WO2017057544A1 - 感光性導電ペースト及びそれを用いた導電パターンの製造方法 - Google Patents

感光性導電ペースト及びそれを用いた導電パターンの製造方法 Download PDF

Info

Publication number
WO2017057544A1
WO2017057544A1 PCT/JP2016/078774 JP2016078774W WO2017057544A1 WO 2017057544 A1 WO2017057544 A1 WO 2017057544A1 JP 2016078774 W JP2016078774 W JP 2016078774W WO 2017057544 A1 WO2017057544 A1 WO 2017057544A1
Authority
WO
WIPO (PCT)
Prior art keywords
acrylate
pattern
conductive paste
compound
meth
Prior art date
Application number
PCT/JP2016/078774
Other languages
English (en)
French (fr)
Inventor
洋平 山本
小林 康宏
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2016560598A priority Critical patent/JPWO2017057544A1/ja
Publication of WO2017057544A1 publication Critical patent/WO2017057544A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/20Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern

Definitions

  • the present invention relates to a photosensitive conductive paste and a method for producing a conductive pattern using the same.
  • Patent Documents 1 and 2 for forming a fine conductive pattern by a photolithography method have been proposed.
  • the photosensitive conductive paste has a low exposure light transmittance due to the influence of the conductive powder contained therein, and a thick film pattern of 10 ⁇ m or more cannot be formed with high accuracy.
  • an object of the present invention is to provide a photosensitive conductive paste capable of forming a thick conductive pattern.
  • the inventor of the present application has used a dendritic compound having a carbon-carbon double bond as a crosslinking component, so that exposure light does not penetrate deep into the coating film due to the influence of conductive powder. It has been found that the curing of the deep part can be promoted and a thick film pattern can be formed, and the present invention has been completed.
  • the present invention comprises a conductive powder (A), an alkali-soluble resin (B), and one or more reactive compounds (C) having one or more carbon-carbon double bonds,
  • a photosensitive conductive paste in which at least one of one or more reactive compounds (C) is a dendritic compound (C1).
  • the present invention provides a coating step of applying the photosensitive conductive paste of the present invention on a ceramic green sheet to obtain a coating film; Drying the coating film to obtain a dry film; Exposing and developing the dry film to form a pattern, an exposure and development process; A method for producing a conductive pattern on a ceramic green sheet is provided.
  • the present invention provides a coating step of coating the photosensitive conductive paste of the present invention on a temporary support to obtain a coating film, Drying the coating film to obtain a dry film; Exposing and developing the dry film to form a pattern, an exposure and development process; There is provided a method for producing a conductive pattern on a ceramic green sheet, comprising a transfer step of transferring the pattern to form a pattern on the ceramic green sheet.
  • the present invention includes a lamination step of obtaining a laminate by laminating and press-bonding ceramic green sheets formed with a conductive pattern by the production method of the present invention, and There is provided a method for producing a ceramic member, comprising: a firing step of firing the laminate to obtain a ceramic member.
  • a thick film pattern of 10 ⁇ m or more can be formed.
  • the reactive compound (C) contained in the photosensitive conductive paste of the present invention has one or more carbon-carbon double bonds and functions as a so-called crosslinking component.
  • At least one of the one or more reactive compounds (C) used in the present invention is a dendritic compound (C1), and the dendritic compound (C1) is used. Even if the exposure light does not penetrate to the deep part of the coating film due to the influence of the conductive powder contained therein, curing of the deep part can be promoted and a thick film pattern can be formed.
  • the dendritic compound (C1) of the present invention is any one selected from dendrimers, hyperbranched polymers (branched polymers that can be produced by reacting component monomers in one step), and dendrons, and is represented by the general formula (1). It is preferable to use a polymer obtained by polymerizing a polyfunctional (meth) acrylate compound represented by the formula (2) and a polyvalent mercapto compound represented by the general formula (2) by Michael addition ( ⁇ position with respect to the carbonyl group).
  • R 1 represents hydrogen or an alkyl group having 1 to 4 carbon atoms
  • R 2 is a residue obtained by donating n hydroxyl groups of the compound R 3 (OH) m to the ester bond in the formula
  • R 3 (OH) m is a polyhydric alcohol based on a non-aromatic linear or branched hydrocarbon skeleton having 2 to 8 carbon atoms, or a plurality of molecules of the polyhydric alcohol are alcohols A polyhydric alcohol ether linked by an ether bond by dehydration condensation or an ester of these polyhydric alcohol or polyhydric alcohol ether and hydroxy acid, where m is an integer of 2 to 50 M ⁇ n, and n represents an integer of 2 to 20.
  • R 4 is a single bond, a hydrocarbon group having 1 carbon atom, or an oxygen atom in the skeleton having 2 to 5 carbon atoms, and may be a straight chain or branched chain Or a group having a carbonyloxy group further bonded to at least a part of the thiomethyl group of the formula 2 and p represents an integer of 2 to 6.
  • p represents 2
  • p represents an integer of 2 to 4.
  • the polyfunctional (meth) acrylate compound represented by the general formula (1) and the polyvalent mercapto compound represented by the general formula (2) react as follows to form a dendritic compound.
  • the addition ratio of the mercapto group of the polyvalent mercapto compound represented by the general formula (2) to the carbon-carbon double bond of the polyfunctional (meth) acrylate compound represented by the general formula (1) is preferably 1/200 to 1/2, more preferably 1/100 to 1/3, and more preferably 1/50 to 1/5. More preferably, it is particularly preferable to be 1/20 to 1/8.
  • reaction solvent various solvents conventionally used in organic synthesis can be used as long as they do not adversely influence the reaction.
  • aprotic polar organic solvents N, N-dimethylformamide, dimethyl sulfoxide, N, N-dimethylacetamide, tetramethylurea, sulfolane, N-methyl-2-pyrrolidone, 1,3 dimethylimidazolide.
  • ethers diisopropyl ether, propylene glycol 1-monomethyl ether 2-acetate, t-butyl methyl ether, tetrahydrofuran, dioxane, etc.
  • aliphatic hydrocarbons hexane, cyclohexane, n-octane, n-decane, Decalin, petroleum ether, etc.
  • aromatic hydrocarbons benzene, chlorobenzene, o-dichlorobenzene, nitrobenzene, toluene, xylene, mesitylene, tetralin, etc.
  • esters ethyl acetate, etc.
  • halogenated hydrocarbons chloroform, The Chloromethane, 1,2-dichloroethane, carbon tetrachloride, etc.
  • ketones acetone, methyl ethyl ketone, methyl butyl ketone, methyl isobutyl
  • Michael addition reaction of polyfunctional (meth) acrylate compound represented by general formula (1) to (meth) acrylate group of polyvalent mercapto compound represented by general formula (2) in the dendritic polymer used in this embodiment Can be carried out by mixing a polyfunctional (meth) acrylate compound (monomer) and a polyvalent mercapto compound and adding a basic catalyst at room temperature to 100 ° C.
  • the reaction time is usually about 30 minutes to about 6 hours.
  • preferred specific examples of the polyfunctional (meth) acrylate compound represented by the general formula (1) include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, Ethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, tetramethylene glycol di (meth) acrylate, trimethylolpropanthri (meth) acrylate, ethylene oxide modified trimethylolpropanthri (meth) acrylate, propylene oxide modified Trimethylol Provantri (meth) acrylate, Trimethylolethanetri (meth) acrylate, Pentaerythritol di (meth) acrylate, Pentaerythritol tri (meth) acrylate Rate, pentaerythritol tetra (meth) acrylate, dipentaerythritol pen
  • the polyvalent mercapto compound represented by the general formula (2) includes 1,2-dimercaptoethane, 1,3-dimercaptopropane, 1,4-dimercapto.
  • the dendritic compound (C1) preferably has a double bond equivalent (weight average molecular weight per double bond) of 110 to 150.
  • the double bond equivalent of the dendritic compound (C1) is 110 or more, the amount of carbon-carbon double bonds present in the photosensitive conductive paste can be suppressed, and cracks due to excessive curing of the pattern are suppressed. it can. In addition, defects due to residual organic components during firing can be reduced. If it is 150 or less, the amount of carbon-carbon double bonds present in the photosensitive conductive paste can be sufficiently increased, so that the sensitivity during exposure is improved.
  • the dendritic compound (C1) preferably has a weight average molecular weight of 15000 to 25000.
  • the weight average molecular weight is 15000 or more, the length that promotes radical reaction becomes long, so that it is easy to cure to a deep part, and when it is 25000 or less, defects due to residual organic components during firing are reduced. Can do.
  • the dendritic branched compound (C1) of the present invention can be confirmed in terms of molecular weight, double bond amount, and the like by gel permeation chromatography, liquid chromatography, and other general analytical instruments.
  • gel permeation chromatography for example, HLC-8220GPC manufactured by Tosoh Corporation, column: Shodex KF-804L + KF-803L can be used.
  • the reactive compound (C) may be only the dendritic compound (C1), or may contain another reactive compound (C) in addition to the dendritic compound (C1).
  • Examples of the reactive compound (C) other than the dendritic compound (C1) include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, sec-butyl acrylate, isobutyl acrylate, tert-butyl.
  • Examples include hydroxymethyl styrene, carboxymethyl styrene, vinyl naphthalene, vinyl anthracene or vinyl carbazole.
  • an acryl group, a methacryl group, a vinyl group, or an allyl group may be mixed. These reactive compounds (C) may be used alone or in combination of two or more.
  • the proportion of the reactive compound (C) in the total solid content in the photosensitive conductive paste is preferably 5 to 30% by volume.
  • the ratio to the total solid content is 5% by volume or more, the carbon-carbon double bond present in the photosensitive conductive paste becomes sufficient, and the sensitivity at the time of exposure is improved. 10 volume% or more is more preferable.
  • the total solid content is preferably 30% by volume or less because the viscosity of the photosensitive conductive paste can be kept moderate. 20 volume% or less is more preferable.
  • reactive compound (C) contains things other than dendritic compound (C1) and dendritic compound (C1)
  • dendritic compound (C1) in reactive compound (C) Is preferably 50% by volume or more.
  • Examples of the conductive powder (A) contained in the photosensitive conductive paste of the present invention include silver, gold, copper, platinum, palladium, tin, nickel, aluminum, tungsten, molybdenum, ruthenium oxide, chromium, titanium, and indium.
  • metal particles or carbon particles selected from the group consisting of alloys of these metals or a mixture of these particles may be mentioned, but silver, copper or gold is preferable from the viewpoint of conductivity, and silver is more preferable from the viewpoint of cost and stability. preferable.
  • the median diameter (D50) of the conductive powder (A) is preferably 0.1 to 10 ⁇ m.
  • D50 is 0.1 ⁇ m or more, the contact probability between the conductive powders (A) when the photosensitive conductive paste is baked is improved, and the specific resistance and disconnection probability of the formed conductive pattern are lowered. Furthermore, in the exposure and development process, exposure light can smoothly pass through the coating film obtained by applying the photosensitive conductive paste, facilitating fine patterning. 0.5 ⁇ m or more is more preferable.
  • D50 is 10 ⁇ m or less, the surface smoothness, pattern accuracy, and dimensional accuracy of the manufactured conductive pattern are improved. 6 ⁇ m or less is more preferable.
  • D50 can be measured by a laser light scattering method using Microtrac HRA (Model No. 9320-X100; manufactured by Nikkiso Co., Ltd.) or the like.
  • the proportion of the conductive powder (A) in the total solid content of the photosensitive conductive paste is preferably 25 to 45% by volume.
  • the proportion of the total solid content is 25% by volume or more, the contact probability between the conductive powders (A) at the time of firing is improved, and the specific resistance and disconnection probability of the manufactured conductive pattern are lowered.
  • the proportion of the total solid content is 45% by volume or less, the exposure light can smoothly pass through the coating film obtained by applying the photosensitive conductive paste in the exposure and development process, and the thick film And fine patterning becomes easy.
  • the total solid content means all components of the photosensitive conductive paste excluding the solvent.
  • the proportion of the conductive powder (A) is determined by observing a cross section perpendicular to the film surface of the dry paste film with a transmission electron microscope (for example, “JEM-4000EX” manufactured by JEOL Ltd.), And organic components may be distinguished and image analysis may be performed.
  • a transmission electron microscope for example, “JEM-4000EX” manufactured by JEOL Ltd.
  • organic components may be distinguished and image analysis may be performed.
  • As an evaluation area of the transmission electron microscope for example, an area of about 20 ⁇ m ⁇ 100 ⁇ m is targeted, and observation may be performed at about 1000 to 3000 times.
  • the alkali-soluble resin (B) contained in the photosensitive conductive paste of the present invention refers to a resin having one or more carboxyl groups.
  • alkali-soluble resin (B) examples include an acrylic copolymer.
  • the acrylic copolymer refers to a copolymer containing units derived from an acrylic monomer having a carbon-carbon double bond as a copolymer component.
  • acrylic monomers having a carbon-carbon double bond examples include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, sec-butyl acrylate, isobutyl acrylate, tert-butyl acrylate, n- Pentyl acrylate, allyl acrylate, benzyl acrylate, butoxyethyl acrylate, butoxytriethylene glycol acrylate, cyclohexyl acrylate, dicyclopentanyl acrylate, dicyclopentenyl acrylate, 2-ethylhexyl acrylate, glycerol acrylate, glycidyl acrylate, heptadeca Fluorodecyl acrylate, 2-hydroxyethyl acrylate, isobornyl acrylate 2-hydroxypropyl acrylate, isodecyl acrylate, isooct
  • copolymer components other than acrylic monomers include compounds having a carbon-carbon double bond, such as styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, ⁇ -methylstyrene, Examples thereof include styrenes such as chloromethylstyrene and hydroxymethylstyrene, or 1-vinyl-2-pyrrolidone.
  • the acid value of the acrylic copolymer may be adjusted as appropriate, but the acid value is preferably in the range of 50 to 150.
  • the carboxyl group can be introduced into the acrylic copolymer by using an unsaturated acid such as an unsaturated carboxylic acid as a copolymerization component.
  • unsaturated acid include acrylic acid, methacrylic acid, itaconic acid, crotonic acid, maleic acid, fumaric acid, vinyl acetic acid, and acid anhydrides thereof.
  • the acid value of the obtained acrylic copolymer can be adjusted by the amount of the unsaturated acid used.
  • the acrylic copolymer preferably has a carbon-carbon double bond at the side chain or at the molecular end.
  • Examples of the structure having a carbon-carbon double bond include a vinyl group, an allyl group, an acrylic group, and a methacryl group.
  • the acrylic copolymer having such a functional group in the side chain or the molecular end is a carboxyl group that the acrylic copolymer has (when the acrylic copolymer has a mercapto group, an amino group, or a hydroxyl group, It can be synthesized by reacting a compound having a glycidyl group or an isocyanate group and a carbon-carbon double bond, acrylic acid chloride, methacrylic acid chloride or allyl chloride with a mercapto group, amino group or hydroxyl group.
  • Examples of the compound having a glycidyl group and a carbon-carbon double bond include glycidyl methacrylate, glycidyl acrylate, allyl glycidyl ether, glycidyl ethyl acrylate, crotonyl glycidyl ether, glycidyl crotonate, glycidyl isocrotonate or “cyclomer” (Registered trademark) M100 or A200 (manufactured by Daicel Chemical Industries, Ltd.).
  • Examples of the compound having an isocyanate group and a carbon-carbon double bond include acryloyl isocyanate, methacryloyl isocyanate, acryloylethyl isocyanate, and methacryloylethyl isocyanate.
  • the glass transition point of the alkali-soluble resin (B) is preferably 80 to 160 ° C.
  • the glass transition point is 80 ° C. or higher, for example, when a pattern is formed on a ceramic green sheet (hereinafter “green sheet”), the alkali-soluble resin (B ) Is not softened, and absorption into the green sheet together with other components is suppressed, thereby facilitating fine patterning. 100 degreeC or more is more preferable.
  • the glass transition point is 160 ° C. or lower, the thermal decomposability is improved, and defects due to residual organic components during firing can be reduced. 140 degrees C or less is more preferable.
  • the glass transition point of alkali-soluble resin (B) can be measured using differential scanning calorimetry (DSC).
  • the alkali-soluble resin (B) may be a mixture of two or more.
  • two or more types of alkali-soluble resins (B) are contained in a mixture of two or more types of alkali-soluble resins (B), that is, in the photosensitive conductive paste, all of the alkali-soluble resins (B) contained therein
  • the glass transition point is preferably in the above range.
  • the glass transition point of the alkali-soluble resin (B) can be controlled by, for example, the glass transition point of the monomer component constituting the acrylic copolymer.
  • the monomer component having a high glass transition point include methyl methacrylate, tert-butyl methacrylate, (meth) acrylic acid, acrylonitrile, acrylamide, styrene, 4-tert-butylcyclohexyl methacrylate, dicyclopentanyl (meth) acrylate, Examples thereof include (meth) acrylates having a cyclic aliphatic hydrocarbon group having 6 to 15 carbon atoms such as dicyclopentadienyl (meth) acrylate, isobornyl (meth) acrylate, and 3,3,5-trimethylcyclohexyl methacrylate.
  • the proportion of the alkali-soluble resin (B) in the total solid content of the photosensitive conductive paste is preferably 20 to 55% by volume.
  • the ratio of the total solid content is 20% by volume or more, for example, when a pattern is formed on a green sheet, the alkali-soluble resin (B) absorbed into the green sheet together with other components during drying is reduced and fine. Patterning becomes easy. 30 volume% or more is more preferable.
  • the proportion of the total solid content is 55% by volume or less, the viscosity of the photosensitive conductive paste can be maintained moderately, and further defects due to residual organic components during firing can be reduced. 45 volume% or less is more preferable.
  • the weight average molecular weight of the alkali-soluble resin (B) is preferably 7000 to 35000.
  • the weight average molecular weight is 7000 or more, the viscosity of the photosensitive conductive paste becomes appropriate and the tackiness of the coating film after drying can be suppressed. 24000 or more is more preferable.
  • the weight average molecular weight is 35000 or less, the solubility of the unexposed portion in the developer is improved, and the development time is shortened. 30000 or less is more preferable.
  • the conductive paste of the present invention may contain a photopolymerization initiator.
  • the photopolymerization initiator refers to a compound that decomposes by absorbing light having a short wavelength such as ultraviolet rays or generates a radical by causing a hydrogen abstraction reaction.
  • photopolymerization initiator examples include 1,2-octanedione, 1- [4- (phenylthio) -2- (O-benzoyloxime)], 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, ethanone, 1- [9-ethyl-6-2 (2-methylbenzoyl) -9H-carbazol-3-yl] -1- (O-acetyloxime ), Benzophenone, methyl o-benzoylbenzoate, 4,4′-bis (dimethylamino) benzophenone, 4,4′-bis (diethylamino) benzophenone, 4,4′-dichlorobenzophenone, 4-benzoyl-4′-methyl Diphenyl ketone, dibenzyl ketone, fluorenone, 2,2'-diethoxyacetophenone 2,2-dimethoxy
  • the addition amount of the photopolymerization initiator is preferably 0.05 to 40 parts by mass with respect to 100 parts by mass of the total amount of the alkali-soluble resin (B) and the reactive compound (C).
  • the added amount of the photopolymerization initiator is 0.05 parts by mass or more, the cured density of the portion exposed to the photosensitive conductive paste increases, and the residual film ratio after development increases. 0.5 parts by mass or more is more preferable.
  • the addition amount of the photopolymerization initiator is 40 parts by mass or less, excessive light absorption at the upper part of the coating film obtained by applying the photosensitive conductive paste is suppressed.
  • the conductive paste of the present invention may contain a sensitizer together with a photopolymerization initiator.
  • the sensitizer include 2,4-diethylthioxanthone, isopropylthioxanthone, 2,3-bis (4-diethylaminobenzal) cyclopentanone, 2,6-bis (4-dimethylaminobenzal) cyclohexanone, 2 , 6-bis (4-dimethylaminobenzal) -4-methylcyclohexanone, Michler's ketone, 4,4-bis (diethylamino) benzophenone, 4,4-bis (dimethylamino) chalcone, 4,4-bis (diethylamino) chalcone P-dimethylaminocinnamylidene indanone, p-dimethylaminobenzylidene indanone, 2- (p-dimethylaminophenylvinylene) isonaphthothiazole, 1,
  • the addition amount of the sensitizer is preferably 0.05 to 30 parts by mass with respect to the total amount of the alkali-soluble resin (B) and the reactive compound (C).
  • the addition amount of the sensitizer is 0.05 parts by mass or more, the exposure sensitivity is sufficient. 0.1 mass part or more is more preferable.
  • the addition amount of the sensitizer is 30 parts by mass or less, excessive light absorption at the upper part of the coating film obtained by applying the conductive paste is suppressed. 10 parts by mass or less is more preferable. As a result, a decrease in adhesion with the green sheet due to the manufactured conductive pattern having an inversely tapered shape is suppressed.
  • the photosensitive electrically conductive paste of this invention may contain the filler for the shrinkage
  • the ceramic powder filler include alumina (Al 2 O 3 ), zirconia (ZrO 2 ), magnesia (MgO), beryllia (BeO), mullite (3Al 2 O 3 .2SiO 2 ), cordierite (5SiO 2.
  • glass-ceramic composite filler examples include glass composition powder containing SiO 2 , Al 2 O 3 , CaO, B 2 O 3 , MgO, TiO 2 , alumina, zirconia, magnesia, beryllia, mullite, cordier, and the like. And a mixture of inorganic filler powder selected from the group consisting of light, spinel, forsterite, anorthite, serdian, silica, and aluminum nitride.
  • the photosensitive conductive paste of the present invention is one or two or more kinds of plasticizers, leveling agents, and dispersions as long as the desired properties are not impaired (usually 5% by mass or less with respect to the paste). You may contain additives, such as an agent and a silane coupling agent.
  • plasticizer examples include dibutyl phthalate, dioctyl phthalate, polyethylene glycol, and glycerin.
  • leveling agent for example, “Byketol” -OK or Special or BYK-300 in which high-boiling aromatics, ketones, esters, silicone resins or acrylic resins are dissolved in solvents such as ketones, esters, xylene or alcohols. , 302, 306, 307, 335, 310, 320, 322, 323, 324, 325, 330, 331, 344, 370, 371, 354, 358 or 361 (above, manufactured by Bic Chem Corporation).
  • Disposon (registered trademark) in which an acrylic polymer or a modified vinyl polymer having a molecular weight of 300 to 3000 is dissolved in a solvent such as petroleum naphtha, xylol, toluene, ethyl acetate, 1-butanol or mineral terpene.
  • silane coupling agent examples include methyltrimethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, hexamethyldisilazane, 3-methacryloxypropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, and vinyltrimethoxysilane. Methoxysilane is mentioned.
  • the photosensitive conductive paste of the present invention may contain a solvent.
  • Solvents include N, N-dimethylacetamide, N, N-dimethylformamide, N-methyl-2-pyrrolidone, dimethylimidazolidinone, dimethyl sulfoxide, diethylene glycol monoethyl ether, dipropylene glycol methyl ether, dipropylene glycol n- Propyl ether, dipropylene glycol n-butyl ether, tripropylene glycol methyl ether, tripropylene glycol-n-butyl ether, diethylene glycol monoethyl ether acetate, dipropylene glycol methyl ether acetate, propylene glycol phenyl ether, diethylene glycol monomethyl ether acetate, diethylene glycol monobutyl ether , Diethylene glycol monobutyl ether Tate, ⁇ -butyrolactone, ethyl lactate, 1-methoxy-2-propano
  • the photosensitive conductive paste of the present invention can be produced using, for example, a disperser or a kneader such as a three-roller, ball mill, or planetary ball mill.
  • the method for producing a pattern on a ceramic green sheet of the present invention comprises a coating step of applying the photosensitive conductive paste of the present invention on a ceramic green sheet to obtain a coating film, and drying the coating film to obtain a dry film.
  • the above-described conductive paste of the present invention is coated on the ceramic green sheet.
  • Application can be performed by conventional methods such as roll coating, spin coating, dip coating, and the like.
  • the coating thickness is not particularly limited, but since the conductive paste of the present invention has an excellent feature that a pattern can be formed even with a thick film of 10 ⁇ m or more, the coating film thickness is preferably about 10 ⁇ m to ___ ⁇ m. Of course, it may be less than 10 ⁇ m.
  • Examples of the method for drying the coating film obtained in the coating step to volatilize and remove the solvent in the drying step include drying by heating with an oven, a hot plate or infrared rays, or vacuum drying.
  • the heating temperature is preferably 60 to 120 ° C.
  • the drying temperature is 60 ° C. or higher, the solvent can be sufficiently volatilized and removed.
  • the drying temperature is 120 ° C. or lower, thermal crosslinking of the photosensitive conductive paste can be suppressed, and the residue in the development non-exposed area can be reduced.
  • the heating time is preferably 5 minutes to several hours.
  • the dried film obtained in the drying process is exposed and developed in the exposure and development process.
  • a method of exposing through a photomask as in normal photolithography is generally used, but a method of directly drawing with a laser beam or the like without using a photomask may be used.
  • the exposure apparatus include a stepper exposure machine or a proximity exposure machine.
  • the active light source used at this time include near-ultraviolet rays, ultraviolet rays, electron beams, X-rays, and laser light, and ultraviolet rays are preferable.
  • the ultraviolet light source include a low-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high pressure mercury lamp, a halogen lamp, and a germicidal lamp, and an ultra-high pressure mercury lamp is preferable.
  • the desired pattern is formed by developing the exposed dry film using a developer and dissolving and removing the non-exposed portion.
  • the developer used for alkali development include tetramethylammonium hydroxide, diethanolamine, diethylaminoethanol, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, triethylamine, diethylamine, methylamine, dimethylamine, and dimethyl acetate.
  • Aminoethyl, dimethylaminoethanol, dimethylaminoethyl methacrylate, cyclohexylamine, ethylenediamine or hexamethylenediamine aqueous solutions may be mentioned.
  • aqueous solutions include N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N -Polar solvents such as dimethylacetamide, dimethylsulfoxide or ⁇ -butyrolactone; alcohols such as methanol, ethanol or isopropanol; Esters such as Le or propylene glycol monomethyl ether acetate, may be added to ketones or surfactants such as cyclopentanone, cyclohexanone, isobutyl ketone or methyl isobutyl ketone.
  • Examples of the developer for organic development include N-methyl-2-pyrrolidone, N-acetyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethyl sulfoxide or hexamethylphosphoryl
  • Examples thereof include polar solvents such as amides or mixed solutions of these polar solvents and methanol, ethanol, isopropyl alcohol, xylene, water, methyl carbitol, or ethyl carbitol.
  • a development method for example, a method of spraying a developer onto the coating film surface while the substrate is left standing or rotating, a method of immersing the substrate in the developer, or an ultrasonic wave while immersing the substrate in the developer The method of applying is mentioned.
  • the pattern obtained by development may be rinsed with a rinse solution.
  • a rinse solution examples include water or an aqueous solution in which an alcohol such as ethanol or isopropyl alcohol or an ester such as ethyl lactate or propylene glycol monomethyl ether acetate is added to water.
  • the above-described method is a method in which the conductive paste of the present invention is directly applied on a ceramic green sheet to form a pattern.
  • the conductive paste of the present invention is temporarily used as a temporary film such as a film (usually a resin film).
  • the conductive pattern on the ceramic green sheet can also be produced by applying a conductive paste on the support to form a pattern and then transferring the pattern onto the ceramic green sheet.
  • a photosensitive conductive paste is applied onto a temporary support to obtain a coating film, a coating process, a drying process in which the coating film is dried to obtain a dry film, and the dry film is exposed and developed.
  • the coating process, the drying process, and the exposure / development process can be performed in the same manner as described above.
  • the pattern formed on the temporary support after development can be transferred to form a pattern on the ceramic green.
  • Examples of the transfer method include a method in which a patterned film and a ceramic green sheet are pressurized at a pressure of 1 to 30 MPa while being heated at 50 to 150 ° C. using a vacuum laminator.
  • the method for producing a ceramic member of the present invention includes forming a pattern on a ceramic green sheet by the method for producing a conductive pattern of the present invention.
  • a ceramic green sheet on which a conductive pattern is formed is laminated and thermocompression-bonded to obtain a laminate, and a firing step in which the laminate is fired to obtain a ceramic member.
  • the pattern formed on the green sheet is a composite of the organic component and the conductive powder (A), and the conductive powder (A) is brought into contact with each other at the time of firing, and the conductivity is expressed. It can be suitably used as an internal wiring of a ceramic member or the like.
  • a via hole is formed in a green sheet, and a conductor is embedded therein to form an interlayer connection wiring.
  • an internal wiring is formed by the pattern manufacturing method of the present invention, and a dielectric or insulator pattern is also formed if necessary.
  • a green sheet on which interlayer connection wiring and internal wiring are formed is laminated and thermocompression bonded to obtain a laminate.
  • the obtained multilayer body is cut into a desired chip size and fired, and a terminal chip is applied, followed by plating, thereby obtaining a multilayer chip inductor.
  • a method of embedding a conductor in a via hole for example, a method of embedding a conductor paste in a via hole by a screen printing method and then drying it can be mentioned.
  • the conductive paste for example, a paste containing copper, silver or silver-palladium can be used. Since the process can be simplified by forming the interlayer connection wiring and the internal wiring at the same time, the photosensitive property of the present invention can be used. It is preferable to use a conductive paste.
  • Examples of a method for forming a dielectric or insulator pattern include a screen printing method.
  • a method of laminating the green sheets on which the interlayer connection wiring and the internal wiring are formed for example, a method of stacking the required number of sheets using the guide holes can be mentioned. Further, as a method for subsequent thermocompression bonding, for example, a method of performing pressure bonding under conditions of 90 to 130 ° C. and 5 to 20 MPa using a hydraulic press machine can be mentioned.
  • thermocompression bonding for example, a method using a die cutting machine may be mentioned.
  • the method for firing the cut laminate include a method of holding at 300 to 600 ° C. for 5 minutes to several hours, and further holding at 850 to 900 ° C. for 5 minutes to several hours.
  • the terminal electrode for example, sputtering can be mentioned.
  • the metal to be plated include nickel or tin.
  • Conductive powder (A-1) Ag particles having a D50 of 2.5 ⁇ m
  • Conductive powder (A-2) W particles having a D50 of 2 ⁇ m
  • Reactive compounds (C-1) to (C-5) In a 1 L four-necked flask, the weight (g) of pentaerythritol tetra (mercaptoacetate), dipentaerythritol hexaacrylate, dipenta described in Table 1 It was obtained by adding erythritol pentaacrylate, hydroquinone and benzyldimethylamine and reacting at 60 ° C. for 12 hours. With respect to the obtained dendritic polymer, disappearance of mercapto groups was confirmed by iodometry.
  • Reactive compound (C-6) Aronix M402 manufactured by Toagosei Co., Ltd. (molecular weight: 565, double bond equivalent: 100)
  • Photopolymerization initiator N1919 (made by ADEKA)
  • Leveling agent L1980 (manufactured by Enomoto Kasei Co., Ltd.)
  • Solvent Dipropylene glycol n-butyl ether (Daicel)
  • Photosensitive conductive pastes P2 to P9 were produced in the same manner except that the composition was changed to that shown in Table 2.
  • Example 1 On the green sheet (GCS71F; manufactured by Yamamura Photonics Co., Ltd.), the photosensitive conductive paste P1 was dried and then applied by screen printing so that the film thickness was 10 ⁇ m and 15 ⁇ m. It dried for 10 minutes with the hot air dryer, and obtained the dry film P1 on a green sheet. The same operation was repeated to prepare a plurality of two types of dry films P1 on green sheets having different film thicknesses.
  • Each of the two types of dry films P1 is passed through two types of exposure masks each having a line width / space width (hereinafter referred to as “L / S”) of a coil pattern of 20 ⁇ m / 20 ⁇ m and 100 ⁇ m / 100 ⁇ m, respectively.
  • Exposure was performed at a dose of 400 mJ / cm 2 (converted to a wavelength of 365 nm) with an ultrahigh pressure mercury lamp having an output of 21 mW / cm 2 .
  • total dissolution time the time when all non-exposed areas are dissolved.
  • the four types of pattern forming sheets P1 having different film thicknesses and L / S were each observed with an optical microscope, and the pattern processability was evaluated according to the following criteria. No pattern defects: ⁇ There are cracks and peeling in the pattern: ⁇
  • the cross sections of the four types of pattern forming sheets P1 having different film thicknesses and L / S were observed with a scanning electron microscope (S2400; manufactured by Hitachi, Ltd.), and the cross sectional shapes of the patterns were evaluated based on the following criteria. Met.
  • Top width-bottom width ⁇ 5 ⁇ m ⁇ 5 ⁇ m ⁇ top width ⁇ bottom width ⁇ 10 ⁇ m: ⁇
  • the cross-sectional shape can maintain the volume of a conductive pattern, the one where the difference of the topmost part width
  • the pattern is close to a rectangle, pattern deformation or the like during lamination / firing can be prevented, which is preferable.
  • the obtained four types of four-layer laminated sheets P1 were cut into a size of 0.3 mm ⁇ 0.6 mm ⁇ 0.3 mm using a die cutting machine, and all were held at 350 ° C. for 10 hours, and then further at 880 ° C. Holding for 10 minutes and firing, a four-layer laminated fired sheet P1 was produced.
  • each laminated fired sheet P1 was observed with a scanning electron microscope (S2400; manufactured by Hitachi, Ltd.) and evaluated for the presence or absence of defects according to the following criteria. No defects in the layer and no break in the internal conductive pattern: ⁇ Defects in the layer and internal conductive pattern are disconnected: ⁇
  • Examples 2 to 9 and Comparative Example 1 Except for using the photosensitive conductive paste described in Table 2, pattern-forming sheets and the like were produced in the same manner as in Example 1, and pattern processability, pattern cross-sectional shape, and the presence or absence of defects in the laminated fired sheet were evaluated. The evaluation results are shown in Table 3.
  • Example 10 On the film (PEN; manufactured by Teijin Ltd.), the photosensitive conductive paste P1 is applied by screen printing so that the film thickness is 15 ⁇ m after drying, and the obtained coating film is dried for 10 minutes by a hot air dryer at 80 ° C. Thus, a dry film P1 on the film was obtained.
  • PEN manufactured by Teijin Ltd.
  • the dry film P1 was exposed at an irradiation dose of 400 mJ / cm 2 (converted to a wavelength of 365 nm) with an ultrahigh pressure mercury lamp with an output of 21 mW / cm 2 through an exposure mask having a coil pattern with L / S of 20/20 ⁇ m. . Thereafter, shower development was performed until the total dissolution time using a 0.1% by mass aqueous sodium carbonate solution as a developer to produce a pattern forming sheet P1.
  • the pattern of this pattern forming sheet P1 was transferred at 2 MPa while heating at 80 ° C. to a green sheet (GCS71F; manufactured by Yamamura Photonics) with a via hole formed using a vacuum laminator to produce a transfer pattern sheet P1.
  • GCS71F green sheet
  • Ten transfer pattern sheets P1 were prepared, stacked using guide holes, and pressure-bonded using a hydraulic press machine at 90 ° C. and 15 MPa to produce a 10-layer laminated sheet P1.
  • the obtained 10-layer laminated sheet P1 was cut into a size of 0.3 mm ⁇ 0.6 mm ⁇ 0.3 mm using a die cutting machine, held at 350 ° C. for 10 hours, and further held at 880 ° C. for 10 minutes. Firing was performed to produce a 10-layer laminated fired sheet P1.
  • a terminal electrode was applied to the obtained 10-layer laminated fired sheet P1 by sputtering, followed by plating with nickel and tin to produce a multilayer chip inductor.
  • the electrical characteristics of this multilayer chip inductor were evaluated, but there were no problems such as disconnection or short circuit.
  • the photosensitive conductive paste of the present invention can be suitably used for the production of internal wiring patterns such as ceramic members.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Conductive Materials (AREA)
  • Materials For Photolithography (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

厚膜の導電パターンを形成することが可能な、感光性導電ペースト及びそれを用いた導電パターンの製造方法が開示されている。感光性導電ペーストは、導電性粉末(A)、少なくとも1個のカルボキシル基を有するアルカリ可溶性樹脂(B)及び、少なくとも1個の炭素-炭素二重結合を有する反応性化合物(C)を含有し、前記反応性化合物(C)が、樹状分岐分子化合物(C1)を含有する。導電パターンの製造方法は、感光性導電ペーストを、フィルム上に塗布して塗布膜を得る、塗布工程と、塗布膜を乾燥して乾燥膜を得る、乾燥工程と、乾燥膜を露光及び現像してパターンを形成する、露光・現像工程と、パターンを転写してセラミックグリーンシート上にパターンを形成する、転写工程と、を備える。

Description

感光性導電ペースト及びそれを用いた導電パターンの製造方法
 本発明は、感光性導電ペースト及び、それを用いた導電パターンの製造方法に関する。
 近年、電子部品の高速化、高周波化、小型化が進むにつれ、それらを実装するためのセラミックス基板にも、微細かつ高密度な導電パターンを形成することが要求されている。セラミックス基板の一つであるセラミックグリーンシート上に導電パターンを形成する従来の方法としては、例えばスクリーン印刷法又は蒸着法が挙げられるが、スクリーン印刷法では、導電パターンのライン・アンド・スペースの微細化に限界がある。また、蒸着法であれば20μm以下の微細な導電パターンも形成可能であるが、設備投資や煩雑な製造工程による高コスト化が問題となる。
 これらの問題点を解決すべく、フォトリソグラフィ法により微細な導電パターンを形成する技術(特許文献1及び2)が提案されている。
特許第3218767号 特開2004-271788
 しかしながら、感光性導電ペーストは、含有する導電性粉末の影響で、露光光の透過率が低く、10μm以上の厚膜パターンが高精度に形成できないという問題が指摘されていた。
 そこで本発明は、厚膜の導電パターンを形成することが可能な、感光性導電ペーストを提供することを目的とする。
 本願発明者は、鋭意研究の結果、炭素-炭素二重結合を持つ樹状分岐化合物を架橋成分として用いることにより、導電性粉末の影響で露光光が塗膜の深部まで透過しなくても、深部の硬化を促進させることができ、厚膜パターンを形成できることを見出し、本発明を完成した。
 すなわち、本発明は、導電性粉末(A)、アルカリ可溶性樹脂(B)及び、炭素-炭素二重結合を1つ以上有する1種又は2種以上の反応性化合物(C)を含有し、前記1種又は2種以上の反応性化合物(C)の少なくとも1種が樹状分岐化合物(C1)である感光性導電ペーストを提供する。
 また、本発明は、上記本発明の感光性導電ペーストを、セラミックグリーンシート上に塗布して塗布膜を得る、塗布工程と、
 前記塗布膜を乾燥して乾燥膜を得る、乾燥工程と、
 前記乾燥膜を露光及び現像してパターンを形成する、露光・現像工程と、
 を備える、セラミックグリーンシート上の導電パターンの製造方法を提供する。
 さらに本発明は、上記本発明の感光性導電ペーストを、仮支持体上に塗布して塗布膜を得る、塗布工程と、
 前記塗布膜を乾燥して乾燥膜を得る、乾燥工程と、
 前記乾燥膜を露光及び現像してパターンを形成する、露光・現像工程と、
 前記パターンを転写してセラミックグリーンシート上にパターンを形成する、転写工程と、を備える、セラミックグリーンシート上の導電パターンの製造方法を提供する。
 さらに、本発明は、上記本発明の製造方法により導電パターンを形成したセラミックグリーンシートを積層及び圧着して積層体を得る、積層工程と、
 前記積層体を焼成してセラミック部材を得る、焼成工程と、を備える、セラミック部材の製造方法を提供する。
 本発明の導電ペーストによれば、10μm以上の厚膜パターンを形成することができる。
 本発明の感光性導電ペーストが含有する、反応性化合物(C)は、炭素-炭素二重結合を一つ以上有しており、いわゆる架橋成分として機能する。
 本発明で用いられる1種又は2種以上の反応性化合物(C)の少なくとも1種は、樹状分岐化合物(C1)であることを必須としており、樹状分岐化合物(C1)を用いることで、含有する導電性粉末の影響で露光光が塗膜の深部まで透過しなくても、深部の硬化を促進させることができ、厚膜パターンを形成できる。
 本発明の樹状分岐化合物(C1)は、デンドリマー、ハイパーブランチポリマー(成分モノマーを1段階で反応させて製造し得る分岐状ポリマー)及び、デンドロンから選ばれるいずれかをいい、一般式(1)で示される多官能(メタ)アクリレート化合物と一般式(2)で示される多価メルカプト化合物とが、マイケル付加(カルボニル基に関しβ位)により重合したものを用いることが好ましい。
Figure JPOXMLDOC01-appb-C000003
 一般式(1)中、Rは水素又は炭素数1~4のアルキル基を表し、Rは化合物R(OH)のうちn個のヒドロキシル基を式中のエステル結合に供与した残り部分を表し、R(OH)は、炭素数2~8の非芳香族の直鎖又は分枝鎖の炭化水素骨格に基づく多価アルコールであるか、該多価アルコールの複数分子がアルコールの脱水縮合によりエーテル結合を介して連結してなる多価アルコールエーテルであるか、又はこれらの多価アルコール又は多価アルコールエーテルとヒドロキシ酸とのエステルであり、ここにmは2~50の整数を表し、m≧nであり、nは2~20の整数を表す。
Figure JPOXMLDOC01-appb-C000004
 一般式(2)中、Rは、単結合であるか、炭素数1の炭化水素基若しくは炭素数2~5の、骨格中に酸素原子を更に含んでいてよく、直鎖又は分枝鎖であってよい炭化水素基であるか、又はそれら炭化水素基に更に式2のチオメチル基の少なくとも一部と結合しているカルボニルオキシ基を有する基であり、pは2~6の整数を表し、但しRが単結合を表すときはpは2を表し、Rの炭素数が1であるときはpは2~4の整数を表す。
 上記一般式(1)で示される多官能(メタ)アクリレート化合物と一般式(2)で示される多価メルカプト化合物とは、次のように反応して樹状分岐化合物を生成する。
Figure JPOXMLDOC01-appb-C000005
 一般式(1)で示される多官能(メタ)アクリレート化合物への一般式(2)で示される多価メルカプト化合物のマイケル付加は、得られる樹枝状ポリマーが、その後もなお炭素-炭素二重結合に基づく放射線重合を行うことができるように、一般式(1)で示される化合物が有する炭素-炭素二重結合が、全体として0.1%ないし50%の範囲で残存するように行われることが好ましい。
 例えば、一般式(2)で示される多価メルカプト化合物のメルカプト基の、一般式(1)で示される多官能(メタ)アクリレート化合物の炭素-炭素二重結合に対する付加割合は、該基および二重結合のモル比で1/200ないし1/2となるようにすることが好ましく、1/100ないし1/3となるようにすることがより好ましく、1/50ないし1/5となるようにすることが更に好ましく、1/20ないし1/8となるようにすることが特に好ましい。
 反応溶媒としては、反応に悪影響を及ぼさないものであれば、従来、有機合成で使用されている各種溶媒を用いることができる。具体例としては、非プロトン性極性有機溶媒類(N,N-ジメチルホルムアミド、ジメチルスルホキシド、N,N-ジメチルアセトアミド、テトラメチルウレア、スルホラン、N-メチル-2-ピロリドン、1,3ジメチルイミダゾリジノン等)、エーテル類(ジイソプロピルエーテル、プロピレングリコール1-モノメチルエーテル2-アセタート、t-ブチルメチルエーテル、テトラヒドロフラン、ジオキサン等)、脂肪族炭化水素類(ヘキサン、シクロヘキサン、n-オクタン、n-デカン、デカリン、石油エーテル等)、芳香族炭化水素類(ベンゼン、クロロベンゼン、o-ジクロロベンゼン、ニトロベンゼン、トルエン、キシレン、メシチレン、テトラリン等)、エステル類(酢酸エチル等)、ハロゲン化炭化水素類(クロロホルム、ジクロロメタン、1,2-ジクロロエタン、四塩化炭素等)、ケトン類(アセトン、メチルエチルケトン、メチルブチルケトン、メチルイソブチルケトン、シクロヘキサノン等)、アルコキシアルカン類(1,2-ジメトキシエタン、1,2-ジエトキシエタン、ジグライム等)、などが挙げられ、これらは単独で用いてもよく、2種以上混合して用いてもよい。
 本実施形態に用いられる樹枝状ポリマーにおける一般式(2)で示される多価メルカプト化合物の、一般式(1)で示される多官能(メタ)アクリレート化合物の(メタ)アクリレート基へのマイケル付加反応は、多官能(メタ)アクリレート化合物(モノマー)と多価メルカプト化合物とを混合し、室温ないし100℃にて、塩基性触媒を添加することにより行うことができる。反応時間は、通常約30分間ないし約6時間である。
 本発明の樹状分岐化合物(C1)において、一般式(1)で示される多官能(メタ)アクリレート化合物の好ましい具体例としては、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、テトラメチレングリコールジ(メタ)アクリレート、トリメチロールプロバントリ(メタ)アクリレート、エチレンオキサイド変性トリメチロールプロバントリ(メタ)アクリレート、プロピレンオキサイド変性トリメチロールプロバントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールオクタ(メタ)アクリレート、トリペンタエリスリトールヘプタ(メタ)アクリレート、カプロラクトン変性ペンタエリスリトールトリ(メタ)アクリレート、カプロラクトン変性ペンタエリスリトールテトラ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート、エピクロルヒドリン変性ヘキサヒドロフタル酸ジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキサイド変性ネオペンチルグリコールジ(メタ)アクリレート、プロピレンオキサイド変性ネオペンチルグリコールジ(メタ)アクリレート、カプロラクトン変性ヒドロキシピバリン酸エステルネオペンチルグリコールジ(メタ)アクリレート、ステアリン酸変性ペンタエリスリトールジ(メタ)アクリレート、エピクロルヒドリン変性フタル酸ジ(メタ)アクリレート、ポリ(エチレングリコールテトラメチレングリコール)ジ(メタ)アクリレート、ポリ(プロピレングリコールテトラメチレングリコール)ジ(メタ)アクリレート、ポリエステル(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリエチレングリコール-ポリプロピレングリコール-ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、エピクロルヒドリン変性プロピレングリコールジ(メタ)アクリレート、プロピレンオキサイド変性ビスフェノールAジグリシジルエーテルジ(メタ)アクリレート、シリコーンジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、ネオペンチルグリコール変性トリメチロールプロパンジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、エチレンオキサイド変性トリプロピレングリコールジ(メタ)アクリレート、トリグリセロールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、エピクロルヒドリン変性グリセロールトリ(メタ)アクリレート、エチレンオキサイド変性グリセロールトリ(メタ)アクリレート、プロピレンオキサイド変性グリセロールトリ(メタ)アクリレート、エチレンオキサイド変性リン酸トリ(メタ)アクリレート、カプロラクトン変性トリメチロールプロパントリ(メタ)アクリレート、HPA変性トリメチロールプロパントリ(メタ)アクリレート、エチレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、プロピレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンベンゾエート(メタ)アクリレート、トリス((メタ)アクリロキシエチル)イソシアヌレート、アルコキシ変性トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールポリ(メタ)アクリレート、アルキル変性ジペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート等の(メタ)アクリル酸エステルを挙げることができる。これらの化合物は、その1種のみを単独で使用してもよく、2種以上を併用してもよい。
 本実施形態の樹状分岐化合物(C1)において、一般式(2)で示される多価メルカプト化合物としては、1,2-ジメルカプトエタン、1,3-ジメルカプトプロパン、1,4-ジメルカプトブタン、ビスジメルカプトエタンチオール(HS-CHCH-S-CHCH-SH)、トリメチロールプロパントリ(メルカプトアセテート)、トリメチロールプロパントリ(メルカプトプロピオネート)、ペンタエリスリトールテトラ(メルカプトアセテート)、ペンタエリスリトールトリ(メルカプトアセテート)、ペンタエリスリトールテトラ(メルカプトプロピオネート)、ジペンタエリスリトールヘキサ(メルカプトアセテート)、ジペンタエリスリトールヘキサ(メルカプトプロピオネート)等が挙げられる。これらの化合物は、その1種のみを単独で使用してもよく、2種以上を併用してもよい。
 樹状分岐化合物(C1)は二重結合当量(二重結合1個当りの重量平均分子量)が110~150であることが好ましい。樹状分岐化合物(C1)の二重結合当量が、110以上であると、感光性導電ペースト中に存在する炭素-炭素二重結合量を抑えることができ、パターンの過度な硬化によるクラックを抑制できる。また、焼成の際の残存有機成分に起因する欠陥を低減することができる。150以下であると、感光性導電ペースト中に存在する炭素-炭素二重結合量を十分にできるため、露光の際の感度が向上する。
 樹状分岐化合物(C1)は重量平均分子量が15000~25000であることが好ましい。重量平均分子量が15000以上であると、ラジカル反応が促進する長さが長くなるため、深部まで硬化しやすくなり、25000以下であると、焼成の際の残存有機成分に起因する欠陥を低減することができる。
 本発明の樹状分岐化合物(C1)は、ゲル浸透クロマトグラフィー、液体クロマトグラフィー、その他の一般的な分析機器により、分子量及び、二重結合量等を確認することができる。ゲル浸透クロマトグラフィーは、例えば 東ソー(株)製、HLC-8220GPC、カラム:Shodex KF-804L+KF-803Lを用いることができる。
 反応性化合物(C)は、樹状分岐化合物(C1)のみであってもよいし、樹状分岐化合物(C1)に加え、他の反応性化合物(C)を含んでいてもよい。樹状分岐化合物(C1)以外の反応性化合物(C)としては、例えば、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、イソプロピルアクリレート、n-ブチルアクリレート、sec-ブチルアクリレート、イソブチルアクリレート、tert-ブチルアクリレート、n-ペンチルアクリレート、アリルアクリレート、ベンジルアクリレート、ブトキシエチルアクリレート、ブトキシトリエチレングリコールアクリレート、シクロヘキシルアクリレート、ジシクロペンタニルアクリレート、ジシクロペンテニルアクリレート、2-エチルヘキシルアクリレート、グリセロールアクリレート、グリシジルアクリレート、ヘプタデカフロロデシルアクリレート、2-ヒドロキシエチルアクリレート、イソボニルアクリレート、2-ヒドロキシプロピルアクリレート、イソデキシルアクリレート、イソオクチルアクリレート、ラウリルアクリレート、2-メトキシエチルアクリレート、メトキシエチレングリコールアクリレート、メトキシジエチレングリコールアクリレート、オクタフロロペンチルアクリレート、フェノキシエチルアクリレート、ステアリルアクリレート、トリフロロエチルアクリレート、アリル化シクロヘキシルジアクリレート、1,4-ブタンジオールジアクリレート、1,3-ブチレングリコールジアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、ポリエチレングリコールジアクリレート、ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールモノヒドロキシペンタアクリレート、ジトリメチロールプロパンテトラアクリレート、グリセロールジアクリレート、メトキシ化シクロヘキシルジアクリレート、ネオペンチルグリコールジアクリレート、プロピレングリコールジアクリレート、ポリプロピレングリコールジアクリレート、トリグリセロールジアクリレート、トリメチロールプロパントリアクリレート、アクリルアミド、アミノエチルアクリレート、フェニルアクリレート、フェノキシエチルアクリレート、ベンジルアクリレート、1-ナフチルアクリレート、2-ナフチルアクリレート、ビスフェノールAジアクリレート、ビスフェノールA-エチレンオキサイド付加物のジアクリレート、ビスフェノールA-プロピレンオキサイド付加物のジアクリレート、エポキシアクリレート若しくはウレタンアクリレート等のアクリル酸エステル、チオフェノールアクリレート若しくはベンジルメルカプタンアクリレート又はこれらモノマの芳香環の水素原子の1~5個を塩素若しくは臭素原子に置換したモノマ、あるいは、これらアクリレートをメタクリレートに換えたものが挙げられる。また、スチレン、p-メチルスチレン、o-メチルスチレン、m-メチルスチレン、塩素化スチレン、臭素化スチレン、α-メチルスチレン、塩素化α-メチルスチレン、臭素化α-メチルスチレン、クロロメチルスチレン、ヒドロキシメチルスチレン、カルボシキメチルスチレン、ビニルナフタレン、ビニルアントラセン又はビニルカルバゾールが挙げられる。なお、多官能の反応性化合物(C)においては、アクリル基、メタクリル基、ビニル基又はアリル基が混在していても構わない。これらの反応性化合物(C)は、1種でもよいし、2種以上を併用してもよい。
 感光性導電ペースト中の全固形分に占める反応性化合物(C)の割合は、5~30体積%が好ましい。全固形分に占める割合が5体積%以上であると、感光性導電ペースト中に存在する炭素-炭素二重結合が十分となり、露光の際の感度が向上する。10体積%以上がより好ましい。一方で、全固形分に占めるが30体積%以下であると、感光性導電ペーストの粘度を適度に保つことができるため好ましい。20体積%以下がより好ましい。なお、反応性化合物(C)が、樹状分岐化合物(C1)と、樹状分岐化合物(C1)以外のものを含む場合には、反応性化合物(C)中の樹状分岐化合物(C1)の割合は、50体積%以上が好ましい。
 本発明の感光性導電ペーストが含有する、導電性粉末(A)としては、例えば、銀、金、銅、白金、パラジウム、スズ、ニッケル、アルミニウム、タングステン、モリブデン、酸化ルテニウム、クロム、チタン及びインジウム並びにこれらの金属の合金からなる群から選ばれる金属粒子若しくはカーボン粒子又はこれら粒子の混合物が挙げられるが、導電性の観点から銀、銅又は金が好ましく、コスト及び安定性の観点から銀がより好ましい。
 導電性粉末(A)のメジアン径(D50)は、0.1~10μmが好ましい。D50が0.1μm以上であると、感光性導電ペーストを焼成した際の導電性粉末(A)同士の接触確率が向上し、形成された導電パターンの比抵抗及び断線確率が低くなる。さらには、露光現像工程において露光光が感光性導電ペーストを塗布して得られた塗布膜中をスムーズに透過することができ、微細なパターニングが容易となる。0.5μm以上がより好ましい。一方で、D50が10μm以下であると、製造された導電パターンの表面平滑度、パターン精度及び寸法精度が向上する。6μm以下がより好ましい。なお、D50は、Microtrac HRA(Model No.9320-X100;日機装(株)製)等を用いた、レーザー光散乱法により測定することができる。
 感光性導電ペースト中の全固形分に占める導電性粉末(A)の割合は、25~45体積%が好ましい。全固形分に占める割合が25体積%以上であると、焼成した際の導電性粉末(A)同士の接触確率が向上し、製造された導電パターンの比抵抗及び断線確率が低くなる。一方で、全固形分に占める割合が45体積%以下であると、露光現像工程において露光光が感光性導電ペーストを塗布して得られた塗布膜中をスムーズに透過することができ、厚膜且つ微細なパターニングが容易となる。ここで全固形分とは、溶剤を除く、感光性導電ペーストの全構成成分をいう。導電性粉末(A)の割合は、ペースト乾燥膜の膜面に垂直な断面を、透過型電子顕微鏡(例えば、日本電子株式会社製「JEM-4000EX」)により観察し、像の濃淡により無機成分と有機成分を区別し、画像解析を行えばよい。透過型電子顕微鏡の評価エリアとしては、例えば、20μm×100μm程度の面積を対象とし、1000~3000倍程度で観察すればよい。
 本発明の感光性導電ペーストが含有する、アルカリ可溶性樹脂(B)とは、カルボキシル基を一つ以上有している樹脂をいう。
 アルカリ可溶性樹脂(B)としては、例えば、アクリル系共重合体が挙げられる。ここでアクリル系共重合体とは、共重合成分として炭素-炭素二重結合を有するアクリル系モノマ由来の単位を含む、共重合体をいう。炭素-炭素二重結合を有するアクリル系モノマとしては、例えば、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、イソプロピルアクリレート、n-ブチルアクリレート、sec-ブチルアクリレート、イソブチルアクリレート、tert-ブチルアクリレート、n-ペンチルアクリレート、アリルアクリレート、ベンジルアクリレート、ブトキシエチルアクリレート、ブトキシトリエチレングリコールアクリレート、シクロへキシルアクリレート、ジシクロペンタニルアクリレート、ジシクロペンテニルアクリレート、2-エチルへキシルアクリレート、グリセロールアクリレート、グリシジルアクリレート、ヘプタデカフロロデシルアクリレート、2-ヒドロキシエチルアクリレート、イソボルニルアクリレート、2-ヒドロキシプロピルアクリレート、イソデシルアクリレート、イソオクチルアクリレート、ラウリルアクリレート、2-メトキシエチルアクリレート、メトキシエチレングリコールアクリレート、メトキシジエチレングリコールアクリレート、オクタフロロペンチルアクリレート、フェノキシエチルアクリレート、ステアリルアクリレート、トリフロロエチルアクリレート、アクリルアミド、アミノエチルアクリレート、フェニルアクリレート、1-ナフチルアクリレート、2-ナフチルアクリレート、チオフェノールアクリレート若しくはベンジルメルカプタンアクリレート又はこれらのアクリレートをメタクリレートに換えたものが挙げられる。アクリル系モノマ以外の共重合成分としては、例えば、炭素-炭素二重結合を有する化合物が挙げられるが、はスチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、α-メチルスチレン、クロロメチルスチレン若しくはヒドロキシメチルスチレン等のスチレン類又は1-ビニル-2-ピロリドンが挙げられる。
 アルカリ可溶性樹脂(B)としてアクリル系共重合体を用いる場合において、露光後にアルカリ性の現像液を用いて不要部分を溶解除去するためには、アクリル系共重合体が有するカルボキシル基の多少、すなわち、アクリル系共重合体の酸価を適宜調整すればよいが、酸価は50~150の範囲であることが好ましい。カルボキシル基は、共重合成分として不飽和カルボン酸等の不飽和酸を用いることによりアクリル系共重合体に導入することができる。不飽和酸としては、例えば、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、マレイン酸、フマル酸若しくはビニル酢酸又はこれらの酸無水物が挙げられる。用いる不飽和酸の多少により、得られるアクリル系共重合体の酸価を調整することができる。
 露光の際のアクリル系共重合体の硬化反応速度を高めるためには、アクリル系共重合体が側鎖又は分子末端に炭素-炭素二重結合を有することが好ましい。炭素-炭素二重結合を有する構造としては、例えば、ビニル基、アリル基、アクリル基又はメタクリル基が挙げられる。このような官能基を側鎖又は分子末端に有するアクリル系共重合体は、アクリル系共重合体が有するカルボキシル基(アクリル系共重合体がメルカプト基、アミノ基若しくはヒドロキシル基を持つ場合には、メルカプト基、アミノ基若しくはヒドロキシル基でもよい)に対して、グリシジル基若しくはイソシアネート基と炭素-炭素二重結合とを有する化合物、アクリル酸クロライド、メタクリル酸クロライド又はアリルクロライドを反応させることにより合成できる。
 グリシジル基と炭素-炭素二重結合とを有する化合物としては、例えば、グリシジルメタクリレート、グリシジルアクリレート、アリルグリシジルエーテル、グリシジルエチルアクリレート、クロトニルグリシジルエーテル、グリシジルクロトネート、グリシジルイソクロトネート又は“サイクロマー”(登録商標)M100若しくはA200(以上、ダイセル化学工業社製)が挙げられる。イソシアネート基と炭素-炭素二重結合とを有する化合物としては、例えば、アクリロイルイソシアネート、メタクリロイルイソシアネート、アクリロイルエチルイソシアネート又はメタクリロイルエチルイソシアネートが挙げられる。
アルカリ可溶性樹脂(B)のガラス転移点は、80~160℃が好ましいい。ガラス転移点が80℃以上であると、例えば、セラミックグリーンシート(以下、「グリーンシート」)上にパターンを形成する場合、感光性導電ペーストを70℃程度で乾燥してもアルカリ可溶性樹脂(B)が軟化せず、その他の成分と共にグリーンシートへの吸収が抑制されることで、微細なパターニングが容易となる。100℃以上がより好ましい。一方で、ガラス転移点が160℃以下であると、熱分解性が向上し、焼成の際の残存有機成分に起因する欠陥を低減することができる。140℃以下がより好ましい。なお、アルカリ可溶性樹脂(B)のガラス転移点は、示差走査熱量分析(DSC)を用いて測定することができる。
 アルカリ可溶性樹脂(B)は二種類以上の混合物であっても構わない。アルカリ可溶性樹脂(B)が二種類以上の混合物、すなわち、感光性導電ペースト中にアルカリ可溶性樹脂(B)が二種類以上含有される場合には、含有されるすべてのアルカリ可溶性樹脂(B)のガラス転移点が上記範囲にあることが好ましい。
 アルカリ可溶性樹脂(B)のガラス転移点は、例えば、アクリル系共重合体を構成するモノマ成分のガラス転移点によって、制御することができる。ガラス転移点が高いモノマ成分としては、例えば、メチルメタクリレート、tert-ブチルメタクリレート、(メタ)アクリル酸、アクリルニトリル、アクリルアミド、スチレンや4-tert-ブチルシクロヘキシルメタクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンタジエニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、3,3,5-トリメチルシクロヘキシルメタクリレート等の炭素数6~15の環状脂肪族炭化水素基を有する(メタ)アクリレート等が挙げられる。
 感光性導電ペースト中の全固形分に占めるアルカリ可溶性樹脂(B)の割合は、20~55体積%が好ましい。全固形分に占める割合が20体積%以上であると、例えば、グリーンシート上にパターンを形成する場合、乾燥中にその他成分と共にグリーンシートに吸収されるアルカリ可溶性樹脂(B)が少なくなり、微細なパターニングが容易となる。30体積%以上がより好ましい。一方で、全固形分に占める割合が55体積%以下であると、感光性導電ペーストの粘度が適度に保たれ、さらには焼成の際の残存有機成分に起因する欠陥を低減することができる。45体積%以下がより好ましい。
 アルカリ可溶性樹脂(B)の重量平均分子量は、7000~35000であることが好ましい。重量平均分子量が7000以上であると、感光性導電ペーストの粘度が適度なものになると共に、乾燥後の塗布膜のタック性を抑制することができる。24000以上がより好ましい。一方で、重量平均分子量が35000以下であると、非露光部の現像液への溶解性が向上し、現像時間が短縮される。30000以下がより好ましい。
 本発明の導電ペーストは、光重合開始剤を含有していても構わない。光重合開始剤とは、紫外線等の短波長の光を吸収して分解するか、又は、水素引き抜き反応を起こして、ラジカルを生じる化合物をいう。光重合開始剤としては、例えば、1,2-オクタンジオン、1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)]、2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド、エタノン、1-[9-エチル-6-2(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)、ベンゾフェノン、o-ベンゾイル安息香酸メチル、4,4’-ビス(ジメチルアミノ)ベンゾフェノン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、4,4’-ジクロロベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルケトン、ジベンジルケトン、フルオレノン、2,2’-ジエトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2-ヒドロキシ-2-メチルプロピオフェノン、p-t-ブチルジクロロアセトフェノン、チオキサントン、2-メチルチオキサントン、2-クロロチオキサントン、2-イソプロピルチオキサントン、ジエチルチオキサントン、ベンジル、ベンジルジメチルケタール、ベンジル-β-メトキシエチルアセタール、ベンゾイン、ベンゾインメチルエーテル、ベンゾインブチルエーテル、アントラキノン、2-t-ブチルアントラキノン、2-アミルアントラキノン、β-クロルアントラキノン、アントロン、ベンズアントロン、ジベンゾスベロン、メチレンアントロン、4-アジドベンザルアセトフェノン、2,6-ビス(p-アジドベンジリデン)シクロヘキサノン、6-ビス(p-アジドベンジリデン)-4-メチルシクロヘキサノン、1-フェニル-1,2-ブタンジオン-2-(o-メトキシカルボニル)オキシム、1-フェニル-プロパンジオン-2-(o-エトキシカルボニル)オキシム、1-フェニル-プロパンジオン-2-(o-ベンゾイル)オキシム、1,3-ジフェニル-プロパントリオン-2-(o-エトキシカルボニル)オキシム、1-フェニル-3-エトキシ-プロパントリオン-2-(o-ベンゾイル)オキシム、ミヒラーケトン、2-メチル-[4-(メチルチオ)フェニル]-2-モルフォリノ-1-プロパノン、ナフタレンスルホニルクロライド、キノリンスルホニルクロライド、N-フェニルチオアクリドン、4,4’-アゾビスイソブチロニトリル、ジフェニルジスルフィド、ベンズチアゾールジスルフィド、トリフェニルホスフィン、カンファーキノン、2,4-ジエチルチオキサントン、イソプロピルチオキサントン、四臭化炭素、トリブロモフェニルスルホン、過酸化ベンゾイン、エオシン又はメチレンブルー等の光還元性色素と、アスコルビン酸若しくはトリエタノールアミン等の還元剤との組み合わせが挙げられる。
 光重合開始剤の添加量は、アルカリ可溶性樹脂(B)と反応性化合物(C)との合計量100質量部に対して0.05~40質量部が好ましい。光重合開始剤の添加量が0.05質量部以上であると、感光性導電ペーストを露光した部分の硬化密度が高くなり、現像後の残膜率が高くなる。0.5質量部以上がより好ましい。一方で、光重合開始剤の添加量が40質量部以下であると、感光性導電ペーストを塗布して得られた塗布膜上部での過剰な光吸収が抑制される。その結果、製造された導電パターンが逆テーパー形状となることによる、グリーンシートとの密着性低下が抑制される。30質量部以下がより好ましい。なお、光重合開始剤は、1種でもよいし、2種以上を併用してもよい。
 本発明の導電ペーストは、光重合開始剤と共に、増感剤を含有していても構わない。増感剤としては、例えば、2,4-ジエチルチオキサントン、イソプロピルチオキサントン、2,3-ビス(4-ジエチルアミノベンザル)シクロペンタノン、2,6-ビス(4-ジメチルアミノベンザル)シクロヘキサノン、2,6-ビス(4-ジメチルアミノベンザル)-4-メチルシクロヘキサノン、ミヒラーケトン、4,4-ビス(ジエチルアミノ)ベンゾフェノン、4,4-ビス(ジメチルアミノ)カルコン、4,4-ビス(ジエチルアミノ)カルコン、p-ジメチルアミノシンナミリデンインダノン、p-ジメチルアミノベンジリデンインダノン、2-(p-ジメチルアミノフェニルビニレン)イソナフトチアゾール、1,3-ビス(4-ジメチルアミノフェニルビニレン)イソナフトチアゾール、1,3-ビス(4-ジメチルアミノベンザル)アセトン、1,3-カルボニルビス(4-ジエチルアミノベンザル)アセトン、3,3-カルボニルビス(7-ジエチルアミノクマリン)、N-フェニル-N-エチルエタノールアミン、N-フェニルエタノールアミン、N-トリルジエタノールアミン、ジメチルアミノ安息香酸イソアミル、ジエチルアミノ安息香酸イソアミル、3-フェニル-5-ベンゾイルチオテトラゾール又は1-フェニル-5-エトキシカルボニルチオテトラゾールが挙げられる。なお、増感剤は、1種でもよいし、2種以上を併用してもよい。
 増感剤の添加量は、アルカリ可溶性樹脂(B)と反応性化合物(C)との合計量に対して0.05~30質量部が好ましい。増感剤の添加量が0.05質量部以上であると、露光感度が十分になる。0.1質量部以上がより好ましい。一方で、増感剤の添加量が30質量部以下であると、導電ペーストを塗布して得られた塗布膜上部での過剰な光吸収が抑制される。10質量部以下がより好ましい。その結果、製造された導電パターンが逆テーパー形状となることによる、グリーンシートとの密着性低下が抑制される。
 本発明の感光性導電ペーストは、焼成の際のパターンの収縮制御のために、フィラーを含有していても構わない。セラミックス粉末のフィラーとしては、例えば、アルミナ(Al)、ジルコニア(ZrO)、マグネシア(MgO)、ベリリア(BeO)、ムライト(3Al・2SiO)、コーディライト(5SiO・2Al・2MgO)、スピネル(MgO・Al)、フォルステライト(2MgO・SiO)、アノーサイト(CaO・Al・2SiO)、セルジアン(BaO・Al・2SiO)、シリカ(SiO)、窒化アルミ(AlN)又はフェライト(ガーネット型:YFe12系、スピネル型:MeFe系)が挙げられる。
 ガラス-セラミックス複合系のフィラーとしては、例えば、SiO、Al、CaO、B、MgO又はTiO等を含むガラス組成粉末と、アルミナ、ジルコニア、マグネシア、ベリリア、ムライト、コーディライト、スピネル、フォルステライト、アノーサイト、セルジアン、シリカ及び窒化アルミからなる群から選ばれる無機フィラー粉末と、の混合物が挙げられる。
 本発明の感光性導電ペーストは、その所望の特性を損なわない範囲(通常、ペーストに対して合計で5質量%以下)であれば、それぞれ1種又は2種以上の可塑剤、レベリング剤、分散剤、シランカップリング剤等の添加剤を含有していても構わない。
 可塑剤としては、例えば、ジブチルフタレート、ジオクチルフタレート、ポリエチレングリコール又はグリセリンが挙げられる。
 レベリング剤としては、例えば、高沸点芳香族、ケトン、エステル、シリコーン樹脂又はアクリル樹脂等をケトン、エステル、キシレン又はアルコール類等の溶剤に溶解させた、“Byketol”-OK若しくはSpecial又はBYK-300,302,306,307,335,310,320,322,323,324,325,330,331,344,370,371,354,358若しくは361(以上、ビック・ケミ-社製)が挙げられる。また、分子量が300~3000のアクリル系重合物又は変性ビニル系重合物を、石油ナフサ、キシロール、トルエン、酢酸エチル、1-ブタノール又はミネラルターペン等の溶剤に溶解させた、“ディスパロン”(登録商標)L-1980-50、L-1982-50、L-1983-50、L-1984-50、L-1985-50、#1970、#230、LC-900、LC-951、#1920N、#1925N若しくはP-410(以上、楠本化成株式会社製)、又は、ノニオン系界面活性であるカラースパース188-A、ハイオニックPEシリーズ、モディコールL又はダプロS-65、U-99若しくはW-77(以上、サンノプコ株式会社製)も挙げられる。
 シランカップリング剤としては、例えば、メチルトリメトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、ヘキサメチルジシラザン、3-メタクリロキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン又はビニルトリメトキシシランが挙げられる。
 本発明の感光性導電ペーストは、溶剤を含有していても構わない。溶剤としては、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、ジメチルイミダゾリジノン、ジメチルスルホキシド、ジエチレングリコールモノエチルエーテル、ジプロピレングリコールメチルエーテル、ジプロピレングリコールn-プロピルエーテル、ジプロピレングリコールn-ブチルエーテル、トリプロピレングリコールメチルエーテル、トリプロピレングリコール-n-ブチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ジプロピレングリコールメチルエーテルアセテート、プロピレングリコールフェニルエーテル、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテルアセテート、γ-ブチロラクトン、乳酸エチル、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、エチレングリコールモノ-n-プロピルエーテル、ジアセトンアルコール、テトラヒドロフルフリルアルコール又はプロピレングリコールモノメチルエーテルアセテートが挙げられる。溶剤は、1種でもよいし、2種以上を併用してもよい。溶剤の含有量は、特に限定されないが、通常、ペーストに対して2質量%~40質量%、好ましくは5質量%~30質量%である。
 本発明の感光性導電ペーストは、例えば、三本ローラー、ボールミル若しくは遊星式ボールミル等の分散機又は混練機を用いて製造することができる。
 本発明のセラミックグリーンシート上のパターン製造方法は、本発明の感光性導電ペーストを、セラミックグリーンシート上に塗布して塗布膜を得る、塗布工程と、前記塗布膜を乾燥して乾燥膜を得る、乾燥工程と、前記乾燥膜を露光及び現像してパターンを形成する、露光・現像工程と、を備える。
 塗布工程では、上記した本発明の導電ペーストを、セラミックグリーンシート上に塗布する。塗布は、常法である、ロールコーティング、スピンコーティング、ディップコーティング等により行うことができる。塗布厚さは、特に限定されないが、本発明の導電性ペーストは10μm以上の厚膜でもパターン形成できるという優れた特徴を有するので、塗布膜厚は、好ましくは10μm~___μm程度である。もっとも、10μm未満であってももちろん構わない。
 塗布工程で得られた塗布膜を、乾燥工程において乾燥して溶剤を揮発除去する方法としては、例えば、オーブン、ホットプレート若しくは赤外線等による加熱乾燥又は真空乾燥が挙げられる。加熱温度は、60~120℃が好ましい。乾燥温度が60℃以上であると、溶剤を十分に揮発除去できる。一方で、乾燥温度が120℃以下であれると、感光性導電ペーストの熱架橋を抑制でき、現像非露光部の残渣を低減できる。加熱時間は、5分~数時間が好ましい。
 乾燥工程で得られた乾燥膜は、露光現像工程において露光及び現像される。露光の方法としては、通常のフォトリソグラフィのようにフォトマスクを介して露光する方法が一般的であるが、フォトマスクを用いずに、レーザー光等で直接描画する方法を用いても構わない。露光装置としては、例えば、ステッパー露光機又はプロキシミティ露光機が挙げられる。この際使用される活性光源としては、例えば、近紫外線、紫外線、電子線、X線又はレーザー光等が挙げられるが、紫外線が好ましい。紫外線の光源としては、例えば、低圧水銀灯、高圧水銀灯、超高圧水銀灯、ハロゲンランプ又は殺菌灯が挙げられるが、超高圧水銀灯が好ましい。
 露光後の乾燥膜を、現像液を用いて現像し、非露光部を溶解除去することで、所望のパターンが形成される。アルカリ現像を行う場合の現像液としては、例えば、水酸化テトラメチルアンモニウム、ジエタノールアミン、ジエチルアミノエタノール、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、トリエチルアミン、ジエチルアミン、メチルアミン、ジメチルアミン、酢酸ジメチルアミノエチル、ジメチルアミノエタノール、ジメチルアミノエチルメタクリレート、シクロヘキシルアミン、エチレンジアミン又はヘキサメチレンジアミンの水溶液が挙げられるが、これらの水溶液に、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド若しくはγ-ブチロラクトン等の極性溶媒、メタノール、エタノール若しくはイソプロパノール等のアルコール類、乳酸エチル若しくはプロピレングリコールモノメチルエーテルアセテート等のエステル類、シクロペンタノン、シクロヘキサノン、イソブチルケトン若しくはメチルイソブチルケトン等のケトン類又は界面活性剤を添加しても構わない。有機現像を行う場合の現像液としては、例えば、N-メチル-2-ピロリドン、N-アセチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、ジメチルスルホキシド若しくはヘキサメチルホスホルトリアミド等の極性溶媒又はこれら極性溶媒とメタノール、エタノール、イソプロピルアルコール、キシレン、水、メチルカルビトール若しくはエチルカルビトールとの混合溶液が挙げられる。
 現像の方法としては、例えば、基板を静置又は回転させながら現像液を塗布膜面にスプレーする方法、基板を現像液中に浸漬する方法、又は、基板を現像液中に浸漬しながら超音波をかける方法が挙げられる。
 現像により得られたパターンは、リンス液によるリンス処理を施しても構わない。ここでリンス液としては、例えば、水あるいは水にエタノール若しくはイソプロピルアルコール等のアルコール類又は乳酸エチル若しくはプロピレングリコールモノメチルエーテルアセテート等のエステル類を加えた水溶液が挙げられる。
 上記した方法は、セラミックグリーンシート上に直接本発明の導電性ペーストを塗布してパターン形成する方法であるが、本発明の導電性ペーストを、一旦、フィルム(通常、樹脂フィルム)のような仮支持体上に導電性ペーストを塗布してパターンを形成した後、セラミックグリーンシート上に転写することによっても、セラミックグリーンシート上の導電パターンを製造することができる。この方法では、感光性導電ペーストを、仮支持体上に塗布して塗布膜を得る、塗布工程と、前記塗布膜を乾燥して乾燥膜を得る、乾燥工程と、前記乾燥膜を露光及び現像してパターンを形成する、露光・現像工程と、前記パターンを転写してセラミックグリーンシート上にパターンを形成する、転写工程と、を備える。ここで、塗布工程、乾燥工程、露光・現像工程はそれぞれ上記と同様にして行うことができる。
 現像後の仮支持体上に形成されたパターンは、転写して、セラミックグリーン上にパターンを形成できる。転写方法としては、パターン形成したフィルムと、セラミックグリーンシートを真空ラミネータを用いて、50~150℃で加熱しながら、1~30MPaの圧力で加圧する方法が挙げられる。
 本発明のセラミック部材の製造方法は、本発明の導電パターンの製造方法によりセラミックグリーンシート上にパターンを形成することを含む。通常、導電パターンを形成したセラミックグリーンシートを積層及び熱圧着して積層体を得る、積層工程と、上記積層体を焼成してセラミック部材を得る、焼成工程と、を備える。グリーンシート上に形成されたパターンは有機成分と導電性粉末(A)との複合物となっており、導電性粉末(A)同士が焼成時に接触することで導電性が発現するものであり、セラミック部材等の内部配線として好適に用いることができる。
 本発明のセラミック部材の製造方法の具体的な一例として、積層チップインダクタの製造方法を以下に説明する。
 まず、グリーンシートにビアホールを形成し、そこへ導体を埋め込んで、層間接続配線を形成する。そのグリーンシート上に、本発明のパターンの製造方法により内部配線を形成し、必要に応じて誘電体又は絶縁体パターンも形成する。層間接続配線及び内部配線を形成したグリーンシートを積層して熱圧着し、積層体を得る。得られた積層体は所望のチップサイズに切断してから焼成し、端子電極を塗布してからめっき処理をすることで、積層チップインダクタを得ることができる。
 グリーンシートにビアホールを形成する方法としては、例えば、レーザー照射が挙げられる。
 ビアホールに導体を埋め込む方法としては、例えば、スクリーン印刷法で導体ペーストをビアホールへ埋め込んで、その後乾燥させる方法が挙げられる。導体ペーストとしては、例えば、銅、銀又は銀-パラジウムを含有するペーストを用いることができるが、層間接続配線と内部配線とを一度に形成してプロセスを簡略化できることから、本発明の感光性導電ペーストを用いることが好ましい。
 誘電体又は絶縁体パターンを形成する方法としては、例えば、スクリーン印刷法が挙げられる。
 層間接続配線及び内部配線を形成したグリーンシートを積層する方法としては、例えば、必要な枚数をガイド孔を用いて積み重ねる方法が挙げられる。またその後の熱圧着の方法としては、例えば、油圧式プレス機を用いて90~130℃、5~20MPaの条件で圧着する方法が挙げられる。
 熱圧着後に得られた積層体を切断する方法としては、例えば、ダイス切断機を用いる方法が挙げられる。切断後の積層体を焼成する方法としては、例えば、300~600℃で5分~数時間保持した後、さらに850~900℃で5分~数時間保持する方法が挙げられる。
 端子電極を塗布する方法としては、例えば、スパッタが挙げられる。まためっき処理する金属としては、例えば、ニッケル又はスズが挙げられる。
 以下、実施例及び比較例を挙げて、本発明をさらに詳しく説明するが、本発明はこれらに限定されるものではない。
 <感光性導電ペーストの原料>
 用いた原料は以下のとおりである。
導電性粉末(A-1) : D50が2.5μmのAg粒子
導電性粉末(A-2) : D50が2μmのW粒子
アルカリ可溶性樹脂 : メタクリル酸/メタクリル酸メチル/スチレン=54/23/23からなる共重合体のカルボキシル基に対して、0.4当量のグリシジルメタクリレートを付加反応させたもの
反応性化合物(C-1)~(C-5) : 1L容の4つ口フラスコ内に、表1記載の重量(g)のペンタエリスリトールテトラ(メルカプトアセテート)、ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールペンタアクリレートと、ハイドロキノンおよびベンジルジメチルアミンを加え、60℃で12時間反応させて得た。得られた樹枝状ポリマーにつき、ヨードメトリー法にてメルカプト基の消失を確認した。ゲル透過クロマトグラフィー(装置:東ソー(株)製、HLC-8220GPC、カラム:Shodex KF-804L+KF-803L、カラム温度:40℃、溶媒:テトラヒドロフラン)を用いて分子量を確認したところ、表1記載の分子量であった、ヨウ素滴定を用いて二重結合当量を確認したところ、表1記載の二重結合当量であった。
Figure JPOXMLDOC01-appb-T000006
反応性化合物(C-6) :東亜合成製アロニクスM402(分子量:565、二重結合当量:100)
光重合開始剤 : N1919(ADEKA社製)
レべリング剤 : L1980(楠本化成社製)
溶剤 : ジプロピレングリコールn-ブチルエーテル(ダイセル社製)
 <感光性導電ペーストの製造>
 ガラスフラスコに、表2記載の体積%になるようにアルカリ可溶性樹脂(B)、反応性化合物(C)、光重合開始剤、レべリング剤、分散剤及び溶剤を採取して、60℃で60分撹拌し、感光性有機成分を得た。この感光性有機成分に、さらに表1記載の体積%になるように導電性粉末(A)を添加し、撹拌した後に3本ローラー(EXAKT M-50;EXAKT社製)にて混練し、感光性導電ペーストP1を製造した。
 組成を表2記載のものに変更した以外は同様の方法で、感光性導電ペーストP2~P9をそれぞれ製造した。
Figure JPOXMLDOC01-appb-T000007
実施例1
 グリーンシート(GCS71F;山村フォトニクス(株)製)上に、感光性導電ペーストP1を乾燥後膜厚が10μm及び、15μmになるようにスクリーン印刷法で塗布し、得られた塗布膜を80℃の熱風乾燥機で10分乾燥して、グリーンシート上の乾燥膜P1を得た。同様の操作を繰り返し、膜厚が異なる2種類のグリーンシート上乾燥膜P1を複数用意した。
 2種類の乾燥膜P1各2枚に、コイル状パターンのライン幅/スペース幅(以下、「L/S」)が20μm/20μm、100μm/100μmの2種類の露光マスクをそれぞれ介して、いずれも21mW/cmの出力の超高圧水銀灯により照射量400mJ/cmの露光(波長365nm換算)を行った。
 その後、0.1質量%炭酸ナトリウム水溶液を現像液として、非露光部が全て溶解する時間(以下、「全溶解時間」)までシャワー現像し、膜厚及びL/Sが異なる4種類のパターン形成シートP1を製造した。
 膜厚及び、L/Sが異なる4種類のパターン形成シートP1を、それぞれ光学顕微鏡で観察し、パターン加工性について以下基準で評価したところ、いずれも○であった。
パターン欠陥なし            :○
パターンに亀裂及び、剥がれがある    :×
 膜厚及び、L/Sが異なる4種類のパターン形成シートP1の断面をそれぞれ走査型電子顕微鏡(S2400;日立製作所製)で観察し、パターンの断面形状を以下基準で評価したところ、いずれも○であった。
最頂部幅-最底部幅<5μm       :○
5μm≦最頂部幅-最底部幅≦10μm  :△
なお、断面形状は、最頂部幅と最底部幅の差が小さい方が、導電性パターンの体積を維持できるため、狙いの抵抗値を維持できる。また、パターンが矩形に近づくため、積層・焼成でのパターン変形等を防ぐことができ好ましい。
 別途、膜厚及び、L/Sが異なる4種類のパターン形成シートP1を各4枚用意し、それらをガイド孔を用いて積み重ね、油圧式プレス機を用いて90℃、15MPaの条件で圧着し、膜厚及び、L/Sが異なる4種類の4層積層シートP1を製造した。
 得られた4種類の4層積層シートP1をダイス切断機を用いて0.3mm×0.6mm×0.3mmのサイズに切断し、いずれも350℃で10時間保持した後、さらに880℃で10分保持して焼成し、4層積層焼成シートP1を製造した。
 それぞれの積層焼成シートP1の断面を、走査型電子顕微鏡(S2400;日立製作所製)で観察し、下記の基準で欠陥有無を評価したところ、いずれも○であった。
層内の欠陥及び、内部導電性パターンに断線がない : ○
層内の欠陥及び、内部導電性パターンに断線がある : ×
実施例2~9及び比較例1
 表2記載の感光性導電ペーストを用いた以外は実施例1と同様の方法で、パターン形成シート等をそれぞれ製造し、パターン加工性、パターン断面形状及び積層焼成シートの欠陥有無を評価した。評価結果を、表3に示す。
Figure JPOXMLDOC01-appb-T000008
実施例10
 フィルム(PEN;帝人社製)上に、感光性導電ペーストP1を乾燥後膜厚が15μmになるようにスクリーン印刷法で塗布し、得られた塗布膜を80℃の熱風乾燥機で10分乾燥して、フィルム上の乾燥膜P1を得た。
 乾燥膜P1について、L/Sが20/20μmのコイル状パターンの露光マスクを介して、21mW/cmの出力の超高圧水銀灯により照射量400mJ/cmの露光(波長365nm換算)を行った。その後、0.1質量%炭酸ナトリウム水溶液を現像液として、全溶解時間までシャワー現像し、パターン形成シートP1を製造した。このパターン形成シートP1のパターンを真空ラミネーターを用いてビアホール形成済みのグリーンシート(GCS71F;山村フォトニクス社製)に80℃で加熱しながら、2MPaで転写し、転写パターンシートP1を製造した。この転写パターンシートP1を10枚用意し、ガイド孔を用いて積み重ね、油圧式プレス機を用いて90℃、15MPaの条件で圧着し、10層積層シートP1を製造した。得られた10層積層シートP1をダイス切断機を用いて0.3mm×0.6mm×0.3mmのサイズに切断し、350℃で10時間保持した後、さらに880℃で10分保持して焼成し、10層積層焼成シートP1を製造した。
 得られた10層積層焼成シートP1に、スパッタで端子電極を塗布した後、ニッケル及びスズでめっき処理を行い、積層チップインダクタを製造した。この積層チップインダクタの電気特性を評価をしたが、断線、ショート等の問題はなかった。
 本発明の感光性導電ペーストは、セラミック部材等の内部配線パターンの製造のために好適に利用することができる。

Claims (9)

  1.  導電性粉末(A)、アルカリ可溶性樹脂(B)及び、炭素-炭素二重結合を1つ以上有する1種又は2種以上の反応性化合物(C)を含有し、前記1種又は2種以上の反応性化合物(C)の少なくとも1種が樹状分岐化合物(C1)である感光性導電ペースト。
  2.  前記樹状分岐化合物(C1)の二重結合当量が110~150且つ、重量平均分子量が15000~25000である、請求項1記載の感光性導電ペースト。
  3.  前記樹状分岐化合物(C1)が、一般式(1):
    Figure JPOXMLDOC01-appb-I000001
    一般式(1)中、Rは水素又は炭素数1~4のアルキル基を表し、Rは化合物R(OH)mのうちn個のヒドロキシル基を式中のエステル結合に供与した残り部分を表し、R(OH)mは、炭素数2~8の非芳香族の直鎖又は分枝鎖の炭化水素骨格に基づく多価アルコールであるか、該多価アルコールの複数分子がアルコールの脱水縮合によりエーテル結合を介して連結してなる多価アルコールエーテルであるか、又はこれらの多価アルコール又は多価アルコールエーテルとヒドロキシ酸とのエステルであり、ここにmは2~50の整数を表し、m≧nであり、nは2~20の整数を表す
    で示される多官能(メタ)アクリレート化合物と、一般式(2):
    Figure JPOXMLDOC01-appb-I000002

    一般式(2)中、Rは、単結合であるか、炭素数1の炭化水素基若しくは炭素数2~5の、骨格中に酸素原子を更に含んでいてよく、直鎖又は分枝鎖であってよい炭化水素基であるか、又はそれら炭化水素基に更に式(2)のチオメチル基の少なくとも一部と結合しているカルボニルオキシ基を有する基であり、pは2~6の整数を表し、但しRが単結合を表すときはpは2を表し、Rの炭素数が1であるときはpは2~4の整数を表す
    で示される多価メルカプト化合物との反応物である、請求項1又は2記載の感光性導電ペースト。
  4.  ペーストの固形分中に占める前記反応性化合物(C)の割合が、5~30体積%であり、反応性化合物(C)中の樹状分岐化合物(C1)の割合が、50体積%以上である、請求項1~3記載の感光性導電ペースト。
  5.  前記導電性粉末(A)が、銀、金、銅、白金、パラジウム、スズ、ニッケル、アルミニウム、タングステン、モリブデン、酸化ルテニウム、クロム、チタン及びインジウム並びにこれらの金属の合金からなる群から選ばれる金属粒子である、請求項1~4のいずれか一項記載の感光性導電ペースト。
  6.  ペーストの固形分中に占める前記導電性粉末(A)の割合が、25~45体積%である、請求項1~5のいずれか一項記載の感光性導電ペースト。
  7.  請求項1~6のいずれか一項記載の感光性導電ペーストを、セラミックグリーンシート上に塗布して塗布膜を得る、塗布工程と、
     前記塗布膜を乾燥して乾燥膜を得る、乾燥工程と、
     前記乾燥膜を露光及び現像してパターンを形成する、露光・現像工程と、
     を備える、セラミックグリーンシート上の導電パターンの製造方法。
  8.  請求項1~6のいずれか一項記載の感光性導電ペーストを、仮支持体上に塗布して塗布膜を得る、塗布工程と、
     前記塗布膜を乾燥して乾燥膜を得る、乾燥工程と、
     前記乾燥膜を露光及び現像してパターンを形成する、露光・現像工程と、
     前記パターンを転写してセラミックグリーンシート上にパターンを形成する、転写工程と、を備える、セラミックグリーンシート上の導電パターンの製造方法。
  9.  請求項7又は8記載の製造方法により導電パターンを形成したセラミックグリーンシートを積層及び圧着して積層体を得る、積層工程と、
     前記積層体を焼成してセラミック部材を得る、焼成工程と、を備える、セラミック部材の製造方法。
PCT/JP2016/078774 2015-09-30 2016-09-29 感光性導電ペースト及びそれを用いた導電パターンの製造方法 WO2017057544A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016560598A JPWO2017057544A1 (ja) 2015-09-30 2016-09-29 感光性導電ペースト及びそれを用いた導電パターンの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015192765 2015-09-30
JP2015-192765 2015-09-30

Publications (1)

Publication Number Publication Date
WO2017057544A1 true WO2017057544A1 (ja) 2017-04-06

Family

ID=58427678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078774 WO2017057544A1 (ja) 2015-09-30 2016-09-29 感光性導電ペースト及びそれを用いた導電パターンの製造方法

Country Status (3)

Country Link
JP (1) JPWO2017057544A1 (ja)
TW (1) TW201727364A (ja)
WO (1) WO2017057544A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019103487A1 (ko) * 2017-11-24 2019-05-31 주식회사 엘지화학 포토레지스트 조성물 및 이를 이용한 포토레지스트 필름
JP2020160294A (ja) * 2019-03-27 2020-10-01 キヤノン株式会社 トナー
KR20210004941A (ko) * 2018-04-19 2021-01-13 도레이 카부시키가이샤 감광성 도전 페이스트 및 그것을 사용한 패턴 형성 그린 시트의 제조 방법
KR20230157391A (ko) 2021-03-11 2023-11-16 가부시키가이샤 노리타케 캄파니 리미티드 감광성 조성물과 그의 이용

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1075039A (ja) * 1996-05-31 1998-03-17 Toray Ind Inc パターン形成したセラミックスグリーンシートの製造法
JP2000199954A (ja) * 1999-01-06 2000-07-18 Toray Ind Inc 感光性導電ペ―ストおよび微細電極パタ―ン形成方法
WO2004008818A1 (ja) * 2002-07-10 2004-01-22 Taiyo Ink Mfg. Co., Ltd. セラミックグリーンシートへのパターン形成方法およびその形成方法に用いる導電性ペースト
WO2008047620A1 (fr) * 2006-10-10 2008-04-24 Osaka Organic Chemical Industry Co., Ltd. Polymère hyperramifié, son procédé de fabrication et composition de résine
JP2015110745A (ja) * 2013-11-01 2015-06-18 セメダイン株式会社 光硬化型導電性組成物
JP2015158638A (ja) * 2014-02-25 2015-09-03 東洋インキScホールディングス株式会社 感光性樹脂組成物、ならびにそれを用いた塗膜
WO2016158949A1 (ja) * 2015-03-31 2016-10-06 日産化学工業株式会社 感光性無電解めっき下地剤

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1075039A (ja) * 1996-05-31 1998-03-17 Toray Ind Inc パターン形成したセラミックスグリーンシートの製造法
JP2000199954A (ja) * 1999-01-06 2000-07-18 Toray Ind Inc 感光性導電ペ―ストおよび微細電極パタ―ン形成方法
WO2004008818A1 (ja) * 2002-07-10 2004-01-22 Taiyo Ink Mfg. Co., Ltd. セラミックグリーンシートへのパターン形成方法およびその形成方法に用いる導電性ペースト
WO2008047620A1 (fr) * 2006-10-10 2008-04-24 Osaka Organic Chemical Industry Co., Ltd. Polymère hyperramifié, son procédé de fabrication et composition de résine
JP2015110745A (ja) * 2013-11-01 2015-06-18 セメダイン株式会社 光硬化型導電性組成物
JP2015158638A (ja) * 2014-02-25 2015-09-03 東洋インキScホールディングス株式会社 感光性樹脂組成物、ならびにそれを用いた塗膜
WO2016158949A1 (ja) * 2015-03-31 2016-10-06 日産化学工業株式会社 感光性無電解めっき下地剤

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019103487A1 (ko) * 2017-11-24 2019-05-31 주식회사 엘지화학 포토레지스트 조성물 및 이를 이용한 포토레지스트 필름
US10990009B2 (en) 2017-11-24 2021-04-27 Lg Chem, Ltd. Photoresist composition and photoresist film using the same
KR20210004941A (ko) * 2018-04-19 2021-01-13 도레이 카부시키가이샤 감광성 도전 페이스트 및 그것을 사용한 패턴 형성 그린 시트의 제조 방법
KR102656350B1 (ko) * 2018-04-19 2024-04-11 도레이 카부시키가이샤 감광성 도전 페이스트 및 그것을 사용한 패턴 형성 그린 시트의 제조 방법
JP2020160294A (ja) * 2019-03-27 2020-10-01 キヤノン株式会社 トナー
JP7317540B2 (ja) 2019-03-27 2023-07-31 キヤノン株式会社 トナー
KR20230157391A (ko) 2021-03-11 2023-11-16 가부시키가이샤 노리타케 캄파니 리미티드 감광성 조성물과 그의 이용

Also Published As

Publication number Publication date
TW201727364A (zh) 2017-08-01
JPWO2017057544A1 (ja) 2018-07-19

Similar Documents

Publication Publication Date Title
CN111954847B (zh) 感光性导电糊剂以及使用其的形成有图案的生片的制造方法
JP6150021B2 (ja) 導電パターン形成部材の製造方法
WO2017057544A1 (ja) 感光性導電ペースト及びそれを用いた導電パターンの製造方法
TWI592949B (zh) 感光性導電糊、積層基板及導電圖案的製造方法
JP2006285226A (ja) 感光性セラミックス組成物
JP2017182901A (ja) 感光性導電ペースト及び、それを用いた電子部品の製造方法
WO2018038074A1 (ja) 感光性ペースト、セラミックグリーンシート、電子部品、パターンの製造方法および電子部品の製造方法
JP2007086268A (ja) 感光性シート
JPH1075039A (ja) パターン形成したセラミックスグリーンシートの製造法
WO2017208842A1 (ja) 積層パターン形成基材及びタッチパネルの製造方法
KR101788100B1 (ko) 도전 페이스트 및 도전 패턴의 제조 방법
JP2007197312A (ja) 拘束シートおよび焼結体の製造方法
JP7230347B2 (ja) 感光性ペースト、それを用いた硬化膜、焼成体および電子部品とその製造方法
TWI704417B (zh) 感光性導電糊及附有導電圖案之基板的製造方法
JP2018087897A (ja) 感光性ペーストおよびそれを用いたパターンの製造方法
JP2006272713A (ja) セラミックス基板の製造方法
CN116137900A (zh) 感光性导电糊剂、固化物、烧成体、电子部件、带有电路图案的绝缘性陶瓷层的制造方法、电子部件的制造方法、带有电路图案的基板的制造方法及电感器的制造方法
WO2023032536A1 (ja) 感光性導電ペースト、導電パターン付き基材の製造方法、電子部品の製造方法、硬化膜、焼成体および電子部品
JP2023134944A (ja) 感光性導電ペースト、導電パターン付き基材の製造方法、硬化膜、焼成体の製造方法、焼成体および電子部品
JP2020083947A (ja) ペースト、それを用いた硬化膜、焼成体、電子部品とその製造方法および配線つきセラミック積層体
JP4507873B2 (ja) 感光性セラミックス組成物
WO2018029749A1 (ja) 導電パターン形成部材の製造方法
JP2007199231A (ja) 支持体付感光性セラミックスグリーンシート及び感光性セラミックスグリーンシートの製造方法
JP2017174705A (ja) 導電ペースト、導電パターンの製造方法、及び、導電パターンを具備する基板
JP2006285227A (ja) 成形体の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016560598

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851715

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16851715

Country of ref document: EP

Kind code of ref document: A1