contact d'un matériau de cellule de batterie recyclé avec une solution acide, suivie d'une séparation solide-liquide pour obtenir une première phase liquide et une matière insoluble ; l'ajustement de la valeur de pH de la première phase liquide, puis une séparation solide-liquide pour obtenir une première solution contenant du lithium et un premier précipité ; le mélange du premier précipité et d'une seconde solution contenant du lithium avec un agent auxiliaire pour obtenir une seconde phase liquide ; l'ajustement des teneurs en Li, Fe, P et C dans la seconde phase liquide pour obtenir une troisième phase liquide ; l'élimination d'un solvant dans la troisième phase liquide pour obtenir un précurseur de phosphate de fer-lithium ; et la calcination du précurseur dans un environnement réducteur pour obtenir le matériau de cathode de phosphate de fer-lithium. L'invention concerne également un matériau de cathode de phosphate de fer-lithium récupéré et préparé par la méthode, et une batterie au lithium-ion comprenant le matériau de cathode de phosphate de fer-lithium. La méthode présente les avantages d'un procédé simple, d'une récupération élevée et d'un taux de recyclage élevé, et d'une faible teneur en impuretés dans le produit, entre autres, et présente une bonne perspective pour l'industrialisation.
PCT/CN2019/120509 2018-12-29 2019-11-25 Méthode de récupération et de préparation de matériau de cathode de phosphate de fer-lithium WO2020134773A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811637478.XA CN109721043B (zh) 2018-12-29 2018-12-29 一种回收制备磷酸铁锂正极材料的方法
CN201811637478.X 2018-12-29

Publications (1)

Publication Number Publication Date
WO2020134773A1 true WO2020134773A1 (fr) 2020-07-02

Family

ID=66297910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/120509 WO2020134773A1 (fr) 2018-12-29 2019-11-25 Méthode de récupération et de préparation de matériau de cathode de phosphate de fer-lithium

Country Status (2)

Country Link
CN (1) CN109721043B (fr)
WO (1) WO2020134773A1 (fr)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112520718A (zh) * 2020-12-04 2021-03-19 南昌航空大学 一种从提锂渣酸浸液中选择性回收电池级磷酸铁的方法
CN112624076A (zh) * 2020-12-15 2021-04-09 广东邦普循环科技有限公司 一种磷酸铁的制备方法及其应用
CN112670603A (zh) * 2020-09-08 2021-04-16 华中科技大学 一种物理法多元介质协同修复再生失效三元材料的方法
CN112768800A (zh) * 2021-02-24 2021-05-07 武汉工程大学 一种磷酸铁锂正极材料的回收方法
CN113353909A (zh) * 2021-05-31 2021-09-07 蜂巢能源科技有限公司 利用回收锂制备磷酸铁锂正极材料的方法
CN113788468A (zh) * 2021-09-06 2021-12-14 孙仲振 一种废旧磷酸铁锂电池再生磷酸铁锂的处理工艺
CN113793994A (zh) * 2021-08-24 2021-12-14 西安交通大学 一种回收废旧磷酸铁锂电池的方法
CN113809423A (zh) * 2021-08-03 2021-12-17 广东邦普循环科技有限公司 一种废旧磷酸铁锂电池的综合利用方法
CN113816352A (zh) * 2021-08-25 2021-12-21 江西理工大学 一种废旧磷酸铁锂正极材料锂铁磷全回收方法
CN113880064A (zh) * 2021-11-09 2022-01-04 株洲冶炼集团股份有限公司 一种低耗磷酸处理高杂磷酸铁锂废粉的方法
CN114105118A (zh) * 2021-11-25 2022-03-01 河南佰利新能源材料有限公司 一种碳包覆磷酸铁锰锂的制备方法和锂离子电池
CN114132911A (zh) * 2021-11-29 2022-03-04 材料科学姑苏实验室 一种掺杂再生的磷锂酸铁材料及其制备方法与应用
CN114369729A (zh) * 2021-12-28 2022-04-19 江苏容汇通用锂业股份有限公司 一种利用锂矿渣进行浸出液除钾的工艺
CN114506835A (zh) * 2022-02-21 2022-05-17 山东大学 废磷酸铁锂缺陷修复并构筑三维多孔碳网的方法和应用
CN114657380A (zh) * 2022-03-03 2022-06-24 江苏大学 从废旧三元锂离子电池的酸性浸出液中分步选择性除杂的方法
CN114965654A (zh) * 2022-06-17 2022-08-30 合肥国轩高科动力能源有限公司 一种评测正负极材料在锂电池中克容量和np比的方法
CN114988382A (zh) * 2022-06-16 2022-09-02 蜂巢能源科技股份有限公司 一种废旧磷酸铁锂电池粉料的回收方法
CN115072693A (zh) * 2022-06-29 2022-09-20 蜂巢能源科技股份有限公司 一种磷酸铁锂正极材料及其制备方法和锂离子电池
CN115312903A (zh) * 2022-10-12 2022-11-08 常州锂源新能源科技有限公司 一种废旧磷酸铁锂再生制备倍率型磷酸铁锂的方法
CN115353086A (zh) * 2022-10-15 2022-11-18 株洲冶炼集团股份有限公司 一种高效预处理废旧磷酸铁锂正极材料的火法回收方法
CN115385316A (zh) * 2022-09-23 2022-11-25 清华四川能源互联网研究院 一种磷酸铁锂的回收工艺
CN115385314A (zh) * 2022-09-29 2022-11-25 南昌航空大学 一种回收磷铁渣中铁和磷元素的方法
CN115448285A (zh) * 2022-10-26 2022-12-09 华鼎国联四川电池材料有限公司 一种以循环再利用的磷酸锂为原料制备磷酸铁锂方法
CN115463935A (zh) * 2021-10-14 2022-12-13 中钢集团马鞍山矿山研究总院股份有限公司 用冶金行业富铁固废制备锂电池正极材料磷酸铁锂的方法
CN115498329A (zh) * 2022-10-13 2022-12-20 东北大学 一种镁电池复配电解液及其制备与使用方法
CN115566307A (zh) * 2022-11-15 2023-01-03 湖南五创循环科技有限公司 从废旧锂电拆解黑粉和/或锂电废旧正极粉中回收高纯草酸锂和高纯氢氧化锂的方法
CN115611251A (zh) * 2021-07-16 2023-01-17 中国科学院过程工程研究所 一种废磷酸铁锂正极材料提锂渣再生磷酸铁的方法
FR3125634A1 (fr) * 2021-07-26 2023-01-27 Totalenergies Se Procédé vert de récupération de lithium et de fer de batteries au lithium
CN115744940A (zh) * 2022-11-15 2023-03-07 四川长虹格润环保科技股份有限公司 一种回收废旧磷酸铁锂正极粉中有价金属的方法
CN115784191A (zh) * 2022-12-12 2023-03-14 厦门厦钨新能源材料股份有限公司 从废旧磷酸铁锂正极材料回收磷酸铁锂的方法
CN116119638A (zh) * 2021-11-12 2023-05-16 中南大学 一种磷酸铁锂废粉回收制备磷酸锰铁锂的方法
WO2023155544A1 (fr) * 2022-02-18 2023-08-24 广东邦普循环科技有限公司 Procédé de préparation de matériau d'électrode positive polyanionique
CN117303330A (zh) * 2023-09-20 2023-12-29 百杰瑞(荆门)新材料有限公司 利用磷酸铁锂废料回收制备电池级磷酸二氢锂的方法
CN116119638B (zh) * 2021-11-12 2024-05-10 中南大学 一种磷酸铁锂废粉回收制备磷酸锰铁锂的方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109721043B (zh) * 2018-12-29 2021-09-17 宁德时代新能源科技股份有限公司 一种回收制备磷酸铁锂正极材料的方法
CN112758962B (zh) * 2019-11-01 2023-08-29 宜春邺诚科技有限公司 一种处理pH值小于4的含有锂离子的溶液的方法
CN111403837B (zh) * 2019-11-11 2023-04-18 余姚市鑫和电池材料有限公司 一种退役锂电池中磷酸铁锂的再生方法
EP3907182B1 (fr) * 2019-11-28 2022-12-14 Contemporary Amperex Technology Co., Limited Procédé de production de précurseur de lithium-fer-phosphate au moyen d'une batterie lithium-fer-phosphate mise au rebut en tant que matière première
CN111129636A (zh) * 2019-12-31 2020-05-08 深圳清华大学研究院 废旧磷酸铁锂电池正极材料的再生方法
CN111187913B (zh) * 2020-02-20 2021-07-02 广东省稀有金属研究所 一种选择性回收废旧磷酸铁锂电池中锂和铜的方法
CN113193255B (zh) * 2021-04-14 2022-10-04 成都工业职业技术学院 一种新能源电池材料回收再生处理方法
CN113526482B (zh) * 2021-06-24 2023-05-09 广东邦普循环科技有限公司 废旧电池回用制备磷酸铁锂的方法
CN114069083A (zh) * 2021-10-12 2022-02-18 广东邦普循环科技有限公司 正极边角料回收合成高安全性正极材料的方法和应用
CN113880061A (zh) * 2021-10-14 2022-01-04 太仓沪试试剂有限公司 一种高纯磷酸盐的制备方法
CN113753873B (zh) * 2021-10-19 2022-10-04 湖北虹润高科新材料有限公司 一种废弃铁磷渣制备低铝杂质花瓣状磷酸铁的方法
CN113937339A (zh) * 2021-11-10 2022-01-14 湖南金凯循环科技有限公司 一种废旧磷酸铁锂电池的回收方法
CN115259125A (zh) * 2022-01-25 2022-11-01 中国科学院过程工程研究所 一种磷酸铁锂回收料的回收再生方法及磷酸铁锂材料

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101847763A (zh) * 2010-04-09 2010-09-29 奇瑞汽车股份有限公司 一种废旧磷酸铁锂电池综合回收的方法
WO2012072619A1 (fr) * 2010-11-29 2012-06-07 Umicore Procédé pour la récupération de lithium et de fer à partir de batteries lfp
CN102956936A (zh) * 2011-08-25 2013-03-06 深圳市格林美高新技术股份有限公司 一种处理废旧汽车动力锂电池磷酸铁锂正极材料的方法
CN103474719A (zh) * 2013-08-30 2013-12-25 国家电网公司 一种用于LiFePO4电池正极的回收方法
CN105244564A (zh) * 2015-11-14 2016-01-13 福州大学 一种磷酸铁锂动力电池的回收利用方法
CN106684485A (zh) * 2016-12-19 2017-05-17 天齐锂业股份有限公司 酸浸法回收处理废旧磷酸铁锂正极材料的方法
CN107069132A (zh) * 2016-12-19 2017-08-18 天齐锂业股份有限公司 一种回收废旧磷酸铁锂正极材料的方法
CN108075202A (zh) * 2016-11-10 2018-05-25 中国科学院过程工程研究所 一种磷酸铁锂正极材料的综合回收方法
WO2018209164A1 (fr) * 2017-05-11 2018-11-15 Worcester Polytechnic Institute Procédé et appareil de recyclage de batteries au phosphate de fer-lithium
CN109721043A (zh) * 2018-12-29 2019-05-07 宁德时代新能源科技股份有限公司 一种回收制备磷酸铁锂正极材料的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10741890B2 (en) * 2012-04-04 2020-08-11 Worcester Polytechnic Institute Method and apparatus for recycling lithium iron phosphate batteries
CN102664294A (zh) * 2012-05-17 2012-09-12 哈尔滨工业大学 废旧磷酸铁锂电池的回收方法
CN102751548B (zh) * 2012-06-18 2014-08-27 浙江大学 一种从磷酸铁锂废旧电池中回收制备磷酸铁锂的方法
CN108996484A (zh) * 2018-07-24 2018-12-14 深圳市德方纳米科技股份有限公司 废旧磷酸铁锂电池的回收利用方法、磷酸锰铁锂及磷酸铁锂正极材料的制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101847763A (zh) * 2010-04-09 2010-09-29 奇瑞汽车股份有限公司 一种废旧磷酸铁锂电池综合回收的方法
WO2012072619A1 (fr) * 2010-11-29 2012-06-07 Umicore Procédé pour la récupération de lithium et de fer à partir de batteries lfp
CN102956936A (zh) * 2011-08-25 2013-03-06 深圳市格林美高新技术股份有限公司 一种处理废旧汽车动力锂电池磷酸铁锂正极材料的方法
CN103474719A (zh) * 2013-08-30 2013-12-25 国家电网公司 一种用于LiFePO4电池正极的回收方法
CN105244564A (zh) * 2015-11-14 2016-01-13 福州大学 一种磷酸铁锂动力电池的回收利用方法
CN108075202A (zh) * 2016-11-10 2018-05-25 中国科学院过程工程研究所 一种磷酸铁锂正极材料的综合回收方法
CN106684485A (zh) * 2016-12-19 2017-05-17 天齐锂业股份有限公司 酸浸法回收处理废旧磷酸铁锂正极材料的方法
CN107069132A (zh) * 2016-12-19 2017-08-18 天齐锂业股份有限公司 一种回收废旧磷酸铁锂正极材料的方法
WO2018209164A1 (fr) * 2017-05-11 2018-11-15 Worcester Polytechnic Institute Procédé et appareil de recyclage de batteries au phosphate de fer-lithium
CN109721043A (zh) * 2018-12-29 2019-05-07 宁德时代新能源科技股份有限公司 一种回收制备磷酸铁锂正极材料的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
QIAO, YANCHAO ET AL.: "Comprehensive Recovery of Phosphorus, Iron and Lithium from Spent Lithium Iron Phosphate Batteries", MINING AND METALLURGICAL ENGINEERING, vol. 38, no. 3, 30 June 2018 (2018-06-30), DOI: 20200218170015A *
WU, YUE ET AL.: "Recovery of Aluminum, Iron and Lithium from Spent Lithium Iron Phosphate Batteries", CHINESE JOURNAL OF POWER SOURCES, vol. 38, no. 4, 30 April 2014 (2014-04-30), DOI: 20200218170234A *

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112670603A (zh) * 2020-09-08 2021-04-16 华中科技大学 一种物理法多元介质协同修复再生失效三元材料的方法
CN112670603B (zh) * 2020-09-08 2023-07-25 华中科技大学 一种物理法多元介质协同修复再生失效三元材料的方法
CN112520718A (zh) * 2020-12-04 2021-03-19 南昌航空大学 一种从提锂渣酸浸液中选择性回收电池级磷酸铁的方法
CN112624076A (zh) * 2020-12-15 2021-04-09 广东邦普循环科技有限公司 一种磷酸铁的制备方法及其应用
CN112768800A (zh) * 2021-02-24 2021-05-07 武汉工程大学 一种磷酸铁锂正极材料的回收方法
CN112768800B (zh) * 2021-02-24 2022-05-31 武汉工程大学 一种磷酸铁锂正极材料的回收方法
CN113353909A (zh) * 2021-05-31 2021-09-07 蜂巢能源科技有限公司 利用回收锂制备磷酸铁锂正极材料的方法
CN113353909B (zh) * 2021-05-31 2024-03-26 蜂巢能源科技有限公司 利用回收锂制备磷酸铁锂正极材料的方法
CN115611251B (zh) * 2021-07-16 2024-03-26 中国科学院过程工程研究所 一种废磷酸铁锂正极材料提锂渣再生磷酸铁的方法
CN115611251A (zh) * 2021-07-16 2023-01-17 中国科学院过程工程研究所 一种废磷酸铁锂正极材料提锂渣再生磷酸铁的方法
WO2023007242A3 (fr) * 2021-07-26 2023-03-09 Totalenergies Onetech Procédé écologique de récupération de lithium et de fer à partir de batteries au lithium
EP4230751A3 (fr) * 2021-07-26 2023-11-22 Totalenergies Onetech Procédé écologique de récupération de lithium et de fer à partir de batteries au lithium
FR3125634A1 (fr) * 2021-07-26 2023-01-27 Totalenergies Se Procédé vert de récupération de lithium et de fer de batteries au lithium
CN113809423A (zh) * 2021-08-03 2021-12-17 广东邦普循环科技有限公司 一种废旧磷酸铁锂电池的综合利用方法
CN113793994B (zh) * 2021-08-24 2023-04-07 西安交通大学 一种回收废旧磷酸铁锂电池的方法
CN113793994A (zh) * 2021-08-24 2021-12-14 西安交通大学 一种回收废旧磷酸铁锂电池的方法
CN113816352A (zh) * 2021-08-25 2021-12-21 江西理工大学 一种废旧磷酸铁锂正极材料锂铁磷全回收方法
CN113816352B (zh) * 2021-08-25 2023-01-13 江西理工大学 一种废旧磷酸铁锂正极材料锂铁磷全回收方法
CN113788468A (zh) * 2021-09-06 2021-12-14 孙仲振 一种废旧磷酸铁锂电池再生磷酸铁锂的处理工艺
CN115463935B (zh) * 2021-10-14 2023-07-28 中钢集团马鞍山矿山研究总院股份有限公司 用冶金行业富铁固废制备锂电池正极材料磷酸铁锂的方法
CN115463935A (zh) * 2021-10-14 2022-12-13 中钢集团马鞍山矿山研究总院股份有限公司 用冶金行业富铁固废制备锂电池正极材料磷酸铁锂的方法
CN113880064A (zh) * 2021-11-09 2022-01-04 株洲冶炼集团股份有限公司 一种低耗磷酸处理高杂磷酸铁锂废粉的方法
CN113880064B (zh) * 2021-11-09 2023-08-01 株洲冶炼集团股份有限公司 一种低耗磷酸处理高杂磷酸铁锂废粉的方法
CN116119638B (zh) * 2021-11-12 2024-05-10 中南大学 一种磷酸铁锂废粉回收制备磷酸锰铁锂的方法
CN116119638A (zh) * 2021-11-12 2023-05-16 中南大学 一种磷酸铁锂废粉回收制备磷酸锰铁锂的方法
CN114105118A (zh) * 2021-11-25 2022-03-01 河南佰利新能源材料有限公司 一种碳包覆磷酸铁锰锂的制备方法和锂离子电池
CN114132911B (zh) * 2021-11-29 2023-05-12 材料科学姑苏实验室 一种掺杂再生的磷酸铁锂材料及其制备方法与应用
CN114132911A (zh) * 2021-11-29 2022-03-04 材料科学姑苏实验室 一种掺杂再生的磷锂酸铁材料及其制备方法与应用
CN114369729A (zh) * 2021-12-28 2022-04-19 江苏容汇通用锂业股份有限公司 一种利用锂矿渣进行浸出液除钾的工艺
CN114369729B (zh) * 2021-12-28 2023-11-03 江苏容汇通用锂业股份有限公司 一种利用锂矿渣进行浸出液除钾的工艺
WO2023155544A1 (fr) * 2022-02-18 2023-08-24 广东邦普循环科技有限公司 Procédé de préparation de matériau d'électrode positive polyanionique
CN114506835A (zh) * 2022-02-21 2022-05-17 山东大学 废磷酸铁锂缺陷修复并构筑三维多孔碳网的方法和应用
CN114657380A (zh) * 2022-03-03 2022-06-24 江苏大学 从废旧三元锂离子电池的酸性浸出液中分步选择性除杂的方法
CN114988382A (zh) * 2022-06-16 2022-09-02 蜂巢能源科技股份有限公司 一种废旧磷酸铁锂电池粉料的回收方法
CN114988382B (zh) * 2022-06-16 2023-08-25 蜂巢能源科技股份有限公司 一种废旧磷酸铁锂电池粉料的回收方法
CN114965654B (zh) * 2022-06-17 2024-02-09 合肥国轩高科动力能源有限公司 一种评测正负极材料在锂电池中克容量和np比的方法
CN114965654A (zh) * 2022-06-17 2022-08-30 合肥国轩高科动力能源有限公司 一种评测正负极材料在锂电池中克容量和np比的方法
CN115072693B (zh) * 2022-06-29 2023-11-24 蜂巢能源科技股份有限公司 一种磷酸铁锂正极材料及其制备方法和锂离子电池
CN115072693A (zh) * 2022-06-29 2022-09-20 蜂巢能源科技股份有限公司 一种磷酸铁锂正极材料及其制备方法和锂离子电池
CN115385316A (zh) * 2022-09-23 2022-11-25 清华四川能源互联网研究院 一种磷酸铁锂的回收工艺
CN115385314A (zh) * 2022-09-29 2022-11-25 南昌航空大学 一种回收磷铁渣中铁和磷元素的方法
CN115312903A (zh) * 2022-10-12 2022-11-08 常州锂源新能源科技有限公司 一种废旧磷酸铁锂再生制备倍率型磷酸铁锂的方法
CN115498329A (zh) * 2022-10-13 2022-12-20 东北大学 一种镁电池复配电解液及其制备与使用方法
CN115498329B (zh) * 2022-10-13 2024-04-09 东北大学 一种镁电池复配电解液及其制备与使用方法
CN115353086A (zh) * 2022-10-15 2022-11-18 株洲冶炼集团股份有限公司 一种高效预处理废旧磷酸铁锂正极材料的火法回收方法
CN115448285A (zh) * 2022-10-26 2022-12-09 华鼎国联四川电池材料有限公司 一种以循环再利用的磷酸锂为原料制备磷酸铁锂方法
CN115448285B (zh) * 2022-10-26 2024-02-06 华鼎国联四川电池材料有限公司 一种以循环再利用的磷酸锂为原料制备磷酸铁锂方法
CN115566307B (zh) * 2022-11-15 2023-03-24 湖南五创循环科技有限公司 从废旧锂电中回收高纯草酸锂和高纯氢氧化锂的方法
CN115566307A (zh) * 2022-11-15 2023-01-03 湖南五创循环科技有限公司 从废旧锂电拆解黑粉和/或锂电废旧正极粉中回收高纯草酸锂和高纯氢氧化锂的方法
CN115744940A (zh) * 2022-11-15 2023-03-07 四川长虹格润环保科技股份有限公司 一种回收废旧磷酸铁锂正极粉中有价金属的方法
CN115784191A (zh) * 2022-12-12 2023-03-14 厦门厦钨新能源材料股份有限公司 从废旧磷酸铁锂正极材料回收磷酸铁锂的方法
CN117303330A (zh) * 2023-09-20 2023-12-29 百杰瑞(荆门)新材料有限公司 利用磷酸铁锂废料回收制备电池级磷酸二氢锂的方法
CN117303330B (zh) * 2023-09-20 2024-03-19 百杰瑞(荆门)新材料有限公司 利用磷酸铁锂废料回收制备电池级磷酸二氢锂的方法

Also Published As

Publication number Publication date
CN109721043A (zh) 2019-05-07
CN109721043B (zh) 2021-09-17

Similar Documents

Publication Publication Date Title
WO2020134773A1 (fr) Méthode de récupération et de préparation de matériau de cathode de phosphate de fer-lithium
JP7220360B2 (ja) 正極材料の回収方法、得られた正極材料およびその用途
CN106997975B (zh) 一种废旧磷酸铁锂电池和锰酸锂电池再生利用的方法
CN111270072B (zh) 一种废旧磷酸铁锂电池正极材料的回收利用方法
Li et al. Preparation and electrochemical properties of re-synthesized LiCoO 2 from spent lithium-ion batteries
CN112047335B (zh) 一种废旧锂离子电池黑粉的联合处理方法
Zhou et al. Direct recovery of scrapped LiFePO 4 by a green and low-cost electrochemical re-lithiation method
CN109860536B (zh) 一种富锂锰基材料及其制备方法和应用
CN114388922A (zh) 退役锂离子电池电极材料回收方法及其应用
CN111646459A (zh) 一种硼掺杂石墨烯材料的制备方法及其应用
CN113846235B (zh) 一种锂离子电池中锂的闭环回收再利用方法
CN111403842B (zh) 废旧锂电池正极材料的回收方法和球形氧化镍材料及应用
WO2023155557A1 (fr) Procédé de désorption de matériaux actifs recyclés à partir d'une batterie usagée
WO2024082544A1 (fr) Méthode de préparation d'un matériau d'électrode positive au lithium fer phosphate par recyclage directionnel à partir d'une batterie au lithium fer phosphate usagée
US20210242514A1 (en) Systems and methods for recycling electrodes
Sandhya et al. Synthesis, characterization and electrochemical evaluation of mixed oxides of nickel and cobalt from spent lithium-ion cells
GB2619866A (en) Nickel-cobalt-manganese ternary positive electrode material nanorod and use thereof
CN113904015A (zh) 一种废弃锂电池正极材料的再生方法
CN113764671A (zh) 一种锂离子电池正极材料
CN113697866B (zh) 一种表面具有锂空位结构的ncm三元正极材料
CN115520909B (zh) 一种三元正极材料的回收方法
CN113025826B (zh) 用三元酸从锂离子电池正极中浸出锂、钴、镍、锰的方法
CN117080605A (zh) 一种废旧磷酸铁锂电池的回收方法
CN117374443A (zh) 一种在电池材料再生过程中提高正极材料性能的前处理方法
CN116314772A (zh) 石墨复合负极材料及其制备方法以及负极极片和锂电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19904158

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19904158

Country of ref document: EP

Kind code of ref document: A1