WO2019202889A1 - 感光性導電ペーストおよびそれを用いたパターン形成グリーンシートの製造方法 - Google Patents

感光性導電ペーストおよびそれを用いたパターン形成グリーンシートの製造方法 Download PDF

Info

Publication number
WO2019202889A1
WO2019202889A1 PCT/JP2019/011084 JP2019011084W WO2019202889A1 WO 2019202889 A1 WO2019202889 A1 WO 2019202889A1 JP 2019011084 W JP2019011084 W JP 2019011084W WO 2019202889 A1 WO2019202889 A1 WO 2019202889A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive paste
photosensitive conductive
reactive compound
volume
pattern
Prior art date
Application number
PCT/JP2019/011084
Other languages
English (en)
French (fr)
Inventor
杉崎祐真
山本洋平
三井博子
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to KR1020207017737A priority Critical patent/KR102656350B1/ko
Priority to JP2019516019A priority patent/JP6662491B1/ja
Priority to CN201980024923.1A priority patent/CN111954847B/zh
Publication of WO2019202889A1 publication Critical patent/WO2019202889A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils

Definitions

  • the present invention relates to a photosensitive conductive paste, a cured product and a fired body thereof, an electronic component using the same, a manufacturing method thereof, a pattern forming green sheet manufacturing method, and an electronic component manufacturing method.
  • a photosensitive conductive paste for forming a conductive pattern for example, a conductive conductive paste, an inorganic component containing an inorganic filler composed of glass frit and ceramic powder, and a photosensitive conductive paste containing a photosensitive organic component (for example, Patent Document 2) and photosensitivity containing an organic binder, an electroconductive powder, a photopolymerizable compound, a photopolymerization initiator, and an organic solvent containing an ionic group that changes to a nonionic group by light irradiation in the side chain.
  • An electrically conductive paste (see, for example, Patent Document 3) has been proposed.
  • an object of the present invention is to provide a photosensitive conductive paste capable of forming a high-definition pattern on a green sheet and suppressing firing defects.
  • a conductive powder (A), an alkali-soluble resin (B), a reactive compound (C) and a photopolymerization initiator (D) are contained, and the viscosity of the reactive compound (C) at 60 ° C. is 5.0 to 100.
  • a high-definition conductive pattern can be formed on a green sheet, and firing defects can be suppressed.
  • the photosensitive conductive paste of the present invention contains a conductive powder (A), an alkali-soluble resin (B), a reactive compound (C), and a photopolymerization initiator (D).
  • electroconductive powder (A) electroconductive powder (A) mutually contacts by baking, and electroconductivity can be expressed.
  • the alkali-soluble resin (B) solubility in an alkali developer is imparted, and by containing the reactive compound (C) and the photopolymerization initiator (D), pattern processability by photolithography can be improved. Can be improved.
  • it is important that the reactive compound (C) has a viscosity at 60 ° C. of 5.0 to 100.0 Pa ⁇ s.
  • the photosensitive component when forming a pattern on the green sheet, the photosensitive component is easily absorbed by the green sheet, so that the sensitivity is likely to decrease, and it is difficult to form a high-definition pattern.
  • the absorption to the green sheet is related to the viscosity of the reactive compound in the drying step described later. Therefore, in the present invention, attention is focused on the viscosity at 60 ° C., which is a general drying temperature in the drying process, as an index of the viscosity of the reactive compound in the drying process. In the present invention, by setting the viscosity of the reactive compound (C) at 60 ° C.
  • Examples of the conductive powder (A) include silver, gold, copper, platinum, palladium, tin, nickel, aluminum, tungsten, molybdenum, ruthenium oxide, chromium, titanium, indium powder, and alloys thereof; carbon Examples thereof include powder. Two or more of these may be contained. Among these, silver, copper, and gold are preferable from the viewpoint of conductivity, and silver is more preferable from the viewpoint of cost and stability.
  • the median diameter (D50) of the conductive powder (A) is preferably 0.1 to 10 ⁇ m.
  • D50 of the conductive powder (A) is more preferably 0.5 ⁇ m or more.
  • D50 of the conductive powder (A) is more preferably 0.5 ⁇ m or more.
  • the D50 of the conductive powder (A) is more preferably 5 ⁇ m or less.
  • the D50 of the conductive powder (A) can be measured by a laser light scattering method using a particle size distribution measuring device (Microtrac HRA Model No. 9320-X100; manufactured by Nikkiso Co., Ltd.).
  • the content of the conductive powder (A) in the photosensitive conductive paste is preferably 20 to 50% by volume in the total solid content.
  • the content of the conductive powder (A) is preferably 20 to 50% by volume in the total solid content.
  • the exposure light transmittance is improved in the exposure / development process described later, so that a higher definition pattern can be easily formed. be able to.
  • content of electroconductive powder (A) 45 volume% or less is more preferable.
  • the total solid content of the photosensitive conductive paste refers to all components of the photosensitive conductive paste excluding the solvent.
  • the content of the conductive powder (A) in the photosensitive conductive paste is determined by observing a cross section perpendicular to the film surface of the paste dry film obtained by applying and drying the photosensitive paste and removing the solvent, using a transmission electron microscope (for example, Japan It can be obtained by observing with “JEM-4000EX” (manufactured by Electronics Co., Ltd.) and analyzing the image by distinguishing the conductive powder (A) from other components based on the density of the image.
  • the observation area with a transmission electron microscope is about 20 ⁇ m ⁇ 100 ⁇ m, and the magnification is about 1,000 to 3,000 times.
  • content of electroconductive powder (A) can also be computed from a compounding quantity.
  • the alkali-soluble resin (B) refers to a resin having an alkali-soluble group.
  • the alkali-soluble group include a carboxyl group, a phenolic hydroxyl group, a sulfonic acid group, and a thiol group.
  • a carboxyl group is preferred because of its high solubility in an alkali developer.
  • the glass transition point of the alkali-soluble resin (B) is preferably 80 to 160 ° C.
  • the glass transition point of the alkali-soluble resin (B) is preferably 80 to 160 ° C.
  • the glass transition point of alkali-soluble resin (B) 140 degrees C or less is more preferable.
  • the glass transition points of all the alkali-soluble resins (B) are in the above range.
  • the glass transition point of the alkali-soluble resin (B) can be measured by differential scanning calorimetry (DSC) using a differential scanning calorimeter (DSC-50; Shimadzu Corporation).
  • an acrylic resin is preferable, and a copolymer of an acrylic monomer having a carbon-carbon double bond and another monomer is preferable.
  • acrylic monomers having a carbon-carbon double bond include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, tert-butyl acrylate, n-pentyl acrylate, and isodecyl.
  • Acrylate having a C1-C18 chain aliphatic hydrocarbon group such as acrylate, isooctyl acrylate, 2-ethylhexyl acrylate, allyl acrylate, lauryl acrylate, stearyl acrylate; benzyl acrylate, phenyl acrylate, 1-naphthyl acrylate
  • copolymer components other than acrylic monomers include styrenes such as styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, ⁇ -methylstyrene, chloromethylstyrene, and hydroxymethylstyrene; acrylic acid, Examples thereof include unsaturated carboxylic acids such as methacrylic acid, itaconic acid, crotonic acid, maleic acid, fumaric acid and vinyl acetic acid, and acid anhydrides thereof. Two or more of these may be used.
  • the acrylic resin preferably has a carbon-carbon double bond in the side chain or molecular end, and can improve the curing reaction rate during exposure (hereinafter, the acrylic resin having a carbon-carbon double bond is acrylic (It may be referred to as resin (b-1)).
  • the structure having a carbon-carbon double bond include a vinyl group, an allyl group, an acrylic group, and a methacryl group. You may have 2 or more types of these.
  • Examples of a method for introducing a carbon-carbon double bond into an acrylic resin include a glycidyl group or an isocyanate group and a carbon-carbon double bond with respect to a mercapto group, amino group, hydroxyl group, and carboxyl group in the acrylic resin. And a method of reacting a compound having an acid, acrylic acid chloride, methacrylic acid chloride, allyl chloride, and the like.
  • Examples of the compound having a glycidyl group and a carbon-carbon double bond include glycidyl methacrylate, glycidyl acrylate, allyl glycidyl ether, glycidyl ethyl acrylate, crotonyl glycidyl ether, glycidyl crotonate, glycidyl isocrotonate, “cyclomer ( Registered trademark) "M100, A200 (manufactured by Daicel Chemical Industries, Ltd.).
  • Examples of the compound having an isocyanate group and a carbon-carbon double bond include acryloyl isocyanate, methacryloyl isocyanate, acryloylethyl isocyanate, and methacryloylethyl isocyanate. Two or more of these may be used.
  • the acid value of the acrylic resin (b-1) is preferably 50 to 150 mgKOH / g from the viewpoint of solubility in an alkaline developer.
  • the acid value of the acrylic resin can be adjusted by the copolymerization ratio of the unsaturated acid.
  • the acid value of an acrylic resin can be calculated
  • the photosensitive conductive paste of the present invention has an acrylic resin having no carbon-carbon bond and an acid value of 200 to 300 mgKOH / g (hereinafter referred to as acrylic resin (b-2)). )) May be described.
  • acrylic resin (b-2) By not having a carbon-carbon double bond, crosslinking due to exposure does not occur, so that there is little change in the acid value before and after curing, and the desired effect by limiting the numerical value of the acid value can be easily obtained.
  • the acid value of the acrylic resin (b-2) greater than 200 mgKOH / g, an interaction due to hydrogen bonding between the acrylic resins works, and adhesion can be suppressed in the dicing process described later.
  • the acid value of the acrylic resin (b-2) is more preferably 220 mgKOH / g or more.
  • the acid value of the acrylic resin (b-2) is more preferably 280 mgKOH / g or less.
  • the weight average molecular weight (Mw) of the acrylic resin (b-2) is preferably 20,000 to 50,000.
  • Mw of the acrylic resin (b-2) is more preferably 23,000 or more, and further preferably 32,000 or more.
  • the Mw of the acrylic resin (b-2) is more preferably 23,000 or more, and further preferably 32,000 or more.
  • the Mw of the acrylic resin (b-2) is more preferably 45,000 or less, and further preferably 42,000 or less.
  • the Mw of the acrylic resin (b-2) is a polystyrene equivalent value and can be measured using high performance liquid chromatography (Alliance 2695; manufactured by Nihon Waters Co., Ltd.).
  • the glass transition point of the acrylic resin can be adjusted by, for example, a polymerization component.
  • the acrylic monomer constituting the acrylic resin having a high glass transition point include acrylates having a chain aliphatic hydrocarbon group such as methyl methacrylate, tert-butyl methacrylate and (meth) acrylate; 4-tert-butylcyclohexyl methacrylate Cyclic aliphatic hydrocarbon groups having 6 to 15 carbon atoms such as dicyclopentanyl (meth) acrylate, dicyclopentadienyl (meth) acrylate, isobornyl (meth) acrylate, 3,3,5-trimethylcyclohexyl methacrylate, etc. The (meth) acrylate etc. which have are mentioned.
  • Examples of other monomers constituting the acrylic resin having a high glass transition point include acrylonitrile, acrylamide, and styrene.
  • acrylic resin (b-1) having a glass transition point of 80 to 160 ° C. examples include, for example, “Cyclomer®” P (ACA) Z200M, P (ACA) Z230AA, P (ACA) Z250, P (ACA ) Z251, P (ACA) Z300, P (ACA) Z320, P (ACA) Z254F (manufactured by Daicel Ornex Co., Ltd.) and the like.
  • the acrylic resin (b-2) a (meth) acrylic acid / methyl (meth) acrylate / styrene copolymer is preferable, and adhesion in the dicing step can be further suppressed.
  • the weight average molecular weight of the alkali-soluble resin (B) is preferably 7,000 to 40,000. By setting the weight average molecular weight of the alkali-soluble resin (B) to 7,000 or more, the viscosity of the photosensitive conductive paste can be appropriately improved, and the dry film tack described later can be suppressed.
  • the weight average molecular weight of the alkali-soluble resin (B) is more preferably 24,000 or more.
  • by setting the weight average molecular weight of the alkali-soluble resin (B) to 40,000 or less it is possible to improve the solubility of the non-exposed part in the developer and shorten the development time in the exposure / development process described later. it can.
  • the weight average molecular weight of the alkali-soluble resin (B) is more preferably 32,000 or less. When 2 or more types of alkali-soluble resin (B) are contained, it is preferable that at least 1 type is contained in the said range, and it is more preferable that all are contained in the said range.
  • the weight average molecular weight of the alkali-soluble resin is a polystyrene equivalent value, and can be measured using high performance liquid chromatography (Alliance 2695; manufactured by Nippon Waters Co., Ltd.).
  • the content of the alkali-soluble resin (B) in the photosensitive conductive paste is preferably 20 to 55% by volume in the total solid content.
  • the content of the alkali-soluble resin (B) is preferably 20 to 55% by volume in the total solid content.
  • the content of the alkali-soluble resin (B) is set to 55% by volume or less, the viscosity of the photosensitive conductive paste can be kept moderate, and firing defects caused by residual organic components during firing can be further suppressed.
  • content of alkali-soluble resin (B) 45 volume% or less is more preferable.
  • the content of the acrylic resin (b-1) in the photosensitive conductive paste is preferably 20 to 45% by volume in the total solid content.
  • the content of the acrylic resin (b-1) is preferably 20 to 45% by volume in the total solid content.
  • the content of the acrylic resin (b-2) in the photosensitive conductive paste is preferably 1 to 20% by volume in the total solid content.
  • the content of the acrylic resin (b-2) is more preferably 7% by volume or more.
  • the content of the acrylic resin (b-2) is more preferably 15% by volume or less.
  • the acrylic resin (b-2) is contained with respect to 100 parts by volume in total of the acrylic resin (b-1) and the acrylic resin (b-2).
  • the content of the acrylic resin (b-2) is set to 20 parts by volume or more, adhesion in the dicing process can be further suppressed.
  • the content of the acrylic resin (b-2) is set to 40 parts by volume or less, pattern peeling due to excessive elution of the acrylic resin (b-2) in the development process is further suppressed, and a finer pattern is obtained. Can be formed.
  • the reactive compound (C) refers to a monomer or oligomer having a carbon-carbon double bond.
  • the viscosity of the reactive compound (C) at 60 ° C. is 5.0 to 100.0 Pa ⁇ s.
  • the viscosity of the reactive compound (C) at 60 ° C. is preferably 15.0 Pa ⁇ s or more.
  • the viscosity of the reactive compound (C) at 60 ° C. exceeds 100.0 Pa ⁇ s, firing defects due to residual organic components during firing are likely to occur.
  • the viscosity of the reactive compound (C) at 60 ° C. is preferably 50.0 Pa ⁇ s or less.
  • the viscosity at 60 ° C. of the reactive compound (C) in the present invention is such that when the reactive compound (C) contains two or more types having different viscosities, the viscosity of at least one reactive compound (C) is within the above range. is there.
  • the viscosity of the reactive compound (C) at 60 ° C. is 3 rpm with a B-type viscometer (Brookfield viscometer, model HB DV-I; manufactured by Eihiro Seiki Co., Ltd.) under atmospheric pressure. The value measured in.
  • Examples of the reactive compound (C) having a viscosity of 5.0 to 100.0 Pa ⁇ s at 60 ° C. include urethane acrylate oligomers and epoxy acrylate oligomers. More specifically, for example, “Sartomer (registered trademark)” CN940, CN961, CN962, CN963, CN964, CN965, CN966, CN980, CN989, CN8881NS, CN8883NS, CN8884NS, CN9001, CN9004, 90, CN971, CN973, CN9782, CN9783, CN2920, CN104 (above, manufactured by Arkema Co., Ltd.), NK Oligo UA-122P, U-2PPA, U-6LPA, EA-1020, EA-1020LC3 (above, Shin-Nakamura Chemical Co., Ltd.) "KAYARAD (registered trademark)" UX-3204, UX-4101, UX-6100, U
  • the reactive compound (C) preferably has a urethane structure and / or an ester structure.
  • a urethane structure and / or an ester structure flexibility can be improved and a higher definition pattern can be easily formed. More preferably, it has a urethane structure and an ester structure.
  • Examples of the reactive compound (C) having a urethane structure include “Sartomer (registered trademark)” CN940, CN961, CN962, CN963, CN964, CN965, CN966, NK Oligo UA-122P, U-2PPA, U-6LPA, “KAYARAD (registered trademark)” UX-3204, UX-4101, UX-6100, UX-6101, UX-7101, UX-8101, UXF-4002, “EBECRYL (registered trademark)” 8465, 8804 and the like.
  • Examples of the reactive compound (C) having an ester structure include “Sartomer (registered trademark)” CN961, CN962, “KAYARAD (registered trademark)” UX-3204, UX-4101, UX-6100, UX-6101, UX -7101, UX-8101, NK oligo UA-122P and the like.
  • the weight average molecular weight of the reactive compound (C) is preferably 5,000 to 45,000. By setting the weight average molecular weight of the reactive compound (C) to 5,000 or more, when forming a pattern on the green sheet, the absorption to the green sheet is further suppressed, and the standing time after drying is longer. However, a higher definition pattern can be easily formed.
  • the weight average molecular weight of the reactive compound (C) is more preferably 10,000 or more, and more preferably 15,000 or more.
  • the weight average molecular weight of the reactive compound (C) is kept moderate, and firing defects caused by residual organic components during firing are further suppressed. Can do.
  • the weight average molecular weight of the reactive compound (C) is more preferably 40,000 or less.
  • the reactive compound (C) having a weight average molecular weight of 5,000 to 45,000 for example, carbon- with respect to a polymer of a polyol such as polyether diol or polycarbonate diol and a polyisocyanate such as isophorone diisocyanate. It can be obtained by reacting an alcohol having a carbon double bond.
  • Examples of the reactive compound (C) available on the market include “KAYARAD (registered trademark)” UX-3204, UX-4101, UX-6100, UX-6101, UXF-4002, and the like.
  • the solubility parameter (SP value) of the reactive compound (C) is preferably 21.5 to 28.7 (J / cm 3 ) 1/2 . By setting the SP value within this range, absorption into the green sheet can be further suppressed, and a higher definition pattern can be easily formed.
  • the SP value of the reactive compound (C) can be calculated from the molecular structure using the Fedors calculation method.
  • the content of the reactive compound (C) in the photosensitive conductive paste is preferably 5 to 30% by volume in the total solid content. By setting the content of the reactive compound (C) to 5% by volume or more, sensitivity in an exposure / development process described later can be improved, and a higher definition pattern can be easily formed.
  • the content of the reactive compound (C) is more preferably 10% by volume or more.
  • the content of the reactive compound (C) is more preferably 20% by volume or less.
  • the photopolymerization initiator (D) in the present invention refers to a compound that decomposes by absorbing light of a short wavelength such as ultraviolet rays or generates a radical by a hydrogen abstraction reaction.
  • Examples of the photopolymerization initiator (D) that absorbs and decomposes light such as ultraviolet rays include 1,2-octanedione, benzophenone, methyl ortho-benzoylbenzoate, 4,4′-bis (dimethylamino) benzophenone, 4,4′-bis (diethylamino) benzophenone, 4-benzoyl-4′-methyldiphenyl ketone, dibenzyl ketone, 2,2′-diethoxyacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2-hydroxy- 2-methylpropiophenone, Michler's ketone, 2-methyl- [4- (methylthio) phenyl] -2-morpholino-1-propanone, 4-azid
  • Examples of the photopolymerization initiator (D) that generates radicals by a hydrogen abstraction reaction include benzophenone, anthraquinone, thioxanthone, and phenylglyoxylic acid methyl ester. Two or more of these may be contained.
  • the content of the photopolymerization initiator (D) in the photosensitive conductive paste is preferably 0.1 to 5.0% by volume.
  • the content of the photopolymerization initiator (D) is preferably 0.1% by volume or more.
  • sensitivity in the exposure / development process described later can be improved, and a higher definition pattern can be easily formed.
  • content of a photoinitiator (D) 0.2 volume% or more is more preferable.
  • by setting the content of the photopolymerization initiator (D) to 5.0% by volume or less light absorption on the surface of the dried film in the exposure / development process described later is moderately suppressed, and the residue is suppressed.
  • a high-definition pattern can be easily formed.
  • content of a photoinitiator (D) 3.0 volume% or less is more preferable.
  • the alkali-soluble resin (B) and the reactive compound (C ) In a total of 90.0 to 99.0 parts by volume.
  • the total content of the alkali-soluble resin (B) and the reactive compound (C) 90.0 parts by volume or more, light absorption on the surface of the dried film in the exposure / development process described later is moderately suppressed, and the residue is removed. This makes it possible to easily form a higher definition pattern.
  • the total content of the alkali-soluble resin (B) and the reactive compound (C) is 99.0 parts by volume or less, the sensitivity in the exposure / development process described later is improved, and a higher-definition pattern is easy. Can be formed. Moreover, the viscosity of the photosensitive electrically conductive paste can be kept moderate and firing defects can be further suppressed.
  • the content of organic components having a molecular weight of 5,000 or less is preferably 4.0 to 15.0% by volume.
  • An organic component having a molecular weight of 5,000 or less easily moves in the photosensitive conductive paste and has high reactivity during exposure, but is easily absorbed into the green sheet. Therefore, the desired effect can be obtained more easily by defining the numerical value of the content of the organic component having a molecular weight of 5,000 or less.
  • a fine pattern can be easily formed.
  • the content of the organic component having a molecular weight of 5,000 or less to 15.0% by weight or less in forming a pattern on the green sheet, absorption to the green sheet is further suppressed, and the standing time after drying Even when the length is longer, a higher-definition pattern can be easily formed.
  • the weight average molecular weight of the organic component is preferably 30,000 to 45,000.
  • the weight average molecular weight of the organic component is set to 30,000 or more, in forming a pattern on the green sheet, the absorption to the green sheet is further suppressed, Even when the setting time is longer, a higher-definition pattern can be easily formed.
  • the weight average molecular weight of the organic component is set to 45,000 or less, the viscosity of the photosensitive conductive paste can be kept moderate, and firing defects caused by residual organic components during firing can be further suppressed.
  • the weight average molecular weight of the organic component is more preferably 37,000 or less.
  • the photosensitive conductive paste of the present invention preferably further contains fine particles (E) having a particle size of 1 to 100 nm, and can suppress pattern shrinkage during firing.
  • the fine particles (E) are components other than the conductive powder (A) described above.
  • the fine particles (E) for example, alumina (Al 2 O 3), zirconia (ZrO 2), magnesia (MgO), beryllia (BeO), mullite (3Al 2 O 3 ⁇ 2SiO 2 ), cordierite (5SiO 2 2Al 2 O 3 ⁇ 2MgO), spinel (MgO ⁇ Al 2 O 3 ), forsterite (2MgO ⁇ SiO 2 ), anorthite (CaO ⁇ Al 2 O 3 ⁇ 2SiO 2 ), serdian (BaO ⁇ Al 2 O 3) 2SiO 2 ), silica (SiO 2 ), aluminum nitride (AlN), ferrite (garnet type: Y
  • the fine particles (E) in the present invention refer to those having a particle size of 1 to 100 nm, but it is difficult to individually specify the particle size of the fine particles (E), and the volume average particle size is 1 to 100 nm. It is preferable.
  • the volume average particle diameter of the fine particles (E) By setting the volume average particle diameter of the fine particles (E) to 1 nm or more, the sintering speed of the conductive powder (A) during firing can be adjusted, and firing defects can be further suppressed.
  • the volume average particle size of the fine particles (E) by setting the volume average particle size of the fine particles (E) to 100 nm or less, the fine particles (E) interact with the alkali-soluble resin (B), the reactive compound (C) and the photopolymerization initiator (D).
  • the volume average particle diameter of the fine particles (E) is more preferably 50 nm or less.
  • the volume average particle diameter of the fine particles (E) was determined by adding the fine particles (E) to water, performing ultrasonic treatment for 300 seconds, and then using a dynamic light scattering method using Nanotrac Wave II-UZ251 (manufactured by Microtrac BEL). It can ask for.
  • the volume average particle diameter of the fine particles (E) does not change before and after blending the photosensitive conductive paste, the fine particles (E) before blending the photosensitive conductive paste may be measured. (E) may be collected and measured.
  • the fine particles (E) are preferably hydrophilic, and can form a finer pattern easily by suppressing residues in the exposure / development process described later.
  • “hydrophilic” means having a hydrophilic group on the surface. Examples of the hydrophilic group include a hydroxyl group and a carboxyl group.
  • the fine particles (E) having a hydroxyl group on the surface can be obtained by a high temperature hydrolysis method or the like.
  • AEROSIL registered trademark
  • OX50 OX50, 50, 90G, 130, 150, 200, 200CF, 200V, 300, 380, TT600
  • AEROXIDE registered trademark
  • AluC Alu65
  • Alu130 Examples thereof include Nippon Aerosil Co., Ltd.
  • Sa Hoster registered trademark
  • KE-S10 manufactured by Nippon Shokubai Co., Ltd.
  • the fine particles (E) having a carboxyl group on the surface can be obtained, for example, by subjecting the fine particles to a wet surface treatment.
  • the content of the fine particles (E) in the photosensitive conductive paste is preferably 0.1 to 25.0 parts by volume with respect to 100 parts by volume of the conductive powder (A).
  • fine-particles (E) 0.1 volume part or more the sintering speed
  • the transparency of the exposure light is improved, so that a higher definition pattern can be easily formed.
  • fine-particles (E) 1.0 volume part or more is more preferable.
  • the volume resistivity of a pattern can be reduced by making content of microparticles
  • the content of the fine particles (E) is more preferably 10.0 parts by volume or less.
  • the photosensitive conductive paste of the present invention preferably further contains a solvent (F).
  • the solvent (F) include N, N-dimethylacetamide, N, N-dimethylformamide, N-methyl-2-pyrrolidone, dimethylimidazolidinone, dimethyl sulfoxide, diethylene glycol monoethyl ether, dipropylene glycol methyl ether, Dipropylene glycol n-propyl ether, dipropylene glycol n-butyl ether, tripropylene glycol methyl ether, tripropylene glycol n-butyl ether, diethylene glycol monoethyl ether acetate, dipropylene glycol methyl ether acetate, propylene glycol phenyl ether, diethylene glycol monomethyl ether Acetate, diethylene glycol monobutyl ether, diethylene glycol monobutyl Ether acetate, ⁇ -butyrolactone, ethyl lactate, 1-methoxy
  • the residue is further suppressed, and a higher-definition pattern is easy.
  • the SP value of the solvent (F) is preferably 19.5 to 21.3 (J / cm 3 ) 1/2 .
  • Examples of the solvent (F) having an SP value of 19.5 to 21.3 (J / cm 3 ) 1/2 include N, N-dimethylformamide, N-methyl-2-pyrrolidone, dimethylimidazolidinone, Examples include dipropylene glycol n-propyl ether, dipropylene glycol n-butyl ether, tripropylene glycol methyl ether, tripropylene glycol-n-butyl ether, diethylene glycol monomethyl ether acetate, and cyclohexanol acetate.
  • the SP value of the solvent can be calculated from the molecular structure of the solvent using the Fedors calculation method.
  • the solvent (F) includes a low boiling point solvent (f-1) having a boiling point in the range of 150 ° C. or more and less than 200 ° C. and a high boiling point solvent (f-2) having a boiling point in the range of 200 ° C. or more and 250 ° C. or less. Is preferred.
  • the low boiling point solvent (f-1) the residual solvent after drying can be reduced, and adhesion during low-temperature drying and adhesion during the dicing process can be further suppressed.
  • the high boiling point solvent (f-2) it is possible to suppress the excessive volatilization of the solvent in the coating step and to prevent the viscosity from increasing.
  • Examples of the low boiling point solvent (f-1) include N, N-dimethylacetamide (165 ° C.), N, N-dimethylformamide (153 ° C.), dimethyl sulfoxide (189 ° C.), dipropylene glycol methyl ether (190 ° C.). ), Ethyl lactate (154 ° C.), ethylene glycol mono-n-propyl ether (151 ° C.), diacetone alcohol (166 ° C.), tetrahydrofurfuryl alcohol (176 ° C.), cyclohexanol acetate (173 ° C.), and the like. It is done.
  • Examples of the high boiling point solvent (f-2) include N-methyl-2-pyrrolidone (202 ° C.), dimethylimidazolidinone (225 ° C.), diethylene glycol monoethyl ether (202 ° C.), dipropylene glycol n-propyl ether.
  • the content of the low boiling point solvent (f-1) in the photosensitive conductive paste of the present invention is preferably 1.0 to 15.0% by volume.
  • the content of the low boiling point solvent (f-1) is 1.0% by volume or more, the residual amount of the solvent (F) after drying is reduced, and adhesion at low temperature drying and adhesion in the dicing process are reduced. It can be suppressed more.
  • the content of the low boiling point solvent (f-1) is 15.0% by volume or less, an increase in viscosity due to excessive volatilization of the solvent (F) in the coating step can be suppressed.
  • the content of the high boiling point solvent (f-2) in the photosensitive conductive paste of the present invention is preferably 1.0 to 15.0% by volume.
  • the content of the high boiling point solvent (f-2) is preferably 1.0% by volume or more.
  • an increase in viscosity due to excessive volatilization of the solvent (F) in the coating step can be suppressed.
  • the content of the high boiling point solvent (f-2) is 15.0% by volume or less, the residual amount of the solvent (F) after drying is reduced, and adhesion in the low temperature drying and dicing process Adhesion can be further suppressed.
  • the low boiling point solvent (f-1) is contained with respect to 100 parts by volume of the low boiling point solvent (f-1) and the high boiling point solvent (f-2) in the photosensitive paste. Is preferred.
  • the content of the low boiling point solvent (f-1) is more preferably 35 parts by volume or more.
  • the content of the low boiling point solvent (f-1) is more preferably 55 parts by volume or less.
  • the photosensitive conductive paste of the present invention has a viscosity at 60 ° C. of less than 5.0 Pa ⁇ s or more than 100.0 Pa ⁇ s, as long as the effects of the present invention are not hindered.
  • Compounds can be included. Examples of reactive compounds having a viscosity at 60 ° C. of less than 5.0 Pa ⁇ s or more than 100.0 Pa ⁇ s include allylated cyclohexyl diacrylate, 1,4-butanediol diacrylate, and 1,3-butylene glycol diacrylate.
  • Ethylene glycol diacrylate diethylene glycol diacrylate, triethylene glycol diacrylate, polyethylene glycol diacrylate, dipentaerythritol hexaacrylate, dipentaerythritol monohydroxypentaacrylate, ditrimethylolpropane tetraacrylate, glycerol diacrylate, methoxylated cyclohexyl diacrylate , Neopentyl glycol diacrylate, propylene glycol diacrylate, polypropylene glycol Diacrylate, triglycerol diacrylate, trimethylolpropane triacrylate, bisphenol A diacrylate, isocyanuric acid EO-modified triacrylate, epoxy acrylate, urethane acrylate and other acrylic esters, those acrylates replaced with methacrylates, “Imilex (Registered trademark) “P (N-phenylmaleimide)”, “imilex” C (N-cyclohexylmaleimide) (
  • the photosensitive conductive paste of the present invention may contain additives such as a plasticizer, a leveling agent, a sensitizer, a dispersant, a silane coupling agent, an antifoaming agent, and a pigment as long as desired characteristics are not impaired. Good.
  • plasticizer examples include dibutyl phthalate, dioctyl phthalate, polyethylene glycol, and glycerin. Two or more of these may be contained.
  • leveling agents examples include “BYK (registered trademark)”-300, 310, 320, 322, 323, 324, 325, 330, 331, 344, 370, 371, 354, 358, 361 (above, Big Chemi).
  • sensitizer examples include 2,4-diethylthioxanthone, isopropylthioxanthone, 2,3-bis (4-diethylaminobenzal) cyclopentanone, 2,6-bis (4-dimethylaminobenzal) cyclohexanone, 2 , 6-bis (4-dimethylaminobenzal) -4-methylcyclohexanone, Michler's ketone, 4,4-bis (diethylamino) benzophenone, 4,4-bis (dimethylamino) chalcone, 4,4-bis (diethylamino) chalcone And p-dimethylaminocinnamylidene indanone. Two or more of these may be contained.
  • dispersant examples include, for example, Floren G-100SF, G-500, G-700, G-700 (manufactured by Kyoeisha Chemical Co., Ltd.), “Nopcospers (registered trademark)” 092, SN Dispersant 9228, SN Sparse 2190 (Sannopco Co., Ltd.). Two or more of these may be contained.
  • the photosensitive conductive paste of the present invention can be obtained, for example, by dissolving and / or dispersing the above-described components (A) to (D), and if necessary, the component (E) and other additives in a solvent.
  • the apparatus for dissolving and / or dispersing include a dispersing machine such as a three-roller, a ball mill, and a kneader.
  • cured material of this invention hardens the photosensitive electrically conductive paste of this invention,
  • the shape is not ask
  • the thickness of the cured product is preferably 5 to 30 ⁇ m. By setting the thickness of the cured product to 5 ⁇ m or more, the volume resistivity can be reduced. On the other hand, when the thickness of the cured product is 30 ⁇ m or less, peeling in an exposure / development process described later can be suppressed, and a higher definition pattern can be easily formed.
  • the cured product of the present invention may have a predetermined pattern shape.
  • the pattern shape include a linear shape and a spiral shape.
  • the minimum width is preferably 10 to 30 ⁇ m. By setting the pattern width to 10 ⁇ m or more, the volume resistivity can be reduced. On the other hand, by setting the pattern width to 30 ⁇ m or less, a higher definition pattern can be easily formed.
  • the cured product of the present invention can be obtained, for example, by applying the photosensitive conductive paste of the present invention on a substrate, drying it, and photocuring it by exposure.
  • the pattern may be formed by developing after pattern exposure.
  • Examples of the coating method in the coating process include spray coating, roll coating, screen printing, and a coating method using a blade coater, a die coater, a calendar coater, a meniscus coater, and a bar coater.
  • the film thickness of the coating film can be appropriately selected according to the coating method, the solid content concentration and viscosity of the photosensitive conductive paste, and the like.
  • drying method examples include heat drying using a heating device such as an oven, a hot plate, and infrared rays, and vacuum drying.
  • the heating temperature is preferably 60 to 120 ° C.
  • the heating temperature is preferably 60 to 120 ° C.
  • the heating time is preferably 5 minutes to several hours.
  • an exposure method there are a method of exposing through a photomask and a method of exposing without using a photomask.
  • an exposure method without using a photomask direct exposure using a method of exposing the entire surface, laser light, or the like. The method etc. are mentioned.
  • Examples of the exposure apparatus include a stepper exposure machine and a proximity exposure machine.
  • Examples of the actinic rays to be exposed include near ultraviolet rays, ultraviolet rays, electron beams, X-rays, and laser beams, and ultraviolet rays are preferable.
  • the ultraviolet light source include a low-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high pressure mercury lamp, a halogen lamp, and a germicidal lamp, and an ultra-high pressure mercury lamp is preferable.
  • Examples of the developer used for alkali development include tetramethylammonium hydroxide, diethanolamine, diethylaminoethanol, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, triethylamine, diethylamine, methylamine, dimethylamine, and dimethyl acetate.
  • Examples include aqueous solutions of aminoethyl, dimethylaminoethanol, dimethylaminoethyl methacrylate, cyclohexylamine, ethylenediamine, hexamethylenediamine, and the like.
  • polar solvents such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide and ⁇ -butyrolactone; alcohols such as methanol, ethanol and isopropanol; ethyl lactate Esters such as propylene glycol monomethyl ether acetate; cyclopentanone, cyclohexanone, isobutyl ketone; ketones such as methyl isobutyl ketone; surfactants and the like may be added.
  • polar solvents such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide and ⁇ -butyrolactone
  • alcohols such as methanol, ethanol and isopropanol
  • ethyl lactate Esters such as propylene glycol monomethyl ether acetate
  • a developing method for example, a method of spraying a developer onto a dried film after exposure while a substrate on which a dried film is formed is allowed to stand or rotate, and a substrate on which a dried film after exposure is formed is immersed in the developer. And a method of applying ultrasonic waves while immersing a substrate on which a dry film after exposure is formed in a developer.
  • the cured product obtained by development may be rinsed with a rinse solution.
  • a rinse solution examples include water; aqueous solutions of alcohols such as ethanol and isopropyl alcohol; aqueous solutions of esters such as ethyl lactate and propylene glycol monomethyl ether acetate.
  • the cured product of the present invention can be laminated to form a laminate.
  • the number of laminated layers is preferably 1 to 30 layers. By setting the number of stacked layers to 1 or more, the thickness of the predetermined pattern can be increased. On the other hand, when the number of stacked layers is 30 or less, the influence of misalignment between layers can be reduced.
  • the fired body of the present invention is obtained by firing the photosensitive conductor paste of the present invention, and the shape thereof is not limited.
  • the thickness of the fired body is preferably 2 to 20 ⁇ m. By setting the thickness of the fired body to 2 ⁇ m or more, disconnection during firing can be suppressed. On the other hand, the swelling at the time of baking can be suppressed more by making the thickness of a sintered body into 20 micrometers or less.
  • the line width of the fired body of the present invention is preferably 5 to 20 ⁇ m. By setting the line width of the fired body to 5 ⁇ m or more, disconnection during firing can be suppressed. On the other hand, a finer pattern can be easily formed by setting the line width of the fired body to 20 ⁇ m or less.
  • the fired body of the present invention can be obtained, for example, by firing the above-described cured product of the present invention or a laminate thereof.
  • the firing method include a method in which heat treatment is performed at 300 to 600 ° C. for 5 minutes to several hours and then heat treatment is further performed at 850 to 900 ° C. for 5 minutes to several hours.
  • the green sheet preferably contains an insulating ceramic powder, a binder resin, and a plasticizer.
  • the insulating ceramic powder include “PARCERAM (registered trademark)” BT149 (product name: manufactured by Nippon Chemical Industry Co., Ltd.), SG-200 (product name: manufactured by Nippon Talc Co., Ltd.), and the like. Two or more of these may be contained.
  • the binder resin include acrylic resin, polyvinyl butyral resin, polyvinyl alcohol resin, cellulose resin, and methyl cellulose resin. Two or more of these may be contained.
  • the difference between the SP value of the binder resin and the SP value of the reactive compound (C) in the photosensitive conductive paste is preferably 1.0 to 8.6 (J / cm 3 ) 1/2 .
  • the difference between the SP value of the binder resin and the SP value of the reactive compound (C) in the photosensitive conductive paste is more preferably 5.0 (J / cm 3 ) 1/2 or less.
  • the coating method in the coating step examples include the methods exemplified as the coating method in the above-described cured product manufacturing method.
  • the film thickness of the coating film can be appropriately selected according to the coating method, the solid content concentration and viscosity of the photosensitive conductive paste, and is set so that the film thickness of the dry film in the drying process described later is 5 to 30 ⁇ m. It is preferable to do.
  • the film thickness of the dry film can be measured using a stylus type step meter (for example, “Surfcom (registered trademark)” 1400; manufactured by Tokyo Seimitsu Co., Ltd.). More specifically, the film thicknesses at three randomly selected positions are respectively measured with a stylus step meter (measurement length: 1 mm, scanning speed: 0.3 mm / s), and an average value thereof is calculated. Can be obtained.
  • drying method in the drying step examples include the methods exemplified as the drying method in the above-described method for producing a cured product.
  • Examples of the exposure method in the exposure / development step include the methods exemplified as the exposure method in the above-described method for producing a cured product.
  • the desired pattern can be formed by developing the dry film after exposure using a developer and dissolving and removing the non-exposed portion.
  • a developing solution what was illustrated as a developing solution in the manufacturing method of the above-mentioned hardened
  • a developing method for example, a method of spraying a developer on a dry film after exposure while leaving or rotating the green sheet, a method of immersing a green sheet having a dry film after exposure in a developer, Examples include a method of applying ultrasonic waves while immersing a green sheet having a dry film in a developer.
  • the pattern obtained by development may be rinsed with a rinse solution. What was illustrated as a rinse liquid in the manufacturing method of the above-mentioned hardened
  • cured material as a rinse liquid is mentioned.
  • the resulting pattern-formed green sheets can be laminated to form a laminate.
  • the obtained pattern-forming green sheet is fired to obtain a fired body.
  • a baking method the method illustrated as a baking method in the manufacturing method of a sintered body is mentioned.
  • the pattern formed on the green sheet is a composite of a conductive powder (A) and a cured product of an organic component containing an alkali-soluble resin (B), a reactive compound (C), and a photopolymerization initiator (D).
  • the conductivity develops when the conductive powders (A) come into contact with each other during firing.
  • Such a conductive pattern can be suitably used as an internal wiring of an electronic component or the like.
  • the patterned green sheet obtained by the method for producing a cured product, a fired body, and a patterned green sheet of the present invention can be preferably used for an electronic component.
  • the electronic component of the present invention preferably has a fired body, an insulating ceramic layer, and a terminal electrode.
  • the fired body the fired body of the present invention described above is preferable, and as the fired body and the insulating ceramic layer, those obtained by firing the pattern-formed green sheet obtained by the above-described production method are preferable.
  • the terminal electrode is preferably placed outside the fired body and the insulating ceramic layer. Examples of the material constituting the terminal electrode include nickel and tin.
  • the method for producing an electronic component according to the present invention includes obtaining a plurality of patterned green sheets by the above-described method, laminating and thermocompressing them to obtain a laminate, and firing the laminate to obtain an electronic component. It is preferable to have a firing step.
  • a method for manufacturing an electronic component of the present invention a method for manufacturing a multilayer chip inductor will be described below.
  • a via hole is formed in the green sheet, and a conductor is embedded in the via hole to form an interlayer connection wiring.
  • Examples of the via hole forming method include laser irradiation.
  • Examples of the method for embedding a conductor in the via hole include a method of embedding a conductor paste by a screen printing method and drying.
  • Examples of the conductive paste include a paste containing copper, silver, and a silver-palladium alloy.
  • Internal wiring is formed on the green sheet on which the interlayer connection wiring is formed.
  • Examples of the method for forming the internal wiring include a photolithography method using a photosensitive conductive paste.
  • the photosensitive conductive paste since the high-definition pattern can be easily formed, the above-described photosensitive conductive paste of the present invention can be preferably used.
  • a dielectric pattern or an insulator pattern is further formed. Examples of the method for forming the dielectric pattern and the insulator pattern include a screen printing method.
  • thermocompression bonding apparatus examples include a hydraulic press machine.
  • the thermocompression bonding temperature is preferably 90 to 130 ° C., and the thermocompression bonding pressure is preferably 5 to 20 MPa.
  • a multilayer chip inductor can be obtained by cutting the obtained multilayer body into a desired chip size, firing, applying a terminal electrode, and performing a plating process.
  • the cutting device include a die cutting machine.
  • the firing method include a method in which heat treatment is performed at 300 to 600 ° C. for 5 minutes to several hours and then heat treatment is further performed at 850 to 900 ° C. for 5 minutes to several hours.
  • the method for applying the terminal electrode include a sputtering method.
  • the metal used for the plating treatment include nickel and tin.
  • Conductive powder A: Ag powder with D50 of 2.5 ⁇ m
  • Conductive powder A-2: Ag powder with D50 of 0.3 ⁇ m
  • Conductive powder A-3): Ag with D50 of 0.8 ⁇ m
  • Powder conductive powder A-4): Ag powder with D50 of 4.2 ⁇ m
  • Conductive powder A-5): Ag powder with D50 of 5.3 ⁇ m
  • D50 of the conductive powder is a particle size distribution measuring device (Microtrac) Measurement was performed by a laser light scattering method using HRA Model No. 9320-X100 (manufactured by Nikkiso Co., Ltd.).
  • Alkali-soluble resin (B) Alkali-soluble resin (b-1a): Addition reaction of 40 mol parts of glycidyl methacrylate to 100 mol parts of carboxyl groups of copolymer of methacrylic acid / methyl methacrylate / styrene 54/23/23 (molar ratio) Acrylic resin (Mw 30,000, glass transition point 110 ° C., acid value 100 mg KOH / g) Alkali-soluble resin (b-1b): “ARUFON (registered trademark)” UC-3910 (acrylic resin, Mw 8,500, glass transition point 85 ° C., acid value 200 mg KOH / g; manufactured by Toa Gosei Co., Ltd.) Alkali-soluble resin (b-1c): “Art Cure (registered trademark)” RA-3953MP (acrylic resin, Mw 40,000, glass transition point 139 ° C., acid value 60 mg KOH / g: manufactured by Negami Kogyo
  • Reactive compound (C′-6) “Sartomer” CN9178 (ester structure-containing urethane acrylate, viscosity at 60 ° C. 2.0 Pa ⁇ s, weight average molecular weight 1,000, SP value 28.1 (J / cm 3 ) 1 / 2 ; Arkema Co., Ltd.)
  • Reactive compound (C′-7) “Sartomer” CN8882NS (ester structure-containing urethane acrylate, viscosity at 60 ° C.
  • Reactive compound (C-8) “KAYARAD” UX-8101 (ester structure-containing urethane acrylate, viscosity at 60 ° C.
  • Production Example 2 Reactive compound (C-10) The reaction was carried out under the same conditions as in Production Example 1 except that the amount of isophorone diisocyanate was changed to 1500 mol parts to obtain a reactive compound (C-10). (Ester structure-containing urethane acrylate, viscosity at 60 ° C. 32.0 Pa ⁇ s, weight average molecular weight 29,000, SP value 23.0 (J / cm 3 ) 1/2 )
  • Production Example 3 Reactive Compound (C-11) A reactive compound (C-11) was obtained by reacting under the same conditions as in Production Example 2 except that Kuraray polyol P-1010 was changed to Kuraray polyol P-3010.
  • Reactive compound (C-12) A reactive compound (C-12) was obtained by reacting under the same conditions as in Production Example 2 except that Kuraray polyol P-1010 was changed to Kuraray polyol P-5010.
  • the reactive compound has a viscosity of B type viscometer (Brookfield viscometer, model HB DV-I; Eihiro) under the atmospheric pressure after the
  • the weight average molecular weight of the reactive compound was a polystyrene conversion value measured by high performance liquid chromatography (Alliance 2695; manufactured by Nihon Waters Co., Ltd.).
  • the SP value of the reactive compound was calculated from the molecular structure using the Fedors calculation method.
  • Photopolymerization initiator (D) Photopolymerization initiator (D): Adekaoptomer N-1919 (oxime-based photopolymerization initiator; manufactured by ADEKA Corporation).
  • Leveling agent “Disparon (registered trademark)” L-1980N (manufactured by Enomoto Kasei Co., Ltd.).
  • Ceramic Green Sheet (S1) 100 parts by volume of “Parseram” BT149 (manufactured by Nippon Chemical Industry Co., Ltd.) as the insulating ceramic powder, 240 parts by volume of polyvinyl butyral resin (SP value 19.1 (J / cm 3 ) 1/2 ) as the binder resin, plasticizer As a solvent, 80 parts by volume of dibutyl phthalate and 160 parts by volume of ethylene glycol monobutyl ether as a solvent were mixed, and a ceramic green sheet S1 was produced by a doctor blade method.
  • total dissolution time the time when all the non-exposed areas are dissolved
  • L / S was 20 ⁇ m / 20 ⁇ m and 15 ⁇ m / 15 by the method described in ⁇ High Definition Pattern Formation> above.
  • Ten pattern forming sheets each using a 15 ⁇ m exposure mask were prepared.
  • Ten of these pattern forming sheets were stacked using the guide holes, and pressure-bonded using a hydraulic press machine under the conditions of a temperature of 90 ° C. and a pressure of 15 MPa to produce a 10-layer laminated sheet.
  • the obtained 10-layer laminated sheet was cut into a size of 0.3 mm ⁇ 0.6 mm ⁇ 0.3 mm using a die cutting machine, heat-treated at 350 ° C. for 10 hours, and further heat-treated at 880 ° C. for 10 minutes. And a 10-layer laminated fired sheet was produced.
  • ⁇ Volume resistivity> The photosensitive conductive pastes obtained in Examples 1 to 106 and Comparative Examples 1 to 5 on an alumina substrate (100 mm ⁇ 100 mm ⁇ thickness 0.5 mm) were screen-printed so that the film thickness after drying was 10 ⁇ m. The resulting coated film was dried with a hot air dryer at 80 ° C. for 10 minutes to obtain a dried film. Expose and develop in the same way as described in ⁇ High-definition pattern formation>, except that an exposure mask with a predetermined pattern (length 5 cm x line width 1 mm, pattern with 1 cm square pads on both ends) is used. Then, a resistance measurement pattern forming sheet was obtained. The obtained resistance measurement pattern forming sheet was heat-treated at 880 ° C.
  • volume resistivity ( ⁇ ⁇ cm) actual resistance value ( ⁇ ) ⁇ 1000 ⁇ pattern line width (cm) ⁇ pattern thickness (cm) ⁇ pattern length (cm) The smaller the volume resistivity, the better the electrical characteristics when used for electronic components.
  • the photosensitive conductive paste obtained in each example and comparative example was repeatedly applied by screen printing, and the paste after printing 100 times, 200 times, and 500 times was collected.
  • the viscosity of each paste was measured by the method described above, and the ratio to the viscosity before printing (viscosity after printing / viscosity before printing) was calculated. In this evaluation, the closer the viscosity ratio is to 1, the better the continuous printability and the higher the productivity.
  • Example 1 In a glass flask, an alkali-soluble resin (B), a reactive compound (C), a photopolymerization initiator (D), a leveling agent, a dispersant, and a solvent (F) are added so that the composition ratio shown in Table 1 is obtained. The mixture was stirred at 60 ° C. for 2 hours to obtain a photosensitive organic component solution. To this photosensitive organic component solution, conductive powder (A) and fine particles (E) were further added so as to have the composition ratio shown in Table 1, and after stirring, three rollers (EXAKT M-50; EXAKT Co., Ltd.) To produce a photosensitive conductive paste P1. Table 11 shows the results of evaluation of the obtained photosensitive conductive paste P-1 by the method described above.
  • the obtained photosensitive conductive paste P-1 was applied by a screen printing method so as to have a film thickness of 10 ⁇ m after drying to obtain a coating film.
  • the obtained coating film was dried for 10 minutes using a hot air dryer at 80 ° C. to form a dry film on the green sheet. The same operation was repeated to prepare a plurality of green sheets on which a dry film was formed.
  • Photosensitive conductive pastes P-2 to P-111 were obtained in the same manner as in Example 1 except that the composition of the photosensitive conductive paste was changed as shown in Tables 1 to 10. However, in Examples 22 to 23, since undissolved residue was observed in the photosensitive organic component solution after stirring at 60 ° C. for 2 hours, the mixture was further stirred at 60 ° C. for 2 hours. Using the obtained photosensitive conductive pastes P-2 to P-111, green sheets having a dry film formed in the same manner as in Example 1 were obtained. The results of evaluation by the above method are shown in Tables 11-22.
  • Example 107 to 111 A green sheet having a photosensitive conductive paste and a dry film formed in the same manner as in Example 2 except that ceramic green sheets S1 to S5 obtained in Production Examples 1 to 5 were used instead of the green sheet (GCS71F), respectively.
  • GCS71F green sheet
  • Example 112 The photosensitive conductive paste P-2 obtained in Example 2 was applied to a green sheet (GCS71F; manufactured by Yamamura Photonics) with a via hole formed by screen printing so that the film thickness after drying was 13 ⁇ m. A coating film was obtained. The obtained coating film was dried for 10 minutes using a hot air dryer at 80 ° C., and a dry film was formed on the green sheet while the conductor was embedded in the via hole. The dry film was exposed at an irradiation dose of 400 mJ / cm 2 (converted to a wavelength of 365 nm) with an ultrahigh pressure mercury lamp with an output of 21 mW / cm 2 through an exposure mask having a coiled pattern L / S of 20/20 ⁇ m.
  • a terminal electrode was applied to the obtained 20-layer laminated fired sheet by sputtering, followed by plating with nickel and tin to produce a multilayer chip inductor.
  • this multilayer chip inductor when copper wiring was connected to both ends of the terminal electrode with solder and the continuity was evaluated using a digital multimeter (CDM-16D; manufactured by Custom Corp.), the continuity was successful.
  • the photosensitive conductive paste of the present invention can be suitably used for the production of internal wiring patterns such as electronic parts.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Materials For Photolithography (AREA)
  • Conductive Materials (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

グリーンシート上に高精細なパターンを形成することができ、焼成欠陥を抑制することができる感光性導電ペーストを提供する。導電性粉末(A)、アルカリ可溶性樹脂(B)、反応性化合物(C)および光重合開始剤(D)を含有し、前記反応性化合物(C)の60℃における粘度が5.0~100.0Pa・sである感光性導電ペーストである。

Description

感光性導電ペーストおよびそれを用いたパターン形成グリーンシートの製造方法
 本発明は、感光性導電ペースト、その硬化物と焼成体、それを用いた電子部品とその製造方法ならびにパターン形成グリーンシートの製造方法および電子部品の製造方法に関する。
 近年、電子部品の高速化・高周波化・小型化が進むにつれ、それらを実装するためのセラミックス基板にも、微細で高密度な導電パターンを形成することが要求されている。セラミックス基板の一つであるセラミックグリーンシート上に導電パターンを形成する方法として、例えば、感光性樹脂組成物をグリーンシート上に印刷後、乾燥させて感光性フィルム層を形成し、その感光性フィルム層にフォトマスクを載せて、露光、現像することによりパターン形成することを特徴とするグリーンシート上へのパターン形成方法が提案されている(例えば、特許文献1参照)。また、導電パターンを形成するための感光性導電ペーストとして、例えば、導電性粉末、ガラスフリットおよびセラミックス粉末からなる無機フィラーを含む無機成分、ならびに感光性有機成分を含有する感光性導電ペースト(例えば、特許文献2参照)や、光照射により非イオン性基に変化するイオン性基を側鎖に含有する有機バインダー、導電性粉体、光重合性化合物、光重合開始剤および有機溶剤を含有する感光性導電ペースト(例えば、特許文献3参照)などが提案されている。
特開2004-264655号公報 特開2011-204514号公報 特開2016-194641号公報
 しかしながら、特許文献1~3に記載された技術は、感光性樹脂組成物や感光性導電ペースト中の感光性成分がグリーンシートに吸収されやすいことから感度低下が生じやすく、高精細なパターンの形成が困難である課題があった。
 また、近年の導電パターンの微細化・高密度化により焼成欠陥の影響がより顕著となることから、焼成欠陥を抑制することが求められている。
 そこで本発明は、グリーンシート上に高精細なパターンを形成することができ、焼成欠陥を抑制することができる感光性導電ペーストを提供することを目的とする。
 上記課題は、以下の技術手段によって達成される。
導電性粉末(A)、アルカリ可溶性樹脂(B)、反応性化合物(C)および光重合開始剤(D)を含有し、前記反応性化合物(C)の60℃における粘度が5.0~100.0Pa・sである感光性導電ペースト。
 本発明の感光性導電ペーストによれば、グリーンシート上に高精細な導電パターンを形成することができ、焼成欠陥を抑制することができる。
 本発明の感光性導電ペーストは、導電性粉末(A)、アルカリ可溶性樹脂(B)、反応性化合物(C)および光重合開始剤(D)を含有する。導電性粉末(A)を含有することにより、焼成によって導電性粉末(A)同士が互いに接触して導電性を発現することができる。アルカリ可溶性樹脂(B)を含有することにより、アルカリ現像液への溶解性を付与し、反応性化合物(C)および光重合開始剤(D)を含有することにより、フォトリソグラフィによるパターン加工性を向上させることができる。本発明においては、前記反応性化合物(C)の60℃における粘度が5.0~100.0Pa・sであることが重要である。前述のとおり、従来公知の感光性導電ペーストは、グリーンシート上へのパターン形成にあたり、感光性成分がグリーンシートに吸収されやすいことから感度低下が生じやすく、高精細なパターンの形成が困難である課題があった。本発明者らの検討により、グリーンシートへの吸収が、後述する乾燥工程における反応性化合物の粘度に関係することを見出した。そこで、本発明においては、乾燥工程における反応性化合物の粘度の指標として、乾燥工程における一般的な乾燥温度である60℃における粘度に着目した。本発明においては、反応性化合物(C)の60℃における粘度を5.0Pa・s以上とすることにより、グリーンシートへの吸収を抑制して高精細なパターンを形成することができる。一方、反応性化合物(C)の60℃における粘度が高くなりすぎると、焼成時に残存する反応性化合物(C)の脱離除去が困難となり、焼成欠陥が生じやすくなる。本発明においては、反応性化合物(C)の60℃における粘度を100.0Pa・以下とすることにより、焼成欠陥を抑制することができる。
 導電性粉末(A)としては、例えば、銀、金、銅、白金、パラジウム、スズ、ニッケル、アルミニウム、タングステン、モリブデン、酸化ルテニウム、クロム、チタン、インジウムなどの金属やこれらの合金の粉末;カーボン粉末などが挙げられる。これらを2種以上含有してもよい。これらの中でも、導電性の観点から、銀、銅、金が好ましく、コストおよび安定性の観点から、銀がより好ましい。
 導電性粉末(A)のメジアン径(D50)は、0.1~10μmが好ましい。導電性粉末(A)のD50を0.1μm以上とすることにより、焼成時の導電性粉末(A)同士の接触確率を向上させ、導電パターンの体積抵抗率および断線確率を低減することができる。また、後述する露光・現像工程において、露光光の透過性が向上することから、より高精細なパターンを容易に形成することができる。導電性粉末(A)のD50は、0.5μm以上がより好ましい。一方、導電性粉末(A)のD50を10μm以下とすることにより、残渣を抑制し、より高精細なパターンを容易に形成することができる。導電性粉末(A)のD50は、5μm以下がより好ましい。なお、導電性粉末(A)のD50は、粒度分布測定装置(Microtrac HRA Model No.9320-X100;日機装(株)製)を用いて、レーザー光散乱法により測定することができる。
 感光性導電ペースト中の導電性粉末(A)の含有量は、全固形分中、20~50体積%が好ましい。導電性粉末(A)の含有量を20体積%以上とすることにより、焼成時の導電性粉末(A)同士の接触確率を向上させ、導電パターンの体積抵抗率および断線確率を低減することができる。また、後述するダイシング工程において、チップ同士の粘着を抑制することができる。導電性粉末(A)の含有量は、25体積%以上がより好ましく、35体積%以上がより好ましい。一方、導電性粉末(A)の含有量を50体積%以下とすることにより、後述する露光・現像工程において、露光光の透過性が向上することから、より高精細なパターンを容易に形成することができる。導電性粉末(A)の含有量は、45体積%以下がより好ましい。ここで、感光性導電ペーストの全固形分とは、溶媒を除く、感光性導電ペーストの全構成成分をいう。
 感光性導電ペースト中の導電性粉末(A)の含有量は、感光性ペーストを塗布・乾燥して溶媒を除去したペースト乾燥膜の膜面に垂直な断面を、透過型電子顕微鏡(例えば、日本電子(株)製「JEM-4000EX」)により観察し、像の濃淡により導電性粉末(A)とその他の成分を区別して画像解析を行うことにより求めることができる。このとき、透過型電子顕微鏡による観察面積は20μm×100μm程度、倍率は1,000~3,000倍程度とする。また、感光性導電ペーストの各成分の配合量が既知の場合は、配合量から導電性粉末(A)の含有量を算出することもできる。
 本発明の感光性導電ペーストにおいて、アルカリ可溶性樹脂(B)とは、アルカリ可溶性基を有する樹脂をいう。アルカリ可溶性基としては、例えば、カルボキシル基、フェノール性水酸基、スルホン酸基、チオール基などが挙げられる。アルカリ現像液への溶解性が高いことから、カルボキシル基が好ましい。
 アルカリ可溶性樹脂(B)のガラス転移点は、80~160℃が好ましい。アルカリ可溶性樹脂(B)のガラス転移点を80℃以上とすることにより、後述する乾燥工程において70℃程度に加熱する場合であっても、アルカリ可溶性樹脂(B)の軟化によるグリーンシートへの吸収をより抑制し、より高精細なパターンを容易に形成することができる。また、後述するダイシング工程において、チップ同士の粘着を抑制することができる。アルカリ可溶性樹脂(B)のガラス転移点は、100℃以上がより好ましい。一方、アルカリ可溶性樹脂(B)のガラス転移点を160℃以下とすることにより、熱分解性を向上させ、焼成時の残存有機成分に起因する焼成欠陥をより抑制することができる。アルカリ可溶性樹脂(B)のガラス転移点は、140℃以下がより好ましい。アルカリ可溶性樹脂(B)としてガラス転移点の異なる2種以上を含有する場合、全てのアルカリ可溶性樹脂(B)のガラス転移点が上記範囲にあることが好ましい。なお、アルカリ可溶性樹脂(B)のガラス転移点は、示差走査熱量計(DSC-50;(株)島津製作所)を用いた、示差走査熱量分析(DSC)により測定することができる。
 アルカリ可溶性樹脂(B)としては、アクリル樹脂が好ましく、炭素-炭素二重結合を有するアクリル系モノマーとその他のモノマーとの共重合体が好ましい。炭素-炭素二重結合を有するアクリル系モノマーとしては、例えば、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、イソプロピルアクリレート、n-ブチルアクリレート、イソブチルアクリレート、tert-ブチルアクリレート、n-ペンチルアクリレート、イソデシルアクリレート、イソオクチルアクリレート、2-エチルへキシルアクリレート、アリルアクリレート、ラウリルアクリレート、ステアリルアクリレートなどの炭素数1~18の鎖状脂肪族炭化水素基を有するアクリレート;ベンジルアクリレート、フェニルアクリレート、1-ナフチルアクリレート、2-ナフチルアクリレート、などの炭素数6~10の環状芳香族炭化水素基を有するアクリレート;シクロへキシルアクリレート、ジシクロペンタニルアクリレート、4-tert-ブチルシクロヘキシルアクリレート、ジシクロペンテニルアクリレート、ジシクロペンタジエニルアクリレート、イソボルニルアクリレート、3,3,5-トリメチルシクロヘキシルアクリレートなどの炭素数6~15の環状脂肪族炭化水素基を有するアクリレートや、これらのアクリレートをメタクリレートに換えたものなどが挙げられる。これらを2種以上用いてもよい。アクリル系モノマー以外の共重合成分としては、例えば、スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、α-メチルスチレン、クロロメチルスチレン、ヒドロキシメチルスチレンなどのスチレン類;アクリル酸、メタクリル酸、イタコン酸、クロトン酸、マレイン酸、フマル酸、ビニル酢酸などの不飽和カルボン酸やこれらの酸無水物などが挙げられる。これらを2種以上用いてもよい。
 アクリル樹脂は、側鎖または分子末端に炭素-炭素二重結合を有することが好ましく、露光時の硬化反応速度を向上させることができる(以下、炭素-炭素二重結合を有するアクリル樹脂を、アクリル樹脂(b-1)と記載する場合がある。)。炭素-炭素二重結合を有する構造としては、例えば、ビニル基、アリル基、アクリル基、メタクリル基などが挙げられる。これらを2種以上有してもよい。アクリル樹脂に炭素-炭素二重結合を導入する方法としては、例えば、アクリル樹脂中のメルカプト基、アミノ基、ヒドロキシル基、カルボキシル基に対して、グリシジル基またはイソシアネート基と炭素-炭素二重結合とを有する化合物、アクリル酸クロライド、メタクリル酸クロライド、アリルクロライドなどを反応させる方法などが挙げられる。
 グリシジル基と炭素-炭素二重結合とを有する化合物としては、例えば、グリシジルメタクリレート、グリシジルアクリレート、アリルグリシジルエーテル、グリシジルエチルアクリレート、クロトニルグリシジルエーテル、グリシジルクロトネート、グリシジルイソクロトネート、“サイクロマー(登録商標)”M100、A200(以上、ダイセル化学工業(株)製)などが挙げられる。イソシアネート基と炭素-炭素二重結合とを有する化合物としては、例えば、アクリロイルイソシアネート、メタクリロイルイソシアネート、アクリロイルエチルイソシアネート、メタクリロイルエチルイソシアネートなどが挙げられる。これらを2種以上用いてもよい。
 アクリル樹脂(b-1)の酸価は、アルカリ現像液に対する溶解性の観点から、50~150mgKOH/gが好ましい。アクリル樹脂の酸価は、不飽和酸の共重合比により調整することができる。なお、アクリル樹脂の酸価は、水酸化カリウム水溶液を用いた中和滴定により求めることができる。
 本発明の感光性導電ペーストは、前記アクリル樹脂(b-1)に加えて、炭素-炭素結合を有しない、酸価が200~300mgKOH/gであるアクリル樹脂(以下、アクリル樹脂(b-2)と記載する場合がある。)を含むことが好ましい。炭素-炭素二重結合を有しないことにより、露光による架橋を生じないため、硬化前後の酸価の変動が少なく、酸価の数値限定による所望の効果を容易に得ることができる。アクリル樹脂(b-2)の酸価を200mgKOH/gより大きくすることにより、アクリル樹脂同士の水素結合による相互作用が働き、後述するダイシング工程において、接着を抑制することができる。アクリル樹脂(b-2)の酸価は、220mgKOH/g以上がより好ましい。一方、アクリル樹脂(b-2)の酸価が300mgKOH/g以下とすることにより、後述する露光・現像工程において、溶出速度を適度に抑制し、より高精細なパターンを容易に形成することができる。アクリル樹脂(b-2)の酸価は、280mgKOH/g以下がより好ましい。
 アクリル樹脂(b-2)の重量平均分子量(Mw)は、20,000~50,000が好ましい。アクリル樹脂(b-2)のMwを20,000以上とすることにより、ダイシング工程における粘着をより抑制することができる。また、露光・現像工程におけるパターン剥がれを抑制し、より微細なパターンを形成することができる。アクリル樹脂(b-2)のMwは、23,000以上がより好ましく、32,000以上がさらに好ましい。一方、アクリル樹脂(b-2)のMwを50,000以下とすることにより、露光・現像工程における現像液への溶解性を向上させ、残渣を抑制し、より微細なパターンを形成することができる。アクリル樹脂(b-2)のMwは、45,000以下がより好ましく、42,000以下がさらに好ましい。アクリル樹脂(b-2)のMwは、ポリスチレン換算値であり、高速液体クロマトグラフィー(Alliance 2695;日本ウォーターズ(株)製)等を用いて測定することができる。
 アクリル樹脂のガラス転移点は、例えば、重合成分によって調整することができる。ガラス転移点が高いアクリル樹脂を構成するアクリル系モノマーとしては、例えば、メチルメタクリレート、tert-ブチルメタクリレート、(メタ)アクリレートなどの鎖状脂肪族炭化水素基を有するアクリレート;4-tert-ブチルシクロヘキシルメタクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンタジエニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、3,3,5-トリメチルシクロヘキシルメタクリレート等の炭素数6~15の環状脂肪族炭化水素基を有する(メタ)アクリレートなどが挙げられる。ガラス転移点が高いアクリル樹脂を構成するその他のモノマーとしては、例えば、アクリロニトリル、アクリルアミド、スチレンなどが挙げられる。
 ガラス転移点が80~160℃であるアクリル樹脂(b-1)として、例えば、“サイクロマー(登録商標)”P(ACA)Z200M、P(ACA)Z230AA、P(ACA)Z250、P(ACA)Z251、P(ACA)Z300、P(ACA)Z320、P(ACA)Z254F(以上ダイセル・オルネクス(株)製)などが挙げられる。アクリル樹脂(b-2)としては、(メタ)アクリル酸/(メタ)アクリル酸メチル/スチレン共重合体が好ましく、ダイシング工程における粘着をより抑制することができる。
 アルカリ可溶性樹脂(B)の重量平均分子量は、7,000~40,000が好ましい。アルカリ可溶性樹脂(B)の重量平均分子量を7,000以上とすることにより、感光性導電ペーストの粘度を適度に向上させ、後述する乾燥膜のタックを抑制することができる。アルカリ可溶性樹脂(B)の重量平均分子量は、24,000以上がより好ましい。一方、アルカリ可溶性樹脂(B)の重量平均分子量を40,000以下とすることにより、後述する露光・現像工程において、非露光部の現像液に対する溶解性を向上させ、現像時間を短縮することができる。アルカリ可溶性樹脂(B)の重量平均分子量は、32,000以下がより好ましい。アルカリ可溶性樹脂(B)が2種以上含まれている場合は少なくとも1種が上記範囲に含まれていることが好ましく、すべてが上記範囲に含まれていることがより好ましい。アルカリ可溶性樹脂の重量平均分子量は、ポリスチレン換算値であり、高速液体クロマトグラフィー(Alliance 2695;日本ウォーターズ(株)製)等を用いて測定することができる。
 感光性導電ペースト中におけるアルカリ可溶性樹脂(B)の含有量は、全固形分中、20~55体積%が好ましい。アルカリ可溶性樹脂(B)の含有量を20体積%以上とすることにより、グリーンシート上へのパターン形成にあたり、グリーンシートへの吸収をより抑制し、より高精細なパターンを容易に形成することができる。また、ダイシング工程での粘着をより抑制することができる。アルカリ可溶性樹脂(B)の含有量は、30体積%以上がより好ましい。一方、アルカリ可溶性樹脂(B)の含有量を55体積%以下とすることにより、感光性導電ペーストの粘度を適度に保ち、焼成時の残存有機成分に起因する焼成欠陥をより抑制することができる。アルカリ可溶性樹脂(B)の含有量は、45体積%以下がより好ましい。
 感光性導電ペースト中におけるアクリル樹脂(b-1)の含有量は、全固形分中、20~45体積%が好ましい。アクリル樹脂(b-1)の含有量を20体積%以上とすることにより、露光・現像工程における架橋が促進され、パターン剥がれを抑制し、より微細なパターンを形成することができる。一方、アクリル樹脂(b-1)の含有量を45体積%以下とすることにより、ダイシング工程での粘着をより抑制することができる。
 感光性導電ペースト中におけるアクリル樹脂(b-2)の含有量は、全固形分中、1~20体積%が好ましい。アクリル樹脂(b-2)の含有量を1体積%以上とすることにより、ダイシング工程における粘着をより抑制することができる。アクリル樹脂(b-2)の含有量は、7体積%以上がより好ましい。一方、アクリル樹脂(b-2)の含有量を20体積%以下とすることにより、現像工程におけるアクリル樹脂(b-2)の過剰な溶出に起因するパターン剥がれを抑制し、より微細なパターンを形成することができる。アクリル樹脂(b-2)の含有量は、15体積%以下がより好ましい。
 また、アクリル樹脂(b-1)とアクリル樹脂(b-2)の合計100体積部に対して、アクリル樹脂(b-2)を20~40体積部含有することが好ましい。アクリル樹脂(b-2)の含有量を20体積部以上とすることにより、ダイシング工程における粘着をより抑制することができる。一方、アクリル樹脂(b-2)の含有量を40体積部以下とすることにより、現像工程におけるアクリル樹脂(b-2)の過剰な溶出に起因するパターン剥がれをより抑制し、より微細なパターンを形成することができる。
 本発明における反応性化合物(C)とは、炭素-炭素二重結合を有するモノマーまたはオリゴマーをいう。
 反応性化合物(C)の60℃における粘度は、5.0~100.0Pa・sであることが重要である。反応性化合物(C)の60℃における粘度が5.0Pa・s未満であると、後述する乾燥工程において、反応性化合物(C)がグリーンシートに吸収されやすいことから、感度低下により高精細なパターン形成が困難となる。反応性化合物(C)の60℃における粘度は、15.0Pa・s以上が好ましい。一方、反応性化合物(C)の60℃における粘度が100.0Pa・sを超えると、焼成時の残存有機成分に起因する焼成欠陥が生じやすい。反応性化合物(C)の60℃における粘度は、50.0Pa・s以下が好ましい。本発明における反応性化合物(C)の60℃における粘度は、反応性化合物(C)として粘度の異なる2種以上を含有する場合、少なくとも1種の反応性化合物(C)の粘度が上記範囲にある。なお、反応性化合物(C)の60℃における粘度は、大気圧下において、B型粘度計(ブルックフィールド粘度計、型式HB DV-I;英弘精機(株)製)を用いて、回転数3rpmにおいて測定した値をいう。
 60℃における粘度が5.0~100.0Pa・sである反応性化合物(C)としては、例えば、ウレタンアクリレートオリゴマー、エポキシアクリレートオリゴマーなどが挙げられる。より具体的には、例えば、“サートマー(登録商標)”CN940、CN961、CN962、CN963、CN964、CN965、CN966、CN980、CN989、CN8881NS、CN8883NS、CN8884NS、CN9001、CN9004、CN9013、CN9025、CN9030、CN9893、CN971、CN973、CN9782、CN9783、CN2920、CN104(以上、アルケマ(株)製)、NKオリゴ UA-122P、U-2PPA、U-6LPA、EA-1020、EA-1020LC3(以上、新中村化学工業(株)製)、“KAYARAD(登録商標)”UX-3204、UX-4101、UXT-6100、UX-6101、UX-7101、UX-8101、UXF-4002、UX-5103D(以上、日本化薬(株)製)、“EBECRYL(登録商標)”8465、8804(以上、ダイセル・オルネクス(株)製)などが挙げられる。
 反応性化合物(C)は、ウレタン構造および/またはエステル構造を有することが好ましい。ウレタン構造および/またはエステル構造を有することにより、柔軟性を向上させ、より高精細なパターンを容易に形成することができる。ウレタン構造およびエステル構造を有することがより好ましい。ウレタン構造を有する反応性化合物(C)としては、例えば、“サートマー(登録商標)”CN940、CN961、CN962、CN963、CN964、CN965、CN966、NKオリゴ UA-122P、U-2PPA、U-6LPA、“KAYARAD(登録商標)”UX-3204、UX-4101、UXT-6100、UX-6101、UX-7101、UX-8101、UXF-4002、“EBECRYL(登録商標)”8465、8804などが挙げられる。エステル構造を有する反応性化合物(C)としては、例えば、“サートマー(登録商標)”CN961、CN962、“KAYARAD(登録商標)”UX-3204、UX-4101、UXT-6100、UX-6101、UX-7101、UX-8101、NKオリゴ UA-122Pなどが挙げられる。
 反応性化合物(C)の重量平均分子量は、5,000~45,000が好ましい。反応性化合物(C)の重量平均分子量を、5,000以上とすることで、グリーンシート上へのパターン形成にあたり、グリーンシートへの吸収をより抑制し、乾燥後静置時間がより長い際にも、より高精細なパターンを容易に形成することができる。反応性化合物(C)の重量平均分子量は、10,000以上がより好ましく、15,000以上がより好ましい。一方、反応性化合物(C)の重量平均分子量を、45,000以下とすることで、感光性導電ペーストの粘度を適度に保ち、焼成時の残存有機成分に起因する焼成欠陥をより抑制することができる。反応性化合物(C)の重量平均分子量は、40,000以下がより好ましい。重量平均分子量が5,000~45,000である反応性化合物(C)としては、例えば、ポリエーテルジオール、ポリカーボネートジオールなどのポリオールと、イソホロンジイソシアネートなどのポリイソシアネートの重合体に対して、炭素-炭素二重結合を有するアルコールを反応させることで得ることができる。また、市場で入手可能な反応性化合物(C)としては、例えば、“KAYARAD(登録商標)”UX-3204、UX-4101、UXT-6100、UX-6101、UXF-4002などが挙げられる。
 反応性化合物(C)の溶解度パラメータ(SP値)は、21.5~28.7(J/cm1/2が好ましい。SP値をこの範囲にすることにより、グリーンシートへの吸収をより抑制し、より高精細なパターンを容易に形成することができる。なお、反応性化合物(C)のSP値は、分子構造から、Fedorsの計算方法を用いて算出することができる。
 感光性導電ペースト中の反応性化合物(C)の含有量は、全固形分中、5~30体積%が好ましい。反応性化合物(C)の含有量を5体積%以上とすることにより、後述する露光・現像工程における感度を向上させ、より高精細なパターンを容易に形成することができる。反応性化合物(C)の含有量は、10体積%以上がより好ましい。一方、反応性化合物(C)の含有量を30体積%以下とすることにより、感光性導電ペーストの粘度を適度に保ち、焼成時の残存有機成分に起因する焼成欠陥をより抑制することができる。反応性化合物(C)の含有量は、20体積%以下がより好ましい。
 本発明における光重合開始剤(D)とは、紫外線等の短波長の光を吸収して分解する、または、水素引き抜き反応によりラジカルを生じる化合物をいう。紫外線等の光を吸収して分解する光重合開始剤(D)としては、例えば、1,2-オクタンジオン、ベンゾフェノン、オルト-ベンゾイル安息香酸メチル、4,4’-ビス(ジメチルアミノ)ベンゾフェノン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルケトン、ジベンジルケトン、2,2’-ジエトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2-ヒドロキシ-2-メチルプロピオフェノン、ミヒラーケトン、2-メチル-[4-(メチルチオ)フェニル]-2-モルフォリノ-1-プロパノン、4-アジドベンザルアセトフェノン、2,6-ビス(p-アジドベンジリデン)シクロヘキサノン、6-ビス(p-アジドベンジリデン)-4-メチルシクロヘキサノンなどのアルキルフェノン系光重合開始剤;2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイドなどのアシルフォスフィンオキサイド系光重合開始剤;1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)]、エタノン,1-[9-エチル-6-2(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)、1-フェニル-1,2-ブタンジオン-2-(O-メトキシカルボニル)オキシム、1-フェニル-プロパンジオン-2-(O-エトキシカルボニル)オキシム、1-フェニル-プロパンジオン-2-(O-ベンゾイル)オキシム、1,3-ジフェニル-プロパントリオン-2-(O-エトキシカルボニル)オキシム、1-フェニル-3-エトキシ-プロパントリオン-2-(O-ベンゾイル)オキシムのオキシムエステル系光重合開始剤などが挙げられる。水素引き抜き反応によりラジカルを生じる光重合開始剤(D)としては、例えば、ベンゾフェノン、アントラキノン、チオキサントン、フェニルグリオキシリックアシッドメチルエステルなどが挙げられる。これらを2種以上含有してもよい。
 感光性導電ペースト中の光重合開始剤(D)の含有量は、0.1~5.0体積%が好ましい。光重合開始剤(D)の含有量0.1体積%以上とすることにより、後述する露光・現像工程における感度を向上させ、より高精細なパターンを容易に形成することができる。光重合開始剤(D)の含有量は、0.2体積%以上がより好ましい。一方、光重合開始剤(D)の含有量を5.0体積%以下とすることにより、後述する露光・現像工程における乾燥膜表面の光吸収を適度に抑制し、残渣を抑制して、より高精細なパターンを容易に形成することができる。光重合開始剤(D)の含有量は、3.0体積%以下がより好ましい。
 また、感光性導電ペースト中のアルカリ可溶性樹脂(B)、反応性化合物(C)および光重合開始剤(D)の合計100体積部に対して、アルカリ可溶性樹脂(B)および反応性化合物(C)を合計90.0~99.0体積部含有することが好ましい。アルカリ可溶性樹脂(B)および反応性化合物(C)の合計含有量を90.0体積部以上とすることにより、後述する露光・現像工程における乾燥膜表面の光吸収を適度に抑制し、残渣を抑制して、より高精細なパターンを容易に形成することができる。一方、アルカリ可溶性樹脂(B)および反応性化合物(C)の合計含有量を99.0体積部以下とすることにより、後述する露光・現像工程における感度を向上させ、より高精細なパターンを容易に形成することができる。また、感光性導電ペーストの粘度を適度に保ち、焼成欠陥をより抑制することができる。
 本発明の感光性導電ペースト中の23℃における固形分の有機成分のうち、分子量5,000以下の有機成分の含有量は、4.0~15.0体積%であることが好ましい。分子量5,000以下の有機成分は感光性導電ペースト中において、容易に移動し、露光時の反応性が高い一方で、グリーンシートへ吸収されやすい。そのため、分子量5,000以下の有機成分の含有量の数値規定により、所望の効果をより容易に得ることができる。分子量5,000以下の有機成分の含有量を、4.0体積%以上とすることにより、後述する露光・現像工程における感度を向上させ、乾燥後静置時間がより長い際にも、より高精細なパターンを容易に形成することができる。一方、分子量5,000以下の有機成分の含有量を、15.0重量%以下とすることにより、グリーンシート上へのパターン形成にあたり、グリーンシートへの吸収をより抑制し、乾燥後静置時間がより長い際にも、より高精細なパターンを容易に形成することができる。
 本発明の感光性導電ペースト中の23℃における固形分のうち、有機成分の重量平均分子量は、30,000~45,000であることが好ましい。有機成分の重量平均分子量を、30、000以上とすることにより、有機成分の動きを適度に抑制するため、グリーンシート上へのパターン形成にあたり、グリーンシートへの吸収をより抑制し、乾燥後静置時間がより長い際にも、より高精細なパターンを容易に形成することができる。一方、有機成分の重量平均分子量を、45,000以下とすることにより、感光性導電ペーストの粘度を適度に保ち、焼成時の残存有機成分に起因する焼成欠陥をより抑制することができる。有機成分の重量平均分子量は37,000以下がより好ましい。
 本発明の感光性導電ペーストは、さらに、粒子径が1~100nmの微粒子(E)を含むことが好ましく、焼成時のパターン収縮を抑制することができる。ここで、微粒子(E)は、前述の導電性粉末(A)以外の成分である。微粒子(E)としては、例えば、アルミナ(Al)、ジルコニア(ZrO)、マグネシア(MgO)、ベリリア(BeO)、ムライト(3Al・2SiO)、コーディエライト(5SiO・2Al・2MgO)、スピネル(MgO・Al)、フォルステライト(2MgO・SiO)、アノーサイト(CaO・Al・2SiO)、セルジアン(BaO・Al・2SiO)、シリカ(SiO)、窒化アルミ(AlN)、フェライト(ガーネット型:YFe12系、スピネル型:MeFe系)SiO、Al、CaO、B、MgOおよび/またはTiO等を含むガラス粉末;アルミナ、ジルコニア、マグネシア、ベリリア、ムライト、コーディライト、スピネル、フォルステライト、アノーサイト、セルジアン、シリカ、窒化アルミなどの無機フィラー粉末などが挙げられる。これらを2種以上含有してもよい。これらの中でも、焼成欠陥をより抑制する観点から、チタニア、アルミナ、シリカ、コーディエライト、ムライト、スピネル、チタン酸バリウム、ジルコニアが好ましい。
 本発明における微粒子(E)は、粒子径が1~100nmのものを指すが、微粒子(E)の粒子径を個々に特定することは困難であり、その体積平均粒子径が1~100nmであることが好ましい。微粒子(E)の体積平均粒子径を1nm以上とすることにより、焼成時の導電性粉末(A)の焼結速度を調整し、焼成欠陥をより抑制することができる。一方、微粒子(E)の体積平均粒子径を100nm以下とすることにより、微粒子(E)とアルカリ可溶性樹脂(B)、反応性化合物(C)および光重合開始剤(D)との相互作用によりグリーンシートへの吸収を抑制し、より高精細なパターンを形成することができる。また、パターンの体積抵抗率を低減することができる。微粒子(E)の体積平均粒子径は、50nm以下がより好ましい。なお、微粒子(E)の体積平均粒子径は、微粒子(E)を水に加え、300秒間超音波処理を行った後、Nanotrac WaveII-UZ251(MicrotracBEL社製)を用いて、動的光散乱法により求めることができる。なお、微粒子(E)の体積平均粒子径は、感光性導電ペースト配合前後で変化しないことから、感光性導電ペースト配合前の微粒子(E)について測定してもよいし、感光性導電ペーストから微粒子(E)を採取して測定してもよい。
 微粒子(E)は、親水性であることが好ましく、後述する露光・現像工程における残渣を抑制して、より微細なパターンを容易に形成することができる。本発明において、親水性とは、表面に親水性基を有することをいう。親水性基としては、例えば、水酸基やカルボキシル基などが挙げられる。表面に水酸基を有する微粒子(E)は、高温加水分解法などにより得られる。より具体的には、例えば、“AEROSIL(登録商標)”OX50、50、90G、130、150、200、200CF、200V、300、380、TT600、“AEROXIDE(登録商標)”AluC、Alu65、Alu130(以上日本アエロジル(株)製)、“シーホスター(登録商標)”KE-S10((株)日本触媒製)などが挙げられる。表面にカルボキシル基を有する微粒子(E)としては、例えば、微粒子を湿式表面処理することなどにより得ることができる。
 感光性導電ペースト中の微粒子(E)の含有量は、導電性粉末(A)100体積部に対して、0.1~25.0体積部が好ましい。微粒子(E)の含有量を0.1体積部以上とすることにより、焼成時の導電性粉末(A)の焼結速度を調整し、焼成欠陥をより抑制することができる。また、後述する露光・現像工程において、露光光の透過性が向上することから、より高精細なパターンを容易に形成することができる。微粒子(E)の含有量は、1.0体積部以上がより好ましい。一方、微粒子(E)の含有量を25.0体積部以下とすることにより、パターンの体積抵抗率を低減することができる。微粒子(E)の含有量は、10.0体積部以下がより好ましい。
 本発明の感光性導電ペーストは、さらに溶媒(F)を含有することが好ましい。溶媒(F)としては、例えば、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、ジメチルイミダゾリジノン、ジメチルスルホキシド、ジエチレングリコールモノエチルエーテル、ジプロピレングリコールメチルエーテル、ジプロピレングリコールn-プロピルエーテル、ジプロピレングリコールn-ブチルエーテル、トリプロピレングリコールメチルエーテル、トリプロピレングリコール-n-ブチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ジプロピレングリコールメチルエーテルアセテート、プロピレングリコールフェニルエーテル、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテルアセテート、γ-ブチロラクトン、乳酸エチル、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、エチレングリコールモノ-n-プロピルエーテル、ジアセトンアルコール、テトラヒドロフルフリルアルコール、プロピレングリコールモノメチルエーテルアセテート、シクロヘキサノールアセテートなどが挙げられる。これらを2種以上含有してもよい。
 前記アルカリ可溶性樹脂(B)、反応性化合物(C)、光重合開始剤(D)および必要に応じてその他の成分の溶解性の観点と、残渣をより抑制し、より高精細なパターンを容易に形成する観点から、溶媒(F)のSP値は、19.5~21.3(J/cm1/2が好ましい。SP値が19.5~21.3(J/cm1/2である溶媒(F)としては、例えば、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、ジメチルイミダゾリジノン、ジプロピレングリコールn-プロピルエーテル、ジプロピレングリコールn-ブチルエーテル、トリプロピレングリコールメチルエーテル、トリプロピレングリコール-n-ブチルエーテル、ジエチレングリコールモノメチルエーテルアセテート、シクロヘキサノールアセテートなどが挙げられる。なお、溶媒のSP値は、溶媒の分子構造から、Fedorsの計算方法を用いて算出することができる。
 溶媒(F)は、沸点150℃以上200℃未満の範囲である低沸点溶媒(f-1)と、沸点200℃以上250℃以下の範囲である高沸点溶媒(f-2)をそれぞれ含むことが好ましい。低沸点溶媒(f-1)を含むことにより、乾燥後の残存溶媒を低減し、低温乾燥時の粘着および、ダイシング工程での粘着をより抑制することができる。一方高沸点溶媒(f-2)を含むことにより、塗布工程における溶媒の過剰な揮発を抑制して、粘度が上昇することを抑制することができる。低沸点溶媒(f-1)としては、例えば、N,N-ジメチルアセトアミド(165℃)、N,N-ジメチルホルムアミド(153℃)、ジメチルスルホキシド(189℃)、ジプロピレングリコールメチルエーテル(190℃)、乳酸エチル(154℃)、エチレングリコールモノ-n-プロピルエーテル(151℃)、ジアセトンアルコール(166℃)、テトラヒドロフルフリルアルコール(176℃)、シクロヘキサノールアセテート(173℃)、などが挙げられる。高沸点溶媒(f-2)としては、例えば、N-メチル-2-ピロリドン(202℃)、ジメチルイミダゾリジノン(225℃)、ジエチレングリコールモノエチルエーテル(202℃)、ジプロピレングリコールn-プロピルエーテル(212℃)、ジプロピレングリコールn-ブチルエーテル(230℃)、トリプロピレングリコールメチルエーテル(242℃)、ジエチレングリコールモノエチルエーテルアセテート(217℃)、ジプロピレングリコールメチルエーテルアセテート(213℃)、プロピレングリコールフェニルエーテル(243℃)、ジエチレングリコールモノブチルエーテル(230℃)、ジエチレングリコールモノブチルエーテルアセテート(247℃)、γ-ブチロラクトン(204℃)、などが挙げられる。ここで、溶媒(F)の沸点は、各種文献に開示されている。
 本発明の感光性導電ペーストにおける低沸点溶媒(f-1)の含有量は、1.0~15.0体積%が好ましい。低沸点溶媒(f-1)の含有量を1.0体積%以上とすることにより、乾燥後の溶媒(F)の残存量を低減し、低温乾燥時の粘着および、ダイシング工程での粘着をより抑制することができる。一方、低沸点溶媒(f-1)の含有量を15.0体積%以下とすることにより、塗布工程における溶媒(F)の過剰な揮発に起因する粘度上昇を抑制することができる。
 本発明の感光性導電ペーストにおける高沸点溶媒(f-2)の含有量は、1.0~15.0体積%が好ましい。高沸点溶媒(f-2)の含有量を1.0体積%以上とすることにより、塗布工程における溶媒(F)の過剰な揮発に起因する粘度上昇を抑制することができる。一方、高沸点溶媒(f-2)の含有量を15.0体積%以下とすることにより、乾燥後の溶媒(F)の残存量を低減し、低温乾燥時の粘着および、ダイシング工程での粘着をより抑制することができる。
 また、感光性ペースト中の低沸点溶媒(f-1)と高沸点溶媒(f-2)の合計100体積部に対して、低沸点溶媒(f-1)を25~65体積部含有することが好ましい。低沸点溶媒(f-1)の含有量を25体積部以上とすることにより、乾燥後の溶媒(F)の残存量を低減し、低温乾燥時の粘着および、ダイシング工程での粘着をより抑制することができる。低沸点溶媒(f-1)の含有量は、35体積部以上がより好ましい。一方、低沸点溶媒(f-1)の含有量を65体積部以下とすることにより、塗布工程における連続印刷時の溶媒(F)の過剰な揮発に起因する粘度上昇を抑制し、連続印刷性を向上させることができる。低沸点溶媒(f-1)の含有量は、55体積部以下がより好ましい。
 本発明の感光性導電ペーストは、本発明の効果を妨げない限り、前記反応性化合物(C)に加えて、60℃における粘度が5.0Pa・s未満または100.0Pa・sを超える反応性化合物を含むことができる。60℃における粘度が5.0Pa・s未満または100.0Pa・sを超える反応性化合物としては、例えば、アリル化シクロヘキシルジアクリレート、1,4-ブタンジオールジアクリレート、1,3-ブチレングリコールジアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、ポリエチレングリコールジアクリレート、ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールモノヒドロキシペンタアクリレート、ジトリメチロールプロパンテトラアクリレート、グリセロールジアクリレート、メトキシ化シクロヘキシルジアクリレート、ネオペンチルグリコールジアクリレート、プロピレングリコールジアクリレート、ポリプロピレングリコールジアクリレート、トリグリセロールジアクリレート、トリメチロールプロパントリアクリレート、ビスフェノールAジアクリレート、イソシアヌル酸EO変性トリアクリレート、エポキシアクリレート、ウレタンアクリレートなどのアクリル酸エステル、これらのアクリレートをメタクリレートに換えたもの、“イミレックス(登録商標)”P(N-フェニルマレイミド)、“イミレックス”C(N-シクロヘキシルマレイミド)(以上、商品名、(株)日本触媒製)、BMI-1000(4,4-ジフェニルメタンビスマレイミド)、BMI-2000(フェニルメタンマレイミド)、BMI-4000(ビスフェノールAジフェニルエーテルビスマレイミド)、BMI-7000(4-メチル-1,3-フェニレンビスマレイミド)(以上、商品名、大和化成工業(株)製)などのマレイミド化合物、などが挙げられる。これらを2種以上含有してもよい。これらの中でも、ダイシング工程における粘着をより抑制する観点から、N-フェニルマレイミドを含むことが好ましい。 本発明の感光性導電ペーストは、所望の特性を損なわない範囲で、可塑剤、レベリング剤、増感剤、分散剤、シランカップリング剤、消泡剤、顔料等の添加剤を含有してもよい。
 可塑剤としては、例えば、ジブチルフタレート、ジオクチルフタレート、ポリエチレングリコール、グリセリンなどが挙げられる。これらを2種以上含有してもよい。
 レベリング剤としては、例えば、“BYK(登録商標)”-300、310、320、322、323、324、325、330、331、344、370、371、354、358、361(以上、ビック・ケミ-社製)、“ディスパロン(登録商標)”L-1980N、L-1980-50、L-1982-50、L-1983-50、L-1984-50、L-1985-50、#1970、#230、LC-900、LC-951、#1920N、#1925N、P-410(以上、楠本化成(株)製)などが挙げられる。これらを2種以上含有してもよい。
 増感剤としては、例えば、2,4-ジエチルチオキサントン、イソプロピルチオキサントン、2,3-ビス(4-ジエチルアミノベンザル)シクロペンタノン、2,6-ビス(4-ジメチルアミノベンザル)シクロヘキサノン、2,6-ビス(4-ジメチルアミノベンザル)-4-メチルシクロヘキサノン、ミヒラーケトン、4,4-ビス(ジエチルアミノ)ベンゾフェノン、4,4-ビス(ジメチルアミノ)カルコン、4,4-ビス(ジエチルアミノ)カルコン、p-ジメチルアミノシンナミリデンインダノンなどが挙げられる。これらを2種以上含有してもよい。
 分散剤としては、例えば、フローレンG-100SF、G-500、G-700、G-700(以上共栄社化学(株)製)、“ノプコスパース(登録商標)”092、SNディスパーサント9228、SNスパース2190(以上サンノプコ(株)製)などが挙げられる。これらを2種以上含有してもよい。
 本発明の感光性導電ペーストは、例えば、前述の(A)~(D)成分、必要に応じて(E)成分およびその他添加剤を、溶媒に溶解および/または分散させることにより得ることができる。溶解および/または分散させる装置としては、例えば、三本ローラー、ボールミル、等の分散機や混練機などが挙げられる。
 次に、本発明の硬化物について説明する。本発明の硬化物は、本発明の感光性導電ペーストを硬化してなるものであり、その形状は問わない。硬化物の厚みは、5~30μmが好ましい。硬化物の厚みを5μm以上とすることにより、体積抵抗率を低減することができる。一方、硬化物の厚みを30μm以下とすることにより、後述する露光・現像工程での剥がれを抑制し、より高精細なパターンを容易に形成することができる。
 本発明の硬化物は、所定のパターン形状を有していてもよい。パターン形状としては、例えば、直線形状、渦巻形状などが挙げられる。パターン形状について、最小幅は、10~30μmが好ましい。パターン幅を10μm以上とすることにより、体積抵抗率を低減することができる。一方、パターン幅を30μm以下とすることにより、より高精細なパターンを容易に形成することができる。
 本発明の硬化物は、例えば、本発明の感光性導電ペーストを基材上に塗布して乾燥し、露光により光硬化させることにより得ることができる。パターン形状の硬化物を製造する場合には、パターン露光した後、現像することによりパターンを形成してもよい。
 塗布工程における塗布方法としては、例えば、スプレー塗布、ロールコーティング、スクリーン印刷や、ブレードコーター、ダイコーター、カレンダーコーター、メニスカスコーター、バーコーターを用いた塗布方法などが挙げられる。塗布膜の膜厚は、塗布方法、感光性導電ペーストの固形分濃度や粘度等に応じて適宜選択することができる。
 乾燥方法としては、例えば、オーブン、ホットプレート、赤外線等の加熱装置を用いた加熱乾燥や、真空乾燥などが挙げられる。加熱温度は、60~120℃が好ましい。乾燥温度を60℃以上とすることにより、溶媒を効率良く揮発除去することができる。一方、乾燥温度を120℃以下とすることにより、感光性導電ペーストの熱架橋を抑制し、後述する露光・現像工程における非露光部の残渣を低減して、より高精細なパターンを容易に形成することができる。加熱時間は、5分間~数時間が好ましい。
 露光方法としては、フォトマスクを介して露光する方法、フォトマスクを用いずに露光する方法があり、フォトマスクを用いない露光方法としては、全面露光する方法、レーザー光等を用いて直接描画する方法などが挙げられる。露光装置としては、例えば、ステッパー露光機、プロキシミティ露光機などが挙げられる。露光する活性光線としては、例えば、近紫外線、紫外線、電子線、X線、レーザー光等が挙げられ、紫外線が好ましい。紫外線の光源としては、例えば、低圧水銀灯、高圧水銀灯、超高圧水銀灯、ハロゲンランプ、殺菌灯などが挙げられ、超高圧水銀灯が好ましい。
 アルカリ現像を行う場合の現像液としては、例えば、水酸化テトラメチルアンモニウム、ジエタノールアミン、ジエチルアミノエタノール、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、トリエチルアミン、ジエチルアミン、メチルアミン、ジメチルアミン、酢酸ジメチルアミノエチル、ジメチルアミノエタノール、ジメチルアミノエチルメタクリレート、シクロヘキシルアミン、エチレンジアミン、ヘキサメチレンジアミンなどの水溶液が挙げられる。これらの水溶液に、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、γ-ブチロラクトン等の極性溶媒;メタノール、エタノール、イソプロパノール等のアルコール類;乳酸エチル、プロピレングリコールモノメチルエーテルアセテート等のエステル類;シクロペンタノン、シクロヘキサノン、イソブチルケトン;メチルイソブチルケトン等のケトン類;界面活性剤などを添加してもよい。
 現像方法としては、例えば、乾燥膜を形成した基材を静置または回転させながら現像液を露光後の乾燥膜にスプレーする方法、露光後の乾燥膜を形成した基材を現像液中に浸漬する方法、露光後の乾燥膜を形成した基材を現像液中に浸漬しながら超音波をかける方法などが挙げられる。
 現像により得られた硬化物に、リンス液によるリンス処理を施してもよい。リンス液としては、例えば、水;エタノール、イソプロピルアルコール等のアルコール類の水溶液;乳酸エチル、プロピレングリコールモノメチルエーテルアセテート等のエステル類の水溶液などが挙げられる。
 本発明の硬化物を積層して積層体とすることもできる。積層数は、1~30層が好ましい。積層数を1層以上とすることにより、所定のパターンの厚みを大きくすることができる。一方、積層数を30層以下とすることにより、層間のアライメントずれの影響を小さくすることができる。
 次に、本発明の焼成体について説明する。本発明の焼成体は、本発明の感光性導電体ペーストを焼成してなるものであり、その形状は問わない。焼成体の厚みは、2~20μmが好ましい。焼成体の厚みを2μm以上とすることにより、焼成時の断線を抑制することができる。一方、焼成体の厚みを20μm以下とすることにより、焼成時の膨れをより抑制することができる。
 本発明の焼成体の線幅は、5~20μmが好ましい。焼成体の線幅を5μm以上とすることにより、焼成時の断線を抑制することができる。一方、焼成体の線幅を20μm以下とすることにより、より高精細なパターンを容易に形成することができる。
 本発明の焼成体は、例えば、前述の本発明の硬化物やその積層体を焼成することにより得ることができる。焼成方法としては、例えば、300~600℃で5分間~数時間熱処理した後、さらに850~900℃で5分間~数時間熱処理する方法などが挙げられる。
 次に、本発明のパターン形成グリーンシートの製造方法について説明する。本発明の感光性導電ペーストをグリーンシート上に塗布して塗布膜を得る塗布工程、前記塗布膜を乾燥して乾燥膜を得る乾燥工程ならびに前記乾燥膜を露光および現像してパターンを得る露光・現像工程を有することが好ましい。
 グリーンシートは、絶縁性セラミックス粉末、バインダー樹脂および可塑剤を含有することが好ましい。絶縁性セラミックス粉末としては、例えば、“パルセラム(登録商標)”BT149(製品名;日本化学工業(株)製)、SG-200(製品名;日本タルク(株)製)などが挙げられる。これらを2種以上含有してもよい。バインダー樹脂としては、例えば、アクリル樹脂、ポリビニルブチラール樹脂、ポリビニルアルコール樹脂、セルロース樹脂、メチルセルロース樹脂などが挙げられる。これらを2種以上含有してもよい。バインダー樹脂のSP値と、感光性導電ペースト中の反応性化合物(C)のSP値との差は、1.0~8.6(J/cm1/2が好ましい。SP値差を1.0(J/cm1/2以上とすることにより、反応性化合物(C)のグリーンシートへの吸収をより抑制し、より高精細なパターンを容易に形成できる。一方、SP値差を8.6(J/cm1/2以下とすることにより、感光性導電ペーストのグリーンシートに対する密着性を向上させ、より高精細なパターンを容易に形成することができる。バインダー樹脂のSP値と、感光性導電ペースト中の反応性化合物(C)のSP値との差は、5.0(J/cm1/2以下がより好ましい。
 塗布工程における塗布方法としては、前述の硬化物の製造方法における塗布方法として例示した方法が挙げられる。塗布膜の膜厚は、塗布方法、感光性導電ペーストの固形分濃度や粘度等に応じて適宜選択することができ、後述する乾燥工程における乾燥膜の膜厚が5~30μmになるように設定することが好ましい。なお、乾燥膜の膜厚は、触針式段差計(例えば、“サーフコム(登録商標)”1400;(株)東京精密製)を用いて測定することができる。より具体的には、無作為に選択した3つの位置の膜厚を触針式段差計(測長:1mm、走査速度:0.3mm/s)でそれぞれ測定し、それらの平均値を算出することにより求めることができる。
 乾燥工程における乾燥方法としては、前述の硬化物の製造方法における乾燥方法として例示した方法が挙げられる。
 露光・現像工程における露光方法としては、前述の硬化物の製造方法における露光方法として例示した方法が挙げられる。
 露光後の乾燥膜を、現像液を用いて現像し、非露光部を溶解除去することにより、所望のパターンを形成することができる。現像液としては、前述の硬化物の製造方法における現像液として例示したものが挙げられる。
 現像方法としては、例えば、グリーンシートを静置または回転させながら現像液を露光後の乾燥膜にスプレーする方法、露光後の乾燥膜を有するグリーンシートを現像液中に浸漬する方法、露光後の乾燥膜を有するグリーンシートを現像液中に浸漬しながら超音波をかける方法などが挙げられる。
 現像により得られたパターンに、リンス液によるリンス処理を施してもよい。リンス液としては、前述の硬化物の製造方法におけるリンス液として例示したものが挙げられる。
 得られたパターン形成グリーンシートを積層して積層体とすることもできる。
 得られたパターン形成グリーンシートを焼成して焼成体とすることが好ましい。焼成方法としては、焼成体の製造方法における焼成方法として例示した方法が挙げられる。グリーンシート上に形成されたパターンは、導電性粉末(A)と、アルカリ可溶性樹脂(B)、反応性化合物(C)、光重合開始剤(D)を含む有機成分の硬化物との複合物であり、焼成時に導電性粉末(A)同士が接触することにより導電性が発現する。かかる導電性パターンは、電子部品等の内部配線として好適に用いることができる。
 本発明の硬化物、焼成体および本発明のパターン形成グリーンシートの製造方法により得られるパターン形成グリーンシートは、電子部品に好ましく用いることができる。
 本発明の電子部品は、焼成体、絶縁性セラミックス層および端子電極を有することが好ましい。焼成体としては、前述の本発明の焼成体が好ましく、焼成体および絶縁性セラミックス層としては、前述の製造方法により得られたパターン形成グリーンシートを焼成してなるものが好ましい。絶縁性セラミックス層を有することにより、焼成体間における意図しない短絡を抑制することができる。端子電極は、焼成体と絶縁性セラミックス層の外部に設置されることが好ましい。端子電極を構成する材料としては、例えば、ニッケルやスズなどが挙げられる。
 本発明の電子部品の製造方法は、前述の方法により複数のパターン形成グリーンシートを得て、それらを積層および熱圧着して積層体を得る積層工程ならびに前記積層体を焼成して電子部品を得る焼成工程を有することが好ましい。本発明の電子部品の製造方法の一例として、積層チップインダクタの製造方法を以下に説明する。
 まず、グリーンシートにビアホールを形成し、ビアホールに導体を埋め込むことにより、層間接続配線を形成する。ビアホール形成方法としては、例えば、レーザー照射などが挙げられる。ビアホールに導体を埋め込む方法としては、例えば、スクリーン印刷法により導体ペーストを埋め込み、乾燥する方法などが挙げられる。導体ペーストとしては、例えば、銅、銀、銀-パラジウム合金を含有するペーストが挙げられる。層間接続配線と内部配線とを一度に形成してプロセスを簡略化できることから、前述の本発明の感光性導電ペーストが好ましい。
 層間接続配線を形成したグリーンシート上に、内部配線を形成する。内部配線の形成方法としては、例えば、感光性導電ペーストを用いたフォトリソグラフィ法などが挙げられる。感光性導電ペーストとしては、高精細なパターンを容易に形成できることから、前述の本発明の感光性導電ペーストを好ましく用いることができる。必要に応じてさらに誘電体パターンまたは絶縁体パターンを形成する。誘電体パターンおよび絶縁体パターンの形成方法としては、例えば、スクリーン印刷法などが挙げられる。
 次に、層間接続配線および内部配線を形成したグリーンシートを複数枚積層して熱圧着し、積層体を得る。積層方法としては、例えば、ガイド孔を用いてグリーンシートを積み重ねる方法などが挙げられる。熱圧着装置としては、例えば、油圧式プレス機などが挙げられる。熱圧着温度は90~130℃が好ましく、熱圧着圧力は5~20MPaが好ましい。
 得られた積層体を所望のチップサイズに切断し、焼成し、端子電極を塗布し、めっき処理をすることにより、積層チップインダクタを得ることができる。切断装置としては、例えば、ダイス切断機などが挙げられる。焼成方法としては、例えば、300~600℃で5分間~数時間熱処理した後、さらに850~900℃で5分間~数時間熱処理する方法などが挙げられる。端子電極の塗布方法としては、例えば、スパッタ法などが挙げられる。めっき処理に用いる金属としては、例えば、ニッケル、スズなどが挙げられる。
 以下、実施例及び比較例を挙げて、本発明をさらに詳しく説明するが、本発明はこれらに限定されるものではない。
 <感光性導電ペーストの原料>
 用いた原料は以下のとおりである。
導電性粉末(A)
導電性粉末(A-1):D50が2.5μmのAg粉末
導電性粉末(A-2):D50が0.3μmのAg粉末
導電性粉末(A-3):D50が0.8μmのAg粉末
導電性粉末(A-4):D50が4.2μmのAg粉末
導電性粉末(A-5):D50が5.3μmのAg粉末
なお、導電性粉末のD50は、粒度分布測定装置(Microtrac HRA Model No.9320-X100;日機装(株)製)を用いて、レーザー光散乱法により測定した。
 アルカリ可溶性樹脂(B)
アルカリ可溶性樹脂(b-1a):メタクリル酸/メタクリル酸メチル/スチレン=54/23/23(モル比)の共重合体のカルボキシル基100モル部に対して、40モル部のグリシジルメタクリレートを付加反応させたアクリル樹脂(Mw30,000、ガラス転移点110℃、酸価100mgKOH/g)
アルカリ可溶性樹脂(b-1b):“ARUFON(登録商標)”UC-3910(アクリル樹脂、Mw8,500、ガラス転移点85℃、酸価200mgKOH/g;東亜合成(株)製)
アルカリ可溶性樹脂(b-1c):“アートキュア(登録商標)”RA-3953MP(アクリル樹脂、Mw40,000、ガラス転移点139℃、酸価60mgKOH/g:根上工業(株)製)
アルカリ可溶性樹脂(b-1d):“ARUFON”UC-3000(アクリル樹脂、Mw10,000、ガラス転移点65℃、酸価74mgKOH/g;東亜合成(株)製)
アルカリ可溶性樹脂(b-1e):“アートキュア”RA-4101(アクリル樹脂、Mw40,000、ガラス転移点190℃、酸価90mgKOH/g;根上工業(株)製)
アルカリ可溶性樹脂(b-1f):メタクリル酸/メタクリル酸メチル/スチレン=50/25/25(モル比)の共重合体のカルボキシル基100モル部に対して、50モル部のグリシジルメタクリレートを付加反応させたアクリル樹脂(Mw22,000、ガラス転移点110℃、酸価60mgKOH/g)
アルカリ可溶性樹脂(b-1g):メタクリル酸/メタクリル酸メチル/スチレン=60/20/20(モル比)の共重合体のカルボキシル基100モル部に対して、45モル部のグリシジルメタクリレートを付加反応させたアクリル樹脂(Mw40,000、ガラス転移点110℃、酸価100mgKOH/g)
アルカリ可溶性樹脂(b-2a):メタクリル酸/メタクリル酸メチル/スチレン=54/23/23(モル比)で共重合させたアクリル樹脂(Mw40,000、ガラス転移点140℃、酸価250mgKOH/g)
アルカリ可溶性樹脂(b-1h):“サイクロマー(登録商標)”P(ACA)Z250(アクリル樹脂、Mw22,000、ガラス転移点136℃、酸価60mgKOH/g)
アルカリ可溶性樹脂(b-2b):メタクリル酸/メタクリル酸メチル/スチレン=50/27/23(モル比)として共重合したアクリル樹脂(Mw40,000、ガラス転移点133℃、酸価220mgKOH/g)
アルカリ可溶性樹脂(b-2c):メタクリル酸/メタクリル酸メチル/スチレン=58/19/23(モル比)として共重合したアクリル樹脂(Mw40,000、ガラス転移点146℃、酸価280mgKOH/g)
アルカリ可溶性樹脂(b-2d):メタクリル酸/メタクリル酸メチル/スチレン=47/30/23(モル比)として共重合したアクリル樹脂(Mw40,000、ガラス転移点130℃、酸価205mgKOH/g)
アルカリ可溶性樹脂(b-2e):メタクリル酸/メタクリル酸メチル/スチレン=62/19/19(モル比)として共重合したアクリル樹脂(Mw40,000、ガラス転移点152℃、酸価300mgKOH/g)
アルカリ可溶性樹脂(b-2f):メタクリル酸/メタクリル酸メチル/スチレン=54/20/26(モル比)として共重合したアクリル樹脂(Mw32,000、ガラス転移点140℃、酸価250mgKOH/g)
アルカリ可溶性樹脂(b-2g):メタクリル酸/メタクリル酸メチル/スチレン=54/26/20(モル比)として共重合したアクリル樹脂(Mw42,000、ガラス転移点140℃、酸価250mgKOH/g)
アルカリ可溶性樹脂(b-2h):メタクリル酸/メタクリル酸メチル/スチレン=54/16/30(モル比)として共重合したアクリル樹脂(Mw22,000、ガラス転移点140℃、酸価250mgKOH/g)
アルカリ可溶性樹脂(b-2i):メタクリル酸/メタクリル酸メチル/スチレン=54/30/16(モル比)として共重合したアクリル樹脂(Mw46,000、ガラス転移点140℃、酸価250mgKOH/g)
アルカリ可溶性樹脂(b-2j):メタクリル酸/メタクリル酸メチル/スチレン=54/6/46(モル比)として共重合したアクリル樹脂(Mw16,000、ガラス転移点140℃、酸価250mgKOH/g)
アルカリ可溶性樹脂(b-2k):メタクリル酸/メタクリル酸メチル/スチレン=54/40/6(モル比)として共重合したアクリル樹脂(Mw66,000、ガラス転移点140℃、酸価250mgKOH/g)
アルカリ可溶性樹脂(b-1i):メタクリル酸/メタクリル酸メチル/スチレン=30/35/35(モル比)として共重合したアクリル樹脂(Mw40,000、ガラス転移点110℃、酸価100mgKOH/g)
アルカリ可溶性樹脂(b-1j):メタクリル酸/メタクリル酸メチル/スチレン=85/8/7(モル比)として共重合したアクリル樹脂(Mw40,000、ガラス転移点160℃、酸価400mgKOH/g)
なお、アルカリ可溶性樹脂の重量平均分子量Mwは、高速液体クロマトグラフィー(Alliance 2695;日本ウォーターズ(株)製)により測定したポリスチレン換算値とした。また、アルカリ可溶性樹脂のガラス転移点は、示差走査熱量計(DSC-50;(株)島津製作所)を用いて測定した。
 反応性化合物(C)、(C’)
反応性化合物(C-1):NKオリゴUA-122P(エステル構造含有ウレタンアクリレート、60℃における粘度7.0Pa・s、重量平均分子量1,100、SP値27.1(J/cm1/2;新中村化学工業(株)製)
反応性化合物(C-2):“KAYARAD”UX-3204(エステル構造含有ウレタンアクリレート、60℃における粘度16.0Pa・s、重量平均分子量13,000、SP値25.2(J/cm1/2;日本化薬(株)製)
反応性化合物(C-3):“KAYARAD”UXF-4002(エステル構造非含有ウレタンアクリレート、60℃における粘度26.0Pa・s、重量平均分子量12,000、SP値24.4(J/cm1/2;日本化薬(株)製)
反応性化合物(C-4):“KAYARAD”UX-4101(エステル構造含有ウレタンアクリレート、60℃における粘度40.0Pa・s、重量平均分子量6,500、SP値25.2(J/cm1/2;日本化薬(株)製)
反応性化合物(C-5):“サートマー”CN966(エステル構造含有ウレタンアクリレート、60℃における粘度70.0Pa・s、重量平均分子量3,000、SP値28.1(J/cm1/2;アルケマ(株)製)
反応性化合物(C’-6):“サートマー”CN9178(エステル構造含有ウレタンアクリレート、60℃における粘度2.0Pa・s、重量平均分子量1,000、SP値28.1(J/cm1/2;アルケマ(株)製)
反応性化合物(C’-7):“サートマー”CN8882NS(エステル構造含有ウレタンアクリレート、60℃における粘度105.0Pa・s、重量平均分子量4,000、SP値28.1(J/cm1/2;アルケマ(株)製)
反応性化合物(C-8):“KAYARAD”UX-8101(エステル構造含有ウレタンアクリレート、60℃における粘度28.0Pa・s、重量平均分子量3,000、SP値24.8(J/cm1/2;日本化薬(株)製)
製造例1:反応性化合物(C-9)
クラレポリオールP-1010(ポリカーボネートジオール、(株)クラレ製)1000モル部とイソホロンジイソシアネート1400モル部を70℃で6時間反応させた後に、4HBA(4-ヒドロキシブチルアクリレート、(株)三菱ケミカルホールディングス製)1000モル部、4-メトキシフェノール0.1モル部、ジラウリン酸ジブチルスズ0.006モル部を加えてさらに2時間反応させ、反応性化合物(C-9)を得た。得られた反応性化合物はエステル構造を含有するウレタンアクリレートであり、60℃での粘度は18.0Pa・sであった。重量平均分子量は21,000であった。また、SP値は、23.0(J/cm1/2であった。
製造例2:反応性化合物(C-10)
イソホロンジイソシアネートの量を1500モル部に変更した以外は製造例1と同様な条件で反応させて、反応性化合物(C-10)を得た。(エステル構造含有ウレタンアクリレート、60℃における粘度32.0Pa・s、重量平均分子量29,000、SP値23.0(J/cm1/2
製造例3:反応性化合物(C-11)
クラレポリオールP-1010をクラレポリオールP-3010に変更した以外は製造例2と同様な条件で反応させて、反応性化合物(C-11)を得た。(エステル構造含有ウレタンアクリレート、60℃における粘度40.0Pa・s、重量平均分子量38,000、SP値23.0(J/cm1/2
製造例4:反応性化合物(C-12)
クラレポリオールP-1010をクラレポリオールP-5010に変更した以外は製造例2と同様な条件で反応させて、反応性化合物(C-12)を得た。(エステル構造含有ウレタンアクリレート、60℃における粘度45.0Pa・s、重量平均分子量42,000、SP値23.0(J/cm1/2
製造例5:反応性化合物(C‘-13)
ペンタエリスリトールテトラ(メルカプトアセテート)20重量部、ジペンタエリスリトールヘキサクリレート138重量部、ジペンタエリスリトールペンタアクリレート74重量部、ハイドロキノン0.10重量部、ベンジルジメチルアミン0.02重量部を加え、60℃で12時間反応させて、反応性化合物(C‘-13)を得た。(エステル構造含有アクリレート、60℃における粘度4.0Pa・s、重量平均分子量33,000、SP値22.7(J/cm1/2
反応性化合物(C‘-14):“アロニックス(登録商標)”M-1200(ウレタンアクリレート、60℃における粘度105.0Pa・s、重量平均分子量3,000、SP値26.2(J/cm1/2
反応性化合物(C‘-15):“アロニックス(登録商標)”M-402(ジペンタエリスリトールペンタおよびヘキサアクリレート(エステル構造含有アクリレート、60℃における粘度1.0Pa・s、重量平均分子量570、SP値22.7(J/cm1/2
なお、反応性化合物の粘度は、60℃の恒温槽を用いて3分間反応性化合物を温調した後に、大気圧下において、B型粘度計(ブルックフィールド粘度計、型式HB DV-I;英弘精機(株)製)を用いて、回転数3rpmにおいて測定した。反応性化合物の重量平均分子量は、高速液体クロマトグラフィー(Alliance 2695;日本ウォーターズ(株)製)により測定したポリスチレン換算値とした。また、反応性化合物のSP値は、分子構造から、Fedorsの計算方法を用いて算出した。
 光重合開始剤(D)
光重合開始剤(D):アデカオプトマーN-1919(オキシム系光重合開始剤;(株)ADEKA製)。
 微粒子(E)
微粒子(E-1):“AEROSIL”200(体積平均粒子径12nm、親水性シリカ;日本アエロジル(株)製)
微粒子(E-2):“AEROXIDE”AluC(体積平均粒子径13nm、親水性アルミナ;日本アエロジル(株)製)
微粒子(E-3):“AEROSIL”R972(体積平均粒子径12nm、疎水性シリカ;日本アエロジル(株)製)
微粒子(E-4):“AEROSIL”OX50(体積平均粒子径40nm、親水性シリカ;日本アエロジル(株)製)
微粒子(E-5):“シーホスター”KE-S10(体積平均粒子径100nm、親水性シリカ;(株)日本触媒製)
なお、微粒子の体積平均粒子径は、微粒子を水に加え、300秒間超音波処理を行った後、Nanotrac WaveII-UZ251(MicrotracBEL社製)を用いて、動的光散乱法により測定した。
 レベリング剤:“ディスパロン(登録商標)”L-1980N(楠本化成(株)製)。
 分散剤:フローレンG-700(共栄社化学(株)製)。
 溶媒(F)、(F’)
溶媒(f-2a):“セルトール(登録商標)”DPNB(ジプロピレングリコールn-ブチルエーテル、沸点230℃、SP値20.9(J/cm1/2;(株)ダイセル製)
溶媒(f-1a):“セルトール”CHXA(シクロヘキサノールアセテート、沸点173℃、SP値19.5(J/cm1/2;(株)ダイセル製)
溶媒(f’-2b):“ブチセノール(登録商標)”20(ジエチレングリコールモノブチルエーテル、沸点230℃、SP値21.5(J/cm1/2;KHネオケム(株)製)
溶媒(f’-2c):“セルトール”DPMA(ジプロピレングリコールモノメチルエーテルアセテート、沸点213℃、SP値18.5(J/cm1/2;(株)ダイセル製)
溶媒(f‘-1b):“アーコソルブ”DPM(ジプロピレングリコールメチルエーテル、沸点190℃、SP値21.9(J/cm1/2
溶媒のSP値は、分子構造から、Fedorsの計算方法を用いて算出した。
 <セラミックグリーンシートの作製>
 (製造例1:セラミックグリーンシート(S1))
 絶縁性セラミックス粉末として“パルセラム”BT149(日本化学工業(株)製)100体積部、バインダー樹脂としてポリビニルブチラール樹脂(SP値19.1(J/cm1/2)240体積部、可塑剤としてフタル酸ジブチル80体積部、溶媒としてエチレングリコールモノブチルエーテル160体積部を混合し、ドクターブレード法によりセラミックグリーンシートS1を作製した。
 (製造例2:セラミックグリーンシート(S2))
 ポリビニルブチラール樹脂を80%けん化ポリビニルブチラール樹脂(SP値23.6(J/cm1/2)に変更したこと以外は製造例1と同様にしてセラミックグリーンシートS2を作製した。
 (製造例3:セラミックグリーンシート(S3))
 ポリビニルブチラール樹脂をポリビニルアルコール樹脂(SP値30.8(J/cm1/2)に変更したこと以外は製造例1と同様にしてセラミックグリーンシートS3を作製した。
 (製造例4:セラミックグリーンシート(S4))
 ポリビニルブチラール樹脂をメチルセルロース樹脂(SP値30.5(J/cm1/2)に変更したこと以外は製造例1と同様にしてセラミックグリーンシートS4を作製した。
 (製造例5:セラミックグリーンシート(S5))
 ポリビニルブチラール樹脂をアクリル樹脂(SP値28.7(J/cm1/2)に変更したこと以外は製造例1と同様にしてセラミックグリーンシートS5を作製した。
 各実施例および比較例における評価方法を以下に示す。
 <溶解性>
 実施例1~106および比較例1~5により得られた、60℃で2時間撹拌した感光性有機成分溶液を目視観察し、溶け残りの有無を観察した。溶け残りが認められない場合、溶解性(溶解時間)を「2時間」と評価した。溶け残りが認められる場合、さらに60℃で2時間撹拌した後、目視観察し、同様に溶け残りの有無を観察した。溶け残りが認められない場合、溶解性(溶解時間)を「4時間」と評価した。溶解時間が短いほど、溶解性が高く、生産性を向上させることができる。
 <高精細パターン形成>
 実施例1~111および比較例1~5により得られた乾燥膜を形成したグリーンシートを各2つ用意し、乾燥膜に、コイル状パターンのライン幅/スペース幅(以下、「L/S」)が20μm/20μm、15μm/15μmの2種類の露光マスクをそれぞれ介して、いずれも21mW/cmの出力の超高圧水銀灯により照射量400mJ/cmの露光(波長365nm換算)を行った。
 その後、0.1質量%炭酸ナトリウム水溶液を現像液として、非露光部が全て溶解する時間(以下、「全溶解時間」)までシャワー現像し、L/Sが異なる2種類のパターン形成シートを製造した。
 L/Sが異なる2種のパターン形成シートを、それぞれ光学顕微鏡を用いて倍率10倍で拡大観察し、パターンの断線・短絡、パターン間の埋まり・残渣の有無から、下記の基準により評価した。
パターンの断線・短絡およびパターン間の埋まり・残渣が認められない:○
パターンの断線および短絡が認められる:剥がれ
パターン間の埋まり・残渣が認められる:残渣。
 L/S=20μm/20μmのパターンについて、シャワー現像の時間を全溶解時間の1.1倍、1.2倍、1.3倍、1.4倍に延長した以外は同様の操作を繰り返し、同様に評価した。また、L/S=15μm/15μmのパターンについて、シャワー現像の時間を全溶解時間の1.1倍、1.2倍に延長した以外は同様の操作を繰り返し、同様に評価した。なお、以上までの評価は乾燥後30分以内に、現像を実施した。
 さらに、乾燥後静置した時間を変化させた乾燥膜を数枚準備し、L/S=15μm/15μmのパターンを形成し、シャワー現像の時間を全溶解時間の1.1倍として、上記基準で評価した。剥がれや残渣なくパターン形成可能な乾燥後静置時間を記録した。
 全溶解時間で残渣が認められず、より長い現像時間で剥がれが認められないほど、また、乾燥後静置した時間が長くても、残渣や剥がれが認められないほど、現像における欠陥発生を抑制して生産性を向上させることができる。L/Sが小さいパターンが形成できるほど高精細パターン形成可能であり、生産性を向上させることができる。
 <焼成欠陥>
 実施例1~111および比較例1~5により得られた乾燥膜を形成したグリーンシートを用いて、前述の<高精細パターン形成>に記載の方法により、L/Sが20μm/20μmおよび15μm/15μmの露光マスクを用いたパターン形成シートを各10枚用意した。ガイド孔を用いてそれらのパターン形成シートを10枚積み重ね、油圧式プレス機を用いて、温度90℃、圧力15MPaの条件で圧着し、10層積層シートを製造した。
 得られた10層積層シートを、ダイス切断機を用いて、0.3mm×0.6mm×0.3mmのサイズに切断し、350℃で10時間熱処理した後、さらに880℃で10分間熱処理して焼成し、10層積層焼成シートを製造した。
 積層焼成シートの断面を、走査型電子顕微鏡(S2400;(株)日立製作所製)を用いて、倍率500倍で拡大観察し、下記の基準により評価した。
層内に亀裂等の欠陥が認められない:○
層内に亀裂等の断線欠陥が認められる:断線
層間に膨らみが認められる:膨れ。
 焼成後に断線や膨れが認められないと、電子部品へ用いた際の焼成時の欠陥発生を抑制して生産性を向上させることができる。
なお、本発明の感光性導電ペーストは、L/S=20μm/20μmのパターンにおいて、<高精細パターン形成>で加工可能であり、かつ<焼成欠陥>で焼成後に断線や膨れがない必要がある。
 <体積抵抗率>
 アルミナ基板(100mm×100mm×厚み0.5mm)上に、実施例1~106および比較例1~5により得られた感光性導電ペーストを、乾燥後膜厚が10μmになるようにスクリーン印刷法で塗布し、得られた塗布膜を80℃の熱風乾燥機で10分間乾燥して、乾燥膜を得た。所定パターンの露光マスク(長さ5cm×線幅1mm、両端に1cm四方のパッドの付いたパターン)を使用する以外は前述の<高精細パターン形成>に記載の方法と同様に露光・現像を行い、抵抗測定用パターン形成シートを得た。得られた抵抗測定用パターン形成シートを、880℃で10分間熱処理して焼成し、抵抗測定用パターン形成焼成体を得た。得られた抵抗測定用パターン形成焼成体について、走査型電子顕微鏡(S2400;(株)日立製作所製)を用いて、倍率2000倍で拡大観察し、焼成体の線幅と膜厚を測定した。また、デジタルマルチメータ(CDM-16D;カスタム社製)を用いて、上記抵抗測定用パターン焼成体の抵抗値を測定し、下記式から、体積抵抗率を算出した。
体積抵抗率(μΩ・cm)=実抵抗値(Ω)×1000×パターン線幅(cm)×パターン厚み(cm)÷パターン長さ(cm)
体積抵抗率が小さいほど、電子部品に用いた際に電気特性が良好となる。
 <低温乾燥性>
 PETフィルム(S10“ルミラー(登録商標)”#125;東レ(株)製)上に、各実施例および比較例により得られた感光性導電ペーストを、乾燥後膜厚が12μmとなるように、スクリーン印刷法により複数枚塗布し、それぞれ55℃、60℃、65℃、70℃、75℃の熱風乾燥機で10分間乾燥して、PETフィルム上の乾燥膜を得た。これら乾燥膜の塗布面を触診し、粘着の有無を確認し、粘着が認められない最低の乾燥温度を記録した。
本評価においてより低温の乾燥条件において塗膜表面の粘着が認められないほど、粘着が抑制されており、生産性を向上することができる。
 <ダイシング工程における粘着>
 上記低温乾燥性評価で得られた、各実施例および比較例における、乾燥可能な最低温度の乾燥膜を、それぞれ1cm幅の短冊状に切り、塗布面を重ね合わせて、50gのステンレス板を上部より設置した。その状態で、80℃、85℃、90℃、95℃、100℃に加熱した熱風乾燥機で1分間加熱した。その後塗膜表面を目視観察し、粘着が認められない最高の温度を記録した。
本評価においてより高温の条件において塗膜表面の粘着が認められないほど、粘着が抑制されており、ダイシング工程における粘着を抑制し、生産性を向上することができる。
 <連続印刷性>
 PETフィルム(S10“ルミラー(登録商標)”#125;東レ(株)製)上に、各実施例および比較例により得られた感光性導電ペーストを、25℃の恒温槽を用いて3分間温調した後、大気圧下において、B型粘度計(ブルックフィールド粘度計、型式HB DV-I;英弘精機(株)製)を用いて、回転数10rpmにおいて粘度を測定した。
 各実施例および比較例により得られた感光性導電ペーストを、スクリーン印刷法で塗布することを繰返し、100回、200回、500回印刷後のペーストを回収した。それぞれのペーストについて前記方法により粘度を測定し、印刷前の粘度に対する比(印刷後粘度/印刷前粘度)を算出した。本評価において粘度比が1に近いほど、連続印刷性が良好であり、生産性を向上することができる。
 (実施例1)
 ガラスフラスコに、表1記載の組成比になるように、アルカリ可溶性樹脂(B)、反応性化合物(C)、光重合開始剤(D)、レベリング剤、分散剤および溶媒(F)を入れ、60℃で2時間撹拌し、感光性有機成分溶液を得た。この感光性有機成分溶液に、さらに表1記載の組成比になるように、導電性粉末(A)、微粒子(E)を添加し、撹拌した後、3本ローラー(EXAKT M-50;EXAKT社製)を用いて混練し、感光性導電ペーストP1を製造した。得られた感光性導電ペーストP-1について、前述の方法により評価した結果を表11に示す。
 グリーンシート(GCS71F;山村フォトニクス(株)製)上に、得られた感光性導電ペーストP-1を、乾燥後膜厚が10μmになるようにスクリーン印刷法により塗布し、塗布膜を得た。得られた塗布膜を、80℃の熱風乾燥機を用いて10分間乾燥して、グリーンシート上に乾燥膜を形成した。同様の操作を繰り返し、乾燥膜を形成したグリーンシートを複数用意した。
 (実施例2~106、比較例1~5)
 感光性導電ペーストの組成を表1~10に記載のとおり変更した以外は実施例1と同様にして、感光性導電ペーストP-2~P-111を得た。ただし、実施例22~23において、60℃で2時間撹拌後の感光性有機成分溶液に溶け残りが認められたため、さらに60℃で2時間撹拌した。得られた感光性導電ペーストP-2~P-111を用いて、実施例1と同様に乾燥膜を形成したグリーンシートを得た。前述の方法により評価した結果を表11~22に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
 (実施例107~111)
 グリーンシート(GCS71F)にかえて、それぞれ製造例1~5により得られたセラミックグリーンシートS1~S5を使用したこと以外は実施例2と同様にして感光性導電ペーストおよび乾燥膜を形成したグリーンシートを得た。前述の方法により評価した結果を表23に示す。
Figure JPOXMLDOC01-appb-T000023
 (実施例112)
 ビアホール形成済みのグリーンシート(GCS71F;山村フォトニクス社製)上に、実施例2により得られた感光性導電ペーストP-2を、乾燥後膜厚が13μmになるようにスクリーン印刷法により塗布し、塗布膜を得た。得られた塗布膜を、80℃の熱風乾燥機を用いて10分間乾燥して、ビアホールへ導体を埋め込みながら、グリーンシート上に乾燥膜を形成した。乾燥膜に、コイル状パターンのL/Sが20/20μmの露光マスクを介して、21mW/cmの出力の超高圧水銀灯により照射量400mJ/cmの露光(波長365nm換算)を行った。その後、0.1質量%炭酸ナトリウム水溶液を現像液として、全溶解時間までシャワー現像し、パターン形成シートを製造した。このパターン形成シートを20枚用意し、ガイド孔を用いて積み重ね、油圧式プレス機を用いて、温度90℃、圧力15MPaの条件で圧着し、20層積層シートを製造した。得られた20層積層シートを、ダイス切断機を用いて、0.3mm×0.6mm×0.3mmのサイズに切断し、350℃で10時間熱処理した後、さらに880℃で10分間保持して焼成し、20層積層焼成シートを製造した。
 得られた20層積層焼成シートに、スパッタで端子電極を塗布した後、ニッケルおよびスズによりめっき処理を行い、積層チップインダクタを製造した。この積層チップインダクタについて、端子電極両端にはんだで銅配線を接続し、デジタルマルチメータ(CDM-16D;カスタム社製)を用いて導通を評価したところ、問題なく導通していた。
 本発明の感光性導電ペーストは、電子部品等の内部配線パターンの製造のために好適に利用することができる。

Claims (19)

  1. 導電性粉末(A)、アルカリ可溶性樹脂(B)、反応性化合物(C)および光重合開始剤(D)を含有し、前記反応性化合物(C)の60℃における粘度が5.0~100.0Pa・sである感光性導電ペースト。
  2. 前記反応性化合物(C)が、ウレタン構造を有する請求項1に記載の感光性導電ペースト。
  3. 前記反応性化合物(C)が、エステル構造を有する請求項1または2に記載の感光性導電ペースト。
  4. 前記反応性化合物(C)の重量平均分子量が5000~45000である請求項1~3のいずれかに記載の感光性導電ペースト。
  5. 23℃における固形分の有機成分のうち、分子量が5000以下の有機成分の含有量が4.0~15.0体積%である請求項1~4のいずれかに記載の感光性導電ペースト。
  6. 23℃における固形分のうち、有機成分の重量平均分子量が30,000~45,000である請求項1~5のいずれかに記載の感光性導電ペースト。
  7. さらに、粒子径が1~100nmの微粒子(E)を含有し、微粒子(E)の体積平均粒子径が1~100nmである請求項1~6のいずれかに記載の感光性導電ペースト。
  8. 前記導電性粉末(A)100体積部に対して、前記微粒子(E)を0.1~25.0体積部含有する請求項7に記載の感光性導電ペースト。
  9. 前記微粒子(E)が、チタニア、アルミナ、シリカ、コーディエライト、ムライト、スピネル、チタン酸バリウム、ジルコニアからなる群から選ばれる少なくとも一つを含有する請求項7または8に記載の感光性導電ペースト。
  10. 前記微粒子(E)が親水性である請求項7~9のいずれかに記載の感光性導電ペースト。
  11. 前記アルカリ可溶性樹脂(B)、反応性化合物(C)および光重合開始剤(D)の合計100体積部に対して、前記アルカリ可溶性樹脂(B)および反応性化合物(C)を合計90.0~99.0体積部含有する請求項1~10のいずれかに記載の感光性導電ペースト。
  12. 前記反応性化合物(C)のSP値が21.5~28.7(J/cm1/2である請求項1~11のいずれかに記載の感光性導電ペースト。
  13. さらに、SP値が19.5~21.3(J/cm1/2である溶媒(F)を含有する請求項1~12のいずれかに記載の感光性導電ペースト。
  14. 請求項1~13のいずれかに記載の感光性導電ペーストを硬化してなる硬化物。
  15. 請求項1~13のいずれかに記載の感光性導電ペーストを焼成してなる焼成体。
  16. 請求項15に記載の焼成体と、絶縁性セラミックス層および端子電極を含む電子部品。
  17. 請求項1~13のいずれかに記載の感光性導電ペーストをグリーンシート上に塗布して塗布膜を得る塗布工程、前記塗布膜を乾燥して乾燥膜を得る乾燥工程ならびに前記乾燥膜を露光および現像してパターンを得る露光・現像工程を有するパターン形成グリーンシートの製造方法。
  18. 前記グリーンシートがバインダー樹脂を含有し、前記反応性化合物(C)のSP値とグリーンシート中のバインダーのSP値の差が1.0~8.6(J/cm1/2である請求項17に記載のパターン形成グリーンシートの製造方法。
  19. 請求項17または18に記載のパターン形成グリーンシートの製造方法により、複数のパターン形成グリーンシートを得て、それらを積層および熱圧着して積層体を得る積層工程ならびに前記積層体を焼成して電子部品を得る焼成工程を有する請求項16に記載の電子部品の製造方法。
PCT/JP2019/011084 2018-04-19 2019-03-18 感光性導電ペーストおよびそれを用いたパターン形成グリーンシートの製造方法 WO2019202889A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020207017737A KR102656350B1 (ko) 2018-04-19 2019-03-18 감광성 도전 페이스트 및 그것을 사용한 패턴 형성 그린 시트의 제조 방법
JP2019516019A JP6662491B1 (ja) 2018-04-19 2019-03-18 感光性導電ペーストおよびそれを用いたパターン形成グリーンシートの製造方法
CN201980024923.1A CN111954847B (zh) 2018-04-19 2019-03-18 感光性导电糊剂以及使用其的形成有图案的生片的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-080379 2018-04-19
JP2018080379 2018-04-19

Publications (1)

Publication Number Publication Date
WO2019202889A1 true WO2019202889A1 (ja) 2019-10-24

Family

ID=68240394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011084 WO2019202889A1 (ja) 2018-04-19 2019-03-18 感光性導電ペーストおよびそれを用いたパターン形成グリーンシートの製造方法

Country Status (5)

Country Link
JP (1) JP6662491B1 (ja)
KR (1) KR102656350B1 (ja)
CN (1) CN111954847B (ja)
TW (1) TWI797313B (ja)
WO (1) WO2019202889A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021070796A (ja) * 2019-11-01 2021-05-06 ユニチカ株式会社 樹脂組成物および該樹脂組成物からなるエラストマー材料
WO2022030324A1 (ja) * 2020-08-07 2022-02-10 東レ株式会社 導電ペースト、プリント配線板、プリント配線板の製造方法、プリント回路板の製造方法
WO2022191054A1 (ja) * 2021-03-11 2022-09-15 株式会社ノリタケカンパニーリミテド 感光性組成物とその利用
KR20230049063A (ko) 2020-08-07 2023-04-12 도레이 카부시키가이샤 감광성 도전 페이스트, 경화물, 소성체, 전자 부품, 회로 패턴이 있는 절연성 세라믹스층의 제조 방법, 전자 부품의 제조 방법, 회로 패턴이 있는 기판의 제조 방법 및 인덕터의 제조 방법
US20230159377A1 (en) * 2020-03-25 2023-05-25 Noritake Co., Limited Inkjet ink
US20230167321A1 (en) * 2020-03-25 2023-06-01 Noritake Co., Limited Inkjet ink

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7108778B1 (ja) 2021-03-16 2022-07-28 株式会社ノリタケカンパニーリミテド 感光性組成物とその利用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003195486A (ja) * 2001-12-27 2003-07-09 Showa Denko Kk 感光性組成物およびその硬化物ならびにそれを用いたプリント配線基板
JP2004264655A (ja) * 2003-03-03 2004-09-24 Kyoto Elex Kk アルカリ現像型感光性樹脂組成物及びその樹脂組成物を用いたグリーンシート上へのパターン形成方法。
JP2005010205A (ja) * 2003-06-16 2005-01-13 Mitsui Chemicals Inc 感光性組成物及びそれを用いたプリント配線基板の製造方法
JP2006096962A (ja) * 2004-09-28 2006-04-13 Sanei Kagaku Kk 感光性熱硬化性樹脂組成物、並びにレジスト被覆プリント配線板及びその製造法
JP2006199942A (ja) * 2004-12-24 2006-08-03 Dainippon Ink & Chem Inc 分岐ポリエーテル樹脂組成物の製造方法および酸ペンダント型分岐ポリエーテル樹脂組成物の製造方法
JP2007326933A (ja) * 2006-06-07 2007-12-20 Dainippon Ink & Chem Inc エポキシビニルエステル樹脂、その製造法、感光性樹脂組成物、その硬化物、酸ペンダント型エポキシビニルエステル樹脂、アルカリ現像性感光性樹脂組成物、及びその硬化物
JP2010271401A (ja) * 2009-05-19 2010-12-02 Nippon Kayaku Co Ltd レジスト組成物
JP2015169934A (ja) * 2014-03-11 2015-09-28 東洋インキScホールディングス株式会社 フィルム状感光性樹脂組成物、感光性ドライフィルム、および感光性ドライフィルムの製造方法、並びに液状感光性樹脂組成物
US20160238929A1 (en) * 2013-10-01 2016-08-18 Covestro Deutschland Ag Uv-patternable hard-coating for transparent conductive film
WO2017057584A1 (ja) * 2015-09-30 2017-04-06 富士フイルム株式会社 静電容量型入力装置の電極保護膜用の組成物、静電容量型入力装置の電極保護膜、転写フィルム、積層体、静電容量型入力装置および画像表示装置。
JP2018049616A (ja) * 2011-12-05 2018-03-29 日立化成株式会社 タッチパネル用電極の保護膜及びタッチパネル

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5560821B2 (ja) 2010-03-26 2014-07-30 東レ株式会社 感光性導電ペーストおよび導電性配線付き基板の製造方法
KR20140115316A (ko) * 2012-01-19 2014-09-30 도레이 카부시키가이샤 도전 페이스트 및 도전 패턴의 제조 방법
JP5358732B1 (ja) * 2012-11-16 2013-12-04 太陽インキ製造株式会社 導電回路形成用導電性樹脂組成物及び導電回路
WO2015040908A1 (ja) * 2013-09-20 2015-03-26 東洋紡株式会社 感光性導電ペースト、導電性薄膜、電気回路、及びタッチパネル
TW201539483A (zh) * 2014-04-02 2015-10-16 Toyo Boseki 感光性導電糊劑、導電性薄膜、電路及觸控面板
JP6309842B2 (ja) * 2014-07-03 2018-04-11 田中貴金属工業株式会社 光硬化型導電性インク組成物
JP2016194641A (ja) 2015-04-01 2016-11-17 東洋紡株式会社 感光性導電ペースト、導電性薄膜、及び電気回路
WO2017057544A1 (ja) * 2015-09-30 2017-04-06 東レ株式会社 感光性導電ペースト及びそれを用いた導電パターンの製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003195486A (ja) * 2001-12-27 2003-07-09 Showa Denko Kk 感光性組成物およびその硬化物ならびにそれを用いたプリント配線基板
JP2004264655A (ja) * 2003-03-03 2004-09-24 Kyoto Elex Kk アルカリ現像型感光性樹脂組成物及びその樹脂組成物を用いたグリーンシート上へのパターン形成方法。
JP2005010205A (ja) * 2003-06-16 2005-01-13 Mitsui Chemicals Inc 感光性組成物及びそれを用いたプリント配線基板の製造方法
JP2006096962A (ja) * 2004-09-28 2006-04-13 Sanei Kagaku Kk 感光性熱硬化性樹脂組成物、並びにレジスト被覆プリント配線板及びその製造法
JP2006199942A (ja) * 2004-12-24 2006-08-03 Dainippon Ink & Chem Inc 分岐ポリエーテル樹脂組成物の製造方法および酸ペンダント型分岐ポリエーテル樹脂組成物の製造方法
JP2007326933A (ja) * 2006-06-07 2007-12-20 Dainippon Ink & Chem Inc エポキシビニルエステル樹脂、その製造法、感光性樹脂組成物、その硬化物、酸ペンダント型エポキシビニルエステル樹脂、アルカリ現像性感光性樹脂組成物、及びその硬化物
JP2010271401A (ja) * 2009-05-19 2010-12-02 Nippon Kayaku Co Ltd レジスト組成物
JP2018049616A (ja) * 2011-12-05 2018-03-29 日立化成株式会社 タッチパネル用電極の保護膜及びタッチパネル
US20160238929A1 (en) * 2013-10-01 2016-08-18 Covestro Deutschland Ag Uv-patternable hard-coating for transparent conductive film
JP2015169934A (ja) * 2014-03-11 2015-09-28 東洋インキScホールディングス株式会社 フィルム状感光性樹脂組成物、感光性ドライフィルム、および感光性ドライフィルムの製造方法、並びに液状感光性樹脂組成物
WO2017057584A1 (ja) * 2015-09-30 2017-04-06 富士フイルム株式会社 静電容量型入力装置の電極保護膜用の組成物、静電容量型入力装置の電極保護膜、転写フィルム、積層体、静電容量型入力装置および画像表示装置。

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021070796A (ja) * 2019-11-01 2021-05-06 ユニチカ株式会社 樹脂組成物および該樹脂組成物からなるエラストマー材料
JP7380992B2 (ja) 2019-11-01 2023-11-15 ユニチカ株式会社 樹脂組成物および該樹脂組成物からなるエラストマー材料
US20230159377A1 (en) * 2020-03-25 2023-05-25 Noritake Co., Limited Inkjet ink
US20230167321A1 (en) * 2020-03-25 2023-06-01 Noritake Co., Limited Inkjet ink
WO2022030324A1 (ja) * 2020-08-07 2022-02-10 東レ株式会社 導電ペースト、プリント配線板、プリント配線板の製造方法、プリント回路板の製造方法
JP2022068144A (ja) * 2020-08-07 2022-05-09 東レ株式会社 導電ペースト、プリント配線板、プリント回路板の製造方法
JP7067676B1 (ja) * 2020-08-07 2022-05-16 東レ株式会社 導電ペースト、プリント配線板、プリント配線板の製造方法、プリント回路板の製造方法
JP7111267B2 (ja) 2020-08-07 2022-08-02 東レ株式会社 プリント回路板の製造方法
KR20230049063A (ko) 2020-08-07 2023-04-12 도레이 카부시키가이샤 감광성 도전 페이스트, 경화물, 소성체, 전자 부품, 회로 패턴이 있는 절연성 세라믹스층의 제조 방법, 전자 부품의 제조 방법, 회로 패턴이 있는 기판의 제조 방법 및 인덕터의 제조 방법
WO2022191054A1 (ja) * 2021-03-11 2022-09-15 株式会社ノリタケカンパニーリミテド 感光性組成物とその利用

Also Published As

Publication number Publication date
JP6662491B1 (ja) 2020-03-11
KR20210004941A (ko) 2021-01-13
TW201945476A (zh) 2019-12-01
TWI797313B (zh) 2023-04-01
CN111954847B (zh) 2024-02-02
KR102656350B1 (ko) 2024-04-11
JPWO2019202889A1 (ja) 2020-04-30
CN111954847A (zh) 2020-11-17

Similar Documents

Publication Publication Date Title
JP6662491B1 (ja) 感光性導電ペーストおよびそれを用いたパターン形成グリーンシートの製造方法
KR100418834B1 (ko) 감광성 세라믹 그린시트, 세라믹 패키지 및 그 제조방법
KR102548106B1 (ko) 감광성 도전 페이스트 및 도전 패턴 형성용 필름
JP2017182901A (ja) 感光性導電ペースト及び、それを用いた電子部品の製造方法
WO2017057544A1 (ja) 感光性導電ペースト及びそれを用いた導電パターンの製造方法
WO2018038074A1 (ja) 感光性ペースト、セラミックグリーンシート、電子部品、パターンの製造方法および電子部品の製造方法
JPH10265270A (ja) 感光性セラミック組成物
JP7230347B2 (ja) 感光性ペースト、それを用いた硬化膜、焼成体および電子部品とその製造方法
JPH10279364A (ja) セラミックス・グリーンシート
WO2023032536A1 (ja) 感光性導電ペースト、導電パターン付き基材の製造方法、電子部品の製造方法、硬化膜、焼成体および電子部品
WO2024004461A1 (ja) 導電パターン付きセラミックグリーンシートの製造方法
KR20230049063A (ko) 감광성 도전 페이스트, 경화물, 소성체, 전자 부품, 회로 패턴이 있는 절연성 세라믹스층의 제조 방법, 전자 부품의 제조 방법, 회로 패턴이 있는 기판의 제조 방법 및 인덕터의 제조 방법
WO2022191054A1 (ja) 感光性組成物とその利用
JP2023134944A (ja) 感光性導電ペースト、導電パターン付き基材の製造方法、硬化膜、焼成体の製造方法、焼成体および電子部品
JP2020083947A (ja) ペースト、それを用いた硬化膜、焼成体、電子部品とその製造方法および配線つきセラミック積層体
JP2018087897A (ja) 感光性ペーストおよびそれを用いたパターンの製造方法
JPH10209334A (ja) セラミック基板およびその製造方法
JP2024024156A (ja) 導電パターン付きセラミックグリーンシートの製造方法
JP2001155543A (ja) ペースト組成物、電子部品およびセラミックグリーンシート、ならびに多層セラミック基板の製造方法
JP2003122017A (ja) 感光性ペースト、それを用いた回路基板およびセラミック多層基板の製造方法
JP2004307275A (ja) 感光性セラミックス組成物
JP2022142730A (ja) 感光性組成物とその利用
JP2006153938A (ja) 感光性材料、感光性シート、およびそれを用いた多層回路基板の製造方法
JP2002287375A (ja) 厚膜パターンの形成方法及びそれに用いられる感光性ペースト

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019516019

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19788305

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19788305

Country of ref document: EP

Kind code of ref document: A1