WO2019163728A1 - 機能性積層体、及び機能性積層体を用いた機能性レンズ - Google Patents

機能性積層体、及び機能性積層体を用いた機能性レンズ Download PDF

Info

Publication number
WO2019163728A1
WO2019163728A1 PCT/JP2019/005951 JP2019005951W WO2019163728A1 WO 2019163728 A1 WO2019163728 A1 WO 2019163728A1 JP 2019005951 W JP2019005951 W JP 2019005951W WO 2019163728 A1 WO2019163728 A1 WO 2019163728A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
optical sheet
functional
layer
group
Prior art date
Application number
PCT/JP2019/005951
Other languages
English (en)
French (fr)
Inventor
森 力宏
利光 平連
百田 潤二
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Priority to US16/971,349 priority Critical patent/US11988808B2/en
Priority to JP2020501761A priority patent/JP7422067B2/ja
Priority to EP19756579.9A priority patent/EP3757663A4/en
Priority to CN201980013824.3A priority patent/CN111727402B/zh
Priority to MX2020008644A priority patent/MX2020008644A/es
Priority to KR1020207023870A priority patent/KR20200124667A/ko
Publication of WO2019163728A1 publication Critical patent/WO2019163728A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/10Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses
    • G02C7/102Photochromic filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/04Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B23/08Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/283Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • G02B1/043Contact lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/23Photochromic filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/022Ophthalmic lenses having special refractive features achieved by special materials or material structures
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/12Polarisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/055 or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/42Polarizing, birefringent, filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2551/00Optical elements
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C2202/00Generic optical aspects applicable to one or more of the subgroups of G02C7/00
    • G02C2202/16Laminated or compound lenses

Definitions

  • the present invention relates to a novel functional laminate having a photochromic property and / or polarization and a novel functional lens including the functional laminate.
  • a plastic lens As a base material of the sunglasses, a plastic lens is used because it is lighter than a glass lens and is highly safe in terms of being hard to break. And it is easy to give various functions to such plastic sunglasses.
  • a photochromic compound or disposing a photochromic layer a photochromic lens that can adjust the antiglare property by changing the transmittance according to the ambient brightness can be obtained.
  • it can be set as the polarizing lens which improves anti-glare property by arrange
  • Such plastic photochromic lenses, polarizing lenses, and polarizing photochromic lenses are manufactured by various methods. For example, it is manufactured by a method of applying a coating composition containing a photochromic compound on the surface of a plastic lens or a method of mixing a photochromic compound with the plastic lens material itself.
  • a functional laminate having photochromic properties is manufactured by first dispersing a photochromic compound in an adhesive polyurethane resin to form an adhesive sheet, and then laminating an optical sheet such as a polycarbonate resin on the adhesive sheet. (See Patent Document 10 and Patent Document 11).
  • a functional laminate having a polarizing property can be produced by bonding a polarizing film made of polyvinyl alcohol to an optical sheet such as a polycarbonate resin through an adhesive resin such as polyurethane.
  • a functional laminate having photochromic properties and polarizing properties is formed by dispersing a photochromic compound in an adhesive polyurethane resin to form an adhesive sheet, and then, on the adhesive sheet, a polarizing film made of polyvinyl alcohol and a polycarbonate resin, etc. It can be manufactured by sequentially laminating optical sheets (see Patent Document 12).
  • a method of laminating a thermoplastic resin for lenses on the functional laminate by injection molding is known. Since this method requires the introduction of an injection molding machine or the like, the following method has also been proposed as a simpler method.
  • a monomer composition hereinafter sometimes referred to as “lens-forming monomer composition”
  • Lens-forming monomer composition which is advantageous in that a functional lens can be easily produced, is polymerized to become a thermosetting resin for lenses.
  • the method to use is known.
  • This method is a method for producing a photochromic lens, a polarizing lens, or a polarizing photochromic lens by embedding or immersing the laminate in a lens forming monomer composition and then polymerizing the lens forming monomer composition.
  • a photochromic lens, a polarized lens, or a polarized photochromic lens can be produced at a relatively low temperature. Further, since various functions can be imparted to the lens by changing the type of monomer, many studies have been made (see Patent Documents 1 to 5).
  • Patent Documents 4 to 9 disclose a method of using a photochromic laminate or a polarizing laminate having a coating layer on the surface.
  • a photochromic lens or a polarizing lens is produced by forming a thermosetting resin (synthetic resin layer) made of a polymerized (cured) body of the lens-forming monomer composition on the coating layer.
  • Patent Document 4 exemplifies a coating layer made of polyurethane (meth) acrylate and polyester (meth) acrylate.
  • Patent Document 5 exemplifies a coating layer made of polyurethane.
  • Patent Document 6 exemplifies a coating layer made of a water-soluble polymer or the like.
  • Patent Document 7 exemplifies a coating layer made of a composition containing a hydrolyzable silicon compound having a (meth) acryl group.
  • Patent Document 8 exemplifies a coating layer made of urethane urea having a polymerizable group.
  • Patent Document 9 exemplifies a coating layer made of a photocurable composition containing a propenyl ether group-containing compound.
  • thermosetting resin layer synthetic resin layer
  • optical sheet the thermosetting resin layer (synthetic resin layer) and the optical sheet
  • the adhesion of the material was not improved.
  • the photochromic lens or the polarizing lens itself may be peeled off. there were.
  • an object of the present invention is to provide a photochromic lens, a polarizing lens, or a polarizing photochromic lens that is excellent in adhesion between a thermoplastic resin or thermosetting resin as a base material and an optical sheet.
  • Another object of the present invention is to provide a photochromic lens, a polarizing lens or a polarizing photochromic lens which is excellent in transparency, photochromic properties and / or polarization properties in addition to the adhesive properties.
  • Still another object of the present invention is to provide a method for more easily manufacturing a photochromic lens, a polarizing lens, or a polarizing photochromic lens.
  • the present inventors have made various studies on the surface state of a photochromic lens, a polarizing lens or an optical sheet of a polarizing photochromic lens. As a result of studying focusing on the surface state, by adjusting the surface state of the optical sheet, the adhesion strength of each layer constituting each lens is increased, and particularly high adhesion between each layer against stress from the side surface. The inventors have found that it is possible to obtain a lens having power, and have completed the present invention.
  • the present invention (1) Functional laminate including a first optical sheet (Aa), a second optical sheet (Ab), and a functional layer (Ac) having photochromic properties and / or polarizing properties existing between these two sheets ( A) and a functional lens comprising a synthetic resin layer (B) present on at least one of the first optical sheet (Aa) and the second optical sheet (Ab) of the functional laminate (A)
  • the first optical sheet (Aa) and the second optical sheet (Ab) are all polyamide resin, polyester resin, cellulose resin, (meth) acrylic resin, polyurethane resin, polyurethane urea resin, polyimide resin, epoxy resin, polyolefin resin.
  • the synthetic resin layer (B) is a resin selected from the group consisting of polyamide resin, polyester resin, allyl resin, (meth) acrylic resin, polyurethane resin, polyurethane urea resin, polythiourethane resin, polythioepoxy resin, and polycarbonate resin.
  • the functional lens having an adhesive strength between the first optical sheet (Aa) and / or the second optical sheet (Ab) and the synthetic resin layer (B) of 50 N or more.
  • the present invention can take the following aspects.
  • the first optical sheet (Aa) and / or the second optical sheet (Ab) is made of a resin selected from the group consisting of a polyamide resin, a polyester resin, a cellulose resin, and a polyvinyl alcohol resin,
  • the first optical sheet (Aa) and the second optical sheet (Ab) are made of a polyvinyl alcohol resin
  • the functional layer (Ac) consists of a photochromic adhesive layer (Ac1) containing a photochromic compound and a polyurethane urea resin
  • Patent Documents 13 and 14 exemplify photochromic laminates composed of polyvinyl alcohol / adhesive layer / photochromic property layer / adhesive layer / polyvinyl alcohol. However, in this photochromic laminate, the layer exhibiting photochromic properties is not directly bonded to polyvinyl alcohol, and the number of adhesive layers is increased as compared with the present invention. In addition, Patent Documents 13 and 14 do not describe further laminating a resin layer obtained by polymerizing and curing a liquid composition containing a polymerizable monomer.
  • the first optical sheet (Aa) and the second optical sheet (Ab) are all polyamide resin, polyester resin, cellulose resin, (meth) acrylic resin, polyurethane resin, polyurethane urea resin, polyimide resin, epoxy resin, and polyolefin.
  • a surface modification region having a reactive functional group is formed on the outer surface of at least one of the first optical sheet (Aa) and the second optical sheet (Ab), which is made of a resin selected from the group consisting of resins.
  • the said functional laminated body which exists.
  • the reactive functional group in the surface modification region is a hydroxy group, a thiol group, a carboxy group, an amino group, a sulfo group, a (thio) isocyanate group, an allyl group, a (meth) acryl group, a vinyl group, or an epoxy group.
  • the functional laminate according to (5) which is a functional group selected from oxetane group, thioepoxy group, and silanol group.
  • the functional layer (Ac) comprises a layer having photochromic properties, The functional laminate according to any one of (5) to (8), wherein the layer having photochromic properties is a photochromic adhesive layer (Ac1) containing a photochromic compound and a polyurethane urea resin.
  • the layer having the polarizing property comprises a polarizing film (Ac2), The functional laminate of any one of (5) to (9), wherein both surfaces of the polarizing film (Ac2) are bonded to the first optical sheet (Aa) and the second optical sheet (Ab) via an adhesive layer. body.
  • the functional layer (Ac) is a layer comprising a layer having photochromic properties and a layer having polarization properties
  • the layer having the photochromic property is a photochromic adhesive layer (Ac1) containing a photochromic compound and a polyurethane urea resin
  • the photochromic adhesive layer (Ac1) and the first optical sheet (Aa) are joined, and the layer having the polarizing property is composed of a polarizing film (Ac2), One surface of the polarizing film (Ac2) and the photochromic adhesive layer (Ac1) are bonded,
  • the functional laminate according to any one of (5) to (10), wherein the other surface of the polarizing film (Ac2) is bonded to the second optical sheet (Ab) via an adhesive layer.
  • the first optical sheet (Aa) and the second optical sheet (Ab) are both made of polyvinyl alcohol resin, On the outer surface of at least one of the first optical sheet (Aa) and the second optical sheet (Ab), a hydroxy group, a thiol group, a carboxy group, an amino group, a sulfo group, a (thio) isocyanate group, an allyl group A surface-modified region having a reactive functional group selected from a (meth) acryl group, a vinyl group, an epoxy group, an oxetane group, a thioepoxy group, and a silanol group,
  • the functional layer (Ac) is composed of a photochromic adhesive layer (Ac1) containing a photochromic compound and a polyurethane urea resin,
  • the functional laminate (A) according to any one of (5) to (13), After being embedded in a monomer composition for lens formation that becomes a resin selected from allyl, (meth) acryl, polyurethane, polyurethane urea, polythiourethane and polythioepoxy by polymerization, A method for producing the functional lens according to (1) above, wherein the synthetic resin layer (B) is laminated on the functional laminate (A) by polymerizing the lens-forming monomer composition.
  • the functional lens of the present invention a layer having photochromic properties and / or polarization and a synthetic resin layer formed on the layer are firmly bonded. Therefore, it can be used for various purposes.
  • the functional lens of the present invention has excellent adhesion with an adhesive strength of 50 N or more between the functional laminate (A) and the synthetic resin layer (B). When treated with a surface modifier, a functional lens having better adhesion can be obtained.
  • the functional laminate (A) of the present invention it is possible to obtain a photochromic lens, a polarizing lens or a polarizing photochromic lens (functional lens) having excellent adhesion while maintaining the respective characteristics. . Therefore, the functional lens of the present invention has excellent photochromic properties and / or polarization properties and can be used for a long time.
  • the functional laminate (A) of the present invention is excellent in solvent resistance. Therefore, when a functional lens is produced by embedding (immersing) the functional laminate (A) in the lens-forming monomer composition for forming the synthetic resin layer (B), the lens-forming monomer is used. It can prevent that an optical sheet melt
  • Sectional drawing which shows an example of the layer structure of the functional laminated body of this invention
  • Sectional drawing which shows the other example of a layer structure of the functional laminated body of this invention
  • Sectional drawing which shows the other example of a layer structure of the functional laminated body of this invention
  • Sectional drawing which shows an example of the laminated constitution of the functional lens of this invention
  • Sectional drawing which shows the other example of a layer structure of the functional laminated body of this invention
  • Sectional drawing which shows an example of the laminated constitution of the functional lens of this invention
  • the functional lens of the present invention is A functional laminate (A) including a first optical sheet (Aa), a second optical sheet (Ab), and a functional layer (Ac) having photochromic properties and / or polarizing properties existing between these two sheets, and A functional lens including a synthetic resin layer (B) present on at least one of the first optical sheet (Aa) and the second optical sheet (Ab) of the functional laminate (A), ,
  • the first optical sheet (Aa) and the second optical sheet (Ab) are all polyamide resin, polyester resin, cellulose resin, (meth) acrylic resin, polyurethane resin, polyurethane urea resin, polyimide resin, epoxy resin, polyolefin resin.
  • the synthetic resin layer (B) is a resin selected from the group consisting of polyamide resin, polyester resin, allyl resin, (meth) acrylic resin, polyurethane resin, polyurethane urea resin, polythiourethane resin, polythioepoxy resin, and polycarbonate resin.
  • the functional lens having an adhesive strength between the first optical sheet (Aa) and / or the second optical sheet (Ab) and the synthetic resin layer (B) of 50 N or more.
  • the functional laminate (A) A functional laminate (A) including a first optical sheet (Aa), a second optical sheet (Ab), and a functional layer (Ac) having photochromic properties and / or polarizing properties existing between these two sheets.
  • the first optical sheet (Aa) and the second optical sheet (Ab) are all polyamide resin, polyester resin, cellulose resin, (meth) acrylic resin, polyurethane resin, polyurethane urea resin, polyimide resin, epoxy resin, polyolefin resin.
  • a resin selected from the group consisting of polyvinyl alcohol resins, and the outer surface of at least one of the first optical sheet (Aa) and the second optical sheet (Ab) has a reactive functional group.
  • the said functional laminated body which has a quality area
  • this functional laminate it always has a synthetic resin layer (B) present on at least one of the first optical sheet (Aa) and the second optical sheet (Ab). Shall.
  • B synthetic resin layer
  • the functional lens of the present invention is excellent in adhesive strength between the functional laminate (A) described later and the synthetic resin layer (B) described later and is excellent in adhesion and is used for various applications. I can do it.
  • the adhesive strength is a value obtained by measuring the adhesion between the functional laminate (A) and the synthetic resin layer (B) from the lateral direction (perpendicular to the lamination direction). It is not the peel strength at which A) and the synthetic resin layer (B) are peeled in the vertical direction (stacking direction).
  • the adhesive strength between the functional laminate (A) and the synthetic resin layer (B) is a value measured by the following method. First, a strip-shaped test piece having a width of 20 mm and a length of 30 mm is cut in a direction perpendicular to the stacking direction.
  • the functional laminate (parallel to the boundary line of the functional laminate (A) exposed on the cut surface (lateral surface) having a width of 20 mm of the test piece and the boundary line of the synthetic resin layer (B) ( A metal plate made of SUS (thickness 0.4 mm, width 20 mm) having the same length (20 mm) is pressed against only one of the exposed surfaces of A) and the synthetic resin layer (B). Then, the adhesive strength is measured by performing a compression test using Autograph AGS-500NX (manufactured by Shimadzu Corporation) at a crosshead speed of 10 mm / min and a temperature of 25 ° C.
  • Autograph AGS-500NX manufactured by Shimadzu Corporation
  • the functional lens of the present invention is firmly bonded even when stress from the lateral direction is applied.
  • it is preferably 60 N or more, more preferably 70 N or more, further preferably 80 N or more, and particularly preferably 100 N or more. preferable.
  • the upper limit value of the adhesive strength is not particularly limited, but is 300 N in consideration of industrial production. Since the functional laminate (A) or the synthetic resin layer (B) itself is ruptured first, the one exceeding 300 N is difficult to measure.
  • the method for producing the functional lens of the present invention is not particularly limited, but as the functional laminate (A), the first optical sheet (Aa) and the second optical sheet (The outer surface of at least one of the optical sheets of Ab) (at least one of the first optical sheet (Aa) and the second optical sheet (Ab)) has a surface modified region having a reactive functional group. It is preferable to use it. And it can manufacture easily by laminating
  • the functional laminate (A) will be described.
  • the functional laminate (A) is a laminate having a functional layer (Ac) between the first optical sheet (Aa) and the second optical sheet (Ab).
  • the first optical sheet (Aa) and the second optical sheet (Ab) constituting the functional laminate (A) will be described.
  • First optical sheet (Aa) and second optical sheet (Ab)) ⁇ Description of raw resin>
  • a sheet having optical transparency is used as the first optical sheet (Aa) and the second optical sheet (Ab) used in the present invention.
  • a resin selected from polyamide resin, polyester resin, cellulose resin, (meth) acrylic resin, polyurethane resin, polyurethane urea resin, polyimide resin, epoxy resin, polyolefin resin, and polyvinyl alcohol resin is used.
  • a resin selected from polyamide resin, polyester resin, cellulose resin, (meth) acrylic resin, polyurethane resin, polyurethane urea resin, polyimide resin, epoxy resin, polyolefin resin, and polyvinyl alcohol resin is used.
  • it is preferably a polyamide resin, a polyester resin and a cellulose resin, more preferably a polyamide resin.
  • the body (A) can be suitably employed.
  • the first optical sheet (Aa) and the second optical sheet (Ab) are sheets made of polyvinyl alcohol resin, there are the following advantages. In this case, even if no treatment is performed, the surface of the first optical sheet (Aa) and the second optical sheet (Ab) has a surface modification region in which the reactive functional group is a hydroxyl group. As a result, the manufacturing process of the functional laminate (A) and the functional lens can be simplified. Furthermore, by using a sheet made of polyvinyl alcohol resin, the sheet itself can be provided with polarization. As a result, the layer structure of the functional laminate (A) and the functional lens can be reduced.
  • Commercially available resins can be used as the polyamide resin, and commercially available first optical sheets (Aa) and second optical sheets (Ab) made of polyamide resin can also be used.
  • polyamide resins examples include polyamide resins obtained by polycondensation reaction of ⁇ -aminocarboxylic acids such as ⁇ -caprolactam, 10-aminodecanoic acid lactam, and ⁇ -lauric lactam, and copolycondensation reaction of diamine and dicarboxylic acid. Polyamide resins obtained, and further their copolymers can be preferably used.
  • an aliphatic diamine having 4 to 14 carbon atoms such as tetramethylenediamine, hexamethylenediamine, 1,9-nonanediamine, 1,12-dodecanediamine, methylpentadiamine; Diaminocycloalkanes (5 to 10 carbon atoms) such as diaminocyclohexane; bis (4-aminocyclohexyl) methane, bis (4-amino-3-methylcyclohexyl) methane, 2,2-bis (4′-aminocyclohexyl) propane Alkyl groups (alkyl groups having 1 to 6 carbon atoms, preferably alkyl groups having 1 to 4 carbon atoms, and more preferably, such as bisaminocycloalkyl (5 to 10 carbon atoms) alkane (1 to 6 carbon atoms)
  • An alicyclic diamine which may have a substituent such as an aliphatic diamine having 4 to 14 carbon atoms
  • a substituent such as
  • dicarboxylic acid used in the polyamide resin obtained by the copolycondensation reaction for example, C4-C18 aliphatic dicarboxylic acids such as adipic acid, sebacic acid, dodecanedioic acid, C5-C10 alicyclic dicarboxylic acid such as cyclohexane-1,4-dicarboxylic acid, cyclohexane-1,3-dicarboxylic acid; Aromatic dicarboxylic acids such as terephthalic acid and isophthalic acid can be preferably used.
  • C4-C18 aliphatic dicarboxylic acids such as adipic acid, sebacic acid, dodecanedioic acid
  • C5-C10 alicyclic dicarboxylic acid such as cyclohexane-1,4-dicarboxylic acid, cyclohexane-1,3-dicarboxylic acid
  • Aromatic dicarboxylic acids such as terephthal
  • the first optical sheet (Aa) and the second optical sheet (Ab) used in the present invention have the above copolycondensation polymerization from the viewpoint of mechanical strength, solvent resistance (chemical resistance), and transparency.
  • a polyamide resin obtained by the reaction is preferably used.
  • an alicyclic polyamide resin or a semi-aromatic polyamide resin is more preferably used.
  • the alicyclic polyamide resin is a homo- or copolyamide having at least one selected from an alicyclic diamine and an alicyclic dicarboxylic acid as a constituent component. Further, it may be a copolyamide containing an aromatic polyamide resin or the like.
  • the semi-aromatic polyamide resin is a polyamide resin in which one of dicarboxylic acid and diamine is an aromatic compound and the other is an aliphatic compound.
  • alicyclic polyamide resin for example, Alicyclic diamines [for example, bis (aminocycloalkyl (5 to 10 carbon atoms) alkane (1 to 6 carbon atoms), preferably bisaminocycloalkyl (6 to 8 carbon atoms) alkane (1 to 6 carbon atoms), More preferably bisaminocyclohexylalkane (C1-3)],
  • a resin comprising an aliphatic dicarboxylic acid for example, an alkanedicarboxylic acid having 4 to 18 carbon atoms, preferably an alkanedicarboxylic acid having 6 to 16 carbon atoms, more preferably an alkanedicarboxylic acid having 8 to 14 carbon atoms
  • a typical alicyclic polyamide resin includes an alicyclic polyamide represented by the following formula (1).
  • G is a direct bond, an alkylene group or an alkenylene group
  • R 1 and R 2 are the same or different alkyl groups
  • m and n are each 0 or an integer of 1 to 4
  • p and q are each an integer of 1 or more.
  • the alkylene group (including alkylidene group) represented by G is, for example, 1 carbon atom such as methylene, ethylene, ethylidene, propylene, propane-1,3-diyl, 2-propylidene, butylene and the like.
  • an alkylene group (or alkylidene group) having 6 to 6 carbon atoms preferably an alkylene group having 1 to 4 carbon atoms (or alkylidene group), and more preferably an alkylene group having 1 to 3 carbon atoms (or alkylidene group).
  • examples of the alkenylene group represented by G include alkenylene groups having 2 to 6 carbon atoms such as vinylene and propenylene, preferably alkenylene groups having 2 to 4 carbon atoms.
  • examples of the alkyl group include alkyl groups having 1 to 6 carbon atoms such as methyl, ethyl, propyl, isopropyl, butyl, and isobutyl groups, preferably Is an alkyl group having 1 to 4 carbon atoms, more preferably a methyl group or ethyl group having 1 to 2 carbon atoms.
  • M and n in the formula (1) are each selected from 0 or an integer of 1 to 4. Usually, it is 0 or an integer of 1 to 3, preferably 0 or an integer of 1 to 2, and more preferably 0 or 1. Further, the substitution positions of the substituents R 1 and R 2 can usually be selected from the 2-position, 3-position, 5-position, and 6-position with respect to the amide group, and preferably the 2-position and 6-position.
  • p is preferably 4 or more, more preferably 6 to 20, and most preferably 8 to 15.
  • q degree of polymerization
  • q degree of polymerization
  • the alicyclic polyamide resins may be used alone or in combination of two or more. Therefore, even if the first optical sheet (Aa) and the second optical sheet (Ab) made of alicyclic polyamide resin are made of a single alicyclic polyamide resin, two or more types of alicyclic polyamide resins are used. It may consist of.
  • the number average molecular weight of the alicyclic polyamide resin is, for example, about 6,000 to 300,000, preferably 10,000 to 200,000, and more preferably about 15,000 to 100,000.
  • the alicyclic polyamide resin may have a heat melting temperature or a melting point, and the heat melting temperature is, for example, about 100 to 300 ° C., preferably about 110 to 280 ° C., more preferably about 130 to 260 ° C. It may be.
  • the heat melting temperature of the alicyclic polyamide resin having crystallinity, particularly microcrystalline property may be, for example, about 150 to 300 ° C., preferably about 180 to 280 ° C., more preferably about 210 to 260 ° C.
  • the heat melting temperature of the first optical sheet (Aa) and the second optical sheet (Ab) made of the alicyclic polyamide resin is slightly higher when the sheet is oriented, but the above range is satisfied. Is preferred.
  • the alicyclic polyamide resin may have a Vicat softening point of 100 to 200 ° C., preferably 110 to 170 ° C., more preferably about 130 to 150 ° C.
  • the bigat softening point is a value obtained by measuring the first optical sheet (Aa) and the second optical sheet (Ab) made of the alicyclic polyamide resin.
  • the alicyclic polyamide resin may have a glass transition point of 100 to 200 ° C., preferably 110 to 170 ° C., more preferably about 125 to 150 ° C.
  • the heat melting temperature of the first optical sheet (Aa) and the second optical sheet (Ab) made of the alicyclic polyamide resin is slightly higher when the sheet is oriented, but the above range is satisfied. Is preferred.
  • Suitable semi-aromatic polyamide resin Preferred examples of the semi-aromatic polyamide include those represented by the following formula (2).
  • One of X and Y is a divalent aromatic substituent, and the other is a divalent aliphatic substituent; q is an integer of 1 or more. ).
  • either one of X and Y is a divalent aromatic substituent, and is preferably represented by the following formula (3).
  • the X and Y aliphatic substituents are alkylene groups or alkenylene groups, for example, alkylene groups having 1 to 20 carbon atoms, more preferably alkylene groups having 4 to 10 carbon atoms, or carbon numbers.
  • q (degree of polymerization) is synonymous with that in the formula (1), and q (degree of polymerization) is preferably 5 or more, more preferably 10 to 800, Most preferably, it is 50-500.
  • More preferable semi-aromatic polyamides include those represented by the following formulas (4) to (6). Also, a semi-aromatic polyamide copolymer represented by the following formulas (4) to (6) can be used.
  • Z represents a direct bond, an alkylene group or an alkenylene group, and q represents an integer of 1 or more).
  • the alkylene group represented by Z is, for example, an alkylene group having 1 to 20 carbon atoms which may have a substituent such as methylene, ethylene, propylene or butylene, more preferably carbon number. Examples include 4 to 10 alkylene groups. Examples of the alkenylene group represented by Z include alkenylene groups having 2 to 6 carbon atoms such as vinylene and propenylene, preferably alkenylene groups having 2 to 4 carbon atoms.
  • q degree of polymerization
  • q degree of polymerization
  • Z represents a direct bond, an alkylene group or an alkenylene group, and q represents an integer of 1 or more).
  • alkylene group represented by Z for example, an alkylene group having 1 to 20 carbon atoms which may have a substituent such as methylene, ethylene, propylene, butylene, etc., more preferably Examples include 4 to 10 alkylene groups.
  • alkenylene group represented by Z include alkenylene groups having 2 to 6 carbon atoms such as vinylene and propenylene, preferably alkenylene groups having 2 to 4 carbon atoms.
  • q degree of polymerization
  • q degree of polymerization
  • Z is a direct bond, an alkylene group or an alkenylene group, and q is an integer of 1 or more).
  • alkylene group represented by Z for example, an alkylene group having 1 to 20 carbon atoms which may have a substituent such as methylene, ethylene, propylene, butylene, etc., more preferably Examples include 4 to 10 alkylene groups.
  • alkenylene group represented by Z include alkenylene groups having 2 to 6 carbon atoms such as vinylene and propenylene, preferably alkenylene groups having 2 to 4 carbon atoms.
  • q degree of polymerization
  • q degree of polymerization
  • the semi-aromatic polyamide resin has a glass transition point of 100 to 170 ° C., preferably 105 to 150 ° C.
  • the glass transition point of the first optical sheet (Aa) and the second optical sheet (Ab) made of a semi-aromatic polyamide resin is slightly higher when the sheet is oriented, but satisfies the above range. Is preferred.
  • the polyamide sheet used in the present invention preferably contains the alicyclic polyamide resin or semi-aromatic polyamide resin as a main component, but may contain other resins as long as the effects of the present invention are exhibited.
  • other resins include known aliphatic polyamide resins and aromatic polyamide resins.
  • first optical sheet (Aa) and second optical sheet (Ab) made of polyamide resin have a high Abbe number. Therefore, by using the alicyclic polyamide sheet, compared with the case where polycarbonate (Abbe number 34) is used, in the obtained functional laminate (A), the occurrence of uneven color such as iridescent is efficiently performed. Can be well controlled.
  • the Abbe number of the alicyclic polyamide sheet used in the present invention is preferably 40 to 65, more preferably 50 to 60.
  • the aliphatic polyamide resin is higher than the polycarbonate resin as described above. Since it has an Abbe number, even if the retardation value is not increased, the occurrence of iridescent color irregularities is usually small, or the generation of iridescent color irregularities can be suppressed or prevented at a high level. However, when a laminate obtained by combining an aliphatic polyamide sheet and a polarizing sheet is bent or curved, the degree of polarization may decrease.
  • the alicyclic polyamide sheet used in the present invention it is preferable to use an alicyclic polyamide sheet that is uniaxially stretched and has a retardation value of 100 nm or more.
  • the retardation value of the alicyclic polyamide sheet is preferably 100 to 10,000 nm, more preferably 500 to 6000 nm, and more preferably 1000 to 5000 nm. More preferably it is.
  • the uniaxially stretched alicyclic polyamide sheet when used, it may be used on at least one of the surfaces of the obtained laminate.
  • the unicyclicly stretched alicyclic polyamide sheet or the non-stretched alicyclic polyamide sheet may be used for the surface (in some cases, the back surface) of the other laminate. .
  • Commercially available resins can be used as the polyester resin, and commercially available first optical sheets (Aa) and second optical sheets (Ab) made of polyester resin can also be used.
  • polyester resin examples include polycondensates of dicarboxylic acids such as terephthalic acid and isophthalic acid and diols such as ethylene glycol, butylene glycol and 1,4-cyclohexanedimethanol. Among them, polyethylene terephthalate, Butylene terephthalate and copolymers thereof can be preferably used.
  • acetyl cellulose such as triacetyl cellulose and diacetyl cellulose
  • propyl cellulose such as tripropyl cellulose and dipropyl cellulose
  • a commercially available resin can be used as the (meth) acrylic resin, and commercially available first optical sheets (Aa) and second optical sheets (Ab) made of (meth) acrylic resins can also be used.
  • the (meth) acrylic resin for example, a resin made of a homopolymer such as methyl methacrylate or a copolymer of a plurality of (meth) acrylic monomers can be suitably used.
  • a commercially available resin can be used as the polyurethane resin and the polyurethane urea resin, and commercially available first optical sheets (Aa) and second optical sheets (Ab) made of the polyurethane resin and the polyurethane urea resin can also be used.
  • Polyurethane resin or polyurethane urea resin is a resin having a urethane bond or / and a urea bond in the molecule.
  • known compounds obtained by reacting diisocyanate compounds such as isophorone diisocyanate with polyol compounds such as polycarbonate polyol and polyester polyol are used.
  • a polyurethane resin or a polyurethane urea resin obtained by reacting a chain extender such as a low molecular weight diol, triol, diamine, or triamine can be preferably used.
  • a polymer of aromatic tetracarboxylic acid and aromatic diamine can be preferably used.
  • the aromatic tetracarboxylic acid include pyromellitic acid, 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 2,3 ′, 3,4′-biphenyltetracarboxylic acid, 3,3 ′, 4, 4'-benzophenone tetracarboxylic acid, 2,3,6,7-naphthalene tetracarboxylic acid, 2,2-bis (3,4-dicarboxyphenyl) propane, pyridine-2,3,5,6-tetracarboxylic acid Or the aromatic tetracarboxylic acid derived from the acid anhydride or acid dianhydride, or the ester compound or halide of the acid is mentioned.
  • aromatic diamine examples include paraphenylenediamine, metaphenylenediamine, benzidine, paraxylylenediamine, 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 4,4′-diaminodiphenylmethane, and 4,4 ′.
  • -Diaminodiphenylsulfone, 3,3'-dimethyl-4,4'-diaminodiphenylmethane, 1,5-diaminonaphthalene, 3,3'-dimethoxybenzidine, 1,4-bis (3-methyl-5-aminophenyl) Benzene and derivatives thereof are mentioned.
  • a commercially available resin can be used as the epoxy resin, and commercially available first optical sheets (Aa) and second optical sheets (Ab) made of an epoxy resin can also be used.
  • epoxy resin for example, a resin obtained by condensation reaction of bisphenol A, bisphenol F or the like with epichlorohydrin, other other functional epoxy resin, biphenyl type epoxy resin, or the like can be suitably used.
  • Commercially available resins can be used as the polyolefin resin, and commercially available first optical sheets (Aa) and second optical sheets (Ab) made of polyolefin resin can also be used.
  • the polyolefin resin for example, polypropylene, polyethylene, ethylene-propylene copolymer, ethylene- ⁇ -olefin copolymer, propylene- ⁇ -olefin copolymer and the like can be preferably used.
  • first optical sheet (Aa) and the second optical sheet (Ab) made of polyvinyl alcohol resin are used, the functional layer (Ac) preferably includes a layer having photochromic properties.
  • the functional layer (Ac) which has this photochromic characteristic consists of a photochromic contact bonding layer (Ac1) containing a photochromic compound and a polyurethane urea resin. And it is preferable that said 1st optical sheet (Aa) and 2nd optical sheet (Ab) are directly joined by this photochromic contact bonding layer (Ac1). Furthermore, it is preferable that any one of the first optical sheet (Aa) and the second optical sheet (Ab) is a polarizing sheet.
  • the layer structure of the functional laminate and the functional lens can be reduced by using the first optical sheet (Aa) and the second optical sheet (Ab) made of polyvinyl alcohol resin. As a result, their productivity can be increased.
  • Examples of the optical sheet made of the polyvinyl alcohol resin used in the present invention include sheets made of the following resins.
  • the polyvinyl alcohol resin can be obtained by saponifying a polyvinyl acetate resin.
  • the degree of saponification is usually 85 mol% or more, preferably 90 mol% or more, more preferably 99 mol% or more.
  • Examples of the polyvinyl acetate-based resin include polyvinyl acetate, which is a homopolymer of vinyl acetate, and copolymers of vinyl acetate and other monomers copolymerizable therewith.
  • Examples of other monomers copolymerizable with vinyl acetate include unsaturated carboxylic acids, olefins, unsaturated sulfonic acids, vinyl ethers and the like.
  • the average degree of polymerization of the polyvinyl alcohol resin is preferably 100 to 10000, more preferably 1500 to 8000, and further preferably 2000 to 5000.
  • the average degree of polymerization of the polyvinyl alcohol (PVA) resin can be determined according to JIS K 6726 (1994).
  • the polyvinyl alcohol resin may be at least partially modified, and may include, for example, polyvinyl formal modified with aldehydes, polyvinyl acetal, polyvinyl butyral, and the like. Among these, it is preferable to use a pair of films made of polyvinyl alcohol.
  • the thickness of the first optical sheet (Aa) and the second optical sheet (Ab) made of polyvinyl alcohol resin is preferably 10 to 100 ⁇ m.
  • the sheet made of polyvinyl alcohol resin may be unstretched, uniaxially stretched, or biaxially stretched.
  • the stretching direction include a machine flow direction (MD) of an unstretched film, a direction orthogonal to the machine flow direction (TD), and a direction oblique to the machine flow direction.
  • MD machine flow direction
  • TD machine flow direction
  • the unstretched sheet is a sheet that has not been stretched
  • the uniaxially stretched sheet is a stretched unstretched sheet in any one of the above directions.
  • the biaxially stretched sheet is stretched in two directions out of the above-mentioned stretched directions.
  • the biaxially stretched sheet sequentially stretches in the other direction after being stretched in a predetermined direction.
  • An axially stretched sheet may be used.
  • those stretched in the MD and TD are usually preferred.
  • the stretch ratio is preferably 2 to 8 times.
  • the sheet is uniaxially stretched in MD (uniaxially stretched sheet), and the stretching ratio is 3 to 7 times. It is more preferable that the ratio is 4 to 6 times.
  • the sheet made of polyvinyl alcohol resin may be stretched at once or divided into multiple times. When extending
  • a draw ratio is based on the length of the sheet
  • a sheet made of a polyvinyl alcohol-based resin has a crosslinking agent such as boric acid, an organic titanium-based compound, an organic zirconium-based compound, glyoxal, or glutaraldehyde regardless of whether it is unstretched, uniaxially stretched, or biaxially stretched. It is preferable that the polyvinyl alcohol resin is used and crosslinked. Among these, those crosslinked with boric acid are more preferable.
  • chemical resistance can be improved by crosslinking a sheet of polyvinyl alcohol resin with boric acid.
  • the boric acid content in the sheet is preferably 1.0 to 20.0% by mass.
  • the boric acid content can be obtained by dissolving the film in an aqueous nitric acid solution and then converting from the boron content obtained by inductively coupled plasma (IPC) emission analysis.
  • IPC inductively coupled plasma
  • the crosslinking of the polyvinyl alcohol resin with boric acid is carried out by bringing a sheet made of the polyvinyl alcohol resin into contact with the boric acid aqueous solution. Therefore, the boric acid content is determined from the crosslinked sheet.
  • the relationship between the boric acid content and the production conditions (sheet thickness, contact temperature, contact time, contact speed, concentration of boric acid aqueous solution, cleaning conditions, etc.) in advance can be obtained and manufactured according to this.
  • the boric acid content in the sheet when the boric acid content in the sheet is less than 1.0% by mass, the effect of improving chemical resistance and moisture resistance tends to be low.
  • the boric acid content in the sheet when the boric acid content in the sheet is more than 20.0% by mass, the mechanical strength of the sheet tends to decrease, and the dimensional change at high temperatures tends to increase. Therefore, the boric acid content in the sheet is more preferably 3.0 to 18.0% by mass, and further preferably 5.0 to 15.0% by mass.
  • plasticizer examples include polyols and condensates thereof, and examples thereof include glycerin, diglycerin, triglycerin, ethylene glycol, propylene glycol, and polyethylene glycol.
  • glycerin examples include polyols and condensates thereof, and examples thereof include glycerin, diglycerin, triglycerin, ethylene glycol, propylene glycol, and polyethylene glycol.
  • the usage-amount of a plasticizer etc. is not restrict
  • dichroic substance when imparting polarization to a sheet made of polyvinyl alcohol-based fat, a known dichroic substance can be used without any limitation.
  • Specific dichroic substances include iodine and dichroic dyes.
  • commercially available dichroic dyes can be used without limitation, and examples thereof include azo dyes and anthraquinone dyes. Specifically, chloranthin fast red (C.I. 28160), Congo red (C.I. 22120), brilliant blue B (C.I. 24410), benzoperpurine (C.I. 23500), chlora Zole Black BH (C.I. 22590), Direct Blue 2B (C.I. 22610), Diamine Green (C.I.
  • the physical properties thereof are not particularly limited, but the luminous transmittance is 10 to 80% and the polarization degree is 30.0 to 99. It is preferably 9%.
  • the two sheets of polyvinyl alcohol resin may be the same sheet or different sheets.
  • this may be the same or different in the material to be formed, the degree of crosslinking, the characteristics, and the thickness. What is necessary is just to determine suitably according to the use to each use.
  • the sheet made of polyvinyl alcohol resin to be used may have a moisture content of 15% by mass or less before being directly bonded to the “adhesive layer (Ac1) containing a photochromic compound” described in detail below. preferable.
  • the photochromic adhesive layer (Ac1) described in detail below has (I) a photochromic compound, (II) a terminal non-reactive urethane urea resin, and (III) molecules.
  • it consists of a photochromic adhesive composition containing a polyisoisocyanate compound having at least two isocyanate groups therein, it can be suitably used.
  • the resulting photochromic laminate can reduce variations in adhesive strength at each position of the laminate.
  • the moisture content of the sheet made of the polyvinyl alcohol resin before bonding is more preferably 10% by mass or less, and further preferably 6% by mass or less.
  • the lower the lower limit of the moisture content the more stable production is preferable. Among these, considering the industrial production of the sheet itself, it is about 2% by mass.
  • This water content is a value measured by the method described in detail in the following examples, and is a water content obtained by comparison with a film in which weight change is eliminated by drying.
  • the sheet made of polyvinyl alcohol resin is not particularly limited, but can be produced as follows.
  • a commercially available unstretched sheet made of polyvinyl alcohol resin hereinafter also referred to as “raw fabric sheet” can be used as it is, or a sheet treated by the following method can be used.
  • the sheet made of polyvinyl alcohol resin is selected from 1) swelling treatment, 2) dyeing treatment, 3) cross-linking treatment, 4) stretching treatment, 5) washing treatment, and 6) drying treatment as necessary.
  • a sheet according to the purpose can be manufactured.
  • 1) Swelling treatment can be performed by immersing the raw fabric sheet in a treatment liquid mainly composed of water selected from tap water, distilled water, ion-exchanged water, pure water and the like.
  • the treatment temperature of the swelling treatment is preferably adjusted to about 10 to 45 ° C., and the immersion time is about 10 to 300 seconds.
  • the swelling treatment may be performed together with the stretching treatment. In that case, the original fabric sheet is preferably stretched 1.2 to 4 times the original length, more preferably 1.6 to 3 times.
  • the dyeing process is performed by immersing the original sheet subjected to the swelling process in a dyeing aqueous solution in which the dichroic substance is dissolved.
  • iodine When iodine is used as a dichroic substance, potassium iodide, lithium iodide, sodium iodide, zinc iodide, aluminum iodide, lead iodide, copper iodide, barium iodide, iodine as a dissolution aid Iodides such as calcium iodide, tin iodide, and titanium iodide may be used. 2)
  • the treatment temperature of the dyeing treatment is preferably adjusted to about 20 to 50 ° C., and the immersion time is preferably adjusted to about 10 to 300 seconds.
  • the crosslinking treatment is performed by immersing the raw sheet subjected to the treatment of 1) only or 1) and 2) in an aqueous solution in which the crosslinking agent is dissolved. 3) Crosslinking treatment may be performed together with 4) stretching treatment. 3) The crosslinking treatment may be performed a plurality of times. 3) The treatment temperature of the crosslinking treatment is preferably 30 to 80 ° C, more preferably 35 to 60 ° C. The processing time is 10 to 500 seconds.
  • the stretching treatment is usually carried out by performing uniaxial stretching.
  • This stretching treatment can be performed together with a swelling treatment, a dyeing treatment, and / or a crosslinking treatment.
  • As the stretching method either a wet stretching method or a dry stretching method can be adopted, but it is preferable to use a wet stretching method.
  • the stretching process is performed by a wet stretching method, it is common to perform stretching in a solution together with a crosslinking process in the swelling process and / or after the dyeing process.
  • the stretching process can be performed in multiple stages.
  • the treatment temperature in the wet stretching method is preferably 30 to 80 ° C., more preferably 35 to 60 ° C.
  • the processing time is 10 to 500 seconds.
  • the draw ratio can be appropriately set according to the purpose, but as described above, the draw ratio is preferably 2 to 8 times, more preferably 3 to 7 times, and most preferably 4 to 6 times. .
  • the stretching ratio is based on the length of the sheet made of the polyvinyl alcohol resin before stretching. When stretching is performed in a process other than the stretching process, the cumulative total stretching ratio including stretching in those processes. That is.
  • the cleaning treatment can be performed by immersing in a cleaning liquid mainly composed of water selected from tap water, distilled water, ion-exchanged water, pure water and the like. If necessary, the cleaning liquid can be used by adding additives such as the cross-linking agent, the plasticizer, and the surfactant.
  • the treatment temperature for the washing treatment is preferably 5 to 50 ° C., and the treatment time is preferably 5 to 240 seconds.
  • the drying process may be performed by appropriately setting the drying time and the drying temperature according to the amount of water required for the obtained sheet.
  • the drying temperature is preferably 20 to 150 ° C., and the drying time is preferably 10 to 600 seconds. It is preferable to carry out this drying treatment and then store under dry conditions (in an inert gas atmosphere (dried (reduced moisture as much as possible)) so as not to adsorb moisture.
  • the following heat treatment is preferably performed immediately before use. Specifically, it is preferable to heat-treat the sheet immediately before use, which is directly bonded to the photochromic adhesive layer (Ac1), at a temperature of 40 to 110 ° C. for about 5 seconds to 1800 seconds. In such drying / heating treatment, the amount of water contained in the sheet immediately before use can be adjusted to 2 to 15% by mass.
  • the sheet made of the polyvinyl alcohol resin to be used is, for example, 1), 3), 5) and 6) when it is simply crosslinked, and 1), 4) and 5 when it is desired to stretch.
  • 1), 3), 4), 5) and 6) may be carried out when it is desired to crosslink while stretching)) and 6).
  • all the steps 1) to 6) may be performed.
  • the combination of processing steps is not limited at all, and may be appropriately combined according to the purpose, and steps other than the above may be combined as necessary.
  • the first optical sheet (Aa) and the second optical sheet (Ab) made of a polyvinyl alcohol resin have a surface active region having a hydroxyl group (reactive functional group) on the outer surface without any special operation.
  • the outer surface may be coated with a coating composition containing a silane coupling agent, which will be described in detail below, so that the reactive functional group of the surface-modified region is a group other than a hydroxyl group. it can.
  • the first optical sheet (Aa) and the second optical sheet (Ab) may be any of an unstretched sheet, a uniaxially stretched sheet, and a biaxially stretched sheet, respectively. Furthermore, a combination of these sheets may be used.
  • the first optical sheet (Aa) and the second optical sheet (Ab) may be sheets made of the same type of resin, or may be sheets made of resins of different types. However, in general, it is preferable to use sheets made of the same type of resin.
  • the first optical sheet (Aa) and the second optical sheet (Ab) are various additives such as stabilizers (thermal stabilizers, ultraviolet absorbers, antioxidants, etc.), plasticizers, lubricants, A filler, a colorant, a flame retardant, an antistatic agent, and the like may be included.
  • stabilizers thermal stabilizers, ultraviolet absorbers, antioxidants, etc.
  • plasticizers plasticizers
  • lubricants A filler
  • a colorant a flame retardant
  • an antistatic agent an antistatic agent
  • a sheet that does not contain an additive that absorbs ultraviolet rays such as an ultraviolet absorber is used on the surface side ( When a laminated body is used for sunglasses or the like, it is preferably used for the outer surface exposed to sunlight.
  • the preferred thickness of the first optical sheet (Aa) and the second optical sheet (Ab) is preferably 30 to 1000 ⁇ m, more preferably 50 to 600 ⁇ m, and further preferably 100 to 300 ⁇ m. preferable.
  • the first optical sheet (Aa) and the second optical sheet (Ab) can be used in combination with different thicknesses.
  • the first optical sheet (Aa) and the second optical sheet (Ab) may be sheets stretched in a uniaxial direction or a biaxial direction.
  • a suitable draw ratio in the case of being drawn is preferably 1.10 to 7.00 times, more preferably 1.15 to 6.00 times in both the uniaxial direction and the biaxial direction. Preferably, it is 1.20 to 5.00 times.
  • first optical sheet (Aa) and the second optical sheet (Ab) can be used in combination with different stretching ratios.
  • first optical sheet (Aa) and the second optical sheet (Ab) are made of a polyvinyl alcohol resin
  • the physical properties such as the draw ratio and the thickness are ⁇ the first optical sheet (Aa) and the second optical sheet ( Ab); (polyvinyl alcohol resin)> is preferably as described above.
  • the first optical sheet (Aa ) and / or the second optical sheet (Ab) and the synthetic resin layer (B) is preferably present on the outer surface of the second optical sheet (Ab).
  • the surface modified region can be produced by applying a coating composition containing a surface modifying agent having a reactive functional group to the outer surface to form a coating layer. That is, the portion of the coat layer treated with the coat composition becomes a surface modification region. Further, the surface modified region can be formed by applying various surface treatments to the outer surface so that the surface modified region having a reactive functional group can be formed on the outer surface.
  • the treatment layer formed by such treatment may be simply referred to as “surface modified layer”.
  • surface modified layer the treatment layer formed by such treatment.
  • a 1st optical sheet (Aa) and a 2nd optical sheet (Ab) consist of polyvinyl alcohol resin
  • seat etc. have a reactive functional group (hydroxyl group) on the outer surface. Therefore, the surface modification region is provided without any treatment.
  • the surface modification region surface It is also possible to newly form a modified layer.
  • the surface modification layer is not particularly limited, and is formed on the outer surface of the first optical sheet (Aa) and / or the second optical sheet (Ab) by employing a known method. be able to. Specifically, a method of etching treatment and / or a method of applying a coating composition to the outer surface of the first optical sheet (Aa) and / or the second optical sheet (Ab) can be mentioned.
  • the outer surface of the first optical sheet (Aa) and the second optical sheet (Ab) is the outermost surface of the functional laminate (A) and the synthetic resin layer (B) described in detail below. It is a surface that is directly laminated.
  • the surface modification layer is a layer having a reactive functional group.
  • this reactive functional group is hydroxy group, thiol group, carboxy group, amino group, sulfo group, (thio) isocyanate group, allyl group, (meth) acryl group, vinyl group, epoxy group, oxetane group, thioepoxy group. And a functional group selected from silanol groups. And these reactive functional groups can be suitably determined by the method of forming a surface modification layer.
  • the reactive functional group which this surface modification layer has is not derived from the material of the first optical sheet (Aa) and the second optical sheet (Ab), but is applied with an etching method and / or a coating composition. By doing so, it is a newly formed reactive functional group.
  • etching treatment a method for performing the etching treatment, for example, a chemical treatment using a chemical solution such as an alkali solution or an acid solution, a polishing treatment, a corona discharge treatment, a plasma discharge treatment, a UV ozone treatment, or the like can be employed.
  • a chemical treatment using a chemical solution such as an alkali solution or an acid solution
  • a new layer is not laminated, but the outer surface of the first optical sheet (Aa) and / or the second optical sheet (Ab) is directly modified.
  • a surface modified region surface modified layer is formed.
  • Reactive functional groups generated on the outer surface of the first optical sheet (Aa) and / or the second optical sheet (Ab) by the etching treatment should be analyzed by infrared spectroscopy (particularly, diffuse reflection method). It is possible to confirm with.
  • C ⁇ O stretching vibration derived from a carboxyl group can be confirmed at a position different from C ⁇ O stretching vibration derived from polyamide bond. .
  • the contact angle of the outer surface of the first optical sheet (Aa) and / or the second optical sheet (Ab) can be controlled by performing an etching process, but the synthetic resin layer (B) to be bonded is used.
  • the contact angle of the outer surface is preferably controlled to 10 to 60 °.
  • the contact angle of the outer surface satisfies this range, a functional lens having excellent adhesion can be produced even when a synthetic resin layer (B) described later is directly bonded.
  • the contact angle of the outer surface is more preferably 20 to 50 °, and most preferably 20 to 40 °.
  • the contact angle is more preferably 20 to 50 °, and more preferably 20 to 40 °. Most preferred.
  • the contact angle in this invention measured the angle which a water drop and a sheet sample surface make when a water drop was dripped on the sheet sample surface using Kyowa Interface Science Co., Ltd. DropMaster500 (trademark registration). did.
  • Method for applying coating composition examples include moisture curable polyurethane, polyisocyanate-polyester two-part coating liquid, polyisocyanate-polyether two-part coating liquid, and polyisocyanate-polyacrylic two-part coating liquid.
  • Liquid coating solution Polyisocyanate-polyurethane elastomer two-component coating solution, Epoxy coating solution, Epoxy-polyurethane two-component coating solution, Acrylic coating solution, Polyester coating solution, Polyurethane urea one-component solution
  • a method of applying a coating liquid such as a mold coating liquid, a water-dispersible polyurethane-based coating liquid, or a coating liquid using a silane coupling agent can be employed.
  • the formed layer can be a hydroxy group, a thiol group, a carboxy group, an amino group, a sulfo group, a (thio) isocyanate group, an allyl group, a (meth) acryl group, a vinyl group, an epoxy.
  • a coating solution using a silane coupling agent is used from the viewpoint of excellent adhesion to the outer surface of the first optical sheet (Aa) and / or the second optical sheet (Ab). More preferably, it is most preferable to use a coating composition containing a silane coupling agent having a radical polymerizable group.
  • silane coupling agent of the present invention examples include ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldimethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, and ⁇ -glycidoxypropyltriethoxy.
  • a silane coupling having a radical polymerizable group from the viewpoint of improving the adhesive strength between the outer surface of the first optical sheet (Aa) and / or the second optical sheet (Ab) and the synthetic resin layer (B), a silane coupling having a radical polymerizable group.
  • Agents such as vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane, vinyltri ( ⁇ -methoxy-ethoxy) silane, allyltrimethoxysilane, ⁇ -acryloxypropyltrimethoxysilane, ⁇ -acryloxypropyltri It is preferable to use ethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -methacryloxypropyltriethoxysilane, or ⁇ -methacryloxypropyldimethoxymethylsilane.
  • the coating solution using the silane coupling agent is water used for promoting hydrolysis of the silane coupling agent (this water may be added in the form of an acid aqueous solution), acetyl.
  • a known organic solvent for example, methanol, propanol, t-butyl alcohol, acetylacetone, etc.
  • a surfactant to adjust the curing catalyst such as acetonate complex and perchlorate, and coating properties. May be used.
  • the coating composition (coating liquid) is 100 to 2000 parts by mass of the organic solvent and 0.1 to 3.0 parts by mass of the curing catalyst with respect to 100 parts by mass of the silane coupling agent. It is preferable to use 10 to 100 parts by weight of water (which may be an acid aqueous solution) and 0.05 to 1.00 parts by weight of a surfactant.
  • the coating composition (coating liquid) is applied (applied) to the outer surface of the first optical sheet (Aa) and / or the second optical sheet (Ab).
  • drying and curing are preferably performed at a temperature of 30 to 120 ° C. for about 5 minutes to 3 hours.
  • the adhesion can be further improved by drying and curing at a temperature of 35 to 70 ° C. for 5 to 60 minutes.
  • the thickness of the surface modified layer is not particularly limited, but is 0.1 to 2.0 ⁇ m in order to exert an excellent effect and considering productivity. It is preferable to do.
  • the surface modified layer may have a contact angle of 10 to 60 ° or may be outside this range.
  • the contact angle may exceed 60 °.
  • the effect of increasing the adhesive strength is considered to be due to the action of the radical polymerizable group.
  • the coating composition is applied to form a surface modification layer. It may be formed.
  • the functional layer (Ac) in the present invention is provided with an antiglare function and the like.
  • a layer having photochromic properties, polarizing properties, or both properties (photochromic properties and polarizing properties) is preferable. First, a layer having photochromic characteristics will be described.
  • a layer having photochromic properties (hereinafter sometimes simply referred to as “photochromic layer”) can be formed by a known method.
  • the first optical sheet (Aa), the second optical sheet (Ab), and the polarizing layer, etc. that are present as necessary between the first optical sheet (Aa) and the second optical sheet (Ab) are sufficiently provided.
  • the photochromic layer is preferably a photochromic adhesive layer (Ac1) containing a photochromic compound and a polyurethane urea resin (hereinafter, sometimes simply referred to as “photochromic adhesive layer (Ac1)”).
  • the polyurethane urea resin forming the photochromic adhesive layer (Ac1) may be a thermosetting polyurethane urea or a thermoplastic polyurethane urea.
  • a polyurethane urea resin partially increased in molecular weight for the adhesive layer.
  • the polyurethane urea resin can be produced by a known method. Among these, a polymer synthesized from a polyisocyanate compound, a polyol compound, and a chain extender is preferable. Hereinafter, each of these components will be described.
  • Polyurethane urea resin polyisocyanate compound
  • an aliphatic polyisocyanate compound or an alicyclic polyisocyanate compound is preferably used from the viewpoint of weather resistance.
  • aliphatic such as tetramethylene-1,4-diisocyanate, hexamethylene-1,6-diisocyanate, octamethylene-1,8-diisocyanate, 2,2,4-trimethylhexane-1,6-diisocyanate
  • Polyisocyanate compounds cyclohexane-1,3-diisocyanate, cyclohexane-1,4-diisocyanate, 2,4-methylcyclohexyl diisocyanate, 2,6-methylcyclohexyl diisocyanate, isophorone diisocyanate, norbornene diisocyanate, 4,4'-methylenebis (cyclohexyl) Isocyanate) isomer mixture, hexahydrotoluene-2,4-diisocyanate, hexahydrotoluene-2,6-diisocyanate, hexahydrophenylene-1,
  • Polyurethane urea resin As the polyol compound used in the polyurethane urea resin, a polyol compound such as polyether polyol, polycarbonate polyol, polycaprolactone polyol, and polyester polyol can be used. Of these, polycarbonate polyols and polycaprolactone polyols are preferably used from the viewpoints of heat resistance, adhesion, weather resistance, hydrolysis resistance, and the like.
  • the number average molecular weight of the polyol compound is preferably 400 to 3000.
  • the number average molecular weight is preferably 400 to 2500 from the viewpoint of the heat resistance and photochromic properties (color density, fading speed, weather resistance, etc.) of the obtained polyurethane adhesive layer, particularly the weather resistance of the photochromic compound. More preferably, it is 1500.
  • the chain extender used in the polyurethane urea resin is a compound having a molecular weight of 50 to 300 having a functional group capable of reacting with two or more isocyanate groups in the molecule.
  • a diamine compound, a triamine compound, an amino alcohol compound, an aminocarboxylic acid compound, an aminothiol compound, a diol compound, and a triol compound can be used.
  • diamine compounds such as isophoronediamine, ethylenediamine, piperazine, bis- (4-aminocyclohexyl) methane, norbornenediamine, N, N'-diethylethylenediamine, N-ethylethylenediamine Is preferably used.
  • the terminal of the polyurethane urea resin obtained from the above-mentioned polyisocyanate compound, polyol compound and chain extender may be an isocyanate group, or the isocyanate group may be capped with a reaction terminator.
  • a reaction terminator a group having a structure capable of reacting with one isocyanate group, a group capable of exhibiting various functions, and a structure can be used.
  • a compound having a group that reacts with an isocyanate group such as 4-amino-1,2,2,6,6-pentamethylpiperidine can be used as a reaction terminator.
  • the polyurethane urea resin can be produced by a known method using the above components. Specifically, a so-called one-shot method or a prepolymer method can be employed. For example, a method in which a polyisocyanate compound and a polyol compound are reacted, then a chain extender is reacted, and a reaction terminator is reacted as necessary can be employed. Known conditions can be adopted as reaction conditions for these components. As a purification method, a known method can be adopted.
  • the polyurethane urea resin thus obtained has a number average molecular weight measured by gel permeation chromatography (GPC) of 5,000 to 100,000, more preferably 8,000 to 50,000, particularly preferably 10,000 to 4 A range of 10,000 is preferable. Further, it is preferable that the urea bonding portion is contained in an amount of 0.02 to 0.10 g per 1 g of the polyurethane urea resin.
  • GPC gel permeation chromatography
  • such polyurethane urea resins are disclosed in JP2012-167245A, International Publication WO2012 / 018070, JP2012-207198A, JP2012-052091A, and JP2016-147922A. It is preferable to use the polyurethane urea resin described in the above.
  • the polyurethane urea resin thus obtained is mixed with a photochromic compound described below to form a photochromic adhesive layer (Ac1) containing the photochromic compound.
  • a photochromic adhesive layer Ac1 containing the photochromic compound.
  • an organic solvent such as tetrahydrofuran, diethyl ketone, t-butyl alcohol, isopropyl alcohol, propylene glycol monomethyl ether can be used for viscosity adjustment.
  • the photochromic layer is described in detail below in order to further stabilize the adhesion with the first optical sheet (Aa) and the second optical sheet (Ab), and further with the polarizing film (Ac2) described later.
  • the polyisocyanate compound (I) (hereinafter sometimes simply referred to as “component (I)”) is preferably blended and formed. That is, the photochromic adhesive layer (Ac1) is preferably formed from a composition containing the polyurethane urea resin, the polyisocyanate compound, and the photochromic compound.
  • the above-described polyisocyanate compound described for the polyurethane urea resin can be used without any limitation.
  • a polyisocyanate compound (I1) having at least two isocyanate groups in the molecule and having an isocyanate group bonded to a secondary carbon hereinafter sometimes referred to simply as “(I1) component”.
  • a polyisocyanate compound (I2) other than the component (I1) having at least two isocyanate groups in the molecule and having 4 to 40 carbon atoms in the molecule hereinafter simply referred to as “component (I2)
  • component (I2) it is preferable to include a specific amount.
  • component (I1) include isomer mixture of 4,4′-methylenebis (cyclohexyl isocyanate), cyclobutane-1,3-diisocyanate, cyclohexane-1,3-diisocyanate, cyclohexane-1,4- Diisocyanate, hexahydrotoluene-2,4-diisocyanate, hexahydrotoluene-2,6-diisocyanate, hexahydrophenylene-1,3-diisocyanate, hexahydrophenylene-1,4-diisocyanate and isophorone diisocyanate trimer (isocyanate) Nurate compounds). These may be used alone or in combination of two or more. Among these, it is preferable to use an isomer mixture of 4,4'-methylenebis (cyclohexyl isocyanate).
  • component (I2) examples include hexamethylene diisocyanate, hexamethylene diisocyanate biuret compound, hexamethylene diisocyanate isocyanurate compound, hexamethylene diisocyanate adduct compound, and the like. These may be used alone or in combination of two or more. Among them, it is preferable to use a polyisocyanate compound selected from the group consisting of a hexamethylene diisocyanate biuret compound and a hexamethylene diisocyanate isocyanurate compound.
  • the blending ratio of the component (I) is preferably 4.0 to 20 parts by mass with respect to 100 parts by mass of the adhesive resin component from the viewpoint of the adhesiveness and heat resistance of the obtained adhesive layer.
  • the compounding amount of the component (I) satisfies this range, the obtained adhesive layer exhibits an excellent effect. If the amount is too small, sufficient adhesion and heat resistance improvement effects cannot be obtained. Moreover, when too much, there exists a tendency for the cloudiness of an adhesive layer, the fall of adhesiveness, etc. to occur.
  • This component (I) is considered to act on the urea bond part of the polyurethane urea resin to increase the molecular weight of the resin.
  • the said compounding quantity is based on those total amounts, when using both (I1) component and (I2) component. What is necessary is just to determine suitably the mass ratio of (I1) component and (I2) component according to the target object to adhere
  • the component (I1) when the component (I1) is 100 parts by mass, the component (I2) is preferably included in an amount of 10 to 500 parts by mass, and more preferably 10 to 250 parts by mass. It is preferable. By satisfying this blending, it is possible to particularly improve the adhesion of an optical sheet made of an alicyclic polyamide resin.
  • photochromic compounds such as a chromene compound, a fulgimide compound, a spirooxazine compound, and a spiropyran compound can be used without any limitation. These may be used alone or in combination of two or more.
  • 1 is a chromene compound having an indeno (2,1-f) naphtho (1,2-b) pyran skeleton from the viewpoint of photochromic properties such as color density, initial coloring, durability, and fading speed. It is more preferable to use more than one type.
  • chromene compounds compounds having a molecular weight of 540 or more are more preferable because they are particularly excellent in color density and fading speed.
  • the photochromic compound of the present invention includes those having a molecular chain such as a polysiloxane chain having a molecular weight of 300 or more and a polyoxyalkylene chain as a substituent, and any one of known compounds without particular limitation. It can be selected and used as appropriate.
  • Examples of such photochromic compounds include International Publication No. WO2000 / 015630, International Publication No. WO2004 / 041961, International Publication No. WO2005 / 105874, International Publication No. WO2005 / 105875, International Publication No. WO2006 / 022825, International Publication No. WO2009 / 146509, International Publication No. WO2010 / 20770, International Publication No.
  • the amount of the photochromic compound is 0.1 to 20.0 parts by mass with respect to 100 parts by mass of the resin component (adhesive resin component) forming the photochromic layer from the viewpoint of photochromic properties. preferable.
  • the amount is too small, sufficient color density and durability tend not to be obtained.
  • the amount is too large, although depending on the type of photochromic compound, it is difficult to dissolve in the photochromic composition, and not only the uniformity of the composition tends to be lowered, but also the adhesive strength (adhesion) is lowered. There is also a trend.
  • the amount of the photochromic compound added is adhesive.
  • the amount is preferably 0.5 to 10.0 parts by mass, more preferably 1.0 to 7.0 parts by mass with respect to 100 parts by mass of the total resin component of the resin.
  • the thickness is not particularly limited, but is preferably 1 to 100 ⁇ m, preferably 20 to 50 ⁇ m. More preferably. By satisfying this range, the resulting functional laminate (A) and functional lens exhibit excellent photochromic properties.
  • a 1st optical sheet (Aa) and a 2nd optical sheet (Ab) consist of polyvinyl alcohol resin
  • a 1st optical sheet (Aa) and a 2nd optical sheet (Ab) are said photochromic. It is characterized by being directly joined by an adhesive layer (Ac1).
  • a photochromic layer particularly a photochromic adhesive layer (Ac1) with the above-described configuration.
  • a photochromic adhesive layer Ac1
  • the polarizing layer will be described.
  • the functional layer (Ac) can also have a polarizing layer.
  • the method for forming the polarizing layer is not particularly limited, and a commercially available polarizing film can be used.
  • the thickness of the polarizing film (Ac2) is preferably 10 to 100 ⁇ m, and more preferably 20 to 100 ⁇ m.
  • the polarizing film is obtained by stretching a polyvinyl alcohol resin dyed with a dichroic substance such as iodine or a dichroic dye.
  • a polyvinyl alcohol resin those described in ⁇ First optical sheet (Aa) and second optical sheet (Ab); (polyvinyl alcohol resin)> can be used.
  • the first optical sheet (Aa) and the second optical sheet (Ab) are made of a polyvinyl alcohol resin, at least one of the optical sheets can be used as the polarizing film (Ac2).
  • an adhesive layer composed of an adhesive composition containing the polyurethane urea resin described in the photochromic adhesive layer (Ac1) and the component (I) is disposed on both surfaces of the polarizing film. It is preferable.
  • the polarizing film which consists of polyvinyl alcohol resin, and another optical sheet (1st optical sheet (Aa) or 2nd optical sheet (Ab)) can be firmly joined by this contact bonding layer.
  • the first optical sheet (Aa) and the second optical sheet (Ab) are made of a polyvinyl alcohol resin, and any one of the optical sheets is a polarizing film, an optical sheet of another material is used.
  • the first optical sheet (Aa) and the second optical sheet (Ab) made of polyvinyl alcohol resin are directly bonded by the photochromic adhesive layer (Ac1). it can.
  • the polarizing film containing the dichroic dye is not particularly limited, but when the adhesive resin of the present invention is used, the luminous transmittance is 10 to 60% and the degree of polarization is 70.0 to Even if it is this polarizing film which is 99.9, it can join firmly.
  • a cellulose triacetate film may be laminated on both sides.
  • the cellulose triacetate film preferably has a thickness of 20 to 200 ⁇ m, more preferably 20 to 100 ⁇ m.
  • the first optical sheet (Aa) and the second optical sheet (Ab) are preferably made of a material other than the polyvinyl alcohol resin.
  • the first optical sheet (Aa) and the second optical sheet (Ab) are made of a polyvinyl alcohol resin, it is not necessary to provide the cellulose triacetate film.
  • the polarizing film is used in the range of 40 to 100 ° C. for 5 seconds to 30 seconds before preparing the laminate of the present invention in order to adjust the amount of water contained in the polarizing film and the dimensional stability of the polarizing sheet. What performed the heat processing for about a minute can also be used.
  • an adhesive layer is provided on the surfaces of the first optical sheet (Aa) and the second optical sheet (Ab), and the polarizing film (Ac2) is sandwiched between the adhesive layers, whereby the polarizing film (Ac2) It can be set as the functional laminated body (A) formed by joining both surfaces with a 1st optical sheet (Aa) and a 2nd optical sheet (Ab) through an adhesive layer.
  • the adhesive layer present on the polarizing film (Ac2) is not particularly limited, but consists of an adhesive composition containing the polyurethane urea resin described in the photochromic adhesive layer (Ac1) and the component (I). Is preferred. More specifically, it is preferable to contain 4.0 to 20 parts by mass of component (I) with respect to 100 parts by mass of the polyurethane urea resin.
  • the component (I) preferably contains 10 to 500 parts by weight, more preferably 10 to 250 parts by weight, based on 100 parts by weight of the component (I1). Adhesion can be further enhanced by using an adhesive layer made of an adhesive composition that satisfies such a composition.
  • the thickness of the adhesive layer present on both surfaces of the polarizing film is not particularly limited, but is preferably 1 to 100 ⁇ m, and more preferably 5 to 50 ⁇ m.
  • a photochromic adhesive layer (Ac1) Can be handled as follows. That is, a functional laminate (A) in which the first optical sheet (Aa) / photochromic adhesive layer (Ac1) / polarizing film (Ac2) / adhesive layer / second optical sheet (Ab) are laminated in this order is used. You can also. In addition, an adhesive layer can be provided between the photochromic adhesive layer (Ac1) and the polarizing film (Ac2).
  • the polarizing film (Ac2) is made of a polyvinyl alcohol resin
  • the adhesive layer is unnecessary.
  • the polyvinyl alcohol first optical sheet (Aa) / photochromic adhesive layer (Ac1) may have polarizing properties.
  • the polarizing film (Ac) (second optical sheet having polarization properties made of polyvinyl alcohol resin) is laminated.
  • the functional layer (Ac) includes a surfactant, a hindered amine light stabilizer, a hindered phenol antioxidant, a phenol-based radical scavenger, a sulfur-based oxidation, in addition to components that impart photochromic properties and polarization.
  • Additives such as inhibitors, phosphorus-based antioxidants, UV stabilizers, UV absorbers, mold release agents, anti-coloring agents, antistatic agents, fluorescent dyes, dyes, pigments, fragrances, and plasticizers can also be added. .
  • known compounds are used without any limitation, and these may be used as a mixture of two or more.
  • additives can be blended in the photochromic layer, can be blended in the polarizing film, or can be blended in the adhesive layer.
  • the additive amount of the additive can be blended within a range that does not impair the effects of the present invention.
  • the total amount of additives is preferably in the range of 0.001 to 10 parts by mass with respect to 100 parts by mass of the constituent components (for example, polyurethane urea resin) forming each layer.
  • a dye having an absorption peak in the range of 550 to 600 nm is useful from the viewpoint of improving the antiglare property.
  • the dye include nitro compounds, azo compounds, anthraquinone compounds, and selenium compounds.
  • Porphyrin compounds, rare earth metal compounds, and the like are preferable from the viewpoint of antiglare properties and visibility.
  • a porphyrin-based compound is most preferable from the viewpoint of dispersion stability in a plastic material.
  • Examples of the rare earth metal compound include aquahydroxy (1-phenyl 1,3-butanedionate) neodymium, aquahydroxy (phenacylphenyl ketonato) neodymium, aquahydroxy (1-phenyl-2-methyl-1,3-butanedionate) neodymium. , Aquahydroxy (1-thiophenyl-1,3-butanedionato) neodymium, aquahydroxy (1-phenyl 1,3-butanedionato) erbium, aquahydroxy (1-phenyl 1,3-butanedionato) holonium and the like .
  • the porphyrin-based compound is a compound which may have various substituents on the porphyrin skeleton.
  • the compounds described in Japanese Patent No. 5778109 can be suitably used.
  • the additives and dyes as described above are not particularly limited, but are preferably blended in the photochromic adhesive layer (Ac1).
  • the functional layer (Ac) is preferably an adhesive layer in order to join the first optical sheet (Aa) and the second optical sheet (Ab).
  • the functional layer (Ac) is preferably a laminate including an adhesive layer for adhering the photochromic adhesive layer (Ac1) and the polarizing film (Ac2) and a laminate thereof.
  • attaching these photochromic contact bonding layers (Ac1) and a polarizing film (Ac2) is demonstrated.
  • the adhesive layer for adhering the photochromic adhesive layer (Ac1) and the polarizing film (Ac2) comprises the polyurethane urea resin and the component (I) blended as necessary, and other additive components. It is preferable to form from the adhesive composition containing.
  • the order in which the components are mixed is not particularly limited.
  • the adhesive layer formed from the adhesive composition containing the photochromic compound is a photochromic adhesive layer (Ac1).
  • the contact bonding layer formed from the adhesive composition which does not contain this photochromic compound corresponds to the contact bonding layer for adhere
  • each component when an organic solvent is not used as the adhesive composition, each component can be melt-kneaded and pelletized as an adhesive composition, or can be directly molded into a sheet (in this case, The sheet becomes an adhesive layer as it is).
  • an adhesive composition when using an organic solvent, an adhesive composition can be obtained by dissolving each component in an organic solvent.
  • the functional laminate (A) in which the first optical sheet (Aa) and the second optical sheet (Ab) are bonded via the photochromic adhesive layer (Ac1) can be produced by the following method. For example, an adhesive composition (including a photochromic compound) is kneaded to once produce a uniform adhesive sheet to be a photochromic adhesive layer (Ac1), and then the adhesive sheet is used as the first optical sheet (Aa). ) And the second optical sheet (Ab), and the first optical sheet (Aa) and the second optical sheet (Ab) are pressed together to form an adhesive layer (photochromic adhesive layer (Ac1)).
  • an adhesive composition including a photochromic compound
  • the functional laminate (A) in which the first optical sheet (Aa) and the second optical sheet (Ab) are joined can be produced.
  • the adhesive composition (including a photochromic compound) is once applied on the first optical sheet (Aa).
  • the functional laminate (A) can also be obtained by press-contacting.
  • the method for producing the functional laminate (A) is not particularly limited, but among them, the following method is preferably employed in order to obtain a laminate excellent in smoothness. Specifically, first, an adhesive composition (photochromic adhesive layer (Ac1)) containing an organic solvent is once applied on a smooth substrate to form a coating layer.
  • an adhesive composition photochromic adhesive layer (Ac1)
  • Ac1 photochromic adhesive layer
  • the organic solvent is removed from the coating layer to prepare an adhesive sheet that becomes at least a photochromic adhesive layer (Ac1).
  • the drying for removing the organic solvent is preferably performed at a temperature of room temperature (23 ° C.) to 100 ° C.
  • first optical sheet (Aa) is interposed between the first optical sheet (Aa) and the second optical sheet (Ab) to be joined with the adhesive sheet serving as a photochromic adhesive layer (Ac1) interposed therebetween.
  • the functional laminated body (A) which has an adhesive layer ((photochromic adhesive layer (Ac1)) can be manufactured by joining the 2nd optical sheet (Ab).
  • Aa) and the second optical sheet (Ab) are made of polyvinyl alcohol resin, a sufficiently strong functional laminate (A) can be obtained in this order of lamination.
  • the urethane urea resin and the component (I) are added to the adhesive layer ((photochromic adhesive layer (Ac1)). It is more preferable to adopt the following procedure and specifically, the first optical sheet (Aa) and the second optical sheet (Ab) are just joined with the adhesive sheet to be the photochromic adhesive layer (Ac1). It is preferable that the functional laminated sheet is allowed to stand for 4 hours or more at a temperature of 20 ° C. or more and 60 ° C. or less, and deaerated, although the upper limit of the standing time may be determined by looking at the state of the functional laminated sheet. In addition, it is possible to stand at normal pressure, or to stand under vacuum (hereinafter, this step is referred to as a deaeration step). It may be.)
  • the adhesive sheet softens and melts at the interface between the adhesive sheet to be the photochromic adhesive layer (Ac1) and the first optical sheet (Aa) and the second optical sheet (Ab), It is thought that adhesion will increase.
  • the adhesive sheet softens and melts at the interface between the adhesive sheet to be the photochromic adhesive layer (Ac1) and the first optical sheet (Aa) and the second optical sheet (Ab), It is thought that adhesion will increase.
  • it is considered that a part of the isocyanate group of the component (I) is subjected to the reaction.
  • this isocyanate group is bonded to the urethane bond or urea bond of the polyurethane urea resin in the adhesive layer to promote the formation of allophanate bond or burette bond. And the functional laminated sheet obtained by this heat processing becomes a very stable state.
  • this step is referred to as a humidification step.
  • this step is referred to as a humidification step.
  • this step is referred to as a humidification step.
  • this step it is possible to complete the bridge structure of polyurethane urea resins by the component (I) and completely eliminate the isocyanate group derived from the component (I) present in the functional laminated sheet. And the adhesiveness can be further stabilized.
  • excess moisture present in the functional laminate sheet is removed by leaving the functional laminate sheet after the humidification step in a temperature range of 40 ° C. or higher and 130 ° C. or lower under normal pressure or vacuum. (Hereinafter, this process may be referred to as a moisture removal process). Thereby, it is preferable to make the functional sheet into a functional laminate (A).
  • the first optical sheet (Aa) and the second optical sheet with the adhesive sheet ((photochromic adhesive layer (Ac1)) ( After producing a functional laminated sheet bonded by pressure bonding Ab), in order to make the adhesive sheet into a complete adhesive layer, 1) deaeration step, 2) heating step, 3) humidification step treatment and 4) moisture It is preferable to carry out post-treatment in the order of the removal steps.
  • the above method is a manufacturing method of the functional laminated body (A) with which the 1st optical sheet (Aa) and the 2nd optical sheet (Ab) were joined through the photochromic contact bonding layer (Ac1).
  • an adhesive layer for adhering the polarizing film (Ac2) can also be produced.
  • an adhesive layer made of an adhesive composition containing the polyurethane urea resin and the component (I) is preferably formed on both surfaces of the polarizing film (Ac2).
  • the polarizing film (Ac2) having the adhesive layer on both surfaces is bonded to the functional laminate (Aa) by bonding the first optical sheet (Aa) and the second optical sheet (Ab) via the adhesive layer.
  • this adhesive layer can be laminated
  • the photochromic adhesive layer (Ac1) is disposed between the first optical sheet (Aa) and the second optical sheet (Ab), so that the first optical A functional laminate (A) composed of sheet (Aa) / photochromic adhesive layer (Ac1) / polarizing film (Ac2) / adhesive layer / second optical sheet (Ab) can be produced.
  • the polarizing film (Ac2) is preferably made of a polyvinyl alcohol resin
  • the first optical sheet (Aa) and the second optical sheet (Ab) are preferably made of a material other than the polyvinyl alcohol resin.
  • the functionality of the present invention is used as it is. It becomes a laminated body (A).
  • the precursor of the functional laminate (A) is produced according to the above method, and the precursor By forming a surface modification layer on the surface on which the synthetic resin layer (B) is formed, the functional laminate (A) can be obtained.
  • the suitable layer structure of the functional laminate (A) and the production method thereof will be described.
  • Preferable Layer Configuration of Functional Laminate (A) and Method for Producing the Same> 1 to 3 show a laminated structure of a preferred functional laminate (A) 1 in the present invention.
  • FIG. 1 is an example of the case where an adhesive composition containing a photochromic compound is used.
  • a functional laminate (A) 1 comprising a first optical sheet (Aa) 2, an adhesive layer having photochromic properties (photochromic adhesive layer (Ac1)) 3, and a second optical sheet (Ab) 4.
  • a surface modified region 9 is formed on at least one of the outer surface 7 of the first optical sheet (Aa) 2 and the outer surface 7 ′ of the second optical sheet (Ab) 4, and a synthetic resin layer is formed on the surface modified region 9.
  • (B) 8 is formed. Note that the surface modification region 9 is not clearly shown in FIG.
  • the functional laminate (A) 1 shown in FIG. 1 is preferably produced by the following method. First, an adhesive composition containing a photochromic compound, an organic solvent, the polyurethane urea resin, the component (I) blended as necessary, and other additives is applied onto a smooth substrate. Next, the organic solvent is removed, and an adhesive sheet having a smooth surface to be the photochromic adhesive layer (Ac1) 3 is produced. Next, the first optical sheet (Aa) 2 and the second optical sheet (Ab) are disposed while the adhesive sheet is disposed between the first optical sheet (Aa) 2 and the second optical sheet (Ab) 4 facing each other. Both sheets are pressed from the outer surface of 4 with a laminate roll.
  • the adhesive sheet becomes the adhesive layer 3 (photochromic adhesive layer (Ac1)), and the functional laminate (A) 1 having the photochromic characteristics of the layer structure shown in FIG. 1 can be manufactured.
  • an adhesive layer 3 ′ having no photochromic properties can also be formed between the photochromic adhesive layer (Ac1) 3 and the first optical sheet (Aa) 2 and the second optical sheet (Ab) 4, an adhesive layer 3 ′ having no photochromic properties (however, (Not shown) can also be formed.
  • the first optical sheet (Aa) 2 and the second optical sheet (Ab) 4 are made of polyvinyl alcohol resin, and these optical sheets are directly bonded by the photochromic adhesive layer (Ac1) 3.
  • the first optical sheet (Aa) 2 and the second optical sheet (Ab) 4 may be a polarizing film (Ac) made of a polyvinyl alcohol resin.
  • the first optical sheet (Aa) is made of a polyvinyl alcohol resin
  • the second optical sheet (Ab) is a polarizing film (Ac2) made of a polyvinyl alcohol resin (see FIG. 5).
  • first optical sheet (Aa) and the second optical sheet (Ab) use a functional laminate (A) made of a polyvinyl alcohol resin
  • the first optical sheet (Aa) 2 and the second optical sheet (Ab) 4 are made of polyvinyl alcohol resin, and these optical sheets are bonded to each other by a photochromic adhesive layer (Ac1) 3 (A) 1
  • a photochromic adhesive layer (Ac1) 3 (A) 1 For example, when the functional laminate (A) in FIG. 5 is used, after the moisture content of the functional laminate (A) 1 is adjusted, a synthetic resin layer (B) 8 described in detail below is formed. Thus, the functional lens 6 is preferable.
  • FIG. 6 shows a functional lens 6 obtained by using the functional laminate (A) 1 of FIG. It is considered that this moisture is mainly contained in the optical sheet made of polyvinyl alcohol resin in the functional laminate (A) 1.
  • the amount of moisture present on the surface of the functional laminate (A) 1 may have an effect, and defects such as bubbles may occur. Therefore, particularly when the synthetic resin layer (B) 8 is directly formed on the optical sheet made of polyvinyl alcohol resin, the effect of satisfying the water content is exhibited.
  • the moisture content of the functional laminate (A) 1 is preferably 0.00 to 0.20 mass%.
  • the water content is preferably 0.00 to 0.15% by mass, and considering the productivity of the functional laminate (A) 1 itself, it is preferably 0.00 to 0.10% by mass. More preferred.
  • the water content is a value measured by the method described in detail in the following examples, and is a water content obtained by comparison with the functional laminate (A) 1 in which the weight change is eliminated by drying.
  • a hydroxy group (hydroxyl group) derived from the polyvinyl alcohol resin exists on the outer surface of the functional laminate (A) 1 without any treatment. Therefore, it is thought that it adheres firmly to the synthetic resin layer (B) 8 described in detail below.
  • the surface-modified region 9 having a higher polarity by etching treatment may be used.
  • the surface modification region 9 can be formed by applying a coating composition.
  • FIG. 2 shows an example of a laminated structure when the polarizing film (Ac2) 5 is used.
  • This is a functional laminate (A) 1 composed of a first optical sheet (Aa) 2, an adhesive layer 3 ′, a polarizing film (Ac2) 5, an adhesive layer 3 ′, and a second optical sheet (Ab) 4.
  • the layer structure consisting of adhesive layer 3 ′ / polarizing film 5 / adhesive layer 3 ′ corresponds to the functional layer (Ac).
  • a surface modified region 9 is formed on at least one of the outer surface 7 of the first optical sheet (Aa) 2 and the outer surface 7 'of the second optical sheet (Ab) 4, and the surface modified region 9 is synthesized on the outer surface.
  • Resin layer (B) 8 is formed. Note that the surface modification region 9 is not clearly shown in FIG.
  • the first optical sheet (Aa) 2 and the second optical sheet (Ab) 4 are preferably made of a material other than the polyvinyl alcohol resin.
  • the polarizing film (Ac2) 5 consists of polyvinyl alcohol resin.
  • the functional laminate (A) 1 shown in FIG. 2 is preferably produced by the following method.
  • Two adhesive sheets not having photochromic properties are prepared in the same manner as described above.
  • the two adhesive sheets serve as an adhesive layer 3 ′ existing on both surfaces of the polarizing film (Ac2) 5.
  • the adhesive sheet is laminated on both surfaces of the polarizing film 5.
  • the first optical sheet (Aa) 2 and the second optical sheet (Ab) 4 are arranged on both outer sides of the polarizing film (Ac2) 5 having the adhesive sheet on both surfaces, respectively, and the first optical sheet (Aa) 2 and the second optical sheet (Ab) 4 are pressed from both outer surfaces with a laminate roll.
  • the adhesive sheet becomes the adhesive layer 3 ′, and the functional laminate (A) 1 having the polarizing property of the layer structure shown in FIG. 2 can be manufactured.
  • the adhesive layer 3 ′ may be formed on the first optical sheet (Aa) 2 and the second optical sheet (Ab) 4, not on both surfaces of the polarizing film (Ac2) 5.
  • FIG. 3 shows an example of a functional laminate (A) 1 having a laminate structure in which an adhesive layer 3 (photochromic adhesive layer (Ac1) 3) having a photochromic property and a polarizing film (Ac2) 5 are combined.
  • Functionality comprising first optical sheet (Aa) 2, adhesive layer 3 having photochromic properties (photochromic adhesive layer (Ac1) 3), polarizing film (Ac2) 5, adhesive layer 3 ′, second optical sheet (Ab) 4
  • a surface modified region 9 is formed on at least one of the outer surface 7 of the first optical sheet (Aa) 2 and the outer surface 7 ′ of the second optical sheet (Ab) 4, and the synthetic resin is further formed on the surface modified region 9.
  • Layer (B) 8 is formed.
  • the manifestation reforming region 9 is not specified.
  • the first optical sheet (Aa) 2 and the second optical sheet (Ab) 4 are preferably made of a material other than the polyvinyl alcohol resin.
  • the polarizing film (Ac2) 5 consists of polyvinyl alcohol resin.
  • the functional laminate (A) 1 shown in FIG. 3 is preferably produced by the following method. That is, in the method for producing the functional laminate (A) 1 shown in FIG. 2, the photochromic compound is contained in the adhesive sheet laminated on one surface of the polarizing film 5, so that the function shown in FIG. If the same manufacturing method as that of the functional laminate (A) 1 is employed, the functional laminate (A) 1 having the photochromic properties and the polarization properties shown in FIG. 3 can be obtained. Although not shown, naturally, an adhesive layer 3 ′ can be interposed between the photochromic adhesive layer (Ac1) 3 and the polarizing film (Ac2) 5.
  • the first optical sheet (Aa) 2 and the second optical sheet (Ab) 4 provided with a surface modification layer on the surface on which the synthetic tree layer (B) 8 is formed. It is preferable to adopt.
  • the method for imparting the surface modification region 9 is as described above.
  • the functional laminate (A) 1 of the present invention is used as it is.
  • the functional laminate (A) 1 precursor is added according to the above method.
  • the functional laminate (A) 1 can be obtained by manufacturing and forming the surface modified region 9 on the surface on which the precursor synthetic resin layer (B) 8 is formed. The method for treating the precursor is as described above.
  • the outermost layer of the functional laminate (A) (the surfaces of the first optical sheet (Aa) and the second optical sheet (Ab)) in order to prevent scratches, dirt, or adhesion of foreign matters
  • a general plastic resin film for example, a polyolefin film made of polyethylene, polypropylene, or the like, can also be attached as a protective film. By sticking this protective film on the outermost layer, it is possible to protect the surface of the resulting laminate when it is subjected to hot bending or die cutting, when it is stored, and when it is transported. Such a protective film is peeled off when the laminate is used as a final product such as a spectacle lens.
  • this protective film is affixed on the surface of the 1st optical sheet (Aa) used as the outermost layer of a functional laminated body (A), and the surface of a 2nd optical sheet (Ab) before laminating
  • the adhesive of this protective film may remain on the surfaces of the first optical sheet (Aa) and the second optical sheet (Ab), the synthetic resin layer (B) Immediately before laminating, it is preferable to provide the surface modified region of the present invention after washing the surface of the functional laminate (A).
  • the functional laminate (A) can be made into a functional lens by laminating and integrating the synthetic resin layer (B) on at least one surface.
  • This synthetic resin layer (B) is more preferably formed after providing a surface modification region on the outer surface of the first optical sheet (Aa) and / or the second optical sheet (Ab).
  • the synthetic resin layer (B) formed on the functional laminate (A) will be described.
  • the synthetic resin layer (B) can be formed from a thermoplastic resin that is a normal plastic lens material or a thermosetting resin obtained by curing a lens-forming monomer composition.
  • the raw material for forming the synthetic resin layer (B) includes polyester resin, polyamide resin, allyl resin, (meth) acrylic resin, polyurethane resin, polyurethane urea resin, polythiourethane resin, polythioepoxy resin, and polycarbonate resin.
  • the resin chosen from is mentioned. Using these resins, it is preferable to form the synthetic resin layer (B) on the surface modified region of the functional laminate (A) by a known method.
  • the present invention is most effective when a lens-forming monomer composition is used. According to the present invention, even when the functional laminate (A) is embedded in the lens-forming monomer composition, the chemical resistance of the functional laminate (A) can be improved. As a result, the synthetic resin layer (B) can be formed without adversely affecting the transparency. This is presumably because the surface modified region is formed on the surface (outer surface) of the functional laminate on which the synthetic resin layer (B) is formed. In addition, since the surface modification region is formed, the adhesion between the synthetic resin layer (B) and the functional laminate (A) can be improved.
  • the lens-forming monomer composition is preferably one that polymerizes to form an allyl resin, a (meth) acrylic resin, a polyurethane resin, a polyurethaneurea resin, a polythiourethane resin, and a polythioepoxy resin. That is, thermosetting resins such as allyl monomer composition, (meth) acrylate monomer composition, urethane monomer composition, urethane urea monomer composition, thiourethane monomer composition and thioepoxy monomer composition are formed. And a lens-forming monomer composition that can be used.
  • a urethane monomer composition from the viewpoint of adhesion to the surface (outer surface) of the functional laminate (A) whose contact angle is adjusted to 10 to 60 ° by the above-described etching treatment, a urethane monomer composition, a urethane urea system are used. It is preferable to use a monomer composition, a thiourethane monomer composition, and a thioepoxy monomer composition.
  • the layer coated with a coating composition containing a silane coupling agent having a radical polymerizable group is used as the surface modification region.
  • the adhesive laminate (A) it is preferable to use the adhesive laminate (A). This is presumably because the radical polymerizable group present in the surface modified region reacts with the radical polymerizable group contained in the allyl monomer composition and the (meth) acrylate monomer composition.
  • the most preferable embodiment of the present invention is that the first optical sheet (Aa) and the second optical sheet (Ab) used in the functional laminate (A) are made of polyamide resin, and further synthesized.
  • the contact angle of the outer surface of the functional laminate (A) in contact with the resin layer (B) is adjusted to 10 to 60 °, and the synthetic resin layer (B) is a urethane urea monomer composition, thiourethane monomer composition, and A combination comprising a thioepoxy monomer composition.
  • the first optical sheet (Aa) and the second optical sheet (Ab) used in the functional laminate (A) are made of a polyamide resin, and are further in contact with the synthetic resin layer (B).
  • a layer coated with a coating composition containing a silane coupling agent having a radical polymerizable group as a surface modification region is formed on the outer surface of the laminate (A), and the synthetic resin layer (B) is an allylic monomer composition.
  • a combination of a (meth) acrylate monomer composition are examples of a silane coupling agent having a radical polymerizable group as a surface modification region.
  • allylic monomer composition examples include a composition comprising an allyl monomer having an allyl group such as diethylene glycol bisallyl carbonate, diallyl isophthalate, and diallyl terephthalate.
  • the (meth) acrylate monomer composition is a composition comprising a (meth) acrylate monomer as exemplified below, and further mixed with other (meth) acrylate monomers and other polymerizable monomers. It doesn't matter.
  • Examples of specific (meth) acrylate monomers include glycidyl (meth) acrylate, trimethylolpropane tri (meth) acrylate, tetramethylolmethane tri (meth) acrylate, trimethylolpropane triethylene glycol tri (meth) acrylate, penta Erythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, urethane oligomer tetra (meth) acrylate, urethane oligomer hexa (meth) acrylate, polyester oligomer hexa (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol Di (meth) acrylate, tetraethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate Bisphenol A di (meth) acrylate, 2,2-bis (4
  • urethane urea monomer composition a mixture comprising a polyisocyanate compound, a polyol compound and a diamine curing agent can be suitably used. By using a diamine curing agent, a urethane urea monomer composition can be obtained.
  • isocyanate compounds exemplified as the polyisocyanate compound of the polyurethane urea resin can be used.
  • the polyol compound the polyol compounds exemplified as the polyol compound of the polyurethane urea resin can be used.
  • diamine compound examples include 2,4-diamino-3,5-diethyl-toluene, 2,6-diamino-3,5-diethyl-toluene and mixtures thereof, 4,4′-methylenebis (3-chloro-2 , 6-diethylaniline), paraphenylenediamine, metaphenylenediamine, 4,4′-diaminodiphenyl ether, diaminodiphenylmethane, bis-4- (4-aminophenoxy) phenylsulfone, bis-4- (3-aminophenoxy) phenyl Sulfone, 2,2-bis (4- (4-aminophenoxy) phenyl) propane, 2,2-bis (4- (4-aminophenoxy) phenyl) hexafluoropropane, 2,2-bis (4-aminophenoxy) ) Hexafluoropropane, 1,3-bis (3-aminophenoxy) benze 1,4-bis
  • Aromatic diamine compounds such as “Lonacure” (registered trademark) series manufactured by the company; in addition to the diamine compounds exemplified as the chain extender of the urethane-urea resin (C1), “JEFFAMINE” (registered trademark) manufactured by Huntsman ) Series.
  • the thiourethane monomer composition is composed of a mixture of a polyisocyanate compound and a polythiol compound.
  • polyisocyanate compound examples include 2,5-diisocyanatomethyl-1,4-dithiane and 2,5-bis (4-isocyanate-) in addition to the isocyanate compounds exemplified as the polyisocyanate compound of the polyurethane urea resin.
  • polythiol compound examples include 1,2-dimercaptoethane, 1,2-dimercaptopropane, 2,2-dimercaptopropane, 1,3-dimercaptopropane, 1,2,3-trimercaptopropane, 1,4-dimercaptobutane, 1,6-dimercaptohexane, bis (2-mercaptoethyl) sulfide, bis (2,3-dimercaptopropyl) sulfide, 1,2-bis (2-mercaptoethylthio) ethane 1,5-dimercapto-3-oxapentane, 1,8-dimercapto-3,6-dioxaoctane, 2,2-dimethylpropane-1,3-dithiol, 3,4-dimethoxybutane-1,2- Dithiol, 2-mercaptomethyl-1,3-dimercaptopropane, 2-mercaptomethyl-1,4-dimercap
  • thioepoxy monomer composition examples include bis ( ⁇ -epithiopropylthio) methane, 1,2-bis ( ⁇ -epithiopropylthio) ethane, 1,3-bis ( ⁇ -epithiopropylthio) propane, 1, 2-bis ( ⁇ -epithiopropylthio) propane, 1- ( ⁇ -epithiopropylthio) -2- ( ⁇ -epithiopropylthiomethyl) propane, 1,4-bis ( ⁇ -epithiopropylthio) Butane, 1,3-bis ( ⁇ -epithiopropylthio) butane, 1- ( ⁇ -epithiopropylthio) -3- ( ⁇ -epithiopropylthiomethyl) butane, 1,5-bis ( ⁇ -epi Thiopropylthio) pentane, 1- ( ⁇ -epithiopropylthio)
  • a polymerization initiator such as a thermal polymerization initiator or a photopolymerization initiator may be added to the lens forming monomer composition as described above, if necessary.
  • Examples of the method for forming (stacking) the synthetic resin layer (B) on the surface of the functional laminate (A) (on the surface modification region) include the following methods. Specifically, the functional laminate (A) is placed in a glass mold or mold used in the production of a plastic lens, and the lens-forming monomer for forming the synthetic resin layer (B) there. A method of filling a composition.
  • thermosetting resin When the above-mentioned thermosetting resin is employed as the synthetic resin layer (B), a generally used glass mold is used, and after the lens-forming monomer composition is filled in the glass mold, thermosetting ( A functional lens can be molded by casting polymerization). Furthermore, the polymerization can be carried out in combination with heat curing or by light irradiation alone. The polymerization time may be determined as appropriate.
  • one of the glass molds is filled with the lens-forming monomer composition, and the functional laminate (A) is floated thereon.
  • the monomer composition for lens formation is further injected into the glass mold for polymerization.
  • the functional laminate (A) is supported in the glass mold by a gasket, tape or other means fixing the glass mold, and the monomer composition for lens formation is filled in the glass mold for polymerization.
  • a method is also mentioned. Further, there may be mentioned a method in which the functional laminate (A) is adhered to one side of the glass mold, and the lens-forming monomer composition is filled on the opposite surface to be polymerized.
  • the synthetic resin layer (B) can be composed of a thermoplastic resin in addition to using the lens-forming monomer composition.
  • a thermoplastic resin is employed as the synthetic resin
  • an injection molding method can be employed. Specifically, the functional laminate (A) is in close contact with one inner wall of the mold, or after being fixed near the middle of the mold, the thermoplastic resin is injected into the mold.
  • the functional lens of the present invention can be obtained.
  • the size and shape of the functional laminate (A) can be appropriately determined as necessary. That is, it may have a shape over the entire functional lens finally obtained, or may cover a part of the lens. Among these, it is preferable to use the functional laminate (A) having such a size that the side surface of the functional laminate (A) protrudes outside the glass mold or mold. By doing so, elution of the photochromic compound and / or dichroic dye from the functional layer (Ac) can be suppressed at a high level.
  • FIG. 4 shows a configuration example of the functional lens 6 manufactured using the functional laminate (A) 1 having the photochromic characteristics of the present invention.
  • the functional lens 6 is a functional laminate having a first optical sheet (Aa) 2 or a second optical sheet (Ab) 4 on both sides of an adhesive layer (photochromic adhesive layer (Ac1)) 3 having photochromic characteristics, respectively
  • A) is a functional lens using 1, and is a functional lens 6 in which a synthetic resin layer (B) 8 is laminated on both surfaces of the functional laminate (A) 1 (see FIG. 4).
  • region 9 exists in the interface of the functional laminated body (A) 1 and the synthetic resin layer (B) 8.
  • the first optical sheet (Aa) 2 and / or the second optical sheet (Ab) 4 are used.
  • the functional lens 6 having an adhesive strength between the synthetic resin layer (B) 8 and 50 N or more can be easily manufactured.
  • the obtained functional lens can be post-processed by a known method such as a hard coat treatment, a water repellent treatment, an antifogging treatment, or an antireflection film on one side or both sides according to the application to be used.
  • the reaction solution was cooled to around 0 ° C. and dissolved in 1430 g of isopropyl alcohol and 2670 g of diethyl ketone, and the solution temperature was kept at 0 ° C.
  • a mixed solution of 171 g of bis- (4-aminocyclohexyl) methane, which is a chain extender, and 145 g of diethyl ketone was added dropwise within 30 minutes and reacted at 0 ° C. for 1 hour.
  • 42 g of 1,2,2,6,6-pentamethyl-4-aminopiperidine was added dropwise and reacted at 0 ° C. for 1 hour to obtain a diethyl ketone solution of the polyurethane urea resin (U1).
  • the polyurethane urea resin (U1) is a terminal non-reactive (end-cap) resin.
  • PC1 / PC2 / PC3 4.0 / 1.0 / 0.7 g
  • component (I) ((I1 ) Component) 43.2 g of an isomer mixture of 4,4′-methylenebis (cyclohexyl isocyanate) and further ethylene bis (oxyethylene) bis [3- (5-tert-butyl-4-hydroxy-m) as an antioxidant.
  • Adhesive compositions 2 to 3 were obtained in the same manner as the adhesive composition 1 except that the photochromic compound, polyisocyanate compound (component (I)) and antioxidant shown in Table 1 were used.
  • the components (I) and antioxidants shown in Table 1 are as follows.
  • Component (I1) Component (I1-1) Component: An isomer mixture of 4,4′-methylenebis (cyclohexyl isocyanate).
  • Component (I2) Component (I2-1): Biuret of hexamethylene diisocyanate (product name “Duranate 24A-100” manufactured by Asahi Kasei)
  • a polyvinyl alcohol film was dyed with a dichroic dye, stretched, and further crosslinked with boric acid.
  • the luminous transmittance was 39.2%, the degree of polarization was 99.5%, a * was -0.3, b *.
  • Adhesive composition 1 was coated on a 50 ⁇ m OPP film (stretched polypropylene film) at a coating speed of 0.3 m / min using a coater (manufactured by Tester Sangyo) and dried at a drying temperature of 80 ° C. for 5 minutes.
  • a coater manufactured by Tester Sangyo
  • an adhesive sheet made of the adhesive composition 1 having a thickness of 40 ⁇ m was prepared, and an alicyclic polyamide sheet (4,4′-diaminodicyclohexyl) having a thickness of 300 ⁇ m was formed on the adhesive sheet made of the adhesive composition 1.
  • the OPP film was peeled from the laminate of the adhesive sheet / OPP film composed of the alicyclic polyamide sheet / adhesive composition 1 prepared by the above method in this order.
  • the same alicyclic polyamide sheet (thickness 300 ⁇ m; second optical sheet (Ab)) as above is bonded to the obtained structure so that the adhesive sheet of the structure and the aliphatic polyamide sheet are joined.
  • pressure welding was performed using a laminate roll.
  • the functional laminated sheet thus obtained was allowed to stand at 60 ° C. under vacuum (500 Pa) for 12 hours (degassing step), and then heat-treated at 90 ° C. for 1 hour (heating step).
  • a function having a photochromic property is obtained by performing a humidification process (humidification process) for 20 hours at 70 ° C. and 90% RH, and finally leaving at 80 ° C. under vacuum (500 Pa) for 5 hours (moisture removal process).
  • the precursor of the conductive laminate (A1) was obtained.
  • the photochromic properties of the precursor of the obtained functional laminate (A1) were a luminous transmittance of 15.0%, a fading speed of 45 seconds, and a durability of 93%.
  • the peel strength was 100 N / 25 mm.
  • Luminous transmittance After illuminating for 120 seconds to develop color, luminous transmittance was measured with a spectrophotometer (instant multichannel photo director MCPD1000) manufactured by Otsuka Electronics Co., Ltd. It can be said that the smaller the value, the better the photochromic characteristics.
  • the resulting functional laminate (A1) precursor was used as a test piece having a 25 ⁇ 100 mm bonded portion, and a testing machine (Autograph AGS-500NX, Shimadzu Corp.) equipped with a thermostatic chamber capable of setting the test atmosphere temperature.
  • the peel strength was measured by performing a tensile test at a crosshead speed of 100 mm / min.
  • the peel strength was measured after leaving a test piece cut out to the above size in a thermostat set at 25 ° C. for 10 minutes.
  • Adhesive composition 2 was coated on a 50 ⁇ m OPP film (stretched polypropylene film) at a coating speed of 0.3 m / min using a coater (manufactured by Tester Sangyo) and dried at a drying temperature of 80 ° C. for 5 minutes.
  • a coater manufactured by Tester Sangyo
  • an adhesive sheet made of the adhesive composition 2 having a film thickness of 40 ⁇ m was prepared, and the stretched alicyclic polyamide sheet (4,4 ′-) having a thickness of 200 ⁇ m was formed on the adhesive sheet made of the adhesive composition 2.
  • the adhesive composition 3 was coated on a 50 ⁇ m OPP film (stretched polypropylene film) at a coating speed of 0.3 m / min using a coater (manufactured by Tester Sangyo) and dried at a drying temperature of 80 ° C. for 5 minutes.
  • a coater manufactured by Tester Sangyo
  • an adhesive sheet made of the adhesive composition 2 having a film thickness of 40 ⁇ m was prepared, and the stretched alicyclic polyamide sheet (4,4 ′-) having a thickness of 200 ⁇ m was formed on the adhesive sheet made of the adhesive composition 3.
  • the OPP film was peeled off from the first sheet with the adhesive layer, and the exposed photochromic layer (the layer to be the photochromic adhesive layer (Ac1)) and the polarizing film (Ac2) were bonded together. Furthermore, the OPP film was peeled from the second sheet with the adhesive layer, and the exposed adhesive layer was bonded to the other surface of the polarizing film to prepare a functional laminated sheet.
  • the exposed photochromic layer the layer to be the photochromic adhesive layer (Ac1)
  • the polarizing film Ac2
  • This functional laminated sheet was allowed to stand at 40 ° C. under vacuum for 24 hours, and then heat-treated at 110 ° C. for 60 minutes, and then subjected to a humidification treatment at 60 ° C. and 100% RH for 24 hours. By leaving still for 24 hours under vacuum, the precursor of the functional laminated body (A2) which has the target photochromic characteristic and polarization was obtained.
  • the precursor of the obtained functional laminate (A2) has a peel strength of 150 N / 25 mm, and the photochromic properties are a luminous transmittance of 11.0, a fading speed of 45 seconds, and a durability of 93%.
  • the transmittance (before color development) was 39.0%, and the degree of polarization (before color development) was 99.4%. Evaluation of peel strength and photochromic properties was carried out by the same method as the precursor of the functional laminate (A1).
  • the luminous transmittance (before color development) and the degree of polarization (before color development) were measured by the following methods.
  • Polarization degree (P) (%) ⁇ (Tp ⁇ Tc) / (Tp + Tc) ⁇ 1/2 ⁇ 100
  • Tp and Tc are Y values measured with a 2 degree visual field (C light source) of JIS Z 8701 and corrected for visibility.
  • a an alicyclic polyamide sheet having a thickness of 300 ⁇ m (a sheet mainly composed of an alicyclic polyamide composed of 4,4′-diaminodicyclohexylmethane and 1,10-decanedicarboxylic acid).
  • b A stretched alicyclic polyamide sheet having a thickness of 200 ⁇ m (a sheet mainly composed of an alicyclic polyamide composed of 4,4′-diaminodicyclohexylmethane and 1,10-decanedicarboxylic acid).
  • c A stretched sheet produced from a semi-aromatic polyamide resin (Grivory G21, manufactured by EMS) having a thickness of 200 ⁇ m.
  • d A sheet manufactured from an aliphatic polyamide resin (TE55, manufactured by EMS) having a thickness of 300 ⁇ m.
  • e Polyethylene terephthalate sheet having a thickness of 300 ⁇ m.
  • f a sheet made of triacetyl cellulose having a thickness of 300 ⁇ m.
  • Example 1 Surface treatment of precursor of functional laminate (A1); production of functional laminate (A1)
  • the precursor of the etched functional laminate (A1) is washed with running water, then washed with a distilled water tank heated to 50 ° C., and further washed with another distilled water tank heated to 50 ° C.
  • a laminate (A1) was obtained.
  • the surface-treated functional laminate (A1) had a carboxyl group and an amino group on the outer surface, and the contact angle was 43 °.
  • the analysis of the reactive functional group on the outer surface is performed by comparing and analyzing the outer surface of the functional laminate (A1) before and after the surface treatment by a diffuse reflection method using a Perkin Elmer Fourier transform infrared spectroscopic hardness meter Spectrum One. Carried out.
  • the contact angle was determined by measuring the angle formed by the water droplet and the sheet surface when the water droplet was dropped on the sheet surface using a DropMaster 500 (registered trademark) manufactured by Kyowa Interface Science Co., Ltd. Further, the peel strength and photochromic properties of the obtained functional laminate (A1) were not different from those of the precursor.
  • the outer periphery was polished with a ball grinder to obtain a functional lens having a diameter of 60 mm.
  • the photochromic characteristics were a luminous transmittance of 14.8%, a fading speed of 45 seconds, and a durability of 98%.
  • the adhesive strength between the functional laminate of the functional lens and the synthetic resin layer was measured, the adhesive strength was 60N.
  • the peeling between the functional laminate of the functional lens and the synthetic resin layer was visually evaluated, it was “0” in the initial stage, after the weather resistance test, after 1 hour of boiling test, and after 2 hours. After 3 hours of boiling test, it was “1”.
  • visual evaluation of adhesive strength and peeling was performed as follows.
  • Adhesive strength From the obtained functional lens, a strip-shaped test piece having a width of 20 mm and a length of 30 mm was cut out, and the adhesive strength was evaluated. The adhesive strength is parallel to the interface between the functional laminate (A) and the synthetic resin layer (B) with respect to the surface of the test piece having a width of 20 mm, and a metal plate made of SUS (thickness) at the interface. 0.4 mm, width 20 mm) and measurement was performed by performing a compression test at a crosshead speed of 10 mm / min and a temperature of 25 ° C. using an autograph AGS-500NX (manufactured by Shimadzu Corporation).
  • Examples 2 to 21 and Comparative Example 1 A functional laminate was produced in the same manner as in Example 1 except that the functional laminate precursor and the surface treatment method shown in Table 4 were used. The results are shown in Table 4.
  • the functional laminates (A2), (A3), (A4), (A5), and (A6) had the same photochromic properties, luminous transmittance, polarization degree, and the like as the respective precursors.
  • Example 5 Further, a functional lens was produced in the same manner as in Example 1 except that the lens forming monomer composition shown in Table 5 was used. The results are shown in Table 5.
  • c 110 parts by mass of ⁇ -glycidoxypropyltrimethoxysilane, 63 parts by mass of methanol, 71 parts by mass of t-butyl alcohol, and 0.20 part by mass of a silicone surfactant (L7001 manufactured by Toray Dow Corning Co., Ltd.) Added and mixed with stirring. While stirring the resulting solution, 50 parts by mass of a 0.1N hydrochloric acid aqueous solution was added with care so that the liquid temperature did not exceed 50 ° C., and the mixture was continuously stirred for 3 hours after the addition was completed.
  • a silicone surfactant L7001 manufactured by Toray Dow Corning Co., Ltd.
  • the lens-forming monomer composition is injected above and below the functional laminate (A) placed in a glass mold having a gasket (0.00D, lens diameter 70 mm, thickness set to 3.0 mm),
  • the polymerization was carried out by gradually raising the temperature from 30 to 90 ° C. in an air furnace over 20 hours and holding at 90 ° C. for 1 hour. After the polymerization was completed, the gasket and the mold were removed, followed by heat treatment at 120 ° C. for 2 hours.
  • the lens-forming monomer composition is injected above and below the functional laminate (A) placed in a glass mold having a gasket (0.00D, lens diameter 70 mm, thickness set to 3.0 mm),
  • the polymerization was carried out using an air furnace, gradually raising the temperature from 33 ° C. to 90 ° C. over 17 hours, and then maintained at 90 ° C. for 2 hours.
  • the gasket and the mold were removed, and then placed in an oven and heated at 110 ° C. for 3 hours.
  • the lens-forming monomer composition is injected above and below the functional laminate (A) placed in a glass mold having a gasket (0.00D, lens diameter 70 mm, thickness set to 3.0 mm),
  • the polymerization was performed using an air furnace, gradually increasing the temperature from 35 ° C. to 130 ° C. over 12 hours, and then maintained at 130 ° C. for 0.5 hours.
  • the gasket and the mold were removed, and then placed in an oven and heated at 130 ° C. for 3 hours.
  • the lens-forming monomer composition is injected above and below the functional laminate (A) placed in a glass mold having a gasket (0.00D, lens diameter 70 mm, thickness set to 3.0 mm),
  • the polymerization was carried out using an air furnace, gradually increasing the temperature from 20 ° C. to 90 ° C. over 20 hours, and then maintained at 90 ° C. for 1 hour.
  • the gasket and the mold were removed, and then placed in an oven and heated at 90 ° C. for 1 hour.
  • a monomer composition for lens formation 100 parts by mass of a polyester polyol having a number average molecular weight of 1000 consisting of adipic acid and 1,6-hexanediol, 78 parts by mass of an isomer mixture of 4,4′-methylenebis (cyclohexyl isocyanate), and aromatic As a diamine curing agent, 17 parts by mass of 2,4-diamino-3,5-diethyl-toluene / 2,6-diamino-3,5-diethyl-toluene was prepared.
  • a mixture of the polyester polyol and an isomer mixture of 4,4′-methylenebis (cyclohexyl isocyanate) was heated at 140 ° C. for 10 minutes under dry nitrogen to produce a prepolymer.
  • the prepolymer was cooled to 70 ° C. and left for 24 hours.
  • an aromatic diamine curing agent is mixed and injected into the upper and lower sides of the functional laminate (A) placed in a glass mold having a gasket (0.00D, lens diameter 70 mm, wall thickness set to 3.0 mm). And cured at 120 ° C. for 10 hours. After the polymerization was completed, the gasket and the mold were removed and then placed in an oven and heated at 110 ° C. for 1 hour.
  • the functional lens of the present invention has excellent photochromic properties and / or polarization properties, and has an adhesive strength of 50 N or more between the functional laminate and the synthetic resin layer, It can be seen that it has excellent adhesion.
  • the reason why such an adhesive strength between the functional laminate and the synthetic resin layer is obtained is that a surface modified region is formed on the outer surface of the functional laminate.
  • compositions 5 to 16 Except that the polyisocyanate compound (component (I)) was used in the formulation shown in Table 6, blending was carried out in the same manner as for the (photochromic) adhesive composition 4, and (photochromic) adhesive compositions 5 to 16 were obtained. .
  • the component (I) shown in Table 6 is as follows. Table 6 shows adhesive compositions 5 to 16.
  • Component Component Polyisocyanate Compound (I1) Component; Polyisocyanate Compound (I1-1) Component Having an Isocyanate Group Bonded to Secondary Carbon; Isomeric Mixture of 4,4′-Methylenebis (cyclohexyl isocyanate) Component (I1-2): a trimer of isophorone diisocyanate (manufactured by Perstorp, product name “Tronate IDT70B”, mixed with 30% butyl acetate, molecular weight 666).
  • (I2) component Polyisocyanate compound (I2-1) component other than (IIIA) having 4 to 40 carbon atoms in the molecule; Biuret of hexamethylene diisocyanate (product name “Duranate 24A-100” (trade name, manufactured by Asahi Kasei) Registration)).
  • (I2-3) component hexamethylene diisocyanate.
  • a polyurethane resin (i) having an isocyanate group at the end of the molecular chain and a polyurethane resin (ii) having a hydroxyl group at the end of the molecular chain were synthesized by the following method.
  • optical sheet 1 made of polyvinyl alcohol resin A commercially available polyvinyl alcohol sheet is dyed with a dichroic dye, stretched, and further crosslinked with boric acid to give a luminous transmittance of 41.0%, a polarization degree of 99.1%, and a thickness of 30 ⁇ m.
  • An optical sheet 1 made of resin (hereinafter sometimes simply referred to as “optical sheet 1”) was produced. The draw ratio of the optical sheet 1 was 5.0 times, the boric acid content was 10.3% by mass, and the water content was 11.3% by mass.
  • the draw ratio of the obtained optical sheet was calculated based on the length before and after stretching of the sheet made of polyvinyl alcohol resin. For example, a state where the film is not stretched corresponds to a stretch ratio of 1 time.
  • the water content of the obtained optical sheet was determined as follows. First, the mass of the optical sheet (optical sheet) whose water content is to be determined is measured. Subsequently, the optical sheet is vacuum-dried at 110 ° C. for 20 hours to obtain an optical sheet (basic optical sheet) in which there is no change in mass even after drying. The mass of the basic optical sheet is subtracted from the mass of the optical sheet, and the obtained value is divided by the mass of the optical sheet. Furthermore, the divided value was multiplied by 100, and the obtained value was defined as the water content (mass%).
  • Example 22 [Production of functional laminate (A)]
  • the adhesive composition 4 is applied onto the optical sheet 1 using a bar coater and dried at a drying temperature of 80 ° C. for 5 minutes to form an adhesive layer made of the adhesive composition 4 having a film thickness of 40 ⁇ m. Then, the optical sheet 2 was bonded to the adhesive layer using a laminate roll.
  • the structure obtained by the above method was allowed to stand at 60 ° C. under vacuum (500 Pa) for 12 hours (degassing step), and then heat-treated at 90 ° C. for 1 hour (heating step). Then, the functional laminate (A10) having photochromic properties (hereinafter sometimes simply referred to as “functional laminate (A10)”) was obtained by leaving it to stand at room temperature for about 1 week.
  • the resulting functional laminate A10 has a photochromic characteristic of a luminous transmittance of 11.0%, a fading speed of 45 seconds, a luminous transmittance (before color development) of 40.8%, and a degree of polarization (before color development). It was 99.0%.
  • the peel strength was 70 N / 25 mm at 25 ° C. and the appearance was “0”.
  • the above-mentioned evaluation method was used as it was regarding photochromic characteristics, peel strength, luminous transmittance, and polarization degree.
  • the amount of water was measured by the same method as that for an optical sheet made of polyvinyl alcohol resin. Specifically, the obtained functional laminate was vacuum-dried for 15 hours under conditions of 80 ° C. and 13 Torr, and then measured.
  • the synthetic resin layer (B) was laminated after the vacuum drying. Appearance evaluation was performed as follows.
  • ⁇ appearance ⁇ Appearance evaluation of the obtained functional laminate is performed by irradiating the functional laminate with light of a high-pressure mercury lamp, projecting the projection surface onto white paper, and observing and evaluating the entire projection surface of the functional laminate did.
  • the evaluation criteria are shown below. 0: No defect is observed. 1; Some defects due to surface distortion of the functional laminate are observed. 2: Defects due to surface distortion of the functional laminate are observed on the entire surface.
  • Examples 23 to 49, Comparative Example 2 Functional laminates ((A11) to (A38)) were prepared in the same manner as in Example 22 except that a functional laminate was produced using the adhesive composition shown in Table 8 and an optical sheet made of polyvinyl alcohol resin. Fabricated and evaluated. Table 8 shows the evaluation results of the obtained functional laminate.
  • Example 49 a functional laminate (A37) was produced by laminating the polarization axes of the two optical sheets 15 with an inclination of 45 °.
  • the structure of the obtained functional laminate is shown in Table 8, and the evaluation results are shown in Table 9.
  • Table 10 shows the contact angle of the outer surface of the obtained functional laminate (at least the surface on which the synthetic resin layer (B) is formed, and Table 10 shows the values of both outer surfaces). The result of the kind of reactive functional group and the moisture content of the functional laminate (before forming the synthetic resin layer (B)) are shown.
  • a functional laminate (A38) was produced using a polycarbonate sheet having a thickness of 300 ⁇ m.
  • Example 50 The functional laminate (A10) was placed in a glass mold having a gasket (0.00D, lens diameter 70 mm, wall thickness set to 3.0 mm).
  • a thiourethane monomer composition (43.5 parts by mass of dicyclohexylmethane-4,4′-diisocyanate, 43.5 parts by mass of isophorone diisocyanate, 1,
  • a mixture of 2-bis [(2-mercaptoethyl) thio] -3-mercaptopropane 63.0 parts by mass and dibutyltin dilaurate (0.1 part by mass) as a polymerization initiator) was injected, and the polymerization was performed using an air furnace. The temperature was gradually raised from 35 ° C. to 130 ° C.
  • the functional laminate (A10) was used after being vacuum-dried for 15 hours under conditions of 80 ° C. and 13 Torr.
  • the photochromic characteristics were a luminous transmittance of 10.8%, a fading speed of 45 seconds, a luminous transmittance (before color development) of 40.2%, and a degree of polarization (before color development). ) was 99.0% and the appearance was “0”.
  • the peeling between the functional laminate of the functional lens and the synthetic resin layer was visually evaluated, it was “0” in the initial stage and “0” after the boiling test (after 3 hours). Further, the adhesive strength exceeded 250N, and the functional laminate (A) or the synthetic resin layer (B) was cracked.
  • the photochromic characteristics, luminous transmittance, fading speed, luminous transmittance (before color development), polarization degree (before color development), appearance, peeling, and adhesive strength were evaluated in the same manner as in the above examples.
  • the visual evaluation (bubbles) of the functional lens was “0”. Regarding the bubbles, as described below, it was visually confirmed how many bubbles were generated in 10 sheets. [Visual evaluation (bubbles)] Visual evaluation of the state of generation of bubbles contained in the obtained laminate was performed. The evaluation was carried out based on the following criteria by producing 10 laminates each. 0: Only 0 to 2 bubbles are generated in all 10 sheets. Even if bubbles are generated, only near the edge. 1: 5 or more out of 10 sheets, and 3 or more bubbles are generated.
  • Examples 51 to 77 and Comparative Example 3 A functional lens was produced in the same manner as in Example 50 except that the functional laminate shown in Table 11 and the lens-forming monomer composition were used. The results are shown in Table 11.
  • the abbreviations of the lens forming monomers (including polymerization conditions) shown in Table 11 are the same as the lens forming monomers used in Table 5, and the details are as described above.
  • Examples 78-80 A functional lens was produced in the same manner as in Example 50 except that the surface treatment method shown in Table 12 and the lens-forming monomer composition were used. The results are shown in Table 12. The surface treatment is the same as the conditions shown in Table 4.
  • the photochromic laminate and laminate of the present invention have excellent photochromic properties and / or polarization properties, and further excellent adhesion and appearance.
  • Comparative Example 2 a photochromic laminate having good photochromic properties and appearance was obtained, but in Comparative Example 3 using the functional laminate (A38) of Comparative Example 2, the solvent resistance of the polycarbonate sheet was low. Therefore, a functional lens having white turbidity (poor appearance) was obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Health & Medical Sciences (AREA)
  • Polarising Elements (AREA)
  • Laminated Bodies (AREA)
  • Optical Filters (AREA)
  • Eyeglasses (AREA)

Abstract

ポリアミド樹脂等の樹脂からなる第一光学シート(Aa)と第二光学シート(Ab)との間に、フォトクロミック特性及び/又は偏光性を有する機能性層(Ac)を有する機能性積層体(A)、並びに機能性積層体(A)の第一光学シート(Aa)及び/または第二光学シート(Ab)上に、アリル樹脂、ポリチオウレタン樹脂の樹脂からなる合成樹脂層(B)を有する機能性レンズであって、該第一光学シート(Aa)及び/または該第二光学シート(Ab)と該合成樹脂層(B)との間の接着強度が50N以上である機能性レンズを提供する。

Description

機能性積層体、及び機能性積層体を用いた機能性レンズ
 本発明は、フォトクロミック特性及び/又は偏光性を有する新規な機能性積層体並びに機能性積層体を含む新規な機能性レンズに関する。
 近年、眼鏡レンズにおいては、防眩性を有するサングラスの需要が急速に高まっている。このサングラスの母材としては、ガラス製レンズに比べて軽量であること及び割れ難さの点で安全性が高いことから、プラスチック製レンズが使用されている。そして、このようなプラスチック製サングラスには、様々な機能を付与することが容易である。例えば、フォトクロミック化合物を含有させるかあるいはフォトクロミック層を配置することによって、周囲の明るさに応じて透過率が変化して防眩性を調節できるフォトクロミックレンズとすることができる。また、偏光機能を有する偏光フィルムを配置することにより、防眩性を高める偏光レンズとすることができる。さらには、フォトクロミック特性と偏光性の両方の特性を有する偏光フォトクロミックレンズとすることも容易である。
 このようなプラスチック製のフォトクロミックレンズ、偏光レンズ及び偏光フォトクロミックレンズは、様々な方法で製造されている。例えば、プラスチックレンズの表面にフォトクロミック化合物を含むコーティング組成物を塗布する方法、あるいはプラスチックレンズの材質自体にフォトクロミック化合物を混合する方法などにより製造されている。
 また、母材となるプラスチック材料の特性を損なうことなく、安価にフォトクロミック特性及び/又は偏光性を付与できる方法として、フォトクロミック特性及び/又は偏光性を有する機能性積層体を使用する方法が検討されている。このフォトクロミック特性及び/又は偏光性を有する機能性積層体は、以下の様な方法で製造することができる。
 フォトクロミック特性を有する機能性積層体は、先ず、フォトクロミック化合物を接着性ポリウレタン樹脂中に分散させて接着シートを形成し、次いで該接着シート上に、ポリカーボネート樹脂のような光学シートを積層して製造することができる(特許文献10、特許文献11参照)。
 偏光性を有する機能性積層体は、ポリウレタンなどの接着性樹脂を介して、ポリビニルアルコールからなる偏光フィルムをポリカーボネート樹脂のような光学シートと接着させることにより製造することができる。
 フォトクロミック特性及び偏光性を有する機能性積層体は、フォトクロミック化合物を接着性ポリウレタン樹脂中に分散させて接着シートを形成し、次いで該接着シート上に、ポリビニルアルコールからなる偏光フィルム及びポリカーボネート樹脂のような光学シートを順次積層することにより製造することができる(特許文献12参照)。
 以上のような機能性積層体を使用して、具体的にプラスチック製レンズとする方法は、該機能性積層体に、レンズ用の熱可塑性樹脂を射出成型により積層する方法が知られている。この方法によれば、射出成型機等の導入が必要となるため、より簡便な方法として以下の方法も提案されている。例えば、機能性のレンズを容易に製造できるという点で有利な、重合してレンズ用の熱硬化性樹脂となるモノマー組成物(以下、「レンズ形成用モノマー組成物」とする場合もある)を使用する方法が知られている。この方法は、レンズ形成用モノマー組成物中に該積層体を埋設または浸漬した後、該レンズ形成用モノマー組成物を重合して、フォトクロミックレンズ、偏光レンズ又は偏光フォトクロミックレンズを製造する方法である。このレンズ形成用モノマー組成物を使用する方法では、比較的低温でフォトクロミックレンズ、偏光レンズ又は偏光フォトクロミックレンズを製造することができる。また、モノマーの種類を変えることによって、様々な機能をレンズに付与することができるため、多くの検討がなされている(特許文献1~5参照)。
 しかしながら、従来のこれらの方法では、以下の点で改善の余地があった。例えば、特許文献1、2及び3に記載された方法では、母材となる熱硬化性樹脂層または合成樹脂層とフォトクロミック特性もしくは偏光性を有する光学シートとの密着性及び光学シートとフォトクロミック層(接着シート)又は偏光フィルムとの密着性が十分でない場合があった。そのため、フォトクロミックレンズ又は偏光レンズ製造後に、各層が剥離する場合があった。さらに、使用する光学シートの材質によっては耐薬品性が十分ではないため、レンズ形成用モノマー組成物を重合して熱硬化性樹脂層(母材である合成樹脂層)を形成する際、白化や黄変といった外観不良が生じる場合があった。
 このような問題を解決するため、特許文献4~9には、塗膜層を表面に有するフォトクロミック積層体又は偏光積層体を使用する方法が示されている。該方法では、この塗膜層上に、レンズ形成用モノマー組成物の重合(硬化)体よりなる熱硬化性樹脂(合成樹脂層)を形成してフォトクロミックレンズ又は偏光レンズを作製している。この特許文献4には、ポリウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレートからなる塗膜層が例示されている。特許文献5には、ポリウレタンからなる塗膜層が例示されている。特許文献6には、水溶性ポリマー等からなる塗膜層が例示されている。特許文献7には(メタ)アクリル基を有する加水分解性ケイ素化合物を含む組成物からなる塗膜層が例示されている。特許文献8には、重合性基を有するウレタンウレアからなる塗膜層が例示されている。特許文献9には、プロペニルエーテル基含有化合物を含む光硬化性組成物等からなる塗膜層が例示されている。
 しかしながら、従来の塗膜層を設けたフォトクロミックレンズ又は偏光レンズにおいても、熱硬化性樹脂層(合成樹脂層)や光学シートの種類によっては、熱硬化性樹脂層(合成樹脂層)と光学シートとの密着性が改善されない場合があった。密着性が十分ではない場合、特に、フォトクロミック積層体又は偏光積層体の端面が熱硬化性樹脂(合成樹脂層)の端面と同一面上に存在すると、フォトクロミックレンズ又は偏光レンズ自体が剥離するおそれがあった。
特開昭61-236521号公報 特開2005-181426号公報 国際公開第WO2008/018168号パンフレット 特開2005-215640号公報 国際公開第WO2013/132805号パンフレット 特開2012-226026号公報 特開2012-230317号公報 特開2012-242701号公報 特開2012-242718号公報 国際公開第WO2017/115874号パンフレット 特開2014-113761号公報 国際公開第WO2018/025508号パンフレット 公開実用新案昭60-127923号公報 実用新案平4-10030号公報
 したがって、本発明の目的は、母材となる熱可塑性樹脂あるいは熱硬化性樹脂からなる合成樹脂層と、光学シートとの密着性に優れるフォトクロミックレンズ、偏光レンズ又は偏光フォトクロミックレンズを提供することにある。本発明の他の目的は、前記密着性の特性に加え、透明性、フォトクロミック特性及び/又は偏光性に優れたフォトクロミックレンズ、偏光レンズ又は偏光フォトクロミックレンズを提供することにある。本発明のさらに他の目的は、フォトクロミックレンズ、偏光レンズ又は偏光フォトクロミックレンズを、より簡単に製造する方法を提供することにある。
 本発明のさらに他の目的及び利点は以下の説明から明らかになろう。
 本発明者等は上記課題を解決すべく、フォトクロミックレンズ、偏光レンズ又は偏光フォトクロミックレンズの光学シートの表面状態について、種々の検討、特に、光学シートの、レンズ形成用モノマー組成物が接する外表面の表面状態に着目して検討を行った結果、該光学シートの表面状態を調整することにより、各種レンズを構成する各層の接着強度を高めて、特に側面からの応力に対して各層間に高い接着力を有するレンズを得ることが可能となることを見出し、本発明を完成するに至った。
 すなわち、本発明は、
 (1)第一光学シート(Aa)、第二光学シート(Ab)及びこれらの2つのシート間に存在するフォトクロミック特性及び/又は偏光性を有する機能性層(Ac)を含む機能性積層体(A)並びに上記機能性積層体(A)の上記第一光学シート(Aa)及び第二光学シート(Ab)の少なくともいずれか一方のシート上に存在する合成樹脂層(B)を含む機能性レンズであって、
 上記第一光学シート(Aa)及び第二光学シート(Ab)は、いずれもポリアミド樹脂、ポリエステル樹脂、セルロース樹脂、(メタ)アクリル樹脂、ポリウレタン樹脂、ポリウレタンウレア樹脂、ポリイミド樹脂、エポキシ樹脂、ポリオレフィン樹脂、及びポリビニルアルコール樹脂よりなる群から選ばれる樹脂からなり、
 上記合成樹脂層(B)は、ポリアミド樹脂、ポリエステル樹脂、アリル樹脂、(メタ)アクリル樹脂、ポリウレタン樹脂、ポリウレタンウレア樹脂、ポリチオウレタン樹脂、ポリチオエポキシ樹脂及びポリカーボネート樹脂よりなる群から選ばれる樹脂からなり、且つ
 第一光学シート(Aa)及び/または第二光学シート(Ab)と合成樹脂層(B)との間の接着強度が50N以上である上記機能性レンズである。
 本発明は、以下の態様をとることができる。
 (2)第一光学シート(Aa)及び/または第二光学シート(Ab)が、ポリアミド樹脂、ポリエステル樹脂、セルロース樹脂、及びポリビニルアルコール樹脂よりなる群から選ばれる樹脂からなり、
 合成樹脂層(B)が、アリル樹脂、(メタ)アクリル樹脂、ポリウレタン樹脂、ポリウレタンウレア樹脂、ポリチオウレタン樹脂及びポリチオエポキシ樹脂よりなる群から選ばれる樹脂からなる前記(1)に記載の機能性レンズ。
 (3)第一光学シート(Aa)及び第二光学シート(Ab)がポリビニルアルコール樹脂からなり、
 機能性層(Ac)が、フォトクロミック化合物及びポリウレタンウレア樹脂を含むフォトクロミック接着層(Ac1)からなり、
 前記第一光学シート(Aa)及び前記第二光学シート(Ab)が前記フォトクロミック接着層(Ac1)で直接接合されてなる(1)に記載の機能性レンズ。
 (4)ポリビニルアルコール樹脂からなる、第一光学シート(Aa)及び第二光学シート(Ab)の少なくとも一方のシートが、偏光性を有するシートである(3)に記載の機能性レンズ。
 なお、特許文献13、14には、ポリビニルアルコール/接着層/フォトクロミック特性層/接着層/ポリビニルアルコールからなるフォトクロミック積層体が例示されている。しかしながら、このフォトクロミック積層体では、フォトクロミック特性を発揮する層がポリビニルアルコールと直接接合しておらず、本発明と比較して、接着層が多くなっている。加えて、特許文献13、14には、重合性モノマーを含む液状の組成物を重合硬化してなる樹脂層をさらに積層することは記載されていない。
 (5)第一光学シート(Aa)、第二光学シート(Ab)及びこれらの2つのシート間に存在するフォトクロミック特性及び/又は偏光性を有する機能性層(Ac)を含む機能性積層体(A)であって、
 上記第一光学シート(Aa)及び第二光学シート(Ab)は、いずれもポリアミド樹脂、ポリエステル樹脂、セルロース樹脂、(メタ)アクリル樹脂、ポリウレタン樹脂、ポリウレタンウレア樹脂、ポリイミド樹脂、エポキシ樹脂、及びポリオレフィン樹脂よりなる群から選ばれる樹脂からなり、且つ
 上記第一光学シート(Aa)及び第二光学シート(Ab)の少なくとも一方の光学シートの外表面に、反応性官能基を有する表面改質領域が存在する上記機能性積層体。
 (6)前記表面改質領域の反応性官能基が、ヒドロキシ基、チオール基、カルボキシ基、アミノ基、スルホ基、(チオ)イソシアネート基、アリル基、(メタ)アクリル基、ビニル基、エポキシ基、オキセタン基、チオエポキシ基及びシラノール基から選ばれる官能基である前記(5)の機能性積層体。
 (7)前記表面改質領域が、ラジカル重合性基を有するシランカップリング剤を含むコート組成物により前記光学シートの外表面を処理した領域である前記(5)又は(6)の機能性積層体。
 (8)前記表面改質領域の接触角が10~60°である前記(5)又は(6)の機能性積層体。
 (9)前記機能性層(Ac)がフォトクロミック特性を有する層を含んでなり、
 前記フォトクロミック特性を有する層が、フォトクロミック化合物及びポリウレタンウレア樹脂を含むフォトクロミック接着層(Ac1)である前記(5)~(8)の何れかの機能性積層体。
 (10)前記機能性層(Ac)において、前記偏光性を有する層が偏光フィルム(Ac2)からなり、
 該偏光フィルム(Ac2)の両表面が接着層を介して第一光学シート(Aa)及び第二光学シート(Ab)と接合してなる前記(5)~(9)の何れかの機能性積層体。
 (11)前記機能性層(Ac)が、フォトクロミック特性を有する層と偏光性を有する層とを備えた層であり、
 前記フォトクロミック特性を有する層が、フォトクロミック化合物及びポリウレタンウレア樹脂を含むフォトクロミック接着層(Ac1)であり、
 該フォトクロミック接着層(Ac1)と第一光学シート(Aa)とが接合し、かつ
 前記偏光性を有する層が、偏光フィルム(Ac2)からなり、
 該偏光フィルム(Ac2)の一方の表面と該フォトクロミック接着層(Ac1)とが接合し、
 該偏光フィルム(Ac2)の他方の表面が接着層を介して第二光学シート(Ab)と接合してなる前記(5)~(10)の何れかの機能性積層体。
 (12)第一光学シート(Aa)、第二光学シート(Ab)及びこれらの2つのシート間に存在するフォトクロミック特性を有する機能性層(Ac)を含む機能性積層体(A)であって、
 上記第一光学シート(Aa)及び第二光学シート(Ab)は、いずれもポリビニルアルコール樹脂からなり、
 上記第一光学シート(Aa)及び第二光学シート(Ab)の少なくとも一方の光学シートの外表面に、ヒドロキシ基、チオール基、カルボキシ基、アミノ基、スルホ基、(チオ)イソシアネート基、アリル基、(メタ)アクリル基、ビニル基、エポキシ基、オキセタン基、チオエポキシ基及びシラノール基から選ばれる反応性官能基を有する表面改質領域が存在し、
 上記機能性層(Ac)が、フォトクロミック化合物及びポリウレタンウレア樹脂を含むフォトクロミック接着層(Ac1)からなり、
 前記第一光学シート(Aa)及び前記第二光学シート(Ab)が前記フォトクロミック接着層(Ac1)で直接接合されてなる機能性積層体。
 (13)上記第一光学シート(Aa)及び第二光学シート(Ab)の少なくとも一方のシートが、偏光性を有するシートである前記(12)に記載の機能性積層体。
 (14)前記(5)~(13)の何れかの機能性積層体(A)を、
 重合することにより、アリル、(メタ)アクリル、ポリウレタン、ポリウレタンウレア、ポリチオウレタン及びポリチオエポキシから選ばれる樹脂となるレンズ形成用モノマー組成物に埋設した後、
 該レンズ形成用モノマー組成物を重合することにより、該機能性積層体(A)上に合成樹脂層(B)を積層することにより、前記(1)の機能性レンズを製造する方法。
 本発明の機能性レンズは、フォトクロミック特性及び/又は偏光性を有する層とその層上に形成された合成樹脂層とが強固に接合したものとなる。そのため、様々な用途に使用できる。また、本発明の機能性レンズは、機能性積層体(A)と合成樹脂層(B)との間の接着強度が50N以上と密着性に優れるが、該機能性積層体(A)が予め表面改質剤で処理されている場合に、より優れた密着性を有する機能性レンズを得ることができる。
 さらに、本発明の機能性積層体(A)を使用することにより、それぞれの特性を維持したまま、密着性に優れたフォトクロミックレンズ、偏光レンズ又は偏光フォトクロミックレンズ(機能性レンズ)とすることができる。そのため、本発明の機能性レンズは、優れたフォトクロミック特性及び/又は偏光性を有し、長期間使用できる。
 また、本発明の機能性積層体(A)は、耐溶剤性に優れる。そのため、合成樹脂層(B)を形成するレンズ形成用モノマー組成物中に、該機能性積層体(A)を埋設(浸漬)して機能性レンズを製造する場合には、該レンズ形成用モノマー組成物に光学シートが溶解することを防止できる。その結果、白濁などが生じない、透明な機能性レンズとすることができる。
本発明の機能性積層体の層構成の一例を示す断面図 本発明の機能性積層体の層構成の他の例を示す断面図 本発明の機能性積層体の層構成の他の例を示す断面図 本発明の機能性レンズの層構成の一例を示す断面図 本発明の機能性積層体の層構成の他の例を示す断面図 本発明の機能性レンズの層構成の一例を示す断面図
 本発明の機能性レンズは、
 第一光学シート(Aa)、第二光学シート(Ab)及びこれらの2つのシート間に存在するフォトクロミック特性及び/又は偏光性を有する機能性層(Ac)を含む機能性積層体(A)並びに上記機能性積層体(A)の上記第一光学シート(Aa)及び第二光学シート(Ab)の少なくともいずれか一方のシート上に存在する合成樹脂層(B)を含む機能性レンズであって、
 上記第一光学シート(Aa)及び第二光学シート(Ab)は、いずれもポリアミド樹脂、ポリエステル樹脂、セルロース樹脂、(メタ)アクリル樹脂、ポリウレタン樹脂、ポリウレタンウレア樹脂、ポリイミド樹脂、エポキシ樹脂、ポリオレフィン樹脂、及びポリビニルアルコール樹脂よりなる群から選ばれる樹脂からなり、
 上記合成樹脂層(B)は、ポリアミド樹脂、ポリエステル樹脂、アリル樹脂、(メタ)アクリル樹脂、ポリウレタン樹脂、ポリウレタンウレア樹脂、ポリチオウレタン樹脂、ポリチオエポキシ樹脂及びポリカーボネート樹脂よりなる群から選ばれる樹脂からなり、且つ
 第一光学シート(Aa)及び/または第二光学シート(Ab)と合成樹脂層(B)との間の接着強度が50N以上である上記機能性レンズである。
 また、該機能性レンズを形成する場合において、機能性積層体(A)は、
 第一光学シート(Aa)、第二光学シート(Ab)及びこれらの2つのシート間に存在するフォトクロミック特性及び/又は偏光性を有する機能性層(Ac)を含む機能性積層体(A)であって、
 上記第一光学シート(Aa)及び第二光学シート(Ab)は、いずれもポリアミド樹脂、ポリエステル樹脂、セルロース樹脂、(メタ)アクリル樹脂、ポリウレタン樹脂、ポリウレタンウレア樹脂、ポリイミド樹脂、エポキシ樹脂、ポリオレフィン樹脂、及びポリビニルアルコール樹脂よりなる群から選ばれる樹脂からなり、且つ
 上記第一光学シート(Aa)及び第二光学シート(Ab)の少なくとも一方の光学シートの外表面が反応性官能基を有する表面改質領域を有する上記機能性積層体である。この機能性積層体の構成となる場合には、必ず、上記第一光学シート(Aa)及び第二光学シート(Ab)の少なくともいずれか一方のシート上に存在する合成樹脂層(B)を有するものとする。
以下、これらについて順を追って説明する。
 (機能性レンズ)
 本発明の機能性レンズは、後述する機能性積層体(A)と、後述する合成樹脂層(B)との間の接着強度が50N以上と密着力に優れるため、様々な用途に使用することが出来る。
 本発明において、接着強度は、機能性積層体(A)と合成樹脂層(B)との間の接着を横方向(積層方向に対し直角方向)から測定したものであり、機能性積層体(A)と合成樹脂層(B)とを上下方向(積層方向)に剥離する剥離強度ではない。具体的には、機能性積層体(A)と合成樹脂層(B)間の接着強度は、以下の方法により測定した値である。先ず、幅20mm、長さ30mmの短冊状の試験片を積層方向に対し直角(垂直)方向に切り出す。この試験片の幅20mmの切出し面(横の面)に露出した機能性積層体(A)の境界線と合成樹脂層(B)の境界線に対し平行になるように、機能性積層体(A)と合成樹脂層(B)とのいずれか一方の露出面のみに、同じ長さ(20mm)のSUS製の金属板(厚さ0.4mm、幅20mm)を押し当てる。そして、オートグラフAGS-500NX((株)島津製作所製)を用い、クロスヘッドスピード10mm/min、温度25℃で圧縮試験を行うことにより、接着強度を測定する。
 そのため、本発明の機能性レンズは、横方向からの応力がかかったとしても、強固に接着しているものである。機能性レンズの接着強度は、より効果的にするためには、60N以上であることが好ましく、70N以上であることがより好ましく、80N以上であることがさらに好ましく、100N以上であることが特に好ましい。接着強度の上限値は、特に制限されるものではないが、工業的な生産を考慮すると300Nである。300Nを超えるようなものは、通常、機能性積層体(A)又は合成樹脂層(B)そのものが先に破断してしまうため、測定が困難である。
 本発明の機能性レンズの作製方法としては、特に制限されるものではないが、機能性積層体(A)としては、その外層に配置される第一光学シート(Aa)及び第二光学シート(Ab)の少なくとも一方の光学シート(第一光学シート(Aa)及び第二光学シート(Ab)の少なくとも一方の光学シート)の外表面が、反応性官能基を有する表面改質領域を有するものを使用することが好ましい。そして、この表面改質領域を有する外表面上に合成樹脂層(B)を積層することにより、容易に製造できる。
次に、機能性積層体(A)について説明する。
 (機能性積層体(A))
 機能性積層体(A)は、第一光学シート(Aa)と第二光学シート(Ab)との間に機能性層(Ac)を有する積層体である。
 機能性積層体(A)を構成する第一光学シート(Aa)及び第二光学シート(Ab)について説明する。
 (第一光学シート(Aa)及び第二光学シート(Ab))
 <原料樹脂の説明>
 本発明で使用される第一光学シート(Aa)及び第二光学シート(Ab)には、光透過性を有するシートが使用される。原料としては、ポリアミド樹脂、ポリエステル樹脂、セルロース樹脂、(メタ)アクリル樹脂、ポリウレタン樹脂、ポリウレタンウレア樹脂、ポリイミド樹脂、エポキシ樹脂、ポリオレフィン樹脂、及びポリビニルアルコール樹脂から選ばれる樹脂が用いられる。これらの中でも、得られる機能性レンズの汎用性及びその機能を考慮するとポリアミド樹脂、ポリエステル樹脂及びセルロース樹脂であることが好ましく、ポリアミド樹脂であることがより好ましい。そして、特に第一光学シート(Aa)及び第二光学シート(Ab)の材質が合成樹脂層(B)の材質と異なる場合に、下記に詳述する表面改質剤で予め処理した機能性積層体(A)が好適に採用できる。
 また、第一光学シート(Aa)及び第二光学シート(Ab)が、ポリビニルアルコール樹脂からなるシートである場合には、以下の利点がある。この場合、何ら処理しなくとも、第一光学シート(Aa)及び第二光学シート(Ab)の表面に、反応性官能基が水酸基である表面改質領域を有するものとなる。その結果、機能性積層体(A)及び機能性レンズの製造工程を簡略化できる。さらには、ポリビニルアルコール樹脂からなるシートを使用することにより、該シート自身に偏光性を付与することができる。その結果、機能性積層体(A)及び機能性レンズの層構成を少なくできる。
 <第一光学シート(Aa)及び第二光学シート(Ab);(ポリアミド樹脂)>
 ポリアミド樹脂としては、市販の樹脂を使用することができ、ポリアミド樹脂からなる第一光学シート(Aa)及び第二光学シート(Ab)も市販のものを使用できる。
 ポリアミド樹脂としては、例えばε-カプロラクタム、10-アミノデカン酸ラクタム、ω-ラウリンラクタムなどのω-アミノカルボン酸を重縮合反応して得られるポリアミド樹脂や、ジアミンとジカルボン酸の共縮重合反応で得られるポリアミド樹脂、更にはそれらの共重合体を好適に使用することができる。
 前記共縮重合反応で得られるポリアミド樹脂に使用されるジアミンとしては、
 例えばテトラメチレンジアミン、ヘキサメチレンジアミン、1,9-ノナンジアミン、1,12-ドデカンジアミン、メチルペンタジアミンなどの炭素数4~14の脂肪族ジアミン;
 ジアミノシクロヘキサンなどのジアミノシクロアルカン(炭素数5~10);ビス(4-アミノシクロヘキシル)メタン、ビス(4-アミノ-3-メチルシクロヘキシル)メタン、2,2-ビス(4’-アミノシクロヘキシル)プロパンなどのビスアミノシクロアルキル(炭素数5~10)アルカン(炭素数1~6)などの、アルキル基(炭素数1~6のアルキル基、好ましくは炭素数1~4のアルキル基、さらに好ましくは炭素数1~2のアルキル基)などの置換基を有していてもよい脂環族ジアミン;
 p-フェニレンジアミン、m-フェニレンジアミンなどの芳香族ジアミンなど
を好適に使用することができる。
 前記共縮重合反応で得られるポリアミド樹脂に使用されるジカルボン酸としては、例えば、
 アジピン酸、セバシン酸、ドデカン二酸などの炭素数4~18の脂肪族ジカルボン酸、
シクロヘキサン-1,4-ジカルボン酸、シクロヘキサン-1,3-ジカルボン酸などの炭素数5~10の脂環族ジカルボン酸;
 テレフタル酸、イソフタル酸などの芳香族ジカルボン酸など
を好適に使用することができる。
 その中でも、本発明で使用される第一光学シート(Aa)及び第二光学シート(Ab)には、機械的強度、耐溶剤性(耐薬品性)、透明性の観点から、前記共縮重合反応で得られるポリアミド樹脂が好適に使用される。さらには脂環族ポリアミド樹脂または半芳香族ポリアミド樹脂がより好適に使用される。該脂環族ポリアミド樹脂は、脂環族ジアミン及び脂環族ジカルボン酸から選択された少なくとも一種を構成成分とするホモ又はコポリアミドである。また、芳香族ポリアミド樹脂などを含有するコポリアミドであってもよい。また、該半芳香族ポリアミド樹脂は、ジカルボン酸、ジアミンのうちの一方が芳香族化合物であり、他方が脂肪族化合物であるポリアミド樹脂である。
 <好適な脂環族ポリアミド樹脂>
 好ましい脂環族ポリアミド樹脂としては、例えば、
 脂環族ジアミン[例えば、ビス(アミノシクロアルキル(炭素数5~10)アルカン(炭素数1~6)、好ましくはビスアミノシクロアルキル(炭素数6~8)アルカン(炭素数1~6)、さらに好ましくはビスアミノシクロヘキシルアルカン(炭素数1~3)]と、
 脂肪族ジカルボン酸(例えば、炭素数4~18のアルカンジカルボン酸、好ましくは炭素数6~16のアルカンジカルボン酸、さらに好ましくは炭素数8~14のアルカンジカルボン酸)とを
構成成分とする樹脂(ホモ又はコポリアミド)などが例示できる。代表的な脂環族ポリアミド樹脂としては、下記式(1)で表される脂環族ポリアミドが挙げられる。
Figure JPOXMLDOC01-appb-C000001
(式中、
 Gは、直接結合、アルキレン基又はアルケニレン基であり、
 R及びRは、同一又は異なるアルキル基であり、
 m及びnは、それぞれ0又は1~4の整数、
 p及びqは、それぞれ1以上の整数である。)。
 前記式(1)において、Gで表されるアルキレン基(アルキリデン基を含む)としては、例えばメチレン、エチレン、エチリデン、プロピレン、プロパン-1,3-ジイル、2-プロピリデン、ブチレンなどの炭素数1~6のアルキレン基(又はアルキリデン基)、好ましくは炭素数1~4のアルキレン基(又はアルキリデン基)、さらに好ましくは炭素数1~3のアルキレン基(又はアルキリデン基)が挙げられる。また、Gで表されるアルケニレン基としては、例えばビニレン、プロぺニレンなどの炭素数2~6のアルケニレン基、好ましくは炭素数2~4のアルケニレン基などが挙げられる。
 前記式(1)中のR及びRにおいて、アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基などの炭素数1~6のアルキル基、好ましくは炭素数1~4のアルキル基、さらに好ましくは炭素数1~2のメチル基、エチル基が挙げられる。
 前記式(1)中のm及びnは、それぞれ、0又は1~4の整数から選ばれる。通常、0又は1~3の整数であり、好ましくは0又は1~2の整数であり、さらに好ましくは、0又は1である。また、置換基R及びRの置換位置は、通常、アミド基に対して2位、3位、5位、6位から選択でき、好ましくは2位、6位であることができる。
 前記式(1)において、pは4以上であることが好ましく、より好ましくは6~20であり、最も好ましくは8~15である。
 また、前記式(1)において、q(重合度)は、5以上であることが好ましく、より好ましくは10~800であり、最も好ましくは50~500である。
 前記のような脂環族ポリアミド樹脂としては、市販品を使用するこができる。具体的には、ダイセル・エボニック社製「トロガミド(TROGAMID)」(登録商標)、EMS-GRIVORY社製「グリルアミド(Grilamid)」(登録商標)及び「グリルアミドTR(Grilamid TR)」(登録商標)などが挙げられる。また、脂環族ポリアミド樹脂は、単独で又は二種以上組み合わせてもよい。そのため、脂環族ポリアミド樹脂からなる第一光学シート(Aa)及び第二光学シート(Ab)は、単独の脂環族ポリアミド樹脂からなるものであっても、二種類以上の脂環族ポリアミド樹脂からなるものであってもよい。
 該脂環族ポリアミド樹脂の数平均分子量は、例えば、6,000~300,000、好ましくは10,000~200,000、さらに好ましくは15,000~100,000程度である。
 また、該脂環族ポリアミド樹脂は、熱溶融温度又は融点を有していてもよく、熱溶融温度は、例えば、100~300℃、好ましくは110~280℃、さらに好ましくは130~260℃程度であってもよい。特に、結晶性、特に微結晶性を有する脂環族ポリアミド樹脂の熱溶融温度は、例えば、150~300℃、好ましくは180~280℃、さらに好ましくは210~260℃程度であってもよい。なお、脂環族ポリアミド樹脂からなる第一光学シート(Aa)及び第二光学シート(Ab)の熱溶融温度は、シートに配向がかかっている状態では少し高くなるが、前記範囲を満足することが好ましい。
 該脂環族ポリアミド樹脂は、ビカット軟化点が100~200℃、好ましくは110~170℃、さらに好ましくは130~150℃程度であってもよい。このビガット軟化点は、なお、脂環族ポリアミド樹脂からなる第一光学シート(Aa)及び第二光学シート(Ab)を測定した値である。
 該脂環族ポリアミド樹脂は、ガラス転移点が100~200℃、好ましくは110~170℃、さらに好ましくは125~150℃程度であってもよい。なお、脂環族ポリアミド樹脂からなる第一光学シート(Aa)及び第二光学シート(Ab)の熱溶融温度は、シートに配向がかかっている状態では少し高くなるが、前記範囲を満足することが好ましい。
 <好適な半芳香族ポリアミド樹脂>
 好ましい半芳香族ポリアミドとしては、下記式(2)で示されるものを挙げることができる。
Figure JPOXMLDOC01-appb-C000002
 (式中、
 X及びYは、一方が2価の芳香族置換基であり、他方が2価の脂肪族置換基であり、
 qは、1以上の整数である。)。
 前記式(2)において、X及びYのうちのどちらか一方が2価の芳香族置換基であり、下記式(3)で示されるものであるのが好ましい。
Figure JPOXMLDOC01-appb-C000003
 (式中、
 s及びtは、それぞれ、0以上2以下の整数である。)。
 前記式(2)において、X及びYの脂肪族置換基は、アルキレン基又はアルケニレン基であり、例えば炭素数1~20のアルキレン基、さらに好ましくは炭素数4~10のアルキレン基、もしくは炭素数2~6のアルケニレン基、好ましくは炭素数2~4のアルケニレン基であることが好ましい。
 前記式(2)において、q(重合度)は、前記式(1)におけるものと同義であり、q(重合度)は、5以上であることが好ましく、より好ましくは10~800であり、最も好ましくは50~500である。
 より好ましい半芳香族ポリアミドとしては、例えば、下記式(4)~(6)で示されるものを挙げることができる。また、下記式(4)~(6)で示される半芳香族ポリアミドの共重合体も使用することができる。
Figure JPOXMLDOC01-appb-C000004
(式中、Zは、直接結合、アルキレン基又はアルケニレン基を示し、qは1以上の整数を示す)。
 前記式(4)において、Zで表されるアルキレン基としては、例えばメチレン、エチレン、プロピレン、ブチレンなどの置換基を有していても良い炭素数1~20のアルキレン基、さらに好ましくは炭素数4~10のアルキレン基が挙げられる。また、Zで表されるアルケニレン基としては、例えばビニレン、プロペニレンなどの炭素数2~6のアルケニレン基、好ましくは炭素数2~4のアルケニレン基などが挙げられる。
 前記式(4)において、q(重合度)は、前記式(1)におけるものと同義であり、5以上であることが好ましく、より好ましくは10~800であり、最も好ましくは50~500である。
Figure JPOXMLDOC01-appb-C000005
(式中、Zは、直接結合、アルキレン基又はアルケニレン基であり、qは1以上の整数を示す。)。
 前記式(5)において、Zで表されるアルキレン基としては、例えばメチレン、エチレン、プロピレン、ブチレンなどの置換基を有していても良い炭素数1~20のアルキレン基、さらに好ましくは炭素数4~10のアルキレン基が挙げられる。また、Zで表されるアルケニレン基としては、例えばビニレン、プロペニレンなどの炭素数2~6のアルケニレン基、好ましくは炭素数2~4のアルケニレン基などが挙げられる。
 前記式(5)において、q(重合度)は、前記式(1)におけるものと同義であり、5以上であることが好ましく、より好ましくは10~800であり、最も好ましくは50~500である。
Figure JPOXMLDOC01-appb-C000006
(式中、Zは、直接結合、アルキレン基又はアルケニレン基であり、qは1以上の整数である。)。
 前記式(6)において、Zで表されるアルキレン基としては、例えばメチレン、エチレン、プロピレン、ブチレンなどの置換基を有していても良い炭素数1~20のアルキレン基、さらに好ましくは炭素数4~10のアルキレン基が挙げられる。また、Zで表されるアルケニレン基としては、例えばビニレン、プロペニレンなどの炭素数2~6のアルケニレン基、好ましくは炭素数2~4のアルケニレン基などが挙げられる。
 前記式(6)において、q(重合度)は、前記式(1)におけるものと同義であり、5以上であることが好ましく、より好ましくは10~800であり、最も好ましくは50~500である。
 該半芳香族ポリアミド樹脂は、ガラス転移点が100~170℃、好ましくは105~150℃である。なお、半芳香族ポリアミド樹脂からなる第一光学シート(Aa)及び第二光学シート(Ab)のガラス転移点は、シートに配向がかかっている状態では少し高くなるが、前記範囲を満足することが好ましい。
 本発明で使用するポリアミドシートは、前記脂環族ポリアミド樹脂または半芳香族ポリアミド樹脂を主成分とすることが好ましいが、本発明の効果が発現される範囲において、他の樹脂を含むこともできる。他の樹脂としては、公知の脂肪族ポリアミド樹脂、芳香族ポリアミド樹脂が例示できる。
 <ポリアミド樹脂からなる第一光学シート(Aa)及び第二光学シート(Ab)の特徴的部分>
 脂環族ポリアミド樹脂からなる第一光学シート(Aa)及び第二光学シート(Ab)(以下、単に「脂環族ポリアミドシート」とする場合もある)は、高いアッベ数を有するものとなる。そのため、該脂環族ポリアミドシートを使用することにより、ポリカーボネート(アッベ数34)を使用した場合と比較して、得られる機能性積層体(A)において、虹色等の色むらの発生を効率よく抑制できる。本発明で使用する脂環族ポリアミドシートのアッベ数は、40~65であることが好ましく、50~60であることがより好ましい。
 また、機能性積層体(A)を製造するに際し、該脂環族ポリアミドシートを後述する偏光シートと組み合わせて使用する場合には、前述のように脂肪族ポリアミド樹脂がポリカーボネート樹脂などに比べて高いアッベ数を有しているため、リタデーション値を大きくしなくても、通常、虹色の色むらが発生することは少ない又は虹色の色むらの生成を高いレベルで抑制又は防止できる。しかしながら、脂肪族ポリアミドシートと偏光シートを組み合わせた積層体を曲げ加工または曲面形状加工した場合、偏光度が低下する場合がある。そのため、本発明で使用する脂環族ポリアミドシートにおいては、1軸延伸加工を行い、リタデーション値を100nm以上の値にした脂環族ポリアミドシートを用いることが好ましい。このようなリタデーション値を有する脂環族ポリアミドシートを使用することにより、偏光シートと組み合わせて得られる積層体において、曲げ加工時の偏光度の低下を抑制することもできる。本発明において、脂環族ポリアミドシートを偏光シートと組み合わせる場合、該脂環族ポリアミドシートのリタデーション値は、100~10000nmであることが好ましく、500~6000nmであることがより好ましく、1000~5000nmであることがさらに好ましい。
 また、前記1軸延伸された脂環族ポリアミドシートを使用する場合には、得られる積層体の両面のうち、少なくとも一方の積層体の表面に使用されればよい。なお、もう一方の積層体の表面(裏面とする場合もある)には、前記1軸延伸された脂環族ポリアミドシートであっても、無延伸の脂環族ポリアミドシートが使用されてもよい。
 <第一光学シート(Aa)及び第二光学シート(Ab);(ポリエステル樹脂)>
 ポリエステル樹脂としては、市販の樹脂を使用することができ、ポリエステル樹脂からなる第一光学シート(Aa)及び第二光学シート(Ab)も市販のものを使用できる。
 ポリエステル樹脂としては、例えばテレフタル酸、イソフタル酸などのジカルボン酸と、エチレングリコール、ブチレングリコール、1,4-シクロヘキサンジメタノール等のジオールとの重縮合物を挙げることができ、その中でもポリエチレンテレフタレート、ポリブチレンテレフタレート及びそれらの共重合物等を好適に使用することができる。
 <第一光学シート(Aa)及び第二光学シート(Ab);(セルロース樹脂)>
 セルロース樹脂としては、市販の樹脂を使用することができ、セルロース樹脂からなる第一光学シート(Aa)及び第二光学シート(Ab)も市販のものを使用できる。
 セルロース樹脂としては、例えばトリアセチルセルロース、ジアセチルセルロース等のアセチルセルロース、トリプロピルセルロース、ジプロピルセルロース等のプロピルセルロース等が好適に使用することができる。
 <第一光学シート(Aa)及び第二光学シート(Ab);((メタ)アクリル樹脂)>
 (メタ)アクリル樹脂としては、市販の樹脂を使用することができ、(メタ)アクリル樹脂からなる第一光学シート(Aa)及び第二光学シート(Ab)も市販のものを使用できる。
 (メタ)アクリル樹脂としては、例えばメタクリル酸メチルなどの単重合体、もしくは複数の(メタ)アクリルモノマーの共重合体からなる樹脂を好適に使用することができる。
 <第一光学シート(Aa)及び第二光学シート(Ab);(ポリウレタン及びポリウレタンウレア樹脂)>
 ポリウレタン樹脂及びポリウレタンウレア樹脂としては、市販の樹脂を使用することができ、ポリウレタン樹脂及びポリウレタンウレア樹脂からなる第一光学シート(Aa)及び第二光学シート(Ab)も市販のものを使用できる。
 ポリウレタン樹脂またはポリウレタンウレア樹脂は、分子内にウレタン結合または/及びウレア結合を有する樹脂である。具体的には、イソホロンジイソシアネート等のジイソシアネート化合物と、ポリカーボネートポリオール、ポリエステルポリオール等のポリオール化合物とを反応させて得られる公知のものが使用される。更に、低分子量のジオール、トリオール、ジアミン、トリアミン等の鎖延長剤を反応させて得られるポリウレタン樹脂またはポリウレタンウレア樹脂を好適に使用することができる。
 <第一光学シート(Aa)及び第二光学シート(Ab);(ポリイミド樹脂)>
 ポリイミド樹脂としては、市販の樹脂を使用することができ、ポリイミド樹脂からなる第一光学シート(Aa)及び第二光学シート(Ab)も市販のものを使用できる。
 ポリイミド樹脂としては、芳香族テトラカルボン酸と芳香族ジアミンとの重合物を好適に使用することができる。芳香族テトラカルボン酸としては、例えばピロメリット酸、3,3’,4,4’-ビフェニルテトラカルボン酸、2,3’,3,4’-ビフェニルテトラカルボン酸、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、2,3,6,7-ナフタレンテトラカルボン酸、2,2-ビス(3,4-ジカルボキシフェニル)プロパン、ピリジン-2,3,5,6-テトラカルボン酸またはその酸無水物、もしくは酸二無水物、あるいはその酸のエステル化合物またはハロゲン化物から誘導される芳香族テトラカルボン酸類が挙げられる。芳香族ジアミンとしては、例えばパラフェニレンジアミン、メタフェニレンジアミン、ベンジジン、パラキシリレンジアミン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルスルホン、3,3’-ジメチル-4,4’-ジアミノジフェニルメタン、1,5-ジアミノナフタレン、3,3’-ジメトキシベンジジン、1,4-ビス(3-メチル-5-アミノフェニル)ベンゼン及びこれらの誘導体が挙げられる。
 <第一光学シート(Aa)及び第二光学シート(Ab);(エポキシ樹脂)>
 エポキシ樹脂としては、市販の樹脂を使用することができ、エポキシ樹脂からなる第一光学シート(Aa)及び第二光学シート(Ab)も市販のものを使用できる。
 エポキシ樹脂としては、例えばビスフェノールA、ビスフェノールFなどとエピクロルヒドリンとの縮合反応した樹脂や、その他の他官能エポキシ樹脂、ビフェニル型エポキシ樹脂等を好適に使用することができる。
 <第一光学シート(Aa)及び第二光学シート(Ab);(ポリオレフィン樹脂)>
 ポリオレフィン樹脂としては、市販の樹脂を使用することができ、ポリオレフィン樹脂からなる第一光学シート(Aa)及び第二光学シート(Ab)も市販のものを使用できる。
 ポリオレフィン樹脂としては、例えばポリプロピレン、ポリエチレン、エチレン-プロピレン共重合体、エチレン-α-オレフィン共重合体及びプロピレン-α-オレフィン共重合体等を好適に使用することがきる。
 <第一光学シート(Aa)及び第二光学シート(Ab);(ポリビニルアルコール樹脂)>
 ポリビニルアルコール樹脂からなる第一光学シート(Aa)及び第二光学シート(Ab)を使用した場合には、機能性層(Ac)がフォトクロミック特性を有する層を含むことが好ましい。そして、このフォトクロミック特性を有する機能性層(Ac)が、フォトクロミック化合物及びポリウレタンウレア樹脂を含むフォトクロミック接着層(Ac1)からなることが好ましい。そして、前記第一光学シート(Aa)及び第二光学シート(Ab)が、該フォトクロミック接着層(Ac1)で直接接合されていることが好ましい。さらには、第一光学シート(Aa)及び第二光学シート(Ab)の何れか一方の光学シートは、偏光性を有するシートとすることが好ましい。
 このように、ポリビニルアルコール樹脂からなる第一光学シート(Aa)及び第二光学シート(Ab)を使用することにより、機能性積層体及び機能性レンズの層構成を低減することができる。その結果、それらの生産性を高めることができる。
 本発明で使用されるポリビニルアルコール樹脂からなる光学シートとしては、以下の樹脂をからなるシートが挙げられる。該ポリビニルアルコール樹脂は、ポリ酢酸ビニル系樹脂をケン化することにより得られる。このケン化度は、通常85モル%以上、好ましくは90モル%以上、より好ましくは99モル%以上である。ポリ酢酸ビニル系樹脂としては、例えば、酢酸ビニルの単独重合体であるポリ酢酸ビニルのほか、酢酸ビニルとこれに共重合可能な他の単量体との共重合体などを挙げることができる。酢酸ビニルと共重合可能な他の単量体としては、不飽和カルボン酸類、オレフィン類、不飽和スルホン酸類、ビニルエーテル類などを挙げることができる。
 本発明において、ポリビニルアルコール樹脂の平均重合度は、好ましくは100~10000であり、より好ましくは1500~8000であり、さらに好ましくは2000~5000である。ポリビニルアルコール(PVA)樹脂の平均重合度は、JIS K 6726(1994)に準拠して求めることができる。
 また、前記ポリビニルアルコール樹脂は、少なくともその一部が変性されていてもよく、例えば、アルデヒド類で変性されたポリビニルホルマール、ポリビニルアセタール、ポリビニルブチラール等を含んでもよい。中でも、ポリビニルアルコールからなる一対のフィルムを使用することが好ましい。
 本発明において、ポリビニルアルコール樹脂からなる第一光学シート(Aa)及び第二光学シート(Ab)の厚みは、10~100μmのものが好適に使用できる。
 本発明において、ポリビニルアルコール樹脂からなるシートは、未延伸、1軸延伸、又は2軸延伸のいずれであっても構わない。延伸方向としては、未延伸フィルムの機械流れ方向(MD)、これに直交する方向(TD)、機械流れ方向に斜交する方向が挙げられる。ここで、未延伸シートとは、延伸されていない状態のシートのことであり、1軸延伸シートとは、前記方向のうちいずれかの一方向に未延伸シートを延伸したものである。2軸延伸シートは、上述の延伸方向のうち2方向に延伸したものであり、同時に延伸する同時二軸延伸シートであっても、所定の方向に延伸した後で他の方向に延伸する逐次2軸延伸シートであってもよい。2軸延伸シートの場合、通常、MD、TDに延伸したものが好ましい。
 これらのシートの中でも、偏光性を有するポリビニルアルコール樹脂からなるシートを使用する場合には、未延伸フィルムの機械流れ方向(MD)に1軸延伸した1軸延伸シートを用いることが好ましい。
 本発明において、ポリビニルアルコール樹脂からなるシートに、1軸延伸、又は2軸延伸シートを使用する場合には、延伸倍率2~8倍であることが好ましい。特に、偏光性を有するポリビニルアルコール樹脂からなるシートを使用する場合には、前記の通り、MDに1軸延伸したシート(1軸延伸シート)であって、その延伸倍率が3~7倍であることがより好ましく、4~6倍であることがさらに好ましい。1軸延伸する際は、ポリビニルアルコール樹脂からなるシートの延伸は一度に行っても、複数回に分けて行ってもよい。複数回に分けて延伸を行う場合には、各延伸の延伸倍率を掛け合わせた総延伸倍率が上記範囲内にあればよい。なお、本発明において、延伸倍率とは、延伸前のポリビニルアルコール樹脂からなるシートの長さに基づくものであり、延伸をしていない状態が延伸倍率1倍に相当する。
 本発明において、ポリビニルアルコール系樹脂からなるシートは、未延伸、1軸延伸、又は2軸延伸に関わらず、ホウ酸、有機チタン系化合物、有機ジルコニウム系化合物、グリオキザール、グルタルアルデヒドなどの架橋剤を用いて、ポリビニルアルコール樹脂を架橋させている方が好ましい。中でも、ホウ酸で架橋したものがより好ましい。
 本発明において、ポリビニルアルコール系樹脂からなるシートをホウ酸で架橋することにより、耐薬品性を向上させることが出来る。該シート中のホウ酸含有量は、1.0~20.0質量%であることが好ましい。このホウ酸含有量は、当該フィルムを硝酸水溶液に溶解し、その後、誘導結合プラズマ(Inductively Coupled Plasma;IPC)発光分析により求めたホウ素含有量から換算して求めることができる。下記に詳述するが、ホウ酸によるポリビニルアルコール樹脂の架橋は、ホウ酸水溶液にポリビニルアルコール樹脂からなるシートを接触させることにより実施する。そのため、ホウ酸含有量は、架橋したシートから求めることになる。所望の量のホウ酸を含有させるためには、予め製造条件(シートの厚み、接触温度、接触時間、接触速度、ホウ酸水溶液の濃度、洗浄条件等の条件)とホウ酸含有量との関係を求めておき、それに従い製造すればよい。
 本発明において、当該シート中のホウ酸含有量が1.0質量%よりも少ない場合には、耐薬品性や耐湿性を向上させる効果が低くなる傾向にある。一方、当該シート中のホウ酸含有量が20.0質量%より多い場合には、当該シートの機械強度が低下し、高温時の寸法変化が大きくなる傾向がある。よって、当該シート中のホウ酸含有量は3.0~18.0質量%であることがより好ましく、5.0~15.0質量%であることが更に好ましい。
 本発明において、ポリビニルアルコール樹脂からなるシートには、可塑剤、界面活性剤等の添加剤を添加してもよい。可塑剤としては、ポリオールおよびその縮合物等が挙げられ、例えば、グリセリン、ジグリセリン、トリグリセリン、エチレングリコール、プロピレングリコール、ポリエチレングリコール等があげられる。可塑剤等の使用量は、特に制限されないが、当該フィルム中に20質量%以下とするのが好適である。
 本発明において、ポリビニルアルコール系脂からなるシートに偏光性を付与する場合には、公知の2色性物質を何ら制限なく使用することが出来る。具体的な2色性物質としては、ヨウ素や2色性染料を上げることが出来る。2色性染料としては、市販の2色性染料が制限なく使用することができ、例えば、アゾ系、アントラキノン系等の染料が挙げられる。具体的には、クロランチンファストレッド(C.I.28160)、コンゴーレッド(C.I.22120)、ブリリアントブルーB(C.I.24410)、ベンゾパープリン(C.I.23500)、クロラゾールブラックBH(C.I.22590)、ダイレクトブルー2B(C.I.22610)、ジアミングリーン(C.I.30295)、クリソフェニン(C.I.24895)、シリウスイエロー(C.I.29000)、ダイレクトファーストレッド(C.I.23630)、アシドブラック(C.I.20470)、ダイレクトスカイブルー(C.I.24400)、ソロフェニルブルー4GL(C.I.34200)、ダイレクトコッパーブルー2B(C.I.24185)、ニッポンブリリアントヴァイオレットBKconc(C.I.27885)等が挙げられる。これらの二色性染料の中から目的に応じて2色以上の色素を選択して用いることもできる。なお、括弧内は、Colour Index No.を示した。
 本発明において、ポリビニルアルコール樹脂からなるシートに偏光性を付与する場合には、その物性は特に制限されるものではないが、視感透過率が10~80%、偏光度が30.0~99.9%であることが好ましい。
 本発明において、ポリビニルアルコール樹脂からなるシートは、2枚共に同じシートであっても良いし、異なるシートであっても構わない。このことは、第一光学シート(Aa)及び第二光学シート(Ab)において、形成する材料、架橋程度、特性、及び厚みが同じものであっても、異なるものであってもよい。それぞれ使用する用途に応じて適宜決定すればよい。
 また、本発明において、使用するポリビニルアルコール樹脂からなるシートは、下記に詳述する「フォトクロミック化合物を含む接着層(Ac1)」と直接接合する前に、水分量が15質量%以下であることが好ましい。特に、該シートの水分量を上記範囲とすることにより、下記に詳述するフォトクロミック接着層(Ac1)が、(I)フォトクロミック化合物、(II)末端非反応性ウレタンウレア樹脂、および(III)分子内に少なくとも2つのイソアネート基を有するポリイソイソシアネート化合物を含むフォトクロミック接着性組成物からなる場合に、好適に使用できる。特に、前記(III)ポリイソシアネート化合物を含むフォトクロミック接着性組成物を使用した場合、得られるフォトクロミック積層体において、その積層体の各位置における接着強度のバラツキを少なくすることができる。また、該フォトクロミック積層体の各ロットにおける接着強度のバラツキを少なくすることもできる。この効果をより高めるためには、接合前のポリビニルアルコール樹脂からなるシートの水分量は、10質量%以下とすることがより好ましく、6質量%以下とすることがさらに好ましい。なお、水分量の下限値は、少なければ少ないほど、安定した生産が行われるため好ましい。中でも、該シート自体の工業的な生産を考慮すると、2質量%程度である。この水分量は、下記の実施例に詳述する方法で測定した値であり、乾燥により重量変化がなくなったフィルムと比較して求めた水分量である。
 次に、本発明で使用されるポリビニルアルコール樹脂からなるシートの代表的な製造方法について説明する。
 (ポリビニルアルコール樹脂からなるシートの製造方法)
 本発明において、ポリビニルアルコール樹脂からなるシートは、特に制限されるものではないが、以下のように製造することができる。例えば、市販の、ポリビニルアルコール樹脂からなる無延伸シート(以下、「原反シート」とも言う)をそのまま使用することもできるし、下記の方法で処理したシートを使用することもできる。
 本発明において、ポリビニルアルコール樹脂からなるシートは、必要に応じて、1)膨潤処理、2)染色処理、3)架橋処理、4)延伸処理、5)洗浄処理、及び6)乾燥処理の中から選ばれる処理を原反シートに施すことにより、目的に応じたシートを製造することが出来る。
 1)膨潤処理を実施することで、原反シート表面の汚れ、ブロッキング防止剤、可塑剤等を洗浄することができる。また、原反シートを膨潤させることで、後の2)染色処理における染色のムラなどを抑制する効果もある。1)膨潤処理は、原反シートを水道水、蒸留水、イオン交換水、純水などから選ばれる水を主成分とする処理液に浸漬することにより行うことができる。1)膨潤処理の処理温度は、10~45℃程度に調整するのが好ましく、浸漬時間は10~300秒間程度である。1)膨潤処理は、延伸処理とともに行ってもよい。その場合、原反シートを元の長さに対して1.2~4倍延伸することが好ましく、より好ましは1.6~3倍である。
 2)染色処理は、前記2色性物質を溶解した染色水溶液に、1)膨潤処理を実施した原反シートを浸漬することにより行われる。2色性物質としヨウ素を使用する場合には、溶解助剤としてヨウ化カリウム、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化亜鉛、ヨウ化アルミニウム、ヨウ化鉛、ヨウ化銅、ヨウ化バリウム、ヨウ化カルシウム、ヨウ化錫、ヨウ化チタン等のヨウ化物等を使用してもよい。2)染色処理の処理温度は、20~50℃程度に調整するのが好ましく、浸漬時間は10~300秒間程度に調整するのが好ましい。
 3)架橋処理は、前記架橋剤を溶解した水溶液に、1)のみ、又は1)及び2)の処理を実施した原反シートを浸漬することにより行われる。3)架橋処理は、4)延伸処理とともに行ってもよい。3)架橋処理は複数回行っても構わない。3)架橋処理の処理温度は、30~80℃であることが好ましく、35~60℃であることがより好ましい。処理時間は、10~500秒間である。
 4)延伸処理は、通常、1軸延伸を施すことにより実施される。この延伸処理は、膨潤処理、染色処理、又は/及び架橋処理とともに施すこともできる。延伸方法は、湿潤式延伸方法と乾式延伸方法のいずれも採用できるが湿潤式延伸方法を用いるのが好ましい。湿潤式延伸方法で延伸処理を実施する場合には、膨潤処理において、及び/又は染色処理を施した後に、架橋処理と共に溶液中で延伸を行うことが一般的である。延伸処理は多段で行うこともできる。湿潤式延伸方法における処理温度は、30~80℃であることが好ましく、35~60℃であることがより好ましい。処理時間は、10~500秒間である。
 延伸倍率は目的に応じて適宜に設定できるが、前述の通り延伸倍率は2~8倍であることが好ましく、3~7倍であることがより好ましく、4~6倍であることが最も好ましい。該延伸倍率は、延伸前のポリビニルアルコール樹脂からなるシートの長さに基づくものであり、延伸工程以外の工程で延伸を実施した場合には、それらの工程における延伸を含めた累積の総延伸倍率のことである。
 5)洗浄処理は、水道水、蒸留水、イオン交換水、純水などから選ばれる水を主成分とする洗浄液に浸漬することにより行うことができる。該洗浄液には、必要に応じて、前記架橋剤や、前記可塑剤、界面活性剤などの添加剤を、添加して使用することも可能である。洗浄処理の処理温度は、5~50℃であることが好ましく、処理時間は、5~240秒間であることが好ましい。
 6)乾燥処理は、得られる前記シートに必要とされる水分量に応じて、適宜、乾燥時間と乾燥温度を設定すればよい。乾燥温度は、20~150℃であることが好ましく、乾燥時間は10~600秒であることが好ましい。この乾燥処理を行い、その後、水分が吸着しないように乾燥条件下(乾燥した(水分を極力低減した)不活性ガス雰囲気下)で保存しておくことが好ましい。さらに好ましくは、安定したフォトクロミック積層体を製造するためには、以下の加熱処理を使用直前に実施することが好ましい。具体的には、フォトクロミック接着層(Ac1)と直接接合する、使用直前の前記シートを、40~110℃の範囲で5秒~1800秒程度の加熱処理を実施することが好ましい。このような乾燥・加熱処理において、使用直前の該シートに含まれる水分量を2~15質量%に調製することができる。
 本発明において、使用するポリビニルアルコール樹脂からなるシートは、例えば、単純に架橋させたい場合には1)、3)、5)及び6)を、延伸させたい場合には1)、4)、5)及び6)を、延伸させながら架橋させたい場合には1)、3)、4)、5)及び6)を実施すればよい。また、偏光性を有するシートを製造する場合には1)~6)全ての工程を実施すればよい。処理工程の組み合わせは何等制限されることなく、目的に応じて適宜組み合わせればよく、必要に応じて上記以外の工程を組み合わせることも可能である。
 ポリビニルアルコール樹脂からなる第一光学シート(Aa)及び第二光学シート(Ab)は、特別な操作を行わなくとも、その外表面は、水酸基(反応性官能基)を有する表面活性領域となる。また、本発明においては、該表面改質領域の反応性官能基を水酸基以外の基とするために、下記に詳述するシランカップリング剤を含むコート組成物で該外表面をコートすることもできる。
 <第一光学シート(Aa)及び第二光学シート(Ab)の特性、表面改質領域、その他>
 第一光学シート(Aa)及び第二光学シート(Ab)は、それぞれ、無延伸シート、1軸延伸シート、2軸延伸シートの何れのシートであってもよい。さらには、これらシートの組み合わせであってもよい。また、第一光学シート(Aa)及び第二光学シート(Ab)は、同じ種類の樹脂からなるシートであってもよいし、種類が異なる樹脂からなるシートであってもよい。ただし、一般的には、同じ種類の樹脂からなるシートを使用することが好ましい。
 本発明において、第一光学シート(Aa)及び第二光学シート(Ab)は、種々の添加剤、例えば、安定剤(熱安定剤、紫外線吸収剤、酸化防止剤など)、可塑剤、滑剤、充填剤、着色剤、難燃剤、帯電防止剤などを含んでいてもよい。但し、フォトクロミック化合物を接着性組成物に使用する場合には、フォトクロミック化合物の発色を妨げないようにするために、紫外線吸収剤などの紫外線を吸収する添加剤を配合していないシートを表面側(サングラス等に積層体を使用した場合、日光が当たる外側の表面)に使用することが好ましい。
 本発明において、第一光学シート(Aa)及び第二光学シート(Ab)の好適な厚みとしては、30~1000μmが好ましく、50~600μmであることがより好ましく、100~300μmであることがさらに好ましい。また、第一光学シート(Aa)及び第二光学シート(Ab)は、異なる厚みを組み合わせて使用することも可能である。
 本発明においては、第一光学シート(Aa)及び第二光学シート(Ab)は、1軸方向もしくは2軸方向に延伸されているシートであってもよい。延伸されている場合の好適な延伸倍率としては、1軸方向、及び2軸方向のいずれにおいても、1.10~7.00倍が好ましく、1.15~6.00倍であることがより好ましく、1.20~5.00倍であることがさらに好ましい。また、第一光学シート(Aa)及び第二光学シート(Ab)は、異なる延伸倍率を組み合わせて使用することも可能である。
 なお、第一光学シート(Aa)及び第二光学シート(Ab)がポリビニルアルコール樹脂からなる場合には、延伸倍率、厚み等の物性は、<第一光学シート(Aa)及び第二光学シート(Ab);(ポリビニルアルコール樹脂)>で説明した通りであることが好ましい。
 <表面改質領域>
 本発明においては、第一光学シート(Aa)及び/または第二光学シート(Ab)と合成樹脂層(B)との間の接着強度を50N以上とするために、該第一光学シート(Aa)及び/または該第二光学シート(Ab)の外表面に、反応性官能基を有する表面改質領域が存在することが好ましい。
 該表面改質領域は、反応性官能基を有する表面改質剤を含むコート組成物を、該外表面に塗布してコート層を形成することにより、製造できる。つまり、前記コート組成物で処理された前記コート層の部分が表面改質領域となる。また、該外表面に反応性官能基を有する表面改質領域が形成できるように、様々な表面処理を該外表面に施すことにより、表面改質領域を形成できる。以下、このような処理により形成された処理層を単に「表面改質層」とする場合もある。
 なお、第一光学シート(Aa)及び第二光学シート(Ab)がポリビニルアルコール樹脂からなる場合には、該シート等は、外表面に反応性官能基(水酸基)を有する。そのため、何の処理をしなくても、表面改質領域を有するものとなる。ただし、第一光学シート(Aa)及び第二光学シート(Ab)がポリビニルアルコール樹脂からなる場合であっても、コート層を形成したり、又は表面処理を行うことにより、表面改質領域(表面改質層)を新たに形成することもできる。
 本発明において、表面改質層は、特に制限されることなく、公知の方法を採用することにより、第一光学シート(Aa)及び/または第二光学シート(Ab)の外表面上に形成することができる。具体的には、第一光学シート(Aa)及び/または第二光学シート(Ab)の外表面に対し、エッチング処理する方法及び/またはコート組成物を塗布する方法が挙げられる。なお、第一光学シート(Aa)及び第二光学シート(Ab)の外表面とは、機能性積層体(A)の最表面にあり、かつ、下記に詳述する合成樹脂層(B)が直接積層される面である。
 該表面改質層は、反応性官能基を有する層である。そして、該反応性官能基は、ヒドロキシ基、チオール基、カルボキシ基、アミノ基、スルホ基、(チオ)イソシアネート基、アリル基、(メタ)アクリル基、ビニル基、エポキシ基、オキセタン基、チオエポキシ基及びシラノール基から選ばれる官能基であることが好ましい。そして、これら反応性官能基は、表面改質層を形成する方法によって適宜決定できる。
 なお、該表面改質層が有する反応性官能基は、第一光学シート(Aa)及び第二光学シート(Ab)の材質由来のものではなく、エッチング処理する方法及び/またはコート組成物を塗布することにより、新たに形成された反応性官能基である。
 <表面改質層の形成方法;エッチング処理>
 エッチング処理する方法としては、例えばアルカリ溶液や、酸溶液などの薬液を用いた化学処理、研磨処理、コロナ放電処理、プラズマ放電処理、UVオゾン処理などの物理的な表面処理の方法を採用できる。エッチング処理する方法を採用した場合には、新たな層が積層されるというものではなく、第一光学シート(Aa)及び/又は第二光学シート(Ab)の外表面が直接、改質されて、表面改質領域(表面改質層)が形成される。
 エッチング処理により、第一光学シート(Aa)及び/または第二光学シート(Ab)の外表面に生成する反応性官能基は、赤外分光法(特に、拡散反射法)などにより、分析することで確認することが可能である。
 例えば、ポリアミド樹脂からなる光学シートの外表面をコロナ放電処理した場合には、ポリアミド結合由来のC=O伸縮振動とは異なる位置に、カルボキシル基由来のC=O伸縮振動を確認することができる。これにより、アミド結合が切断され、ポリアミド樹脂からなる光学シートの外表面に、反応性官能基としてカルボキシル基とアミノ基が生成したことが確認される。
 また、エッチング処理を行うことにより、第一光学シート(Aa)及び/または第二光学シート(Ab)の外表面の接触角を制御することも可能となるが、接合させる合成樹脂層(B)との密着性を向上させる観点から、第一光学シート(Aa)及び/または第二光学シート(Ab)の外表面の接触角を10~60°に制御することが好ましい。該外表面の接触角がこの範囲を満足することにより、後述する合成樹脂層(B)を直接接合したとしても、優れた密着性を有する機能性レンズを製造できる。密着性をより一層高めるためには、該外表面の接触角は、20~50°にすることがより好ましく、20~40°にすることが最も好ましい。
 第一光学シート(Aa)及び/または第二光学シート(Ab)がポリビニルアルコール樹脂からなる場合にも、接触角は、20~50°にすることがより好ましく、20~40°にすることが最も好ましい。
 なお、本発明における接触角は、協和界面科学(株)製DropMaster500(商標登録)を用い、水滴をシートサンプル表面に滴下した際の、水滴とシートサンプル表面とがなす角を測定し接触角とした。
 <表面改質層の形成方法;コート組成物を塗布する方法>
 コート組成物を塗布する方法としては、例えば、湿気硬化型ポリウレタン、ポリイソシアネート-ポリエステル系の二液型コート液、ポリイソシアネート-ポリエーテル系の二液型コート液、ポリイソシアネート-ポリアクリル系の二液型コート液、ポリイソシアネート-ポリウレタンエラストマー系の二液型コート液、エポキシ系コート液、エポキシ-ポリウレタン系の二液型コート液、アクリル系コート液、ポリエステル系コート液、ポリウレタンウレア系の一液型コート液、水分散性ポリウレタン系コート液、シランカップリング剤を使用したコート液等のコート液を塗布する方法を採用することが出来る。以上のコート液を使用することにより、形成された層が、ヒドロキシ基、チオール基、カルボキシ基、アミノ基、スルホ基、(チオ)イソシアネート基、アリル基、(メタ)アクリル基、ビニル基、エポキシ基、オキセタン基、チオエポキシ基及びシラノール基から選ばれる官能基を有する層とできる。このコート組成物を使用した場合には、第一光学シート(Aa)及び/または第二光学シート(Ab)の外表面上に、コート組成物でコートされた表面改質層が積層される。
 以上のコート組成物の中でも、第一光学シート(Aa)及び/または第二光学シート(Ab)の外表面への接着性に優れるという観点から、シランカップリング剤を使用したコート液を使用することがより好ましく、ラジカル重合性基を有するシランカップリング剤を含むコート組成物を使用することが最も好ましい。
 本発明のシランカップリング剤としては、例えばγ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、テトラエトキシシラン、ビニルトリメトキシシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリフェノキシシラン、ジメチルジメトキシシラン、トリメチルメトキシシラン、フェニルトリメトキシシラン、ジフェニルジメトキシシラン、シクロヘキシルメチルジメトキシシラン、1,2-ビス(トリメトキシシリル)エタン、n-プロピルトリメトキシシラン、n-ブチルトリメトキシシラン、イソブチルトリメトキシシラン、イソブチルトリエトキシシラン、n-ヘキシルトリメトキシシラン、n-ヘキシルトリエトキシシラン、n-オクチルトリエトキシシラン、n-デシルトリメトキシシラン、1,6-ビストリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、ビス[3-(ジエトキシメチルシリル)プロピル]カーボネート、トリフルオロプロピルトリメトキシシラン、パーフルオロオクチルエチルトリエトキシシラン、γ-クロロプロピルトリメトキシシラン、ビニルトリ(β-メトキシ-エトキシ)シラン、アリルトリメトキシシラン、γ-アクリロキシプロピルトリメトキシシラン、γ-アクリロキシプロピルトリエトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリエトキシシラン、γ-メタクリロキシプロピルジメトキシメチルシラン、γ-メルカプトプロピルトリアルコキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-2(アミノエチル)3-アミノプロピルトリエトキシシラン、N-2(アミノエチル)3-アミノプロピルトリメトキシシラン、N-2(アミノエチル)3-アミノプロピルメチルジメトキシシラン、p-スチリルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン等及びこれらが一部或いは全部加水分解したもの又は一部縮合したもの等が挙げられる。
 これらの中でも、第一光学シート(Aa)及び/または第二光学シート(Ab)の外表面と合成樹脂層(B)との接着強度を向上させる観点から、ラジカル重合性基を有するシランカップリング剤、例えば、ビニルトリメトキシシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、ビニルトリ(β-メトキシ-エトキシ)シラン、アリルトリメトキシシラン、γ-アクリロキシプロピルトリメトキシシラン、γ-アクリロキシプロピルトリエトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリエトキシシラン、γ-メタクリロキシプロピルジメトキシメチルシランを使用することが好ましい。
 本発明において、シランカップリング剤を使用したコート液には、シランカップリング剤の加水分解を促進するために使用される水(この水は酸水溶液の形で添加されても構わない)、アセチルアセトナート錯体、過塩素酸塩などの硬化触媒、塗工性などを調整するため公知の有機溶媒(例えば、メタノール、プロパノール、t-ブチルアルコール、アセチルアセトンなど)、更には界面活性剤等を添加して使用してもよい。特に制限されるものではないが、コート組成物(コート液)は、シランカップリング剤100質量部に対して、前記有機溶媒100~2000質量部、前記硬化触媒0.1~3.0質量部、水(酸水溶液であってもよい)10~100質量部、界面活性剤0.05~1.00質量部であるものを使用することが好ましい。
 本発明において、シランカップリング剤を使用したコート液でコートする方法は、以下の方法を採用することが好ましい。先ず、第一光学シート(Aa)及び/または第二光学シート(Ab)の外表面に、前記コート組成物(コート液)を塗工(塗布)する。次いで、30~120℃の温度で5分~3時間程度の乾燥及び硬化を行うのがよい。その中でも、35~70℃の温度で5分~60分で乾燥及び硬化することで、より密着性を向上させることが出来る。この理由は定かではないが、第一光学シート(Aa)及び/または第二光学シート(Ab)の外表面に反応性官能基を残しつつ、更に合成樹脂層(B)を形成する成分が、シランカップリング剤を使用したコート層(表面改質層)に浸透していくことにより、密着性が向上すると推定している。
 また、コート組成物を使用した場合、表面改質層の厚みは、特に制限されるものではないが、優れた効果を発揮するため、及び生産性を考慮すると、0.1~2.0μmとすることが好ましい。
 コート組成物を使用した場合の表面改質層は、接触角が10~60°となってもよいし、この範囲を外れるものであってもよい。特に、ラジカル重合性基を有するシランカップリング剤を使用した場合には、接触角は60°を超えるものであってもよい。この場合、接着強度を高める効果は、ラジカル重合性基が作用しているものと考えられる。なお、当然のことではあるが、第一光学シート(Aa)及び/または第二光学シート(Ab)がポリビニルアルコール樹脂からなる場合であっても、コート組成物を塗布して表面改質層を形成してもよい。
 <表面改質層を光学シートに形成する時期>
 第一光学シート(Aa)及び第二光学シート(Ab)の外表面に、表面改質層を形成するには、合成樹脂層(B)が形成される面に予め表面改質層を形成した第一光学シート(Aa)及び第二光学シート(Ab)を使用して機能性積層体(A)を製造すればよい。また、機能性積層体(A)の前駆体(表面に表面改質層が形成されていないもの)を製造した後、合成樹脂層(B)が形成される前に、該合成樹脂層(B)が積層される、機能性積層体(A)の最表面に前述の方法で、表面改質層を付与することもできる。
次に、本発明の機能性層(Ac)について説明する。
 (機能性層(Ac))
 本発明における機能性層(Ac)は、防眩性の機能等を付与したものである。特に制限されないが、フォトクロミック特性、偏光性またはそれら両方の特性(フォトクロミック特性及び偏光性)を有する層であることが好適である。先ず、フォトクロミック特性を有する層について説明する。
 (機能性層(Ac);フォトクロミック特性を有する層)
 本発明において、フォトクロミック特性を有する層(以下、単に「フォトクロミック層」とする場合もある。)は、公知の方法で形成することができる。中でも、第一光学シート(Aa)と第二光学シート(Ab)及び該第一光学シート(Aa)と第二光学シート(Ab)との間に必要に応じて存在する偏光層等を十分に接合するためには、該フォトクロミック層は、フォトクロミック化合物及びポリウレタンウレア樹脂を含むフォトクロミック接着層(Ac1)(以下、単に「フォトクロミック接着層(Ac1)」とする場合もある。)とすることが好ましい。
 (機能性層(Ac);フォトクロミック接着層(Ac1))
 本発明において、フォトクロミック接着層(Ac1)を形成するポリウレタンウレア樹脂は、熱硬化性ポリウレタンウレアまたは熱可塑性ポリウレタンウレアであってもよい。その中でも、フォトクロミック特性及び接着性の観点から、一部高分子量化したポリウレタンウレア樹脂を接着層に使用することが好ましい。
 (フォトクロミック接着層(Ac1);ポリウレタンウレア樹脂)
 該ポリウレタンウレア樹脂は、公知の方法で製造することができる。中でも、ポリイソシアネート化合物、ポリオール化合物及び鎖延長剤から合成されるポリマーであることが好ましい。以下、これら各成分について説明する。
 (ポリウレタンウレア樹脂;ポリイソシアネート化合物)
 該ポリウレタンウレア樹脂に使用されるポリイソシアネート化合物としては、耐候性の観点から脂肪族ポリイソシアネート化合物または脂環式ポリイソシアネート化合物を用いることが好ましい。具体的には、テトラメチレン-1,4-ジイソシアネート、ヘキサメチレン-1,6-ジイソシアネート、オクタメチレン-1,8-ジイソシアネート、2,2,4-トリメチルヘキサン-1,6-ジイソシアネートなどの脂肪族ポリイソシアネート化合物、シクロヘキサン-1,3-ジイソシアネート、シクロヘキサン-1,4-ジイソシアネート、2,4-メチルシクロヘキシルジイソシアネート、2,6-メチルシクロヘキシルジイソシアネート、イソホロンジイソシアネート、ノルボルネンジイソシアネート、4,4’-メチレンビス(シクロヘキシルイソシアネート)の異性体混合物、ヘキサヒドロトルエン-2,4-ジイソシアネート、ヘキサヒドロトルエン-2,6-ジイソシアネート、ヘキサヒドロフェニレン-1,3-ジイソシアネート、ヘキサヒドロフェニレン-1,4-ジイソシアネートなどの脂環式ポリイソシアネート化合物を挙げることができ、特にイソホロンジイソシアネート、ノルボルネンジイソシアネートを用いることが好ましい。
 (ポリウレタンウレア樹脂;ポリオール化合物)
 該ポリウレタンウレア樹脂に使用されるポリオール化合物としては、ポリエーテルポリオール、ポリカーボネートポリオール、ポリカプロラクトンポリオール、ポリエステルポリオールなどのポリオール化合物を使用することできる。中でも、耐熱性、密着性、耐候性、耐加水分解性などの観点から、ポリカーボネートポリオール、ポリカプロラクトンポリオールを使用することが好ましい。該ポリオール化合物の数平均分子量は、400~3000であることが好ましい。中でも、得られるポリウレタン接着層の耐熱性、フォトクロミック特性(発色濃度、退色速度、耐候性など)、特にフォトクロミック化合物の耐候性の観点から、数平均分子量は400~2500であることが好ましく、400~1500であることがより好ましい。
 (ポリウレタンウレア樹脂;鎖延長剤)
 該ポリウレタンウレア樹脂に使用される鎖延長剤としては、分子内に2つ以上のイソシアネート基と反応しうる官能基を有する分子量50~300の化合物である。具体的には、ジアミン化合物、トリアミン化合物、アミノアルコール化合物、アミノカルボン酸化合物、アミノチオール化合物、ジオール化合物及びトリオール化合物を使用できる。特に、密着性、耐熱性及びフォトクロミック特性の観点から、イソホロンジアミン、エチレンジアミン、ピペラジン、ビス-(4-アミノシクロヘキシル)メタン、ノルボルネンジアミン、N,N’-ジエチルエチレンジアミン、N-エチルエチレンジアミンなどのジアミン化合物を使用することが好ましい。
 (ポリウレタンウレア樹脂を構成するその他の成分)
 上述のポリイソシアネート化合物、ポリオール化合物及び鎖延長剤から得られるポリウレタンウレア樹脂の末端は、イソシアネート基であってもよいし、該イソシアネート基を反応停止剤によりキャップしていてもよい。該反応停止剤は、1つのイソシアネート基と反応しうる基と、その他、様々な機能を発揮できる基、構造を有する化合物を使用することができる。具体的には、4-アミノ-1,2,2,6,6-ペンタメチルピペリジンのようなイソシアネート基と反応する基を有する化合物を反応停止剤として使用することができる。中でも、該反応停止剤で末端を停止したウレタンウレア樹脂を使用することが好ましい。
 (ポリウレタンウレア樹脂の好適な特性及び製造方法)
 該ポリウレタンウレア樹脂は、前記成分を用い、公知の方法で製造することができる。具体的には、所謂ワンショット法又はプレポリマー法を採用することができる。例えば、ポリイソシアネート化合物とポリオール化合物とを反応させ、次いで、鎖延長剤を反応させ、必要に応じて、反応停止剤を反応させる方法を採用することができる。これら成分の反応条件は、公知の条件を採用することができる。精製方法等も、公知の方法を採用することができる。
 このようにして得られるポリウレタンウレア樹脂は、ゲルパーミエーションクロマトグラフィー(GPC)で測定した数平均分子量が5千~10万、より好ましくは8千~5万であり、特に好ましくは1万~4万の範囲であることが好ましい。また、ウレア結合部分が、ポリウレタンウレア樹脂 1g当たり0.02~0.10g含まれることが好ましい。このようなポリウレタンウレア樹脂は、具体的に、特開2012-167245号、国際公開WO2012/018070号パンフレット、特開2012-207198号公報、特開2012-052091号公報、特開2016-147922号公報等に記載されたポリウレタンウレア樹脂を使用することが好ましい。
 このようにして得られたポリウレタンウレア樹脂は、次に説明するフォトクロミック化合物と混合されて、フォトクロミック化合物を含むフォトクロミック接着層(Ac1)を形成する。この際、粘度調節のために、テトラヒドロフラン、ジエチルケトン、t-ブチルアルコール、イソプロピルアルコール、プロピレングリコールモノメチルエーテルなどの有機溶媒を使用することができる。
 (フォトクロミック接着層(Ac1)の好適な配合成分)
 本発明において、該フォトクロミック層は、前記第一光学シート(Aa)及び第二光学シート(Ab)、更には後述する偏光フィルム(Ac2)との密着性をより安定させるために、下記で詳述するポリイソシアネート化合物(I)(以下、単に「(I)成分」とする場合もある。)を配合させて、形成することが好ましい。すなわち、フォトクロミック接着層(Ac1)は、前記ポリウレタンウレア樹脂、該ポリイソシアネート化合物及びフォトクロミック化合物を含む組成物から形成することが好ましい。
 該ポリイソシアネート化合物(I)としては、ポリウレタンウレア樹脂で説明した前述のポリイソシアネート化合物も何ら制限なく使用できる。その中でも特に、分子内に少なくとも2つのイソシアネート基を有し、且つ2級炭素に結合したイソシアネート基を有するポリイソシアネート化合物(I1)(以下、単に「(I1)成分」とする場合もある。)及び分子内に少なくとも2つのイソシアネート基を有し、分子内の炭素数が4~40である、前記(I1)成分以外のポリイソシアネート化合物(I2)(以下、単に「(I2)成分」とする場合もある。)を特定量含むことが好ましい。
 前記(I1)成分を具体的に例示すれば、4,4’-メチレンビス(シクロヘキシルイソシアネート)の異性体混合物、シクロブタン-1,3-ジイソシアネート、シクロヘキサン-1,3-ジイソシアネート、シクロヘキサン-1,4-ジイソシアネート、ヘキサヒドロトルエン-2,4-ジイソシアネート、ヘキサヒドロトルエン-2,6-ジイソシアネート、ヘキサヒドロフェニレン-1,3-ジイソシアネート、ヘキサヒドロフェニレン-1,4-ジイソシアネート及びイソホロンジイソシアネートの3量体(イソシアヌレート化合物)などが挙げられる。これらは、単独で使用してもよく、2種類以上を併用してもよい。中でも、4,4’-メチレンビス(シクロヘキシルイソシアネート)の異性体混合物を使用することが好ましい。
 前記(I2)成分を具体的に例示すれば、ヘキサメチレンジイソシアネート、ヘキサメチレンジイソシアネートのビウレット化合物、ヘキサメチレンジイソシアネートのイソシアヌレート化合物、ヘキサメチレンジイソシアネートのアダクト化合物などが挙げられる。これらは、単独で使用してもよく、2種類以上を併用してもよい。中でも、ヘキサメチレンジイソシアネートのビウレット化合物及びヘキサメチレンジイソシアネートのイソシアヌレート化合物からなる群より選ばれるポリイソシアネート化合物を使用することが好ましい。
 本発明において、(I)成分の配合割合は、得られる接着層の接着性及び耐熱性の観点から、接着樹脂成分100質量部に対して4.0~20質量部であることが好ましい。(I)成分の配合量がこの範囲を満足することにより、得られる接着層が優れた効果を発揮する。上記配合量が少なすぎる場合には、十分な接着性及び耐熱性の向上効果が得られない。また、多すぎる場合には、接着層の白濁、接着性の低下等が起こる傾向がある。この(I)成分は、ポリウレタンウレア樹脂のウレア結合部と作用して、該樹脂を高分子量化できるものと考えられる。なお、前記配合量は、(I1)成分及び(I2)成分の両方を使用する場合には、それらの合計量を基準とする。(I1)成分と(I2)成分との質量比は、接着する目的物に応じて適宜決定すればよい。中でも、ポリアミド樹脂からなる光学シートを接合する場合には、前記(I1)成分100質量部としたとき、前記(I2)成分を10~500質量部含むことが好ましく、さらに10~250質量部含むことが好ましい。この配合を満足することにより、特に、脂環族ポリアミド樹脂からなる光学シートの密着性を高めることができる。
 (フォトクロミック接着層;フォトクロミック化合物)
 次に、フォトクロミック特性を有する層に含まれるフォトクロミック化合物について説明する。
 本発明で使用されるフォトクロミック化合物としては、クロメン化合物、フルギミド化合物、スピロオキサジン化合物、スピロピラン化合物などの公知のフォトクロミック化合物を何ら制限なく使用することが出来る。これらは、単独使用でもよく、2種類以上を併用しても良い。
 上記のフルギミド化合物、スピロオキサジン化合物、スピロピラン化合物及びクロメン化合物としては、例えば特開平2-28154号公報、特開昭62-288830号公報、WO94/22850号パンフレット、WO96/14596号パンフレットなどに記載されている化合物を挙げることができる。
 これらのフォトクロミック化合物の中でも、発色濃度、初期着色、耐久性、退色速度などのフォトクロミック特性の観点から、インデノ(2,1-f)ナフト(1,2-b)ピラン骨格を有するクロメン化合物を1種類以上用いることがより好ましい。これらクロメン化合物中でもその分子量が540以上の化合物は、発色濃度及び退色速度に特に優れるためさらに好適である。
 また、本発明のフォトクロミック化合物としては、分子量が300以上のポリシロキサン鎖、ポリオキシアルキレン鎖などの分子鎖を置換基として含有するものも、特に制限無く公知の化合物の中から、任意のものを適宜選択し使用できる。このようなフォトクロミック化合物としては、例えば、国際公開第WO2000/015630号、国際公開第WO2004/041961号、国際公開第WO2005/105874号、国際公開第WO2005/105875号、国際公開第WO2006/022825号、国際公開第WO2009/146509号、国際公開第WO2010/20770号、国際公開第WO2012/121414号、国際公開第WO2012/149599号、国際公開第WO2012/162725号、国際公開第WO2012/176918号、国際公開第WO2013/078086号等に記載される、前記の様な分子鎖を有するフォトクロミック化合物が使用できる。
 本発明において、特に好適に使用できるフォトクロミック化合物を具体的に例示すると、以下のものが挙げられる。
Figure JPOXMLDOC01-appb-C000007
 本発明において、フォトクロミック化合物の配合量は、フォトクロミック特性の観点から、フォトクロミック層を形成する樹脂成分(接着性樹脂成分)100質量部に対して、0.1~20.0質量部とすることが好ましい。上記配合量が少なすぎる場合には、十分な発色濃度や耐久性が得られない傾向がある。一方、多すぎる場合には、フォトクロミック化合物の種類にもよるが、フォトクロミック組成物に溶解しにくくなり、組成物の均一性が低下する傾向があるばかりでなく、接着力(密着力)が低下する傾向もある。発色濃度や耐久性といったフォトクロミック特性を維持したまま、第一光学シート(Aa)及び第二光学シート(Ab)等の接着性を十分に保持するためには、フォトクロミック化合物の添加量は、接着性樹脂の樹脂成分合計量100質量部に対して、0.5~10.0質量部とすることがより好ましく、1.0~7.0質量部とすることがさらに好ましい。
 本発明において、機能性層(Ac)として、フォトクロミック層(接着層を含む)を使用する場合、その厚さは特に制限されるものではないが、1~100μmとすることが好ましく、20~50μmとすることがより好ましい。この範囲を満足することにより、得られる機能性積層体(A)及び機能性レンズが優れたフォトクロミック特性を発揮する。
 また、本発明においては、第一光学シート(Aa)及び第二光学シート(Ab)がポリビニルアルコール樹脂からなる場合には、第一光学シート(Aa)及び第二光学シート(Ab)が前記フォトクロミック接着層(Ac1)で直接接合されてなることを特徴とする。
 以上のような構成により、フォトクロミック層、特にフォトクロミック接着層(Ac1)を形成することが好ましい。次に、偏光性を有する層について説明する。
 (機能性層(Ac);偏光性を有する層)
 本発明において、機能性層(Ac)は、偏光性を有する層を有することもできる。偏光性を有する層を形成する方法は、特に制限されるものではなく、市販の偏光フィルムを利用することができる。
 偏光フィルム(Ac2)の厚みは、10~100μmであることが好ましく、さらに20~100μmであることが好ましい。偏光フィルムは、ヨウ素や二色性染料などの二色性物質で染色されたポリビニルアルコール樹脂が延伸されてなるものである。該ポリビニルアルコール樹脂については、<第一光学シート(Aa)及び第二光学シート(Ab);(ポリビニルアルコール樹脂)>で説明したものが使用できる。また、第一光学シート(Aa)及び第二光学シート(Ab)がポリビニルアルコール樹脂からなる場合、少なくとも一方の光学シートを、該偏光フィルム(Ac2)とすることもできる。
 本発明において、偏光フィルムを使用する場合には、フォトクロミック接着層(Ac1)で説明したポリウレタンウレア樹脂及び前記(I)成分を含む接着性組成物からなる接着層を該偏光フィルムの両面に配置することが好ましい。このような態様とすることにより、ポリビニルアルコール樹脂からなる偏光フィルムと、その他の光学シート(第一光学シート(Aa)、又は第二光学シート(Ab))とを該接着層で強固に接合できる。
 以上のことから明らかな通り、第一光学シート(Aa)及び第二光学シート(Ab)がポリビニルアルコール樹脂からなり、何れか一方の光学シートを偏光フィルムとした場合には、他素材の光学シートを接合する必要はない。そのため、この場合には、ポリビニルアルコール樹脂からなる第一光学シート(Aa)及び第二光学シート(Ab)(一方は、偏光フィルムであってもよい)は、フォトクロミック接着層(Ac1)で直接接合できる。
 また、該二色性染料を含む偏光フィルムは、特に制限されるものではないが、本発明の接着性樹脂を使用すれば、視感透過率が10~60%、偏光度が70.0~99.9である該偏光フィルムであっても、強固に接合することができる。
 (偏光フィルムのその他の態様、処理方法)
 該偏光フィルムは、その機能、接着性を高めるためには、セルローストリアセテートフィルムが両面に積層されているものであってもよい。該セルローストリアセテートフィルムは、その厚さは20~200μmであることが好ましく、20~100μmであることがより好ましい。ただし、該セルローストリアセテートフィルムを積層する場合には、第一光学シート(Aa)及び第二光学シート(Ab)は、ポリビニルアルコール樹脂以外の材質からなることが好ましい。第一光学シート(Aa)及び第二光学シート(Ab)がポリビニルアルコール樹脂からなる場合には、該セルローストリアセテートフィルムを設ける必要はない。
 また、該偏光フィルムは、偏光フィルムに含まれる水分量の調整や、偏光シートの寸法安定性のために、本発明の積層体を作製する前に、40~100℃の範囲で5秒~30分程度の加熱処理を実施したものを使用することもできる。
 <偏光フィルム(Ac2)を使用する場合の好適な態様 接着層等の積層>
 本発明において、機能性積層体(A)として、前記偏光フィルム(Ac2)を使用する場合には、前記偏光フィルム(Ac2)の両表面に接着層を形成し、その接着層と第一光学シート(Aa)と第二光学シート(Ab)とを接合することにより、該偏光フィルム(Ac2)の両表面が接着層を介して第一光学シート(Aa)及び第二光学シート(Ab)と接合してなる機能性積層体(A)とすることができる。
 また、第一光学シート(Aa)及び第二光学シート(Ab)の表面に接着層を設け、その接着層で前記偏光フィルム(Ac2)を挟み込むようにすることで、該偏光フィルム(Ac2)の両表面が接着層を介して第一光学シート(Aa)及び第二光学シート(Ab)と接合してなる機能性積層体(A)とすることができる。
 偏光フィルム(Ac2)上に存在する該接着層は、特に制限されるものではないが、フォトクロミック接着層(Ac1)で説明した前記ポリウレタンウレア樹脂及び(I)成分を含む接着性組成物からなることが好ましい。より具体的には、前記ポリウレタンウレア樹脂100質量部に対して、4.0~20質量部の(I)成分を含むことが好ましい。そして、前記(I)成分は、前記(I1)成分100質量部としたとき、前記(I2)成分を10~500質量部含むことが好ましく、さらに10~250質量部含むことが好ましい。このような組成を満足する接着性組成物からなる接着層を使用することにより、より一層密着性を高めることができる。
 本発明において、偏光フィルムの両表面に存在する接着層の厚みは、特に制限されるものではないが、1~100μmであることが好ましく、5~50μmであることがより好ましい。
 また、上記の説明は、偏光フィルム(Ac2)の両面が接着層を介して、第一光学シート(Aa)及び第二光学シート(Ab)と接合する場合であるが、フォトクロミック接着層(Ac1)をさらに設けた場合には、以下の対応とすることができる。すなわち、第一光学シート(Aa)/フォトクロミック接着層(Ac1)/偏光フィルム(Ac2)/接着層/第二光学シート(Ab)がこの順で積層された機能性積層体(A)とすることもできる。また、フォトクロミック接着層(Ac1)と偏光フィルム(Ac2)との間に、接着層を設けることもできる。ただし、偏光フィルム(Ac2)がポリビニルアルコール樹脂からなる場合には、該接着層は不要である。
 また、第一光学シート(Aa)及び第二光学シート(Ab)がポリビニルアルコール樹脂からなる場合、偏光性を有してもよい、ポリビニルアルコール第一光学シート(Aa)/フォトクロミック接着層(Ac1)/偏光フィルム(Ac)(ポリビニルアルコール樹脂からなる偏光性を有する第二光学シート)の積層順となることが好ましい。
 (機能性層(Ac);その他の添加剤)
 本発明において、機能性層(Ac)には、フォトクロミック特性及び偏光性を付与する成分以外に、界面活性剤、ヒンダードアミン光安定剤、ヒンダードフェノール酸化防止剤、フェノール系ラジカル補足剤、イオウ系酸化防止剤、リン系酸化防止剤、紫外線安定剤、紫外線吸収剤、離型剤、着色防止剤、帯電防止剤、蛍光染料、染料、顔料、香料、可塑剤等の添加剤を配合することもできる。これら添加剤としては、公知の化合物が何ら制限なく使用され、これらは2種以上を混合して使用してもよい。これら添加剤は、フォトクロミック層に配合することもできるし、偏光フィルムに配合することもできるし、接着層に配合することもできる。上記添加剤の添加量は、本発明の効果を阻害しない範囲で配合することができる。具体的には、各層を形成する構成成分(例えば、ポリウレタンウレア樹脂)100質量部に対して、添加剤の合計量が0.001~10質量部の範囲となることが好ましい。
 添加剤の中でも、550~600nmの範囲に吸収ピークを有する色素は、防眩性を向上させる観点から有用であり、該色素としては、ニトロ系化合物、アゾ系化合物、アントラキノン系化合物、スレン系化合物、ポルフィリン系化合物、希土類金属化合物などが挙げられる。その中でも、防眩性と視認性の兼ね合いから、ポルフィリン系化合物、希土類金属化合物が好ましい。更には、プラスチック材料中への分散安定性の観点から、ポルフィリン系化合物が最も好ましい。
 該希土類金属化合物としては、アクアヒドロキシ(1-フェニル1,3-ブタンジオナト)ネオジム、アクアヒドロキシ(フェナシルフェニルケトナト)ネオジム、アクアヒドロキシ(1-フェニル-2-メチル-1,3-ブタンジオナト)ネオジム、アクアヒドロキシ(1-チオフェニル-1,3-ブタンジオナト)ネオジム、アクアヒドロキシ(1-フェニル1,3-ブタンジオナト)エルビウム、アクアヒドロキシ(1-フェニル1,3-ブタンジオナト)ホロニウムなどの錯体を挙げることできる。
 該ポルフィリン系化合物としては、ポルフィリン骨格に種々の置換基を有していても良い化合物であり、例えば、特開平5-194616号公報、特開平5-195446号公報、特開2003-105218号公報、特開2008-134618号公報、特開2013-61653号公報、特開2015-180942号公報、国際公開第WO2012/020570号パンフレット、日本国特許第5626081号、日本国特許第5619472号、日本国特許第第5778109号等に記載されている化合物を好適に使用することができる。
 以上のような添加剤、色素は、特に制限されるものではないが、フォトクロミック接着層(Ac1)中に配合されることが好ましい。
 <機能性層(Ac)の好適な製造方法>
 本発明においては、機能性層(Ac)は、第一光学シート(Aa)及び第二光学シート(Ab)を接合するため、接着層となることが好ましい。具体的には、前記フォトクロミック接着層(Ac1)、偏光フィルム(Ac2)を接着するための接着層を備えた積層体及びそれらを積層したものを機能性層(Ac)とすることが好ましい。次に、これらフォトクロミック接着層(Ac1)、偏光フィルム(Ac2)を接着するための接着層の製造方法について説明する。
 本発明において、フォトクロミック接着層(Ac1)及び偏光フィルム(Ac2)を接着するための接着層は、前記ポリウレタンウレア樹脂及び必要に応じて配合される前記(I)成分、さらにはその他の添加成分を含む接着性組成物から形成されることが好ましい。各成分を混合する順序は、特に制限されるものではない。以下の説明において、フォトクロミック化合物を含む接着性組成物から形成される接着層は、フォトクロミック接着層(Ac1)である。また、該フォトクロミック化合物を含まない接着性組成物から形成される接着層は、偏光フィルム(Ac2)を接着するための接着層に該当する。
 本発明において、接着性組成物として有機溶媒を使用しない場合、各成分を溶融混練して接着性組成物としペレット化することも可能であり、そのままシート成型することも可能である(この場合、シートがそのまま接着層となる)。また、有機溶媒を使用する場合には、各成分を有機溶媒に溶かすことで接着性組成物を得ることができる。
 <接着性組成物からなる接着層及び該接着層の形成方法>
 次に、フォトクロミック化合物を含む接着性組成物から形成される接着層(フォトクロミック接着層(Ac1))により第一光学シート(Aa)と第二光学シート(Ab)とを接合する場合を例にして説明する。
 以下の方法でフォトクロミック接着層(Ac1)を介して第一光学シート(Aa)及び第二光学シート(Ab)が接合された機能性積層体(A)を製造できる。例えば、接着性組成物(フォトクロミック化合物を含む)を混錬し、フォトクロミック接着層(Ac1)となる、均一な状態の接着性シートを一旦作製した後、該接着性シートを第一光学シート(Aa)及び第二光学シート(Ab)の間に配置して、該第一光学シート(Aa)及び第二光学シート(Ab)同士を圧接することにより、接着層(フォトクロミック接着層(Ac1))を介して第一光学シート(Aa)及び第二光学シート(Ab)が接合された機能性積層体(A)を製造できる。
 また、有機溶媒を含む接着性組成物(フォトクロミック化合物を含む)を使用した場合には、第一光学シート(Aa)上に、一旦、接着性組成物(フォトクロミック化合物を含む)を塗布して塗布層を形成し、該塗布層から有機溶媒を除去して接着層(フォトクロミック接着層(Ac1))とし、該接着層(フォトクロミック接着層(Ac1))上に第二光学シート(Ab)を配置して圧接することにより、機能性積層体(A)を得ることもできる。
 機能性積層体(A)を製造する方法は、特に制限されるものではないが、中でも、平滑性に優れた積層体を得るためには、以下の方法を採用することが好ましい。具体的には、先ず、平滑な基材上に、有機溶媒を含む接着性組成物(フォトクロミック接着層(Ac1))を一旦塗布して塗布層を形成する。
 次いで、該塗布層から有機溶媒を除去し、少なくともフォトクロミック接着層(Ac1)となる接着性シートを準備する。この時、有機溶媒を除去するための乾燥は、室温(23℃)以上100℃以下の温度で実施されることが好ましい。
 さらに、接合しようとする第一光学シート(Aa)及び第二光学シート(Ab)の間に、フォトクロミック接着層(Ac1)となる該接着性シートを介在させて、該第一光学シート(Aa)及び第二光学シート(Ab)を接合することにより、接着層((フォトクロミック接着層(Ac1))を有する機能性積層体(A)を製造することができる。接合しようとする第一光学シート(Aa)及び第二光学シート(Ab)がポリビニルアルコール樹脂からなる場合には、この積層順で十分強固な機能性積層体(A)が得られる。
 本発明において、得られる機能性積層体(A)の密着性を、より強固に安定化させるためには、接着層((フォトクロミック接着層(Ac1))に前記ウレタンウレア樹脂及び(I)成分を採用し、以下の手順で処理することがより好ましい。具体的には、フォトクロミック接着層(Ac1)となる接着性シートで第一光学シート(Aa)及び第二光学シート(Ab)を接合したばかりの機能性積層シートを20℃以上60℃以下の温度で4時間以上静置し、脱気することが好ましい。静置する時間の上限は、機能性積層シートの状態を見て決めればよいが、50時間もあれば十分である。また、静置に際しては、常圧で静置することも可能であるし、真空下で静置することも可能である(以下、この工程を脱気工程とする場合もある。)。
 次いで、この静置した機能性積層シートを60℃以上130℃以下の温度下、30分以上3時間以下放置しておくことが好ましい(以下、加熱工程とする場合もある。)。この加熱処理を実施することにより、フォトクロミック接着層(Ac1)となる接着性シートと第一光学シート(Aa)及び第二光学シート(Ab)との界面で該接着性シートが軟化・溶融し、密着性が高まるものと考えられる。加えて、(I)成分のイソシアネート基の一部が、反応に供されるものと考える。その結果、このイソシアネート基が接着層中のポリウレタンウレア樹脂のウレタン結合又はウレア結合に結合し、アロファネート結合又はビュレット結合を形成することを推進するものと考えられる。そして、この加熱処理して得られた機能性積層シートは、その状態が非常に安定なものとなる。
 次いで、加熱工程で処理した機能性積層シートを室温(23℃)以上100℃以下の温度範囲及び30~100%RHの湿度下で加湿処理することが好ましい(以下、この工程を加湿工程とする場合もある)。この加湿処理を実施することにより、(I)成分によるポリウレタンウレア樹脂どうしの橋架け構造を完結させるとともに、機能性積層シート中に存在する(I)成分由来のイソシアネート基を完全に消失させることができ、接着性をより安定化させることができる。
 さらには、加湿工程後の機能性積層シートに、常圧下、もしくは真空下において、40℃以上130℃以下の温度範囲で静置することにより、機能性積層シート中に存在する過剰の水分を除去することが好ましい(以下、この工程を水分除去工程とする場合もある)。これにより機能性シートを機能性積層体(A)とすることが好ましい。
 以上の通り、本発明において、機能性積層体(A)を製造する場合には、接着性シート((フォトクロミック接着層(Ac1))を介して第一光学シート(Aa)及び第二光学シート(Ab)を圧着して接合した機能性積層シートを作製後、接着性シートを完全な接着層とするために、前記1)脱気工程、2)加熱工程、3)加湿工程処理及び4)水分除去工程の順に後処理を実施することが好ましい。
 なお、以上の方法は、フォトクロミック接着層(Ac1)を介して第一光学シート(Aa)及び第二光学シート(Ab)が接合された機能性積層体(A)の製造方法である。以上のような条件を参考にして、偏光フィルム(Ac2)を接着するための接着層を作製することもできる。例えば、上記条件を利用して、偏光フィルム(Ac2)の両面に、好ましくは、前記ポリウレタンウレア樹脂及び前記(I)成分を含む接着性組成物からなる接着層を形成する。そして、この接着層を両面に有する偏光フィルム(Ac2)を、接着層を介して、第一光学シート(Aa)と第二光学シート(Ab)とを接合することにより、機能性積層体(A)を製造できる。また、第一光学シート(Aa)と第二光学シート(Ab)との表面に該接着層を積層し、その接着層と偏光フィルム(Ac2)とを接合させることもできる。また、該機能性積層体(A)には、必要に応じて前記フォトクロミック接着層(Ac1)を第一光学シート(Aa)と第二光学シート(Ab)との間に配置し、第一光学シート(Aa)/フォトクロミック接着層(Ac1)/偏光フィルム(Ac2)/接着層/第二光学シート(Ab)とからなる機能性積層体(A)を製造することができる。以上のような場合には、偏光フィルム(Ac2)はポリビニルアルコール樹脂からなり、第一光学シート(Aa)及び第二光学シート(Ab)は、ポリビニルアルコール樹脂以外の材質からなることが好ましい。
 以上の方法において、合成樹脂層(B)を形成する面に表面改質層を有する第一光学シート(Aa)及び第二光学シート(Ab)を使用した場合には、そのまま本発明の機能性積層体(A)となる。第一光学シート(Aa)及び第二光学シート(Ab)に表面改質層を形成していない場合には、以上の方法に従い機能性積層体(A)の前駆体を製造し、該前駆体の合成樹脂層(B)を形成する面に表面改質層を形成することにより、機能性積層体(A)とすることができる。
次に、機能性積層体(A)の好適な層構成及びその製造方法について説明する。
 (機能性積層体(A)の好適な層構成及びその製造方法>
 図1~図3に本発明における好適な機能性積層体(A)1の積層構造を示した。
 <図1の説明>
 図1は、フォトクロミック化合物を含む接着性組成物を使用した場合の一例である。第一光学シート(Aa) 2、フォトクロミック特性を有する接着層(フォトクロミック接着層(Ac1)) 3、第二光学シート(Ab)4からなる機能性積層体(A) 1である。第一光学シート(Aa) 2の外表面 7及び第二光学シート(Ab)4の外表面 7’の少なくとも一方に表面改質領域 9が形成され、該表面改質領域 9上に合成樹脂層(B) 8が形成される。なお、図1には表面改質領域 9は明記していない。
 図1に記載の機能性積層体(A)1は、以下の方法で製造することが好ましい。先ず、フォトクロミック化合物、有機溶媒、前記ポリウレタンウレア樹脂、必要に応じて配合される前記(I)成分及びその他の添加剤を含む接着性組成物を平滑な基材上に塗布する。次いで、有機溶媒を除去して、フォトクロミック接着層(Ac1) 3となる平滑な表面を有する接着性シートを作製する。次いで、対向する第一光学シート(Aa) 2及び第二光学シート(Ab) 4の間に該接着性シートを配置しながら、該第一光学シート(Aa)2及び第二光学シート(Ab) 4の外表面からラミネートロールで両方のシートを圧接する。こうすることにより、接着性シートが接着層 3(フォトクロミック接着層(Ac1))となり、図1に示す層構造のフォトクロミック特性を有する機能性積層体(A)1を製造することができる。なお、この場合、フォトクロミック接着層(Ac1) 3と、該第一光学シート(Aa) 2及び第二光学シート(Ab) 4との間に、フォトクロミック特性を有さない接着層 3’(ただし、図示はしていない)を形成することもできる。
 中でも、図1のような層構成を有する場合には、以下の組み合わせになることが好ましい。すなわち、第一光学シート(Aa) 2及び第二光学シート(Ab) 4がポリビニルアルコール樹脂からなり、これら光学シートがフォトクロミック接着層(Ac1) 3で直接接合されている場合である。第一光学シート(Aa) 2及び第二光学シート(Ab) 4は、ポリビニルアルコール樹脂からなる偏光フィルム(Ac)であってもよい。また、好ましい態様としては、第一光学シート(Aa)がポリビニルアルコール樹脂からなり、第二光学シート(Ab)がポリビニルアルコール樹脂からなる偏光フィルム(Ac2)となる場合である(図5参照)。
 <第一光学シート(Aa)及び第二光学シート(Ab)がポリビニルアルコール樹脂からなる機能性積層体(A)を使用する場合の好適な取扱い方法>
 第一光学シート(Aa) 2及び第二光学シート(Ab) 4がポリビニルアルコール樹脂からなり、それら光学シート同士がフォトクロミック接着層(Ac1) 3で接合されている機能性積層体(A) 1(例えば、図5の機能性積層体(A))を使用する場合には、機能性積層体(A) 1の水分量を調整した後、下記に詳述する合成樹脂層(B) 8を形成して機能性レンズ 6とすることが好ましい。すなわち、この場合には、機能性積層体(A) 1の水分量を、0.00~0.20質量%とした後、合成樹脂層(B) 8を形成することが好ましい。図6に図5の機能性積層体(A) 1を使用して得られた機能性レンズ 6を示す。
 この水分は、機能性積層体(A) 1における、ポリビニルアルコール樹脂からなる光学シートが主に含んでいるものと考えられる。使用するレンズ形成用モノマー組成物よっては、機能性積層体(A) 1の表面に存在する水分量が影響を与え、気泡等の不良が発生する場合がある。そのため、特に、ポリビニルアルコール樹脂からなる光学シート上に、直接、合成樹脂層(B) 8が形成される場合に、前記水分量を満足する効果が発揮される。そのため、機能性積層体(A) 1の水分量は、0.00~0.20質量%とすることが好ましい。該水分量は、さらに0.00~0.15質量%であることが好ましく、機能性積層体(A) 1自体の生産性を考慮すると、0.00~0.10質量%であることがより好ましい。なお、この水分量は、下記の実施例に詳述する方法で測定した値であり、乾燥により重量変化がなくなった機能性積層体(A) 1と比較して求めた水分量である。
 なお、この場合、何の処理を行わなくとも、機能性積層体(A) 1の外表面には、ポリビニルアルコール樹脂に由来するヒドロキシ基(水酸基)が存在する。そのため、下記に詳述する合成樹脂層(B) 8と強固に密着するものと考えられる。ただし、この場合であっても、合成樹脂層(B) 8との密着性をより強固なものとするために、エッチング処理してより一層極性を高めた表面改質領域 9としてもよい。または、コート組成物を塗布して表面改質領域 9を形成できる。
 <図2の説明>
 図2には、偏光フィルム(Ac2) 5を使用した場合の積層構造の一例を示した。第一光学シート(Aa) 2、接着層 3’、偏光フィルム(Ac2) 5、接着層 3’、第二光学シート(Ab) 4からなる機能性積層体(A)1である。接着層 3’/偏光フィルム 5/接着層 3’からなる層構成は、機能性層(Ac)に該当する。第一光学シート(Aa) 2の外表面 7及び第二光学シート(Ab)4の外表面 7’の少なくとも一方に表面改質領域 9が形成され、該表面改質領域 9の外表面に合成樹脂層(B) 8が形成される。なお、図2には表面改質領域 9は明記していない。
 この場合、第一光学シート(Aa) 2及び第二光学シート(Ab) 4は、ポリビニルアルコール樹脂以外の素材からなることが好ましい。また、偏光フィルム(Ac2) 5は、ポリビニルアルコール樹脂からなることが好ましい。
 図2に記載の機能性積層体(A) 1は、以下の方法で製造することが好ましい。前記と同じ方法でフォトクロミック特性を有さない接着性シートを2枚準備する。なお、この2枚の接着性シートは、偏光フィルム(Ac2) 5の両面に存在する接着層 3’となる。偏光フィルム 5の両表面に該接着性シートを積層する。次いで、該接着性シートを両表面に有する偏光フィルム(Ac2) 5の両外側に、それぞれ、第一光学シート(Aa) 2及び第二光学シート(Ab) 4を配置して、第一光学シート(Aa) 2及び第二光学シート(Ab) 4の両方の外表面からラミネートロールで両シートを圧接する。こうすることにより、接着性シートが接着層 3’となり、図2に示す層構造の偏光性を有する機能性積層体(A)1を製造することができる。なお、接着層 3’は、偏光フィルム(Ac2) 5の両面でなくとも、第一光学シート(Aa) 2及び第二光学シート(Ab) 4上に形成されることもできる。
 <図3の説明>
 図3には、フォトクロミック特性を有する接着層 3(フォトクロミック接着層(Ac1) 3)と、偏光フィルム(Ac2) 5とを組み合わせた場合の積層構造を有する機能性積層体(A) 1の一例を示した。第一光学シート(Aa) 2、フォトクロミック特性を有する接着層 3(フォトクロミック接着層(Ac1) 3)、偏光フィルム(Ac2) 5、接着層 3’、第二光学シート(Ab)4からなる機能性積層体(A)1である。第一光学シート(Aa) 2の外表面 7及び第二光学シート(Ab)4の外表面 7’の少なくとも一方に、表面改質領域 9が形成され、さらに表面改質領域 9上に合成樹脂層(B) 8が形成される。なお、図3には、表明改質領域 9は明記していない。
 この場合、第一光学シート(Aa) 2及び第二光学シート(Ab) 4は、ポリビニルアルコール樹脂以外の素材からなることが好ましい。また、偏光フィルム(Ac2) 5は、ポリビニルアルコール樹脂からなることが好ましい。
 図3に記載の機能性積層体(A) 1は、以下の方法で製造することが好ましい。すなわち、図2に記載の機能性積層体(A) 1を製造する方法において、偏光フィルム5の一方の表面に積層する接着性シートにフォトクロミック化合物が含まれるようにして、図2に記載の機能性積層体(A) 1と同じ製造方法を採用すれば、図3に記載のフォトクロミック特性及び偏光性を有する機能性積層体(A) 1を得ることができる。なお、図示はしていないが、当然、フォトクロミック接着層(Ac1) 3と偏光フィルム(Ac2) 5との間に、接着層3’を介在させることも可能である。
 なお、以上の図1~図3において、合成樹層層(B) 8を形成する面に、表面改質層を付与した第一光学シート(Aa) 2及び第二光学シート(Ab) 4を採用するのが好ましい。表面改質領域 9を付与する方法は、前述のとおりである。
 なお、当然のことながら、以上の図1~図3においても、合成樹脂層(B) 8を形成する面に表面改質領域 9が形成された第一光学シート(Aa) 2及び第二光学シート(Ab) 4を使用した場合には、そのまま本発明の機能性積層体(A) 1となる。また、第一光学シート(Aa) 2及び第二光学シート(Ab) 4に表面改質層 9を形成していない場合には、以上の方法に従い機能性積層体(A) 1の前駆体を製造し、該前駆体の合成樹脂層(B) 8を形成する面に表面改質領域 9を形成することにより、機能性積層体(A) 1とすることができる。前駆体を処理する方法は、前記の通りである。
 <その他の特徴>
 また、本発明において、機能性積層体(A)の最外層(第一光学シート(Aa)及び第二光学シート(Ab)の表面)には、キズや汚れ、或いは異物の付着を防ぐために、一般的なプラスチック樹脂製フィルム、例えばポリエチレンやポリプロピレン等からなるポリオレフィン系フィルムを、保護フィルムとして貼付することもできる。この保護フィルムを最外層に貼付することにより、得られる積層体を熱曲げ加工や型抜き加工を行う際、保管する際及び輸送する際において、表面保護が可能となる。このような保護フィルムは、該積層体を眼鏡レンズ等の最終製品として使用する際には、引き剥がされる。なお、この保護フィルムは、機能性積層体(A)の最外層となる第一光学シート(Aa)及び第二光学シート(Ab)の表面に、接着性シートを積層する前から貼付していてもよいし、機能性積層体(A)を製造した後、必要に応じて該表面に貼付することもできる。
 なお、保護フィルムを使用する場合には、該保護フィルムの粘着剤が第一光学シート(Aa)及び第二光学シート(Ab)の表面に残存する可能性があるため、合成樹脂層(B)を積層する直前に、機能性積層体(A)の表面を洗浄後、本発明の表面改質領域を付与することが好ましい。
 <機能性積層体(A)を用いた機能性レンズ>
 本発明において、該機能性積層体(A)は、少なくとも一方の表面上に、合成樹脂層(B)を積層して一体化することにより、機能性レンズとすることができる。この合成樹脂層(B)は、第一光学シート(Aa)及び/または第二光学シート(Ab)の外表面に表面改質領域を付与した後に形成されることがより好ましい。
 次に、この機能性積層体(A)の上に形成される合成樹脂層(B)について説明する。
 (合成樹脂層(B))
 合成樹脂層(B)は、通常のプラスチックレンズ材料となる熱可塑性樹脂又はレンズ形成用モノマー組成物を硬化させた熱硬化性樹脂から形成することができる。合成樹脂層(B)を形成する原料としては、ポリエステル樹脂、ポリアミド樹脂、アリル樹脂、(メタ)アクリル樹脂、ポリウレタン樹脂、ポリウレタンウレア樹脂、ポリチオウレタン樹脂、ポリチオエポキシ樹脂及びポリカーボネート樹脂よりなる群から選ばれる樹脂が挙げられる。これら樹脂を使用して、公知の方法で合成樹脂層(B)を機能性積層体(A)の表面改質領域上に形成することが好ましい。
 以上のような合成樹脂層(B)の中でも、本発明が最も効果を示すのは、レンズ形成用モノマー組成物を使用する場合である。本発明によれば、該レンズ形成用モノマー組成物中に、前記機能性積層体(A)を埋設した場合であっても、該機能性積層体(A)の耐薬品性を向上させることができ、その結果、透明性を低下させる等の悪影響を与えることなく、合成樹脂層(B)を形成できる。これは、合成樹脂層(B)が形成される前記機能性積層体の表面(外表面)に表面改質領域を形成しているからであると考えられる。加えて、表面改質領域を形成しているため、合成樹脂層(B)と機能性積層体(A)との密着性を向上できる。
 前記レンズ形成用モノマー組成物としては、重合してアリル樹脂、(メタ)アクリル樹脂、ポリウレタン樹脂、ポリウレタンウレア樹脂、ポリチオウレタン樹脂及びポリチオエポキシ樹脂を形成するものであることが好ましい。すなわち、アリル系モノマー組成物、(メタ)アクリレート系モノマー組成物、ウレタン系モノマー組成物、ウレタンウレア系モノマー組成物、チオウレタン系モノマー組成物及びチオエポキシ系モノマー組成物などの熱硬化性樹脂を形成しうるレンズ形成用モノマー組成物を挙げることができる。
 その中でも、前述のエッチング処理により、接触角を10~60°に調整した前記機能性積層体(A)の表面(外表面)との密着性の観点から、ウレタン系モノマー組成物、ウレタンウレア系モノマー組成物、チオウレタン系モノマー組成物及びチオエポキシ系モノマー組成物を使用することが好ましい。その理由は定かではないが、10~60°に調整した前記機能性積層体(A)の表面(外表面)に存在すると思われる水酸基、アミノ基、カルボキシル基等と、ウレタン系モノマー組成物、ウレタンウレア系モノマー組成物、チオウレタン系モノマー組成物及びチオエポキシ系モノマー組成物に含まれるイソシアネート基やチオエポキシ基が反応するためと推定される。また、その他の理由としては、接触角を10~60°に調整した前記機能性積層体(A)の表面(外表面)とウレタン系モノマー組成物、ウレタンウレア系モノマー組成物、チオウレタン系モノマー組成物及びチオエポキシ系モノマー組成物の硬化体との間で、強固な水素結合を形成することも考えられる。
 また、アリル系モノマー組成物及び(メタ)アクリレート系モノマー組成物に対しては、ラジカル重合性基を有するシランカップリング剤を含むコート組成物でコートされた層を表面改質領域とする前記機能性積層体(A)を使用することが、密着性の観点から好ましい。この理由は、表面改質領域に存在するラジカル重合性基と、アリル系モノマー組成物及び(メタ)アクリレート系モノマー組成物中に含まれるラジカル重合性基とが反応するためと推定される。
 上記の様な理由から、本発明の最も好ましい態様としては、機能性積層体(A)に使用される第一光学シート(Aa)及び第二光学シート(Ab)がポリアミド樹脂からなり、更に合成樹脂層(B)と接する機能性積層体(A)の外表面の接触角が10~60°に調整され、合成樹脂層(B)がウレタンウレア系モノマー組成物、チオウレタン系モノマー組成物及びチオエポキシ系モノマー組成物からなる組み合わせである。
 その他の好ましい態様としては、機能性積層体(A)に使用される第一光学シート(Aa)及び第二光学シート(Ab)がポリアミド樹脂からなり、更に合成樹脂層(B)と接する機能性積層体(A)の外表面に、表面改質領域としてラジカル重合性基を有するシランカップリング剤を含むコート組成物でコートされた層が形成され、合成樹脂層(B)がアリル系モノマー組成物及び(メタ)アクリレート系モノマー組成物からなる組み合わせである。
 (レンズ形成用モノマー組成物)
 <アリル系モノマー組成物>
 アリル系モノマー組成物としては、例えばジエチレングリコールビスアリルカーボネート、ジアリルイソフタレート、ジアリルテレフタレート等のアリル基を有するアリルモノマーを含んでなる組成物が挙げられる。
 <(メタ)アクリレート系モノマー組成物>
 (メタ)アクリレートモノマー系組成物としては、下記に例示されるような(メタ)アクリレートモノマーを含んでなる組成物であり、さらには他の(メタ)アクリレートモノマー、や他の重合性モノマーを混合しても構わない。具体的な(メタ)アクリレートモノマーを例示すれば、グリシジル(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、トリメチロールプロパントリエチレングリコールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ウレタンオリゴマーテトラ(メタ)アクリレート、ウレタンオリゴマーヘキサ(メタ)アクリレート、ポリエステルオリゴマーヘキサ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ビスフェノールAジ(メタ)アクリレート、2,2-ビス(4-(メタ)アクリロイルオキシエトキシフェニル)プロパン、平均分子量776の2,2-ビス(4-(メタ)アクリロイルオキシポリエチレングリコールフェニル)プロパン、平均分子量475のメチルエーテルポリエチレングリコール(メタ)アクリレート、メチル(メタ)アクリレート等の少なくとも一つの(メタ)アクリレート基を分子中に有する(メタ)アクリレートモノマーなどを挙げることができる。
 <ウレタン系モノマー組成物、ウレタンウレア系モノマー組成物>
 ウレタン系モノマー組成物としては、ポリイソシアネート化合物、ポリオール化合物及びジアミン硬化剤を含んでなる混合物を好適に用いることができる。ジアミン硬化剤を使用することにより、ウレタンウレア系モノマー組成物とすることができる。
 ポリイソシアネート化合物としては、前記ポリウレタンウレア樹脂のポリイソシアネート化合物で例示したイソシアネート化合物を使用できる。
 ポリオール化合物としては、前記ポリウレタンウレア樹脂のポリオール化合物で例示したポリオール化合物を使用できる。
 ジアミン化合物としては、例えば2,4-ジアミノ-3,5-ジエチル-トルエン、2,6-ジアミノ-3,5-ジエチル-トルエン及びそれらの混合物、4,4’-メチレンビス(3-クロロ-2,6-ジエチルアニリン)、パラフェニレンジアミン、メタフェニレンジアミン、4,4’-ジアミノジフェニルエーテル、ジアミノジフェニルメタン、ビス-4-(4-アミノフェノキシ)フェニルスルフォン、ビス-4-(3-アミノフェノキシ)フェニルスルフォン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)プロパン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)ヘキサフルオロプロパン、2,2-ビス(4-アミノフェノキシ)ヘキサフルオロプロパン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル及び市販品としてLonza Ltd.社製「Lonzacure」(商標登録)シリーズなどの芳香族ジアミン化合物;前記ウレタン-ウレア樹脂(C1)の鎖延長剤で例示したジアミン化合物に加えて、市販品としてHuntsman社製「JEFFAMINE」(商標登録)シリーズなどを挙げることができる。
 <チオウレタン系モノマー組成物>
 チオウレタン系モノマー組成物は、ポリイソシアネート化合物とポリチオール化合物の混合物からなる。
 ポリイソシアネート化合物としては、前記ポリウレタンウレア樹脂のポリイソシアネート化合物で例示したイソシアネート化合物に加えて、例えば2,5-ジイソシアナートメチル-1,4-ジチアン、2,5-ビス(4-イソシアナート-2-チアブチル)-1,4-ジチアン、2,5-ビス(3-イソシアナートメチル-4-イソシアナート-2-チアブチル)-1,4-ジチアン、2,5-ビス(3-イソシアナート-2-チアプロピル)-1,4-ジチアン、1,3,5-トリイソシアナートシクロヘキサン、1,3,5-トリス(イソシアナートメチル)シクロヘキサン、ビス(イソシアネートメチルチオ)メタン、1,5-ジイソシアネート-2-イソシアネートメチル-3-チアペンタン、1,2,3-トリス(イソシアネートエチルチオ)プロパン、1,2,3-トリス(イソシアネートメチルチオ)プロパン、1,1,6,6-テトラキス(イソシアネートメチル)-2,5-ジチアヘキサン、1,1,5,5 -テトラキス(イソシアネートメチル)-2,4-ジチアペンタン、1,2-ビス(イソシアネートメチルチオ)エタン、1,5-ジイソシアネート-3-イソシアネートメチル-2,4-ジチアペンタン等のポリイソシアネート類、これらのポリイソシアネート類のビュレット型反応による二量体、これらのポリイソシアネート類の環化三量体及びこれらのポリイソシアネート類とアルコールもしくはチオールの付加物等が挙げられる。これら、ポリイソシアネート化合物は、単独でも、2種類以上を混合して用いてもかまわない。
 ポリチオール化合物の具体例としては、1,2-ジメルカプトエタン、1,2-ジメルカプトプロパン、2,2-ジメルカプトプロパン、1,3-ジメルカプトプロパン、1,2,3-トリメルカプトプロパン、1,4-ジメルカプトブタン、1,6-ジメルカプトヘキサン、ビス(2-メルカプトエチル)スルフィド、ビス(2,3-ジメルカプトプロピル)スルフィド、1,2-ビス(2-メルカプトエチルチオ)エタン、1,5-ジメルカプト-3-オキサペンタン、1,8-ジメルカプト-3,6-ジオキサオクタン、2,2-ジメチルプロパン-1,3-ジチオール、3,4-ジメトキシブタン-1,2-ジチオール、2-メルカプトメチル-1,3-ジメルカプトプロパン、2-メルカプトメチル-1,4-ジメルカプトブタン、2-(2-メルカプトエチルチオ)-1,3-ジメルカプトプロパン、1,2-ビス(2-メルカプトエチルチオ)-3-メルカプトプロパン、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、2,4-ビス(メルカプトメチル)-1,5-ジメルカプト-3-チアペンタン、4,8-ビス(メルカプトメチル)-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ビス(メルカプトメチル)-1,11-ジメルカプト-3,6,9-トリチアウンデカン、5,7-ビス(メルカプトメチル)-1,11-ジメルカプト-3,6,9-トリチアウンデカン、1,2,7-トリメルカプト-4,6-ジチアヘプタン、1,2,9-トリメルカプト-4,6,8-トリチアノナン、1,2,8,9-テトラメルカプト-4,6-ジチアノナン、1,2,10,11-テトラメルカプト-4,6,8-トリチアウンデカン、1,2,12,13-テトラメルカプト- 4,6,8,10-テトラチアトリデカン、1,1,1-トリス(メルカプトメチル)プロパン、テトラキス(メルカプトメチル)メタン、テトラキス(4-メルカプト-2-チアブチル)メタン、テトラキス(7-メルカプト-2,5-ジチアヘプチル)メタン、エチレングリコールビス(2-メルカプトアセテート)、エチレングリコールビス(3-メルカプトプロピオネート)、1,4-ブタンジオールビス(2-メルカプトアセテート)、1,4-ブタンジオールビス(3-メルカプトプロピオネート)、トリメチロールプロパントリス(2-メルカプトアセテート)、トリメチロールプロパントリス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(2-メルカプトアセテート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート) 、1,1-ジメルカプトシクロヘキサン、1,4-ジメルカプトシクロヘキサン、1,3-ジメルカプトシクロヘキサン、1,2-ジメルカプトシクロヘキサン、1,4-ビス(メルカプトメチル)シクロヘキサン、1,3-ビス(メルカプトメチル)シクロヘキサン、2,5-ビス(メルカプトメチル)-1,4-ジチアン、2,5-ビス(2-メルカプトエチル)-1,4-ジチアン、2,5-ビス(メルカプトメチル)-1-チアン、2,5-ビス(2-メルカプトエチル)-1-チアン、1,4-ビス(メルカプトメチル)ベンゼン、1,3-ビス(メルカプトメチル)ベンゼン、ビス(4-メルカプトフェニル)スルフィド、ビス(4-メルカプトフェニル)エーテル、ビス(4-メルカプトメチルフェニル)メタン、2,2-ビス(4-メルカプトフェニル)プロパン、ビス(4-メルカプトメチルフェニル)スルフィド、ビス(4-メルカプトメチルフェニル)エーテル、2,2-ビス(4-メルカプトメチルフェニル)プロパン、2,5-ジメルカプト-1,3,4-チアジアゾール、3,4-チオフェンジチオール、1,2 -ジメルカプト-3-プロパノール、1,3-ジメルカプト-2-プロパノール、グリセリルジチオグリコーレート、1,1,2,2-テトラキス(メルカプトメチルチオ) エタン、1,1,3,3-テトラキス(メルカプトメチルチオ)プロパン、3-メルカプトメチル-1,5-ジメルカプト-2,4-ジチアペンタン等のポリチオール類を挙げることができる。これらは単独でも、2種類以上を混合して用いてもかまわない。
 <チオエポキシ系モノマー組成物>
 チオエポキシ系モノマーとしては、例えばビス(β-エピチオプロピルチオ)メタン、1,2-ビス(β-エピチオプロピルチオ)エタン、1,3-ビス(β-エピチオプロピルチオ)プロパン、1,2-ビス(β-エピチオプロピルチオ)プロパン、1-(β-エピチオプロピルチオ)-2-(β-エピチオプロピルチオメチル)プロパン、1,4-ビス(β-エピチオプロピルチオ)ブタン、1,3-ビス(β-エピチオプロピルチオ)ブタン、1-(β-エピチオプロピルチオ)-3-(β-エピチオプロピルチオメチル)ブタン、1,5-ビス(β-エピチオプロピルチオ)ペンタン、1-(β-エピチオプロピルチオ)-4-(β-エピチオプロピルチオメチル)ペンタン、1,6-ビス(β-エピチオプロピルチオ)ヘキサン、1-(β-エピチオプロピルチオ)-5-(β-エピチオプロピルチオメチル)ヘキサン、1-(β-エピチオプロピルチオ)-2-〔(2-β-エピチオプロピルチオエチル)チオ〕エタン、1-(β-エピチオプロピルチオ)-2-[〔2-(2-β-エピチオプロピルチオエチル)チオエチル〕チオ]エタン等の鎖状有機化合物等;テトラキス(β-エピチオプロピルチオメチル)メタン、1,1,1-トリス(β-エピチオプロピルチオメチル)プロパン、1,5-ビス(β-エピチオプロピルチオ)-2-(β-エピチオプロピルチオメチル)-3-チアペンタン、1,5-ビス(β-エピチオプロピルチオ)-2,4-ビス(β-エピチオプロピルチオメチル)-3-チアペンタン、1-(β-エピチオプロピルチオ)-2,2-ビス(β-エピチオプロピルチオメチル)-4-チアヘキサン、1,5,6-トリス(β-エピチオプロピルチオ)-4-(β-エピチオプロピルチオメチル)-3-チアヘキサン、1,8-ビス(β-エピチオプロピルチオ)-4-(β-エピチオプロピルチオメチル)-3,6-ジチアオクタン、1,8-ビス(β-エピチオプロピルチオ)-4,5ビス(β-エピチオプロピルチオメチル)-3,6-ジチアオクタン、1,8-ビス(β-エピチオプロピルチオ)-4,4-ビス(β-エピチオプロピルチオメチル)-3,6-ジチアオクタン、1,8-ビス(β-エピチオプロピルチオ)-2,4,5-トリス(β-エピチオプロピルチオメチル)-3,6-ジチアオクタン、1,8-ビス(β-エピチオプロピルチオ)-2,5-ビス(β-エピチオプロピルチオメチル)-3,6-ジチアオクタン、1,9-ビス(β-エピチオプロピルチオ)-5-(β-エピチオプロピルチオメチル)-5-〔(2-β-エピチオプロピルチオエチル)チオメチル〕-3,7-ジチアノナン、1,10-ビス(β-エピチオプロピルチオ)-5,6-ビス〔(2-β-エピチオプロピルチオエチル)チオ〕-3,6,9-トリチアデカン、1,11-ビス(β-エピチオプロピルチオ)-4,8-ビス(β-エピチオプロピルチオメチル)-3,6,9-トリチアウンデカン、1,11-ビス(β-エピチオプロピルチオ)-5,7-ビス(β-エピチオプロピルチオメチル)-3,6,9-トリチアウンデカン、1,11-ビス(β-エピチオプロピルチオ)-5,7-〔(2-β-エピチオプロピルチオエチル)チオメチル〕-3,6,9-トリチアウンデカン、1,11-ビス(β-エピチオプロピルチオ)-4,7-ビス(β-エピチオプロピルチオメチル)-3,6,9-トリチアウンデカン等の分岐状有機化合物及びこれらの化合物のエピスルフィド基の水素の少なくとも1個がメチル基で置換された化合物等;1,3及び1,4-ビス(β-エピチオプロピルチオ)シクロヘキサン、1,3及び1,4-ビス(β-エピチオプロピルチオメチル)シクロヘキサン、ビス〔4-(β-エピチオプロピルチオ)シクロヘキシル〕メタン、2,2-ビス〔4-(β-エピチオプロピルチオ)シクロヘキシル〕プロパン、ビス〔4-(β-エピチオプロピルチオ)シクロヘキシル〕スルフィド、2,5-ビス(β-エピチオプロピルチオメチル)-1,4-ジチアン、2,5-ビス(β-エピチオプロピルチオエチルチオメチル)-1,4-ジチアン等の環状脂肪族有機化合物及びこれらの化合物のエピスルフィド基の水素の少なくとも1個がメチル基で置換された化合物;1,3及び1,4-ビス(β-エピチオプロピルチオ)ベンゼン、1,3及び1,4-ビス(β-エピチオプロピルチオメチル)ベンゼン、ビス〔4-(β-エピチオプロピルチオ)フェニル〕メタン、2,2-ビス〔4-(β-エピチオプロピルチオ)フェニル〕プロパン、ビス〔4-(β-エピチオプロピルチオ)フェニル〕スルフィド、ビス〔4-(β-エピチオプロピルチオ)フェニル〕スルフォン、4,4'-ビス(β-エピチオプロピルチオ)ビフェニル等の芳香族有機化合物及びこれらの化合物のエピスルフィド基の水素の少なくとも1個がメチル基で置換された化合物等が挙げられる。これらは単独もしくは2種以上を組み合わせて用いてもよい。
 以上のようなレンズ形成用モノマー組成物には、必要に応じて、適当量の熱重合開始剤、光重合開始剤などの重合開始剤を添加してもよい。
 <合成樹脂層(B)の形成方法(機能性レンズの製造方法)>
 機能性積層体(A)の表面上(表面改質領域上)に、合成樹脂層(B)を形成(積層)する方法としては、以下の方法が挙げられる。具体的には、機能性積層体(A)を、プラスチックレンズ製造の際に使用されるガラスモールドや金型の中に設置し、そこに該合成樹脂層(B)を形成するレンズ形成用モノマー組成物を充填する方法である。
 合成樹脂層(B)として、前述の熱硬化性樹脂を採用する場合には、一般的に使用されているガラスモールドを用い、該ガラスモールド内にレンズ形成用モノマー組成物を充填後に熱硬化(注型重合)することで、機能性レンズを成型することができる。さらに、熱硬化と併せるかまたは単独で光照射によって重合を実施することができる。重合時間は、適宜決定してやればよい。
 前述のような注型重合を実施するための具体的操作は、以下の通りである。例えば、ガラスモールドの一方にレンズ形成用モノマー組成物を充填しておいて、その上に、機能性積層体(A)を浮かべる。次いで、ガスケットやテープを介して他方のガラスモールドをセットした後、該ガラスモールド内にレンズ形成用モノマー組成物を更に注入して重合する方法である。また、ガラスモールドを固定化しているガスケットやテープまたはその他の手段により該機能性積層体(A)をガラスモールド内において支持し、レンズ形成用モノマー組成物を該ガラスモールド内に充填して重合する方法も挙げられる。さらにはガラスモールドの一方に機能性積層体(A)を密着させておき、密着させた反対側の面に、レンズ形成用モノマー組成物を充填して重合する方法も挙げられる。
 また、本発明において、合成樹脂層(B)は、前記レンズ形成用モノマー組成物を使用する以外に、熱可塑性樹脂からも構成することができる。合成樹脂として、熱可塑性樹脂を採用する場合には、射出成型法を採用できる。具体的には、機能性積層体(A)を、金型の片方の内壁に密着させておくか、金型の中間近傍に固定化した後に、熱可塑性樹脂を金型内部に射出することにより、本発明の機能性レンズを得ることができる。
 機能性レンズを製造する際、機能性積層体(A)の大きさ及び形状は、必要に応じて適宜決定することができる。即ち、最終的に得られる機能性レンズの全体に亘る形状のものであってもよいし、或いはレンズの一部を覆うようなものであってもよい。その中でも、機能性積層体(A)の側面を、前記ガラスモールドや金型の外部にはみ出すような大きさのものを使用することが好ましい。こうすることにより、機能性層(Ac)からのフォトクロミック化合物及び/または二色性色素の溶出を高いレベルで抑制することができる。
 以上のような方法により、機能性レンズを製造することができる。図4に本発明のフォトクロミック特性を有する機能性積層体(A)1を用いて作製した機能性レンズ 6の構成例を示した。機能性レンズ 6は、フォトクロミック特性を有する接着層(フォトクロミック接着層(Ac1)) 3の両面に、それぞれ第一光学シート(Aa) 2又は第二光学シート(Ab) 4を有する機能性積層体(A)1を用いた機能性レンズであり、この機能性積層体(A)1の両表面に、合成樹脂層(B) 8を積層してなる機能性レンズ 6である(図4参照)。そして、機能性積層体(A) 1と合成樹脂層(B) 8との界面に、表面改質領域 9が存在する。以上のような方法で、特に表面改質領域 9を有する機能性積層体(A) 1と使用することにより、第一光学シート(Aa) 2及び/または該第二光学シート(Ab) 4と該合成樹脂層(B) 8との間の接着強度が50N以上である機能性レンズ 6を容易に製造できる。
 得られた機能性レンズは、使用する用途に応じて、その片面、もしくは両面にハードコート処理、撥水処理、防曇処理、反射防止膜等の公知の方法で後加工することができる。
 以下に実施例を挙げて、本発明を詳細に説明するが、具体例であって、本発明はこれらにより限定されるものではない。
 <ポリウレタンウレア樹脂の製造>
 〔ポリウレタンウレア樹脂(U1)の製造〕
 10Lの反応容器に、撹拌翼、冷却管、温度計、窒素ガス導入管を接続し、撹拌翼は200rpmで撹拌した。
 この反応容器に、数平均分子量800のポリカーボネートジオール1770g、イソホロンジイソシアネート700g、トルエン500gを仕込み、窒素雰囲気下、100℃で7時間反応させ、末端にイソシアネート基を有するウレタンプレポリマーを合成した。反応の終点は、イソシアネート基の逆滴定法により確認した。
 ウレタンプレポリマー反応終了後、反応液を0℃付近まで冷却し、イソプロピルアルコール1430g、ジエチルケトン2670gに溶解させた後、液温を0℃に保持した。次いで、鎖延長剤であるビス-(4-アミノシクロヘキシル)メタン171gとジエチルケトン145gの混合溶液を30分以内に滴下し、0℃で1時間反応させた。その後さらに、1,2,2,6,6-ペンタメチル-4-アミノピペリジン42gを滴下し、0℃で1時間反応させることにより、ポリウレタンウレア樹脂(U1)のジエチルケトン溶液を得た。なお、該ポリウレタンウレア樹脂(U1)は末端非反応性(end-cap)の樹脂である。
 〔接着性組成物1の調製〕
 ポリウレタンウレア樹脂(U1)の溶液1000g(固形分濃度36質量%)、フォトクロミック化合物5.7g(PC1/PC2/PC3=4.0/1.0/0.7g)、(I)成分((I1)成分)として、4,4’-メチレンビス(シクロヘキシルイソシアネート)の異性体混合物 43.2g、さらに酸化防止剤としてエチレンビス(オキシエチレン)ビス[3-(5-tert-ブチル-4-ヒドロキシ-m-トリル)プロピオネート] 3.6g、界面活性剤としてDOW CORNING TORAY L-7001 0.5gを添加し、室温で攪拌・混合を行い、接着性組成物1(フォトクロミック接着層(Ac1)形成用)を得た。
 PC1:下記式で示される化合物
Figure JPOXMLDOC01-appb-C000008
 PC2:下記式で示される化合物
Figure JPOXMLDOC01-appb-C000009
 PC3:下記式で示される化合物
Figure JPOXMLDOC01-appb-C000010
 〔接着性組成物2~3の調整〕
 表1に示すフォトクロミック化合物、ポリイソシアネート化合物((I)成分)、酸化防止剤を使用した以外は、接着性組成物1と同様にして調合を行い、接着性組成物2~3を得た。表1に示した(I)成分、酸化防止剤は以下の通りである。
Figure JPOXMLDOC01-appb-T000011
 〔ポリイソシアネート化合物(I)成分〕
(I1)成分
(I1-1)成分;4,4’-メチレンビス(シクロヘキシルイソシアネート)の異性体混合物。
(I2)成分
(I2-1)成分;ヘキサメチレンジイソシアネートのビウレット体(旭化成製、製品名『デュラネート 24A-100』)。
 〔酸化防止剤〕
・HP1; エチレンビス(オキシエチレン)ビス[3-(5-tert-ブチル-4-ヒドロキシ-m-トリル)プロピオネート]。
 〔偏光フィルム〕
 ポリビニルアルコールフィルムを二色性染料で染色し、延伸、更にホウ酸で架橋させた、視感透過率は39.2%、偏光度は99.5%、a*が-0.3、b*が0.2及び厚み30μmである偏光フィルム。
 <機能性積層体(A1)の前駆体 作製>
 接着性組成物1を、コーター(テスター産業製)を用いて、50μmのOPPフィルム(延伸ポリプロピレンフィルム)上に、塗工速度0.3m/minで塗工し、乾燥温度80℃で5分間乾燥させて、膜厚40μmの接着性組成物1からなる接着性シートを作製し、この接着性組成物1からなる接着性シートに、厚み300μmの脂環族ポリアミドシート(4,4’-ジアミノジシクロヘキシルメタンと1,10-デカンジカルボン酸からなる脂環族ポリアミドを主成分とするシート;第一光学シート(Aa))を貼り合わせた。
 次いで、上記方法で準備した脂環族ポリアミドシート/接着性組成物1からなる接着性シート/OPPフィルムがこの順で積層されたものからOPPフィルムを剥離した。得られた構造体に対し、前記と同じ脂環族ポリアミドシート(厚さ300μm;第二光学シート(Ab))を、該構造体の接着性シートと該脂肪族ポリアミドシートとが接合するように、ラミネートロールを用いて圧接した。次いで、このようにして得られた機能性積層シートを60℃、真空下(500Pa)で12時間静置(脱気工程)した後、90℃で1時間加熱処理(加熱工程)した。さらに、70℃、90%RHで20時間の加湿処理(加湿工程)を行い、最後に80℃、真空下(500Pa)で5時間静置(水分除去工程)することにより、フォトクロミック特性を有する機能性積層体(A1)の前駆体を得た。
 得られた機能性積層体(A1)の前駆体のフォトクロミック特性は、視感透過率15.0%、退色速度45秒、耐久性93%であった。また、剥離強度は100N/25mmであった。なお、これらの評価は以下のようにして行った。機能性積層体(A1)の前駆体は、表面改質領域を設けることにより、図1の構成の機能性積層体(A1)となる。
 〔フォトクロミック特性〕
 得られた機能性積層体(A1)の前駆体を試料とし、これに、(株)浜松ホトニクス製のキセノンランプL-2480(300W)SHL-100を、エアロマスフィルター(コーニング社製)を介して23℃、機能性積層体表面でのビーム強度365nm=2.4mW/cm、245nm=24μW/cmで120秒間照射して発色させ、機能性積層体のフォトクロミック特性を測定した。
 1)視感透過率:120秒間照射して発色させた後、(株)大塚電子工業製の分光光度計(瞬間マルチチャンネルフォトディレクターMCPD1000)により、視感透過率を測定した。この値が小さいほど、フォトクロミック特性が優れていると言える。
 2)退色速度〔t1/2(sec.)〕:120秒間照射後、光の照射をとめたときに、試料の前記最大波長における吸光度が〔ε(120)-ε(0)〕の1/2まで低下するのに要する時間。この時間が短いほどフォトクロミック特性が優れているといえる。
 3)耐久性(%)=〔(A96/A0)×100〕:光照射による発色の耐久性を評価するために次の劣化促進試験を行った。すなわち、得られた積層体をスガ試験器(株)製キセノンウェザーメーターX25により96時間促進劣化させた。その後、前記発色濃度の評価を試験の前後で行い、試験前の発色濃度(A0)及び試験後の発色濃度(A96)を測定し、〔(A96)/A0〕×100〕の値を残存率(%)とし、発色の耐久性の指標とした。残存率が高いほど発色の耐久性が高い。
 〔剥離強度〕
 得られた機能性積層体(A1)の前駆体を、25×100mmの接着部分を有する試験片とし、試験雰囲気温度が設定可能な恒温槽を備えた試験機(オートグラフAGS-500NX、島津製作所製)に装着し、クロスヘッドスピード100mm/minで引張り試験を行うことで、剥離強度を測定した。
 剥離強度は、上記サイズに切り出した試験片を、25℃に設定した恒温槽内で10分放置した後に測定した。
 <機能性積層体(A2)の前駆体 作製>
 接着性組成物2を、コーター(テスター産業製)を用いて、50μmのOPPフィルム(延伸ポリプロピレンフィルム)上に、塗工速度0.3m/minで塗工し、乾燥温度80℃で5分間乾燥させて、膜厚40μmの接着性組成物2からなる接着性シートを作製し、この接着性組成物2からなる接着性シートに、厚み200μmの延伸した脂環族ポリアミドシート(4,4’-ジアミノジシクロヘキシルメタンと1,10-デカンジカルボン酸からなる脂環族ポリアミドを主成分とするシート;第一光学シート(Aa))を貼り合わせ、接着層付き第一シートを作製した。
 接着性組成物3を、コーター(テスター産業製)を用いて、50μmのOPPフィルム(延伸ポリプロピレンフィルム)上に、塗工速度0.3m/minで塗工し、乾燥温度80℃で5分間乾燥させて、膜厚40μmの接着性組成物2からなる接着性シートを作製し、この接着性組成物3からなる接着性シートに、厚み200μmの延伸した脂環族ポリアミドシート(4,4’-ジアミノジシクロヘキシルメタンと1,10-デカンジカルボン酸からなる脂環族ポリアミドを主成分とするシート;第二光学シート(Ab))を貼り合わせ、接着層付き第二シートを作製した。
 次いで、接着層付き第一シートからOPPフィルムを剥離し、むき出しになったフォトクロミック層(フォトクロミック接着層(Ac1)となる層)と偏光フィルム(Ac2)を貼り合せた。さらに、接着層付き第二シートからOPPフィルムを剥離し、むき出しになった接着層と、偏光フィルムのもう一方の面とを貼り合せ、機能性積層シートを準備した。
 この機能性積層シートを、40℃、真空下で24時間静置した後、110℃で60分加熱処理し、次いで60℃、100%RHで24時間の加湿処理を行い、最後に40℃、真空下で24時間静置することにより、目的のフォトクロミック特性及び偏光性を有する機能性積層体(A2)の前駆体を得た。
 得られた機能性積層体(A2)の前駆体は、剥離強度は150N/25mmであり、またフォトクロミック特性に関しては視感透過率11.0、退色速度45秒、耐久性93%であり、視感透過率(発色前)が39.0%であり、偏光度(発色前)が99.4%あった。剥離強度、フォトクロミック特性の評価は、機能性積層体(A1)の前駆体と同様な方法により実施した。視感透過率(発色前)及び偏光度(発色前)は、以下の方法により測定した。
 〔視感透過率(発色前)〕
 得られた機能性積層体(A2)の前駆体を試料とし、島津製作所製紫外可視分光光度計UV-2550を用いて、積層体の紫外線照射前の視感透過率を測定した。
 〔偏光度(発色前)〕
 得られた機能性積層体(A2)の前駆体を試料とし、島津製作所製紫外可視分光光度計UV-2550を用いて、平行透過率(Tp)及び直交透過率(Tc)を測定し、偏光度(P)を次式により求めた。
 偏光度(P)(%)={(Tp-Tc)/(Tp+Tc)}1/2×100
 なお、上記Tp及びTcは、JIS Z 8701の2度視野(C光源)により測定し、視感度補正を行ったY値である。
 <機能性積層体(A3)~(A6) 前駆体の作製>
 表2に示す第一光学シート(Aa)、第二光学シート(Ab)、接着性組成物及び偏光フィルム(Ac2)を採用した。偏光フィルムを使用しない場合は、機能性積層体(A1)の前駆体と同様の操作を行い、前駆体を準備した。偏光フィルム(Ac2)を使用した場合は、機能性積層体(A2)の前駆体と同様の操作を行い、前駆体を準備した。その結果を、表3に示す。
 なお、表2に示す第一光学シート(Aa)及び第二光学シート(Ab)の略称を、以下に示す。
 <第一光学シート(Aa)及び第二光学シート(Ab)>
a;厚み300μmの脂環族ポリアミドシート(4,4’-ジアミノジシクロヘキシルメタンと1,10-デカンジカルボン酸からなる脂環族ポリアミドを主成分とするシート)。
b;厚み200μmの延伸した脂環族ポリアミドシート(4,4’-ジアミノジシクロヘキシルメタンと1,10-デカンジカルボン酸からなる脂環族ポリアミドを主成分とするシート)。
c;厚み200μmの半芳香族ポリアミド樹脂(Grivory G21、EMS社製)から製造した延伸シート。
d;厚み300μmの脂肪族ポリアミド樹脂(TE55、EMS社製)から製造したシート。
e;厚み300μmのポリエチレンテレフタレート製シート。
f;厚み300μmのトリアセチルセルロース製シート。
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
 実施例1
 (1)機能性積層体(A1)の前駆体の表面処理;機能性積層体(A1)の製造
 機能性積層体(A1)の前駆体を、直径65mmの円形に裁断し、50℃に加温した20%KOH溶液(蒸留水/ベンジルアルコール=90/10の重量比で混合)槽に浸漬し、10分間超音波洗浄処理した。次いで、エッチングした機能性積層体(A1)の前駆体を流水洗浄し、その後50℃に加温した蒸留水槽で洗浄し、更に別の50℃に加温した蒸留水槽で洗浄して、機能性積層体(A1)とした。
 表面処理した機能性積層体(A1)は、外表面にカルボキシル基及びアミノ基を有し、また、接触角は43°であった。外表面の反応性官能基の分析は、パーキンエルマー製フーリエ変換赤外分光硬度計Spectrum Oneを用い、拡散反射法で表面処理前後の機能性積層体(A1)の外表面を比較分析することで実施した。接触角は、協和界面科学(株)製DropMaster500(商標登録)を用い、水滴をシート表面に滴下した際の、水滴とシート表面とがなす角を測定することで求めた。また、得られた機能性積層体(A1)の剥離強度、フォトクロミック特性は、前駆体と変化はなかった。
 (2)機能性レンズの作製
 (1)で得られた機能性積層体(A1)を、ガスケットを有するガラスモールド内(0.00D、レンズ径70mm、肉厚3.0mmに設定)に設置した。このガラスモールド内に設置した機能性積層体(A1)の上下に、アリル系モノマー組成物(ジイソプロピルパーオキシジカーボネート(重合開始剤)3質量部、ジエチレングリコールビスアリルカーボネート100質量部;レンズ形成用モノマー組成物)の混合物を注入し、空気炉中で30~90℃まで20時間かけて徐々に昇温し、90℃で1時間保持して重合を行った。重合終了後、ガスケットとモールドを取り外したのち、120℃で2時間熱処理を実施した。
 その後、外周を玉摺機にて研磨することにより、直径60mmの機能性レンズを得た。
 得られた機能性レンズを評価したところ、フォトクロミック特性は、視感透過率14.8%、退色速度45秒、耐久性98%であった。該機能性レンズの機能性積層体と合成樹脂層間の接着強度を測定したところ、接着強度は60Nであった。また、該機能性レンズの機能性積層体と合成樹脂層間のハガレを目視により評価行ったところ、初期、耐候性試験後、煮沸試験1時間後、2時間後は『0』であったが、煮沸試験3時間後は『1』であった。なお、接着強度及びハガレの目視評価は以下のようにして行った。
 〔接着強度〕
 得られた機能性レンズから、幅20mm、長さ30mmの短冊状の試験片を切り出し、接着強度の評価を実施した。接着強度は、上記試験片の幅20mmの面に対し、機能性積層体(A)と合成樹脂層(B)との界面と平行になるよう、そしてその界面にSUS製の金属板(厚さ0.4mm、幅20mm)を押し当て、オートグラフAGS-500NX(島津製作所製)を用い、クロスヘッドスピード10mm/min、温度25℃で圧縮試験を行うことで測定を行った。表5において、接着強度の数値の前に、『>』が記載されている場合には、機能性積層体(A)と合成樹脂層(B)との界面剥離ではなく、該数値に達した際に、機能性積層体(A)または合成樹脂層(B)の割れ等が発生したことを示す(横からの応力で剥がれたのではなく、機能性積層体(A)または合成樹脂層(B)がその値で破断したことを示す。)。
 〔目視評価(ハガレ)〕
 得られた機能性レンズの機能性積層体と合成樹脂層間の密着性評価を目視により実施した。この密着性評価は、1)初期、2)フォトクロミック特性を評価する際の耐久性試験(96時間)後、さらに3)蒸留水による煮沸試験(1時間、2時間及び3時間)後に実施した。評価基準は、以下の通りである。
0;各層間で全くハガレが見られない。
1;機能性積層体と合成樹脂層間で、5%未満の部位でハガレが見られる。
2;機能性積層体と合成樹脂層間で、5%以上10%未満の部位でハガレが見られる。
3;機能性積層体と合成樹脂層間で、10%以上の部位でハガレが見られる。
 実施例2~21、比較例1
 表4に示す機能性積層体の前駆体及び表面処理方法を用いた以外は、実施例1と同様の方法で機能性積層体を製造した。その結果を、表4に示す。なお、機能性積層体(A2)、(A3)、(A4)、(A5)、(A6)のフォトクロミック特性、視感透過率、偏光度等は、それぞれの前駆体と同じであった。
 また、表5に示すレンズ形成用モノマー組成物を用いた以外は、実施例1と同様の方法で機能性レンズを作製した。その結果を、表5に示す。
 表4に示す表面処理の略称は、それぞれ以下の内容を示す。
 a;機能性積層体を、直径65mmの円形に裁断し、50℃に加温した20%KOH溶液(蒸留水/ベンジルアルコール=90/10の重量比で混合)槽に浸漬し、5~30分間超音波洗浄処理した。次いで、エッチングした機能性積層体を流水洗浄し、その後50℃に加温した蒸留水槽で洗浄し、更に別の50℃に加温した蒸留水槽で洗浄した。なお、表4において、aの後ろに記載した数値は、20%KOH溶液で処理した時間(分)を示す。
 b;機能性積層体の両表面を、ナビタス社製マルチダインを用いて、コロナ放電処理を実施した。bの後ろに記載した数値は、それぞれの面を、コロナ放電処理を実施した時間(分)を示す。
 c;γ-グリシドキシプロピルトリメトキシシラン 110質量部、メタノール 63質量部、t-ブチルアルコール 71質量部、さらにシリコーン系界面活性剤(東レ・ダウコーニング株式会社製L7001)0.20質量部を加え撹拌混合した。得られた溶液を撹拌しながら、0.1N塩酸水溶液 50質量部を、液温が50℃を超えないように注意しながら加え、添加終了後、継続して3時間撹拌した。その後、トリス(2,4-ペンタンジオナト)アルミニウム(III)(アセチルアセトナート錯体) 1質量部を加え、室温で更に24時間撹拌混合し、シランカップリング剤を含有するコート組成物を得た。次いで、前記aの条件(5分間)で表面処理した機能性積層体に対し、該コート組成物をディップコートし、膜厚約0.5μmの表面改質層を形成した。cの後ろに記載した数値は、ディップコート後の、乾燥及び硬化条件を示す。
 d;cのγ-グリシドキシプロピルトリメトキシシランを、アリルトリメトキシシランに変えた以外は、cと同様の処理を実施した。
 e;cのγ-グリシドキシプロピルトリメトキシシランを、γ-メタクリロキシプロピルジメトキシメチルシランに変えた以外は、cと同様の処理を実施した。
 また、表5に示すレンズ形成用モノマー(重合条件を含む)の略称は、それぞれ以下の内容を示す。
 〔アリル;レンズ形成用モノマー組成物;アリル系モノマー組成物の重合方法〕
 レンズ形成用モノマー組成物として、ジイソプロピルパーオキシジカーボネート(重合開始剤)3質量部、ジエチレングリコールビスアリルカーボネート100質量部を準備した。
 次いで、ガスケットを有するガラスモールド内(0.00D、レンズ径70mm、肉厚3.0mmに設定)に設置した機能性積層体(A)の上下に、前記レンズ形成用モノマー組成物を注入し、空気炉中で30~90℃まで20時間かけて徐々に昇温し、90℃で1時間保持して重合を行った。重合終了後、ガスケットとモールドを取り外したのち、120℃で2時間熱処理を実施した。
 〔アクリル;レンズ形成用モノマー組成物;(メタ)アクリル系モノマー組成物の重合方法〕
 ラジカル重合性単量体であるトリメチロールプロパントリメタクリレート 20質量部、平均分子量522のポリエチレングリコールジアクリレート 40質量部、ウレタンアクリレート(ダイセル化学工業製EBECRYL4858) 40質量部の混合物を準備した。
 さらに、該ラジカル重合性単量体100質量部に対し、重合開始剤として、t-ブチルパーオキシネオデカネート1.0質量部を撹拌混合し、レンズ形成用モノマー組成物とした。
 次いで、ガスケットを有するガラスモールド内(0.00D、レンズ径70mm、肉厚3.0mmに設定)に設置した機能性積層体(A)の上下に、前記レンズ形成用モノマー組成物を注入し、重合は空気炉を用い、33℃から90℃まで17時間かけて徐々に昇温した後、90℃で2時間保持した。重合終了後、ガスケットとモールドを取り外したのち、オーブンに入れ110℃で3時間加熱した。
 〔チオウレタン;レンズ形成用モノマー組成物;チオウレタン系モノマー組成物の重合方法〕
 レンズ形成用モノマー組成物として、ジシクロヘキシルメタン-4 ,4 ’-ジイソシアネート43.5質量部、イソホロンジイソシアネート43.5質量部、1,2-ビス〔(2-メルカプトエチル)チオ〕-3-メルカプトプロパン63.0質量部及び重合開始剤としてジブチルチンジラウレート0.1質量部の混合物を準備した。
 次いで、ガスケットを有するガラスモールド内(0.00D、レンズ径70mm、肉厚3.0mmに設定)に設置した機能性積層体(A)の上下に、前記レンズ形成用モノマー組成物を注入し、重合は空気炉を用い、35℃から130℃まで12時間かけて徐々に昇温した後、130℃で0.5時間保持した。重合終了後、ガスケットとモールドを取り外したのち、オーブンに入れ130℃で3時間加熱した。
 〔チオエポキシ;レンズ形成用モノマー組成物;チオエポキシ系モノマー組成物の重合方法〕
 レンズ形成用モノマー組成物として、ビス(β-エピチオプロピルチオ)エタン95質量部、2-メルカプトエタノール5質量部及び重合触媒としてテトラブチルアンモニウムブロミド0 .1質量部の混合物を準備した。
 次いで、ガスケットを有するガラスモールド内(0.00D、レンズ径70mm、肉厚3.0mmに設定)に設置した機能性積層体(A)の上下に、前記レンズ形成用モノマー組成物を注入し、重合は空気炉を用い、20℃から90℃まで20時間かけて徐々に昇温した後、90℃で1時間保持した。重合終了後、ガスケットとモールドを取り外したのち、オーブンに入れ90℃で1時間加熱した。
 〔ウレタンウレア;レンズ形成用モノマー組成物;ウレタンウレア系モノマー組成物の重合方法〕
 レンズ形成用モノマー組成物として、アジピン酸と1,6-ヘキサンジオールからなる数平均分子量1000のポリエステルポリオール 100質量部と4,4’-メチレンビス(シクロヘキシルイソシアネート)の異性体混合物78質量部及び芳香族ジアミン硬化剤としての2,4-ジアミノ-3,5-ジエチル-トルエン/2,6-ジアミノ-3,5-ジエチル-トルエン17質量部を準備した。
 まず、上記ポリエステルポリオールと4,4’-メチレンビス(シクロヘキシルイソシアネート)の異性体混合物との混合物を、乾燥窒素下で140℃にて10分間加熱し、プレポリマーを生成させた。このプレポリマーを70℃まで冷却し、24時間放置した。ここに、芳香族ジアミン硬化剤を混合し、ガスケットを有するガラスモールド内(0.00D、レンズ径70mm、肉厚3.0mmに設定)に設置した機能性積層体(A)の上下に注入し、120℃で10時間にわたり硬化させた。重合終了後、ガスケットとモールドを取り外したのち、オーブンに入れ110℃で1時間加熱した。
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
 上記実施例1~21から明らかなように、本発明の機能性レンズは、優れたフォトクロミック特性及び/または偏光性を有すると共に、機能性積層体と合成樹脂層間の接着強度が50N以上であり、それに伴い優れた密着性を有していることが分かる。このような、機能性積層体と合成樹脂層間の接着強度が得られる理由は、機能性積層体の外表面に表面改質領域が形成されているためである。
 一方、比較例1では、フォトクロミック特性には問題がないものの、機能性積層体と合成樹脂層間の接着強度が不十分な機能性レンズしか得られていない。これは、機能性積層体の外表面に表面改質領域が形成されていないことが理由と考えられる。
 次に、第一光学シート(Aa)及び第二光学シート(Ab)として、ポリビニルアルコール樹脂からなる光学シートを使用した場合の実施例について説明する。
 [接着性組成物4の調製]
 接着性組成物1の調整において、フォトクロミック化合物として、PC1を10.8g使用した以外は、接着性組成物1と同様の方法を用いて接着性組成物4(フォトクロミック接着層(Ac1)形成用)を調整した。表6には、接着性組成物4と記した。
 [接着性組成物5~16]
 ポリイソシアネート化合物((I)成分)を表6に示す配合で使用した以外は、(フォトクロミック)接着性組成物4と同様にして調合を行い、(フォトクロミック)接着性組成物5~16を得た。表6に示した(I)成分は以下の通りである。表6には、接着性組成物5~16と記した。
 (I)成分 ポリイソシアネート化合物
 (I1)成分;2級炭素に結合したイソシアネート基を有するポリイソシアネート化合物
(I1-1)成分;4,4’-メチレンビス(シクロヘキシルイソシアネート)の異性体混合物。
(I1-2)成分;イソホロンジイソシアネートの3量体(パーストープ社製、製品名『トロネートIDT70B』、酢酸ブチル30%混合、分子量666)。
 (I2)成分 分子内の炭素数が4~40である(IIIA)以外のポリイソシアネート化合物
(I2-1)成分; ヘキサメチレンジイソシアネートのビウレット体(旭化成製、製品名『デュラネート 24A-100』(商標登録))。
(I2-2)成分; ヘキサメチレンジイソシアネートのイソシアヌレート体(旭化成製、製品名『デュラネート TPA-100』(商標登録))。
(I2-3)成分; ヘキサメチレンジイソシアネート。
 〔接着性組成物17の調整〕
 以下の方法により、分子鎖の末端にイソシアネート基を有するポリウレタン樹脂(i)、及び分子鎖の末端に水酸基を有するポリウレタン樹脂(ii)を合成した。
 (ポリウレタン樹脂(i)の合成)
 撹拌羽、冷却管、温度計、窒素ガス導入管を有する三口フラスコに、数平均分子量1000のポリカプロラクトンポリオール(ダイセル化学株式会社製プラクセル)100g、4,4’-メチレンビス(シクロヘキシルイソシアネート)39.5gを仕込み、窒素雰囲気下、90℃で6時間反応させ、末端にイソシアネート基を有するプレポリマー(ポリウレタン樹脂(i))を得た。
 (ポリウレタン樹脂(ii)の合成)
 撹拌羽、冷却管、温度計、窒素ガス導入管を有する三口フラスコに、数平均分子量1000のポリカプロラクトンポリオール(ダイセル化学株式会社製プラクセル)100g、水添ジフェニルメタンジイソシアネート61.3gを仕込み、窒素雰囲気下、90℃で6時間反応させ、末端にイソシアネート基を有するプレポリマーを得た。その後、トルエン300gを加えた後、窒素雰囲気下で1,4-ブタンジオール12.7gを滴下しながら加え、滴下終了後90℃で24時間反応させ、分子鎖の末端に水酸基を有するポリウレタン樹脂(ii)を合成した。
 以上のように得られたポリウレタン樹脂(i)175g、ポリウレタン樹脂(ii)溶液474g、フォトクロミック化合物PC1 10.5g、さらに酸化防止剤としてエチレンビス(オキシエチレン)ビス[3-(5-tert-ブチル-4-ヒドロキシ-m-トリル)プロピオネート] 3.5g、界面活性剤としてDOW CORNING TORAY L-7001 0.4gを添加し、室温で攪拌・混合を行い、(フォトクロミック)接着組成物17を得た。表6には、接着性組成物17と記した。
Figure JPOXMLDOC01-appb-T000016
 〔ポリビニルアルコール樹脂からなる光学シート1の調整〕
 市販のポリビニルアルコールシートを二色性染料で染色し、延伸、更にホウ酸で架橋することにより、視感透過率は41.0%、偏光度は99.1%、及び厚みが30μmのポリビニルアルコール樹脂からなる光学シート1(以下、単に『光学シート1』とする場合もある。)を作製した。光学シート1の延伸倍率は5.0倍、ホウ酸含有量は10.3質量%、水分量は11.3質量%であった。
 なお、視感透過率、偏光度は、上記の測定方法に従った。延伸倍率、及びホウ酸含有量の評価は、以下のようにして実施した。
 〔延伸倍率〕
 得られた光学シートの延伸倍率は、ポリビニルアルコール樹脂からなるシートの延伸前、及び延伸後の長さに基づき算出した。例えば、延伸をしていない状態が延伸倍率1倍に相当する。
 〔ホウ酸含有量〕
 得られた光学シートを試料とし、当該光学シートを硝酸水溶液に溶解し、次いでセイコー電子工業社製のICP発光分光分析装置(SPS-1100形)でホウ素含有量を分析することで、光学シート中のホウ酸含有量を算出した。
 〔水分量〕
 得られた光学シートの水分量は、以下のようにして求めた。先ず、水分量を求めたい光学シート(被光学シート)の質量を測定する。次いで、その光学シートを110℃で20時間真空乾燥し、これ以上乾燥しても質量の変化がない状態の光学シート(基本光学シート)とする。被光学シートの質量から基本光学シートの質量を引き、その得られた値を被光学シートの質量で割る。さらにその割った値を100倍し、得られた値を水分量(質量%)とした。
 〔ポリビニルアルコール樹脂からなる光学シート2~15の調整〕
 表7に示すポリビニルアルコール樹脂を用い、表7に示す物性を有するポリビニルアルコール樹脂からなる光学シート2~15を用意した。得られた光学シートの評価結果を表7に示した。
Figure JPOXMLDOC01-appb-T000017
 実施例22
〔機能性積層体(A)の作製〕
 接着性組成物4を、バーコーターを用いて、光学シート1上に塗工し、乾燥温度80℃で5分間乾燥させて、膜厚40μmの接着性組成物4からなる接着性層を形成し、次いでこの接着性層に対し光学シート2を、ラミネートロールを用いて貼り合わせた。
 次いで、上記方法で得られた構造体を、60℃、真空下(500Pa)で12時間静置(脱気工程)した後、90℃で1時間加熱処理(加熱工程)した。その後、室温で約1週間放置することにより、フォトクロミック特性を有する機能性積層体(A10)(以下、単に『機能性積層体(A10)』とする場合もある。)を得た。
 得られた機能性積層体A10のフォトクロミック特性は、視感透過率11.0%、退色速度45秒であり、視感透過率(発色前)は40.8%、偏光度(発色前)が99.0%であった。また、剥離強度は25℃が70N/25mm、外観は『0』であった。なお、フォトクロミック特性、剥離強度、視感透過率、及び偏光度に関しては、前述の評価方法をそのまま用いた。
 水分量は、ポリビニルアルコール樹脂からなる光学シートと同様の方法により測定した。具体的には、得られた機能性積層体を80℃、13Torrの条件下で15時間真空乾燥させて、測定した。以下の実施例においては、この真空乾燥後に、合成樹脂層(B)を積層した。
 外観評価は以下の通り実施した。
 〔外観〕
 得られた機能性積層体の外観評価は、該機能性積層体に高圧水銀ランプの光を照射して、白紙上にその投影面を写し出し、該機能性積層体の全体の投影面を観察評価した。評価基準を以下に示す。
0;不良が観察されない。
1;機能性積層体の面歪みによる不良が、一部に観察される。
2;機能性積層体の面歪みによる不良が、全面に観察される。
 実施例23~49、比較例2
 表8に示す接着性組成物、及びポリビニルアルコール樹脂からなる光学シートを用いて機能性積層体を作製した以外は、実施例22と同様に機能性積層体((A11)~(A38))を作製し、その評価を行った。得られた機能性積層体の評価結果を表8に示した。なお、実施例49では、2枚の光学シート15の偏光軸を、45°傾けてラミネートして機能性積層体(A37)を作製した。得られた機能性積層体の構成を表8に示し、評価結果を表9に示す。また、表10に、得られた機能性積層体の外表面(少なくとも合成樹脂層(B)がその上に形成される面、表10には両外表面の値を示した。)の接触角、反応性官能基の種類、機能性積層体の水分量(合成樹脂層(B)形成前)の結果を示した。
 なお、比較例2においては厚み300μmのポリカーボネートシートを使用し、機能性積層体(A38)を作製した。
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
 実施例50
 機能性積層体(A10)を、ガスケットを有するガラスモールド内(0.00D、レンズ径70mm、肉厚3.0mmに設定)に設置した。このガラスモールド内に設置した機能性積層体(A10)の上下に、チオウレタン系モノマー組成物(ジシクロヘキシルメタン-4 ,4 ’-ジイソシアネート43.5質量部、イソホロンジイソシアネート43.5質量部、1,2-ビス〔(2-メルカプトエチル)チオ〕-3-メルカプトプロパン63.0質量部、及び重合開始剤としてジブチルチンジラウレート0.1質量部)の混合物を注入し、重合は空気炉を用い、35℃から130℃まで12時間かけて徐々に昇温した後、130℃で0.5時間保持した。重合終了後、ガスケットとモールドを取り外したのち、オーブンに入れ130℃で3時間加熱した。なお、機能性積層体(A10)は、80℃、13Torrの条件下で15時間真空乾燥させた後に使用した。
 その後、外周を玉摺機にて研磨することにより、直径60mmの機能性レンズを得た。同様の操作を行い10枚の機能性レンズを得た。
 得られた機能性レンズを評価したところ、フォトクロミック特性は、視感透過率10.8%、退色速度45秒であり、視感透過率(発色前)は40.2%、偏光度(発色前)が99.0%、外観は『0』であった。該機能性レンズの機能性積層体と合成樹脂層間のハガレを目視により評価行ったところ、初期は『0』、煮沸試験後(3時間後)は『0』であった。また接着強度は250Nを超え、機能性積層体(A)または合成樹脂層(B)の割れ等が発生した。
 なお、フォトクロミック特性、視感透過率、退色速度、視感透過率(発色前)、偏光度(発色前)、外観、ハガレ、及び接着強度は前記実施例と同様の評価を行った。
 また、該機能性レンズの目視評価(気泡)は、『0』であった。気泡に関しては、下記に説明した通り、10枚中、何枚気泡が生じたかを目視にて確認した。
 〔目視評価(気泡)〕
 得られた積層体に含まれる気泡の発生状態の評価を目視により実施した。評価は、積層体を各10枚ずつ作製し、以下の基準に基づいて実施した。
0;10枚全てで、0~2個の気泡しか発生しない。気泡が発生していたとしてもコバ付近のみ。
1;10枚中5枚以上で、3個以上の気泡が発生している。
 実施例51~77、及び比較例3
 表11に示す機能性積層体、及びレンズ形成用モノマー組成物を用いた以外は、実施例50と同様の方法で機能性レンズを製造した。その結果を、表11に示す。
 また、表11に示すレンズ形成用モノマー(重合条件を含む)の略称は、表5で使用したレンズ形成用モノマーと同じであり、詳細は前記に記載の通りである。
Figure JPOXMLDOC01-appb-T000021
 実施例78~80
 表12に示す表面処理方法、及びレンズ形成用モノマー組成物を用いた以外は、実施例50と同様の方法で機能性レンズを製造した。その結果を、表12に示す。表面処理は、表4に示す条件と同じである。
Figure JPOXMLDOC01-appb-T000022
 上記実施例50~80から明らかなように、本発明のフォトクロミック積層体、及び積層体は、優れたフォトクロミック特性、及び/または偏光性、更に優れた密着性、外観を有することが分かる。
 一方、比較例2では、フォトクロミック特性、及び外観が良好なフォトクロミック積層体が得られたものの、比較例2の機能性積層体(A38)を使用した比較例3ではポリカーボネートシートの耐溶剤性が低いために白濁(外観不良)した機能性レンズが得られた。
1 機能性積層体(A)
2 第一光学シート(Aa)
3 フォトクロミック特性を有する接着層(フォトクロミック接着層(Ac1))
3’フォトクロミック特性を有さない接着層(接着層)
4 第二光学シート(Ab)
4’偏光フィルムからなる第二光学シート(Ab)
5 偏光フィルム(Ac2)
6 機能性レンズ
7 第一光学シート(Aa)の外表面
7’第二光学シート(Ab)の外表面
8 合成樹脂層(B)
9 表面改質領域

Claims (14)

  1.  第一光学シート(Aa)、第二光学シート(Ab)及びこれらの2つのシート間に存在するフォトクロミック特性及び/又は偏光性を有する機能性層(Ac)を含む機能性積層体(A)並びに上記機能性積層体(A)の上記第一光学シート(Aa)及び第二光学シート(Ab)の少なくともいずれか一方のシート上に存在する合成樹脂層(B)を含む機能性レンズであって、
     上記第一光学シート(Aa)及び第二光学シート(Ab)は、いずれもポリアミド樹脂、ポリエステル樹脂、セルロース樹脂、(メタ)アクリル樹脂、ポリウレタン樹脂、ポリウレタンウレア樹脂、ポリイミド樹脂、エポキシ樹脂、ポリオレフィン樹脂、及びポリビニルアルコール樹脂よりなる群から選ばれる樹脂からなり、
     上記合成樹脂層(B)は、ポリアミド樹脂、ポリエステル樹脂、アリル樹脂、(メタ)アクリル樹脂、ポリウレタン樹脂、ポリウレタンウレア樹脂、ポリチオウレタン樹脂、ポリチオエポキシ樹脂及びポリカーボネート樹脂よりなる群から選ばれる樹脂からなり、且つ
     第一光学シート(Aa)及び/または第二光学シート(Ab)と合成樹脂層(B)との間の接着強度が50N以上である上記機能性レンズ。
  2.  第一光学シート(Aa)及び/または第二光学シート(Ab)が、ポリアミド樹脂、ポリエステル樹脂セルロース樹脂、及びポリビニルアルコール樹脂よりなる群から選ばれる樹脂からなり、
     合成樹脂層(B)が、アリル樹脂、(メタ)アクリル樹脂、ポリウレタン樹脂、ポリウレタンウレア樹脂、ポリチオウレタン樹脂及びポリチオエポキシ樹脂よりなる群から選ばれる樹脂からなる請求項1に記載の機能性レンズ。
  3.  第一光学シート(Aa)及び第二光学シート(Ab)がポリビニルアルコール樹脂からなり、
     機能性層(Ac)が、フォトクロミック化合物及びポリウレタンウレア樹脂を含むフォトクロミック接着層(Ac1)からなり、
     前記第一光学シート(Aa)及び前記第二光学シート(Ab)が前記フォトクロミック接着層(Ac1)で直接接合されてなる請求項1に記載の機能性レンズ。
  4.  ポリビニルアルコール樹脂からなる、第一光学シート(Aa)及び第二光学シート(Ab)の少なくとも一方のシートが、偏光性を有するシートである請求項3に記載の機能性レンズ。
  5.  第一光学シート(Aa)、第二光学シート(Ab)及びこれらの2つのシート間に存在するフォトクロミック特性及び/又は偏光性を有する機能性層(Ac)を含む機能性積層体(A)であって、
     上記第一光学シート(Aa)及び第二光学シート(Ab)は、いずれもポリアミド樹脂、ポリエステル樹脂、セルロース樹脂、(メタ)アクリル樹脂、ポリウレタン樹脂、ポリウレタンウレア樹脂、ポリイミド樹脂、エポキシ樹脂、及びポリオレフィン樹脂よりなる群から選ばれる樹脂からなり、且つ
     上記第一光学シート(Aa)及び第二光学シート(Ab)の少なくとも一方の光学シートの外表面に、反応性官能基を有する表面改質領域が存在する上記機能性積層体。
  6.  前記表面改質領域の反応性官能基が、ヒドロキシ基、チオール基、カルボキシ基、アミノ基、スルホ基、(チオ)イソシアネート基、アリル基、(メタ)アクリル基、ビニル基、エポキシ基、オキセタン基、チオエポキシ基及びシラノール基よりなる群から選ばれる請求項5記載の機能性積層体。
  7.  前記表面改質領域が、ラジカル重合性基を有するシランカップリング剤を含むコート組成物により前記光学シートの外表面を処理した領域である請求項5又は6に記載の機能性積層体。
  8.  前記表面改質領域の接触角が10~60°である請求項5又は6に記載の機能性積層体。
  9.  前記機能性層(Ac)がフォトクロミック特性を有する層を含んでなり、
     該フォトクロミック特性を有する層がフォトクロミック化合物及びポリウレタンウレア樹脂を含むフォトクロミック接着層(Ac1)である請求項5~8の何れかに記載の機能性積層体。
  10.  前記機能性層(Ac)が、偏光性を有する層である偏光フィルム(Ac2)を含んでなり、
     該偏光フィルム(Ac2)の両表面が接着層を介して第一光学シート(Aa)及び第二光学シート(Ab)と接合してなる請求項5~9の何れかに記載の機能性積層体。
  11.  前記機能性層(Ac)が、フォトクロミック特性を有する層と偏光性を有する層とを備えた層であり、
     前記フォトクロミック特性を有する層が、フォトクロミック化合物及びポリウレタンウレア樹脂を含むフォトクロミック接着層(Ac1)であり、
     該フォトクロミック接着層(Ac1)と第一光学シート(Aa)とが接合し、かつ
     前記偏光性を有する層が、偏光フィルム(Ac2)からなり、
     該偏光フィルム(Ac2)の一方の表面と該フォトクロミック接着層(Ac1)とが接合し、
     該偏光フィルム(Ac2)の他方の表面が接着層を介して第二光学シート(Ab)と接合してなる請求項5~10の何れかに記載の機能性積層体。
  12.  第一光学シート(Aa)、第二光学シート(Ab)及びこれらの2つのシート間に存在するフォトクロミック特性を有する機能性層(Ac)を含む機能性積層体(A)であって、
     上記第一光学シート(Aa)及び第二光学シート(Ab)は、いずれもポリビニルアルコール樹脂からなり、
     上記第一光学シート(Aa)及び第二光学シート(Ab)の少なくとも一方の光学シートの外表面に、ヒドロキシ基、チオール基、カルボキシ基、アミノ基、スルホ基、(チオ)イソシアネート基、アリル基、(メタ)アクリル基、ビニル基、エポキシ基、オキセタン基、チオエポキシ基及びシラノール基から選ばれる反応性官能基を有する表面改質領域が存在し、
     上記機能性層(Ac)が、フォトクロミック化合物及びポリウレタンウレア樹脂を含むフォトクロミック接着層(Ac1)からなり、
     前記第一光学シート(Aa)及び前記第二光学シート(Ab)が前記フォトクロミック接着層(Ac1)で直接接合されてなる機能性積層体。
  13.  上記第一光学シート(Aa)及び第二光学シート(Ab)の少なくとも一方のシートが、偏光性を有するシートである請求項12に記載の機能性積層体。
  14.  請求項5~12の何れかに記載の機能性積層体(A)を、
     アリル樹脂、(メタ)アクリル樹脂、ポリウレタン樹脂、ポリウレタンウレア樹脂、ポリチオウレタン樹脂及びポリチオエポキシ樹脂よりなる群から選ばれる樹脂を、重合することにより生成するレンズ形成用モノマー組成物中に埋設し、次いで
     該レンズ形成用モノマー組成物を重合させることにより、該機能性積層体(A)上に合成樹脂層(B)を積層する、ことを特徴とする請求項1に記載の機能性レンズを製造する方法。
PCT/JP2019/005951 2018-02-23 2019-02-19 機能性積層体、及び機能性積層体を用いた機能性レンズ WO2019163728A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US16/971,349 US11988808B2 (en) 2018-02-23 2019-02-19 Functional laminate and functional lens comprising the functional laminate
JP2020501761A JP7422067B2 (ja) 2018-02-23 2019-02-19 機能性積層体、及び機能性積層体を用いた機能性レンズ
EP19756579.9A EP3757663A4 (en) 2018-02-23 2019-02-19 FUNCTIONAL MULTI-LAYER BODY AND FUNCTIONAL LENS USING A FUNCTIONAL MULTI-LAYER BODY
CN201980013824.3A CN111727402B (zh) 2018-02-23 2019-02-19 功能性层叠体和使用功能性层叠体的功能性透镜
MX2020008644A MX2020008644A (es) 2018-02-23 2019-02-19 Producto laminado funcional y lente funcional que comprende el producto laminado funcional.
KR1020207023870A KR20200124667A (ko) 2018-02-23 2019-02-19 기능성 적층체, 및 기능성 적층체를 사용한 기능성 렌즈

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2018-030413 2018-02-23
JP2018030413 2018-02-23
JP2018087691 2018-04-27
JP2018-087691 2018-04-27
JP2018-197121 2018-10-19
JP2018197121 2018-10-19

Publications (1)

Publication Number Publication Date
WO2019163728A1 true WO2019163728A1 (ja) 2019-08-29

Family

ID=67687616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/005951 WO2019163728A1 (ja) 2018-02-23 2019-02-19 機能性積層体、及び機能性積層体を用いた機能性レンズ

Country Status (8)

Country Link
US (1) US11988808B2 (ja)
EP (1) EP3757663A4 (ja)
JP (1) JP7422067B2 (ja)
KR (1) KR20200124667A (ja)
CN (1) CN111727402B (ja)
MX (1) MX2020008644A (ja)
TW (1) TWI793265B (ja)
WO (1) WO2019163728A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023085051A1 (ja) * 2021-11-10 2023-05-19 株式会社トクヤマ 光学積層シート、光学物品、レンズ、眼鏡、及び光学積層シートの製造方法
WO2023210447A1 (ja) * 2022-04-25 2023-11-02 株式会社トクヤマ 光学積層シートの製造方法及び光学物品の製造方法
WO2024018902A1 (ja) * 2022-07-21 2024-01-25 株式会社トクヤマ 積層体、光学物品、レンズ、及び眼鏡

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114701179B (zh) * 2020-05-09 2023-07-28 上海伟星光学有限公司 一种聚氨酯复合镜片
CN111633893A (zh) * 2020-06-09 2020-09-08 江苏淘镜有限公司 一种车内用多层复合变色偏光树脂镜片的制造工艺
CN111633892A (zh) * 2020-06-09 2020-09-08 江苏淘镜有限公司 一种超薄变色偏光树脂镜片的制造工艺

Citations (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5619472B2 (ja) 1976-02-17 1981-05-07
JPS5626081B2 (ja) 1974-05-13 1981-06-16
JPS60127923A (ja) 1983-12-15 1985-07-08 Japax Inc ワイヤカツト放電加工装置
JPS61236521A (ja) 1985-04-12 1986-10-21 Kureha Chem Ind Co Ltd 調光レンズ及びその製造方法
JPS62288830A (ja) 1986-05-01 1987-12-15 ピルキントン・ブラザ−ズ・ピ−エルシ− フォトクロミック化合物および該化合物を利用したプラスチック有機フォトクロミック物品
JPH0228154A (ja) 1987-11-10 1990-01-30 Tokuyama Soda Co Ltd 新規化合物及びそれを含む組成物
JPH0410030A (ja) 1990-04-27 1992-01-14 Hitachi Ltd プログラム作成方法
JPH05194616A (ja) 1992-01-23 1993-08-03 Mitsubishi Rayon Co Ltd プラスチックレンズのブルーイング方法
JPH05195446A (ja) 1992-01-23 1993-08-03 Mitsubishi Rayon Co Ltd プラスチックレンズのブルーイング方法
WO1994022850A1 (en) 1993-03-30 1994-10-13 Pilkington Plc Photochromic naphthopyran compounds
WO1996014596A1 (en) 1994-11-03 1996-05-17 Ppg Industries, Inc. Novel photochromic indeno-fused naphthopyrans
WO2000015630A1 (en) 1998-09-11 2000-03-23 Ppg Industries Ohio, Inc. Polyalkoxylated naphthopyrans
JP2003105218A (ja) 2001-09-28 2003-04-09 Mitsui Chemicals Inc アザポルフィリン系色素およびその用途
WO2004041961A1 (en) 2002-11-04 2004-05-21 Polymers Australia Pty Limited Photochromic compositions and light transmissible articles
JP2005181426A (ja) 2003-12-16 2005-07-07 Mitsubishi Gas Chem Co Inc フォトクロミックレンズおよびその製造方法
JP2005215640A (ja) 2004-02-02 2005-08-11 Mitsubishi Gas Chem Co Inc フォトクロミックレンズおよびその製造方法
WO2005105874A1 (en) 2004-04-30 2005-11-10 Polymers Australia Pty Limited Photochromic compositions and articles comprising polyether oligomer
WO2006022825A1 (en) 2004-07-30 2006-03-02 Transitions Optical, Inc. Photochromic materials
JP2007025609A (ja) * 2005-07-21 2007-02-01 Mgc Filsheet Co Ltd 偏光調光特性を有する光制御プラスチックレンズおよびその製造方法
WO2008018168A1 (fr) 2006-08-10 2008-02-14 Mitsui Chemicals, Inc. Lentille polarisante en plastique et procédé servant à produire celle-ci
JP2008134618A (ja) 2006-10-26 2008-06-12 Hopunikku Kenkyusho:Kk プラスチック眼鏡レンズ
WO2009146509A1 (en) 2008-06-05 2009-12-10 Advanced Polymerik Pty Ltd Photochromic polymer and composition comprising photochromic polymer
WO2010020770A1 (en) 2008-08-18 2010-02-25 James Robinson Limited Polydialkylsiloxane-bridged bi-photochromic molecules
WO2012018070A1 (ja) 2010-08-06 2012-02-09 株式会社トクヤマ フォトクロミック組成物
WO2012020570A1 (ja) 2010-08-12 2012-02-16 三井化学株式会社 プラスチック偏光レンズ、その製造方法および偏光フィルム
JP2012052091A (ja) 2010-08-06 2012-03-15 Tokuyama Corp フォトクロミック組成物
JP2012167245A (ja) 2010-09-29 2012-09-06 Tokuyama Corp フォトクロミック組成物
WO2012121414A1 (ja) 2011-03-08 2012-09-13 株式会社トクヤマ クロメン化合物
JP2012207198A (ja) 2011-03-11 2012-10-25 Tokuyama Corp フォトクロミック組成物、および光学物品
WO2012149599A1 (en) 2011-05-03 2012-11-08 Advanced Polymerik Pty Ltd Photochromic polymer
JP2012226026A (ja) 2011-04-18 2012-11-15 Tokuyama Corp フォトクロミックレンズ
JP2012230317A (ja) 2011-04-27 2012-11-22 Tokuyama Corp フォトクロミックレンズ、及びその製造方法
WO2012162725A1 (en) 2011-06-03 2012-12-06 Advanced Polymerik Pty Ltd Photochromic polymers
JP2012242718A (ja) 2011-05-23 2012-12-10 Tokuyama Corp 積層体、フォトクロミックレンズ、及びその製造方法
JP2012242701A (ja) 2011-05-23 2012-12-10 Tokuyama Corp フォトクロミックレンズ、及びその製造方法
WO2012176918A1 (ja) 2011-06-23 2012-12-27 株式会社トクヤマ クロメン化合物
JP2013061653A (ja) 2006-10-26 2013-04-04 Hopunikku Kenkyusho:Kk プラスチック眼鏡レンズ
WO2013078086A1 (en) 2011-11-22 2013-05-30 Transitions Optical, Inc. Photochromic compounds having at least two photochromic moieties
WO2013132805A1 (ja) 2012-03-06 2013-09-12 三井化学株式会社 プラスチック偏光レンズ及びその製造方法
JP2014113761A (ja) 2012-12-11 2014-06-26 Tokuyama Corp 積層シートの製造方法
JP2016522269A (ja) * 2013-03-20 2016-07-28 エシロール アテルナジオナール カンパニー ジェネラーレ デ オプティックEssilor International Compagnie Generale D’ Optique 偏光構造体及び偏光レンズ用のポリウレタン系接着剤
JP2016147922A (ja) 2015-02-10 2016-08-18 株式会社トクヤマ ポリウレタンウレア樹脂、及び該ポリウレタンウレア樹脂の製造方法
JP2016169363A (ja) * 2015-03-12 2016-09-23 株式会社トクヤマ フォトクロミック組成物、及び該組成物からなる積層体、及び該積層体を用いた物品
WO2017115874A1 (ja) 2015-12-28 2017-07-06 株式会社トクヤマ 積層体、及び該積層体を用いた光学物品
WO2018025508A1 (ja) 2016-08-02 2018-02-08 株式会社トクヤマ 接着性組成物、積層体、及び該積層体を用いた光学物品

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4268134A (en) * 1979-03-07 1981-05-19 Corning Glass Works Lightweight laminated photochromic lenses
JPS60127923U (ja) 1984-02-07 1985-08-28 日本板硝子株式会社 フオトクロミツク積層体
US5312689A (en) * 1993-02-22 1994-05-17 Corning Incorporated Laminated ophthalmic lens
JP2002131537A (ja) 2000-10-20 2002-05-09 Fuji Photo Film Co Ltd 位相差板、円偏光板、および反射型液晶表示装置
TWI323254B (en) 2004-02-02 2010-04-11 Mgc Filsheet Co Ltd Light control plastic lens, coated sheet-like light control element for the lens production, and a production method for light control plastic lens
KR101136478B1 (ko) 2004-04-19 2012-04-20 썬룩스 컴퍼니 리미티드 편광 플라스틱 광학 소자 및 그의 제조 방법
CN101087862B (zh) * 2004-09-02 2011-10-26 澳大利亚聚合物有限公司 包含聚合物取代基的光致变色化合物及其制备方法和用途
US7289257B1 (en) 2006-07-28 2007-10-30 Yasunobu Nakagoshi Molded laminate for optical use
EP2496405B1 (en) * 2009-11-02 2018-08-15 Essilor International Tri-layer adhesive system for a laminated lens and method for applying same
WO2011105133A1 (ja) 2010-02-24 2011-09-01 コニカミノルタオプト株式会社 表面改質樹脂フィルム、その製造方法、それを用いた偏光板、及び液晶表示装置
FR3009234B1 (fr) 2013-08-05 2017-09-29 Essilor Int Structure en couches fonctionnalisee
JP6221713B2 (ja) 2013-12-11 2017-11-01 住友化学株式会社 表面改質されたシクロオレフィン系樹脂フィルムの製造方法及び偏光板の製造方法
JP6581784B2 (ja) 2015-03-13 2019-09-25 ホヤ レンズ タイランド リミテッドHOYA Lens Thailand Ltd 眼鏡レンズおよび眼鏡
TWI634001B (zh) 2016-12-27 2018-09-01 住華科技股份有限公司 光學膜片、顯示面板模組及其製造方法

Patent Citations (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5626081B2 (ja) 1974-05-13 1981-06-16
JPS5619472B2 (ja) 1976-02-17 1981-05-07
JPS60127923A (ja) 1983-12-15 1985-07-08 Japax Inc ワイヤカツト放電加工装置
JPS61236521A (ja) 1985-04-12 1986-10-21 Kureha Chem Ind Co Ltd 調光レンズ及びその製造方法
JPS62288830A (ja) 1986-05-01 1987-12-15 ピルキントン・ブラザ−ズ・ピ−エルシ− フォトクロミック化合物および該化合物を利用したプラスチック有機フォトクロミック物品
JPH0228154A (ja) 1987-11-10 1990-01-30 Tokuyama Soda Co Ltd 新規化合物及びそれを含む組成物
JPH0410030A (ja) 1990-04-27 1992-01-14 Hitachi Ltd プログラム作成方法
JPH05194616A (ja) 1992-01-23 1993-08-03 Mitsubishi Rayon Co Ltd プラスチックレンズのブルーイング方法
JPH05195446A (ja) 1992-01-23 1993-08-03 Mitsubishi Rayon Co Ltd プラスチックレンズのブルーイング方法
WO1994022850A1 (en) 1993-03-30 1994-10-13 Pilkington Plc Photochromic naphthopyran compounds
WO1996014596A1 (en) 1994-11-03 1996-05-17 Ppg Industries, Inc. Novel photochromic indeno-fused naphthopyrans
WO2000015630A1 (en) 1998-09-11 2000-03-23 Ppg Industries Ohio, Inc. Polyalkoxylated naphthopyrans
JP2003105218A (ja) 2001-09-28 2003-04-09 Mitsui Chemicals Inc アザポルフィリン系色素およびその用途
WO2004041961A1 (en) 2002-11-04 2004-05-21 Polymers Australia Pty Limited Photochromic compositions and light transmissible articles
JP2005181426A (ja) 2003-12-16 2005-07-07 Mitsubishi Gas Chem Co Inc フォトクロミックレンズおよびその製造方法
JP2005215640A (ja) 2004-02-02 2005-08-11 Mitsubishi Gas Chem Co Inc フォトクロミックレンズおよびその製造方法
WO2005105874A1 (en) 2004-04-30 2005-11-10 Polymers Australia Pty Limited Photochromic compositions and articles comprising polyether oligomer
WO2005105875A1 (en) 2004-04-30 2005-11-10 Polymers Australia Pty Limited Photochromic compositions and articles comprising siloxane, alkylene or substituted alkylene oligomers
WO2006022825A1 (en) 2004-07-30 2006-03-02 Transitions Optical, Inc. Photochromic materials
JP2007025609A (ja) * 2005-07-21 2007-02-01 Mgc Filsheet Co Ltd 偏光調光特性を有する光制御プラスチックレンズおよびその製造方法
WO2008018168A1 (fr) 2006-08-10 2008-02-14 Mitsui Chemicals, Inc. Lentille polarisante en plastique et procédé servant à produire celle-ci
JP2008134618A (ja) 2006-10-26 2008-06-12 Hopunikku Kenkyusho:Kk プラスチック眼鏡レンズ
JP2013061653A (ja) 2006-10-26 2013-04-04 Hopunikku Kenkyusho:Kk プラスチック眼鏡レンズ
JP5778109B2 (ja) 2006-10-26 2015-09-16 株式会社ホプニック研究所 プラスチック眼鏡レンズ
WO2009146509A1 (en) 2008-06-05 2009-12-10 Advanced Polymerik Pty Ltd Photochromic polymer and composition comprising photochromic polymer
WO2010020770A1 (en) 2008-08-18 2010-02-25 James Robinson Limited Polydialkylsiloxane-bridged bi-photochromic molecules
WO2012018070A1 (ja) 2010-08-06 2012-02-09 株式会社トクヤマ フォトクロミック組成物
JP2012052091A (ja) 2010-08-06 2012-03-15 Tokuyama Corp フォトクロミック組成物
JP2015180942A (ja) 2010-08-12 2015-10-15 三井化学株式会社 プラスチック偏光レンズ、その製造方法および偏光フィルム
WO2012020570A1 (ja) 2010-08-12 2012-02-16 三井化学株式会社 プラスチック偏光レンズ、その製造方法および偏光フィルム
JP2012167245A (ja) 2010-09-29 2012-09-06 Tokuyama Corp フォトクロミック組成物
WO2012121414A1 (ja) 2011-03-08 2012-09-13 株式会社トクヤマ クロメン化合物
JP2012207198A (ja) 2011-03-11 2012-10-25 Tokuyama Corp フォトクロミック組成物、および光学物品
JP2012226026A (ja) 2011-04-18 2012-11-15 Tokuyama Corp フォトクロミックレンズ
JP2012230317A (ja) 2011-04-27 2012-11-22 Tokuyama Corp フォトクロミックレンズ、及びその製造方法
WO2012149599A1 (en) 2011-05-03 2012-11-08 Advanced Polymerik Pty Ltd Photochromic polymer
JP2012242718A (ja) 2011-05-23 2012-12-10 Tokuyama Corp 積層体、フォトクロミックレンズ、及びその製造方法
JP2012242701A (ja) 2011-05-23 2012-12-10 Tokuyama Corp フォトクロミックレンズ、及びその製造方法
WO2012162725A1 (en) 2011-06-03 2012-12-06 Advanced Polymerik Pty Ltd Photochromic polymers
WO2012176918A1 (ja) 2011-06-23 2012-12-27 株式会社トクヤマ クロメン化合物
WO2013078086A1 (en) 2011-11-22 2013-05-30 Transitions Optical, Inc. Photochromic compounds having at least two photochromic moieties
WO2013132805A1 (ja) 2012-03-06 2013-09-12 三井化学株式会社 プラスチック偏光レンズ及びその製造方法
JP2016189009A (ja) * 2012-03-06 2016-11-04 三井化学株式会社 プラスチック偏光レンズ及びその製造方法
JP2014113761A (ja) 2012-12-11 2014-06-26 Tokuyama Corp 積層シートの製造方法
JP2016522269A (ja) * 2013-03-20 2016-07-28 エシロール アテルナジオナール カンパニー ジェネラーレ デ オプティックEssilor International Compagnie Generale D’ Optique 偏光構造体及び偏光レンズ用のポリウレタン系接着剤
JP2016147922A (ja) 2015-02-10 2016-08-18 株式会社トクヤマ ポリウレタンウレア樹脂、及び該ポリウレタンウレア樹脂の製造方法
JP2016169363A (ja) * 2015-03-12 2016-09-23 株式会社トクヤマ フォトクロミック組成物、及び該組成物からなる積層体、及び該積層体を用いた物品
WO2017115874A1 (ja) 2015-12-28 2017-07-06 株式会社トクヤマ 積層体、及び該積層体を用いた光学物品
WO2018025508A1 (ja) 2016-08-02 2018-02-08 株式会社トクヤマ 接着性組成物、積層体、及び該積層体を用いた光学物品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3757663A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023085051A1 (ja) * 2021-11-10 2023-05-19 株式会社トクヤマ 光学積層シート、光学物品、レンズ、眼鏡、及び光学積層シートの製造方法
WO2023210447A1 (ja) * 2022-04-25 2023-11-02 株式会社トクヤマ 光学積層シートの製造方法及び光学物品の製造方法
WO2024018902A1 (ja) * 2022-07-21 2024-01-25 株式会社トクヤマ 積層体、光学物品、レンズ、及び眼鏡

Also Published As

Publication number Publication date
JPWO2019163728A1 (ja) 2021-02-04
US20200386915A1 (en) 2020-12-10
US11988808B2 (en) 2024-05-21
EP3757663A1 (en) 2020-12-30
KR20200124667A (ko) 2020-11-03
TW201941954A (zh) 2019-11-01
JP7422067B2 (ja) 2024-01-25
MX2020008644A (es) 2020-09-21
CN111727402B (zh) 2022-07-15
TWI793265B (zh) 2023-02-21
EP3757663A4 (en) 2022-03-23
CN111727402A (zh) 2020-09-29

Similar Documents

Publication Publication Date Title
WO2019163728A1 (ja) 機能性積層体、及び機能性積層体を用いた機能性レンズ
JP4843677B2 (ja) プラスチック偏光レンズ及びその製造方法
WO2012020570A1 (ja) プラスチック偏光レンズ、その製造方法および偏光フィルム
TWI712494B (zh) 層合體、以及使用該層合體之光學物品
TWI541336B (zh) A photochromic composition, and an optical article using the composition
JP5832128B2 (ja) フォトクロミックレンズ
JP2008105225A (ja) 防眩性積層体、塗膜防眩性積層体、防眩性材料、及び該防眩性材料の製造方法
KR102197929B1 (ko) 접착성 조성물, 적층체 및 해당 적층체를 사용한 광학 물품
KR102086273B1 (ko) 안경 렌즈 및 안경
JP7357051B2 (ja) 偏光レンズの製造方法、偏光フィルム及び偏光レンズ
JPWO2012141250A1 (ja) フォトクロミック組成物
JP4614883B2 (ja) 高屈折率偏光レンズの製造方法
JP7118876B2 (ja) 積層体、該積層体からなる光学基材、および該光学基材を備えた光学物品
JP5762130B2 (ja) フォトクロミックレンズ、及びその製造方法
TW201529765A (zh) 光學物品用底漆組成物、含該光學物品用底漆組成物的硬化體之光致變色積層體
JP5766001B2 (ja) フォトクロミック組成物
JP5956726B2 (ja) フォトクロミックレンズ、及びその製造方法
WO2021172513A1 (ja) 湿気硬化型ポリウレタン組成物及び積層体
CN108603963A (zh) 偏振板的制造方法
WO2023176153A1 (ja) ポリチオウレタンフィルム、メガネレンズ用資材、メガネレンズ及びメガネレンズの製造方法
WO2024018902A1 (ja) 積層体、光学物品、レンズ、及び眼鏡
WO2023210448A1 (ja) 硬化性組成物、硬化体、積層体、光学物品、レンズ、及び眼鏡
WO2023210447A1 (ja) 光学積層シートの製造方法及び光学物品の製造方法
JP2024080623A (ja) 積層体、光学物品、コート層含有積層体、レンズ、及び眼鏡

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19756579

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020501761

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019756579

Country of ref document: EP

Effective date: 20200923