WO2022030324A1 - 導電ペースト、プリント配線板、プリント配線板の製造方法、プリント回路板の製造方法 - Google Patents

導電ペースト、プリント配線板、プリント配線板の製造方法、プリント回路板の製造方法 Download PDF

Info

Publication number
WO2022030324A1
WO2022030324A1 PCT/JP2021/027862 JP2021027862W WO2022030324A1 WO 2022030324 A1 WO2022030324 A1 WO 2022030324A1 JP 2021027862 W JP2021027862 W JP 2021027862W WO 2022030324 A1 WO2022030324 A1 WO 2022030324A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive paste
film
conductive
elastic modulus
storage elastic
Prior art date
Application number
PCT/JP2021/027862
Other languages
English (en)
French (fr)
Inventor
水口創
伊月直秀
田島いづみ
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN202180047180.7A priority Critical patent/CN115769145A/zh
Priority to JP2021545380A priority patent/JP7067676B1/ja
Priority to KR1020227037159A priority patent/KR20230048623A/ko
Priority to JP2022004121A priority patent/JP7111267B2/ja
Publication of WO2022030324A1 publication Critical patent/WO2022030324A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/033Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. vinyl polymers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector

Definitions

  • the present invention relates to a conductive paste, a printed wiring board, a method for manufacturing a printed wiring board, and a method for manufacturing a printed circuit board.
  • a conductive photoresist or the like to which conductive fine particles are added is applied to the surface of the printed wiring board, and then exposed and developed to form a conductive bump on the electrode of the printed wiring board. Then, a method of joining the conductive bump and the LED electrode via a conductive adhesive is known (see, for example, Patent Document 1).
  • Patent Document 1 has a problem that the number of processes increases and the production efficiency is poor because a separate adhesive is required to bond the conductive bump and the LED electrode.
  • an object of the present invention is to provide a conductive paste that can mount an LED at a low temperature and a low pressure without using a separate adhesive and can increase the bonding strength between the conductive bump and the LED electrode.
  • the present invention mainly has the following configurations in order to solve the above problems.
  • the conductive paste of the present invention can mount electronic components with high bonding strength at low temperature and low pressure without using a separate adhesive.
  • the conductive paste of the present invention refers to a paste in which conductive particles are dispersed in an organic component, and is a non-photosensitive conductive paste and an organic component used by removing a solvent and thermally curing a resin after coating on a substrate. It also includes a photosensitive conductive paste that can be adjusted to form a pattern by exposure and development processes.
  • the conductive paste of the present invention is a conductive paste containing an organic component and conductive particles, and has a storage elastic modulus G'(P100) of the dried film of the conductive paste at 100 ° C. of 0.01 MPa or less and 140 ° C.
  • the storage elastic modulus G'(C25) at 25 ° C. after heating for 30 minutes is 0.01 MPa or more.
  • the storage elastic modulus G'(P25) of the dried film of the conductive paste at 25 ° C. is 0.1 MPa or more, workability is improved such that shape change due to contact or external pressure during the process can be suppressed. ..
  • the storage elastic modulus G'(P25) at 25 ° C. is 0.00001 to 0.01 MPa
  • the storage elastic modulus G'(P25) at 25 ° C. is 0.1 to 50,000 MPa.
  • the storage elastic modulus G'(C25) at 25 ° C. after heating at 140 ° C. for 30 minutes is 0.01 to 100,000 MPa, both workability and low-temperature mountability can be achieved.
  • the storage elastic modulus G'(P100) of the dry film at 100 ° C. is 1/10 or less of the storage elastic modulus G'(P25) of the dry film at 25 ° C., both workability and low temperature mountability can be further achieved. become.
  • a conductive paste satisfying the above conditions there is a conductive paste containing a carboxyl group-containing polymer, a photopolymerization initiator, an epoxy resin and a novolak type phenol resin as organic components.
  • the conductive paste containing these components can not only further increase the die shear strength after mounting, but also enable the formation of fine bumps by exposing the dry film and developing it. Further, by containing the curing catalyst of the epoxy resin, the curing reaction of the epoxy resin can be promoted, and the die share strength can be further increased.
  • the storage elastic modulus G'(E100) of the film after exposing the dry film of the conductive paste to an i-line (wavelength 365 nm) exposure amount of 500 mJ / cm 2 at 100 ° C. is the storage elastic modulus G'(E25) at 25 ° C. When it is 1/10 or less of, it becomes possible to achieve both fine workability and low temperature mountability.
  • the conductive paste that can form a pattern by exposure and development is a photosensitive conductive paste containing a photosensitive component and conductive particles, and the photosensitive conductive paste is dried at 100 ° C. for 30 minutes.
  • the obtained dry film was exposed to an i-line (wavelength 365 nm) exposure of 500 mJ / cm 2 , and was shower-developed with a 0.1 mass% sodium carbonate aqueous solution for 30 seconds.
  • the storage elastic modulus of the film at 100 ° C. G'(D100) is less than 0.01 MPa
  • the storage elastic modulus G'(C25) at 25 ° C. after heating the developed film at 140 ° C. for 30 minutes is 0.01 MPa or more.
  • the "storage elastic modulus G'(D100)” is the storage elastic modulus G'when the dynamic viscoelasticity measurement (temperature dependence) of the developed film is performed by a rheometer.
  • Dynamic viscoelasticity is a component (elastic component) that matches the phase of the shear stress that appears when a steady state is reached when shear strain is applied to the material at a sine frequency, and the strain and phase are It is a method to analyze the dynamic mechanical properties of a material by decomposing it into a component (viscous component) delayed by 90 °.
  • the storage elastic modulus G' is the stress component whose phase matches the shear strain divided by the shear strain.
  • the storage modulus G' represents the elasticity of the material to dynamic strain at each temperature and is related to the hardness of the film after development. Therefore, the storage elastic modulus G'at each measured temperature affects the following characteristics of the developed film. Specifically, G'(D100) affects the fluidity of the developed film during heating, and G'(C25) affects the bonding strength of the cured film.
  • the bonding strength between the bump formed by using the photosensitive conductive paste and the electronic component bonded to the bump is improved. ..
  • the bump is formed by heating and crimping the electrode portion of the electronic component and the bump while heating at 100 ° C. or higher, so that the bump is formed according to the electrode shape of the electronic component. This is because a high adhesion force can be obtained between the bump and the electrode because it flows and deforms quickly.
  • G'(D100) is more preferably 0.007 MPa or less.
  • the lower limit of G'(D100) is not particularly limited, but if the fluidity of the conductive bumps during heat crimping is too high, short-circuit defects that electrically connect to adjacent electronic components will occur. From the viewpoint of prevention, it is preferably 0.002 MPa or more.
  • the cured film described above has a G'(C25) of 0.01 MPa or more, more preferably 0.05 MPa or more.
  • G'(C25) is not particularly limited, but from the viewpoint of ease of repair when a malfunction of the electronic component is found after joining the electronic component and the printed wiring board, G'(C25) ) Is preferably 1.0 MPa or less.
  • both G'(D100) and G'(C25) are often 0.01 MPa or more.
  • the photopolymerizability described later is added to the paste. Examples thereof include a method of containing a carboxyl group-containing resin having a group and a carboxyl group-containing resin having no photopolymerizable group.
  • the joint strength between the electronic component and the bump can be evaluated by, for example, the die shear strength.
  • the die shear strength is an index showing the joining strength when a force in the horizontal direction (force in the shearing direction) is applied to the joining member joined to the member to be joined.
  • the die shear strength can be measured using a general die shear strength measuring device.
  • the conductive paste of the present invention preferably contains a photosensitive component.
  • a photosensitive component By containing the photosensitive component, it is possible to form fine conductive bumps with high positional accuracy on the electrodes of the printed wiring board.
  • the photosensitive component include a photopolymerization initiator, a compound having an unsaturated double bond, a carboxyl group-containing resin having a photopolymerizable group, and the like.
  • the conductive paste of the present invention preferably contains a photopolymerization initiator.
  • the photopolymerization initiator include benzophenone derivatives, acetophenone derivatives, thioxanthone derivatives, benzyl derivatives, benzoin derivatives, oxime compounds, ⁇ -hydroxyketone compounds, ⁇ -aminoalkylphenone compounds, phosphinoxide compounds, anthrone compounds, and anthraquinones. Examples include compounds.
  • the content of the photopolymerization initiator in the conductive paste of the present invention is preferably 0.05 to 30 parts by weight with respect to 100 parts by weight of the carboxyl group-containing resin having a photopolymerizable group.
  • the content of the photopolymerization initiator is 0.05 parts by weight or more, the curing density of the exposed portion is increased, and the residual film ratio after development can be increased.
  • the content of the photopolymerization initiator is 30 parts by weight or less, the wiring pattern thickening due to excessive light absorption by the photopolymerization initiator on the upper portion of the coating film obtained by applying the photosensitive conductive paste is suppressed and fine. Workability can be further improved.
  • the conductive paste of the present invention preferably contains a compound having an unsaturated double bond.
  • the "compound having an unsaturated double bond” means a monomer having an unsaturated double bond.
  • Examples of the compound having an unsaturated double bond include ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, 1.4-butanediol dimethacrylate, neopentyl glycol dimethacrylate, glycerin dimethacrylate, and 2-hydroxyl.
  • the content of the compound having an unsaturated double bond in the conductive paste of the present invention is preferably 1 to 100 parts by weight with respect to 100 parts by weight of the carboxyl group-containing resin having a photopolymerizable group.
  • the content of the compound having an unsaturated double bond is 1 part by weight or more, the crosslink density of the exposed part is increased, and the difference in solubility between the unexposed part and the exposed part in the developing solution can be increased, and fine processing can be performed. The sex can be improved.
  • G'(D100) can be further reduced.
  • the conductive paste of the present invention preferably contains a carboxyl group-containing resin having a photopolymerizable group as a photosensitive component.
  • this resin contains a carboxyl group, the alkali developability can be enhanced and the microfabrication by the photolithography method can be enhanced. Further, since this resin has a photopolymerizable group, it remains as an organic component in the film after development. Therefore, it is possible to suppress the phenomenon that G'(D100) increases due to an increase in the proportion of conductive particles in the film due to a decrease in the film (decrease in organic components) during development.
  • Examples of the carboxyl group-containing resin having a photopolymerizable group include a carboxyl group-containing acrylic copolymer, a carboxylic acid-modified epoxy resin, a carboxylic acid-modified phenol resin, a polyamic acid, and a carboxylic acid-modified siloxane polymer. Two or more of these may be contained. Among these, a carboxyl group-containing acrylic copolymer having a high ultraviolet light transmittance or a carboxylic acid-modified epoxy resin is preferable, and a carboxylic acid-modified epoxy resin is more preferable.
  • carboxyl group-containing acrylic copolymer a copolymer of an acrylic monofunctional monomer and an unsaturated acid or an acid anhydride thereof is preferable.
  • acrylic monofunctional monomer examples include methyl acrylate, ethyl acrylate, 2-ethylhexyl acrylate, n-butyl acrylate, isobutyl acrylate, isopropane acrylate, glycidyl acrylate, butoxytriethylene glycol acrylate, dicyclopentanyl acrylate, and dicyclo.
  • unsaturated acids or acid anhydrides thereof include acrylic acid, methacrylic acid, itaconic acid, crotonic acid, maleic acid, fumaric acid, vinyl acetate, and acid anhydrides thereof. Two or more of these may be used.
  • the acid value of the carboxyl group-containing acrylic copolymer can be adjusted by the copolymerization ratio of the unsaturated acid.
  • the carboxylic acid-modified epoxy resin a reaction product of an epoxy compound and an unsaturated acid or an unsaturated acid anhydride is preferable.
  • the carboxylic acid-modified epoxy resin is a carboxylic acid-modified epoxy resin obtained by modifying the epoxy group of an epoxy compound with a carboxylic acid or a carboxylic acid anhydride, and does not contain an epoxy group.
  • Examples of the epoxy compound include glycidyl ethers, glycidyl amines, and epoxy resins. More specifically, examples of the glycidyl ethers include methyl glycidyl ether, ethyl glycidyl ether, butyl glycidyl ether, ethylene glycol diglycidyl ether, diethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, and tripropylene glycol diglycidyl ether.
  • the glycidylamines include tert-butylglycidylamine and the like.
  • the epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, biphenyl type epoxy resin, novolak type epoxy resin, hydrogenated bisphenol A type epoxy resin and the like. Two or more of these may be used.
  • An unsaturated double bond can be introduced by reacting the above-mentioned carboxyl group-containing acrylic copolymer or carboxylic acid-modified epoxy resin with a compound having an unsaturated double bond such as glycidyl (meth) acrylate. ..
  • a compound having an unsaturated double bond such as glycidyl (meth) acrylate. ..
  • the acid value of the carboxyl group-containing resin having a photopolymerizable group can be adjusted to a desired range by the ratio of the unsaturated acid in the constituent components.
  • a carboxylic acid-modified epoxy resin it can be adjusted to a desired range by reacting with a polybasic acid anhydride.
  • the ratio of the polybasic acid anhydride in the constituents can be adjusted to a desired range.
  • the conductive paste of the present invention preferably contains an epoxy resin.
  • the epoxy resin include bisphenol A type, cresol novolak type, phenol novolak type, bisphenol A novolak type, dicyclopentadiene type, naphthalene type and the like, and among them, those having a softening point of 30 ° C. or higher and 100 ° C. or lower are preferable. .. If the softening point is 30 ° C.
  • EPICRON N-660 softening point 61 to 69 ° C.
  • EPICRON N-670 softening point 68 to 76 ° C.
  • EPICRON N-680 softening point 80 to 90 ° C.
  • EPICRON N-770 softening point 65-75 ° C
  • EPICRON N-775 softening point 70-80 ° C
  • EPICRON N-865 softening point 64-72 ° C
  • EPICRON N-890 softening point 75-90) ° C.
  • EPICRON HP-7200L softening point 50-60 ° C.
  • EPICRON HP-7200 softening point 57-68 ° C.
  • EPICRON HP-7200H softening point 75-90 ° C.
  • EPICRON HP-4700 softening point 85 ° C.) -98 ° C
  • KAYARAD NC-3000 softening point 53-63 ° C) manufactured by Nippon Kayaku Co., Ltd., NC-3000H (softening point 65-75 ° C), and the like. Two or more of these may be used.
  • the conductive paste of the present invention preferably contains a novolak-type phenol resin.
  • the bonding strength between the conductive bump and the electronic component such as the LED electrode can be increased.
  • those having a softening point of 30 ° C. or higher and 100 ° C. or lower are preferable. If the softening point is 30 ° C. or higher, it is possible to suppress the occurrence of short-circuit defects with neighboring bumps due to excessive flow during heat crimping, and if it is 100 ° C. or lower, component mounting at low temperature is possible.
  • KAYARAD GPH-65 softening point 63 to 69 ° C
  • KAYARAD GPH-103 Meiwa Kasei Co., Ltd.
  • H-4 softening point 67 to 75 ° C
  • HF HF manufactured by Nippon Kayaku Co., Ltd.
  • the total amount of the epoxy resin and the novolak-type phenol resin added in the present invention is preferably 1 to 100 parts by weight with respect to 100 parts by weight of the carboxyl group-containing polymer. If the total addition amount of the epoxy resin and the novolak type phenol resin is 1 part by weight or more, the bonding strength between the conductive bump and the electronic component such as the LED electrode can be increased, and if it is 100 parts by weight or less, it is melted during development. It is possible to improve the properties and high-resolution patterning is possible.
  • the ratio of the epoxy resin to the novolak-type phenol resin is preferably adjusted to the ratio of the epoxy equivalent of the epoxy resin to be used and the hydroxyl group equivalent of the novolak-type phenol resin.
  • the conductive paste of the present invention preferably contains a curing accelerator that accelerates the curing of the epoxy resin and the novolak type phenol resin.
  • a curing accelerator that accelerates the curing of the epoxy resin and the novolak type phenol resin.
  • the bonding strength between the conductive bump and the electronic component such as the LED electrode can be increased.
  • imidazoles, dicyandiamide derivatives, quaternary ammonium salts, triphenylphosphine, tetraphenylphosphonium tetraphenylborate can be mentioned. Two or more of these may be used.
  • the amount of the curing accelerator added in the present invention is preferably 0.01 to 5 parts by weight with respect to 100 parts by weight of the epoxy resin. If the amount of the curing accelerator added is 0.01 parts by weight or more, the bonding strength between the conductive bump and the electronic component such as the LED electrode can be increased, and if it is 5 parts by weight or less, the curing reaction is excessive during heat crimping. However, the temperature margin at the time of heat crimping can be widened.
  • the conductive paste of the present invention preferably contains a carboxyl group-containing resin having no photopolymerizable group.
  • a carboxyl group-containing resin having no photopolymerizable group By containing a carboxyl group-containing resin having no photopolymerizable group, it is possible to increase the flexibility of the film after development during heating while maintaining the alkali developability. As a result, it becomes easy to prepare so as to reduce G'(D100) to less than 0.01 MPa while keeping G'(C25) at 0.01 MPa or more.
  • Examples of the carboxyl group-containing resin having no photopolymerizable group include carboxyl group-containing oligomers. More specifically, solid JONCRYL 67 (glass transition point 73 ° C.), JONCRYL 678 (glass transition point 85 ° C.), JONCRYL 611 (glass transition point 50 ° C.), JONCRYL 693 (glass transition point) manufactured by BASF Japan Co., Ltd.
  • those having a glass transition point of 110 ° C. or lower are preferable from the viewpoint of lowering G'(D100). Further, a solid carboxyl group-containing oligomer is preferable.
  • the glass transition point can be measured by differential scanning calorimetry (DSC) using, for example, a differential scanning calorimeter (DSC-60A plus; manufactured by Shimadzu Corporation).
  • DSC differential scanning calorimetry
  • the content of the carboxyl group-containing resin having no photopolymerizable group in the conductive paste of the present invention is preferably 1 to 50 parts by weight with respect to 100 parts by weight of the carboxyl group-containing resin having a photopolymerizable group.
  • the content of the carboxyl group-containing resin having no photopolymerizable group is 1 part by weight or more, the above-mentioned G'(D100) can be further reduced, and the adhesion between the electronic component and the conductive bump is enhanced. , It is possible to improve the bonding strength of the film after curing.
  • the content of the carboxyl group-containing resin having no photopolymerizable group is 50% by weight or less, pattern peeling during development can be suppressed.
  • the content of the carboxyl group-containing resin having no photopolymerizable group is more preferably 5 to 40 parts by weight.
  • the conductive paste of the present invention contains conductive particles.
  • conductive particles include silver, gold, copper, platinum, lead, tin, nickel, aluminum, tungsten, molybdenum, chromium, titanium, indium, magnesium, cobalt, zinc, potassium, lithium, iron, mercury, and berylium.
  • Particles such as cadmium, rhodium, ruthenium, iridium and alloys thereof can be mentioned. Two or more of these may be contained.
  • metal particles selected from silver, gold and copper are preferable from the viewpoint of conductivity, and silver particles are more preferable from the viewpoint of cost and stability.
  • the conductive particles may be those having a surface coated with a resin, an inorganic oxide, or the like.
  • Metallic particles are preferable because the conductive particles having the surface of the resin particles or the inorganic oxide particles coated with metal have elastic repulsion due to the resin particles at the time of mounting.
  • the aspect ratio which is the value obtained by dividing the major axis length of the conductive particles by the minor axis length, is preferably 1.1 to 2.0.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the major axis length and the minor axis length of each can be measured and calculated from the average value of both.
  • the average particle size of the conductive particles is preferably 0.05 to 5.0 ⁇ m.
  • the average particle size of the conductive particles is more preferably 0.1 ⁇ m or more.
  • the average particle diameter of the conductive particles is 5.0 ⁇ m or less, the surface smoothness, pattern accuracy, and dimensional accuracy of the obtained conductive pattern can be improved.
  • the average particle size of the conductive particles is more preferably 2.0 ⁇ m or less.
  • the average particle size of the conductive particles can be measured using a laser irradiation type particle size distribution meter. The value of D50 of the particle size distribution obtained by the measurement is defined as the average particle diameter (D50) of the conductive particles.
  • the content of the conductive particles in the conductive paste of the present invention is preferably 30 to 90% by weight in the total solid content.
  • the content of the conductive particles is more preferably 50% by weight or more.
  • the total solid content means all the constituents of the conductive paste excluding the solvent.
  • the conductive paste of the present invention can contain a solvent.
  • the solvent include N, N-dimethylacetamide (boiling point 165 ° C.), N, N-dimethylformamide (boiling point 153 ° C.), N-methyl-2-pyrrolidone (boiling point 204 ° C.), and dimethylimidazolidinone (boiling point 225 ° C.).
  • a solvent having a solubility in 100 g of water at 20 ° C. or higher and a boiling point of 200 ° C. or higher are preferable.
  • N-methyl-2-pyrrolidone, dimethylimidazolidinone, ⁇ -butyrolactone, diethylene glycol monobutyl ether, and diethylene glycol are preferable.
  • the adhesive strength between the electronic component and the conductive bump can be further improved. Further, when the boiling point is 200 ° C. or higher, the volatilization of the solvent is suppressed, and the thickening of the photosensitive conductive paste can be suppressed.
  • the solvent content in the conductive paste of the present invention is preferably 3 to 30% by weight in the total paste composition.
  • the viscosity of the conductive paste can be set in a range suitable for coating such as printing, and good coatability can be obtained.
  • the conductive paste of the present invention may contain additives such as plasticizers, leveling agents, surfactants, silane coupling agents, defoaming agents and pigments as long as the desired properties are not impaired.
  • plasticizer examples include dibutyl phthalate, dioctyl phthalate, polyethylene glycol, glycerin and the like.
  • leveling agent examples include a special vinyl-based polymer and a special acrylic-based polymer.
  • silane coupling agent examples include methyltrimethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, hexamethyldisilazane, 3-methacryloxypropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, and vinyltri. Examples include methoxysilane.
  • the printed wiring board of the present invention includes a dried film of the conductive paste of the present invention or a film after the dried film is exposed and developed. As a result, it becomes soft at the time of heating and is cured after heating, so that the bonding strength with the electronic component after curing can be increased without using a separate adhesive when bonding the electronic component.
  • the conductive paste of the present invention includes a thermosetting resin component such as an epoxy resin or a novolak-type phenol resin, a photopolymerization initiator that reacts with exposure light, a compound having an unsaturated double bond, a carboxyl group-containing polymer, and photopolymerization. It can be produced by mixing conductive particles in an organic substance in which a carboxyl group-containing resin having no sex group, a solvent, and an additive are appropriately mixed. Examples of the mixing device include a disperser such as a three-roller mill, a ball mill, and a planetary ball mill, and a kneader.
  • a disperser such as a three-roller mill, a ball mill, and a planetary ball mill, and a kneader.
  • One of the methods for manufacturing a printed circuit board of the present invention is a step of forming a dry film of the conductive paste of the present invention on a printed wiring board, and exposing and developing the dry film on an electrode of the printed wiring board. It has a step of forming a conductive bump and a step of heat-pressing an electronic component having an electrode on the conductive bump.
  • FIG. 1 is a process diagram showing an example of a method for manufacturing a printed circuit board of the present invention.
  • the dry film 1 of the conductive paste of the present invention is formed on the printed wiring board 2.
  • a coating method for example, rotary coating using a spinner, spray coating, roll coating, screen printing, blade coater, die coater, calendar Application using a coater, a meniscus coater or a bar coater can be mentioned.
  • the film thickness of the dry film of the photosensitive conductive paste is preferably 1 to 10 ⁇ m.
  • the film thickness of the dry film is more preferably 2 to 5 ⁇ m.
  • the film thickness of the dried film of the photosensitive conductive paste can be measured using, for example, a stylus type step meter such as "Surfcom (registered trademark)" 1400 (manufactured by Tokyo Precision Co., Ltd.). More specifically, the film thicknesses at three random positions are measured with a stylus type step meter (measurement length: 1 mm, scanning speed: 0.3 mm / sec), and the average value is taken as the film thickness.
  • a stylus type step meter such as "Surfcom (registered trademark)” 1400 (manufactured by Tokyo Precision Co., Ltd.). More specifically, the film thicknesses at three random positions are measured with a stylus type step meter (measurement length: 1 mm, scanning speed: 0.3 mm / sec), and the average value is taken as the film thickness.
  • drying method examples include heat drying using an oven, a hot plate, infrared rays, and vacuum drying.
  • the drying temperature is preferably 50 to 180 ° C.
  • the drying time is preferably 1 minute to several hours.
  • the dry film 1 is exposed and developed to form a conductive bump 4 on the electrode 3 of the printed wiring board 2.
  • a light source that emits i-line (wavelength 365 nm), h-line (wavelength 405 nm) or g-line (wavelength 436 nm) such as a high-pressure mercury lamp, an ultra-high pressure mercury lamp, and an LED is used, and vacuum adsorption exposure and proxy exposure are used.
  • i-line wavelength 365 nm
  • h-line wavelength 405 nm
  • g-line wavelength 436 nm
  • Projection exposure direct drawing exposure and various other exposure methods.
  • the illuminance ratio of the exposure light at the time of exposure is preferably 1.1 to 1.9.
  • the illuminance ratio is 1.1 or more, excessive photoreaction does not occur, electronic parts can be heat-bonded under low-temperature and low-pressure conditions, and when the illuminance ratio is 1.9 or less, the photoreaction of the exposed part is efficient. It is possible to widen the process margin during development.
  • Examples of the developing method include a method of spraying a developer onto the dry film surface while allowing or rotating a substrate having a dried film of exposed photosensitive conductive paste, and a substrate having a dried film of exposed photosensitive conductive paste. Examples thereof include a method of immersing in a developing solution and a method of applying ultrasonic waves while immersing a substrate having a dry film of exposed photosensitive conductive paste in a developing solution.
  • the developing solution is preferably an alkaline aqueous solution, for example, tetramethylammonium hydroxide, diethanolamine, diethylaminoethanol, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, triethylamine, diethylamine, methylamine, dimethylamine, dimethyl acetate.
  • alkaline aqueous solution for example, tetramethylammonium hydroxide, diethanolamine, diethylaminoethanol, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, triethylamine, diethylamine, methylamine, dimethylamine, dimethyl acetate.
  • alkaline aqueous solution for example, tetramethylammonium hydroxide, diethanolamine, diethylaminoethanol, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, triethylamine, diethylamine, methylamine, dimethylamine, dimethyl acetate.
  • polar solvents such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethylsulfoxide, and ⁇ -butyrolactone; methanol, ethanol, isopropanol, etc. may be added to these aqueous solutions.
  • Alcohols such as ethyl lactate and propylene glycol monomethyl ether acetate; Ketones such as cyclopentanone, cyclohexanone, isobutyl ketone and methyl isobutyl ketone;
  • One or more surfactants may be added.
  • rinsing treatment with a rinsing liquid may be performed.
  • the rinsing solution include water or an aqueous solution obtained by adding alcohols such as ethanol and isopropyl alcohol or esters such as ethyl lactate and propylene glycol monomethyl ether acetate to water.
  • the electronic component 5 having the electrode 6 is heat-bonded onto the conductive bump 4.
  • the heating temperature is preferably 60 ° C. or higher and 250 ° C. or lower, and more preferably 60 ° C. or higher and 160 ° C. or lower.
  • Photosensitive conductive paste design to increase the difference between the storage elastic modulus G'of the conductive bump at room temperature and the storage elastic modulus G'of the conductive bump at the time of mounting by raising the heating temperature to 60 ° C. or higher. It will be easy. Further, by setting the heating temperature to 250 ° C. or lower, the thermal expansion and contraction of the printed wiring board and the electronic component can be reduced, so that the position accuracy of the mounting can be further improved.
  • a heat crimping tool for a flip chip bonder, a vacuum diaphragm type laminator, or the like can be used.
  • the pattern may be irradiated with ultrasonic waves during heat crimping. By irradiating ultrasonic waves, the bonding strength of the film after curing between the conductive bump and each electrode can be further improved.
  • the pattern may be irradiated with a laser during heat crimping. By irradiating the laser, the sintering of the conductive bumps proceeds in a short time, and the production efficiency can be improved.
  • the laser light source is not particularly limited, but can be appropriately adopted depending on the wavelength matched to the absorption band of the metal.
  • laser light sources include solid-state lasers (ruby, glass, YAG, etc.), semiconductor lasers (GaAs, InGaAsP, etc.), liquid lasers (dye, etc.), and gas lasers (He-Ne, Ar, CO 2 , excimer, etc.). Can be mentioned.
  • Examples of electronic components include chip-type electronic components such as LED chips having at least one connection terminal, MiniLED chips, ⁇ LED chips, IC chips, LSI chips, resistance chips, and capacitor chips.
  • the printed circuit board on which ⁇ LED is mounted has excellent display characteristics such as high brightness, power saving, and high response speed.
  • the surface of the electrode of the electronic component having the electrode has an unevenness of 0.5 ⁇ m or more. By having the unevenness of 0.5 ⁇ m or more, the uneven portion bites into the conductive bump at the time of mounting, high adhesion is obtained, and the bonding strength of the film after curing is improved.
  • One of the methods for manufacturing a printed circuit board of the present invention is a step of forming a dry film of the conductive paste of the present invention on a surface on which an electrode of an electronic component having an electrode exists, and exposing and exposing the dry film. It has a step of developing and forming a conductive bump on the electrode of the electronic component having the electrode, and a step of heating and crimping the electronic component having the electrode on the conductive bump.
  • FIG. 2 is a process diagram showing an example of the method for manufacturing the printed circuit board of the present invention.
  • the dry film 1 of the conductive paste of the present invention is formed on the surface of the electronic component 5 having the electrodes where the electrodes 6 are present.
  • the same method as the above-mentioned method can be used.
  • the dry film 1 is exposed and developed to form a conductive bump 4 on the electrode 6 of the electronic component 5 having the electrode 6.
  • a method for forming the conductive bump the same method as the above-mentioned method can be used.
  • the conductive bump 4 is heat-bonded onto the electrode 3 of the printed wiring board 2.
  • the same method as the above-mentioned method can be used.
  • the evaluation method in each example is as follows.
  • the conductive pastes obtained in Examples 1 to 21 and Comparative Example 1 were applied onto a glass substrate having a film thickness of 1 mm so that the film thickness after drying was 4 ⁇ m, and the coating film was placed in a drying oven at a temperature of 100 ° C. After drying for 10 minutes on a glass substrate, a dry film was formed, and the storage elastic moduli at 25 ° C. and 100 ° C. were measured using the following devices.
  • Measuring device Triboinder TI950 (manufactured by Hysiron) Measurement method: Nano indentation method Measurement mode: Continuous synthetic measurement method Measurement frequency 100 Hz Indenter used: Sapphire triangular weight indenter (Berkovich indenter) Measurement temperature: 25 ° C, 100 ° C.
  • ⁇ Measurement method (2) of storage elastic modulus G'(E25) and G'(E100) of post-exposure film> The photosensitive conductive pastes obtained in Examples 3 to 21 and Comparative Example 1 were applied onto a glass substrate having a thickness of 1 mm so that the dried film had a thickness of 4 ⁇ m, and the coated film was dried at a temperature of 100 ° C. After drying in an oven for 10 minutes to obtain a dry film, further exposure with an i-line (wavelength 365 nm) exposure amount of 500 mJ / cm 2 was performed to form an exposure film on a glass substrate, and the following device was used. The storage elasticity at 25 ° C and 100 ° C was measured, respectively.
  • Measuring device Triboinder TI950 (manufactured by Hysiron) Measurement method: Nano indentation method Measurement mode: Continuous synthetic measurement method Measurement frequency 100 Hz Indenter used: Sapphire triangular weight indenter (Berkovich indenter) Measurement temperature: 25 ° C, 100 ° C.
  • the mixture was shower-developed for 30 seconds using a 0.1 wt% Na 2 CO 3 aqueous solution, and rinsed with ultrapure water. Then, the developed film was peeled off, cut into a circle having a diameter of 18 mm, and the storage elastic modulus G'(D100) of the developed film was measured using the following apparatus.
  • the conductive pastes obtained in Examples 1 to 21 and Comparative Example 1 were applied to the mold release surface of the PET film "Therapeutic" having a film thickness of 75 ⁇ m so that the film thickness after drying was 50 ⁇ m.
  • the developed film was heated in a drying oven at a temperature of 140 ° C. for 30 minutes to form a cure film.
  • the cure film was peeled off, cut into a circle having a diameter of 18 mm, and the storage elastic modulus G'(C25) of the cure film at 25 ° C. was measured using the following apparatus.
  • Measuring device Viscosity / viscoelasticity measuring device HAAKE MARSIII (manufactured by Thermo Fisher SCIENTIFIC) Measurement conditions: OSC temperature-dependent measurement Geometry: Parallel disk type (20 mm) Angular frequency: 1Hz Angular velocity: 6.2832 rad / sec Temperature range: 25 to 150 ° C (set to 25 ° C when measuring the storage elastic modulus of the developed film) Temperature rise rate: 0.08333 ° C / sec (set only when measuring the storage elastic modulus of the cure film) Sample shape: Circular (diameter 18 mm) Sample thickness: 50 ⁇ m.
  • ⁇ Measurement method of die share strength> The conductive paste obtained in Examples 1 and 2 is applied on a glass substrate by screen printing so that the film thickness after drying is 3 ⁇ m, and the coating film is dried in a drying oven at a temperature of 100 ° C. for 10 minutes. Then, a dry film was formed on the glass substrate.
  • a wafer chip obtained by cutting a 0.7 mm thick silicon wafer into 2 mm squares was placed on a conductive film, mounted using a vacuum diaphragm type laminator (MVLP500 / 600; manufactured by Meiki Seisakusho Co., Ltd.), and then mounted.
  • the sample was heated in a drying oven at a temperature of 140 ° C. for 30 minutes to obtain a sample for measuring the die shear intensity shown in FIG.
  • the mounting conditions were a temperature of 120 ° C., a pressurizing pressure of 1 MPa, and a pressurizing time of 60 seconds.
  • the die shear strength was measured using a die shear strength measuring device (Dage series 4000; manufactured by Dage). The measurement was performed at 25 ° C. and a shear rate of 200 ⁇ m / sec.
  • the photosensitive conductive pastes obtained in Examples 3 to 21 and Comparative Example 1 were coated on a glass substrate by screen printing so that the film thickness after drying was 3 ⁇ m, and the coated film was dried at a temperature of 100 ° C. It was dried in an oven for 10 minutes to form a dry film on a glass substrate.
  • the film was shower-developed for 30 seconds with a 0.1 wt% Na 2 CO 3 aqueous solution and rinsed with ultrapure water to form a conductive film on a glass substrate.
  • a wafer chip obtained by cutting a 0.7 mm thick silicon wafer into 2 mm squares was placed on a conductive film, mounted using a vacuum diaphragm type laminator (MVLP500 / 600; manufactured by Meiki Seisakusho Co., Ltd.), and then mounted.
  • the sample was heated in a drying oven at a temperature of 140 ° C. for 30 minutes to obtain a sample for measuring the die shear intensity shown in FIG.
  • the mounting conditions were a temperature of 120 ° C., a pressurizing pressure of 1 MPa, and a pressurizing time of 60 seconds.
  • the die shear strength was measured using a die shear strength measuring device (Dage series 4000; manufactured by Dage). The measurement was performed at 25 ° C. and a shear rate of 200 ⁇ m / sec.
  • FIG. 3 is a schematic cross-sectional view of a sample for measuring die shear strength.
  • the wafer chip 10 is bonded to the conductive film 9 formed on the glass substrate 8.
  • ⁇ Measurement method of mountable temperature> The conductive pastes of Examples 1 and 2 are applied on a glass substrate by screen printing so that the film thickness after drying is 3 ⁇ m, and the coating film is dried in a drying oven at a temperature of 100 ° C. for 10 minutes to make glass. A dry film was formed on the substrate.
  • a wafer chip obtained by cutting a 0.7 mm thick silicon wafer into 2 mm squares was placed on a dry film and mounted using a vacuum diaphragm type laminator (MVLP500 / 600; manufactured by Meiki Seisakusho Co., Ltd.).
  • MVLP500 / 600 manufactured by Meiki Seisakusho Co., Ltd.
  • a sample for measuring the die shear strength shown in the above was obtained.
  • the mounting conditions were a pressurizing pressure of 1 MPa and a pressurizing time of 60 seconds, and the heating temperatures were 70 ° C., 80 ° C., 90 ° C., 100 ° C., 110 ° C., and 120 ° C.
  • the obtained substrate was heated in a drying oven at a temperature of 140 ° C.
  • the die shear strength was measured using a die shear strength measuring device (Dage series 4000; manufactured by Dage). The measurement was performed at 25 ° C. and a shear rate of 200 ⁇ m / sec. The minimum heating temperature at which the value of the die shear strength was 5 N / mm 2 or more was set as the mountable temperature.
  • the photosensitive conductive pastes obtained in Examples 3 to 21 and Comparative Example 1 were applied by screen printing so that the film thickness after drying was 3 ⁇ m, and the coating film was applied in a drying oven at a temperature of 100 ° C. for 10 minutes. It was dried to form a dry film on a glass substrate.
  • the film was shower-developed for 30 seconds using a 0.1 wt% Na 2 CO 3 aqueous solution, rinsed with ultrapure water, and a post-development film was formed on a glass substrate.
  • a wafer chip obtained by cutting a 0.7 mm thick silicon wafer into 2 mm squares was placed on a film after development, and mounted using a vacuum diaphragm type laminator (MVLP500 / 600; manufactured by Meiki Seisakusho Co., Ltd.).
  • the sample for measuring the die shear strength shown in 3 was obtained.
  • the mounting conditions were a pressurizing pressure of 1 MPa and a pressurizing time of 60 seconds, and the heating temperatures were 70 ° C., 80 ° C., 90 ° C., 100 ° C., 110 ° C., and 120 ° C.
  • the obtained substrate was heated in a drying oven at a temperature of 140 ° C.
  • the die shear strength was measured using a die shear strength measuring device (Dage series 4000; manufactured by Dage). The measurement was performed at 25 ° C. and a shear rate of 200 ⁇ m / sec. The minimum heating temperature at which the value of the die shear strength was 5 N / mm 2 or more was set as the mountable temperature.
  • Photosensitive component Carboxyl group-containing acrylic copolymer having an unsaturated double bond (A) 150 g of diethylene glycol monobutyl ether (hereinafter referred to as “DGME”) was charged in a reaction vessel having a nitrogen atmosphere, and the temperature was raised to 80 ° C. using an oil bath.
  • DGME diethylene glycol monobutyl ether
  • EA ethyl acrylate
  • 2-EHMA 2-ethylhexyl methacrylate
  • BA n-butyl acrylate
  • MAA trimethylolacrylamide
  • MAA trimethylolacrylamide
  • BP-4EA [Compound with unsaturated double bond] -"Light Acrylate (registered trademark)" BP-4EA (manufactured by Kyoeisha Chemical Co., Ltd.) (hereinafter referred to as BP-4EA).
  • [Conductive particles] -Ag particles with a particle diameter (D50) of 0.7 ⁇ m and an aspect ratio of 1.1 (hereinafter referred to as Ag particles).
  • Resin core Ag-coated particles having a particle diameter (D50) of 0.7 ⁇ m and an aspect ratio of 1.1 average particle diameter of resin core particles of 0.65 ⁇ m).
  • H-4 [Novolak type phenolic resin] -Standard type H-4 (manufactured by Meiwa Kasei Co., Ltd.) (hereinafter referred to as H-4), hydroxyl group equivalent 105 g / eq, softening point 72 ° C. -High heat resistance, high rigidity type MEH-7600-4H (manufactured by Meiwa Kasei Co., Ltd.) (hereinafter referred to as MEH-7600), hydroxyl group equivalent 100 g / eq, softening point 155 ° C.
  • C11Z-A [Curing accelerator] -"Curesol (registered trademark)" C11Z-A (manufactured by Shikoku Kasei Co., Ltd.) (hereinafter referred to as C11Z-A).
  • Example 1 In a 100 mL clean bottle, put 15 g of "840", 8.51 g of H-4, 5 g of JONCRYL 67, and 6 g of DGME, and rotate-revolve vacuum mixer "Awatori Rentaro (registered trademark)" ARE-310 (((registered trademark)) (Manufactured by Shinky Co., Ltd.) was used for mixing to obtain 34.51 g of a resin solution.
  • Example 2 In a 100 mL clean bottle, put 15 g of "840", 8.51 g of H-4, 5 g of JONCRYL 67, 1.18 g of C11Z-A, and 6 g of DGME, and rotate-revolve vacuum mixer "Awatori Rentaro (registered). Mixing was performed using "ARE-310 (manufactured by Shinky Co., Ltd.)" to obtain 35.69 g of a resin solution.
  • ARE-310 manufactured by Shinky Co., Ltd.
  • Example 3 Carboxyl group-containing acrylic copolymer (A) with 13.59 g unsaturated double bond, 4.08 g JONCRYL 67, 0.60 g OXE04, 2.00 g BP-4EA, 5 in a 100 mL clean bottle. .66 g of DGME was added and mixed using a rotation-revolution vacuum mixer "Awatori Rentaro (registered trademark)" ARE-310 (manufactured by Shinky Co., Ltd.) to obtain 25.93 g of a resin solution.
  • each storage elastic modulus G', mountable temperature, and die shear strength were evaluated by the above-mentioned methods.
  • the evaluation results are shown in Table 2.
  • Example 4 A photosensitive conductive paste having the composition shown in Table 1 was prepared by the same method as in Example 1, and evaluated in the same manner as in Example 3. The evaluation results are shown in Table 2.
  • Example 11 In a 100 mL clean bottle, a carboxyl group-containing acrylic copolymer (A) having a 13.59 g unsaturated double bond, 0.68 JONCRYL 819, 0.60 g OXE04, 2.00 g BP-4EA, 4 .93 g of DGME was added and mixed using a rotation-revolution vacuum mixer "Awatori Rentaro (registered trademark)" ARE-310 (manufactured by Shinky Co., Ltd.) to obtain 21.80 g of a resin solution.
  • A carboxyl group-containing acrylic copolymer having a 13.59 g unsaturated double bond, 0.68 JONCRYL 819, 0.60 g OXE04, 2.00 g BP-4EA, 4 .93 g of DGME was added and mixed using a rotation-revolution vacuum mixer "Awatori Rentaro (registered trademark)" ARE-310 (manufactured by Shinky Co., Ltd.) to obtain 21
  • Example 12 In a 100 mL clean bottle, a carboxyl group-containing acrylic copolymer (A) having a 13.59 g unsaturated double bond, 2.04 g of JONCRYL 819, 0.60 g of OXE04, 2.00 g of BP-4EA, 5 .23 g of DGME was added and mixed using a rotation-revolution vacuum mixer "Awatori Rentaro (registered trademark)" ARE-310 (manufactured by Shinky Co., Ltd.) to obtain 23.46 g of a resin solution.
  • A carboxyl group-containing acrylic copolymer having a 13.59 g unsaturated double bond
  • 2.04 g of JONCRYL 819 0.60 g of OXE04, 2.00 g of BP-4EA, 5 .23 g of DGME was added and mixed using a rotation-revolution vacuum mixer "Awatori Rentaro (registered trademark)" ARE-310 (manufactured by Shin
  • Example 13 Carboxyl group-containing acrylic copolymer (A) with 13.59 g unsaturated double bond, 4.08 JONCRYL 819, 0.60 g OXE04, 2.00 g BP-4EA, 5 in a 100 mL clean bottle.
  • Example 14 The exposure conditions of Example 13 were adjusted so that when the i-line (wavelength 365 nm) exposure amount was 500 mJ / cm 2 using an optical filter, the h-line (wavelength 405 nm) exposure amount was 2000 mJ / cm 2 . Evaluation was performed in the same manner as in Example 3. The evaluation results are shown in Table 2. By adjusting the spectral characteristics as described above, the exposed part can be appropriately photo-reacted, the storage elastic modulus G'(D100) of the developed film can be suppressed to a low level, the mountability can be improved, and the mountable temperature can be lowered. did it.
  • Example 15 In a 100 ml clean bottle, 15.00 g of a carboxyl group-containing acrylic copolymer (A) having an unsaturated double bond, 0.66 g of OXE04, 3.82 g of "840", 2.17 g of H-4, 1.53 g of DGME was added and mixed using a rotation-revolution vacuum mixer "Awatori Rentaro (registered trademark)" ARE-310 (manufactured by Shinky Co., Ltd.) to obtain 23.18 g of a resin solution.
  • the obtained 23.18 g of the resin solution is mixed with 50.52 g of Ag particles having a particle diameter (D50) of 0.7 ⁇ m and an aspect ratio of 1.1, and a three-roller mill (EXAKT M-50; manufactured by EXAKT) is used.
  • the mixture was kneaded using the mixture to obtain 73.70 g of a photosensitive conductive paste.
  • evaluation was performed in the same manner as in Example 3. The evaluation results are shown in Table 2.
  • Example 16 to 21 A photosensitive conductive paste having the composition shown in Table 1 was prepared by the same method as in Example 1, and evaluated in the same manner as in Example 3. The evaluation results are shown in Table 2.
  • the obtained 20.96 g resin solution is mixed with 48.97 g of Ag particles having a particle diameter (D50) of 0.7 ⁇ m and an aspect ratio of 1.1, and a three-roller mill (EXAKT M-50; manufactured by EXAKT) is used.
  • the mixture was kneaded using the mixture to obtain 69.93 g of a photosensitive conductive paste.
  • evaluation was performed in the same manner as in Example 3. The evaluation results are shown in Table 2.
  • the storage elastic modulus G'(P100) of the dry films of Examples 1 to 21 at 100 ° C. is 0.01 MPa or less, the adhesive force between the conductive film and the wafer chip during heat crimping is improved, and after curing.
  • the die shear strength was good at 6.0 N / mm 2 or more.
  • the die share strength was lowered due to the influence of using a carboxyl group-containing resin having a relatively high glass transition point as a carboxyl group-containing resin having no photopolymerizable group, but it was within the permissible range.
  • the G'(D100) of the developed film of Examples 3 to 21 is less than 0.01 MPa, the adhesion between the conductive film and the wafer chip during heat crimping is improved, and the film is bonded after curing. As a result of the improvement in strength, the die shear strength was good at 6.0 N / mm 2 or more.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • Conductive Materials (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Materials For Photolithography (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

本発明は、別途接着剤を用いずとも、電子部品との接合強度を高めることができる導電ペーストを提供することを目的とする。有機成分および導電性粒子を含有する導電ペーストであって、前記導電ペーストの乾燥膜の100℃における貯蔵弾性率G'(P100)が0.01MPa以下であり、140℃で30分間加熱した後の25℃における貯蔵弾性率G'(C25)が0.01MPa以上である導電ペーストである。

Description

導電ペースト、プリント配線板、プリント配線板の製造方法、プリント回路板の製造方法
 本発明は、導電ペースト、プリント配線板、プリント配線板の製造方法、プリント回路板の製造方法に関する。
 従来、電子部品をプリント配線板へ実装する際には、半田付けによる手法が広く利用されていたが、電子機器の小型化に伴い、ワイヤボンディング方式やフリップチップ方式と呼ばれる実装方法が広く知られるようになった。特に、フリップチップ方式では、電子部品の電極とプリント配線板の電極とを、導電性バンプを用いて電気的に接続することで、より小型の電子部品を実装することができる。
 また、近年、マイクロLEDと呼ばれる50μm×50μm以下のLEDチップなどについても、ファインピッチでの実装が盛んに検討されており、フリップチップ方式におけるLEDチップのみならず、導電性バンプも更なる小型化が求められている。
 マイクロLEDの実装方法としては、例えば、プリント配線板表面に導電性微粒子を添加した導電性フォトレジスト等を塗布したのち、露光、現像することにより、プリント配線板の電極上に導電性バンプを形成した後、導電性バンプとLED電極とを導電性を有する接着剤を介して接合させる方法が知られている(例えば、特許文献1参照)。
特開2020-92159号公報
 しかしながら、特許文献1に記載された技術では、導電性バンプとLED電極とを接合させるには別途接着剤が必要であるため、工程数が増え、生産効率が悪いという問題があった。
 そこで、本発明は、別途接着剤を用いずとも、低温低圧でLEDを実装でき、且つ導電性バンプとLED電極との接合強度を高めることができる導電ペーストを提供することを目的とする。
 本発明は、前記課題を解決するため、主として以下の構成を有する。
有機成分および導電性粒子を含有する導電ペーストであって、前記導電ペーストの乾燥膜の100℃における貯蔵弾性率G’(P100)が0.01MPa以下であり、140℃で30分間加熱した後の25℃における貯蔵弾性率G’(C25)が0.01MPa以上である導電ペースト。
 本発明の導電ペーストは、別途接着剤を用いずとも、低温低圧で接合強度高く電子部品を実装することができる。
本発明のプリント回路板の製造方法の一例を示す概略図である。 本発明のプリント回路板の製造方法の別の一例を示す概略図である。 実施例において用いたダイシェア強度測定用サンプルの断面模式図である。
 本発明の導電ペーストは、有機成分中に導電性粒子を分散させたものをいい、基板上に塗工後、溶剤を除去、樹脂を熱硬化させて用いる非感光性の導電ペーストと有機成分を調整して露光、現像プロセスによりパターン形成を可能にした感光性の導電ペーストも含む。
 <導電ペースト>
 本発明の導電ペーストは、有機成分および導電性粒子を含有する導電ペーストであって、前記導電ペーストの乾燥膜の100℃における貯蔵弾性率G’(P100)が0.01MPa以下であり、140℃で30分間加熱した後の25℃における貯蔵弾性率G’(C25)が0.01MPa以上である。また、前記導電ペーストの乾燥膜の25℃における貯蔵弾性率G’(P25)が0.1MPa以上であると工程中の接触や外圧によっての形状変化を抑制することができるなど作業性が向上する。具体的数値としては乾燥膜の100℃における貯蔵弾性率G’(P100)が0.00001~0.01MPaであり、25℃における貯蔵弾性率G’(P25)が0.1~50000MPaであり、140℃で30分間加熱した後の25℃における貯蔵弾性率G’(C25)が0.01~100000MPaであることで作業性と低温実装性を両立することができる。また、100℃における乾燥膜の貯蔵弾性率G’(P100)が25℃における乾燥膜の貯蔵弾性率G’(P25)の1/10以下であると作業性と低温実装性の両立がより可能になる。
 上記条件を満たす導電ペーストとして有機成分にカルボキシル基含有ポリマー、光重合開始剤、エポキシ樹脂及びノボラック型フェノール樹脂を含有した導電ペーストがある。これら成分を含有する導電ペーストは実装後のダイシェア強度をより高めることができるだけでなく、乾燥膜への露光、現像処理を行うことにより微細なバンプ形成が可能になる。さらにエポキシ樹脂の硬化触媒を含有することでエポキシ樹脂の硬化反応を促進し、よりダイシェア強度も高くすることができる。
 さらに導電ペーストの乾燥膜にi線(波長365nm)の露光量500mJ/cmで露光した後の膜の100℃における貯蔵弾性率G’(E100)が25℃における貯蔵弾性率G’(E25)の1/10以下であると微細加工性と低温実装性の両立がより可能になる。
 本発明の導電ペーストの中で露光、現像によりパターン形成ができる導電ペーストは、感光性成分および導電性粒子を含有する感光性導電ペーストであって、前記感光性導電ペーストを100℃で30分間乾燥し、得られた乾燥膜をi線(波長365nm)の露光量500mJ/cmで露光し、0.1質量%の炭酸ナトリウム水溶液で30秒シャワー現像した後の膜の100℃における貯蔵弾性率G’(D100)が0.01MPa未満であり、前記現像後の膜を140℃で30分間加熱した後の25℃における貯蔵弾性率G’(C25)が0.01MPa以上である。
 ここで「貯蔵弾性率G’(D100)」とは、レオメーターにより現像後の膜の動的粘弾性測定(温度依存性)を行った場合の貯蔵弾性率G’である。動的粘弾性とは、材料にある正弦周波数で剪断歪みを加えたときに、定常状態に達した場合に現れる剪断応力を歪みと位相の一致する成分(弾性的成分)と、歪みと位相が90°遅れた成分(粘性的成分)に分解して、材料の動的な力学特性を解析する手法である。
 剪断歪みに位相が一致する応力成分を剪断歪みで除したものが、貯蔵弾性率G’である。貯蔵弾性率G’は、各温度における動的な歪みに対する材料の弾性を表すものであり、現像後の膜の硬さに関連する。したがって、各測定温度における貯蔵弾性率G’は、現像後の膜に関する以下のような特性に影響する。具体的には、G’(D100)は現像後の膜の、加熱時における流動性に影響し、G’(C25)は硬化後の膜の接合強度に影響する。
 上述した現像後の膜のG’(D100)が0.01MPa未満であることにより、感光性導電ペーストを用いて形成されるバンプと、これに接合する電子部品との間の接合強度が向上する。これは、プリント配線板の電極上にバンプを形成した後、100℃以上で加熱しながら、電子部品の電極部と上記バンプとを加熱圧着することで、電子部品の電極形状に応じてバンプが素早く流動、変形するため、バンプと電極との間で高い密着力が得られるからである。G’(D100)は、0.007MPa以下であることがより好ましい。
 G’(D100)の下限値は、特に制限はないが、導電性バンプの加熱圧着時の流動性が高すぎると、隣り合う電子部品と電気的に接続するショート不良が発生するため、これを防止する観点から0.002MPa以上であることが好ましい。
 上述した硬化後の膜は、G’(C25)が0.01MPa以上であり、0.05MPa以上であることがより好ましい。これにより、加熱圧着時には流動性を有していたバンプが固定化されるため、電子部品とバンプとの接合強度が向上する。
 G’(C25)の上限値は、特に制限はないが、電子部品とプリント配線板とを接合した後に電子部品の動作不良が判明した際のリペアのし易さの観点から、G’(C25)は1.0MPa以下であることが好ましい。
 一般的な感光性導電ペーストの場合、G’(D100)もG’(C25)も0.01MPa以上であることが多い。これに対し、本発明のように、G’(C25)を0.01MPa以上としつつ、G’(D100)を0.01MPa未満とする方法としては、例えば、ペースト中に、後述する光重合性基を有するカルボキシル基含有樹脂と、光重合性基を有さないカルボキシル基含有樹脂とを含有させる方法などが挙げられる。
 電子部品とバンプとの接合強度は、例えば、ダイシェア強度により評価することができる。ここで「ダイシェア強度」とは、被接合部材に接合された接合部材に水平方向の力(剪断方向の力)を加えたときの接合強度を表す指標である。ダイシェア強度は、一般的なダイシェア強度測定装置を用いて測定することができる。
 <感光性成分>
 本発明の導電ペーストは、感光性成分を含有することが好ましい。感光性成分を含有することにより、プリント配線板の電極上に位置精度高く、微細な導電性バンプを形成することができる。感光性成分としては、例えば、光重合開始剤、不飽和二重結合を有する化合物、光重合性基を有するカルボキシル基含有樹脂等が挙げられる。
 <光重合開始剤>
 本発明の導電ペーストは、光重合開始剤を含有することが好ましい。光重合開始剤としては、ベンゾフェノン誘導体、アセトフェノン誘導体、チオキサントン誘導体、ベンジル誘導体、ベンゾイン誘導体、オキシム系化合物、α-ヒドロキシケトン系化合物、α-アミノアルキルフェノン系化合物、ホスフィンオキサイド系化合物、アントロン化合物、アントラキノン化合物等が挙げられる。
 本発明の導電ペースト中における光重合開始剤の含有量は、光重合性基を有するカルボキシル基含有樹脂100重量部に対して、0.05~30重量部が好ましい。光重合開始剤の含有量が0.05重量部以上であると、露光部の硬化密度が上昇し、現像後の残膜率を高くすることができる。一方、光重合開始剤の含有量が30重量部以下であると、感光性導電ペーストを塗布して得られる塗布膜上部における光重合開始剤による過剰な光吸収による配線パターン太りを抑制し、微細加工性をより向上させることができる。
 <不飽和二重結合を有する化合物>
 本発明の導電ペーストは、不飽和二重結合を有する化合物を含有することが好ましい。ここで「不飽和二重結合を有する化合物」とは不飽和二重結合を有するモノマーを意味する。不飽和二重結合を含有することにより、露光時に露光部の架橋密度を向上させ、現像マージンを広くすることができ、微細加工性をより向上させることができる。
 不飽和二重結合を有する化合物としては、例えば、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、1.4-ブタンジオールジメタクリレート、ネオペンチルグリコールジメタクリレート、グリセリンジメタクリレート、2-ヒドロキシ-3-アクリロイロキシプロピルメタクリレート、ジメチロール-トリシクロデカンジメタクリレート、トリプロピレングリコールジアクリレート、ジオキサングリコールジアクリレート、シクロヘキサンジメタノールジメタクリレート、トリシクロデカンジメタノールジアクリレート、エトキシ化(4)ビスフェノールAジアクリレート、エトキシ化(10)ビスフェノールAジアクリレート、エチレングリコールジグリシジルエーテルのアクリル酸付加物、ネオペンチルグリコールジグリシジルエーテルのアクリル酸付加物などの2官能モノマー;ペンタエリスリトールトリアクリレート、ペンタエリスリトールトリアクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパンエトキシトリアクリレート、グリセリンプロポキシトリアクリレートなどの3官能モノマー;ジペンタエリスリトールヘキサアクリレート、ペンタエリスリトールテトラアクリレート、ペンタエリスリトールエトキシテトラアクリレート、ジトリメチロールプロパンテトラアクリレートなどの4官能モノマーが挙げられる。これらを2種以上含有してもよい。
 本発明の導電ペーストにおける不飽和二重結合を有する化合物の含有量は、光重合性基を有するカルボキシル基含有樹脂100重量部に対して1~100重量部が好ましい。不飽和二重結合を有する化合物の含有量が1重量部以上であると、露光部の架橋密度が高まり、未露光部と露光部との現像液に対する溶解度差を大きくすることができ、微細加工性を向上させることができる。一方、不飽和二重結合を有する化合物の含有量が100重量部以下であると、G’(D100)をより低減させることができる。
 <光重合性基を有するカルボキシル基含有樹脂>
 本発明の導電ペーストは、感光性成分として光重合性基を有するカルボキシル基含有樹脂を含有することが好ましい。この樹脂がカルボキシル基を含有することで、アルカリ現像性を高め、フォトリソグラフィー法による微細加工性を高めることができる。また、この樹脂は光重合性基を有するため、現像後の膜に有機成分として残存する。そのため、現像時の膜減り(有機成分の減少)によって膜中の導電性粒子の割合が増加することでG’ (D100)が増加する、という現象を抑制することができる。
 光重合性基を有するカルボキシル基含有樹脂としては、例えば、カルボキシル基含有アクリル系共重合体、カルボン酸変性エポキシ樹脂、カルボン酸変性フェノール樹脂、ポリアミック酸、カルボン酸変性シロキサンポリマーなどが挙げられる。これらを2種以上含有してもよい。これらの中でも、紫外光透過率の高いカルボキシル基含有アクリル系共重合体またはカルボン酸変性エポキシ樹脂が好ましく、カルボン酸変性エポキシ樹脂がより好ましい。
 カルボキシル基含有アクリル系共重合体としては、アクリル系単官能モノマーと不飽和酸またはその酸無水物との共重合体が好ましい。
 アクリル系単官能モノマーとしては、例えば、メチルアクリレート、エチルアクリレート、2-エチルヘキシルアクリレート、n-ブチルアクリレート、イソブチルアクリレート、イソプロパンアクリレート、グリシジルアクリレート、ブトキシトリエチレングリコールアクリレート、ジシクロペンタニルアクリレート、ジシクロペンテニルアクリレート、2-ヒドロキシエチルアクリレート、イソボルニルアクリレート、2-ヒドロキシプロピルアクリレート、イソデキシルアクリレート、イソオクチルアクリレート、ラウリルアクリレート、2-メトキシエチルアクリレート、メトキシエチレングリコールアクリレート、メトキシジエチレングリコールアクリレート、オクタフロロペンチルアクリレート、フェノキシエチルアクリレート、ステアリルアクリレート、トリフロロエチルアクリレート、アミノエチルアクリレート、フェニルアクリレート、フェノキシエチルアクリレート、1-ナフチルアクリレート、2-ナフチルアクリレート、チオフェノールアクリレート、ベンジルメルカプタンアクリレート、アクリルアミド、N-メトキシメチルアクリルアミド、N-エトキシメチルアクリルアミド、N-n-ブトキシメチルアクリルアミド、N-イソブトキシメチルアクリルアミド、メタクリルフェノール、メタクリルアミドフェノール、γ-アクリロキシプロピルトリメトキシシラン、N-(2-ヒドロキシフェニル)アクリルアミド、N-(3-ヒドロキシフェニル)アクリルアミド、N-(4-ヒドロキシフェニル)アクリルアミド、o-ヒドロキシフェニルアクリレート、m-ヒドロキシフェニルアクリレート、p-ヒドロキシフェニルアクリレート、o-ヒドロキシスチレン、m-ヒドロキシスチレン、p-ヒドロキシスチレン、2-(2-ヒドロキシフェニル)エチルアクリレート、2-(3-ヒドロキシフェニル)エチルアクリレート、2-(4-ヒドロキシフェニル)エチルアクリレートなどが挙げられる。これらを2種以上用いてもよい。これらの中でも、エチルアクリレート、2-ヒドロキシエチルアクリレート、イソボルニルアクリレートが好ましい。
 不飽和酸またはその酸無水物としては、例えば、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、マレイン酸、フマル酸、酢酸ビニルや、これらの酸無水物などが挙げられる。これらを2種以上用いてもよい。不飽和酸の共重合比により、カルボキシル基含有アクリル系共重合体の酸価を調整することができる。
 カルボン酸変性エポキシ樹脂としては、エポキシ化合物と不飽和酸または不飽和酸無水物との反応物が好ましい。ここで、カルボン酸変性エポキシ樹脂とは、エポキシ化合物のエポキシ基をカルボン酸またはカルボン酸無水物で変性したものであり、エポキシ基は含まれていない。
 エポキシ化合物としては、例えば、グリシジルエーテル類、グリシジルアミン類、エポキシ樹脂などが挙げられる。より具体的には、グリシジルエーテル類としては、例えば、メチルグリシジルエーテル、エチルグリシジルエーテル、ブチルグリシジルエーテル、エチレングリコールジグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、ビスフェノールAジグリシジルエーテル、水添ビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、ビスフェノールSジグリシジルエーテル、ビスフェノールフルオレンジグリシジルエーテル、ビフェノールジグリシジルエーテル、テトラメチルビフェノールグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、3’,4’-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレートなどが挙げられる。グリシジルアミン類としては、例えば、tert-ブチルグリシジルアミンなどが挙げられる。エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂、ノボラック型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂などが挙げられる。これらを2種以上用いてもよい。
 前述のカルボキシル基含有アクリル系共重合体やカルボン酸変性エポキシ樹脂に、グリシジル(メタ)アクリレート等の不飽和二重結合を有する化合物を反応させることにより、不飽和二重結合を導入することができる。カルボキシル基含有樹脂に不飽和二重結合を導入することにより、露光時に露光部の架橋密度を向上させ、現像マージンを広くすることができ、微細加工性をより向上させることができる。
 光重合性基を有するカルボキシル基含有樹脂の酸価は、例えば、カルボキシル基含有アクリル系共重合体の場合、構成成分中の不飽和酸の割合により、所望の範囲に調整することができる。カルボン酸変性エポキシ樹脂の場合、多塩基酸無水物を反応させることにより、所望の範囲に調整することができる。カルボン酸変性フェノール樹脂の場合、構成成分中の多塩基酸無水物の割合により、所望の範囲に調整することができる。
 <エポキシ樹脂>
 本発明の導電ペーストはエポキシ樹脂を含有することが好ましい。エポキシ樹脂を含有することで導電性バンプとLED電極などの電子部品との接合強度を高めることができる。エポキシ樹脂としては、ビスフェノールA型、クレゾールノボラック型、フェノールノボラック型、ビスフェノールAノボラック型、ジシクロペンタジエン型、ナフタレン型などが挙げられ、中でも軟化点が30℃以上、100℃以下であるものが好ましい。軟化点が30℃以上であれば加熱圧着時の過剰流動による近傍バンプとのショート不良の発生を抑制することができ、100℃以下であれば、低温での部品実装が可能になる。より具体的には、DIC(株)製のEPICRON N-660(軟化点61~69℃)、EPICRON N-670(軟化点68~76℃)、EPICRON N-680(軟化点80~90℃)、EPICRON N-770(軟化点65~75℃)、EPICRON N-775(軟化点70~80℃)、EPICRON N-865(軟化点64~72℃)、EPICRON N-890(軟化点75~90℃)、EPICRON HP-7200L(軟化点50~60℃)、EPICRON HP-7200(軟化点57~68℃)、EPICRON HP-7200H(軟化点75~90℃)、EPICRON HP-4700(軟化点85~98℃)、日本化薬(株)製のKAYARAD NC-3000(軟化点53~63℃)、NC-3000H(軟化点65~75℃)、などが挙げられる。これらを2種以上用いてもよい。
 <ノボラック型フェノール樹脂>
 本発明の導電ペーストはノボラック型フェノール樹脂を含有することが好ましい。ノボラック型フェノール樹脂を含有することで導電性バンプとLED電極などの電子部品との接合強度を高めることができる。中でも軟化点が30℃以上、100℃以下であるものが好ましい。軟化点が30℃以上であれば加熱圧着時の過剰流動による近傍バンプとのショート不良の発生を抑制することができ、100℃以下であれば、低温での部品実装が可能になる。より具体的には、日本化薬(株)製のKAYARAD GPH-65(軟化点63~69℃)、KAYARAD GPH-103、明和化成(株)H-4(軟化点67~75℃)、HF-1M(軟化点82~86℃)、HF-3M(軟化点94~98℃)、MEHC-7800-4S(軟化点61~65℃)、MEHC-7800SS(軟化点63~67℃)、MEHC-7800S(軟化点72~78℃)、MEHC-7800M(軟化点78~84℃)、MEHC-7851-SS(軟化点64~69℃)、MEHC-7851-S(軟化点70~75℃)、MEHC-7851-M(軟化点74~79℃)、MEHC-7851-H(軟化点80~85℃)、MEHC-7841(軟化点58~65℃)、などが挙げられる。これらを2種以上用いてもよい。
 本発明におけるエポキシ樹脂、ノボラック型フェノール樹脂の合計添加量としてはカルボキシル基含有ポリマー100重量部に対して1~100重量部が好ましい。エポキシ樹脂とノボラック型フェノール樹脂の合計添加量が1重量部以上であれば導電性バンプとLED電極などの電子部品との接合強度を高めることができ、100重量部以下であると現像時の溶解性を高めることができ高解像度のパターニングが可能になる。エポキシ樹脂とノボラック型フェノール樹脂の割合は使用するエポキシ樹脂のエポキシ当量とノボラック型フェノール樹脂の水酸基当量の比率に合わせることが好ましい。
 <硬化促進剤>
 本発明の導電ペーストはエポキシ樹脂とノボラック型フェノール樹脂の硬化を促進させる硬化促進剤を含有することが好ましい。硬化促進剤を含有することで導電性バンプとLED電極などの電子部品との接合強度を高めることができる。より具体的には、イミダゾール類、ジシアンジアミド誘導体、4級アンモニウム塩、トリフェニルフォスフィン、テトラフェニルホスホニウムテトラフェニルボレートが挙げられる。これらを2種以上用いてもよい。
 本発明における硬化促進剤の添加量はエポキシ樹脂100重量部に対して0.01~5重量部が好ましい。硬化促進剤の添加量が0.01重量部以上であれば導電性バンプとLED電極などの電子部品との接合強度を高めることができ、5重量部以下であると加熱圧着時に過剰に硬化反応が進まず、加熱圧着時の温度マージンを広くすることができる。
 <光重合性基を有さないカルボキシル基含有樹脂>
 本発明の導電ペーストは、光重合性基を有さないカルボキシル基含有樹脂を含有することが好ましい。光重合性基を有さないカルボキシル基含有樹脂を含有することで、アルカリ現像性は保持したまま、現像後の膜の加熱時の柔軟性を高めることができる。その結果、G’(C25)を0.01MPa以上に保ちつつ、G’(D100)を0.01MPa未満に低下させるよう調製することが容易となる。
 光重合性基を有さないカルボキシル基含有樹脂としては、例えば、カルボキシル基含有オリゴマーが挙げられる。より具体的には、BASFジャパン(株)製の固形のJONCRYL 67(ガラス転移点73℃)、JONCRYL 678(ガラス転移点85℃)、JONCRYL 611(ガラス転移点50℃)、JONCRYL 693(ガラス転移点84℃)、JONCRYL 682(ガラス転移点56℃)、JONCRYL 690(ガラス転移点102℃)、JONCRYL 819(ガラス転移点57℃)、JONCRYL JDX-C3000A(ガラス転移点65℃)、JONCRYL JDX-C3080(ガラス転移点134℃)、アルカリ水で溶解させたJONCRYL 52J(ガラス転移点56℃)、JONCRYL PDX-6157(ガラス転移点84℃)、JONCRYL 60J(ガラス転移点85℃)、JONCRYL 63J(ガラス転移点73℃)、JONCRYL 70J(ガラス転移点102℃)、JONCRYL JDX-6180(ガラス転移点134℃)、JONCRYL HPD-196(ガラス転移点85℃)、JONCRYL HPD-96J(ガラス転移点102℃)、JONCRYL PDX-6137A(ガラス転移点102℃)、JONCRYL 6610(ガラス転移点85℃)、JONCRYL JDX-6500(ガラス転移点65℃)、JONCRYL PDX-6102B(ガラス転移点19℃)などが挙げられる。これらを2種以上用いてもよい。
 これらの中でも、G’(D100)を低下させる観点から、ガラス転移点が110℃以下のものが好ましい。また、固形のカルボキシル基含有オリゴマーが好ましい。
 なお、ガラス転移点は、例えば、示差走査熱量計(DSC-60A plus;(株)島津製作所製)などを用いた、示差走査熱量分析(DSC)により測定することができる。
 本発明の導電ペーストにおける光重合性基を有さないカルボキシル基含有樹脂の含有量は、光重合性基を有するカルボキシル基含有樹脂100重量部に対して、1~50重量部が好ましい。光重合性基を有さないカルボキシル基含有樹脂の含有量が1重量部以上であると、上述したG’(D100)をより低減することができ、電子部品と導電性バンプの密着力を高め、硬化後の膜の接合強度を向上させることができる。光重合性基を有さないカルボキシル基含有樹脂の含有量が50重量以下であると、現像時のパターン剥がれを抑制できる。光重合性基を有さないカルボキシル基含有樹脂の含有量は5~40重量部がより好ましい。
 <導電性粒子>
 本発明の導電ペーストは、導電性粒子を含有する。導電性粒子としては、例えば、銀、金、銅、白金、鉛、スズ、ニッケル、アルミニウム、タングステン、モリブデン、クロム、チタン、インジウム、マグネシウム、コバルト、亜鉛、カリウム、リチウム、鉄、水銀、ベリリウム、カドミウム、ロジウム、ルテニウム、イリジウムやこれらの合金などの粒子が挙げられる。これらを2種以上含有してもよい。これらの中でも、導電性の観点から、銀、金および銅から選ばれる金属の粒子が好ましく、コストおよび安定性の観点から銀粒子がより好ましい。また、導電性粒子は、樹脂や無機酸化物等の表面を被覆したものでもよい。樹脂粒子や無機酸化物粒子の表面を金属で被覆した導電性粒子は実装時に樹脂粒子による弾性反発があるため、金属粒子が好ましい。
 導電性粒子の長軸長を短軸長で除した値であるアスペクト比は、1.1~2.0が好ましい。ここで、導電性粒子のアスペクト比は、走査型電子顕微鏡(SEM)または透過型電子顕微鏡(TEM)を用いて倍率15000倍で導電性粒子を観察し、無作為に選択した100個の導電性粒子の一次粒子について、それぞれの長軸長および短軸長を測定し、両者の平均値から算出することができる。
 導電性粒子の平均粒子径は、0.05~5.0μmが好ましい。導電性粒子の平均粒子径が0.05μm以上であることにより、粒子間の相互作用を適度に抑制し、感光性導電ペースト中における導電性粒子の分散性を向上させることができる。導電性粒子の平均粒子径は、0.1μm以上がより好ましい。一方、導電性粒子の平均粒子径が5.0μm以下であることにより、得られる導電パターンの表面平滑度、パターン精度および寸法精度を向上させることができる。導電性粒子の平均粒子径は、2.0μm以下がより好ましい。ここで、導電性粒子の平均粒子径は、レーザー照射型の粒度分布計を用いて測定することができる。測定により得られた粒度分布のD50の値を導電性粒子の平均粒子径(D50)とする。
 本発明の導電ペーストにおける導電性粒子の含有量は、全固形分中30~90重量%が好ましい。導電性粒子の含有量が30重量%以上であると、加熱焼結時の導電性粒子同士の接触確率が向上し、導電性を向上させることができる。導電性粒子の含有量は50重量%以上がより好ましい。一方、導電性粒子の含有量が90重量%以下であると、露光工程における塗膜の透光性が向上し、微細加工性を向上させることができる。ここで全固形分とは、溶剤を除く、導電ペーストの全構成成分をいう。
 <溶剤>
 本発明の導電ペーストは、溶剤を含有することができる。溶剤としては、例えば、N,N-ジメチルアセトアミド(沸点165℃)、N,N-ジメチルホルムアミド(沸点153℃)、N-メチル-2-ピロリドン(沸点204℃)、ジメチルイミダゾリジノン(沸点225℃)、ジメチルスルホキシド(沸点189℃)、γ-ブチロラクトン(沸点204℃)、乳酸エチル(沸点154℃)、1-メトキシ-2-プロパノール(沸点120℃)、1-エトキシ-2-プロパノール(沸点132℃)、ジアセトンアルコール(沸点166℃)、テトラヒドロフルフリルアルコール(沸点178℃)、プロピレングリコールモノメチルエーテルアセテート(沸点146℃)、ジエチレングリコールモノエチルエーテルアセテート(沸点217℃)、ジエチレングリコールモノメチルエーテル(沸点194℃)、ジエチレングリコールモノブチルエーテル(沸点230℃、)、ジエチレングリコール(沸点245℃)、ジエチレングリコールモノブチルエーテルアセテート(沸点247℃、)、2,2,4,-トリメチル-1,3-ペンタンジオールモノイソブチレート(沸点253℃)などが挙げられる。これらを2種以上含有してもよい。
 特に、20℃における水100gへの溶解度が80g以上であって、かつ沸点が200℃以上である溶剤を含有することが好ましい。具体的には、N-メチル-2-ピロリドン、ジメチルイミダゾリジノン、γ-ブチロラクトン、ジエチレングリコールモノブチルエーテル、ジエチレングリコールが好ましい。溶剤の20℃における水100gへの溶解度が80g以上であると、感光性導電ペーストの乾燥膜中の残存溶媒が現像時の現像液と置換されやすく現像後の膜中の残存溶剤を低減でき、加熱圧着時の残存溶剤の揮発を防ぐことで電子部品と導電性バンプの接着強度をより向上させることができる。また、沸点が200℃以上であると、溶剤の揮発が抑制され、感光性導電ペーストの増粘を抑制することができる。
 本発明の導電ペーストにおける溶剤の含有量は、全ペースト組成物中3~30重量%が好ましい。溶剤の含有量が3~30重量%であると、導電ペーストの粘度を印刷等の塗布に好適な範囲にすることができ、良好な塗布性が得られる。
 <その他の成分>
 本発明の導電ペーストは、その所望の特性を損なわない範囲であれば、可塑剤、レベリング剤、界面活性剤、シランカップリング剤、消泡剤、顔料等の添加剤を含有することができる。
 可塑剤としては、例えば、ジブチルフタレート、ジオクチルフタレート、ポリエチレングリコール、グリセリンなどが挙げられる。
 レベリング剤としては、例えば、特殊ビニル系重合体、特殊アクリル系重合体などが挙げられる。
 シランカップリング剤としては、例えば、メチルトリメトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、ヘキサメチルジシラザン、3-メタクリロキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、ビニルトリメトキシシランなどが挙げられる。
 <プリント配線板>
 本発明のプリント配線板は、本発明の導電ペーストの乾燥膜もしくは、乾燥膜を露光および現像した後の膜を備える。これにより、加熱時に柔らかくなり、加熱後に硬化することから、電子部品を接合させる際に別途接着剤を用いずとも、硬化後の電子部品との接合強度を高めることができる。
 <導電ペースト、感光性導電ペーストの製造方法>
 本発明の導電ペーストは、エポキシ樹脂やノボラック型のフェノール樹脂などの熱硬化性樹脂成分や、露光光に反応する光重合開始剤、不飽和二重結合を有する化合物やカルボキシル基含有ポリマー、光重合性基を有さないカルボキシル基含有樹脂、溶剤、添加剤を適宜混合した有機物中に導電性粒子を混ぜ合わせることにより製造することができる。混合装置としては、例えば、三本ローラーミル、ボールミル、遊星式ボールミル等の分散機や混練機などが挙げられる。
 <プリント回路板の製造方法>
 以下、図面を参照して、本発明のプリント回路板の製造方法の例示を説明する。なお、図面は模式的なものである。また、本発明は、以下に説明する例示によって限定されるものではない。
 本発明のプリント回路板の製造方法の一つは、プリント配線板上に、本発明の導電ペーストの乾燥膜を形成する工程と、前記乾燥膜を露光および現像し、前記プリント配線板の電極上に導電性バンプを形成する工程と、前記導電性バンプ上に電極を有する電子部品を加熱圧着する工程とを有する。
 図1は、本発明のプリント回路板の製造方法の一例を示す工程図である。まず、図1(a)に示す通り、プリント配線板2上に、本発明の導電ペーストの乾燥膜1を形成する。
 プリント配線板上に、本発明の導電ペーストの乾燥膜を形成する工程において、塗布方法としては、例えば、スピナーを用いた回転塗布、スプレー塗布、ロールコーティング、スクリーン印刷、ブレードコーター、ダイコーター、カレンダーコーター、メニスカスコーターまたはバーコーターを用いた塗布などが挙げられる。
 感光性導電ペーストの乾燥膜の膜厚は、1~10μmが好ましい。乾燥膜の膜厚が1μm以上であると、導電性バンプの抵抗値ばらつきの抑制や、プリント配線板と電子部品との接合強度を向上させることができる。一方、乾燥膜の膜厚が10μm以下であれば、露光時に光が乾燥膜の膜深部まで到達しやすくなり現像マージンを広げることができ、また実装時の導電性バンプの濡れ広がりによるショートも抑制できる。乾燥膜の膜厚は2~5μmがより好ましい。なお、感光性導電ペーストの乾燥膜の膜厚は、例えば、“サーフコム(登録商標)”1400((株)東京精密製)などの触針式段差計を用いて測定することができる。より具体的には、ランダムな3つの位置の膜厚を触針式段差計(測長:1mm、走査速度:0.3mm/sec)でそれぞれ測定し、その平均値を膜厚とする。
 乾燥方法としては、例えば、オーブン、ホットプレート、赤外線等による加熱乾燥や、真空乾燥などが挙げられる。乾燥温度は50~180℃が好ましく、乾燥時間は1分間~数時間が好ましい。
 次に、図1(b)に示す通り、乾燥膜1を露光および現像し、上記プリント配線板2の電極3上に導電性バンプ4を形成する。
 露光方法としては、高圧水銀ランプ、超高圧水銀ランプ、LEDなどのi線(波長365nm)、h線(波長405nm)又はg線(波長436nm)を発する光源を使用し、真空吸着露光、プロキシ露光、プロジェクション露光、直描露光などの各種露光方法が挙げられる。
 また、露光時における露光光の照度比(波長365nmにおける照度):(波長405nmにおける照度)が、1.1~1.9であることが好ましい。照度比が1.1以上であると過剰な光反応が起こらず、低温低圧条件で電子部品を加熱圧着することができ、照度比が1.9以下であると露光部の光反応が効率的に進行し、現像時のプロセスマージンを広くすることができる。
 現像方法としては、例えば、露光した感光性導電ペーストの乾燥膜を有する基板を静置または回転させながら現像液を乾燥膜面にスプレーする方法、露光した感光性導電ペーストの乾燥膜を有する基板を現像液中に浸漬する方法、露光した感光性導電ペーストの乾燥膜を有する基板を現像液中に浸漬しながら超音波をかける方法などが挙げられる。
 現像液としては、アルカリ性の水溶液が好ましく、例えば、水酸化テトラメチルアンモニウム、ジエタノールアミン、ジエチルアミノエタノール、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、トリエチルアミン、ジエチルアミン、メチルアミン、ジメチルアミン、酢酸ジメチルアミノエチル、ジメチルアミノエタノール、ジメチルアミノエチルメタクリレート、シクロヘキシルアミン、エチレンジアミン、ヘキサメチレンジアミンなどの水溶液が挙げられる。これらを2種以上用いてもよい。また、場合によっては、これらの水溶液に、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、γ-ブチロラクトン等の極性溶剤;メタノール、エタノール、イソプロパノール等のアルコール類;乳酸エチル、プロピレングリコールモノメチルエーテルアセテート等のエステル類;シクロペンタノン、シクロヘキサノン、イソブチルケトン、メチルイソブチルケトン等のケトン類;界面活性剤などを1種以上添加してもよい。
 現像後、リンス液によるリンス処理を施してもよい。リンス液としては、例えば、水、あるいは、水にエタノール、イソプロピルアルコール等のアルコール類または乳酸エチル、プロピレングリコールモノメチルエーテルアセテート等のエステル類を添加した水溶液などが挙げられる。
 次に、図1(c)に示す通り、導電性バンプ4上に電極6を有する電子部品5を加熱圧着する。
 導電性バンプ上に電極を有する電子部品を加熱圧着する工程において、加熱温度は、60℃以上250℃以下が好ましく、60℃以上160℃以下がより好ましい。加熱温度を60℃以上にすることで室温での導電性バンプの貯蔵弾性率G‘と、実装時の導電性バンプの貯蔵弾性率G’との差を大きくするための感光性導電ペースト設計が容易となる。また、加熱温度を250℃以下にすることで、プリント配線板および電子部品の熱膨張や熱収縮を小さくすることができるため、実装の位置精度をより高めることができる。
 加熱圧着の方法としては、フリップチップボンダ用の加熱圧着ツールや真空ダイアフラム式ラミネータなどを使用することができる。加熱圧着時においてパターンに超音波を照射してもよい。超音波を照射することでより導電性バンプと各電極との硬化後の膜の接合強度をより向上させることができる。加熱圧着時においてパターンにレーザーを照射してもよい。レーザーを照射することで、導電性バンプの焼結が短時間で進み、生産効率を向上させることができる。レーザー光源としては、特に限定されないが、金属の吸収帯に合わせた波長に応じて適宜採用できる。レーザー光源としては、例えば、固体レーザー(ルビー、ガラス、YAGなど)、半導体レーザー(GaAs、InGaAsPなど)、液体レーザー(色素など)、気体レーザー(He-Ne、Ar、CO、エキシマーなど)が挙げられる。
 電子部品としては、例えば、少なくとも1つの接続用端子を有するLEDチップ、MiniLEDチップ、μLEDチップ、ICチップ、LSIチップ、抵抗チップ、コンデンサチップなどのチップ型電子部品などが挙げられる。中でもμLEDを実装したプリント回路板は高輝度、省電力、高応答速度と、優れたディスプレイ特性を有する。また、電極を有する電子部品の電極表面に0.5μm以上の凹凸を有することが好ましい。0.5μm以上の凹凸を有することで、実装時に凹凸部が導電性バンプに食い込み高い密着性が得られ硬化後の膜の接合強度が向上する。
 本発明のプリント回路板の製造方法の一つは、電極を有する電子部品の電極が存在している面上に、本発明の導電ペーストの乾燥膜を形成する工程と、前記乾燥膜を露光および現像し、前記電極を有する電子部品の電極上に導電性バンプを形成する工程と、前記導電性バンプ上に電極を有する電子部品を加熱圧着する工程とを有する。
 図2は、本発明のプリント回路板の製造方法の一例を示す工程図である。まず、図2(a)に示す通り、電極を有する電子部品5の電極6が存在している面上に、本発明の導電ペーストの乾燥膜1を形成する。感光性導電ペーストの乾燥膜を形成する方法としては、上述した方法と同様な手法を用いることができる。
 次に、図2(b)に示す通り、乾燥膜1を露光および現像し、前記電極6を有する電子部品5の電極6上に導電性バンプ4を形成する。導電性バンプを形成する方法としては、上述した方法と同様な手法を用いることができる。
 次に、図2(c)に示す通り、プリント配線板2の電極3上に導電性バンプ4を加熱圧着する。これらを加熱圧着する方法としては、上述した方法と同様な手法を用いることができる。
 以下に本発明を実施例および比較例を挙げて詳細に説明するが、本発明の態様はこれらに限定されるものではない。
 各実施例における評価方法は、以下の通りである。
 <乾燥膜の貯蔵弾性率G’(P25)、G’(P100)の測定方法(1)>
 膜厚1mmのガラス基板上に実施例1~21および比較例1で得られた導電ペーストを、乾燥後の膜厚が4μmになるように塗布し、塗布膜を100℃の温度の乾燥オーブン内で10分間乾燥し、ガラス基板上に乾燥膜を形成し、以下の装置を使用し、25℃と100℃の貯蔵弾性率をそれぞれ測定した。
 測定装置:Triboindenter TI950(Hysitron社製)
 測定方法:ナノインデンテーション法
 測定モード:連続合成測定法
 測定周波数100Hz
 使用圧子:サファイヤ製三角錘圧子(Berkovich圧子)
 測定温度:25℃、100℃。
 <露光後膜の貯蔵弾性率G’(E25)、G’(E100)の測定方法(2)>
 膜厚1mmのガラス基板上に実施例3~21および比較例1で得られた感光性導電ペーストを、乾燥後の膜厚が4μmになるように塗布し、塗布膜を100℃の温度の乾燥オーブン内で10分間乾燥して乾燥膜を得た後、さらにi線(波長365nm)の露光量500mJ/cmで露光し、ガラス基板上に露光膜を形成し、以下の装置を使用し、25℃と100℃の貯蔵弾性率をそれぞれ測定した。
 測定装置:Triboindenter TI950(Hysitron社製)
 測定方法:ナノインデンテーション法
 測定モード:連続合成測定法
 測定周波数100Hz
 使用圧子:サファイヤ製三角錘圧子(Berkovich圧子)
 測定温度:25℃、100℃。
 <現像後膜の貯蔵弾性率G’(D100)、キュア後の貯蔵弾性率G’(C25)の測定方法(3)>
 膜厚75μmのPETフィルム“セラピール(登録商標)”(東レ(株)製)の離型処理面に、実施例3~21および比較例1で得られた感光性導電ペーストを、乾燥後の膜厚が50μmになるようにダイコーターで塗布し、塗布膜を100℃の温度の乾燥オーブン内で30分間乾燥し、PETフィルム上に乾燥膜を形成した。
 その後、超高圧水銀ランプを有する露光装置(PEM-6M;ユニオン光学(株)製)を用いて、PETフィルム上の乾燥膜全面にi線(波長365nm)の露光量500mJ/cmで露光を行った。
 露光後、0.1重量%のNaCO水溶液を用いて、30秒間シャワー現像し、超純水によりリンス処理を行った。その後、現像後の膜を剥離し、直径18mmの円形に切り取り、以下の装置を使用し現像後膜の貯蔵弾性率G’(D100)を測定した。
 上述した方法と同様に、膜厚75μmのPETフィルム“セラピール”の離型処理面に、実施例1~21および比較例1で得られた導電ペーストを、乾燥後の膜厚が50μmになるように塗布、乾燥、露光、現像を行った。その後、現像後の膜を140℃の温度の乾燥オーブン内で30分間加熱し、キュア膜を形成した。その後、キュア膜を剥離し、直径18mmの円形に切り取り、以下の装置を使用しキュア膜の25℃での貯蔵弾性率G’ (C25)を測定した。
 測定装置  :粘度・粘弾性測定装置HAAKE MARSIII(Thermo Fisher SCIENTIFIC 製)
 測定条件  :OSC温度依存測定
 ジオメトリー:平行円板型(20mm)
 角周波数  :1Hz
 角速度   :6.2832rad/秒
 温度範囲  :25~150℃(現像後膜の貯蔵弾性率測定時は25℃に設定)
 昇温速度  :0.08333℃/秒(キュア膜の貯蔵弾性率測定時のみ設定)
 サンプル形状:円形(直径18mm)
 サンプル厚さ:50μm。
 <ダイシェア強度の測定方法>
 ガラス基板上に、実施例1~2で得られた導電ペーストを、乾燥後の膜厚が3μmになるようにスクリーン印刷で塗布し、塗布膜を100℃の温度の乾燥オーブン内で10分間乾燥し、ガラス基板上に乾燥膜を形成した。
 その後、0.7mm厚のシリコンウェハを2mm角にカットしたウェハチップを導電性膜上に載せ、真空ダイアフラム式ラミネータ(MVLP500/600;(株)名機試作所製)を用いて実装した後、140℃の温度の乾燥オーブン内で30分間加熱し図3に示すダイシェア強度測定用サンプルを得た。実装条件は、温度120℃、加圧圧力1MPa、加圧時間60秒間とした。そして、ダイシェア強度測定装置(Dageシリーズ4000;Dage社製)を用いてダイシェア強度を測定した。測定は25℃にて、剪断速度200μm/秒で行った。
 実施例3~21および比較例1で得られた感光性導電ペーストについては、ガラス基板上に乾燥後の膜厚が3μmになるようにスクリーン印刷で塗布し、塗布膜を100℃の温度の乾燥オーブン内で10分間乾燥し、ガラス基板上に乾燥膜を形成した。
 その後、超高圧水銀ランプを有する露光装置(PEM-6M;ユニオン光学(株)製)を用いて、ガラス基板上の乾燥膜全面にi線(波長365nm)の露光量500mJ/cmで露光を行った。
 露光後、0.1重量%のNaCO水溶液を用いて、30秒間シャワー現像し、超純水によりリンス処理を行い、ガラス基板上に導電性膜を形成した。
 その後、0.7mm厚のシリコンウェハを2mm角にカットしたウェハチップを導電性膜上に載せ、真空ダイアフラム式ラミネータ(MVLP500/600;(株)名機試作所製)を用いて実装した後、140℃の温度の乾燥オーブン内で30分間加熱し図3に示すダイシェア強度測定用サンプルを得た。実装条件は、温度120℃、加圧圧力1MPa、加圧時間60秒間とした。そして、ダイシェア強度測定装置(Dageシリーズ4000;Dage社製)を用いてダイシェア強度を測定した。測定は25℃にて、剪断速度200μm/秒で行った。
 図3はダイシェア強度測定用サンプルの断面模式図である。図3において、ガラス基板8に形成された導電性膜9上にウェハチップ10が接合されている。
 <実装可能温度の測定方法>
 ガラス基板上に、実施例1~2の導電ペーストを、乾燥後の膜厚が3μmになるようにスクリーン印刷で塗布し、塗布膜を100℃の温度の乾燥オーブン内で10分間乾燥し、ガラス基板上に乾燥膜を形成した。
 その後、0.7mm厚のシリコンウェハを2mm角にカットしたウェハチップを乾燥膜上に載せ、真空ダイアフラム式ラミネータ(MVLP500/600;(株)名機試作所製)を用いて実装し、図3に示すダイシェア強度測定用サンプルを得た。実装条件は、加圧圧力1MPa、加圧時間60秒間とし、加熱温度を70℃、80℃、90℃、100℃、110℃、120℃の各条件で実施した。得られた基板を140℃の温度の乾燥オーブン内で30分間加熱して、ダイシェア強度測定装置(Dageシリーズ4000;Dage社製)を用いてダイシェア強度を測定した。測定は25℃にて、剪断速度200μm/秒で行った。ダイシェア強度の値が5N/mm以上となる最低加熱温度を実装可能温度とした。
 実施例3~21および比較例1で得られた感光性導電ペーストについては乾燥後の膜厚が3μmになるようにスクリーン印刷で塗布し、塗布膜を100℃の温度の乾燥オーブン内で10分間乾燥し、ガラス基板上に乾燥膜を形成した。
 その後、超高圧水銀ランプを有する露光装置(PEM-6M;ユニオン光学(株)製)を用いて、ガラス基板上の乾燥膜全面にi線(波長365nm)の露光量500mJ/cmで露光を行った。
 露光後、0.1重量%のNaCO水溶液を用いて、30秒間シャワー現像し、超純水によりリンス処理を行い、ガラス基板上に現像後膜を形成した。
 その後、0.7mm厚のシリコンウェハを2mm角にカットしたウェハチップを現像後膜上に載せ、真空ダイアフラム式ラミネータ(MVLP500/600;(株)名機試作所製)を用いて実装し、図3に示すダイシェア強度測定用サンプルを得た。実装条件は、加圧圧力1MPa、加圧時間60秒間とし、加熱温度を70℃、80℃、90℃、100℃、110℃、120℃の各条件で実施した。得られた基板を140℃の温度の乾燥オーブン内で30分間加熱して、ダイシェア強度測定装置(Dageシリーズ4000;Dage社製)を用いてダイシェア強度を測定した。測定は25℃にて、剪断速度200μm/秒で行った。ダイシェア強度の値が5N/mm以上となる最低加熱温度を実装可能温度とした。
 実施例、比較例で用いた材料は以下の通りである。
 [感光性成分]
 (合成例)不飽和二重結合を有するカルボキシル基含有アクリル系共重合体(A)
 窒素雰囲気の反応容器中に、150gのジエチレングリコールモノブチルエーテル(以下、「DGME」)を仕込み、オイルバスを用いて80℃まで昇温した。これに、20gのエチルアクリレート(以下、「EA」)、40gのメタクリル酸2-エチルヘキシル(以下、「2-EHMA」)、20gのn-ブチルアクリレート(以下、「BA」)、15gのN-メチロールアクリルアミド(以下、「MAA」)、0.8gの2,2’-アゾビスイソブチロニトリルおよび10gのDGMEからなる混合物を、1時間かけて滴下した。滴下終了後、さらに80℃で6時間加熱して重合反応を行った。その後、1gのハイドロキノンモノメチルエーテルを添加して、重合反応を停止した。引き続き、5gのグリシジルメタクリレート(以下、「GMA」)、1gのトリエチルベンジルアンモニウムクロライドおよび10gのDGMEからなる混合物を、0.5時間かけて滴下した。滴下終了後、さらに2時間加熱して付加反応を行った。得られた反応溶液をメタノールで精製することにより未反応不純物を除去し、さらに24時間真空乾燥することにより、共重合比率(質量基準):EA/2-EHMA/BA/GMA/AA=20/40/20/5/15の、不飽和二重結合を有するカルボキシル基含有アクリル系共重合体(A)を得た。
 [光重合性基を有さないカルボキシル基含有樹脂]
 ・JONCRYL 67(BASFジャパン(株)製)
 ・JONCRYL 678(BASFジャパン(株)製)
 ・JONCRYL 611(BASFジャパン(株)製)
 ・JONCRYL 693(BASFジャパン(株)製)
 ・JONCRYL 682(BASFジャパン(株)製)
 ・JONCRYL 819(BASFジャパン(株)製)
 ・JONCRYL JDX-C3000A(BASFジャパン(株)製)
 ・JONCRYL JDX-C3080(BASFジャパン(株)製)。
 [光重合開始剤]
 ・“IRGACURE”OXE04(BASFジャパン(株)製)(以下、OXE04と称す)。
 [不飽和二重結合を有する化合物]
 ・“ライトアクリレート(登録商標)”BP-4EA(共栄社化学(株)製)(以下、BP-4EAと称す)。
 [導電性粒子]
 ・粒子径(D50)0.7μm、アスペクト比1.1のAg粒子(以下、Ag粒子と称す)
 ・粒子径(D50)0.7μm、アスペクト比1.1の樹脂コアAg被覆粒子(樹脂コア粒子の平均粒子径0.65μm)。
 [エポキシ樹脂]
 ・“EPICLON(登録商標)”840(DIC(株)製)(以下、「840」と称す)、エポキシ当量185g/eq、液状
 ・“EPICLON”HP-7200L(DIC(株)製)(以下、HP-7200Lと称す)、エポキシ当量250g/eq、軟化点55℃。
 [ノボラック型フェノール樹脂]
 ・スタンダードタイプH-4(明和化成(株)製)(以下、H-4と称す)、水酸基当量105g/eq、軟化点72℃
 ・高耐熱、高剛性タイプMEH-7600-4H(明和化成(株)製)(以下、MEH-7600と称す)、水酸基当量100g/eq、軟化点155℃。
 [硬化促進剤]
 ・“キュアゾール(登録商標)”C11Z-A(四国化成(株)製)(以下、C11Z-Aと称す)。
 (実施例1)
 100mLクリーンボトルに、15gの「840」、8.51gのH-4、5gのJONCRYL 67、6gのDGMEを入れ、自転-公転真空ミキサー“あわとり錬太郎(登録商標)”ARE-310((株)シンキー製)を用いて混合して、34.51gの樹脂溶液を得た。
 得られた34.51gの樹脂溶液と、Ag粒子66.52gを混ぜ合わせ、3本ローラー(EXAKT M-50;EXAKT社製)を用いて混錬し、101.03gの導電ペーストを得た。表1に導電ペーストの組成を示す。
 得られた導電ペーストを用いて、各貯蔵弾性率G’、実装可能温度およびダイシェア強度をそれぞれ前述の方法により評価した。評価結果を表2に示す。
 (実施例2)
 100mLクリーンボトルに、15gの「840」、8.51gのH-4、5gのJONCRYL 67、1.18gのC11Z-A、6gのDGMEを入れ、自転-公転真空ミキサー“あわとり錬太郎(登録商標)”ARE-310((株)シンキー製)を用いて混合して、35.69gの樹脂溶液を得た。
 得られた35.69gの樹脂溶液と、Ag粒子69.28gを混ぜ合わせ、3本ローラー(EXAKT M-50;EXAKT社製)を用いて混錬し、104.97gの導電ペーストを得た。表1に導電ペーストの組成を示す。
 得られた導電ペーストを用いて、各貯蔵弾性率G’、実装可能温度およびダイシェア強度をそれぞれ前述の方法により評価した。評価結果を表2に示す。
 (実施例3)
 100mLクリーンボトルに、13.59gの不飽和二重結合を有するカルボキシル基含有アクリル系共重合体(A)、4.08gのJONCRYL 67、0.60gのOXE04、2.00gのBP-4EA、5.66gのDGMEを入れ、自転-公転真空ミキサー“あわとり錬太郎(登録商標)”ARE-310((株)シンキー製)を用いて混合して、25.93gの樹脂溶液を得た。
 得られた25.93gの樹脂溶液と、Ag粒子60.46gを混ぜ合わせ、3本ローラーミルを用いて混練し、86.39gの感光性導電ペーストを得た。表1に感光性導電ペーストの組成を示す。
 得られた感光性導電ペーストを用いて、各貯蔵弾性率G’、実装可能温度およびダイシェア強度をそれぞれ前述の方法により評価した。評価結果を表2に示す。
 (実施例4~10)
 表1に示す組成の感光性導電ペーストを実施例1と同じ方法で作製し、実施例3と同様にして評価を行った。評価結果を表2に示す。
 (実施例11)
 100mLクリーンボトルに、13.59gの不飽和二重結合を有するカルボキシル基含有アクリル系共重合体(A)、0.68のJONCRYL 819、0.60gのOXE04、2.00gのBP-4EA、4.93gのDGMEを入れ、自転-公転真空ミキサー“あわとり錬太郎(登録商標)”ARE-310((株)シンキー製)を用いて混合して、21.80gの樹脂溶液を得た。
 得られた21.80gの樹脂溶液と、Ag粒子50.79gを混ぜ合わせ、3本ローラーミル(EXAKT M-50;EXAKT社製)を用いて混練し、72.59gの感光性導電ペーストを得た。得られた感光性導電ペーストを用いて、実施例3と同様にして評価を行った。評価結果を表2に示す。
 (実施例12)
 100mLクリーンボトルに、13.59gの不飽和二重結合を有するカルボキシル基含有アクリル系共重合体(A)、2.04gのJONCRYL 819、0.60gのOXE04、2.00gのBP-4EA、5.23gのDGMEを入れ、自転-公転真空ミキサー“あわとり錬太郎(登録商標)”ARE-310((株)シンキー製)を用いて混合して、23.46gの樹脂溶液を得た。
 得られた23.46gの樹脂溶液と、Ag粒子54.73gを混ぜ合わせ、3本ローラーミル(EXAKT M-50;EXAKT社製)を用いて混練し、78.18gの感光性導電ペーストを得た。得られた感光性導電ペーストを用いて、実施例3と同様にして評価を行った。評価結果を表2に示す。
 (実施例13)
 100mLクリーンボトルに、13.59gの不飽和二重結合を有するカルボキシル基含有アクリル系共重合体(A)、4.08のJONCRYL 819、0.60gのOXE04、2.00gのBP-4EA、5.66gのジエチレングリコールモノブチルエーテルアセテート(20℃における水100gへの溶解度が6.5g)を入れ、自転-公転真空ミキサー“あわとり錬太郎(登録商標)”ARE-310((株)シンキー製)を用いて混合して、25.93gの樹脂溶液を得た。
 得られた25.93gの樹脂溶液と、Ag粒子60.46gを混ぜ合わせ、3本ローラーミル(EXAKT M-50;EXAKT社製)を用いて混練し、86.39gの感光性導電ペーストを得た。得られた感光性導電ペーストを用いて、実施例3と同様にして評価を行った。評価結果を表2に示す。
 (実施例14)
 実施例13の露光条件を光学フィルターを用いてi線(波長365nm)露光量500mJ/cmで露光した際にh線(波長405nm)の露光量が2000mJ/cmになるよう調整して実施例3と同様にして評価を行った。評価結果を表2に示す。上記のとおり分光特性を調整することで、露光部を適度に光反応させ、現像後膜の貯蔵弾性率G’(D100)を低く抑えることができ、実装性を高め、実装可能温度下げることができた。
 (実施例15)
 100mlクリーンボトルに、15.00gの不飽和二重結合を有するカルボキシル基含有アクリル系共重合体(A)、0.66gのOXE04、3.82gの「840」、2.17gのH-4、1.53gのDGMEを入れ、自転-公転真空ミキサー“あわとり錬太郎(登録商標)”ARE-310((株)シンキー製)を用いて混合して、23.18gの樹脂溶液を得た。
 得られた23.18gの樹脂溶液と、粒子径(D50)0.7μm、アスペクト比1.1のAg粒子50.52gを混ぜ合わせ、3本ローラーミル(EXAKT M-50;EXAKT社製)を用いて混練し、73.70gの感光性導電ペーストを得た。得られた感光性導電ペーストを用いて、実施例3と同様にして評価を行った。評価結果を表2に示す。
 (実施例16~21)
 表1に示す組成の感光性導電ペーストを実施例1と同じ方法で作製し、実施例3と同様にして評価を行った。評価結果を表2に示す。
 (比較例1)
 100mLクリーンボトルに、13.59gの不飽和二重結合を有するカルボキシル基含有アクリル系共重合体(A)、0.60gのOXE04、2.00gのBP-4EA、4.78gのDGMEを入れ、自転-公転真空ミキサー“あわとり錬太郎(登録商標)”ARE-310((株)シンキー製)を用いて混合して、20.96gの樹脂溶液を得た。
 得られた20.96gの樹脂溶液と、粒子径(D50)0.7μm、アスペクト比1.1のAg粒子48.97gを混ぜ合わせ、3本ローラーミル(EXAKT M-50;EXAKT社製)を用いて混練し、69.93gの感光性導電ペーストを得た。得られた感光性導電ペーストを用いて、実施例3と同様にして評価を行った。評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 実施例1~21の乾燥膜の100℃における貯蔵弾性率G’(P100)はいずれも0.01MPa以下であり、加熱圧着時の導電性膜とウェハチップとの密着力が向上し、硬化後の膜の接合強度が向上した結果、ダイシェア強度はいずれも6.0N/mm以上で良好であった。実施例10は、光重合性基を有さないカルボキシル基含有樹脂としてガラス転移点が比較的高いものを用いた影響で、ダイシェア強度が低下したが、許容範囲内であった。
 実施例3~21の現像後の膜のG’(D100)はいずれも0.01MPa未満であり、加熱圧着時の導電性膜とウェハチップとの密着力が向上し、硬化後の膜の接合強度が向上した結果、ダイシェア強度はいずれも6.0N/mm以上で良好であった。
 比較例1は、G’(D100)が0.01MPa未満にならず、導電性膜とウェハチップの密着性が劣り、その結果、実施例3~21と比較してダイシェア強度が著しく低下した。
1:導電ペーストの乾燥膜
2:プリント配線板
3:プリント配線板の電極
4:導電性バンプ
5:電子部品
6:電子部品の電極
7:プリント回路板
8:ガラス基板
9:導電性膜
10:ウェハチップ

Claims (17)

  1. 有機成分および導電性粒子を含有する導電ペーストであって、前記導電ペーストの乾燥膜の100℃における貯蔵弾性率G’(P100)が0.01MPa以下であり、140℃で30分間加熱した後の25℃における貯蔵弾性率G’(C25)が0.01MPa以上である導電ペースト。
  2. 前記導電ペーストの乾燥膜の25℃における貯蔵弾性率G’(P25)が0.1MPa以上である請求項1に記載の導電ペースト。
  3. 前記導電ペーストの乾燥膜の100℃における貯蔵弾性率G’(P100)が0.00001~0.01MPaであり、25℃における貯蔵弾性率G’(P25)が0.1MPa~50000MPaであり、140℃で30分間加熱した後の25℃における貯蔵弾性率G’(C25)が0.01MPa~100000MPaである請求項1又は2記載の導電ペースト。
  4. 前記有機成分がカルボキシル基含有ポリマー、光重合開始剤、エポキシ樹脂及びノボラック型フェノール樹脂を含有する請求項1~3のいずれかに記載の導電ペースト。
  5. エポキシ樹脂の硬化促進剤を含有する請求項4記載の導電ペースト。
  6. 前記導電ペーストの乾燥膜の100℃における貯蔵弾性率G’(P100)が25℃における貯蔵弾性率G’(P25)の1/10以下である請求項1~5のいずれかに記載の導電ペースト。
  7. 前記導電ペーストの乾燥膜にi線(波長365nm)の露光量500mJ/cmで露光した後の膜の100℃における貯蔵弾性率G’(E100)が25℃における貯蔵弾性率G’(E25)の1/10以下である請求項1~6のいずれかに記載の導電ペースト。
  8. 前記有機成分が感光性成分であり、前記導電ペーストを100℃で30分間乾燥し、得られた乾燥膜をi線(波長365nm)の露光量500mJ/cmで露光し、0.1質量%の炭酸ナトリウム水溶液で30秒シャワー現像した後の膜の100℃における貯蔵弾性率G’(D100)が0.01MPa未満であり、前記現像後の膜を140℃で30分間加熱した後の25℃における貯蔵弾性率G’(C25)が0.01MPa以上である請求項1~3のいずれかに記載の導電ペースト。
  9. 光重合性基を有さないカルボキシル基含有樹脂を含有する請求項8に記載の導電ペースト。
  10. 前記光重合性基を有さないカルボキシル基含有樹脂のガラス転移温度が110℃以下である請求項9に記載の導電ペースト。
  11. 前記感光性成分として、光重合性基を有するカルボキシル基含有樹脂を含有する請求項8~10のいずれかに記載の導電ペースト。
  12. 請求項1~11のいずれかに記載の導電ペーストの乾燥膜を露光および現像した後の膜を備えたプリント配線板。
  13. プリント配線板上に、請求項1~11のいずれかに記載の導電ペーストの乾燥膜を形成する工程と、
    前記乾燥膜を露光および現像し、前記プリント配線板の電極上に導電性バンプを形成する工程と、を有する、導電性バンプ付きプリント配線板の製造方法であって、
    前記露光時における露光光の照度比(波長365nmにおける露光光の照度):(波長405nmにおける露光光の照度)が、1:1~1:9である導電性バンプ付きプリント配線板の製造方法。
  14. プリント配線板上に、請求項1~11のいずれかに記載の導電ペーストの乾燥膜を形成する工程と、
    前記乾燥膜を露光および現像し、前記プリント配線板の電極上に導電性バンプを形成する工程と、
    前記導電性バンプ上に電極を有する電子部品を加熱圧着する工程と、を有する、プリント回路板の製造方法。
  15. 電極を有する電子部品の前記電極が存在している面上に、請求項1~11のいずれかに記載の導電ペーストの乾燥膜を形成する工程と、
    前記乾燥膜を露光および現像し、前記電極を有する電子部品の電極上に導電性バンプを形成する工程と、
    前記導電性バンプ上にプリント配線板を加熱圧着する工程と、を有する、プリント回路板の製造方法。
  16. 前記電極を有する電子部品の電極表面に0.5μm以上の凹凸を有する請求項14又は15記載のプリント回路板の製造方法。
  17. 前期電極を有する電子部品がμLEDである請求項14~16のいずれかに記載のプリント回路板の製造方法。
PCT/JP2021/027862 2020-08-07 2021-07-28 導電ペースト、プリント配線板、プリント配線板の製造方法、プリント回路板の製造方法 WO2022030324A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180047180.7A CN115769145A (zh) 2020-08-07 2021-07-28 导电糊剂、印刷布线板、印刷布线板的制造方法、印刷电路板的制造方法
JP2021545380A JP7067676B1 (ja) 2020-08-07 2021-07-28 導電ペースト、プリント配線板、プリント配線板の製造方法、プリント回路板の製造方法
KR1020227037159A KR20230048623A (ko) 2020-08-07 2021-07-28 도전 페이스트, 프린트 배선판, 프린트 배선판의 제조방법, 프린트 회로판의 제조방법
JP2022004121A JP7111267B2 (ja) 2020-08-07 2022-01-14 プリント回路板の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020134395 2020-08-07
JP2020-134395 2020-08-07

Publications (1)

Publication Number Publication Date
WO2022030324A1 true WO2022030324A1 (ja) 2022-02-10

Family

ID=80117408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/027862 WO2022030324A1 (ja) 2020-08-07 2021-07-28 導電ペースト、プリント配線板、プリント配線板の製造方法、プリント回路板の製造方法

Country Status (4)

Country Link
JP (2) JP7067676B1 (ja)
KR (1) KR20230048623A (ja)
CN (1) CN115769145A (ja)
WO (1) WO2022030324A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008089921A (ja) * 2006-09-29 2008-04-17 Toyo Gosei Kogyo Kk 感光性組成物及び高分子複合体
JP2011116968A (ja) * 2009-10-30 2011-06-16 Hitachi Chem Co Ltd 感光性接着剤組成物、並びにそれを用いたフィルム状接着剤、接着シート、接着剤パターン、接着剤層付半導体ウェハ、接着剤層付透明基板、及び半導体装置。
WO2019073926A1 (ja) * 2017-10-11 2019-04-18 東レ株式会社 感光性導電ペーストおよび導電パターン形成用フィルム
WO2019202889A1 (ja) * 2018-04-19 2019-10-24 東レ株式会社 感光性導電ペーストおよびそれを用いたパターン形成グリーンシートの製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020092159A (ja) 2018-12-05 2020-06-11 株式会社ブイ・テクノロジー マイクロled実装構造、マイクロledディスプレイ及びマイクロledディスプレイの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008089921A (ja) * 2006-09-29 2008-04-17 Toyo Gosei Kogyo Kk 感光性組成物及び高分子複合体
JP2011116968A (ja) * 2009-10-30 2011-06-16 Hitachi Chem Co Ltd 感光性接着剤組成物、並びにそれを用いたフィルム状接着剤、接着シート、接着剤パターン、接着剤層付半導体ウェハ、接着剤層付透明基板、及び半導体装置。
WO2019073926A1 (ja) * 2017-10-11 2019-04-18 東レ株式会社 感光性導電ペーストおよび導電パターン形成用フィルム
WO2019202889A1 (ja) * 2018-04-19 2019-10-24 東レ株式会社 感光性導電ペーストおよびそれを用いたパターン形成グリーンシートの製造方法

Also Published As

Publication number Publication date
TW202223539A (zh) 2022-06-16
KR20230048623A (ko) 2023-04-11
JP2022068144A (ja) 2022-05-09
CN115769145A (zh) 2023-03-07
JP7067676B1 (ja) 2022-05-16
JPWO2022030324A1 (ja) 2022-02-10
JP7111267B2 (ja) 2022-08-02

Similar Documents

Publication Publication Date Title
TWI336813B (ja)
WO2003069410A1 (fr) Composition a base de resine radiosensible
TW201009500A (en) Photopolymer composition, solder resist composition for print circuit boards and print circuit boards
JPH10326798A (ja) 半導体素子搭載用回路基板とその半導体素子との接続方法
TWI809000B (zh) 感光性導電糊及導電圖案形成用薄膜、壓力感測器、以及附配線的基板的製造方法
WO2019107508A1 (ja) 半導体装置の製造方法、仮固定材用硬化性樹脂組成物、仮固定材用フィルム、及び仮固定材用積層フィルム
TWI426346B (zh) A photohardenable thermosetting one of the liquid solder resist compositions and a printed circuit board using the same
JP7067676B1 (ja) 導電ペースト、プリント配線板、プリント配線板の製造方法、プリント回路板の製造方法
JP5098643B2 (ja) 感放射線性樹脂組成物およびメッキ造形物の製造方法
JP2022055760A (ja) 導電パターン付き基板の製造方法およびled実装回路基板の製造方法
TWI857240B (zh) 導電糊、印刷配線板、印刷配線板之製造方法、印刷電路板之製造方法
TWI641000B (zh) 接觸感測器用積層圖案的製造方法、接觸感測器及觸控面板
TWI658382B (zh) 觸摸感測器用構件的製造方法及觸摸感測器用構件
JPH08211611A (ja) フォトソルダーレジストインク、プリント回路基板及びその製造方法
CN1697858A (zh) 光固化性·热固化性树脂组合物
WO2023106177A1 (ja) Led実装基板の製造方法
JPH0927674A (ja) 感光性樹脂組成物、その硬化塗膜及び回路基板
JP2005037754A (ja) 感光性樹脂組成物、それを用いた感光性フィルム、及びその製造方法
JP6656027B2 (ja) ソルダーレジストパターンの形成方法
WO2024004652A1 (ja) バンプ付き構造物の製造方法およびバンプパターンを有する基板
JP6717439B1 (ja) 積層部材
JP2021152988A (ja) 導電ペースト、導電パターン形成用フィルム、積層部材及びタッチパネル
WO2017094693A1 (ja) 電極層支持用絶縁ペースト、タッチパネル、タッチパネルの製造方法
JP2022151702A (ja) 回路基板、積層回路基板およびウェアラブルデバイス
JP2022011376A (ja) 配線形成基板の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021545380

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21853593

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21853593

Country of ref document: EP

Kind code of ref document: A1