WO2019013299A1 - 熱伝導材料、熱伝導層付きデバイス、熱伝導材料形成用組成物、液晶性円盤状化合物 - Google Patents

熱伝導材料、熱伝導層付きデバイス、熱伝導材料形成用組成物、液晶性円盤状化合物 Download PDF

Info

Publication number
WO2019013299A1
WO2019013299A1 PCT/JP2018/026388 JP2018026388W WO2019013299A1 WO 2019013299 A1 WO2019013299 A1 WO 2019013299A1 JP 2018026388 W JP2018026388 W JP 2018026388W WO 2019013299 A1 WO2019013299 A1 WO 2019013299A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
conductive material
reactive functional
thermally conductive
Prior art date
Application number
PCT/JP2018/026388
Other languages
English (en)
French (fr)
Inventor
誠一 人見
慶太 高橋
輝樹 新居
有次 吉田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to EP18831796.0A priority Critical patent/EP3653660B1/en
Priority to JP2019529790A priority patent/JPWO2019013299A1/ja
Priority to EP20203834.5A priority patent/EP3816147B1/en
Priority to CN201880046559.4A priority patent/CN110869411B/zh
Priority to KR1020207001108A priority patent/KR102286095B1/ko
Publication of WO2019013299A1 publication Critical patent/WO2019013299A1/ja
Priority to US16/741,286 priority patent/US11702578B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/66Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety
    • C07C69/67Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of saturated acids
    • C07C69/708Ethers
    • C07C69/712Ethers the hydroxy group of the ester being etherified with a hydroxy compound having the hydroxy group bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C223/00Compounds containing amino and —CHO groups bound to the same carbon skeleton
    • C07C223/06Compounds containing amino and —CHO groups bound to the same carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C261/00Derivatives of cyanic acid
    • C07C261/02Cyanates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C321/00Thiols, sulfides, hydropolysulfides or polysulfides
    • C07C321/24Thiols, sulfides, hydropolysulfides, or polysulfides having thio groups bound to carbon atoms of six-membered aromatic rings
    • C07C321/26Thiols
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/50Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton
    • C07C323/51Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C323/52Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being acyclic and saturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/20Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
    • C07C43/21Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring containing rings other than six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/20Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
    • C07C43/23Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring containing hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/76Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring
    • C07C69/84Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring of monocyclic hydroxy carboxylic acids, the hydroxy groups and the carboxyl groups of which are bound to carbon atoms of a six-membered aromatic ring
    • C07C69/88Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring of monocyclic hydroxy carboxylic acids, the hydroxy groups and the carboxyl groups of which are bound to carbon atoms of a six-membered aromatic ring with esterified carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/76Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring
    • C07C69/84Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring of monocyclic hydroxy carboxylic acids, the hydroxy groups and the carboxyl groups of which are bound to carbon atoms of a six-membered aromatic ring
    • C07C69/92Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring of monocyclic hydroxy carboxylic acids, the hydroxy groups and the carboxyl groups of which are bound to carbon atoms of a six-membered aromatic ring with etherified hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D271/00Heterocyclic compounds containing five-membered rings having two nitrogen atoms and one oxygen atom as the only ring hetero atoms
    • C07D271/02Heterocyclic compounds containing five-membered rings having two nitrogen atoms and one oxygen atom as the only ring hetero atoms not condensed with other rings
    • C07D271/101,3,4-Oxadiazoles; Hydrogenated 1,3,4-oxadiazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/12Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/87Benzo [c] furans; Hydrogenated benzo [c] furans
    • C07D307/89Benzo [c] furans; Hydrogenated benzo [c] furans with two oxygen atoms directly attached in positions 1 and 3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • C08G59/245Di-epoxy compounds carbocyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4014Nitrogen containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • C08G59/4223Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • C08G59/423Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof containing an atom other than oxygen belonging to a functional groups to C08G59/42, carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • C08G59/4238Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof heterocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/504Amines containing an atom other than nitrogen belonging to the amine group, carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5046Amines heterocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/04Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
    • C08G65/06Cyclic ethers having no atoms other than carbon and hydrogen outside the ring
    • C08G65/16Cyclic ethers having four or more ring atoms
    • C08G65/18Oxetanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/053Polyhydroxylic alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/092Polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/40Ortho- or ortho- and peri-condensed systems containing four condensed rings
    • C07C2603/42Ortho- or ortho- and peri-condensed systems containing four condensed rings containing only six-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08J2371/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler

Definitions

  • the present invention relates to a thermally conductive material, a device with a thermally conductive layer, a composition for forming a thermally conductive material, and a liquid crystalline discotic compound.
  • Patent Documents 1 and 2 a thermally conductive material that promotes heat radiation from the power semiconductor device is used.
  • this invention makes it a subject to provide the heat conductive material which is excellent in heat conductivity.
  • Another object of the present invention is to provide a thermally conductive layer-attached device having a thermally conductive layer containing the thermally conductive material, and a composition for forming a thermally conductive material used to form the thermally conductive material. Do.
  • Another object of the present invention is to provide a novel liquid crystalline discotic compound.
  • a heat conductive material comprising a cured product of a crosslinkable compound having a group that reacts with a group.
  • thermally conductive material according to any one of [1] to [7], further comprising an inorganic substance.
  • the thermally conductive material according to any one of [1] to [10] which is in the form of a sheet.
  • a device with a thermally conductive layer comprising: a device; and a thermally conductive layer containing the thermally conductive material according to any one of [1] to [11] disposed on the device.
  • the heat conductive material which is excellent in heat conductivity can be provided.
  • a thermally conductive layer-attached device having a thermally conductive layer containing the above thermally conductive material, and a composition for forming a thermally conductive material used to form the thermally conductive material can be provided.
  • a novel liquid crystalline discotic compound can be provided.
  • the present composition the composition for forming a heat conductive material
  • the present composition the composition for forming a heat conductive material
  • the present invention is not limited to such embodiments.
  • a numerical range represented using “to” means a range including numerical values described before and after “to” as the lower limit value and the upper limit value.
  • the description of “(meth) acryloyl group” means the meaning of “any one or both of acryloyl group and methacryloyl group”.
  • the description of “(meth) acrylamide group” means the meaning of “one or both of an acrylamide group and a methacrylamide group”.
  • the kind of substituent in the case of "it may have a substituent”, the position of a substituent, and the number of substituents are not specifically limited.
  • the number of substituents is, for example, one or two or more.
  • the substituent include monovalent nonmetal atomic groups other than hydrogen atoms, and can be selected, for example, from the following substituent group Y.
  • Substituent group Y Halogen atom (-F, -Br, -Cl, -I), hydroxyl group, amino group, carboxylic acid group and its conjugate base group, carboxylic acid anhydride group, cyanate ester group, unsaturated polymerizable group, oxiranyl group, oxetanyl group , Aziridinyl group, thiol group, isocyanate group, thioisocyanate group, aldehyde group, alkoxy group, aryloxy group, alkylthio group, arylthio group, alkylthio group, alkyldithio group, aryldithio group, N-alkylamino group, N, N-dialkylamino group , N-arylamino group, N, N-diarylamino group, N-alkyl-N-arylamino group, acyloxy group, carbamoyloxy group, N-alkylcarb
  • the unsaturated polymerizable group may, for example, be a (meth) acryloyl group, a (meth) acrylamide group, and the following substituents represented by Q1 to Q7.
  • the heat conductive material of the present invention is a discotic compound having one or more reactive functional groups selected from the group consisting of a hydroxyl group, a carboxylic acid group, a carboxylic acid anhydride group, an amino group, a cyanate ester group and a thiol group
  • a cured product of a “specific discotic compound” and a crosslinkable compound having a group that reacts with a reactive functional group (hereinafter, also simply referred to as “crosslinkable compound”) is included. That is, the heat conductive material of the present invention includes a cured product obtained by reacting a specific discotic compound with a crosslinkable compound.
  • the thermal conductivity of the thermally conductive material can be improved by using the specific discotic compound and the crosslinkable compound.
  • the mechanism is not necessarily clear, while the rod-like compounds as described in Patent Documents 1 and 2 can conduct heat only linearly (one-dimensionally), the cured product of the specific discotic compound is Since heat can be conducted in the direction normal to the disk-like structure, it is believed that the number of heat conduction paths is increased to improve the heat conductivity.
  • a specific discotic compound is mentioned as a raw material of the hardened
  • the discotic compound means a compound having a discotic structure at least partially.
  • the discotic structure allows the discotic compound to form a stacking structure and take a columnar structure.
  • the discotic compound is preferably a compound having at least an aromatic ring and capable of forming a stacking structure based on ⁇ - ⁇ interaction between molecules to form a columnar structure. It is considered that such a columnar structure promotes the heat conduction in the direction normal to the disk-like structure as described above, and contributes to the improvement of the heat conductivity.
  • Specific discotic compounds include a hydroxyl group (—OH), a carboxylic acid group (—COOH), a carboxylic acid anhydride group, an amino group (—NH 2 ), a cyanate ester group (—O—C ⁇ N), and a thiol group ( And one or more reactive functional groups selected from the group consisting of Among them, from the viewpoint of more excellent thermal conductivity of the heat conductive material, the specific discotic compound is a reactive functional group selected from the group consisting of a hydroxyl group, a carboxylic acid group, a carboxylic acid anhydride group, an amino group and a cyanate ester group.
  • the specific discotic compound preferably has 3 to 8 reactive functional groups, and more preferably 3 to 6 reactive functional groups, from the viewpoint that the thermal conductivity of the heat conductive material is more excellent. Among them, it is preferable to have 3 to 8 reactive functional groups selected from the group consisting of a hydroxyl group, a carboxylic acid group and a carboxylic acid anhydride group, and it is more preferable to have 3 to 6 reactive functional groups.
  • the cured product of the specific discotic compound having three or more reactive functional groups has a high glass transition temperature and exhibits excellent heat resistance.
  • the hydroxyl group is preferably a hydroxyl group directly bonded to an aromatic ring such as a phenyl group.
  • carboxylic anhydride group is intended to be a monovalent substituent obtained by removing any hydrogen atom from acid anhydride such as maleic anhydride, phthalic anhydride, pyromellitic anhydride and trimellitic anhydride.
  • the discotic compound may be a liquid crystal compound exhibiting liquid crystallinity or a non-liquid crystal compound not exhibiting liquid crystallinity, but from the viewpoint of more excellent thermal conductivity of the thermally conductive material (in particular, the thermally conductive material In the case of a thicker film (for example, 400 ⁇ m or more), a liquid crystal compound is preferable from the viewpoint of more excellent thermal conductivity. That is, as the discotic compound, a liquid crystalline discotic compound is preferable.
  • a plurality of domains are formed according to the degree of orientational order, and it is presumed that there are a plurality of boundaries (grain boundaries) between each domain.
  • the domain size can be further increased (in other words, the number of grain boundaries can be further reduced), and as a result, particularly when the cured product is a thick film
  • the thermal conductivity of the cured product is considered to be further improved.
  • the liquid crystallinity of the specific discotic compound can be confirmed by polarized light microscope observation or differential scanning calorimetry.
  • discotic compound examples include C.I. Destrade et al. , Mol. Crysr. Liq. Cryst. , Vol. 71, page 111 (1981); The Chemical Society of Japan, Ed. 22, Liquid Crystal Chemistry, Chapter 5, Chapter 10, Section 2 (1994); Kohne et al. , Angew. Chem. Soc. Chem. Comm. , Page 1794 (1985); Zhang et al. , J. Am. Chem. Soc. , Vol. 116, page 2655 (1994), and compounds described in Patent No. 4592225.
  • As discotic compounds Angew. Chem. Int. Ed.
  • Examples thereof include a triphenylene structure described in 2012, 51, 7990-7993 and JP-A-7-306317, and a trisubstituted benzene structure described in JP-A 2007-2220 and JP-A 2010-244038.
  • M represents an n c monovalent discoid core portion.
  • L c1 represents a divalent linking group.
  • Q represents a hydrogen atom or a substituent.
  • n c1 represents an integer of 3 or more. However, one or more Q's represent the above-mentioned reactive functional groups.
  • the disk-shaped core portion represented by M is not particularly limited, and examples thereof include structures represented by formulas (CR1) to (CR16). * Represents a bonding position to a group represented by -L c1 -Q.
  • L c1 represents a divalent linking group.
  • R c1 represents a hydrogen atom or an alkyl group.
  • the carbon number of the alkyl group represented by R c1 is preferably 1 to 12, and more preferably 1 to 3.
  • the carbon number of the alkylene group is preferably 1 to 12.
  • the carbon number of the above alkenylene group is preferably 2 to 12. 10 or less is preferable and, as for carbon number of the said arylene group, 6 is preferable.
  • the carbon number of the above heteroarylene group is preferably 6 or less.
  • the heteroarylene group is preferably a 5- or 6-membered ring.
  • the hetero atom contained in the above-mentioned hetero arylene group is not particularly limited, and examples thereof include a nitrogen atom, an oxygen atom, and a sulfur atom.
  • the number of heteroatoms in the heteroarylene group is not particularly limited, and is, for example, 1 to 3.
  • the alkylene group, the alkenylene group, the arylene group, and the heteroarylene group may have a substituent (preferably, an alkyl group, a halogen atom, a cyano, an alkoxy group, an acyloxy group and the like).
  • L c1 is * c1 ⁇ from the viewpoint that the discotic compound exhibits liquid crystallinity and the thermal conductivity of the heat conductive material is more excellent.
  • * C1 shows the bonding position with the discoid core part.
  • * C2 represents the other binding position.
  • Each Q independently represents a hydrogen atom or a substituent.
  • the substituent include the groups exemplified in the above-mentioned substituent group Y. More specifically, as the substituent, the above-mentioned reactive functional group, halogen atom, isocyanate group, cyano group, unsaturated polymerizable group, oxiranyl group, oxetanyl group, aziridinyl group, thioisocyanate group, aldehyde group, and A sulfo group is mentioned.
  • one or more Q's represent a reactive functional group. Especially, it is preferable that all Q represents a reactive functional group from a viewpoint which the heat conductivity of a heat conductive material is more excellent.
  • n c1 represents an integer of 3 or more. From the viewpoint that the heat conductivity of the heat conductive material is more excellent, 3 to 8 is preferable, and 3 to 6 is more preferable.
  • L represents a divalent linking group.
  • a bivalent coupling group represented by L it is synonymous with the bivalent coupling group represented by Lc1 in the said Formula (1), and its preferable aspect is also the same.
  • It is preferable that it is group selected from the group which consists of S- and these combination, and an alkylene group, an alkenylene group, an arylene group, -C ( O)-, -NH-, -O-, and -S. It is more preferable that it is a group obtained by combining two or more groups selected from the group consisting of
  • the carbon number of the alkylene group is preferably 1 to 12.
  • the carbon number of the above alkenylene group is preferably 2 to 12.
  • the carbon number of the arylene group is preferably 10 or less.
  • the alkylene group, the alkenylene group and the arylene group may have a substituent (preferably, an alkyl group, a halogen atom, a cyano, an alkoxy group, an acyloxy group and the like).
  • L is shown below.
  • the bond on the left is bonded to the central structure of the compound represented by any one of formulas (D1) to (D15) (hereinafter, also simply referred to as "central ring"), and the bond on the right is Q Bond to AL means an alkylene group or an alkenylene group, and AR means an arylene group.
  • L is a * 1 -alkylene group -O-C from the viewpoint that the discotic compound exhibits liquid crystallinity and the thermal conductivity of the thermal conductive material is more excellent.
  • Q represents a hydrogen atom or a substituent.
  • Q is as described above.
  • one or more Q's represent the reactive functional groups described above.
  • the compound represented by the formula (D4) is preferable from the viewpoint that the thermal conductivity of the heat conductive material is more excellent.
  • the central ring of the specific discotic compound is preferably a triphenylene ring.
  • the compound represented by Formula (XI) is preferable from a viewpoint which the heat conductivity of a heat conductive material is more excellent.
  • R 11 , R 12 , R 13 , R 14 , R 15 and R 16 are each independently * -X 11 -L 11 -P 11 or * -X 12 -L 12- Y 12 is represented.
  • * represents a bonding position with a triphenylene ring.
  • R 11, R 12, R 13 , R 14, R 15 and, among the R 16, two or more may, * - X 11 is -L 11 -P 11, 3 or more is * -X 11 -L is preferably 11 -P 11.
  • any one or more of R 11 and R 12 , any one or more of R 13 and R 14 , and any one of R 15 and R 16 It is preferable that the number is * -X 11 -L 11 -P 11 or more. More preferably, all of R 11 , R 12 , R 13 , R 14 , R 15 and R 16 are * -X 11 -L 11 -P 11 . In addition, it is further preferred that all of R 11 , R 12 , R 13 , R 14 , R 15 and R 16 are identical.
  • Each L 11 independently represents a single bond or a divalent linking group.
  • 1 to 8 is more preferable, and 1 to 7 is more preferable.
  • An arylene group (having 6 to 20 carbon atoms, more preferably 6 to 14 and more preferably 6 to 10 carbon atoms), or these And a group consisting of a combination of Examples of the alkylene group include a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group and a heptylene group.
  • arylene group examples include 1,4-phenylene group, 1,3-phenylene group, 1,4-naphthylene group, 1,5-naphthylene group, and anthracenylene group, and 1,4-phenylene group is preferable. .
  • the alkylene group and the arylene group each may have a substituent.
  • the number of substituents is preferably 1 to 3, and more preferably 1.
  • the substitution position of the substituent is not particularly limited.
  • As the substituent a halogen atom or an alkyl group having 1 to 3 carbon atoms is preferable, and a methyl group is more preferable. It is also preferable that the said alkylene group and the said arylene group are unsubstituted. Among them, the alkylene group is preferably unsubstituted.
  • * 1 shows a bonding position with a triphenylene ring.
  • * 2 represents the other bonding position. Note that the other coupling position, represented by * 2, or represents the point of attachment to other atoms in L 11, or represents a bonding position to P 11.
  • Each P 11 independently represents a hydroxyl group, a carboxylic acid group, a carboxylic acid anhydride group, an amino group, or a cyanate ester group.
  • P 11 is preferably independently a hydroxyl group, a carboxylic acid group, or a carboxylic acid anhydride group.
  • L 11 preferably includes an arylene group, and the arylene group is preferably bonded to P 11 .
  • X 12 is the same as X 11 , and preferred conditions are also the same.
  • L 12 is the same as L 11 , and preferred conditions are also the same.
  • * 1 shows a bonding position with a triphenylene ring.
  • * 2 represents the other bonding position.
  • Y 12 is preferably a hydrogen atom, a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, or an alkylene oxide group having 1 to 20 carbon atoms, and is a linear group having 1 to 12 carbon atoms A linear or branched alkyl group, or an ethylene oxide group or a propylene oxide group having 1 to 20 carbon atoms is more preferable.
  • the compounds represented by the formula (XI) can be prepared according to the methods described in JP-A-7-306317, JP-A-7-281028, JP-A-2005-156822, and JP-A-2006-301614. Can be synthesized.
  • R 17X, R 18X, and, R 19X are each independently, * represents - (Z 21X -X 212X) n21X -L 21X -Q - X 211X. * Represents the bonding position with the central ring.
  • Z 21X each independently represents a 5- or 6-membered aromatic ring group, or a 5- or 6-membered non-aromatic ring group.
  • L 21 X represents a single bond or a divalent linking group.
  • Q has the same meaning as Q in formulas (D1) to (D15), and the preferred conditions are also the same. That is, among a plurality of Q present, at least one Q represents a hydroxyl group, a carboxylic acid group, a carboxylic acid anhydride group, an amino group, or a cyanate ester group.
  • n21X represents an integer of 0 to 3. When n21X is 2 or more, a plurality of (Z 21X -X 212X ) may be the same or different.
  • R 17, R 18, and, R 19 are each independently, * - X 211 - (Z 21 -X 212) n21 -L 21 -P 21 , or,, * - X 221 - ( Z 22 -X 222) representing the n22 -Y 22. * Represents the bonding position with the central ring.
  • R 17, R 18 and two or more of R 19 is, * - X 211 - a (Z 21 -X 212) n21 -L 21 -P 21. From the viewpoint of thermal conductivity of the thermally conductive material is more excellent, R 17, R 18 and, all R 19 has, * - X 211 - that is (Z 21 -X 212) n21 -L 21 -P 21 preferable.
  • R 17 , R 18 and R 19 are all identical.
  • Z 21 and Z 22 each independently represent a 5- or 6-membered aromatic ring group, or a 5- or 6-membered non-aromatic ring group, for example, a 1,4-phenylene group And 1,3-phenylene and aromatic heterocyclic groups.
  • the aromatic ring group and the non-aromatic ring group may have a substituent.
  • the number of substituents is preferably 1 or 2, and more preferably 1.
  • the substitution position of the substituent is not particularly limited.
  • a substituent a halogen atom or a methyl group is preferable.
  • the aromatic ring group and the non-aromatic ring group are also preferably unsubstituted.
  • aromatic heterocyclic group As an aromatic heterocyclic group, the following aromatic heterocyclic groups are mentioned, for example.
  • * represents the site
  • ** represents a site that binds to X212 or X222 .
  • Each of A 41 and A 42 independently represents a methine group or a nitrogen atom.
  • X 4 represents an oxygen atom, a sulfur atom, a methylene group or an imino group. At least one of A 41 and A 42 is preferably a nitrogen atom, and more preferably both are nitrogen atoms. In addition, X 4 is preferably an oxygen atom.
  • n21 and n22 described later are 2 or more, a plurality of (Z 21 -X 212 ) and (Z 22 -X 222 ) may be the same or different.
  • L 21 each independently represents a single bond or a divalent linking group, and has the same meaning as L 11 in formula (XI) described above.
  • examples of -X 212 -L 21- include L101 to L143 which are examples of L in the above-mentioned formulas (D1) to (D15).
  • Each P 21 independently represents a hydroxyl group, a carboxylic acid group, a carboxylic acid anhydride group, an amino group, or a cyanate ester group. Among them, it is preferable that P 21 be each independently a hydroxyl group, a carboxylic acid group, or a carboxylic acid anhydride group from the viewpoint of the heat conductivity of the heat conductive material being more excellent.
  • Y 22 each independently represents a hydrogen atom, a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, or a linear, branched or cyclic group having 1 to 20 carbon atoms
  • N21 and n22 each independently represent an integer of 0 to 3, and from the viewpoint of more excellent thermal conductivity, the integer of 1 to 3 is preferable, and 2 to 3 is more preferable.
  • Preferred examples of the compound represented by the formula (XII) include the following compounds.
  • R represents -X 212 -L 21 -P 21 .
  • the compound represented by the formula (XII) can be synthesized according to the methods described in JP-A-2010-244038, JP-A-2006-76992 and JP-A-2007-2220.
  • the specific discotic compound is preferably a compound having a hydrogen bonding functional group from the viewpoint of strengthening the stacking by reducing the electron density and facilitating formation of a column-like assembly.
  • the specific discotic compounds may be used alone or in combination of two or more.
  • the crosslinkable compound is a compound that reacts with the specific discotic compound described above.
  • the crosslinkable compound has a group that reacts with the reactive functional group (hereinafter also referred to as "crosslinkable group").
  • crosslinkable group for example, oxiranyl group, oxetanyl group, hydroxyl group, carboxylic acid group, halogenated benzyl group, carboxylic acid anhydride group, cyanate ester group, isocyanate group, amino group, aldehyde group, aziridine group, and alkoxysilyl group Groups are mentioned.
  • the crosslinkable group is appropriately selected according to the type of reactive functional group.
  • crosslinkable groups that can be used when the reactive functional group is a hydroxyl group include an oxiranyl group, an oxetanyl group, a halogenated benzyl group, a carboxylic acid anhydride group, an isocyanate group, and an alkoxysilyl group.
  • Examples of crosslinkable groups that can be used when the reactive functional group is a carboxylic acid group include oxiranyl group, oxetanyl group, halogenated benzyl group, cyanate ester group, amino group, isocyanate group, and aziridine group.
  • crosslinkable groups that can be used when the reactive functional group is a carboxylic acid anhydride group include oxiranyl group, oxetanyl group, and hydroxyl group.
  • examples of crosslinkable groups that can be used when the reactive functional group is an amino group include oxiranyl group, oxetanyl group, carboxylic acid group, halogenated benzyl group, isocyanate group, aldehyde group, and carbonyl group.
  • Examples of crosslinkable groups that can be used when the reactive functional group is a cyanate ester group include oxiranyl groups, carboxylic acid groups, and unsaturated polymerizable groups.
  • the crosslinkable group is preferably an oxiranyl group or an oxetanyl group, and more preferably an oxiranyl group, from the viewpoint that the thermal conductivity of the thermal conductive material is more excellent and the adhesiveness to the device of the thermal conductive material is excellent.
  • the oxiranyl group is a functional group also called an epoxy group, and it may be a group containing oxacyclopropane (oxirane), for example, two adjacent carbon atoms of a saturated hydrocarbon ring group are oxo groups ( Also included are groups which form an oxirane ring by bonding via -O-).
  • a crosslinkable compound having an oxiranyl group (epoxy group) as a crosslinkable group is also referred to as an epoxy compound.
  • the number of crosslinkable groups contained in the crosslinkable compound is not particularly limited, but is preferably 2 to 8 and more preferably 2 to 6.
  • the crosslinkable compound is preferably an epoxy compound.
  • the epoxy compound for example, an epoxy compound represented by the formula (E1) described later, a bisphenol A diglycidyl ether resin, and a rod-like compound having an epoxy group represented by bisphenol F diglycidyl ether resin etc.
  • Epoxy compounds) and discotic compounds having an epoxy group can be mentioned.
  • the definition of the discotic compound is as described above.
  • an epoxy compound or a discotic epoxy compound represented by Formula (E1) described later, which will be described later, is preferable from the viewpoint that the thermal conductivity of the heat conductive material is more excellent.
  • the crosslinkable compound may or may not have liquid crystallinity, and preferably has liquid crystallinity from the viewpoint that the thermal conductivity of the heat conductive material is more excellent.
  • the rod-like epoxy compound and the discotic epoxy compound will be described in detail below.
  • the number of epoxy groups in the rod-like epoxy compound is not particularly limited, but is preferably 2 to 8, more preferably 2 to 6, and still more preferably 2.
  • the rod-like epoxy compound is more preferably an epoxy compound represented by the formula (E1) from the viewpoint that the heat conductivity of the heat conductive material is more excellent.
  • L E1 independently represents a single bond or a divalent linking group.
  • LE 1 is preferably a divalent linking group.
  • the alkylene group may be linear, branched or cyclic, and is preferably a linear alkylene group having 1 to 2 carbon atoms.
  • L E3 is each independently a single bond or a 5- or 6-membered aromatic ring group which may have a substituent, or a 5- or 6-membered non-aromatic ring group, Or, it represents a polycyclic group consisting of these rings.
  • Examples of the aromatic ring group and non-aromatic ring group represented by L E3 include an optionally substituted 1,4-cyclohexanediyl group, a 1,4-cyclohexenediyl group, and a 1,4 -Phenylene group, pyrimidine-2,5-diyl group, pyridine-2,5-diyl group, 1,3,4-thiadiazole-2,5-diyl group, 1,3,4-oxadiazole-2,5 And -diyl group, naphthalene-2,6-diyl group, naphthalene-1,5-diyl group, thiophene-2,5-diyl group, and pyridazine-3,6-diyl group.
  • the 1,4-cyclohexanediyl group it may be either a trans isomer or a cis isomer, or a mixture of any proportion. Among them, a trans form is preferable.
  • L E3 is preferably a single bond, a 1,4-phenylene group or a 1,4-cyclohexenediyl group.
  • the substituent which the group represented by L E3 has is preferably independently an alkyl group, an alkoxy group, a halogen atom, a cyano group, a nitro group or an acetyl group, and the alkyl group (preferably having a carbon number of 1) is more preferably preferable. When a plurality of substituents are present, the substituents may be the same or different.
  • pe represents an integer of 0 or more.
  • pe is an integer of 2 or more, two or more (-L E3 -L E2- ) may be the same or different.
  • pe is preferably 0 to 2, and 0 or 1 is preferable.
  • Each L E4 independently represents a substituent.
  • the substituents are preferably each independently an alkyl group, an alkoxy group, a halogen atom, a cyano group, a nitro group or an acetyl group, more preferably an alkyl group (preferably having a carbon number of 1).
  • le is an integer of 2 or more
  • L E4 presence of a plurality of in le may each be the same or different.
  • Each of le independently represents an integer of 0 to 4. Among them, each of le's is independently preferably 0-2.
  • the molecular weight of the epoxy compound represented by the formula (E1) is preferably 100 to 3,000, more preferably 200 to 2,500, and still more preferably 250 to 2,000, from the viewpoint of more excellent thermal conductivity.
  • the epoxy compound represented by Formula (E1) may use only 1 type, and may use 2 or more types together.
  • the discotic epoxy compound is not particularly limited as long as it is a discotic compound having an epoxy group. From the viewpoint of the heat conductivity of the heat conductive material being more excellent, the discoidal epoxy compound preferably has 3 to 8 epoxy groups, and more preferably 3 to 6 epoxy groups. The cured product of the discotic compound having three or more epoxy groups has a high glass transition temperature and exhibits excellent heat resistance.
  • the crosslinkable compounds may be used alone or in combination of two or more.
  • the content of the cured product of the specific discotic compound and the crosslinkable compound in the heat conductive material of the present invention is preferably 5 to 95% by mass, based on the total mass of the heat conductive material of the present invention, and 10 to 90 % By mass is more preferable, and 15 to 80% by mass is more preferable.
  • the cured product of the specific discotic compound and the crosslinkable compound preferably forms a columnar structure.
  • the columnar structure has a high degree of order, and the cured product forms a columnar structure to further improve the thermal conductivity of the cured product.
  • XRD X-ray diffraction method
  • the method for producing the cured product is not particularly limited, and examples thereof include a method in which a specific discotic compound and a crosslinkable compound are reacted under heating conditions described in ⁇ Method for curing composition> described later.
  • the heat conductive material of the present invention may contain other components in addition to the above-mentioned cured product of the specific discotic compound and the crosslinkable compound.
  • the heat conductive material may contain an uncured specific discotic compound and an uncured crosslinkable compound.
  • inorganic substances can be mentioned.
  • the heat conductive material of the present invention preferably contains an inorganic substance from the viewpoint that the heat conductivity of the heat conductive material is more excellent.
  • any inorganic substance conventionally used for an inorganic filler of a heat conductive material may be used.
  • an inorganic oxide or an inorganic nitride is preferable.
  • the inorganic substance may be an inorganic oxynitride.
  • the shape of the inorganic substance is not particularly limited, and may be in the form of particles, in the form of a film, or in the form of a plate. Examples of the shape of the particulate inorganic substance include rice grain, sphere, cube, spindle, scaly, aggregate, and irregular shape.
  • the above inorganic oxides may be used alone or in combination of two or more.
  • the inorganic oxide is preferably titanium oxide, aluminum oxide or zinc oxide.
  • the inorganic oxide may be an oxide formed by oxidation of a metal prepared as a non-oxide under an environment or the like.
  • the inorganic nitride for example, boron nitride (BN), carbon nitride (C 3 N 4 ), silicon nitride (Si 3 N 4 ), gallium nitride (GaN), indium nitride (InN), aluminum nitride (AlN), Chromium nitride (Cr 2 N), copper nitride (Cu 3 N), iron nitride (Fe 4 N), iron nitride (Fe 3 N), lanthanum nitride (LaN), lithium nitride (Li 3 N), magnesium nitride (Mg 3 N 2), molybdenum nitride (Mo 2 N), niobium nitride (NbN), tantalum nitride (TaN), titanium nitride (TiN), tungsten nitride (W 2 N), tungsten nitride (WN 2), y
  • the above inorganic nitrides may be used alone or in combination of two or more.
  • the inorganic nitride preferably contains an aluminum atom, a boron atom or a silicon atom, more preferably aluminum nitride, boron nitride or silicon nitride, and still more preferably aluminum nitride or boron nitride. Particularly preferred is boron nitride.
  • the size of the inorganic substance is not particularly limited, but the average particle diameter of the inorganic substance is preferably 500 ⁇ m or less, more preferably 300 ⁇ m or less, and still more preferably 200 ⁇ m or less, in that the dispersibility of the inorganic substance is more excellent.
  • the lower limit is not particularly limited, but is preferably 10 nm or more, and more preferably 100 nm or more in terms of handleability.
  • 100 inorganic substances are chosen at random using an electron microscope, the particle size (long diameter) of each inorganic substance is measured, and they are determined by arithmetic average. In addition, when using a commercial item, you may use a catalog value.
  • the inorganic substance may use only 1 type and may use 2 or more types together. 30-95 mass% is preferable with respect to the total mass of the heat conductive material of this invention in the heat conductive material of this invention, 35-90 mass% is more preferable, and 40-90 mass% Is more preferred.
  • the heat conductive material may contain the above-mentioned cured product, and the manufacturing method is not particularly limited, but it is formed using the composition for forming a heat conductive material (the present composition) containing the specific discotic compound and the crosslinkable compound. Preferably. That is, it is preferable to cure the above composition to obtain a heat conductive material containing the above cured product.
  • the present composition and a method for producing the thermally conductive material of the present invention using the present composition will be described.
  • composition for forming heat conductive material comprises a specific discotic compound and a crosslinkable compound.
  • the definition of the specific discotic compound and the crosslinking compound is as described above.
  • the content of the specific discotic compound in the present composition is preferably 5 to 95% by mass, more preferably 10 to 90% by mass, and still more preferably 15 to 80% by mass, with respect to the total solid content of the composition.
  • the content of the crosslinkable compound in the present composition is preferably 5 to 95% by mass, more preferably 10 to 90% by mass, and still more preferably 15 to 80% by mass, with respect to the total solid content of the composition.
  • the content of the crosslinkable compound in the composition is the ratio of the number of crosslinkable groups in the composition to the number of reactive functional groups in the specific disc-like compound in the composition. (The number of crosslinkable groups / the number of reactive functional groups) is preferably 0.1 to 10.0, more preferably 0.1 to 9.0, and more preferably 0.1 to 8.0 More preferably,
  • the composition may contain an inorganic substance, a solvent, and other components such as a curing accelerator.
  • an inorganic substance such as a curing accelerator.
  • the definition of the inorganic substance is as described above.
  • the composition may further contain a solvent.
  • the type of solvent is not particularly limited, and an organic solvent is preferred.
  • the organic solvent include ethyl acetate, methyl ethyl ketone (MEK), dichloromethane and tetrahydrofuran (THF).
  • the content of the solvent in the present composition is preferably such an amount that the total mass (solid content concentration) of the total solid content in the present composition with respect to the total mass of the present composition is 1 to 90 mass%, An amount of 10% by mass to 80% by mass is more preferable.
  • the curing accelerator examples include triphenylphosphine, 2-ethyl-4-methylimidazole, boron trifluoride amine complex, 1-benzyl-2-methylimidazole and the like, and JP-A-2012-67225, paragraph 0052.
  • a hardening accelerator is mentioned.
  • triphenyl phosphine is preferable.
  • the content of the curing accelerator in the composition is preferably 0.01 to 30% by mass, more preferably 0.01 to 20% by mass, and more preferably 0.01 to 10% by mass, relative to the total solid content of the composition. % Is more preferred.
  • the amount of the curing accelerator used is preferably 0.01 to 30% by mass, more preferably 0.01 to 20% by mass, based on the total mass of the specific discotic compound and the crosslinkable compound. More preferably, it is 10% by mass.
  • an epoxy compound is used as the crosslinkable compound and the specific discotic compound has an amino group, it may be preferable not to use a curing accelerator. Since the amino group is excellent in the reactivity with the oxiranyl group (epoxy group), it may not be necessary to further improve the reactivity using a curing accelerator.
  • this composition contains the specific discotic compound which shows liquid crystallinity, and the composition itself shows liquid crystallinity, it can be conveniently used as a curable composition excellent in thermal conductivity and heat resistance.
  • the present composition is a liquid crystalline discoid compound having one or more reactive functional groups selected from the group consisting of hydroxyl group, carboxylic acid group, carboxylic acid anhydride group, amino group, cyanate ester group, and thiol group.
  • a crosslinkable compound having a group that reacts with the above-mentioned reactive functional group, and it is also preferable to be an embodiment showing liquid crystallinity.
  • crosslinked compound when it is set as the said aspect, it is preferable that a crosslinking
  • the liquid crystalline discotic compound represented by Formula (1A) mentioned later is preferable.
  • the crosslinkable compound is as described above.
  • the method for producing the present composition is not particularly limited, and known methods can be adopted. For example, it can manufacture by mixing various components (a specific disc-like compound, a crosslinkable compound, an inorganic substance, a hardening accelerator, and a solvent etc.) mentioned above by a well-known method. When mixing, various components may be mixed at once or may be mixed one by one.
  • the curing method of the present composition is not particularly limited, and an optimal method is selected as appropriate depending on the types of the specific discotic compound and the crosslinkable compound.
  • the curing method is not particularly limited, but a heat curing reaction is preferred.
  • the heating temperature in the case of the heat curing reaction is not particularly limited.
  • the temperature may be appropriately selected in the range of 50 to 250.degree.
  • the curing treatment is preferably performed on the present composition in the form of a film or sheet. Specifically, for example, the composition may be coated to form a film, and a curing reaction may be performed. At that time, pressing may be performed.
  • the curing treatment may be finished when the composition is brought into a semi-cured state.
  • curing may be further advanced by heating or the like to cause main curing. It is also preferable that the device and the heat conductive material of the present invention be adhered by heating or the like at the time of the above-mentioned main curing.
  • a heat conductive material including a curing reaction reference can be made to "High heat conductive composite material" (CMC Publishing, by Yutaka Takezawa).
  • heat conductive material there is no restriction
  • the heat conduction material of the present invention can be used as a heat dissipation material such as a heat dissipation sheet, and can be used for heat dissipation applications of various devices. More specifically, heat generation from the device can be efficiently dissipated by the thermally conductive layer by disposing the thermally conductive layer containing the thermally conductive material of the present invention on the device to produce a thermally conductive layer-equipped device.
  • the heat conductive material of the present invention has sufficient heat conductivity and high heat resistance, so it is a power semiconductor device used in various electric devices such as personal computers, general household appliances, and automobiles. Suitable for heat dissipation applications.
  • the heat conductive material of the present invention has sufficient heat conductivity even in the semi-cured state, it is difficult to allow light for light curing to reach, such as gaps between members of various devices. It can also be used as a heat dissipating material to be placed. Moreover, the use as an adhesive which has thermal conductivity is also possible.
  • the heat transfer material of the present invention may be used in combination with other members other than the members formed from the present composition.
  • a sheet-like thermally conductive material may be combined with another sheet-like support of a layer formed from the present composition.
  • the sheet-like support may, for example, be a plastic film, a metal film or a glass plate.
  • plastic film materials include polyesters such as polyethylene terephthalate (PET), polycarbonates, acrylic resins, epoxy resins, polyurethanes, polyamides, polyolefins, cellulose derivatives, and silicones.
  • PET polyethylene terephthalate
  • acrylic resins epoxy resins
  • polyurethanes polyamides
  • polyolefins polyolefins
  • cellulose derivatives cellulose derivatives
  • silicones silicones.
  • a metal film a copper film is mentioned.
  • the liquid crystalline discotic compound of the present invention has one or more reactive functional groups selected from the group consisting of a hydroxyl group, a carboxylic acid group, a carboxylic acid anhydride group, an amino group, a cyanate ester group, and a thiol group.
  • the definition of the discotic compound and its preferred embodiment, and the reactive functional group and its preferred embodiment are as described above.
  • the molecular weight of the liquid crystalline discotic compound is preferably 3,000 or less, and more preferably 2,500 or less.
  • the lower limit of the molecular weight is not particularly limited, but is, for example, 200 or more.
  • compounds represented by Formula (1A) described later are preferable in that they are more excellent in thermal conductivity.
  • M represents an n c monovalent discoid core portion.
  • L c11 represents a divalent linking group.
  • Q represents a hydrogen atom or a substituent.
  • n c1 represents an integer of 3 or more. However, one or more Q's represent the above-mentioned reactive functional groups.
  • L c11 is a * c1 -alkylene group -X c1- * c2 , * c1- X c1 -alkylene group-* c2 or * c1- X c1 -arylene group -O -* Represents a divalent linking group containing a partial structure represented by c2 .
  • * C1 shows the bonding position with the discoid core part.
  • * C2 represents the other binding position.
  • M, n c1, L c11, and Q, M of formula (1) described above, are each synonymous with n c1, L c1, and Q, preferred embodiments are also the same.
  • compounds represented by the formula (D4A) or compounds represented by the formula (D16) are preferable.
  • L 11 includes a partial structure represented by * c1 -alkylene group-X c 1- * c 2 , * c 1- X c 1 -alkylene group-* c 2 , or * c 1- X c 1 -arylene group-O-* c 2
  • * C1 shows the bonding position with the discoid core part.
  • * C2 represents the other binding position.
  • Each Q independently represents a hydrogen atom or a substituent. However, one or more Q's represent the above-mentioned reactive functional groups.
  • R 17X, R 18X, and, R 19X are each independently, * represents - (Z 21X -X 212X) n21X -L 21X -Q - X 211X. * Represents the bonding position with the central ring.
  • Z 21X each independently represents a 5- or 6-membered aromatic ring group, or a 5- or 6-membered non-aromatic ring group.
  • L 21 X represents a single bond or a divalent linking group.
  • Each Q independently represents a hydrogen atom or a substituent. However, one or more Q's represent the above-mentioned reactive functional groups.
  • n21X represents an integer of 0 to 3. When n21X is 2 or more, a plurality of (Z 21X -X 212X ) may be the same or different.
  • the liquid crystalline discotic compound preferably has a phase transition temperature from a crystalline phase to a liquid crystal phase of 200 ° C. or less, more preferably 180 ° C. or less.
  • the lower limit of the phase transition temperature from the crystal phase to the liquid crystal phase is not particularly limited, and is, for example, 0 ° C. or more.
  • the phase transition temperature can be confirmed by observation with a polarizing microscope or by differential scanning calorimetry.
  • the discotic compound P-1 was synthesized according to the method described in the Organic Synthetic Chemistry Association Journal, December 2002, p. 1190.
  • Distilled water (70 mL) was added to the mixed solution, and then the reaction product was extracted with ethyl acetate (70 mL).
  • the discotic compounds B-2 to B-7, B-11 to B-18, and B-21 to B-23 were synthesized with reference to the synthesis method of the discotic compound B-1.
  • the discotic compounds P-9 to P-10 and B-19 to P-20 were synthesized with reference to the synthesis method of the discotic compound B-8.
  • Rod-like compound The structures of rod-like compounds D-1 and D-2 are shown below.
  • A-1 A mixture of bisphenol F diglycidyl ether resin and bisphenol A diglycidyl ether resin, epoxy equivalent: 165.7 g / eq, total chlorine: 0.008% by weight, viscosity: 2,340 mPa ⁇ s, Nippon Steel Sumikin Chemical Co., Ltd. Made.
  • PPh 3 triphenylphosphine
  • SGPS boron nitride, average particle diameter 12 ⁇ m, manufactured by Denka Co., Ltd.
  • Example 1 After mixing the various components shown in the following Table 1 in the order of the discotic compound, MEK (methyl ethyl ketone), the crosslinkable compound, and the curing accelerator, an inorganic substance was added.
  • Composition 1 was obtained by treating the resulting mixture with a rotation and revolution mixer (manufactured by THINKY, Awatori Neritaro ARE-310) for 5 minutes. The mixing ratio of the discotic compound to the crosslinkable compound was adjusted so that the number of reactive functional groups possessed by the discotic compound in the composition was equal to the number of crosslinkable groups possessed by the crosslinkable compound.
  • the final solid content of Composition 1 was adjusted with MEK to have the solid content concentration described in Table 1 (described in the “solvent” column).
  • the composition 1 is uniformly applied on the release surface of a polyester film (NP-100A Panac, film thickness 100 ⁇ m), and the coating film 1 is left by standing for 1 hour in the air. Obtained.
  • the coated film surface of the coated film 1 is covered with another polyester film, and hot pressed under air (heat plate temperature 160 ° C., treated at pressure 12 MPa for 30 minutes, and further 190 ° C., pressure 12 MPa for 2 hours)
  • the coating film was cured by treatment with to obtain a resin sheet.
  • the polyester films on both sides of the resin sheet were peeled off to obtain a thermally conductive sheet 1 having an average film thickness of 250 ⁇ m.
  • Thermal conductivity evaluation was performed using the heat conductive sheet 1. The thermal conductivity was measured by the following method, and the thermal conductivity was evaluated according to the following criteria.
  • the thermal diffusivity in the thickness direction of the thermally conductive sheet 1 was measured using "Eyephase Mobile 1u” manufactured by Eyephase.
  • the specific gravity of the thermally conductive sheet 1 was measured by the Archimedes method (using a “solid specific gravity measurement kit”) using a balance “XS 204” manufactured by METTLER TOLEDO.
  • the specific heat of the thermally conductive sheet 1 at 25 ° C. was determined using “DSC 320/6200” manufactured by Seiko Instruments Inc. under a temperature rising condition of 10 ° C./min.
  • the thermal conductivity of the thermally conductive sheet 1 was calculated by multiplying the obtained thermal diffusivity by the specific gravity and the specific heat.
  • (numerical values) described in the component column of various compositions means the content (% by mass) of various components with respect to the total solid content in the composition.
  • film thickness [ ⁇ m]” described in Table 1 means the average film thickness of the heat conductive sheet.
  • the "central ring” described in Table 1 shows the structure of the central ring of the discotic compound used.
  • the "reactive functional group” described in Table 1 indicates the type of reactive functional group possessed by the discotic compound used.
  • the “number of functional groups” described in Table 1 indicates the number of reactive functional groups possessed by the discotic compound used.
  • Crosslinkable group described in Table 1 shows the kind of crosslinkable group which the crosslinkable compound used has.
  • Form (E1) described in Table 1 represents whether or not the epoxy compound is a compound represented by Formula (E1) when the crosslinkable compound used is an epoxy compound, and was used The case where the epoxy compound is a compound represented by the formula (E1) is referred to as “present”, and the case where the epoxy compound is not referred to as “absent”.
  • the heat conduction material of the present invention is excellent in heat conductivity.
  • the central ring of the specific discotic compound is a triphenylene ring
  • the thermal conductivity of the thermally conductive material is more excellent (comparison of Examples 8 to 10 and 22 to 23 with other Examples) ).
  • the specific discotic compound has 3 to 6 reactive functional groups, it was confirmed that the thermal conductivity of the thermal conductive material is more excellent (comparison of Example 27 with other Examples).
  • the reactive functional group possessed by the specific discotic compound is any one of a hydroxyl group, a carboxylic acid group, and a carboxylic acid anhydride group
  • the thermal conductivity of the thermally conductive material is more excellent (Example 4) And 10 and comparison with other examples).
  • the crosslinkable compound was an epoxy compound
  • the heat conductivity of the heat conductive material is more excellent (comparison of Example 28 with other Examples).
  • the epoxy compound was represented by Formula (E1), it was confirmed that the heat conductivity of a heat conductive material is more excellent (comparison of Example 12 and another Example).
  • composition (2) A discotic compound having one or more reactive functional groups selected from the group consisting of a hydroxyl group, a carboxylic acid group, a carboxylic acid anhydride group, an amino group, a cyanate ester group, and a thiol group according to the following procedure Preparation and evaluation of compositions containing the compounds were carried out.
  • the crosslinkable compound is also referred to as “main agent”, and the above-described discotic compound is also referred to as “curing agent”.
  • the discotic compounds C-1 to C-15 are shown below.
  • * indicates the bonding position to the central ring.
  • C-1 to C-12 and C-15 exhibit liquid crystallinity (that is, C-1 to C-12 and C-15 are It corresponds to a liquid crystalline discoid compound).
  • C-1 to C-15 are It corresponds to a liquid crystalline discoid compound.
  • the discotic compounds C-1 to C-15 are shown below.
  • * indicates the bonding position to the central ring.
  • D-1 A mixture of bisphenol F diglycidyl ether resin and bisphenol A diglycidyl ether resin, epoxy equivalent: 165.7 g / eq, total chlorine: 0.008 mass%, viscosity: 2,340 mPa ⁇ s, Nippon Steel Sumikin Chemical Co., Ltd. Made.
  • PPh 3 triphenylphosphine
  • PTX-60 Aggregated boron nitride (average particle size: 60 ⁇ m, manufactured by Momentive)
  • PT-110 Tabular boron nitride (average particle size: 45 ⁇ m, manufactured by Momentive)
  • S-50 Aluminum nitride (average particle size: 55 ⁇ m, manufactured by MARUWA)
  • SGPS Boron nitride (average particle size 12 ⁇ m), manufactured by Denka Co., Ltd.
  • AA-3 Alumina (average particle size: 3 ⁇ m, manufactured by Sumitomo Chemical Co., Ltd.)
  • AA-04 Alumina (average particle size: 0.4 ⁇ m, manufactured by Sumitomo Chemical Co., Ltd.)
  • Example 30 Various components shown in Table 2 below were mixed in the order of a curing agent (liquid crystalline discoid compound), THF (tetrahydrofuran), a main agent (crosslinking compound), and a curing accelerator, and then an inorganic substance was added.
  • Composition 30 was obtained by treating the resulting mixture for 5 minutes with a rotation and revolution mixer (manufactured by THINKY, Awatori Neritaro ARE-310). Also, the final solid content of the composition 30 was adjusted with THF so as to obtain the solid content concentration described in Table 2 (described in the “solvent” column).
  • the composition 30 is uniformly applied on the release surface of a polyester film (NP-100A Panac, film thickness 100 ⁇ m), and the coating film 30 is left by standing for 1 hour in the air. Obtained.
  • the coated film surface of the coated film 30 is covered with another polyester film, and is treated by heat pressing under air (heat plate temperature 170 ° C., pressure 12 MPa for 30 minutes, and further 190 ° C. for 2 hours)
  • the coating was cured to obtain a resin sheet.
  • the polyester films on both sides of the resin sheet were peeled off to obtain a thermally conductive sheet 30 having an average film thickness of 400 ⁇ m.
  • Thermal conductivity evaluation was performed using the thermally conductive sheet 30. The thermal conductivity was measured in the same manner as in Example 1, and the thermal conductivity was evaluated according to the following evaluation criteria.
  • Heat resistance evaluation The heat resistance evaluation was performed using the heat conductive sheet 30. Specifically, the heat conductivity was measured after the heat conductive sheet 30 was heated at 175 ° C. for 1000 hours. Subsequently, it evaluated according to the following evaluation criteria by computing the fluctuation value of the heat conductivity before heating, and the conductivity after heating. In addition, evaluation is so high that there are few magnitude
  • Example 31 to 53 Each composition of the Example shown in following Table 2 and the comparative example was obtained by the procedure similar to Example 31. Also, the final solid content of the composition was adjusted with THF so as to obtain the solid content concentration described in Table 2 (described in the “solvent” column). Further, thermally conductive sheets 31 to 53 were produced from each of the obtained compositions, and the same thermal conductivity evaluation test as that of Example 30 was carried out. The results are shown in Table 2. Further, also in Examples 31 to 53, the presence or absence of liquid crystallinity of the composition and the type of liquid crystal phase were examined by the same method as in Example 30.
  • (numerical values) described in the component column of various compositions means the content (% by mass) of various components with respect to the total solid content in the composition.
  • the "reactive functional group” described in Table 2 indicates the type of reactive functional group possessed by the used curing agent (liquid crystalline discotic compound).
  • the "central ring” described in Table 2 shows the structure of the central ring of the discotic compound used.
  • Liquid crystallinity described in Table 2 means the presence or absence of liquid crystallinity in a single state of each compound of the main agent and the curing agent. In addition, in Table 2, “none” intends that the liquid crystal was not shown.
  • D Ne means a discotic nematic phase
  • Ne means a nematic phase
  • Form (1A) described in Table 2 represents whether or not the used curing agent is a liquid crystalline discoid compound represented by the above-mentioned formula (1A), and the used curing agent is a formula ( The case of the liquid crystalline discotic compound represented by 1A) is referred to as “presence”, and the case where it is not referred to as “not present”.
  • Crosslinkable group described in Table 2 shows the kind of crosslinkable group which the main ingredient (crosslinkable compound) used has.
  • film thickness [ ⁇ m] described in Table 2 means the average film thickness of the thermally conductive sheet.
  • the heat conductive material using the liquid crystalline discotic compound (hardening agent) of the present invention is excellent due to the thermal conductivity even when the film thickness is 400 ⁇ m and the thickness (implementation Comparison of Examples 30-47 and Examples 49-53 with Example 48 and Example 49). Further, in comparison with Examples 34 to 35, Examples 37 to 39, and Example 42, when the phase transition temperature of the liquid crystal phase of the liquid crystalline discotic compound to the liquid crystal phase is 180 ° C. or less, it is thermally conductive. It was confirmed to be remarkably excellent.
  • the thermal conductivity of the thermally conductive material is more excellent.
  • the crosslinkable compound (main agent) has an epoxy group as a crosslinkable group and is represented by the formula (E1), or when it has an epoxy group as a crosslinkable group and is a discotic compound, It was confirmed that the thermal conductivity is more excellent (comparison of Example 30, 32 and 36, and comparison of Example 46 and Example 47).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polarising Elements (AREA)
  • Epoxy Resins (AREA)
  • Liquid Crystal Substances (AREA)

Abstract

本発明は、熱伝導性に優れる熱伝導材料を提供する。また、上記熱伝導材料を含む熱伝導層を有する熱伝導層付きデバイス、および、上記熱伝導材料を形成するために用いられる熱伝導材料形成用組成物を提供する。本発明の熱伝導材料は、水酸基、カルボン酸基、無水カルボン酸基、アミノ基、シアネートエステル基、および、チオール基からなる群から選択される反応性官能基を1個以上有する円盤状化合物と、上記反応性官能基と反応する基を有する架橋性化合物との硬化物を含む。

Description

熱伝導材料、熱伝導層付きデバイス、熱伝導材料形成用組成物、液晶性円盤状化合物
 本発明は、熱伝導材料、熱伝導層付きデバイス、熱伝導材料形成用組成物、および液晶性円盤状化合物に関する。
 パーソナルコンピュータ、一般家電、および、自動車等の様々な電気機器に用いられているパワー半導体デバイスは、近年、小型化が急速に進んでいる。小型化に伴い高密度化されたパワー半導体デバイスから発生する熱の制御が困難になっている。
 このような問題に対応するため、パワー半導体デバイスからの放熱を促進する熱伝導材料が用いられている(特許文献1および2)。
特開平11-323162号公報 特許第4118691号
 本発明者らが特許文献1および2で開示された技術を検討したところ、開示された熱伝導材料の熱伝導性は、必ずしも求められる水準に達していないことを知見した。
 そこで、本発明は、熱伝導性に優れる熱伝導材料を提供することを課題とする。
 また、本発明は、上記熱伝導材料を含む熱伝導層を有する熱伝導層付きデバイス、および、上記熱伝導材料を形成するために用いられる熱伝導材料形成用組成物を提供することも課題とする。
 また、本発明は、新規な液晶性円盤状化合物を提供することも課題とする。
 本発明者らは、鋭意検討した結果、所定の基を有する円盤状化合物を用いることにより、上記課題を解決できることを見出し、本発明を完成させた。
 すなわち、以下の構成により上記目的を達成することができることを見出した。
 〔1〕 水酸基、カルボン酸基、無水カルボン酸基、アミノ基、シアネートエステル基、および、チオール基からなる群から選択される反応性官能基を1個以上有する円盤状化合物と、上記反応性官能基と反応する基を有する架橋性化合物との硬化物を含む、熱伝導材料。
 〔2〕 上記円盤状化合物が、後述する式(1)で表される、〔1〕に記載の熱伝導材料。
 〔3〕 上記円盤状化合物が、後述する式(D4)で表される化合物である、〔2〕に記載の熱伝導材料。
 〔4〕 上記円盤状化合物が、上記反応性官能基を3~6個有する、〔1〕~〔3〕のいずれかに記載の熱伝導材料。
 〔5〕 上記円盤状化合物が、水酸基、カルボン酸基、および、無水カルボン酸基からなる群から選択される基を3~6個有する、〔1〕~〔4〕のいずれかに記載の熱伝導材料。
 〔6〕 上記架橋性化合物が、エポキシ化合物である、〔1〕~〔5〕のいずれかに記載の熱伝導材料。
 〔7〕 上記エポキシ化合物が、後述する式(E1)で表される化合物であるか、または、エポキシ基を有する円盤状化合物である、〔6〕に記載の熱伝導材料。
 〔8〕 さらに、無機物を含む、〔1〕~〔7〕のいずれかに記載の熱伝導材料。
 〔9〕 上記無機物が、無機窒化物または無機酸化物である、〔8〕に記載の熱伝導材料。
 〔10〕 上記無機物が、窒化ホウ素である、〔8〕または〔9〕に記載の熱伝導材料。
 〔11〕 シート状である、〔1〕~〔10〕のいずれかに記載の熱伝導材料。
 〔12〕 デバイスと、上記デバイス上に配置された〔1〕~〔11〕のいずれかに記載の熱伝導材料を含む熱伝導層とを有する、熱伝導層付きデバイス。
 〔13〕 水酸基、カルボン酸基、無水カルボン酸基、アミノ基、シアネートエステル基、および、チオール基からなる群から選択される反応性官能基を1個以上有する円盤状化合物と、上記反応性官能基と反応する基を有する架橋性化合物とを含む、熱伝導材料形成用組成物。
 〔14〕 水酸基、カルボン酸基、無水カルボン酸基、アミノ基、シアネートエステル基、および、チオール基からなる群から選択される反応性官能基を1個以上有する液晶性円盤状化合物と、上記反応性官能基と反応する基を有する架橋性化合物とを含み、
 液晶性を示す、〔13〕に記載の熱伝導材料形成用組成物。
 〔15〕 水酸基、カルボン酸基、無水カルボン酸基、アミノ基、シアネートエステル基、および、チオール基からなる群から選択される反応性官能基を1個以上有する、液晶性円盤状化合物。
 〔16〕 後述する式(1A)で表される、〔15〕に記載の液晶性円盤状化合物。
 〔17〕 後述する式式(D4A)で表される化合物、または後述する式式(D16)で表される化合物である、〔15〕または〔16〕に記載の液晶性円盤状化合物。
 〔18〕 上記反応性官能基が、水酸基、カルボン酸基、および、無水カルボン酸基からなる群から選択される基である、〔15〕~〔17〕のいずれかに記載の液晶性円盤状化合物。
 〔19〕 結晶相から液晶相への相転移温度が180℃以下である、〔15〕~〔18〕のいずれかに記載の液晶性円盤状化合物。
 本発明によれば、熱伝導性に優れる熱伝導材料を提供できる。
 また、本発明によれば、上記熱伝導材料を含む熱伝導層を有する熱伝導層付きデバイス、および、上記熱伝導材料を形成するために用いられる熱伝導材料形成用組成物を提供できる。
 また、本発明によれば、新規な液晶性円盤状化合物を提供することができる。
 以下、本発明の熱伝導材料、熱伝導層付きデバイス、熱伝導材料形成用組成物(以下、単に「本組成物」ともいう)、および液晶性円盤状化合物について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 本明細書において、「(メタ)アクリロイル基」との記載は、「アクリロイル基およびメタクリロイル基のいずれか一方または双方」の意味を表す。
 本明細書において、「(メタ)アクリルアミド基」との記載は、「アクリルアミド基およびメタクリルアミド基のいずれか一方または双方」の意味を表す。
 なお、本明細書において、「置換基を有していてもよい」という場合の置換基の種類、置換基の位置、および、置換基の数は特に限定されない。置換基の数は例えば、1個、または、2個以上が挙げられる。置換基の例としては水素原子を除く1価の非金属原子団が挙げられ、例えば、以下の置換基群Yから選択できる。
 置換基群Y:
 ハロゲン原子(-F、-Br、-Cl、-I)、水酸基、アミノ基、カルボン酸基およびその共役塩基基、無水カルボン酸基、シアネートエステル基、不飽和重合性基、オキシラニル基、オキセタニル基、アジリジニル基、チオール基、イソシアネート基、チオイソシアネート基、アルデヒド基、アルコキシ基、アリーロキシ基、アルキルチオ基、アリールチオ基、アルキルジチオ基、アリールジチオ基、N-アルキルアミノ基、N,N-ジアルキルアミノ基、N-アリールアミノ基、N,N-ジアリールアミノ基、N-アルキル-N-アリールアミノ基、アシルオキシ基、カルバモイルオキシ基、N-アルキルカルバモイルオキシ基、N-アリールカルバモイルオキシ基、N,N-ジアルキルカルバモイルオキシ基、N,N-ジアリールカルバモイルオキシ基、N-アルキル-N-アリールカルバモイルオキシ基、アルキルスルホキシ基、アリールスルホキシ基、アシルチオ基、アシルアミノ基、N-アルキルアシルアミノ基、N-アリールアシルアミノ基、ウレイド基、N’-アルキルウレイド基、N’,N’-ジアルキルウレイド基、N’-アリールウレイド基、N’,N’-ジアリールウレイド基、N’-アルキル-N’-アリールウレイド基、N-アルキルウレイド基、N-アリールウレイド基、N’-アルキル-N-アルキルウレイド基、N’-アルキル-N-アリールウレイド基、N’,N’-ジアルキル-N-アルキルウレイド基、N’,N’-ジアルキル-N-アリールウレイド基、N’-アリール-N-アルキルウレイド基、N’-アリール-N-アリールウレイド基、N’,N’-ジアリール-N-アルキルウレイド基、N’,N’-ジアリール-N-アリールウレイド基、N’-アルキル-N’-アリール-N-アルキルウレイド基、N’-アルキル-N’-アリール-N-アリールウレイド基、アルコキシカルボニルアミノ基、アリーロキシカルボニルアミノ基、N-アルキル-N-アルコキシカルボニルアミノ基、N-アルキル-N-アリーロキシカルボニルアミノ基、N-アリール-N-アルコキシカルボニルアミノ基、N-アリール-N-アリーロキシカルボニルアミノ基、ホルミル基、アシル基、アルコキシカルボニル基、アリーロキシカルボニル基、カルバモイル基、N-アルキルカルバモイル基、N,N-ジアルキルカルバモイル基、N-アリールカルバモイル基、N,N-ジアリールカルバモイル基、N-アルキル-N-アリールカルバモイル基、アルキルスルフィニル基、アリールスルフィニル基、アルキルスルホニル基、アリールスルホニル基、スルホ基(-SOH)およびその共役塩基基、アルコキシスルホニル基、アリーロキシスルホニル基、スルフィナモイル基、N-アルキルスルフィナモイル基、N,N-ジアルキルスルフィナモイル基、N-アリールスルフィナモイル基、N,N-ジアリールスルフィナモイル基、N-アルキル-N-アリールスルフィナモイル基、スルファモイル基、N-アルキルスルファモイル基、N,N-ジアルキルスルファモイル基、N-アリールスルファモイル基、N,N-ジアリールスルファモイル基、N-アルキル-N-アリールスルファモイル基、N-アシルスルファモイル基およびその共役塩基基、N-アルキルスルホニルスルファモイル基(-SONHSO(alkyl))およびその共役塩基基、N-アリールスルホニルスルファモイル基(-SONHSO(aryl))およびその共役塩基基、N-アルキルスルホニルカルバモイル基(-CONHSO(alkyl))およびその共役塩基基、N-アリールスルホニルカルバモイル基(-CONHSO(aryl))およびその共役塩基基、アルコキシシリル基(-Si(Oalkyl))、アリーロキシシリル基(-Si(Oaryl))、ヒドロキシシリル基(-Si(OH))およびその共役塩基基、ホスホノ基(-PO)およびその共役塩基基、ジアルキルホスホノ基(-PO(alkyl))、ジアリールホスホノ基(-PO(aryl))、アルキルアリールホスホノ基(-PO(alkyl)(aryl))、モノアルキルホスホノ基(-POH(alkyl))およびその共役塩基基、モノアリールホスホノ基(-POH(aryl))およびその共役塩基基、ホスホノオキシ基(-OPO)およびその共役塩基基、ジアルキルホスホノオキシ基(-OPO(alkyl))、ジアリールホスホノオキシ基(-OPO(aryl))、アルキルアリールホスホノオキシ基(-OPO(alkyl)(aryl))、モノアルキルホスホノオキシ基(-OPOH(alkyl))およびその共役塩基基、モノアリールホスホノオキシ基(-OPOH(aryl))およびその共役塩基基、シアノ基、ニトロ基、アリール基、アルケニル基、アルキニル基、および、アルキル基。
 また、これらの置換基は、可能であるならば置換基同士、または置換している基と結合して環を形成してもよい。
 なお、不飽和重合性基としては、(メタ)アクリロイル基、(メタ)アクリルアミド基、および、以下Q1~Q7で示される置換基が挙げられる。
Figure JPOXMLDOC01-appb-C000007
〔熱伝導材料〕
 本発明の熱伝導材料は、水酸基、カルボン酸基、無水カルボン酸基、アミノ基、シアネートエステル基、および、チオール基からなる群から選択される反応性官能基を1個以上有する円盤状化合物(以下、「特定円盤状化合物」ともいう)と、反応性官能基と反応する基を有する架橋性化合物(以下、単に「架橋性化合物」ともいう)との硬化物を含む。つまり、本発明の熱伝導材料は、特定円盤状化合物と架橋性化合物とを反応させて得られる硬化物を含む。
 本発明者らは、特定円盤状化合物と、架橋性化合物とを用いることで、熱伝導材料の熱伝導性を向上できることを見出している。
 そのメカニズムは必ずしも明らかではないが、特許文献1および2に記載されているような棒状化合物が直線的(一次元的)にしか熱伝導できないのに対して、特定円盤状化合物の硬化物はその円盤状構造に対して法線方向にも熱伝導できるため、熱伝導パスが増えて熱伝導性が向上すると考えられている。
 以下では、まず、熱伝導材料に含まれる硬化物を得るために用いられる特定円盤状化合物および架橋性化合物について詳述する。
[特定円盤状化合物]
 熱伝導材料に含まれる硬化物の原料として、特定円盤状化合物が挙げられる。
 なお、本明細書において、円盤状化合物は、少なくとも部分的に円盤状構造を有する化合物を意味する。円盤状構造により、円盤状化合物はスタッキング構造を形成して柱状構造をとり得る。円盤状化合物は、少なくとも芳香族環を有し、分子間のπ-π相互作用に基づくスタッキング構造を形成して柱状構造をとり得る化合物が好ましい。
 このような柱状構造が、上述のような、円盤状構造に対する法線方向への熱伝導を促し、熱伝導性の向上に寄与していると考えられている。
 特定円盤状化合物は、水酸基(-OH)、カルボン酸基(-COOH)、無水カルボン酸基、アミノ基(-NH)、シアネートエステル基(-O-C≡N)、および、チオール基(-SH)からなる群から選択される反応性官能基を1個以上有する。
 中でも、熱伝導材料の熱伝導性がより優れる観点から、特定円盤状化合物は、水酸基、カルボン酸基、無水カルボン酸基、アミノ基、および、シアネートエステル基からなる群から選択される反応性官能基を1個以上有するのが好ましく、水酸基、カルボン酸基、および、無水カルボン酸基からなる群から選択される反応性官能基を1個以上有するのがより好ましい。
 また、特定円盤状化合物は、熱伝導材料の熱伝導性がより優れる観点から、反応性官能基を3~8個有するのが好ましく、3~6個有するのがより好ましい。
 中でも、水酸基、カルボン酸基、および、無水カルボン酸基からなる群から選択される反応性官能基を3~8個有するのが好ましく、3~6個有するのがより好ましい。
 なお、反応性官能基を3個以上有する特定円盤状化合物の硬化物は、ガラス転移温度が高く、優れた耐熱性を示す。
 なお、水酸基としては、フェニル基等の芳香族環に直接結合している水酸基であることが好ましい。
 また、無水カルボン酸基とは、無水マレイン酸、無水フタル酸、無水ピロメリット酸、および、無水トリメリット酸等の酸無水物から任意の水素原子を除いて得られる1価の置換基を意図する。
 円盤状化合物は、液晶性を示す液晶化合物であっても、液晶性を示さない非液晶化合物であってもよいが、熱伝導材料の熱伝導性がより優れる観点から(特に、熱伝導材料をより厚膜(例えば、400μm以上)とした場合において、熱伝導性がより優れる観点から)、液晶化合物が好ましい。つまり、円盤状化合物としては、液晶性円盤状化合物が好ましい。
 特定円盤状化合物と架橋性化合物との硬化物中には、配向秩序度に応じた複数のドメインが形成されており、各ドメイン間の境界(粒界)が複数存在すると推測される。特定円盤状化合物が、液晶性円盤状化合物である場合、上記ドメインサイズをより大きくでき(言い換えると、粒界の数をより低減でき)、この結果として、特に、硬化物を厚膜とした場合において、硬化物の熱伝導性がより向上すると考えられる。
 なお、特定円盤状化合物の液晶性は、偏光顕微鏡観察、または示差走査熱量測定により確認できる。
 円盤状化合物の具体例としては、C. Destrade et al., Mol. Crysr. Liq. Cryst., vol. 71, page 111 (1981) ;日本化学会編、季刊化学総説、No.22、液晶の化学、第5章、第10章第2節(1994);B. Kohne et al., Angew. Chem. Soc. Chem. Comm., page 1794 (1985);J. Zhang et al., J. Am. Chem. Soc., vol. 116, page 2655 (1994)、および、特許第4592225号に記載されている化合物が挙げられる。円盤状化合物としては、Angew.Chem.Int. Ed. 2012, 51, 7990-7993および特開平7-306317号公報に記載のトリフェニレン構造、ならびに、特開2007-2220号公報および特開2010-244038号公報に記載の3置換ベンゼン構造等が挙げられる。
 特定円盤状化合物としては、下記式(1)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000008
 上記式中、Mは、nc1価の円盤状コア部を表す。
 Lc1は、2価の連結基を表す。
 Qは、水素原子または置換基を表す。
 nc1は、3以上の整数を表す。
 ただし、1個以上のQは、上記反応性官能基を表す。
 上記Mで表される円盤状コア部としては、特に制限されないが、例えば、式(CR1)~(CR16)で表される構造が挙げられる。*は、-Lc1-Qで表される基との結合位置を示す。なお、(CR16)中、A2X、A3X、およびA4Xは、各々独立に、-CH=またはN=を表し、A2X、A3X、およびA4Xが全て-CH=を表すことが好ましい。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
 Lc1は、2価の連結基を表す。
 熱伝導材料の熱伝導性がより優れる観点から、Lc1は、それぞれ独立に、アルキレン基、アルケニレン基、アリーレン基、ヘテロアリーレン基、-C(=O)-、-NRc1-、-O-、-S-、および、これらの組み合わせからなる群より選ばれる基であることが好ましく、アルキレン基、アルケニレン基、アリーレン基、ヘテロアリーレン基、-C(=O)-、-NRc1-、-O-、および、-S-からなる群より選ばれる基を2個以上組み合わせた基であることがより好ましい。
 上記Rc1は、水素原子またはアルキル基を表す。Rc1で表されるアルキル基の炭素数は、1~12が好ましく、1~3がより好ましい。
 上記アルキレン基の炭素数は、1~12が好ましい。
 上記アルケニレン基の炭素数は、2~12が好ましい。
 上記アリーレン基の炭素数は、10以下が好ましく、6が好ましい。
 上記ヘテロアリーレン基の炭素数は6以下が好ましい。上記ヘテロアリーレン基は、5員環または6員環が好ましい。また、上記ヘテロアリーレン基中に含まれるヘテロ原子としては特に制限されないが、例えば、窒素原子、酸素原子、および硫黄原子等が挙げられる。なお、ヘテロアリーレン基中のヘテロ原子の数は特に制限されないが、例えば、1~3個である。
 アルキレン基、アルケニレン基、アリーレン基、およびヘテロアリーレン基は、置換基(好ましくは、アルキル基、ハロゲン原子、シアノ、アルコキシ基、および、アシルオキシ基等)を有していてもよい。
 なお、上記Mが式(CR4)で表されるトリフェニレン骨格である場合、円盤状化合物が液晶性を発現して、熱伝導材料の熱伝導性がより優れる観点から、Lc1は、*c1-アルキレン基-Xc1-*c2、*c1-Xc1-アルキレン基-*c2、または*c1-Xc1-アリーレン基-O-*c2で表される部分構造を含む2価の連結基を表すことが好ましい。
 Xc1は、-O-C(=O)-、または-C(=O)-O-を表す。
 *c1は、円盤状コア部との結合位置を示す。*c2は、他方の結合位置を表す。
 Qは、それぞれ独立に、水素原子または置換基を表す。
 置換基としては、上述した置換基群Yで例示される基が挙げられる。より具体的には、置換基としては、上記反応性官能基、ハロゲン原子、イソシアネート基、シアノ基、不飽和重合性基、オキシラニル基、オキセタニル基、アジリジニル基、チオイソシアネート基、アルデヒド基、および、スルホ基が挙げられる。
 なお、式(1)中、1個以上のQは、反応性官能基を表す。なかでも、熱伝導材料の熱伝導性がより優れる観点から、すべてのQが反応性官能基を表すことが好ましい。
 nc1は、3以上の整数を表す。熱伝導材料の熱伝導性がより優れる観点から、3~8が好ましく、3~6がより好ましい。
 特定円盤状化合物としては、熱伝導材料の熱伝導性がより優れる観点から、以下に示す式(D1)~(D16)のいずれかで表される化合物が好ましい。
 なお、以下の式中、「-LQ」は「-L-Q」を表し、「QL-」は「Q-L-」を表す。
 まず、式(D1)~(D15)について詳述する。
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
 式(D1)~(D15)中、Lは2価の連結基を表す。
 Lで表される2価の連結基としては、上記式(1)中のLc1で表される2価の連結基と同義であり、好適態様も同じである。
 なかでも、Lとしては、熱伝導材料の熱伝導性がより優れる観点から、それぞれ独立に、アルキレン基、アルケニレン基、アリーレン基、-C(=O)-、-NH-、-O-、-S-、および、これらの組み合わせからなる群より選ばれる基であることが好ましく、アルキレン基、アルケニレン基、アリーレン基、-C(=O)-、-NH-、-O-、および、-S-からなる群より選ばれる基を2個以上組み合わせた基であることがより好ましい。
 上記アルキレン基の炭素数は、1~12が好ましい。上記アルケニレン基の炭素数は、2~12が好ましい。上記アリーレン基の炭素数は、10以下が好ましい。
 アルキレン基、アルケニレン基、アリーレン基は、置換基(好ましくは、アルキル基、ハロゲン原子、シアノ、アルコキシ基、および、アシルオキシ基等)を有していてもよい。
 Lの例を以下に示す。以下の例では、左側の結合手が式(D1)~(D15)のいずれかで表される化合物の中心構造(以下、単に「中心環」ともいう)に結合し、右側の結合手がQに結合する。
 ALはアルキレン基またはアルケニレン基を意味し、ARはアリーレン基を意味する。
 なお、式(D4)で表される化合物においては、円盤状化合物が液晶性を発現して、熱伝導材料の熱伝導性がより優れる観点から、Lは、*-アルキレン基-O-C(=O)-*、*-アルキレン基-C(=O)-O-*、*-O-C(=O)-アルキレン基-*、*-C(=O)-O-アルキレン基-*、*-C(=O)-O-アリーレン基-O-*、または*-O-C(=O)-アリーレン基-O-*で表される部分構造を含む2価の連結基を表すことが好ましい。*は、中心環との結合位置を示す。*は、他方の結合位置を表す。なお、*で表される他方の結合位置とは、L中の他の原子との結合位置を表すか、または、Qとの結合位置を表す。
 例えば、下記L101は、*-アルキレン基-C(=O)-O-*で表される部分構造を含む2価の連結基に該当する。
L101:-AL-C(=O)-O-AL-
L102:-AL-C(=O)-O-AL-O-
L103:-AL-C(=O)-O-AL-O-AL-
L104:-AL-C(=O)-O-AL-O-C(=O)-
L105:-C(=O)-AR-O-AL-
L106:-C(=O)-AR-O-AL-O-
L107:-C(=O)-AR-O-AL-O-C(=O)-
L108:-C(=O)-NH-AL-
L109:-NH-AL-O-
L110:-NH-AL-O-C(=O)-
L111:-O-AL-
L112:-O-AL-O-
L113:-O-AL-O-C(=O)-
L114:-O-AL-O-C(=O)-NH-AL-
L115:-O-AL-S-AL-
L116:-O-C(=O)-AL-AR-O-AL-O-C(=O)-
L117:-O-C(=O)-AR-O-AL-C(=O)-
L118:-O-C(=O)-AR-O-AL-O-C(=O)-
L119:-O-C(=O)-AR-O-AL-O-AL-O-C(=O)-
L120:-O-C(=O)-AR-O-AL-O-AL-O-AL-O-C(=O)-
L121:-S-AL-
L122:-S-AL-O-
L123:-S-AL-O-C(=O)-
L124:-S-AL-S-AL-
L125:-S-AR-AL-
L126:-O-C(=O)-AL-
L127:-O-C(=O)-AL-O-
L128:-O-C(=O)-AR-O-AL-
L129:-O-C(=O)-
L130:-O-C(=O)-AR-O-AL-O-C(=O)-AL-S-AR-
L131:-O-C(=O)-AL-S-AR-
L132:-O-C(=O)-AR-O-AL-O-C(=O)-AL-S-AL-
L133:-O-C(=O)-AL-S-AR-
L134:-O-AL-S-AR-
L135:-AL-C(=O)-O-AL-O-C(=O)-AL-S-AR-
L136:-AL-C(=O)-O-AL-O-C(=O)-AL-S-AL-
L137:-O-AL-O-AR-
L138:-O-AL-O-C(=O)-AR-
L139:-O-AL-NH-AR-
L140:-O-C(=O)-AL-O-AR-
L141:-O-C(=O)-AR-O-AL-O-AR-
L142:-AL-C(=O)-O-AR-
L143:-AL-C(=O)-O-AL-O-AR-
 式(D1)~(D15)中、Qは水素原子または置換基を表す。なお、Qについては、上述した通りである。但し、1個以上のQは、上述した反応性官能基を表す。なかでも、熱伝導材料の熱伝導性がより優れる観点から、すべてのQが反応性官能基を表すことが好ましい。
 式(D1)~(D15)で表される化合物の中でも、熱伝導材料の熱伝導性がより優れる観点から、式(D4)で表される化合物が好ましい。言い換えると、特定円盤状化合物の中心環はトリフェニレン環であることが好ましい。
 式(D4)で表される化合物としては、熱伝導材料の熱伝導性がより優れる観点から、式(XI)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000018
 式(XI)中、R11、R12、R13、R14、R15、および、R16は、それぞれ独立に、*-X11-L11-P11、または、*-X12-L12-Y12を表す。
 なお、*はトリフェニレン環との結合位置を表す。
 R11、R12、R13、R14、R15、および、R16のうち、2個以上は、*-X11-L11-P11であり、3個以上が*-X11-L11-P11であることが好ましい。
 中でも、熱伝導材料の熱伝導性がより優れる観点から、R11およびR12のいずれか1個以上、R13およびR14のいずれか1個以上、並びに、R15およびR16のいずれか1個以上が、*-X11-L11-P11であることが好ましい。
 R11、R12、R13、R14、R15、および、R16が、全て、*-X11-L11-P11であることがより好ましい。加えて、R11、R12、R13、R14、R15、および、R16が、全て同一であることがさらに好ましい。
 X11は、それぞれ独立に、単結合、-O-、-C(=O)-、-NH-、-OC(=O)-、-OC(=O)O-、-OC(=O)NH-、-OC(=O)S-、-C(=O)O-、-C(=O)NH-、-C(=O)S-、-NHC(=O)-、-NHC(=O)O-、-NHC(=O)NH-、-NHC(=O)S-、-S-、-SC(=O)-、-SC(=O)O-、-SC(=O)NH-、または、-SC(=O)S-を表す。
 中でも、X11は、それぞれ独立に、-O-、-OC(=O)-、-OC(=O)O-、-OC(=O)NH-、-C(=O)O-、-C(=O)NH-、-NHC(=O)-、または、-NHC(=O)O-が好ましく、-O-、-OC(=O)-、-C(=O)O-、-OC(=O)NH-、または、-C(=O)NH-がより好ましく、-C(=O)O-がさらに好ましい。
 L11は、それぞれ独立に、単結合または2価の連結基を表す。
 2価の連結基の例としては、-O-、-OC(=O)-、-C(=O)O-、-S-、-NH-、アルキレン基(炭素数は、1~10が好ましく、1~8がより好ましく、1~7がさらに好ましい。)、アリーレン基(炭素数は、6~20が好ましく、6~14がより好ましく、6~10がさらに好ましい。)、または、これらの組み合わせからなる基が挙げられる。
 上記アルキレン基としては、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、および、ヘプチレン基が挙げられる。
 上記アリーレン基としては、1,4-フェニレン基、1,3-フェニレン基、1,4-ナフチレン基、1,5-ナフチレン基、および、アントラセニレン基が挙げられ、1,4-フェニレン基が好ましい。
 上記アルキレン基および上記アリーレン基はそれぞれ置換基を有していてもよい。置換基の数は、1~3が好ましく、1がより好ましい。置換基の置換位置は特に制限されない。置換基としては、ハロゲン原子または炭素数1~3のアルキル基が好ましく、メチル基がより好ましい。
 上記アルキレン基および上記アリーレン基は無置換であることも好ましい。中でも、アルキレン基は無置換であることが好ましい。
 -X11-L11-の例として、上述のLの例であるL101~L143が挙げられる。
 なお、円盤状化合物が液晶性を発現して、熱伝導材料の熱伝導性がより優れる観点から、-X11-L11-は、*-O-C(=O)-アルキレン基-*、*-C(=O)-O-アルキレン基-*、*-C(=O)-O-アリーレン基-O-*、または*-O-C(=O)-アリーレン基-O-*で表される部分構造を含む2価の連結基を表すことが好ましい。*は、トリフェニレン環との結合位置を示す。*は、他方の結合位置を表す。なお、*で表される他方の結合位置とは、L11中の他の原子との結合位置を表すか、または、P11との結合位置を表す。
 P11は、それぞれ独立に、水酸基、カルボン酸基、無水カルボン酸基、アミノ基、または、シアネートエステル基を表す。中でも、熱伝導性がより優れる観点から、P11としては、それぞれ独立に、水酸基、カルボン酸基、または、無水カルボン酸基が好ましい。
 なお、P11が水酸基である場合、L11はアリーレン基を含み、このアリーレン基はP11と結合していることが好ましい。
 X12は、X11と同様であり、好適な条件も同様である。
 L12は、L11と同様であり、好適な条件も同様である。
 -X12-L12-の例として、上述のLの例であるL101~L143が挙げられる。
 なお、円盤状化合物が液晶性を発現して、熱伝導材料の熱伝導性がより優れる観点から、-X12-L12-は、*-O-C(=O)-アルキレン基-*、*-C(=O)-O-アルキレン基-*、*-C(=O)-O-アリーレン基-O-*、または*-O-C(=O)-アリーレン基-O-*で表される部分構造を含む2価の連結基を表すことが好ましい。*は、トリフェニレン環との結合位置を示す。*は、他方の結合位置を表す。なお、*で表される他方の結合位置とは、L12中の他の原子との結合位置を表すか、または、Y12との結合位置を表す。
 Y12は、水素原子、炭素数1~20の直鎖状、分岐鎖状、もしくは、環状のアルキル基、または、炭素数1~20の直鎖状、分岐鎖状、もしくは、環状のアルキル基において1個または2個以上のメチレン基が-O-、-S-、-NH-、-N(CH)-、-C(=O)-、-OC(=O)-、または-C(=O)O-で置換された基を表す。
 Y12が、炭素数1~20の直鎖状、分岐鎖状、もしくは、環状のアルキル基、または、炭素数1~20の直鎖状、分岐鎖状、もしくは、環状のアルキル基において1個または2個以上のメチレン基が-O-、-S-、-NH-、-N(CH)-、-C(=O)-、-OC(=O)-、または-C(=O)O-で置換された基の場合、Y12に含まれる水素原子の1個以上がハロゲン原子で置換されていてもよい。
 Y12は、水素原子、炭素数1~20の直鎖状、分岐鎖状、もしくは、環状のアルキル基、または、炭素数1~20のアルキレンオキシド基が好ましく、炭素数1~12の直鎖状もしくは分岐鎖状のアルキル基、または、炭素数1~20のエチレンオキシド基もしくはプロピレンオキシド基がより好ましい。
 式(XI)で表される化合物の具体例については、特開平7-281028号公報の段落番号0028~0036、特開平7-306317号公報、特開2005-156822号公報の段落番号0016~0018、特開2006-301614号公報の段落番号0067~0072、および、液晶便覧(平成12年丸善株式会社発刊)330頁~333頁に記載の化合物を参照することができる。
 式(XI)で表される化合物は、特開平7-306317号公報、特開平7-281028号公報、特開2005-156822号公報、および、特開2006-301614号公報に記載の方法に準じて合成できる。
 次に、式(D16)で表される化合物について詳述する。
Figure JPOXMLDOC01-appb-C000019
 式(D16)中、A2X、A3X、および、A4Xは、それぞれ独立に、-CH=または-N=を表す。中でも、A2X、A3X、および、A4Xは、それぞれ独立に、-CH=が好ましい。
 R17X、R18X、および、R19Xは、それぞれ独立に、*-X211X-(Z21X-X212Xn21X-L21X-Qを表す。*は、中心環との結合位置を表す。
 X211XおよびX212Xは、それぞれ独立に、単結合、-O-、-C(=O)-、-NH-、-OC(=O)-、-OC(=O)O-、-OC(=O)NH-、-OC(=O)S-、-C(=O)O-、-C(=O)NH-、-C(=O)S-、-NHC(=O)-、-NHC(=O)O-、-NHC(=O)NH-、-NHC(=O)S-、-S-、-SC(=O)-、-SC(=O)O-、-SC(=O)NH-、または、-SC(=O)S-を表す。
 Z21Xは、それぞれ独立に、5員環もしくは6員環の芳香族環基、または、5員環もしくは6員環の非芳香族環基を表す。
 L21Xは、単結合または2価の連結基を表す。
 Qは、式(D1)~(D15)におけるQと同義であり、好ましい条件も同様である。つまり、複数存在するQのうち、少なくとも1個のQは、水酸基、カルボン酸基、無水カルボン酸基、アミノ基、または、シアネートエステル基を表す。
 n21Xは、0~3の整数を表す。n21Xが2以上の場合、複数存在する(Z21X-X212X)は、同一でも異なっていてもよい。
 式(D16)で表される化合物としては、式(XII)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000020
 式(XII)中、A、A、および、Aは、それぞれ独立に、-CH=または-N=を表す。中でも、A、A、および、Aは、-CH=が好ましい。言い換えると、特定円盤状化合物の中心環はベンゼン環であることも好ましい。
 R17、R18、および、R19は、それぞれ独立に、*-X211-(Z21-X212n21-L21-P21、または、*-X221-(Z22-X222n22-Y22を表す。*は中心環との結合位置を表す。
 R17、R18、および、R19のうち2個以上は、*-X211-(Z21-X212n21-L21-P21である。熱伝導材料の熱伝導性がより優れる観点から、R17、R18、および、R19は全てが、*-X211-(Z21-X212n21-L21-P21であることが好ましい。
 加えて、R17、R18、および、R19が、全て同一であることが好ましい。
 X211、X212、X221、および、X222は、それぞれ独立に、単結合、-O-、-C(=O)-、-NH-、-OC(=O)-、-OC(=O)O-、-OC(=O)NH-、-OC(=O)S-、-C(=O)O-、-C(=O)NH-、-C(=O)S-、-NHC(=O)-、-NHC(=O)O-、-NHC(=O)NH-、-NHC(=O)S-、-S-、-SC(=O)-、-SC(=O)O-、-SC(=O)NH-、または、-SC(=O)S-を表す。
 中でも、X211、X212、X221、および、X222としては、それぞれ独立に、単結合、-O-、-C(=O)O-、または、-OC(=O)-が好ましい。
 Z21およびZ22は、それぞれ独立に、5員環もしくは6員環の芳香族環基、または、5員環もしくは6員環の非芳香族環基を表し、例えば、1,4-フェニレン基、1,3-フェニレン基、および、芳香族複素環基が挙げられる。
 上記芳香族環基および上記非芳香族環基は、置換基を有していてもよい。置換基の数は1または2が好ましく、1がより好ましい。置換基の置換位置は、特に制限されない。置換基としては、ハロゲン原子またはメチル基が好ましい。上記芳香族環基および上記非芳香族環基は無置換であることも好ましい。
 芳香族複素環基としては、例えば、以下の芳香族複素環基が挙げられる。
Figure JPOXMLDOC01-appb-C000021
 式中、*はX211またはX221に結合する部位を表す。**はX212またはX222に結合する部位を表す。A41およびA42は、それぞれ独立に、メチン基または窒素原子を表す。Xは、酸素原子、硫黄原子、メチレン基、または、イミノ基を表す。
 A41およびA42は、少なくとも一方が窒素原子であることが好ましく、両方が窒素原子であることがより好ましい。また、Xは、酸素原子であることが好ましい。
 後述するn21およびn22が2以上の場合、複数存在する(Z21-X212)および(Z22-X222)は、それぞれ同一でも異なっていてもよい。
 L21は、それぞれ独立に、単結合または2価の連結基を表し、上述した式(XI)におけるL11と同義である。L21としては、-O-、-OC(=O)-、-C(=O)O-、-S-、-NH-、アルキレン基(炭素数は、1~10が好ましく、1~8がより好ましく、1~7がさらに好ましい。)、アリーレン基(炭素数は、6~20が好ましく、6~14がより好ましく、6~10がさらに好ましい。)、または、これらの組み合わせからなる基が好ましい。
 後述するn22が1以上の場合において、-X212-L21-の例としては、上述の式(D1)~(D15)におけるLの例であるL101~L143が同様に挙げられる。
 P21は、それぞれ独立に、水酸基、カルボン酸基、無水カルボン酸基、アミノ基、または、シアネートエステル基を表す。中でも、熱伝導材料の熱伝導性がより優れる観点から、P21は、それぞれ独立に、水酸基、カルボン酸基、または、無水カルボン酸基であるのが好ましい。
 Y22は、それぞれ独立に、水素原子、炭素数1~20の直鎖状、分岐鎖状、もしくは、環状のアルキル基、または、炭素数1~20の直鎖状、分岐鎖状、もしくは、環状のアルキル基において1個または2個以上のメチレン基が-O-、-S-、-NH-、-N(CH)-、-C(=O)-、-OC(=O)-、または、-C(=O)O-で置換された基を表し、式(XI)におけるY12と同義であり、好ましい範囲も同様である。
 n21およびn22はそれぞれ独立に、0~3の整数を表し、熱伝導性がより優れる観点から、1~3の整数が好ましく、2~3がより好ましい。
 式(XII)で表される化合物の好ましい例としては、以下の化合物が挙げられる。
 なお、下記構造式中、Rは、-X212-L21-P21を表す。
Figure JPOXMLDOC01-appb-C000022
 式(XII)で表される化合物の詳細、および具体例については、特開2010-244038号公報の段落0013~0077記載を参照でき、その内容は本明細書に組み込まれる。
 式(XII)で表される化合物は、特開2010-244038号公報、特開2006-76992号公報、および特開2007-2220号公報に記載の方法に準じて合成できる。
 電子密度を減らすことでスタッキングを強くし、カラム状集合体を形成しやすくなるという観点から、特定円盤状化合物は水素結合性官能基を有する化合物であることが好ましい。水素結合性官能基としては、-OC(=O)NH-、-C(=O)NH-、-NHC(=O)-、-NHC(=O)O-、-NHC(=O)NH-、-NHC(=O)S-、または-SC(=O)NH-等が挙げられる。
 特定円盤状化合物は1種のみを使用していてもよいし、2種以上を併用していてもよい。
[架橋性化合物]
 架橋性化合物は、上述した特定円盤状化合物と反応する化合物である。
 架橋性化合物は、反応性官能基と反応する基(以下、「架橋性基」ともいう)を有する。
 架橋性基としては、例えば、オキシラニル基、オキセタニル基、水酸基、カルボン酸基、ハロゲン化ベンジル基、無水カルボン酸基、シアネートエステル基、イソシアネート基、アミノ基、アルデヒド基、アジリジン基、および、アルコキシシリル基が挙げられる。
 架橋性基は反応性官能基の種類に応じて適宜選択される。
 反応性官能基が水酸基である場合に使用可能な架橋性基の例としては、オキシラニル基、オキセタニル基、ハロゲン化ベンジル基、無水カルボン酸基、イソシアネート基、および、アルコキシシリル基が挙げられる。
 反応性官能基がカルボン酸基である場合に使用可能な架橋性基の例としては、オキシラニル基、オキセタニル基、ハロゲン化ベンジル基、シアネートエステル基、アミノ基、イソシアネート基、および、アジリジン基が挙げられる。
 反応性官能基が無水カルボン酸基である場合に使用可能な架橋性基の例としては、オキシラニル基、オキセタニル基、および、水酸基が挙げられる。
 反応性官能基がアミノ基である場合に使用可能な架橋性基の例としては、オキシラニル基、オキセタニル基、カルボン酸基、ハロゲン化ベンジル基、イソシアネート基、アルデヒド基、および、カルボニル基が挙げられる。
 反応性官能基がシアネートエステル基である場合に使用可能な架橋性基の例としては、オキシラニル基、カルボン酸基、および、不飽和重合性基が挙げられる。
 反応性官能基がチオール基である場合に使用可能な架橋性基の例としては、オキシラニル基、オキセタニル基、ハロゲン化ベンジル基、無水カルボン酸基、イソシアネート基、および、アルコキシシリル基が挙げられる。
 中でも、熱伝導材料の熱伝導性がより優れる観点および熱伝導材料のデバイス等に対する接着性が優れる観点から、架橋性基は、オキシラニル基またはオキセタニル基が好ましく、オキシラニル基がより好ましい。
 なお、本明細書において、オキシラニル基はエポキシ基とも呼ばれる官能基であり、オキサシクロプロパン(オキシラン)を含む基であればよく、例えば飽和炭化水素環基の隣接する炭素原子2個がオキソ基(-O-)を介して結合してオキシラン環を形成している基等も含む。
 以下、架橋性基としてオキシラニル基(エポキシ基)を有する架橋性化合物を、エポキシ化合物ともいう。
 架橋性化合物が有する架橋性基の数は特に制限されないが、2~8が好ましく、2~6がより好ましい。
 架橋性化合物は、なかでも、エポキシ化合物であることが好ましい。
 エポキシ化合物としては、例えば、後述する式(E1)で表されるエポキシ化合物、ビスフェノールAジグリシジルエーテル樹脂、および、ビスフェノールFジグリシジルエーテル樹脂等に代表されるようなエポキシ基を有する棒状化合物(棒状エポキシ化合物)、並びに、エポキシ基を有する円盤状化合物(円盤状エポキシ化合物)が挙げられる。
 なお、円盤状化合物の定義については、上述した通りである。
 架橋性化合物としては、熱伝導材料の熱伝導性がより優れる観点から、後述する後述する式(E1)で表されるエポキシ化合物、または、円盤状エポキシ化合物が好ましい。
 また、架橋性化合物は、液晶性を有しても有さなくてもよく、熱伝導材料の熱伝導性がより優れる観点から、液晶性を有することが好ましい。
 以下に、棒状エポキシ化合物、および円盤状エポキシ化合物について各々詳述する。
(棒状エポキシ化合物)
 架橋性化合物が棒状エポキシ化合物である場合、上記棒状エポキシ化合物が有するエポキシ基の数は特に制限されないが、2~8が好ましく、2~6がより好ましく、2がさらに好ましい。
 棒状エポキシ化合物としては、中でも、熱伝導材料の熱伝導性がより優れる観点から、式(E1)で表されるエポキシ化合物であるのがより好ましい。
Figure JPOXMLDOC01-appb-C000023
 式(E1)中、LE1は、それぞれ独立に、単結合または2価の連結基を表す。
 中でも、LE1は、2価の連結基が好ましい。
 2価の連結基は、-O-、-S-、-C(=O)-、-NH-、-CH=CH-、-C≡C-、-CH=N-、-N=CH-、-N=N-、置換意を有していてもよいアルキレン基、または、これらの2以上の組み合わせからなる基が好ましく、-O-アルキレン基-または-アルキレン基-O-がより好ましい。
 なお上記アルキレン基は、直鎖状、分岐鎖状、および、環状のいずれでもよいが、炭素数1~2の直鎖状アルキレン基が好ましい。
 LE2は、それぞれ独立に、単結合、-CH=CH-、-C(=O)-O-、-O-C(=O)-、-C(-CH)=CH-、-CH=C(-CH)-、-CH=N-、-N=CH-、-N=N-、-C≡C-、-N=N(-O)-、-N(-O)=N-、-CH=N(-O)-、-N(-O)=CH-、-CH=CH-C(=O)-、-C(=O)-CH=CH-、-CH=C(-CN)-、または、-C(-CN)=CH-を表す。
 中でも、LE2は、それぞれ独立に、単結合、-C(=O)-O-、または、-O-C(=O)-が好ましい。
 LE3は、それぞれ独立に、単結合、または、置換基を有していてもよい、5員環もしくは6員環の芳香族環基または5員環もしくは6員環の非芳香族環基、または、これらの環からなる多環基を表す。
 LE3で表される芳香族環基および非芳香族環基の例としては、置換基を有していてもよい、1,4-シクロヘキサンジイル基、1,4-シクロヘキセンジイル基、1,4-フェニレン基、ピリミジン-2,5-ジイル基、ピリジン-2,5-ジイル基、1,3,4-チアジアゾール-2,5-ジイル基、1,3,4-オキサジアゾール-2,5-ジイル基、ナフタレン-2,6-ジイル基、ナフタレン-1,5-ジイル基、チオフェン-2,5-ジイル基、および、ピリダジン-3,6-ジイル基が挙げられる。1,4-シクロヘキサンジイル基の場合、トランス体およびシス体の構造異性体のどちらの異性体であってもよく、任意の割合の混合物でもよい。中でも、トランス体であることが好ましい。
 中でも、LE3は、単結合、1,4-フェニレン基、または、1,4-シクロヘキセンジイル基が好ましい。
 LE3で表される基が有する置換基は、それぞれ独立に、アルキル基、アルコキシ基、ハロゲン原子、シアノ基、ニトロ基、または、アセチル基が好ましく、アルキル基(好ましくは炭素数1)がより好ましい。
 なお、置換基が複数存在する場合、置換基は、それぞれ同一でも異なっていてもよい。
 peは、0以上の整数を表す。
 peが2以上の整数である場合、複数存在する(-LE3-LE2-)は、それぞれ同一でも異なっていてもよい。
 中でも、peは、0~2が好ましく、0または1が好ましい。
 LE4は、それぞれ独立に、置換基を表す。
 置換基は、それぞれ独立に、アルキル基、アルコキシ基、ハロゲン原子、シアノ基、ニトロ基、または、アセチル基が好ましく、アルキル基(好ましくは炭素数1)がより好ましい。
 なお、次に説明するleが2以上の整数である場合、(LE4le中の複数存在するLE4は、それぞれ同一でも異なっていてもよい。
 leは、それぞれ独立に、0~4の整数を表す。
 中でも、leは、それぞれ独立に、0~2が好ましい。
 式(E1)で表されるエポキシ化合物の分子量は、熱伝導性がより優れる観点から、100~3000が好ましく、200~2500がより好ましく、250~2000がさらに好ましい。
 式(E1)で表されるエポキシ化合物は、1種のみを使用していてもよいし、2種以上を併用していてもよい。
(円盤状エポキシ化合物)
 円盤状エポキシ化合物としては、エポキシ基を有する円盤状化合物であれば特に制限されない。
 円盤状エポキシ化合物としては、熱伝導材料の熱伝導性がより優れる観点から、エポキシ基を3~8個有するのが好ましく、3~6個有するのがより好ましい。
 なお、エポキシ基を3個以上有する円盤状化合物の硬化物は、ガラス転移温度が高く、優れた耐熱性を示す。
 上記円盤状化合物の具体例としては特に制限されないが、例えば、上述した円盤状コア部を部分構造として有する化合物が挙げられる。
 架橋性化合物は、1種のみを使用していてもよいし、2種以上を併用していてもよい。
 本発明の熱伝導材料中の、特定円盤状化合物と架橋性化合物との硬化物の含有量は、本発明の熱伝導材料の全質量に対して、5~95質量%が好ましく、10~90質量%がより好ましく、15~80質量%がさらに好ましい。
 特定円盤状化合物と架橋性化合物との硬化物は、カラムナー構造を形成するのが好ましい。カラムナー構造は秩序度が高く、硬化物がカラムナー構造を形成することで、硬化物の熱伝導性がより向上する。硬化物をXRD(X線回折法)で測定して、2θ=10度の以下の範囲にカラムナー構造由来のピークが確認できる場合、硬化物がカラムナー構造を形成していると判断できる。
 上記硬化物の製造方法は特に制限されず、後述する<組成物の硬化方法>で述べる加熱条件にて、特定円盤状化合物と架橋性化合物とを反応させる方法が挙げられる。
[その他の成分]
 本発明の熱伝導材料は、上述した特定円盤状化合物と架橋性化合物との硬化物以外にも、その他の成分を含んでいてもよい。
 なお、熱伝導材料は、未硬化の特定円盤状化合物および未硬化の架橋性化合物を含んでいてもよい。
 その他の成分としては、代表的には、無機物が挙げられる。
<無機物>
 本発明の熱伝導材料は、熱伝導材料の熱伝導性がより優れる観点から、無機物を含むのが好ましい。
 無機物としては、従来から熱伝導材料の無機フィラーに用いられているいずれの無機物を用いてもよい。無機物としては、無機酸化物または無機窒化物が好ましい。無機物は、無機酸化窒化物であってもよい。無機物の形状は特に制限されず、粒子状であってもよく、フィルム状であってもよく、または、板状であってもよい。粒子状無機物の形状は、米粒状、球形状、立方体状、紡錘形状、鱗片状、凝集状、および、不定形状が挙げられる。
 無機酸化物としては、例えば、酸化ジルコニウム(ZrO)、酸化チタン(TiO)、酸化ケイ素(SiO)、酸化アルミニウム(Al)、酸化鉄(Fe、FeO、Fe)、酸化銅(CuO、CuO)、酸化亜鉛(ZnO)、酸化イットリウム(Y)、酸化ニオブ(Nb)、酸化モリブデン(MoO)、酸化インジウム(In、InO)、酸化スズ(SnO)、酸化タンタル(Ta)、酸化タングステン(WO、W)、酸化鉛(PbO、PbO)、酸化ビスマス(Bi)、酸化セリウム(CeO、Ce)、酸化アンチモン(Sb、Sb)、酸化ゲルマニウム(GeO、GeO)、酸化ランタン(La)、および、酸化ルテニウム(RuO)が挙げられる。
 上記の無機酸化物は、1種のみを使用していてもよいし、2種以上を併用していてもよい。
 無機酸化物は、酸化チタン、酸化アルミニウム、または、酸化亜鉛が好ましい。
 無機酸化物は、非酸化物として用意された金属が、環境下等で酸化したことにより生じている酸化物であってもよい。
 無機窒化物としては、例えば、窒化ホウ素(BN)、窒化炭素(C)、窒化ケイ素(Si)、窒化ガリウム(GaN)、窒化インジウム(InN)、窒化アルミニウム(AlN)、窒化クロム(CrN)、窒化銅(CuN)、窒化鉄(FeN)、窒化鉄(FeN)、窒化ランタン(LaN)、窒化リチウム(LiN)、窒化マグネシウム(Mg)、窒化モリブデン(MoN)、窒化ニオブ(NbN)、窒化タンタル(TaN)、窒化チタン(TiN)、窒化タングステン(WN)、窒化タングステン(WN)、窒化イットリウム(YN)、および、窒化ジルコニウム(ZrN)が挙げられる。
 上記の無機窒化物は、1種のみを使用していてもよいし、2種以上を併用していてもよい。
 無機窒化物は、アルミニウム原子、ホウ素原子、または、珪素原子を含むことが好ましく、窒化アルミニウム、窒化ホウ素、または、窒化珪素であることがより好ましく、窒化アルミニウムまたは窒化ホウ素であることがさらに好ましく、窒化ホウ素であることが特に好ましい。
 無機物の大きさは特に限定されないが、無機物の分散性がより優れる点で、無機物の平均粒径は500μm以下が好ましく、300μm以下がより好ましく、200μm以下がさらに好ましい。下限は特に限定されないが、取り扱い性の点で、10nm以上が好ましく、100nm以上がより好ましい。
 上記平均粒径の測定方法としては、電子顕微鏡を用いて、100個の無機物を無作為に選択して、それぞれの無機物の粒径(長径)を測定し、それらを算術平均して求める。なお、市販品を用いる場合、カタログ値を用いてもよい。
 無機物は、1種のみを使用していてもよいし、2種以上を併用していてもよい。
 本発明の熱伝導材料中の、無機物の含有量は、本発明の熱伝導材料の全質量に対して、30~95質量%が好ましく、35~90質量%がより好ましく、40~90質量%がさらに好ましい。
 熱伝導材料は、上記硬化物を含んでいればよく、その製造方法は特に制限されないが、特定円盤状化合物および架橋性化合物を含む熱伝導材料形成用組成物(本組成物)を用いて形成されることが好ましい。つまり、上記組成物を硬化させて、上記硬化物を含む熱伝導材料を得ることが好ましい。
 以下、本組成物、および、本組成物を用いた本発明の熱伝導材料の製造方法について説明する。
[熱伝導材料形成用組成物]
 本組成物は、特定円盤状化合物および架橋性化合物を含む。
 特定円盤状化合物および架橋性化合物の定義は、上述した通りである。
 本組成物中の特定円盤状化合物の含有量は、組成物の全固形分に対して、5~95質量%が好ましく、10~90質量%がより好ましく、15~80質量%がさらに好ましい。
本組成物中の架橋性化合物の含有量は、組成物の全固形分に対して、5~95質量%が好ましく、10~90質量%がより好ましく、15~80質量%がさらに好ましい。
 また、上記組成物中の架橋性化合物の含有量は、組成物中の架橋性化合物が有する架橋性基の数と、組成物中の特定円盤状化合物が有する反応性官能基の数との比(架橋性基の数/反応性官能基の数)が、0.1~10.0となる量が好ましく、0.1~9.0となる量がより好ましく、0.1~8.0となる量がさらに好ましい。
 また、本組成物は、無機物、溶媒、および、硬化促進剤等のその他の成分を含んでいてもよい。
 無機物の定義は、上述した通りである。
<溶媒>
 本組成物は、さらに、溶媒を含んでいてもよい。
 溶媒の種類は特に制限されず、有機溶媒が好ましい。有機溶媒としては、例えば、酢酸エチル、メチルエチルケトン(MEK)、ジクロロメタン、および、テトラヒドロフラン(THF)が挙げられる。
 本組成物における溶媒の含有量は、本組成物の全質量に対する本組成物中の全固形分の質量の合計(固形分濃度)が、1~90質量%となる量が好ましく、5~85質量%となる量がより好ましく、10~80質量%となる量がさらに好ましい。
<硬化促進剤>
 硬化促進剤としては、トリフェニルホスフィン、2-エチル-4-メチルイミダゾール、三フッ化ホウ素アミン錯体、1-ベンジル-2-メチルイミダゾール等、および、特開2012-67225号公報段落0052に記載の硬化促進剤が挙げられる。中でも、トリフェニルホスフィンが好ましい。
 本組成物中の硬化促進剤の含有量は、組成物の全固形分に対して、0.01~30質量%が好ましく、0.01~20質量%がより好ましく、0.01~10質量%がさらに好ましい。
 また、硬化促進剤の使用量は、特定円盤状化合物と架橋性化合物との合計質量に対して、0.01~30質量%が好ましく、0.01~20質量%がより好ましく、0.01~10質量%がさらに好ましい。
 なお、架橋性化合物としてエポキシ化合物を使用し、かつ、特定円盤状化合物がアミノ基を有する場合、硬化促進剤を用いないことも好ましい場合がある。アミノ基はオキシラニル基(エポキシ基)との反応性が優れるため、硬化促進剤を用いてさらに反応性を向上させる必要が無い場合があるためである。
 なお、本組成物が、液晶性を示す特定円盤状化合物を含み、且つ、組成物自体が液晶性を示す場合、熱伝導性と耐熱性とに優れた硬化性組成物として好適に使用できる。つまり、本組成物は、水酸基、カルボン酸基、無水カルボン酸基、アミノ基、シアネートエステル基、および、チオール基からなる群から選択される反応性官能基を1個以上有する液晶性円盤状化合物と、上記反応性官能基と反応する基を有する架橋性化合物とを含み、液晶性を示す態様であることも好ましい。
 なお、上記態様とした場合、架橋性化合物も同様に液晶性を示すことが好ましい。
 また、上記液晶性円盤状化合物としては、後述する式(1A)で表される液晶性円盤状化合物が好ましい。
 また、架橋性化合物は、上述した通りである。
<組成物の製造方法>
 本組成物の製造方法は特に制限されず、公知の方法を採用できる。例えば、上述した各種成分(特定円盤状化合物、架橋性化合物、無機物、硬化促進剤、および、溶媒等)を公知の方法で混合することにより製造できる。混合する際には、各種成分を一括で混合しても、順次混合してもよい。
<組成物の硬化方法>
 本組成物の硬化方法は特に制限されず、特定円盤状化合物および架橋性化合物の種類によって適宜最適な方法が選ばれる。硬化方法は、特に制限されないが、熱硬化反応が好ましい。
 熱硬化反応の際の加熱温度は特に制限されない。例えば、50~250℃の範囲で適宜選択すればよい。また、熱硬化反応を行う際には、温度の異なる加熱処理を複数回にわたって実施してもよい。
 硬化処理は、フィルム状またはシート状とした本組成物について行うことが好ましい。具体的には、例えば、本組成物を塗布成膜し硬化反応を行えばよい。その際、プレス加工を行ってもよい。
 また、硬化処理は、本組成物を半硬化状態にした時点で終了してもよい。半硬化状態の本発明の熱伝導材料を、使用されるデバイス等に接触するように配置した後、さらに加熱等により硬化を進行させ、本硬化させてもよい。上記本硬化させる際の加熱等によって、デバイスと本発明の熱伝導材料とが接着することも好ましい。
 硬化反応を含む熱伝導材料の作製については、「高熱伝導性コンポジット材料」(シーエムシー出版、竹澤由高著)を参照することができる。
 熱伝導材料の形状に特に制限はなく、用途に応じて様々な形状に成形できる。成形された熱伝導材料の典型的な形状としては、例えば、シート状が挙げられる。
 また、本発明の熱伝導材料の熱伝導性は異方的ではなく等方的であることが好ましい。
[熱伝導材料の用途]
 本発明の熱伝導材料は放熱シート等の放熱材として用いることができ、各種デバイスの放熱用途に用いることができる。より具体的には、デバイス上に本発明の熱伝導材料を含む熱伝導層を配置して熱伝導層付きデバイスを作製することにより、デバイスからの発熱を効率的に熱伝導層で放熱できる。
 本発明の熱伝導材料は十分な熱伝導性を有するとともに、高い耐熱性を有しているため、パーソナルコンピュータ、一般家電、および、自動車等の様々な電気機器に用いられているパワー半導体デバイスの放熱用途に適している。
 さらに、本発明の熱伝導材料は、半硬化状態であっても十分な熱伝導性を有するため、各種装置の部材の隙間等の、光硬化のための光を到達させることが困難な部位に配置する放熱材としても使用できる。また、熱伝導性を有する接着剤としての使用も可能である。
 本発明の熱伝導材料は、本組成物から形成される部材以外の、他の部材と組み合わせて使用されてもよい。
 例えば、シート状の熱伝導材料は、本組成物から形成された層の他の、シート状の支持体と組み合わせられていてもよい。
 シート状の支持体としては、プラスチックフィルム、金属フィルム、または、ガラス板が挙げられる。プラスチックフィルムの材料としては、例えば、ポリエチレンテレフタレート(PET)等のポリエステル、ポリカーボネート、アクリル樹脂、エポキシ樹脂、ポリウレタン、ポリアミド、ポリオレフィン、セルロース誘導体、および、シリコーンが挙げられる。金属フィルムとしては、銅フィルムが挙げられる。
〔液晶性円盤状化合物〕
 本発明の液晶性円盤状化合物は、水酸基、カルボン酸基、無水カルボン酸基、アミノ基、シアネートエステル基、および、チオール基からなる群から選択される反応性官能基を1個以上有する。
 円盤状化合物の定義およびその好適態様、ならびに、反応性官能基およびその好適態様については、上述した通りである。
 上記液晶性円盤状化合物の分子量は、熱伝導性の観点から、3000以下であることが好ましく、2500以下であることがより好ましい。なお分子量の下限値は特に制限されないが、例えば、200以上である。
 上記液晶性円盤状化合物としては、熱伝導性により優れる点で、なかでも、後述する式(1A)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000024
 上記式中、Mは、nc1価の円盤状コア部を表す。
 Lc11は、2価の連結基を表す。
 Qは、水素原子または置換基を表す。
 nc1は、3以上の整数を表す。
 ただし、1個以上のQは、上記反応性官能基を表す。また、上記Mがトリフェニレン骨格である場合、Lc11は、*c1-アルキレン基-Xc1-*c2、*c1-Xc1-アルキレン基-*c2、または*c1-Xc1-アリーレン基-O-*c2で表される部分構造を含む2価の連結基を表す。
 Xc1は、-O-C(=O)-、または-C(=O)-O-を表す。
 *c1は、円盤状コア部との結合位置を示す。*c2は、他方の結合位置を表す。
 上記式(1A)中、M、nc1、Lc11、およびQは、上述した式(1)中のM、nc1、Lc1、およびQと各々同義であり、好適態様も同じである。
 上記式(1A)としては、なかでも、式(D4A)で表される化合物または式(D16)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000025

 L11は、*c1-アルキレン基-Xc1-*c2、*c1-Xc1-アルキレン基-*c2、または*c1-Xc1-アリーレン基-O-*c2で表される部分構造を含む2価の連結基を表す。
 Xc1は、-O-C(=O)-、または-C(=O)-O-を表す。
 *c1は、円盤状コア部との結合位置を示す。*c2は、他方の結合位置を表す。
 Qは、それぞれ独立に、水素原子または置換基を表す。
 ただし、1個以上のQは、上記反応性官能基を表す。
 式(D4A)中、L11としては、上述した式(D1)~(D15)中のLで表される2価の連結基において、*c1-アルキレン基-Xc1-*c2、*c1-Xc1-アルキレン基-*c2、または*c1-Xc1-アリーレン基-O-*c2で表される部分構造を有するものが該当する。つまり、式(D4)のLと同様のものが挙げられる。
Figure JPOXMLDOC01-appb-C000026

 式(D16)中、A2X、A3X、および、A4Xは、それぞれ独立に、-CH=または-N=を表す。
 R17X、R18X、および、R19Xは、それぞれ独立に、*-X211X-(Z21X-X212Xn21X-L21X-Qを表す。*は、中心環との結合位置を表す。
 X211XおよびX212Xは、それぞれ独立に、単結合、-O-、-C(=O)-、-NH-、-OC(=O)-、-OC(=O)O-、-OC(=O)NH-、-OC(=O)S-、-C(=O)O-、-C(=O)NH-、-C(=O)S-、-NHC(=O)-、-NHC(=O)O-、-NHC(=O)NH-、-NHC(=O)S-、-S-、-SC(=O)-、-SC(=O)O-、-SC(=O)NH-、または、-SC(=O)S-を表す。
 Z21Xは、それぞれ独立に、5員環もしくは6員環の芳香族環基、または、5員環もしくは6員環の非芳香族環基を表す。
 L21Xは、単結合または2価の連結基を表す。
 Qは、それぞれ独立に、水素原子または置換基を表す。
 ただし、1個以上のQは、上記反応性官能基を表す。
 n21Xは、0~3の整数を表す。n21Xが2以上の場合、複数存在する(Z21X-X212X)は、同一でも異なっていてもよい。
 なお、式(D16)で表される化合物については、上述したとおりである。
 また、上記液晶性円盤状化合物は、硬化反応の観点から、結晶相から液晶相への相転移温度が200℃以下であることが好ましく、180℃以下であることがより好ましい。結晶相から液晶相への相転移温度の下限値は特に制限されないが、例えば、0℃以上である。なお、相転移温度は、偏光顕微鏡による観察、又は示差走査熱量測定により確認できる。
 以下に実施例に基づいて本発明をさらに詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、および、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更できる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきではない。
〔組成物の調製および評価(1)〕
[各種成分]
 以下に、実施例および比較例で使用した各種成分を示す。
<円盤状化合物または棒状化合物>
(円盤状化合物B-1の合成)
 以下に示す合成スキームに従って、円盤状化合物B-1を合成した。
Figure JPOXMLDOC01-appb-C000027
 有機合成化学協会誌2002年12月号1190頁に記載の方法に従い、円盤状化合物P-1を合成した。300mLの三口フラスコにP-1(7g)、p-メルカプトフェノール(2.9g)、トリエチルアミン(3.6g)、および、テトラヒドロフラン(70mL)を入れて得られた混合溶液を、室温で2時間撹拌した。混合溶液に蒸留水(70mL)を加えてから、酢酸エチル(70mL)で反応生成物を抽出した。さらに、抽出液を1N塩酸(70mL)および飽和食塩水(70mL)で洗浄し、その後、無水硫酸マグネシウムで抽出液中の水分を除去した。抽出液の溶媒を減圧して除去し、円盤状化合物B-1(9.5g、収率:95%)を得た。
 上記円盤状化合物B-1の合成方法を参考にして、円盤状化合物B-2~B-7、B-11~B-18、および、B-21~B-23を合成した。
(円盤状化合物B-8の合成)
 特許5620129号に記載の実施例14の方法に従い、例示化合物13を合成し、以下に示す円盤状化合物P-2とした。P-2を用いて、円盤状化合物B-1の合成において上述したのと同様の方法で、円盤状化合物B-8を合成した。
 上記円盤状化合物B-8の合成方法を参考にして、円盤状化合物P-9~P-10、および、B-19~P-20を合成した。
Figure JPOXMLDOC01-appb-C000028
 以下に、得られた円盤状化合物B-1~B-23の構造を以下に示す。
 なお、構造式中、*は中心環との結合位置を示す。
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
(棒状化合物)
 棒状化合物D-1およびD-2の構造を以下に示す。
Figure JPOXMLDOC01-appb-C000032
<架橋性化合物>
 架橋性化合物として、下記A-1~A-6の化合物を用いた。
 A-1:ビスフェノールFジグリシジルエーテル樹脂とビスフェノールAジグリシジルエーテル樹脂の混合物、エポキシ当量:165.7g/eq、全塩素:0.008重量%、粘度:2,340mPa・s、新日鉄住金化学社製。
Figure JPOXMLDOC01-appb-C000033
<硬化促進剤>
 硬化促進剤として、PPh(トリフェニルホスフィン)を用いた。
<無機物>
 無機物として、SGPS(窒化ホウ素、平均粒径12μm、デンカ(株)社製)を用いた。
<溶媒>
 溶媒として、MEK(メチルエチルケトン)を用いた。
[調製]
<実施例1>
 下記表1に示す各種成分を、円盤状化合物、MEK(メチルエチルケトン)、架橋性化合物、および、硬化促進剤の順で混合した後、無機物を添加した。得られた混合物を自転公転ミキサー(THINKY社製、あわとり練太郎ARE-310)で5分間処理することで組成物1を得た。
 なお、円盤状化合物と架橋性化合物の混合比は、組成物中の円盤状化合物が有する反応性官能基の数と、架橋性化合物が有する架橋性基の数とが等しくなるように調整した。
 また、組成物1の最終的な固形分は、表1に記載された固形分濃度(「溶媒」欄内に記載)になるよう、MEKで調整した。
 次に、アプリケーターを用いて、ポリエステルフィルム(NP-100A パナック社製、膜厚100μm)の離型面上に組成物1を均一に塗布し、空気下で1時間放置することで塗膜1を得た。
 次に、塗膜1の塗膜面を別のポリエステルフィルムで覆い、空気下で熱プレス(熱板温度160℃、圧力12MPaで30分間処理した後、さらに、190℃、圧力12MPaで2時間)で処理することで塗膜を硬化し、樹脂シートを得た。樹脂シートの両面にあるポリエステルフィルムを剥がし、平均膜厚250μmの熱伝導性シート1を得た。
[熱伝導性評価]
 熱伝導性評価は、熱伝導性シート1を用いて実施した。下記の方法で熱伝導率の測定を行い、下記の基準に従って熱伝導性を評価した。
(熱伝導率(W/m・k)の測定)
(1)アイフェイズ社製の「アイフェイズ・モバイル1u」を用いて、熱伝導性シート1の厚み方向の熱拡散率を測定した。
(2)メトラー・トレド社製の天秤「XS204」を用いて、熱伝導性シート1の比重をアルキメデス法(「固体比重測定キット」使用)で測定した。
(3)セイコーインスツル社製の「DSC320/6200」を用い、10℃/分の昇温条件の下、25℃における熱伝導性シート1の比熱を求めた。
(4)得られた熱拡散率に比重および比熱を乗じることで、熱伝導性シート1の熱伝導率を算出した。
(評価基準)
 「A」: 15W/m・K以上
 「B」: 12W/m・K以上15W/m・K未満
 「C」: 9W/m・K以上12W/m・K未満
 「D」: 9W/m・K未満
 結果を表1に示す。
<実施例2~29、比較例1~2>
 実施例1と同様の手順により、下記表1に示す実施例および比較例の各組成物を得た。なお、比較例においては、円盤状化合物ではなく、棒状化合物D-1またはD-2を使用した。
 また、組成物の最終的な固形分は、表1に記載された固形分濃度(「溶媒」欄内に記載)になるよう、MEKで調整した。
 また、得られた各組成物から熱伝導性シート2~29、比較用熱伝導性シート1~2を作製し、実施例1と同様の熱伝導性評価試験を実施した。結果を表1に示す。
 表1において、各種組成物の成分欄に記載される(数値)は、組成物中の全固形分に対する各種成分の含有量(質量%)を意味する。
 また、表1中に記載される「膜厚[μm]」は、熱伝導性シートの平均膜厚を意味する。
 表1中に記載される「中心環」は、使用した円盤状化合物の中心環が有する構造を示す。
 表1中に記載される「反応性官能基」は、使用した円盤状化合物が有する反応性官能基の種類を示す。
 表1中に記載される「官能基数」は、使用した円盤状化合物が有する反応性官能基の数を示す。
 表1中に記載される「架橋性基」は、使用した架橋性化合物が有する架橋性基の種類を示す。
 表1中に記載される「式(E1)」は、使用した架橋性化合物がエポキシ化合物である場合において、エポキシ化合物が式(E1)で表される化合物であるか否かを表し、使用したエポキシ化合物が式(E1)で表される化合物である場合を「有」、そうでない場合を「無」とする。
Figure JPOXMLDOC01-appb-T000034
 上記表に示すように、本発明の熱伝導材料は、熱伝導性に優れることが確認された。
 また、特定円盤状化合物の中心環がトリフェニレン環である場合、熱伝導材料の熱伝導性がより優れることが確認された(実施例8~10および22~23と、他の実施例との比較)。
 特定円盤状化合物が、反応性官能基を3~6個有する場合、熱伝導材料の熱伝導性がより優れることが確認された(実施例27と、他の実施例との比較)。
 特定円盤状化合物が有する反応性官能基が、水酸基、カルボン酸基、および、無水カルボン酸基のいずれかである場合、熱伝導材料の熱伝導性がより優れることが確認された(実施例4および10と、他の実施例との比較)。
 架橋性化合物がエポキシ化合物である場合、熱伝導材料の熱伝導性がより優れることが確認された(実施例28と、他の実施例の比較)。
 エポキシ化合物が式(E1)で表される場合、熱伝導材料の熱伝導性がより優れることが確認された(実施例12と、他の実施例の比較)。
〔組成物の調製および評価(2)〕
 以下の手順により、水酸基、カルボン酸基、無水カルボン酸基、アミノ基、シアネートエステル基、および、チオール基からなる群から選択される反応性官能基を1個以上有する円盤状化合物と、架橋性化合物とを含む組成物の調製および評価を実施した。なお、以下の説明では、架橋性化合物を「主剤」、上述した円盤状化合物を「硬化剤」ともいう。
[各種成分]
 以下に、後述する実施例で使用した各種成分を示す。
<硬化剤>
 以下に、円盤状化合物C-1~C-15を示す。なお、構造式中、*は中心環との結合位置を示す。なお、円盤状化合物C-1~C-15のうち、C-1~C-12、およびC-15は、液晶性を示す(つまり、C-1~C-12、およびC-15は、液晶性円盤状化合物に該当する)。なお、液晶性円盤状化合物の合成方法の一例として、後段にてC-5の合成例を示す。
 以下に、円盤状化合物C-1~C-15を示す。なお、構造式中、*は中心環との結合位置を示す。
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037

Figure JPOXMLDOC01-appb-I000038
Figure JPOXMLDOC01-appb-C000039
(合成例)
≪液晶性円盤状化合物C-5の合成≫
 特許5385937号に記載の方法に従い、円盤状カルボン酸を合成した。500mLの三口フラスコに円盤状カルボン酸(20g)、DMAc(100mL)を入れて、続いて5~15℃で塩化チオニル(9.2g)を滴下した。2時間室温で撹拌後、p-ヒドロキシフェネチルアルコール(12.5)のDMAc(10mL)混合溶液を5~15℃で滴下し、室温で2時間撹拌した。混合溶液に蒸留水(100mL)および酢酸エチル(200mL)、ヘキサン(50mL)で反応生成物を抽出した。さらに、抽出液を飽和食塩水(100mL)で洗浄し、その後、無水硫酸マグネシウムで抽出液中の水分を除去した。抽出液の溶媒を減圧して除去し、カラムクロマトグラフィー(ヘキサン/酢酸エチル=3/7)による精製を行うことで円盤状化合物C-5(17.7g、収率:64%)を得た。
Figure JPOXMLDOC01-appb-C000040
(硬化剤の液晶性)
 硬化剤(C-1~C-15)について、各々単独の状態でホットステージ上にて加熱した。偏光顕微鏡観察を行い、相転移挙動(結晶相-液晶相における相転移温度)を調べた。
 表2に、硬化剤の液晶性の有無、液晶相の種類、および、結晶相-液晶相における相転移温度を示す。なお、表2中、「なし」とは、液晶性を示さなかったことを意図する。また、表2中、「DNe」とはディスコティックネマチック相を意味する。
<主剤(架橋性化合物)>
 主剤として、下記D-1~D-8の化合物を用いた。
 D-1:ビスフェノールFジグリシジルエーテル樹脂とビスフェノールAジグリシジルエーテル樹脂の混合物、エポキシ当量:165.7g/eq、全塩素:0.008質量%、粘度:2,340mPa・s、新日鉄住金化学社製。
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
(主剤の液晶性)
 主剤(D-1~D-8)について、各々単独の状態でホットステージ上にて加熱した。偏光顕微鏡観察を行い、相転移挙動を調べた。
 表2に、主剤の液晶性の有無、および液晶相の種類を示す。なお、表2中、「なし」とは、液晶性を示さなかったことを意図する。また、表2中、「DNe」とはディスコティックネマチック相を意味し、「Ne」とはネマチック相を意味する。
<硬化促進剤>
 硬化促進剤として、PPh(トリフェニルホスフィン)を用いた。
<無機物>
 「PTX-60」:凝集状窒化ホウ素(平均粒径:60μm、モーメンティブ製)
 「PT-110」:平板状窒化ホウ素(平均粒径:45μm、モーメンティブ製)
 「S-50」:窒化アルミニウム(平均粒径:55μm、MARUWA製)
 「SGPS」:窒化ホウ素(平均粒径12μm)、デンカ(株)社製)
 「AA-3」:アルミナ(平均粒径:3μm、住友化学製)
 「AA-04」:アルミナ(平均粒径:0.4μm、住友化学製)
<溶媒>
 溶媒として、THF(テトラヒドロフラン)を用いた。
[調製]
<実施例30>
 下記表2に示す各種成分を、硬化剤(液晶性円盤状化合物)、THF(テトラヒドロフラン)、主剤(架橋性化合物)、および、硬化促進剤の順で混合した後、無機物を添加した。得られた混合物を自転公転ミキサー(THINKY社製、あわとり練太郎ARE-310)で5分間処理することで組成物30を得た。
 また、組成物30の最終的な固形分は、表2に記載された固形分濃度(「溶媒」欄内に記載)になるよう、THFで調整した。
 次に、アプリケーターを用いて、ポリエステルフィルム(NP-100A パナック社製、膜厚100μm)の離型面上に組成物30を均一に塗布し、空気下で1時間放置することで塗膜30を得た。
 次に、塗膜30の塗膜面を別のポリエステルフィルムで覆い、空気下で熱プレス(熱板温度170℃、圧力12MPaで30分間処理した後、さらに、190℃で2時間)で処理することで塗膜を硬化し、樹脂シートを得た。樹脂シートの両面にあるポリエステルフィルムを剥がし、平均膜厚400μmの熱伝導性シート30を得た。
<組成物30の液晶性>
 上記塗膜30をホットステージ上で加熱した。加熱後、上記組成物を冷却しながら偏光顕微鏡観察を行い、液晶性を調べた。
 表2に、組成物の液晶性の有無、及び液晶相の種類を示す。
[熱伝導性評価]
 熱伝導性評価は、熱伝導性シート30を用いて実施した。実施例1と同様の方法で熱伝導率の測定を行い、下記評価基準に従って熱伝導性を評価した。
(評価基準)
 「A」: 15W/m・K以上
 「B++」:13W/m・K以上15W/m・K未満
 「B+」: 11W/m・K以上13W/m・K未満
 「B」:  9W/m・K以上11W/m・K未満
 「C」:  7W/m・K以上9W/m・K未満
 「D」:  7W/m・K未満
[耐熱性評価]
 耐熱性評価は、熱伝導性シート30を用いて実施した。具体的には、熱伝導性シート30を175℃にて1000時間加熱した後、熱伝導率を測定した。次いで、加熱前の熱伝導率と加熱後の伝導率の変動値を算出することにより、下記評価基準に従って評価した。なお、熱伝導率の変動の大きさが少ないものほど評価が高い。
(評価基準)
 「A」 :0.5W/m・K未満
 「B」 :0.5W/m・K以上1.0W/m・K未満
 「C」 :1.0W/m・K以上1.5W/m・K未満
 「D」 :1.5W/m・K以上
<実施例31~53>
 実施例31と同様の手順により、下記表2に示す実施例および比較例の各組成物を得た。また、組成物の最終的な固形分は、表2に記載された固形分濃度(「溶媒」欄内に記載)になるよう、THFで調整した。
 また、得られた各組成物から熱伝導性シート31~53を作製し、実施例30と同様の熱伝導性評価試験を実施した。結果を表2に示す。
 また、実施例31~53についても、実施例30と同様の方法により、組成物の液晶性の有無、および液晶相の種類を調べた。
 表2において、各種組成物の成分欄に記載される(数値)は、組成物中の全固形分に対する各種成分の含有量(質量%)を意味する。
 表2中に記載される「反応性官能基」は、使用した硬化剤(液晶性円盤状化合物)が有する反応性官能基の種類を示す。
 表2中に記載される「中心環」は、使用した円盤状化合物の中心環が有する構造を示す。
 表2中に記載される「液晶性」とは、主剤および硬化剤の各化合物の単独の状態での液晶性の有無を意味する。なお、表2中、「なし」とは、液晶性を示さなかったことを意図する。また、表2中、「DNe」とはディスコティックネマチック相を意味し、「Ne」はネマチック相を意味する。
 表2中に記載される「式(1A)」は、使用した硬化剤が上述した式(1A)で表される液晶性円盤状化合物であるか否かを表し、使用した硬化剤が式(1A)で表される液晶性円盤状化合物である場合を「有」、そうでない場合を「無」とする。
 表2中に記載される「架橋性基」は、使用した主剤(架橋性化合物)が有する架橋性基の種類を示す。
 また、表2中に記載される「膜厚[μm]」は、熱伝導性シートの平均膜厚を意味する。
Figure JPOXMLDOC01-appb-T000044
 上記表に示すように、本発明の液晶性円盤状化合物(硬化剤)を用いた熱伝導材料は、膜厚が400μmと厚みがあっても、熱伝導性により優れることが確認された(実施例30~47および実施例49~53と、実施例48および実施例49との比較)。
 また、実施例34~35、実施例37~39、および実施例42との対比から、上記液晶性円盤状化合物の結晶相-液晶相の相転移温度が180℃以下の場合、熱伝導性に顕著に優れることが確認された。
 また、液晶性円盤状化合物(硬化剤)が有する反応性官能基が、水酸基、カルボン酸基、および、無水カルボン酸基のいずれかである場合、熱伝導材料の熱伝導性がより優れることが確認された(実施例34~35、実施例37、実施例39~44、および実施例50の比較)。
 架橋性化合物(主剤)が、架橋性基としてエポキシ基を有し且つ式(E1)で表される場合、または架橋性基としてエポキシ基を有し且つ円盤状化合物である場合、熱伝導材料の熱伝導性がより優れることが確認された(実施例30と実施例32と実施例36の比較、ならびに、実施例46と実施例47の比較)。また、硬化剤および主剤のいずれもが液晶性を示す場合、熱伝導材料の熱伝導性がより優れることが確認された(実施例31と実施例32、実施例35と実施例36の比較)。
 また、実施例30~実施例53の結果から、熱伝導性材料用組成物が、硬化剤として、液晶性円盤状化合物を含み、且つ、組成物自体が液晶性を示す場合、耐熱性に優れることが明らかである。
 また、実施例35、実施例51~実施例53の結果から、無機物として窒化ホウ素を含む場合、熱伝導性により優れることが確認された。

Claims (19)

  1.  水酸基、カルボン酸基、無水カルボン酸基、アミノ基、シアネートエステル基、および、チオール基からなる群から選択される反応性官能基を1個以上有する円盤状化合物と、前記反応性官能基と反応する基を有する架橋性化合物との硬化物を含む、熱伝導材料。
  2.  前記円盤状化合物が、下記式(1)で表される、請求項1に記載の熱伝導材料。
    Figure JPOXMLDOC01-appb-C000001

     上記式中、Mは、nc1価の円盤状コア部を表す。
     Lc1は、2価の連結基を表す。
     Qは、水素原子または置換基を表す。
     nc1は、3以上の整数を表す。
     ただし、1個以上のQは、前記反応性官能基を表す。
  3.  前記円盤状化合物が、式(D4)で表される化合物である、請求項2に記載の熱伝導材料。
    Figure JPOXMLDOC01-appb-C000002

     Lは、それぞれ独立に、2価の連結基を表す。
     Qは、それぞれ独立に、水素原子または置換基を表す。
     ただし、1個以上のQは、前記反応性官能基を表す。
  4.  前記円盤状化合物が、前記反応性官能基を3~6個有する、請求項1~3のいずれか1項に記載の熱伝導材料。
  5.  前記円盤状化合物が、水酸基、カルボン酸基、および、無水カルボン酸基からなる群から選択される基を3~6個有する、請求項1~4のいずれか1項に記載の熱伝導材料。
  6.  前記架橋性化合物が、エポキシ化合物である、請求項1~5のいずれか1項に記載の熱伝導材料。
  7.  前記エポキシ化合物が、式(E1)で表される化合物であるか、または、エポキシ基を有する円盤状化合物である、請求項6に記載の熱伝導材料。
    Figure JPOXMLDOC01-appb-C000003

     式(E1)中、LE1は、それぞれ独立に、単結合または2価の連結基を表す。
     LE2は、それぞれ独立に、単結合、-CH=CH-、-C(=O)-O-、-O-C(=O)-、-C(-CH)=CH-、-CH=C(-CH)-、-CH=N-、-N=CH-、-N=N-、-C≡C-、-N=N(-O)-、-N(-O)=N-、-CH=N(-O)-、-N(-O)=CH-、-CH=CH-C(=O)-、-C(=O)-CH=CH-、-CH=C(-CN)-、または、-C(-CN)=CHを表す。
     LE3は、置換基を有していてもよい、5員環もしくは6員環の芳香族環基または5員環もしくは6員環の非芳香族環基、または、これらの環からなる多環基を表す。
     peは、0以上の整数を表す。
     peが2以上の整数である場合、複数存在する(-LE3-LE2-)は、それぞれ同一でも異なっていてもよい。
     LE4は、それぞれ独立に、置換基を表す。
     leは、それぞれ独立に、0~4の整数を表す。
     leが2以上の整数である場合、複数存在するLE4は、それぞれ同一でも異なっていてもよい。
  8.  さらに、無機物を含む、請求項1~7のいずれか1項に記載の熱伝導材料。
  9.  前記無機物が、無機窒化物または無機酸化物である、請求項8に記載の熱伝導材料。
  10.  前記無機物が、窒化ホウ素である、請求項8または9に記載の熱伝導材料。
  11.  シート状である、請求項1~10のいずれか1項に記載の熱伝導材料。
  12.  デバイスと、前記デバイス上に配置された請求項1~11のいずれか1項に記載の熱伝導材料を含む熱伝導層とを有する、熱伝導層付きデバイス。
  13.  水酸基、カルボン酸基、無水カルボン酸基、アミノ基、シアネートエステル基、および、チオール基からなる群から選択される反応性官能基を1個以上有する円盤状化合物と、前記反応性官能基と反応する基を有する架橋性化合物とを含む、熱伝導材料形成用組成物。
  14.  水酸基、カルボン酸基、無水カルボン酸基、アミノ基、シアネートエステル基、および、チオール基からなる群から選択される反応性官能基を1個以上有する液晶性円盤状化合物と、前記反応性官能基と反応する基を有する架橋性化合物とを含み、
     液晶性を示す、請求項13に記載の熱伝導材料形成用組成物。
  15.  水酸基、カルボン酸基、無水カルボン酸基、アミノ基、シアネートエステル基、および、チオール基からなる群から選択される反応性官能基を1個以上有する、液晶性円盤状化合物。
  16.  下記式(1A)で表される、請求項15に記載の液晶性円盤状化合物。
    Figure JPOXMLDOC01-appb-C000004

     上記式中、Mは、nc1価の円盤状コア部を表す。
     Lc11は、2価の連結基を表す。
     Qは、水素原子または置換基を表す。
     nc1は、3以上の整数を表す。
     ただし、1個以上のQは、前記反応性官能基を表す。また、前記Mがトリフェニレン骨格である場合、Lc11は、*c1-アルキレン基-Xc1-*c2、*c1-Xc1-アルキレン基-*c2、または*c1-Xc1-アリーレン基-O-*c2で表される部分構造を含む2価の連結基を表す。
     Xc1は、-O-C(=O)-、または-C(=O)-O-を表す。
     *c1は、円盤状コア部との結合位置を示す。*c2は、他方の結合位置を表す。
  17.  式(D4A)で表される化合物または式(D16)で表される化合物である、請求項15または16に記載の液晶性円盤状化合物。
    Figure JPOXMLDOC01-appb-C000005

     L11は、*c1-アルキレン基-Xc1-*c2、*c1-Xc1-アルキレン基-*c2、または*c1-Xc1-アリーレン基-O-*c2で表される部分構造を含む2価の連結基を表す。
     Xc1は、-O-C(=O)-、または-C(=O)-O-を表す。
     *c1は、円盤状コア部との結合位置を示す。*c2は、他方の結合位置を表す。
     Qは、それぞれ独立に、水素原子または置換基を表す。
     ただし、1個以上のQは、前記反応性官能基を表す。
    Figure JPOXMLDOC01-appb-C000006

     式(D16)中、A2X、A3X、および、A4Xは、それぞれ独立に、-CH=または-N=を表す。
     R17X、R18X、および、R19Xは、それぞれ独立に、*-X211X-(Z21X-X212Xn21X-L21X-Qを表す。*は、中心環との結合位置を表す。
     X211XおよびX212Xは、それぞれ独立に、単結合、-O-、-C(=O)-、-NH-、-OC(=O)-、-OC(=O)O-、-OC(=O)NH-、-OC(=O)S-、-C(=O)O-、-C(=O)NH-、-C(=O)S-、-NHC(=O)-、-NHC(=O)O-、-NHC(=O)NH-、-NHC(=O)S-、-S-、-SC(=O)-、-SC(=O)O-、-SC(=O)NH-、または、-SC(=O)S-を表す。
     Z21Xは、それぞれ独立に、5員環もしくは6員環の芳香族環基、または、5員環もしくは6員環の非芳香族環基を表す。
     L21Xは、単結合または2価の連結基を表す。
     Qは、それぞれ独立に、水素原子または置換基を表す。
     ただし、1個以上のQは、前記反応性官能基を表す。
     n21Xは、0~3の整数を表す。n21Xが2以上の場合、複数存在する(Z21X-X212X)は、同一でも異なっていてもよい。
  18.  前記反応性官能基が、水酸基、カルボン酸基、および、無水カルボン酸基からなる群から選択される基である、請求項15~17のいずれか1項に記載の液晶性円盤状化合物。
  19.  結晶相から液晶相への相転移温度が180℃以下である、請求項15~18のいずれか1項に記載の液晶性円盤状化合物。
PCT/JP2018/026388 2017-07-14 2018-07-12 熱伝導材料、熱伝導層付きデバイス、熱伝導材料形成用組成物、液晶性円盤状化合物 WO2019013299A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP18831796.0A EP3653660B1 (en) 2017-07-14 2018-07-12 Thermally conductive material, device provided with thermally conductive layer, thermally conductive material formation composition, disc-shaped liquid crystal compound
JP2019529790A JPWO2019013299A1 (ja) 2017-07-14 2018-07-12 熱伝導材料、熱伝導層付きデバイス、熱伝導材料形成用組成物、液晶性円盤状化合物
EP20203834.5A EP3816147B1 (en) 2017-07-14 2018-07-12 Thermally conductive material, device with thermally conductive layer, composition for forming thermally conductive material, and disk-like liquid crystal compound
CN201880046559.4A CN110869411B (zh) 2017-07-14 2018-07-12 导热材料、带导热层的器件、导热材料形成用组合物、液晶性圆盘状化合物
KR1020207001108A KR102286095B1 (ko) 2017-07-14 2018-07-12 열전도 재료, 열전도층 부착 디바이스, 열전도 재료 형성용 조성물, 액정성 원반상 화합물
US16/741,286 US11702578B2 (en) 2017-07-14 2020-01-13 Thermally conductive material, device with thermally conductive layer, composition for forming thermally conductive material, and disk-like liquid crystal compound

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-138210 2017-07-14
JP2017138210 2017-07-14
JP2017-252056 2017-12-27
JP2017252056 2017-12-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/741,286 Continuation US11702578B2 (en) 2017-07-14 2020-01-13 Thermally conductive material, device with thermally conductive layer, composition for forming thermally conductive material, and disk-like liquid crystal compound

Publications (1)

Publication Number Publication Date
WO2019013299A1 true WO2019013299A1 (ja) 2019-01-17

Family

ID=65001706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/026388 WO2019013299A1 (ja) 2017-07-14 2018-07-12 熱伝導材料、熱伝導層付きデバイス、熱伝導材料形成用組成物、液晶性円盤状化合物

Country Status (6)

Country Link
US (1) US11702578B2 (ja)
EP (2) EP3816147B1 (ja)
JP (1) JPWO2019013299A1 (ja)
KR (1) KR102286095B1 (ja)
CN (1) CN110869411B (ja)
WO (1) WO2019013299A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019131332A1 (ja) * 2017-12-27 2019-07-04 富士フイルム株式会社 組成物、熱伝導材料、熱伝導層付きデバイス、及び熱伝導材料の製造方法
WO2021039732A1 (ja) * 2019-08-26 2021-03-04 富士フイルム株式会社 熱伝導材料形成用組成物、熱伝導材料、熱伝導シート、熱伝導層付きデバイス
KR20210023351A (ko) * 2019-08-23 2021-03-04 전북대학교산학협력단 방열소재용 액정 폴리우레탄 및 이를 포함하는 방열소재
WO2021131803A1 (ja) * 2019-12-26 2021-07-01 富士フイルム株式会社 組成物、熱伝導シート、熱伝導シート付きデバイス
JP2021098800A (ja) * 2019-12-23 2021-07-01 富士フイルム株式会社 熱伝導材料形成用組成物、熱伝導材料、熱伝導シート、熱伝導層付きデバイス、表面修飾窒化ホウ素
KR20210089741A (ko) * 2019-01-23 2021-07-16 후지필름 가부시키가이샤 조성물, 열전도 시트, 열전도층 부착 디바이스

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220085616A (ko) 2020-12-15 2022-06-22 삼성전자주식회사 에폭시 화합물, 이로부터 얻어지는 조성물, 반도체 장치, 전자 장치, 물품 및 에폭시 화합물 제조 방법
CN115073818B (zh) * 2022-06-17 2023-12-26 山东海科创新研究院有限公司 一种导热填料、高导热聚醚砜复合材料及其制备方法

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5620129B2 (ja) 1976-09-19 1981-05-12
JPH07281028A (ja) 1994-04-08 1995-10-27 Fuji Photo Film Co Ltd 光学異方性シートおよびそれを用いた液晶表示素子
JPH07306317A (ja) 1994-05-11 1995-11-21 Fuji Photo Film Co Ltd 新規なトリフェニレン誘導体、それを含む組成物およびそれを含む光学異方性材料
JPH07316257A (ja) * 1994-05-20 1995-12-05 Fuji Photo Film Co Ltd 重合組成物、光学異方性シートとその製造方法及びそれを用いた液晶表示装置
JPH11691A (ja) 1997-06-11 1999-01-06 Hitachi Kiden Kogyo Ltd オキシデーションディッチの運転制御方法
JPH11323162A (ja) 1998-03-19 1999-11-26 Hitachi Ltd 絶縁組成物
JP2001004837A (ja) * 1999-06-22 2001-01-12 Fuji Photo Film Co Ltd 位相差板および円偏光板
JP2005156822A (ja) 2003-11-25 2005-06-16 Fuji Photo Film Co Ltd 位相差板、トリフェニレン化合物および液晶表示装置
JP2006076992A (ja) 2004-08-12 2006-03-23 Fuji Photo Film Co Ltd 液晶性化合物、組成物および薄膜
JP2006301614A (ja) 2005-03-24 2006-11-02 Fuji Photo Film Co Ltd 位相差板
JP2007002220A (ja) 2005-03-15 2007-01-11 Fujifilm Holdings Corp 化合物、組成物、位相差板、楕円偏光板および液晶表示装置
JP2009221124A (ja) * 2008-03-14 2009-10-01 Fujifilm Corp 重合性化合物、その重合体、ならびにそれを用いた薄膜、電荷輸送材料及び光導電性材料
JP2010138283A (ja) * 2008-12-11 2010-06-24 Fujifilm Corp 重合性液晶組成物、位相差フィルム、画像表示装置用基板、及び液晶表示装置
JP2010244038A (ja) 2009-03-19 2010-10-28 Fujifilm Corp 光学フィルム、位相差板、楕円偏光板、液晶表示装置、及び化合物
JP4592225B2 (ja) 2000-07-06 2010-12-01 富士フイルム株式会社 液晶組成物および光学異方性素子
JP2012067225A (ja) 2010-09-24 2012-04-05 Hitachi Chemical Co Ltd 樹脂シート硬化物の製造方法、樹脂シート硬化物、樹脂付金属箔、金属基板、led基板、及びパワーモジュール
WO2017131007A1 (ja) * 2016-01-26 2017-08-03 富士フイルム株式会社 熱伝導材料、樹脂組成物、およびデバイス

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100332717B1 (ko) * 1994-05-13 2002-09-26 후지 샤신 필름 가부시기가이샤 액정디스플레이,광학보상시트및그의제조방법
US7078078B2 (en) * 2001-01-23 2006-07-18 Fuji Photo Film Co., Ltd. Optical compensatory sheet comprising transparent support and optically anisotropic layer
WO2002094905A1 (fr) 2001-05-18 2002-11-28 Hitachi, Ltd. Produit durci de resine thermodurcissable
DE602004028614D1 (de) * 2003-06-19 2010-09-23 Sumitomo Chemical Co Epoxidverbindung und gehärtetes epoxyharzprodukt
JP4613079B2 (ja) * 2005-03-04 2011-01-12 富士フイルム株式会社 液晶組成物、位相差板および楕円偏光板
JP2007094324A (ja) 2005-09-30 2007-04-12 Dainippon Ink & Chem Inc 光学異方体及びその製造方法
JP5871428B2 (ja) * 2011-03-16 2016-03-01 古河電気工業株式会社 高熱伝導性フィルム状接着剤用組成物、高熱伝導性フィルム状接着剤、並びに、それを用いた半導体パッケージとその製造方法
CN102924925B (zh) * 2012-09-28 2014-08-06 四川科立鑫新材料有限公司 一种高导热单组份硅橡胶的制备方法
JP6120363B2 (ja) * 2013-04-19 2017-04-26 日本化薬株式会社 エポキシ樹脂、エポキシ樹脂組成物およびその硬化物
CN105733608B (zh) 2016-04-22 2018-06-01 深圳市华星光电技术有限公司 液晶材料、液晶显示面板的制作方法、及液晶显示面板

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5620129B2 (ja) 1976-09-19 1981-05-12
JPH07281028A (ja) 1994-04-08 1995-10-27 Fuji Photo Film Co Ltd 光学異方性シートおよびそれを用いた液晶表示素子
JPH07306317A (ja) 1994-05-11 1995-11-21 Fuji Photo Film Co Ltd 新規なトリフェニレン誘導体、それを含む組成物およびそれを含む光学異方性材料
JPH07316257A (ja) * 1994-05-20 1995-12-05 Fuji Photo Film Co Ltd 重合組成物、光学異方性シートとその製造方法及びそれを用いた液晶表示装置
JPH11691A (ja) 1997-06-11 1999-01-06 Hitachi Kiden Kogyo Ltd オキシデーションディッチの運転制御方法
JPH11323162A (ja) 1998-03-19 1999-11-26 Hitachi Ltd 絶縁組成物
JP2001004837A (ja) * 1999-06-22 2001-01-12 Fuji Photo Film Co Ltd 位相差板および円偏光板
JP4592225B2 (ja) 2000-07-06 2010-12-01 富士フイルム株式会社 液晶組成物および光学異方性素子
JP2005156822A (ja) 2003-11-25 2005-06-16 Fuji Photo Film Co Ltd 位相差板、トリフェニレン化合物および液晶表示装置
JP2006076992A (ja) 2004-08-12 2006-03-23 Fuji Photo Film Co Ltd 液晶性化合物、組成物および薄膜
JP2007002220A (ja) 2005-03-15 2007-01-11 Fujifilm Holdings Corp 化合物、組成物、位相差板、楕円偏光板および液晶表示装置
JP5385937B2 (ja) 2005-03-15 2014-01-08 富士フイルム株式会社 化合物、組成物、位相差板、楕円偏光板および液晶表示装置
JP2006301614A (ja) 2005-03-24 2006-11-02 Fuji Photo Film Co Ltd 位相差板
JP2009221124A (ja) * 2008-03-14 2009-10-01 Fujifilm Corp 重合性化合物、その重合体、ならびにそれを用いた薄膜、電荷輸送材料及び光導電性材料
JP2010138283A (ja) * 2008-12-11 2010-06-24 Fujifilm Corp 重合性液晶組成物、位相差フィルム、画像表示装置用基板、及び液晶表示装置
JP2010244038A (ja) 2009-03-19 2010-10-28 Fujifilm Corp 光学フィルム、位相差板、楕円偏光板、液晶表示装置、及び化合物
JP2012067225A (ja) 2010-09-24 2012-04-05 Hitachi Chemical Co Ltd 樹脂シート硬化物の製造方法、樹脂シート硬化物、樹脂付金属箔、金属基板、led基板、及びパワーモジュール
WO2017131007A1 (ja) * 2016-01-26 2017-08-03 富士フイルム株式会社 熱伝導材料、樹脂組成物、およびデバイス

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
ANGEW. CHEM. INT. ED., vol. 51, 2012, pages 7990 - 7993
B. KOHNE ET AL., ANGEW, CHEM. SOC. CHEM. COMM., 1985, pages 1794
C. DESTRADE ET AL., MOL. CRYSR. LIQ. CRYST., vol. 71, 1981, pages 111
J. ZHANG ET AL., J. AM. CHEM. SOC., vol. 116, 1994, pages 2655
KANG DONG-GUE ET AL.: "Heat Transfer Organic Materials: Robust Polymer Films with the Outstanding Thermal Conductivity Fabricated by the Photopolymerization of Uniaxially Oriented Reactive Discogens", ACS APPLIED MATERIALS & INTERFACES, vol. 8, no. 44, 20 October 2016 (2016-10-20), pages 30492 - 30501, XP055564710, Retrieved from the Internet <URL:DOI:10.1021/acsami.6b10256> *
KIM DONG-GYUN ET AL.: "Highly anisotropic thermal conductivity of discotic nematic liquid crystalline films with homeotropic alignment", CHEMICAL COMMUNICATIONS, vol. 53, no. 58, 26 June 2017 (2017-06-26), pages 8227 - 8230, XP055564716, Retrieved from the Internet <URL:DOI:10.1039/C7CC02891A> *
THE JOURNAL OF THE SOCIETY OF SYNTHETIC ORGANIC CHEMISTRY, December 2002 (2002-12-01), pages 1190 - 333

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019131332A1 (ja) * 2017-12-27 2020-11-19 富士フイルム株式会社 組成物、熱伝導材料、熱伝導層付きデバイス、及び熱伝導材料の製造方法
WO2019131332A1 (ja) * 2017-12-27 2019-07-04 富士フイルム株式会社 組成物、熱伝導材料、熱伝導層付きデバイス、及び熱伝導材料の製造方法
JP6997215B2 (ja) 2017-12-27 2022-01-17 富士フイルム株式会社 組成物、熱伝導材料、熱伝導層付きデバイス、及び熱伝導材料の製造方法
KR20210089741A (ko) * 2019-01-23 2021-07-16 후지필름 가부시키가이샤 조성물, 열전도 시트, 열전도층 부착 디바이스
KR102579529B1 (ko) 2019-01-23 2023-09-15 후지필름 가부시키가이샤 조성물, 열전도 시트, 열전도층 부착 디바이스
KR20210023351A (ko) * 2019-08-23 2021-03-04 전북대학교산학협력단 방열소재용 액정 폴리우레탄 및 이를 포함하는 방열소재
KR102272714B1 (ko) * 2019-08-23 2021-07-05 전북대학교 산학협력단 방열소재용 액정 폴리우레탄 및 이를 포함하는 방열소재
JPWO2021039732A1 (ja) * 2019-08-26 2021-03-04
CN114269848A (zh) * 2019-08-26 2022-04-01 富士胶片株式会社 导热材料形成用组合物、导热材料、导热片、带导热层的器件
JP7257529B2 (ja) 2019-08-26 2023-04-13 富士フイルム株式会社 熱伝導材料形成用組成物、熱伝導材料、熱伝導シート、熱伝導層付きデバイス
WO2021039732A1 (ja) * 2019-08-26 2021-03-04 富士フイルム株式会社 熱伝導材料形成用組成物、熱伝導材料、熱伝導シート、熱伝導層付きデバイス
JP2021098800A (ja) * 2019-12-23 2021-07-01 富士フイルム株式会社 熱伝導材料形成用組成物、熱伝導材料、熱伝導シート、熱伝導層付きデバイス、表面修飾窒化ホウ素
JP7261733B2 (ja) 2019-12-23 2023-04-20 富士フイルム株式会社 熱伝導材料形成用組成物、熱伝導材料、熱伝導シート、熱伝導層付きデバイス、表面修飾窒化ホウ素
WO2021131803A1 (ja) * 2019-12-26 2021-07-01 富士フイルム株式会社 組成物、熱伝導シート、熱伝導シート付きデバイス

Also Published As

Publication number Publication date
KR20200019686A (ko) 2020-02-24
EP3653660A4 (en) 2020-09-02
EP3653660B1 (en) 2024-04-17
US11702578B2 (en) 2023-07-18
US20200148931A1 (en) 2020-05-14
CN110869411B (zh) 2023-10-20
JPWO2019013299A1 (ja) 2020-06-18
KR102286095B1 (ko) 2021-08-06
EP3653660A1 (en) 2020-05-20
EP3816147A1 (en) 2021-05-05
CN110869411A (zh) 2020-03-06
EP3816147B1 (en) 2023-08-16

Similar Documents

Publication Publication Date Title
WO2019013299A1 (ja) 熱伝導材料、熱伝導層付きデバイス、熱伝導材料形成用組成物、液晶性円盤状化合物
JPWO2017131007A1 (ja) 熱伝導材料、樹脂組成物、およびデバイス
JP6737908B2 (ja) 硬化性組成物、熱伝導材料、熱伝導層付きデバイス
JP7191988B2 (ja) 熱伝導材料形成用組成物、熱伝導材料
US20200291174A1 (en) Composition, thermally conductive material, device with thermally conductive layer, and method for manufacturing thermally conductive material
JP7064408B2 (ja) 組成物、熱伝導シート、熱伝導層付きデバイス
JP7182692B2 (ja) 組成物、熱伝導材料
EP4024445A1 (en) Composition for forming heat-conducting material, heat-conducting material, heat-conducting sheet, and device with heat-conducting layer
JP7136906B2 (ja) 熱伝導材料形成用組成物、熱伝導材料、熱伝導シート、熱伝導層付きデバイス、膜
JP2019116595A (ja) 熱伝導材料形成用組成物、熱伝導材料、熱伝導層付きデバイス
JP7440626B2 (ja) 硬化性組成物、熱伝導材料、熱伝導シート、熱伝導層付きデバイス、化合物
JP7303319B2 (ja) 熱伝導材料の製造方法、熱伝導材料、熱伝導シート、熱伝導層付きデバイス
JP7002426B2 (ja) 熱伝導膜、熱伝導膜付きデバイス
JP2020122070A (ja) 熱伝導材料形成用組成物、熱伝導材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18831796

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019529790

Country of ref document: JP

Kind code of ref document: A

Ref document number: 20207001108

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018831796

Country of ref document: EP

Effective date: 20200214