WO2017131007A1 - 熱伝導材料、樹脂組成物、およびデバイス - Google Patents

熱伝導材料、樹脂組成物、およびデバイス Download PDF

Info

Publication number
WO2017131007A1
WO2017131007A1 PCT/JP2017/002469 JP2017002469W WO2017131007A1 WO 2017131007 A1 WO2017131007 A1 WO 2017131007A1 JP 2017002469 W JP2017002469 W JP 2017002469W WO 2017131007 A1 WO2017131007 A1 WO 2017131007A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
conductive material
material according
heat conductive
Prior art date
Application number
PCT/JP2017/002469
Other languages
English (en)
French (fr)
Inventor
慶太 高橋
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020187021732A priority Critical patent/KR20180099794A/ko
Priority to JP2017564296A priority patent/JP6625669B2/ja
Priority to CN201780008386.2A priority patent/CN108603099A/zh
Publication of WO2017131007A1 publication Critical patent/WO2017131007A1/ja
Priority to US16/045,711 priority patent/US10774212B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/01Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • C08K2003/282Binary compounds of nitrogen with aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/387Borates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/206Applications use in electrical or conductive gadgets use in coating or encapsulating of electronic parts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/24Homopolymers or copolymers of amides or imides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body

Definitions

  • the present invention relates to a heat conductive material.
  • the present invention also relates to a resin composition used for producing the heat conductive material, and a device including the heat conductive material.
  • JP-A-11-323162 Japanese Patent No. 4118691
  • the present inventor has intensively studied to solve the above-mentioned problems.
  • a compound having a so-called disk-shaped structure By using a compound having a so-called disk-shaped structure, it is possible to provide a heat conductive material having high heat conductivity and high heat resistance. I found it. Moreover, it discovered that the composition containing the compound which has a disk shaped structure has thermal conductivity even if it is uncured. Based on the above findings, the present inventor has completed the present invention.
  • the present invention provides the following [1] to [22].
  • [1] A heat conductive material containing a discotic compound.
  • the discotic compound is a compound in which one or more compounds selected from the group consisting of compounds represented by any one of the following general formulas D1 to D16 are reacted in Q, or D1 to D16
  • the heat conducting material according to [1] which is one or more compounds selected from the group consisting of compounds represented by any one of the general formulas.
  • L in D1 to D16 represents a divalent linking group
  • Q represents a hydrogen atom, a halogen atom, a cyano group, or a functional group
  • R 17x, R 18x , and R 19x are each independently, * - X 211x - (Z 21x -X 212x) n21x -L 21x represents -Q, * represents a bonding position with the central ring
  • the heat conducting material according to [1] A cured product of a resin composition containing a discotic compound having two or more functional groups, wherein the functional group is a (meth) acryl group, (meth) acrylamide group, oxiranyl group, oxetanyl group, hydroxyl group, amino group, thiol
  • the heat conducting material according to [4], wherein the discotic compound has 3 to 8 functional groups.
  • R 11, R 12 , R 13, R 14, thermally conductive material according to R 15, and R 16 are the same [6].
  • the heat conductive material according to [4] or [5], wherein the discotic compound is a compound represented by the general formula (XII).
  • a 2 , A 3 and A 4 each independently represent —CH ⁇ or N ⁇
  • R 17 , R 18 and R 19 each independently represent * —X 211 — (Z 21 —X 212 ).
  • n21 -L 21 -P 21 or * -X 211 - represents a (Z 22 -X 222) n22 -Y 22, * represents a bonding position of the central ring, R 17, R 18, and of R 19 2
  • One or more are * -X 211- (Z 21 -X 212 ) n21 -L 21 -P 21
  • Thermally conductive material according to [9] R 17, R 18 , and R 19 are identical [8].
  • the heat conductive material in any one.
  • the heat conductive material according to [10] wherein the resin composition includes the discotic compound having an oxiranyl group.
  • the discotic compound is one or more compounds selected from the group consisting of compounds represented by any one of the general formulas D1 to D16, wherein all Q are hydrogen atoms, halogen atoms, or The heat conductive material according to [2], including a compound that is a cyano group.
  • the heat conductive material which has high heat resistance with high heat conductivity is provided.
  • the present invention further provides a resin composition that can be used in the production of the above-described heat conductive material.
  • a highly durable device can be provided by using the heat conductive material of the present invention.
  • the heat conductive material of the present invention is a material having heat conductivity.
  • a heat conductive material can generally be used as a heat dissipation material, and can be used as a material for releasing heat generated by various devices such as a power semiconductor device.
  • the shape of the heat conductive material is not particularly limited, and may be formed into various shapes depending on the application.
  • the heat conductive material is preferably in the form of a sheet. In this specification, a sheet form means a film form or a plate form.
  • the heat conductivity of the heat conductive material of the present invention is not isotropic but isotropic.
  • the heat conducting material of the present invention may also be a fluid having no shape.
  • the heat conducting material may be a fluid.
  • the fluid is preferably viscous.
  • the heat conductive material of the present invention contains a discotic compound.
  • the heat conductive material should just be formed from the composition containing a discotic compound, or may contain the member formed from the composition containing a discotic compound.
  • the heat conductive material preferably includes a layer formed from a composition containing a discotic compound.
  • the “composition containing a discotic compound” means a discoidal compound (comprising only a discotic compound) in addition to a composition containing a discotic compound and other components.
  • composition containing a discotic compound when it is formed from a composition containing a discotic compound, it means that it is formed from a composition containing a discotic compound and formed by curing of a composition containing a discotic compound. Including.
  • a composition for forming a cured product is particularly referred to as a resin composition. That is, in the present specification, the term “composition containing a discotic compound” means including a resin composition containing a discotic compound.
  • the composition containing a discotic compound may contain one or more discotic compounds.
  • the composition containing the discotic compound may contain an inorganic substance, a surface modifier for the inorganic substance, and the like.
  • the resin composition may further contain a curing agent or a main agent other than a curing accelerator, a polymerization initiator, and a discotic compound.
  • the curing agent means a compound having a functional group selected from a hydroxyl group, amino group, thiol group, isocyanate group, thioisocyanate group, aldehyde group, carboxyl group, carboxylic anhydride group, and sulfo group.
  • the main agent means a compound having a functional group selected from the group consisting of unsaturated polymerizable groups (such as (meth) acrylic groups, (meth) acrylamide groups), oxiranyl groups, oxetanyl groups, and aziridinyl groups.
  • unsaturated polymerizable groups such as (meth) acrylic groups, (meth) acrylamide groups
  • oxiranyl groups such as (meth) acrylic groups, (meth) acrylamide groups
  • oxetanyl groups such as (meth) acrylic groups, (meth) acrylamide groups
  • aziridinyl groups such as (meth) acrylic groups, (meth) acrylamide groups), oxiranyl groups, oxetanyl groups, and aziridinyl groups.
  • the resin composition may contain only the main agent, and may contain the main agent and a curing agent.
  • a discotic compound means a compound having a discotic structure at least partially. Due to the disk-like structure, the disk-like compound can take a columnar structure by forming a stacking structure.
  • the discotic compound is preferably a compound having at least an aromatic ring and capable of forming a columnar structure by forming a stacking structure based on ⁇ - ⁇ interaction between molecules.
  • the present inventor has found that a compound having a disk-like structure gives higher thermal conductivity than the liquid crystal compound described in Patent Document 1 or Patent Document 2.
  • the high thermal conductivity described above is that the rod-shaped compound described in Patent Document 1 or Patent Document 2 can conduct heat only in a linear (one-dimensional) manner. It is considered that the discotic compound can conduct heat in a plane (two-dimensional) in the normal direction with respect to the discotic structure, so that the heat conduction path is increased and the thermal conductivity is improved.
  • the thermal conductivity of the thermal conductive material of the present invention is not anisotropic but isotropic.
  • the discotic compound may be liquid crystalline or non-liquid crystalline, but is preferably a liquid crystal compound.
  • Specific examples of the discotic compound include a compound represented by any one of the following general formulas of D1 to D16 or a compound obtained by reacting a compound represented by any one of the following general formulas of D1 to D16 at Q. .
  • the discotic compound is a compound represented by any one of the general formulas D1 to D15, and is represented by any other compound containing a structural unit (discotic core structure) excluding the substituent of LQ, or the general formula of D16
  • the compound may be any other compound containing a structural unit excluding the substituent of L 21x -Q.
  • the discotic compound is a compound obtained by reacting a compound represented by any one of the following formulas D1 to D16 in Q
  • Q is preferably a functional group.
  • the reaction may be a reaction corresponding to the functional group represented by Q.
  • it may be a general reaction as a polymerization reaction or a crosslinking reaction.
  • Examples of the compound obtained by reacting the compound represented by any one of the general formulas D1 to D16 in Q with a discotic compound include polymers of the above compounds.
  • the polymer may be a monopolymer formed from only one compound represented by any one of the general formulas of D1 to D16, and a copolymer containing two or more compounds represented by the general formula of D1 to D16 Alternatively, it may be a copolymer containing one or more compounds represented by any one of the general formulas D1 to D16 and other comonomers (for example, a curing agent or a main agent described later).
  • the polymer may contain a crosslinked structure.
  • L in D1 to D16 represents a divalent linking group
  • Q represents a hydrogen atom, a halogen atom, a cyano group, or a functional group
  • R 17x, R 18x , and R 19x are each independently, * - X 211x - (Z 21x -X 212x) n21x -L 21x represents -Q, * represents a bonding position with the central ring
  • the divalent linking group (L) in D1 to D15 is a divalent group selected from the group consisting of an alkylene group, an alkenylene group, an arylene group, —CO—, —NH—, —O—, —S—, and combinations thereof.
  • the linking group is preferably.
  • the divalent linking group (L) is a combination of at least two divalent groups selected from the group consisting of an alkylene group, an alkenylene group, an arylene group, —CO—, —NH—, —O—, and —S—. More preferably, it is a group.
  • the divalent linking group (L) is most preferably a group obtained by combining at least two divalent groups selected from the group consisting of an alkylene group, an alkenylene group, an arylene group, —CO— and —O—.
  • the number of carbon atoms of the alkylene group is preferably 1-12.
  • the alkenylene group preferably has 2 to 12 carbon atoms.
  • the number of carbon atoms in the arylene group is preferably ⁇ 10.
  • the alkylene group, alkenylene group and arylene group may have a substituent (eg, alkyl group, halogen atom, cyano, alkoxy group, acyloxy group). Examples of the divalent linking group (L) are shown below.
  • the left side is connected to the disk-shaped core (D), and the right side is connected to Q.
  • AL represents an alkylene group or an alkenylene group
  • AR represents an arylene group.
  • L114 -O-AL-O-CO-NH-AL- L115: -O-AL-S-AL- L116: -O-CO-AL-AR-O-AL-O-CO- L117: -O-CO-AR-O-AL-CO- L118: -O-CO-AR-O-AL-O-CO- L119: -O-CO-AR-O-AL-O-AL-O-CO- L120: -O-CO-AR-O-AL-O-AL-O-CO- L121: -S-AL- L122: -S-AL-O- L123: -S-AL-O-CO- L124: -S-AL-S-AL- L125: -S-AR-AL- L126: -O-CO-AL L127: -O-CO-AL-O L128: -O-CO-AR-O-AL
  • Q represents a hydrogen atom, a halogen atom, a cyano group, or a functional group.
  • the functional group include unsaturated polymerizable groups, oxiranyl groups, oxetanyl groups, aziridinyl groups, hydroxyl groups, amino groups, thiol groups, isocyanate groups, thiols. Examples include an isocyanate group, an aldehyde group, a carboxyl group, a carboxylic anhydride group, and a sulfo group.
  • the unsaturated polymerizable group include a (meth) acryl group, a (meth) acrylamide group, and substituents represented by Q1 to Q7 below.
  • the oxiranyl group is a functional group also called an epoxy group, and may be a group containing oxacyclopropane (oxirane).
  • oxirane oxacyclopropane
  • two carbon atoms adjacent to a saturated hydrocarbon ring group may be an oxo group (- Also included are groups that are linked via O-) to form an oxirane ring.
  • the hydroxyl group is preferably a hydroxyl group directly bonded to an aromatic ring such as a phenyl group.
  • the carboxylic anhydride group may be a substituent obtained by removing any hydrogen atom from an acid anhydride such as maleic anhydride, phthalic anhydride, pyromellitic anhydride, or trimellitic anhydride.
  • the functional group represented by Q is preferably an unsaturated polymerizable group, an oxiranyl group, an oxetanyl group, or an aziridinyl group, and is a (meth) acryl group, a (meth) acryl group, an oxiranyl group, or an oxetanyl group. Is more preferable.
  • the plurality of L may be the same or different from each other, but are preferably the same.
  • a plurality of Q may be the same as or different from each other.
  • the discotic compound used in the resin composition is preferably a compound containing one or more functional groups as Q in the compounds represented by the general formulas D1 to D16, and is a compound containing two or more functional groups. Is more preferable, and a compound including three or more functional groups is further preferable.
  • the discotic compound is also preferably a compound in which all Qs are functional groups in the compounds represented by the general formulas D1 to D16.
  • the discotic compound is any of the compounds represented by the general formulas D1 to D16.
  • Q may also be a compound that is a hydrogen atom, a halogen atom, or a cyano group.
  • discotic compounds include C. Destrade et al., Mol. Crysr. Liq. Cryst., Vol. 71, page 111 (1981); 22, Liquid Crystal Chemistry, Chapter 5, Chapter 10, Section 2 (1994); B. Kohne et al., Angew. Chem. Soc. Chem. Comm., Page 1794 (1985); J. Zhang et al. , J. Am. Chem. Soc., Vol. 116, page 26551994 (1994)), and Japanese Patent No. 4592225.
  • preferred discotic compound structures include the triphenylene structure described in Angew. Chem. Int. Ed. 2012, 51, 7990-7993 or JP-A-7-306317, JP-A 2007-2220, and JP-2010. And the trisubstituted benzene structure described in Japanese Patent No. 244038.
  • a heat conductive material contains the hardened
  • the heat conductive material may be formed as a cured product of the resin composition.
  • the heat conductive material includes a layer made of a cured product of the resin composition.
  • the heat conductive material can be obtained as a molded body. For example, a self-supporting film consisting only of a layer made of a cured product of the resin composition can be obtained.
  • the discotic compound in the resin composition has one or more functional groups. It is more preferably a compound that is one or more selected from the group consisting of compounds represented by any one of the general formulas D1 to D16 and that contains one or more functional groups.
  • the discotic compound in the resin composition preferably has two or more functional groups, and more preferably has three or more functional groups.
  • a cured product of a resin composition containing a monomer having three or more functional groups tends to have a high glass transition temperature and high heat resistance.
  • a discotic compound tends to have three or more functional groups without affecting the characteristics of the mesogenic moiety, as compared with a compound having a rod-like structure.
  • the number of functional groups possessed by the discotic compound is preferably 8 or less, and more preferably 6 or less.
  • This functional group is preferably selected from the group consisting of (meth) acrylic group, (meth) acrylamide group, oxiranyl group, oxetanyl group, hydroxyl group, amino group, thiol group, isocyanate group, carboxyl group and carboxylic anhydride group. .
  • the resin composition may contain a discotic compound as a main agent or a curing agent.
  • the resin composition may contain a discotic compound as both the main agent and the curing agent.
  • the resin composition preferably contains a discotic compound as at least a main ingredient.
  • the discotic compound When included in the resin composition as a main agent, the discotic compound has a functional group selected from the group consisting of a (meth) acryl group, a (meth) acrylamide group, an oxiranyl group, and an oxetanyl group as a functional group. Is preferred. At this time, preferably two or more, more preferably all of the functional groups of the discotic compound are selected from the group consisting of (meth) acrylic groups, (meth) acrylamide groups, oxiranyl groups, and oxetanyl groups. Any functional group may be selected. When contained in the resin composition as a main agent, the functional group of the discotic compound is more preferably an oxiranyl group or an oxetanyl group, and even more preferably an oxiranyl group.
  • the discotic compound When included in the resin composition as a curing agent, the discotic compound has a functional group selected from the group consisting of a hydroxyl group, an amino group, a thiol group, an isocyanate group, a carboxyl group, and a carboxylic anhydride group as a functional group. Is preferred. At this time, preferably two or more, more preferably all of the functional groups of the discotic compound are selected from the group consisting of a hydroxyl group, an amino group, a thiol group, an isocyanate group, a carboxyl group, and a carboxylic anhydride group. Any functional group may be selected.
  • the functional group of the discotic compound is more preferably a functional group selected from the group consisting of a hydroxyl group, an amino group, and a carboxylic anhydride group, More preferably.
  • a compound represented by the following general formula (XI) or a compound represented by the general formula (XII) is preferable.
  • R 11 , R 12 , R 13 , R 14 , R 15 , and R 16 are * -X 11 -L 11 -P 11 .
  • one or more of R 11 and R 12 , one or more of R 13 and R 14 , and one or more of R 15 and R 16 are * -X 11 -L 11 -P 11 .
  • R 11 , R 12 , R 13 , R 14 , R 15 and R 16 are all * -X 11 -L 11 -P 11
  • R 11 , R 12 , R 13 , R 14 , R It is particularly preferred that 15 and R 16 are all the same.
  • X 11 and X 12 are each independently —O—, —OC ( ⁇ O) —, —OC ( ⁇ O) O—, —OC ( ⁇ O) NH—, —C ( ⁇ O) O—.
  • L 11 represents a divalent linking group or a single bond linking X 11 and P 11 .
  • the divalent linking group include —O—, —OC ( ⁇ O) —, —C ( ⁇ O) O—, 1 to 10 carbon atoms (preferably 1 to 8 carbon atoms, more preferably 1 to carbon atoms). 6) an alkylene group, an arylene group having 6 to 20 carbon atoms (preferably 6 to 14 carbon atoms, more preferably 6 to 10 carbon atoms), or a group composed of a combination thereof.
  • Examples of the alkylene group having 1 to 10 carbon atoms include a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, and a hexylene group, and a methylene group, an ethylene group, a propylene group, and a butylene group are preferable.
  • Examples of the arylene group having 6 to 20 carbon atoms include 1,4-phenylene group, 1,3-phenylene group, 1,4-naphthylene group, 1,5-naphthylene group, anthracenylene group, and the like. A phenylene group is preferred.
  • the alkylene group and the arylene group each may have a substituent.
  • the substituents herein include alkyl groups and alkenyl groups in addition to the substituents shown in the substituent group Y described later.
  • the number of substituents is preferably 1 to 3, more preferably 1.
  • the substitution position is not particularly limited.
  • the substituent here is preferably a halogen atom or an alkyl group having 1 to 3 carbon atoms, more preferably a methyl group.
  • the alkylene group and arylene group are also preferably unsubstituted. In particular, the alkylene group is preferably unsubstituted.
  • P 11 is a functional group selected from the group consisting of (meth) acryl group, (meth) acrylamide group, oxiranyl group, oxetanyl group, hydroxyl group, amino group, thiol group, isocyanate group, carboxyl group and carboxylic anhydride group.
  • the preferred range of P 11 is the same as the preferred range as the functional group of the above-mentioned discotic compound.
  • L 11 contains an arylene group, and this arylene group is preferably bonded to P 11 .
  • Y 12 is one in a hydrogen atom, a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, or a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms.
  • two or more methylene groups are —O—, —S—, —NH—, —N (CH 3 ) —, —C ( ⁇ O) —, —OC ( ⁇ O) —, or —C ( ⁇ O ) Represents a group substituted with O-.
  • Examples of the linear or branched alkyl group having 1 to 20 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, and tert-butyl group.
  • the number of carbon atoms of the cyclic alkyl group is preferably 3 to 20, more preferably 5 or more, preferably 10 or less, more preferably 8 or less, and even more preferably 6 or less.
  • Examples of the cyclic alkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group.
  • Y 12 is preferably a hydrogen atom, a linear, branched, or cyclic alkyl group having 1 to 20 carbon atoms, or an alkylene oxide group having 1 to 20 carbon atoms, and is a straight chain having 1 to 12 carbon atoms.
  • a branched alkyl group, or an ethylene oxide group or propylene oxide group having 1 to 20 carbon atoms is more preferable.
  • a 2 , A 3 and A 4 each independently represent —CH ⁇ or —N ⁇
  • R 17 , R 18 and R 19 each independently represent * —X 211 — (Z 21 —X 212 ) n21 -L 21 -P 21 or * -X 211 - (represents Z 22 -X 222) n22 -Y 22
  • * represents a bonding position of the central ring
  • Two or more are * -X 211- (Z 21 -X 212 ) n21 -L 21 -P 21
  • a cyclic alkyl group or a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, wherein one or two or more methylene groups are —O—, —S—, —NH—, —N (CH 3 ) —, —C ( ⁇ O) —, — OC ( ⁇ O) — or a group substituted with —C ( ⁇ O) O—, wherein n 21 and n 22 each independently represents an integer of 0 to 3, and n 21 and n 22 are 2 or more In this case, a plurality of Z 21 -X 212 and Z 22 -X 222 may be the same or different.
  • R 17 , R 18 , and R 19 are all preferably * —X 211 — (Z 21 —X 212 ) n21 —L 21 —P 21 . More preferably, R 17 , R 18 , and R 19 are all the same.
  • X 211 , X 212 , X 221 and X 222 are preferably a single bond or —OC ( ⁇ O) —.
  • Z 21 and Z 22 each independently represents a 5-membered or 6-membered aromatic group, or a 5-membered or 6-membered non-aromatic group, such as a 1,4-phenylene group, 1,3 -A phenylene group, a heterocyclic group, etc. are mentioned.
  • the above aromatic group and non-aromatic group may have a substituent.
  • the substituents herein include alkyl groups and alkenyl groups in addition to the substituents shown in the substituent group Y described later.
  • the number of substituents is preferably one or two, and more preferably one.
  • the substitution position is not particularly limited.
  • the substituent here is preferably a halogen atom or a methyl group.
  • the halogen atom is preferably a chlorine atom or a fluorine atom.
  • the aromatic group and non-aromatic group are also preferably unsubstituted.
  • heterocycle examples include the following heterocycles.
  • * represents a site bonded to X 211
  • ** represents a site bonded to X 212
  • a 41 and A 42 each independently represents a methine or nitrogen atom
  • X 4 represents an oxygen atom
  • At least one of A 41 and A 42 is preferably a nitrogen atom, and more preferably both are nitrogen atoms.
  • X 4 is preferably an oxygen atom.
  • L 21 each independently represents a divalent linking group or a single bond linking X 212 and P 21 , and has the same meaning as L 11 in formula (XI).
  • L 21 is —O—, —OC ( ⁇ O) —, —C ( ⁇ O) O—, having 1 to 10 carbon atoms (preferably 1 to 8 carbon atoms, more preferably 1 to 6 carbon atoms).
  • a group consisting of an alkylene group or a combination thereof is preferred.
  • P 21 each independently represents a functional group and has the same meaning as P 11 in formula (XI), and the preferred range is also the same.
  • Y 22 each independently represents a hydrogen atom, a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, or a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms.
  • one or more methylene groups are —O—, —S—, —NH—, —N (CH 3 ) —, —C ( ⁇ O) —, —OC ( ⁇ O) —, or —C ( ⁇ O) represents a group substituted with O—, and has the same meaning as Y 12 in formula (XI), and the preferred range is also the same.
  • n 21 and n 22 each independently represents an integer of 0 to 3, preferably an integer of 1 to 3, and more preferably 2 to 3.
  • the compound represented by the general formula (XI) or (XII) is a compound having a hydrogen bonding functional group, which increases the stacking by reducing the electron density and forms a columnar aggregate. It is preferable from the viewpoint that it becomes easy.
  • the compound represented by the general formula (XI) is based on the methods described in JP-A-7-306317, JP-A-7-281028, JP-A-2005-156822, and JP-A-2006-301614. Can be synthesized.
  • the compound represented by the general formula (XII) can be synthesized according to the methods described in JP2010-244038A, JP2006-76992A, and JP2007-2220A.
  • the discotic compound is preferably contained in the resin composition in an amount of 10% by mass to 90% by mass, and 20% by mass to 70% by mass with respect to the total solid mass (excluding the solvent) in the resin composition. More preferably, it is contained in an amount of 30% by mass, and more preferably 30% by mass to 60% by mass.
  • the resin composition may contain other curing agents or main agents not corresponding to the discotic compounds.
  • the curing agent is not particularly limited as long as it is a compound having a functional group selected from the group consisting of a hydroxyl group, an amino group, a thiol group, an isocyanate group, a carboxyl group and a carboxylic anhydride group, but is compatible with a compound used as a main agent. It is preferable to use a cured agent.
  • the resin composition contains a discotic compound having an oxiranyl group as a main agent
  • curing agent contains 2 or more of the said functional groups, and it is more preferable that 2 are included.
  • curing agents examples include curing agents for epoxy resins described in Japanese Patent No. 4118691, 0028-0018, and amine-based curing agents and phenol-based curing agents described in JP2008-13759A. Agents, acid anhydride curing agents, amine curing agents described in JP2013-227451A 0101 to 0150, phenolic curing agents, and the like.
  • amine-based curing agents are particularly preferable.
  • 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenyl ether, 4,4′-diaminodiphenylsulfone, 4,4′-diamino-3,3 Preferred examples include '-dimethoxybiphenyl, 4,4'-diaminophenyl benzoate, 1,5-diaminonaphthalene, 1,3-diaminonaphthalene, 1,4-diaminonaphthalene, 1,8-diaminonaphthalene and the like. .
  • the main agent is not particularly limited as long as it is a monomer having a functional group selected from the group consisting of a (meth) acryl group, a (meth) acrylamide group, an oxiranyl group, and an oxetanyl group, but is suitable for a compound used as a curing agent. It is preferable to use the main agent.
  • the resin composition contains a discotic compound having a hydroxyl group, an amino group, or a carboxylic anhydride group as a functional group as a curing agent, it is preferable to use a main agent having an oxiranyl group.
  • the main agent preferably contains two or more of the above functional groups.
  • Examples of the main agent that is not a discotic compound include various known epoxy resin monomers or acrylic resin monomers.
  • An epoxy resin mixture or the like can also be used.
  • the curing agent that is not a discotic compound is preferably contained in the resin composition at 90% by mass to 10% by mass with respect to the total solid content mass (mass excluding the solvent) in the resin composition, More preferably, it is contained at 80 to 30% by mass.
  • the main agent that is not a discotic compound is preferably contained in the resin composition at 50% by mass to 0% by mass with respect to the total solid content mass (mass excluding the solvent) in the resin composition, 30 More preferably, it is contained in an amount of 0 to 0% by mass.
  • the resin composition may contain a curing accelerator.
  • the curing accelerator include triphenylphosphine, 2-ethyl-4-methylimidazole, boron trifluoride amine complex, 1-benzyl-2-methylimidazole, and the like, and JP-A-2012-67225, paragraph 0052. Can be mentioned.
  • the curing accelerator and the polymerization initiator are preferably contained in the resin composition at 20% by mass to 0.1% by mass with respect to the total solid content in the resin composition (mass excluding the solvent). More preferably, it is contained in an amount of 10% by mass to 1% by mass.
  • the composition containing a discotic compound may contain an inorganic substance.
  • an inorganic substance With a composition in which an inorganic substance is added as a filler, a heat conductive material having higher heat conductivity can be manufactured.
  • the composition may contain one kind of inorganic substance or two or more kinds.
  • the inorganic substance may be contained as it is in the composition, or may be contained as a surface-modified inorganic substance that has been surface-modified with a surface modifier described later.
  • any inorganic material conventionally used for inorganic fillers of heat conductive materials may be used.
  • an inorganic substance an inorganic oxide and an inorganic nitride are preferable.
  • the inorganic substance may be an inorganic oxynitride.
  • the shape of the inorganic material is not particularly limited, and may be particulate, film or plate.
  • the particles may be rice grains, spheres, cubes, spindles, scales, aggregates or indefinite shapes.
  • the inorganic oxide is not particularly limited.
  • Said inorganic oxide may be used independently and may be used in combination of multiple.
  • the inorganic oxide is preferably titanium oxide, aluminum oxide, or zinc oxide.
  • the inorganic oxide may be an oxide produced by oxidation of a metal prepared as a non-oxide in an environment or the like.
  • the inorganic nitride is not particularly limited.
  • examples of inorganic nitrides include boron nitride (BN), carbon nitride (C 3 N 4 ), silicon nitride (Si 3 N 4 ), gallium nitride (GaN), indium nitride (InN), aluminum nitride (AlN), Chromium nitride (Cr 2 N), copper nitride (Cu 3 N), iron nitride (Fe 4 N), iron nitride (Fe 3 N), lanthanum nitride (LaN), lithium nitride (Li 3 N), magnesium nitride (Mg) 3 N 2), molybdenum nitride (Mo 2 N), niobium nitride (NbN), tantalum nitride (TaN), titanium nitride (TiN), tungsten nitride (W 2 N
  • Said inorganic nitride may be used independently and may be used in combination of multiple.
  • the inorganic nitride preferably contains aluminum, boron or silicon, and is preferably aluminum nitride, boron nitride or silicon nitride.
  • the inorganic substance is preferably 30% by mass or more and 40% by mass with respect to the solid content mass (mass excluding the solvent) of the composition containing the discotic compound. More preferably, it is more preferably 50% by mass or more. Moreover, it is preferable that it is 90 mass% or less, It is more preferable that it is 80 mass% or less, It is further more preferable that it is 70 mass% or less.
  • the composition containing a discotic compound may contain a surface modifier.
  • surface modification means a state in which an organic substance is adsorbed on at least a part of the surface of an inorganic substance.
  • the form of adsorption is not particularly limited as long as it is in a bonded state. That is, the surface modification includes a state in which an organic group obtained by detaching a part of the organic substance is bonded to the inorganic substance surface.
  • the bond may be any bond such as a covalent bond, a coordination bond, an ionic bond, a hydrogen bond, a van der Waals bond, or a metal bond, but is preferably a covalent bond.
  • the surface modification may be made so as to form a monomolecular film on at least a part of the surface.
  • a monomolecular film is a monolayer film formed by chemical adsorption of organic molecules, and is known as Self-Assembled Monolayer (SAM).
  • the organic substance is a so-called organic compound, which is a compound containing a carbon atom and excluding carbon monoxide, carbon dioxide, carbonate, etc., which are conventionally classified as inorganic compounds.
  • the surface modification may be only a part of the surface of the inorganic substance or the entire surface.
  • the “surface-modified inorganic substance” means an inorganic substance whose surface is modified by a surface modifier, that is, a substance in which an organic substance is adsorbed on the surface of the inorganic substance.
  • surface modifier conventionally known surface modifiers such as carboxylic acids such as long-chain alkyl fatty acids, organic phosphonic acids, organic phosphate esters, and organic silane molecules (silane coupling agents) can be used.
  • surface modifiers described in JP-A-2009-502529, JP-A-2001-19500, and JP-A-4649929 may be used. It is also preferable to use a boronic acid compound or an aldehyde compound described below.
  • the boronic acid compound has a structure in which one or more hydroxyl groups of boric acid are substituted with an organic group such as a hydrocarbon group.
  • the boronic acid compound usually modifies the inorganic substance by adsorbing to the inorganic substance at the boron portion.
  • inorganic nitride is preferable, and aluminum nitride, boron nitride, or silicon nitride is more preferable.
  • the boronic acid compound may be, for example, a compound represented by general formula I below.
  • Z is an amino group, thiol group, hydroxyl group, isocyanate group, carboxyl group, carboxylic anhydride group, polymerizable group, hydrogen atom, halogen atom, quaternary ammonium group or salt thereof, quaternary pyridinium.
  • the quaternary pyridinium group may have a substituent.
  • X represents a divalent linking group.
  • X represents a group consisting of a divalent aliphatic hydrocarbon group which may have a substituent, an arylene group which may have a substituent, and a heteroarylene group which may have a substituent. At least one selected linking group A.
  • X may contain one or more linking groups B selected from the group consisting of —O—, —CO—, —NH—, —CO—NH—, —COO—, and —O—COO—.
  • X is a linking group A, a linking group composed of a combination of two or more linking groups A, or a linking group composed of a combination of one or more linking groups A and one or more linking groups B.
  • R 1 and R 2 may each independently have a hydrogen atom, an aliphatic hydrocarbon group that may have a substituent, an aryl group that may have a substituent, or a substituent. Represents a heteroaryl group.
  • R 1 and R 2 may be linked via a linking group consisting of an alkylene linking group, an arylene linking group, or a combination thereof.
  • the divalent aliphatic hydrocarbon group which may have the above substituent includes an alkylene group which may have a substituent and an alkenylene group which may have a substituent.
  • the aliphatic hydrocarbon group which may have a substituent represented by each of R 1 and R 2 includes an alkyl group which may have a substituent, an alkenyl group which may have a substituent, and a substituent.
  • the alkynyl group which may have a group is included.
  • the alkyl group when referring to an “alkyl group”, the alkyl group may be linear, branched or cyclic.
  • the alkyl group preferably has 1 to 30 carbon atoms, more preferably 2 to 10 carbon atoms.
  • Specific examples of the alkyl group include methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, hexadecyl, Octadecyl group, eicosyl group, isopropyl group, isobutyl group, sec-butyl group, tert-butyl group, isopentyl group, neopentyl group, 1-methylbutyl group, isohexyl group, 2-methylhexyl group, cyclopentyl group, cyclohexyl group, 1- Examples thereof include
  • alkyl group is a group obtained by removing any hydrogen atom of an alkyl group, and examples of the alkylene group include groups obtained by removing any hydrogen atom from each of the above examples of alkyl groups. it can.
  • the alkenyl group may be linear, branched or cyclic.
  • the alkenyl group preferably has 2 to 30 carbon atoms, more preferably 2 to 10 carbon atoms.
  • Specific examples of the alkenyl group include vinyl group, 1-propenyl group, 1-butenyl group, 1-methyl-1-propenyl group, 1-cyclopentenyl group, 1-cyclohexenyl group and the like.
  • the above description regarding the alkenyl group is the same for other groups containing the alkenyl group.
  • An alkenylene group is a group obtained by removing any hydrogen atom of an alkenyl group, and examples of the alkenylene group include groups obtained by removing any hydrogen atom from each of the above examples of alkenyl groups. it can.
  • the alkynyl group referred to in this specification preferably has 2 to 30 carbon atoms, and more preferably 2 to 10 carbon atoms.
  • Specific examples of the alkynyl group include ethynyl group, 1-propynyl group, 1-butynyl group, 1-octynyl group and the like.
  • the “aryl group” may be a monocyclic group or a condensed ring group including two or more rings.
  • the aryl group preferably has 5 to 18 carbon atoms, more preferably 5 to 10 carbon atoms.
  • aryl group examples include a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, an indenyl group, an acenabutenyl group, a fluorenyl group, and a pyrenyl group.
  • An arylene group is a group obtained by removing any hydrogen atom of an aryl group, and examples of the arylene group include groups obtained by removing any hydrogen atom from each of the above examples of aryl groups. it can.
  • heteroaryl groups referred to in this specification include heteroaryl groups in which one hydrogen atom on a heteroaromatic ring containing one or more heteroatoms selected from the group consisting of a nitrogen atom, an oxygen atom and a sulfur atom is removed. Based on this.
  • Specific examples of the heteroaromatic ring containing one or more heteroatoms selected from the group consisting of nitrogen atom, oxygen atom and sulfur atom include pyrrole, furan, thiophene, pyrazole, imidazole, triazole, oxazole, isoxazole and oxadiazole.
  • the heteroarylene group is a group obtained by removing any hydrogen atom of the heteroaryl group, and examples of the heteroarylene group include groups obtained by removing any hydrogen atom from each of the above examples of the heteroaryl group. Can be mentioned.
  • the type of substituent, the position of the substituent, and the number of substituents when “may have a substituent” are not particularly limited.
  • the number of substituents may be, for example, one, two, three, or more.
  • Examples of the substituent include monovalent nonmetallic atomic groups excluding hydrogen, and can be selected from the following substituent group Y, for example.
  • Substituent group Y Halogen atom (-F, -Br, -Cl, -I), hydroxyl group, alkoxy group, aryloxy group, mercapto group, alkylthio group, arylthio group, alkyldithio group, aryldithio group, amino group, N-alkylamino group N, N-dialkylamino group, N-arylamino group, N, N-diarylamino group, N-alkyl-N-arylamino group, acyloxy group, carbamoyloxy group, N-alkylcarbamoyloxy group, N-ary Rucarbamoyloxy group, N, N-dialkylcarbamoyloxy group, N, N-diarylcarbamoyloxy group, N-alkyl-N-arylcarbamoyloxy group, alkylsulfoxy group, arylsulfoxy group, acyl
  • Examples of the polymerizable group include (meth) acrylate group, styryl group, vinyl ketone group, butadiene group, vinyl ether group, oxiranyl group, aziridinyl group, and oxetane group.
  • a (meth) acrylate group, a styryl group, an oxiranyl group or an oxetane group is more preferable, and a (meth) acrylate group or an oxiranyl group is more preferable.
  • R 1 and R 2 are preferably hydrogen atoms.
  • X in the general formula I is preferably a linking group containing a phenylene group which may have at least one substituent. A linking group having a partial structure in which a phenylene group which may have two substituents is linked by —COO— is more preferable.
  • X is preferably a linking group containing an unsubstituted phenylene group, and it is particularly preferred that this unsubstituted phenylene group is directly bonded to the boron atom of the boronic acid.
  • Z in the general formula I is preferably an amino group, a thiol group, a hydroxyl group, a (meth) acrylate group, an oxiranyl group or a hydrogen atom.
  • the boronic acid compound has a chain structure. This is because it is easy to form a monomolecular film.
  • the preferable example of the boronic acid compound shown by the general formula I is shown below, it is not limited to these examples.
  • boronic acid compound represented by the following general formula II may be used.
  • R 1 and R 2 have the general formula I and are each similar, the same preferable range, respectively.
  • X 2 is an n + 1 valent linking group obtained by further removing any n-1 hydrogen atoms from the divalent linking group represented by X.
  • the preferable range of X at this time is the same as that described above.
  • X 2 is preferably an n + 1 valent linking group obtained by further removing a hydrogen atom from a divalent linking group composed of a linking group A or a combination of two or more linking groups A.
  • the linking group A is preferably an arylene group which may have a substituent or a heteroarylene group which may have a substituent, except for removing a hydrogen atom from a phenyl group or pyrrole, furan or thiophene. It is more preferably a divalent group that is formed.
  • n is an integer of 2 or more. n is preferably 2 to 10, or more preferably 3.
  • a compound that easily decomposes to give the boronic acid compound by contacting with an inorganic substance or in a solvent is also included in the present specification.
  • a compound for example, a compound in which one or two hydroxyl groups bonded to boron in the boronic acid compound are substituted with a substituent other than a hydrogen atom.
  • boronic acid (—B (OH) 2 ) moiety of the boronic acid compound a moiety having a structure that exhibits the same effect as (—B (OH) 2 ) by equilibrium or adsorption upon contact with an inorganic substance The compound which has is mentioned.
  • the compound that easily decomposes by being brought into contact with an inorganic substance to give the boronic acid compound include compounds having a partial structure represented by any of the following formulas.
  • any of the partial structures represented by the following formulas may have a substituent at a substitutable site.
  • boronic acid compound a boronic acid compound that is easily decomposed by contact with an inorganic substance or gives a boronic acid compound represented by the above general formula I or general formula II in a solvent is also preferable.
  • examples of such compounds include:
  • boronic acid compound a commercially available boronic acid compound may be used as it is, and synthesized by subjecting a boronic acid compound having a substituent as a raw material to a general synthetic reaction such as esterification, amidation, alkylation and the like. Also good. For example, it can be synthesized from a halide (such as aryl bromide) by n-butyllithium and trialkoxyborane (such as trimethoxyborane) or by performing a Wittig reaction using magnesium metal.
  • a halide such as aryl bromide
  • trialkoxyborane such as trimethoxyborane
  • aldehyde compound The aldehyde compound only needs to modify the surface of the inorganic substance by reacting with the surface of the inorganic substance at the aldehyde group portion.
  • the aldehyde compound may be, for example, a compound represented by the following general formula VI. Z Z -X X -CHO General Formula VI
  • Z Z represents a group selected from the group consisting of an amino group, a thiol group, a hydroxyl group, an isocyanate group, a carboxyl group, a carboxylic anhydride group, an oxetanyl group, an oxiranyl group, a (meth) acrylate group, and a hydrogen atom.
  • X X represents a divalent linking group.
  • X X is a group consisting of a divalent aliphatic hydrocarbon group which may have a substituent, an arylene group which may have a substituent, and a heteroarylene group which may have a substituent. It contains at least one linking group A that is more selected.
  • X X may contain one or more linking groups B selected from the group consisting of —O—, —CO—, —NH—, —CO—NH—, —COO—, and —O—COO—. Good. That, X X is a linking group A, 2 or more coupling combination consisting linking group of the group A or one or more linking groups A and one or more linking groups combination consists linking group B, is there.
  • the above-mentioned divalent aliphatic hydrocarbon group which may have a substituent includes an alkylene group which may have a substituent and an alkenylene group which may have a substituent.
  • X X in formula VI is preferably a linking group containing a phenylene group which may have at least one substituent.
  • a linking group having a partial structure in which a phenylene group which may have two substituents is linked by —COO— is more preferable.
  • it preferred linking groups include unsubstituted phenylene group, it is particularly preferred that the unsubstituted phenylene group is bonded directly to a carbon atom derived from the aldehyde group.
  • the Z Z in general formula VI an amino group, a thiol group, a hydroxyl group, isocyanate group, carboxyl group, more preferably a carboxylic anhydride group, an amino group, a thiol group, a hydroxyl group, but more preferred.
  • the resin composition includes a curing agent having a group selected from the group consisting of an amino group, a thiol group, a hydroxyl group, an isocyanate group, a carboxyl group, and a carboxylic anhydride group as a curing agent
  • the general formula Z Z in VI is also preferably a oxiranyl group.
  • the aldehyde compound also preferably has a chain structure. This is because it is easy to form a monomolecular film.
  • the preferable example of the aldehyde compound shown by the general formula VI is shown below, it is not limited to these examples.
  • Aldehyde compounds that are easily decomposed to give an aldehyde compound represented by the general formula VI by contact with an inorganic substance or in a solvent are also preferred. Examples of such compounds include:
  • aldehyde compound a commercially available aldehyde compound may be used as it is, or may be synthesized.
  • Aromatic aldehydes can be synthesized by Vilsmeier reaction of the corresponding compounds.
  • Aliphatic aldehydes can be synthesized by oxidation reaction of corresponding compounds.
  • the composition containing a discotic compound may contain an inorganic substance as a surface-modified inorganic substance.
  • the surface modifier modifies the surface of the inorganic material that is an inorganic nitride or an inorganic oxide.
  • the surface modifier preferably reacts with the inorganic substance to achieve surface modification.
  • the shape of the surface-modified inorganic material is not particularly limited, and may be particulate, film or plate.
  • the particulate surface-modified inorganic substance may be further made into fine particles by using a treatment such as dispersion.
  • the surface-modified inorganic substance may be in the form of a nanosheet, a nanotube, a nanorod, or the like.
  • the surface-modified inorganic substance can be produced by forming a chemical bond by an acid-base reaction with an acid such as a carboxylic acid, or by a chemical bond with a surface modifier using a silane coupling reaction or the like.
  • an acid such as a carboxylic acid
  • a silane coupling reaction or the like for the surface modification to the inorganic particles, reference can be made to “Effect and usage of silane coupling agent (Science & Technology, written by Yoshinobu Nakamura)”.
  • the surface modifying agent is a boronic acid compound
  • the boronic acid compound reacts with the -NH 2 group or an OH group of the inorganic surface, bond or O-B represented by -NH-B- It is only necessary to form a bond represented by-.
  • an organic chain represented by ZX- can exist on the inorganic surface. The organic chains are preferably aligned to form a monomolecular film.
  • the surface-modified inorganic substance can be easily produced by bringing the inorganic substance into contact with the boronic acid compound or the aldehyde compound.
  • the contact between the inorganic substance and the boronic acid compound or aldehyde compound can be performed, for example, by stirring a solution containing the inorganic nitride or inorganic oxide and the boronic acid compound or aldehyde compound.
  • the contact is preferably performed with stirring.
  • the solvent of the said solution is not specifically limited, It is preferable that it is an organic solvent.
  • organic solvent examples include ethyl acetate, methyl ethyl ketone, dichloromethane, tetrahydrofuran (THF) and the like.
  • the solution may contain other components in the composition containing a discotic compound.
  • the mixing ratio of the inorganic substance and the surface modifier may be determined in consideration of the structure such as the structure of the inorganic substance, the surface area, and the aspect ratio of the molecule of the surface modifier.
  • the stirring conditions are not particularly limited. For example, it may be at room temperature, and stirring at a stirring speed of about 50 rpm may be performed for about 1 to 10 seconds.
  • the composition containing a discotic compound may be prepared as a solution.
  • the solvent of the said solution is not specifically limited, It is preferable that it is an organic solvent.
  • the organic solvent include ethyl acetate, methyl ethyl ketone (MEK), dichloromethane, tetrahydrofuran (THF) and the like.
  • the heat conductive material includes a cured product of a resin composition containing a discotic compound.
  • the discotic compound preferably has a functional group.
  • the cured product can be produced by a curing reaction of the resin composition.
  • the curing may be a thermosetting reaction or a photocuring reaction, and may be selected according to the functional group of the monomer in the resin composition.
  • the curing is preferably a thermosetting reaction.
  • the heating temperature during curing is not particularly limited. For example, it may be appropriately selected within the range of 50 ° C. to 200 ° C., preferably 60 ° C. to 150 ° C. It is preferable to perform hardening about the resin composition made into the film form or the sheet form. Specifically, for example, a resin composition may be applied and a curing reaction may be performed. At that time, press working may be performed.
  • the curing may be semi-curing, and the heat conductive material of the present invention is to be cured by further proceeding with curing after being placed so as to be in contact with the device to be used. Also good. It is also preferable that the device and the heat conductive material of the present invention are bonded together by heating or the like during the main curing.
  • a heat conductive material including a curing reaction reference can be made to “High Thermal Conductive Composite Material” (CMC Publishing, Taketaka Yoshitaka).
  • the heat conductive material is a composition containing a discotic compound and contains an uncured composition. Even when the discotic compound is not a polymer, it exhibits a relatively high thermal conductivity. The uncured composition is even easier to place in contact with the device or the like used. Can be used for adhesive applications.
  • the discotic compound may not have a functional group.
  • any Q may be a hydrogen atom, a halogen atom, or a cyano group. Can be used.
  • the heat conductive material may contain other members in addition to the members formed from the composition containing the discotic compound.
  • the sheet-like heat conductive material may contain a sheet-like support in addition to a layer formed from a composition containing a discotic compound.
  • the sheet-like support include a plastic film, a metal film, and a glass plate.
  • the material of the plastic film include polyesters such as polyethylene terephthalate (PET), polycarbonate, acrylic resin, epoxy resin, polyurethane, polyamide, polyolefin, cellulose derivative, and silicone.
  • PET polyethylene terephthalate
  • acrylic resin epoxy resin
  • polyurethane polyamide
  • polyolefin polyamide
  • cellulose derivative polyolefin
  • silicone silicone
  • the heat conductive material can be used as a heat radiating material such as a heat radiating sheet, and can be used for heat radiating for various devices. Since the heat conductive material of the present invention (particularly the heat conductive material of the first aspect) has sufficient heat conductivity and high heat resistance, it can be used in various electric devices such as personal computers, general household appliances, and automobiles. Suitable for heat dissipation of power semiconductor devices used in equipment. Furthermore, since the heat conductive material of the present invention has a sufficient heat conductivity even in an uncured or semi-cured state by using a composition containing a discotic compound, the gap between members of various devices. It can also be used as a heat dissipating material disposed at a site where it is difficult to reach light for photocuring. Further, it can be used as an adhesive having thermal conductivity.
  • Disc liquid crystal compound 1 The compound THABB was synthesized according to the method described in Journal of Synthetic Organic Chemistry, Japan, December 2002, page 1190 to obtain a discotic liquid crystal compound 1.
  • Disc liquid crystal compound 2 Compound TP-85 was synthesized according to the method described in the example of Japanese Patent No. 2696480 to obtain discotic liquid crystal compound 2.
  • Disc liquid crystal compound 4 The following trihydroxy compound was synthesized according to the method described in Examples described in Japanese Patent No. 5385937. This was followed in accordance with the method described in Example of Japanese Patent No. 2696480, and after alkylation, it was oxidized with mCPBA to obtain the following discotic liquid crystal compound 4.
  • Disc liquid crystal compound 6 The following intermediate was synthesized according to the method described in Example 13 described in Japanese Patent No. 5620129, and then reacted with epichlorohydrin to synthesize discotic liquid crystal compound 6.
  • Rod-shaped liquid crystal 1 The following rod-shaped liquid crystal compound described in Makromol. Chem. 190, 59 (1991) was synthesized.
  • Curing agent 1 1,5-naphthalenediamine (manufactured by Tokyo Chemical Industry Co., Ltd.)
  • Curing agent 2 4,4'-diaminodiphenylmethane (manufactured by Tokyo Chemical Industry Co., Ltd.)
  • Curing agent 3 4,4'-diaminodiphenyl sulfone (manufactured by Tokyo Chemical Industry Co., Ltd.)
  • BN1 BORONID Cooling File AGGLOMERATE 50 (manufactured by 3M) Boron nitride 2 (hereinafter referred to as BN2): BORONID Cooling File AGGLOMERATE 100 (manufactured by 3M) Boron nitride 3 (hereinafter referred to as BN3): DENKA BORON NITRIDE FP70 (Denka) Alumina: AW70 (manufactured by Micron)
  • Silane coupling agent 3-aminopropyltrimethoxysilane KBM-903 (manufactured by Shin-Etsu Chemical Co., Ltd.)
  • Boronic acid 1 p-hydroxyphenylboronic acid (manufactured by Wako Pure Chemical Industries, Ltd.)
  • Boronic acid 2 m-aminophenylboronic acid (manufactured by Wako Pure Chemical Industries, Ltd.)
  • Aldehyde 1 4-hydroxybenzaldehyde (Aldrich)
  • Examples 31 to 34 and Comparative Examples 31 and 32 (examples using no inorganic substance)> Using the above disk-shaped liquid crystal compound 1, disk-shaped liquid crystal compound 5, rod-shaped liquid crystal compound 1, rod-shaped compound 1, polymerization initiator 1 and curing agent 2, and disk-shaped compound 7 and disk-shaped compound 8 shown below, The heat conductive materials of Examples 31 to 34 and Comparative Examples 31 and 32 were prepared as shown below as heat conductive materials not using an inorganic substance. The thermal conductivity of each cured film in the obtained thermal conductive material was measured in the same manner as the thermal conductivity of the thermal conductive material of Example 1 above. The results are shown in Table 2.
  • Example 31 Dissolve discotic liquid crystal compound (10.0 g), trifunctional monomer (manufactured by Osaka Organic Chemical Co., Ltd., Biscoat # 360, TMPTEOA): 0.50 g, and photopolymerization initiator 1: 0.1 g in 10 g of MEK (methyl ethyl ketone).
  • a coating solution was prepared. The obtained coating solution was applied to a 1 mm thick glass substrate hydrophobized with dimethyldichlorosiloxane so as to have a thickness of 600 ⁇ m. The coating film after drying at room temperature was irradiated with light at 90 ° C. and 1000 mJ. It cooled to room temperature and peeled from the glass substrate, and the cured film A was obtained.
  • Example 32 A disc-like liquid crystal compound 5: 10.0 g and a photopolymerization initiator 1: 0.1 g were dissolved in 10 g of MEK to prepare a coating solution.
  • the obtained coating solution was applied to a 1 mm thick glass substrate hydrophobized with dimethyldichlorosiloxane so as to have a thickness of 600 ⁇ m.
  • the coating film after drying at room temperature was irradiated with light at 90 ° C. and 1000 mJ. It cooled to room temperature, peeled from the glass substrate, and obtained the cured film B.
  • Discoidal compound 7 10 g and curing agent 2 (4,4′-diaminodiphenylmethane): 5 g of a coating solution dissolved in 10 g of MEK was applied on a PET film to a thickness of 600 ⁇ m, dried at room temperature, and then at 160 ° C. Curing was performed for 10 minutes. It cooled to room temperature, peeled from the PET film, and obtained the cured film C.
  • curing agent 2 (4,4′-diaminodiphenylmethane): 5 g of a coating solution dissolved in 10 g of MEK was applied on a PET film to a thickness of 600 ⁇ m, dried at room temperature, and then at 160 ° C. Curing was performed for 10 minutes. It cooled to room temperature, peeled from the PET film, and obtained the cured film C.
  • the solvent was concentrated under reduced pressure, and then added to a mixed solvent of 120 mL of ethyl acetate / 400 mL of methanol and dissolved by heating. After cooling, the resulting crystals were filtered under reduced pressure. After drying under reduced pressure at 50 ° C., 57.5 g of a discotic compound 8 intermediate was obtained (85%).
  • Disc-like compound 8 10 g
  • curing agent 2 (4,4′-diaminodiphenylmethane): 5 g
  • a coating solution dissolved in MEK 10 g was applied on a PET film to a thickness of 600 ⁇ m, dried at room temperature, and then at 160 ° C. Curing was performed for 10 minutes. It cooled to room temperature, peeled from the PET film, and obtained the cured film D.
  • Rod compound 1 10.0 g
  • photopolymerization initiator Irg-907, manufactured by BASF
  • 1 mm thickness hydrophobized with dimethyldichlorosiloxane 1 mm thickness hydrophobized with dimethyldichlorosiloxane to a coating thickness of 0.1 g dissolved in 10 g of MEK to a thickness of 600 ⁇ m It applied to the glass substrate.
  • the coating film after drying at room temperature was irradiated with light at 90 ° C. and 1000 mJ.
  • the glass substrate was peeled off by cooling to room temperature, and a cured film G was obtained.
  • the discotic compound shows higher thermal conductivity than the rod-shaped compound. Moreover, even if it forms using the resin composition which does not contain an inorganic substance, it turns out that high thermal conductivity is shown.
  • Example 43 (Preparation of discotic liquid crystal compound 9) The discotic liquid crystal compound 9 was synthesized according to the method described in Polymer for Advanced Technologies, 111, 398-403, (2000).
  • a coating solution prepared by dissolving 10 g of discotic compound 9:10 g in 10 g of MEK was applied to a PET film so as to have a thickness of 600 ⁇ m. After drying at room temperature, the mixture was further allowed to stand at 160 ° C. for 10 minutes, and then returned to room temperature to prepare a coating film E.
  • Table 3 shows that the discotic compound exhibits a relatively high thermal conductivity even in an unpolymerized state.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polarising Elements (AREA)
  • Epoxy Resins (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本発明は、高い熱伝導性とともに高い耐熱性を有する熱伝導材料として、円盤状化合物を含む熱伝導材料、例えば、2個以上の官能基を有する円盤状化合物を含み、上記官能基が(メタ)アクリル基、(メタ)アクリルアミド基、オキシラニル基、オキセタニル基、水酸基、アミノ基、チオール基、イソシアネート基、カルボキシル基および無水カルボン酸基からなる群より選択される樹脂組成物の硬化物を含む熱伝導材料を提供する。本発明はさらに、上記熱伝導材料を含むデバイス、ならびに上記樹脂組成物を提供する。

Description

熱伝導材料、樹脂組成物、およびデバイス
 本発明は、熱伝導材料に関する。本発明はまた、上記熱伝導材料の製造に用いられる樹脂組成物、および上記熱伝導材料を含むデバイスに関する。
 パーソナルコンピュータ、一般家電、自動車などの様々な電気機器に用いられているパワー半導体デバイスは、近年、小型化が急速に進んでいる。小型化に伴い高密度化されたパワー半導体デバイスから発生する熱の制御は、パワー半導体デバイスの実用化に伴う課題の1つである。放熱のための熱伝導材料としては、加工性に優れ、積層も容易である樹脂材料が数多く開発されている。樹脂材料としては、近年、液晶化合物を用いた例の報告がある(特許文献1および2)。
特開平11-323162号公報 特許4118691号
 自動車搭載用などの様々な電気機器に用いられているパワー半導体デバイスは、高温下での使用も想定され、より高い耐熱性が要求される。特許文献1および2に記載の熱伝導材料など従来の熱伝導材料では耐熱性に関する検討は十分ではない。また、特許文献1および2に記載の熱伝導材料は、熱伝導性に関しても改良の余地がある。
 さらに、特許文献1および2に記載の熱伝導材料は硬化物であるために、光照射や加熱の処理が困難な部位で用いることができない。
 本発明は、高い熱伝導性とともに高い耐熱性を有する熱伝導材料を提供することを課題とする。本発明は、同時に、上記の熱伝導材料の製造に用いることができる樹脂組成物および上記の熱伝導材料を含むデバイスを提供することを課題とする。本発明はまた、応用範囲の広い熱伝導材料を提供することを課題とする。
 本発明者は、上記課題の解決のため鋭意検討したところ、いわゆる円盤状構造を有する化合物を用いることにより、高い熱伝導性とともに耐熱性の高い熱伝導材料を提供することが可能であることを見出した。また、円盤状構造を有する化合物を含む組成物は未硬化であっても熱伝導性を有することを見出した。本発明者は上記知見に基づき、本発明を完成させた。
 すなわち、本発明は下記の[1]~[22]を提供するものである。
[1]円盤状化合物を含む熱伝導材料。
[2]上記円盤状化合物が、以下D1~D16のいずれかの一般式で示される化合物からなる群より選択される1つ以上の化合物がQにおいて反応した化合物であるか、またはD1~D16のいずれかの一般式で示される化合物からなる群より選択される1つ以上の化合物である[1]に記載の熱伝導材料。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
D1~D16中、Lは二価の連結基を示し;
Qは、水素原子、ハロゲン原子、シアノ基、または官能基を示し、
2x、A3xおよびA4xはそれぞれ独立に-CH=またはN=を表し、R17x、R18x、およびR19xはそれぞれ独立に、*-X211x-(Z21x-X212xn21x-L21x-Qを表し、*は中心環との結合位置を表し、X211X、およびX212Xはそれぞれ独立に、単結合、-O-、-C(=O)-、-OC(=O)-、-OC(=O)O-、-OC(=O)NH-、-OC(=O)S-、-C(=O)O-、-C(=O)NH-、-C(=O)S-、-NHC(=O)-、-NHC(=O)O-、-NHC(=O)NH-、-NHC(=O)S-、-S-、-SC(=O)-、-SC(=O)O-、-SC(=O)NH-、または-SC(=O)S-を表し、Z21Xはそれぞれ独立に、5員環もしくは6員環の芳香族基、または5員環もしくは6員環の非芳香族基を表し、L21Xは、X212XとP21Xを連結する2価の連結基もしくは単結合を表し、n21Xは、0~3の整数を表し、n21Xが2以上の場合の複数個あるZ21X-X212Xは同一でも異なっていてもよい。
[3]上記円盤状化合物を含む樹脂組成物の硬化物を含み、
上記円盤状化合物が1個以上の官能基を含む、[2]に記載の熱伝導材料。
[4][1]に記載の熱伝導材料であって、
2個以上の官能基を有する円盤状化合物を含む樹脂組成物の硬化物を含み、上記官能基が(メタ)アクリル基、(メタ)アクリルアミド基、オキシラニル基、オキセタニル基、水酸基、アミノ基、チオール基、イソシアネート基、カルボキシル基および無水カルボン酸基からなる群より選択される熱伝導材料。
[5]上記円盤状化合物が3~8個の上記官能基を有する[4]に記載の熱伝導材料。
[6]上記円盤状化合物が一般式(XI)で表される化合物である[4]または[5]に記載の熱伝導材料。
Figure JPOXMLDOC01-appb-C000013
式中、R11、R12、R13、R14、R15、およびR16はそれぞれ独立に*-X11-L11-P11または*-X12-Y12を表し、*はトリフェニレン環との結合位置を表し、R11、R12、R13、R14、R15、およびR16のうち2つ以上は*-X11-L11-P11であり、X11およびX12はそれぞれ独立に、単結合、-O-、-C(=O)-、-OC(=O)-、-OC(=O)O-、-OC(=O)NH-、-OC(=O)S-、-C(=O)O-、-C(=O)NH-、-C(=O)S-、-NHC(=O)-、-NHC(=O)O-、-NHC(=O)NH-、-NHC(=O)S-、-S-、-SC(=O)-、-SC(=O)O-、-SC(=O)NH-、または-SC(=O)S-を表し、L11は2価の連結基または単結合を表し、P11は (メタ)アクリル基、(メタ)アクリルアミド基、オキシラニル基、オキセタニル基、水酸基、アミノ基、チオール基、イソシアネート基、カルボキシル基および無水カルボン酸基からなる群より選択される官能基を表し、Y12は水素原子、炭素数1~20の直鎖状、分岐鎖状、もしくは環状のアルキル基、または炭素数1~20の直鎖状、分岐鎖状、もしくは環状のアルキル基において1つまたは2つ以上のメチレン基が-O-、-S-、-NH-、-N(CH3)-、-C(=O)-、-OC(=O)-、または-C(=O)O-で置換された基を表す。
[7]R11、R12、R13、R14、R15、およびR16が同一である[6]に記載の熱伝導材料。
[8]上記円盤状化合物が一般式(XII)で表される化合物である[4]または[5]に記載の熱伝導材料。
Figure JPOXMLDOC01-appb-C000014
式中、A2、A3およびA4はそれぞれ独立に-CH=またはN=を表し、R17、R18、およびR19はそれぞれ独立に、*-X211-(Z21-X212n21-L21-P21または*-X211-(Z22-X222n22-Y22を表し、*は中心環との結合位置を表し、R17、R18、およびR19のうち2つ以上は*-X211-(Z21-X212n21-L21-P21であり、X211、およびX212はそれぞれ独立に、単結合、-O-、-C(=O)-、-OC(=O)-、-OC(=O)O-、-OC(=O)NH-、-OC(=O)S-、-C(=O)O-、-C(=O)NH-、-C(=O)S-、-NHC(=O)-、-NHC(=O)O-、-NHC(=O)NH-、-NHC(=O)S-、-S-、-SC(=O)-、-SC(=O)O-、-SC(=O)NH-、または-SC(=O)S-を表し、Z21およびZ22はそれぞれ独立に、5員環もしくは6員環の芳香族基、または5員環もしくは6員環の非芳香族基を表し、L21は、X212とP21を連結する2価の連結基もしくは単結合を表し、P21は(メタ)アクリル基、(メタ)アクリルアミド基、オキシラニル基、オキセタニル基、水酸基、アミノ基、チオール基、イソシアネート基、カルボキシル基および無水カルボン酸基からなる群より選択される官能基を表し、Y22は水素原子、炭素数1~20の直鎖状、分岐鎖状、もしくは環状のアルキル基、または炭素数1~20の直鎖状、分岐鎖状、もしくは環状のアルキル基において1つまたは2つ以上のメチレン基が-O-、-S-、-NH-、-N(CH3)-、-C(=O)-、-OC(=O)-、または-C(=O)O-で置換された基を表し、n21およびn22はそれぞれ独立に、0~3の整数を表し、n21およびn22が2以上の場合の複数個あるZ21-X212およびZ22-X222は同一でも異なっていてもよい。
[9]R17、R18、およびR19が同一である[8]に記載の熱伝導材料。
[10]上記樹脂組成物が、アミノ基、チオール基、水酸基、カルボキシル基、無水カルボン酸基、およびイソシアネート基からなる群より選択される基を有する硬化剤を含む[3]~[9]のいずれかに記載の熱伝導材料。
[11]上記樹脂組成物がオキシラニル基を有する上記円盤状化合物を含む[10]に記載の熱伝導材料。
[12]上記樹脂組成物が、無機物を、上記樹脂組成物の固形分質量に対して30質量%~90質量%で含む[3]~[11]のいずれかに記載の熱伝導材料。
[13]上記円盤状化合物として、D1~D16のいずれかの一般式で示される化合物からなる群より選択される1つ以上の化合物であって、全てのQが、水素原子、ハロゲン原子、またはシアノ基である化合物を含む、[2]に記載の熱伝導材料。
[14]上記円盤状化合物が液晶化合物である[1]~[13]のいずれかに記載の熱伝導材料。
[15]無機物を含む[1]~[14]のいずれかに記載の熱伝導材料。
[16]上記無機物が無機窒化物または無機酸化物である[15]に記載の熱伝導材料。
[17]上記無機物が窒化ホウ素または窒化アルミニウムである[16]に記載の熱伝導材料。
[18]上記無機物がボロン酸化合物およびアルデヒド化合物で表面修飾されている[16]または[17]に記載の熱伝導材料。
[19]シート状であり、
上記円盤状化合物を含む組成物から形成された層を含む[1]~[18]のいずれかに記載の熱伝導材料。
[20]放熱シートである[19]に記載の熱伝導材料。
[21][3]~[12]のいずれかに記載の熱伝導材料の製造に用いるための上記樹脂組成物。
[22][1]~[20]のいずれかに記載の熱伝導材料を含むデバイス。
 本発明により、高い熱伝導性とともに高い耐熱性を有する熱伝導材料が提供される。本発明はさらに、上記の熱伝導材料の製造に用いることができる樹脂組成物を提供する。本発明の熱伝導材料を用いて耐久性の高いデバイスを提供することができる。
 また、本発明によっては、特定の形状を有しない応用範囲の広い熱伝導材料を提供することができる。
 以下、本発明を詳細に説明する。
 本明細書において、「~」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。本明細書において、「(メタ)アクリル基」との記載は、「アクリル基およびメタクリル基のいずれか一方または双方」の意味を表す。「(メタ)アクリレート」、「(メタ)アクリルアミド基」等の記載も同様である。
<<熱伝導材料>>
 本発明の熱伝導材料は熱伝導性を有する材料である。熱伝導材料は一般的には放熱材として用いることができ、パワー半導体デバイスなどの各種デバイスが発する熱を放出させるための材料として用いることができる。熱伝導材料の形状は特に限定されず、用途に応じて、様々な形状に成形されたものであってもよい。成形されたものとして、典型的には、熱伝導材料はシート状であることが好ましい。本明細書において、シート状であるというとき、フィルム状または板状であることをいう。また、本発明の熱伝導材料の熱伝導性は異方的ではなく等方的であることが好ましい。
 本発明の熱伝導材料はまた、形状を有しない流体であってもよい。特に、円盤状化合物を含む組成物の未硬化物を使用する本発明の第2の態様において、熱伝導材料は流体であってもよい。流体は、粘性であることが好ましい。
 本発明の熱伝導材料は円盤状化合物を含む。熱伝導材料は、円盤状化合物を含む組成物から形成されているか、または円盤状化合物を含む組成物から形成されている部材を含んでいればよい。特に、熱伝導材料がシート状であるとき、熱伝導材料は円盤状化合物を含む組成物から形成された層を含むことが好ましい。なお、本明細書において、「円盤状化合物を含む組成物」は、円盤状化合物および他の成分を含む組成物のほか、円盤状化合物(円盤状化合物のみからなるもの)を含む意味である。
 本明細書において、円盤状化合物を含む組成物から形成されているというとき、円盤状化合物を含む組成物からなること、および円盤状化合物を含む組成物の硬化により形成されていることの意味を含む。
 本明細書において、硬化物を形成するための組成物を特に樹脂組成物という。すなわち、本明細書において、円盤状化合物を含む組成物というときは円盤状化合物を含む樹脂組成物を含む意味である。
 円盤状化合物を含む組成物は、円盤状化合物を1種含んでいても2種以上含んでいてもよい。
 円盤状化合物を含む組成物は円盤状化合物のほか、無機物、上記無機物の表面修飾剤などを含んでいてもよい。また、特に、樹脂組成物は、さらに、硬化促進剤、重合開始剤、円盤状化合物以外の硬化剤または主剤を含んでいてもよい。本明細書において、硬化剤は、水酸基、アミノ基、チオール基、イソシアネート基、チオイソシアネート基、アルデヒド基、カルボキシル基、無水カルボン酸基、およびスルホ基から選択される官能基を有する化合物を意味し、主剤は不飽和重合性基((メタ)アクリル基、(メタ)アクリルアミド基等)、オキシラニル基、オキセタニル基、およびアジリジニル基からなる群より選択される官能基を有する化合物を意味する。樹脂組成物は主剤のみを含んでいてもよく、主剤および硬化剤を含んでいてもよい。
<円盤状化合物>
 円盤状化合物は少なくとも部分的に円盤状構造を有する化合物を意味する。円盤状構造により、円盤状化合物はスタッキング構造を形成して柱状構造をとりうる。円盤状化合物は、少なくとも芳香族環を有し、分子間のπ-π相互作用に基づくスタッキング構造の形成により柱状構造を形成しうる化合物が好ましい。
 本発明者は、円盤状構造を有する化合物が、特許文献1または特許文献2に記載の液晶化合物よりも、高い熱伝導性を与えることを見出した。特定の理論に拘泥するものではないが、上記の高い熱伝導性は、特許文献1または特許文献2に記載のような棒状化合物が直線的(一次元的)にしか熱伝導できないのに対して、円盤状化合物はその円盤状構造に対して法線方向に平面的(二次元的)に熱伝導できるため、熱伝導パスが増え熱伝導率が向上するためと考えられる。また本発明においては樹脂の配向処理などを特に実施しないため、本発明の熱伝導材料の熱伝導性は異方的ではなく等方的となる。
 円盤状化合物は液晶性であっても非液晶性であってもよいが、液晶化合物であることが好ましい。
 円盤状化合物として、具体的には、以下、D1~D16のいずれかの一般式で示される化合物または、以下D1~D16のいずれかの一般式で示される化合物がQにおいて反応した化合物が挙げられる。
 円盤状化合物はD1~D15のいずれかの一般式で示される化合物において、LQの置換基を除いた構造単位(円盤状コア構造)を含むいずれかの他の化合物、またはD16の一般式で示される化合物において、L21x-Qの置換基を除いた構造単位を含むいずれかの他の化合物であってもよい。
 円盤状化合物が以下D1~D16のいずれかの一般式で示される化合物がQにおいて反応した化合物である場合、Qは官能基であることが好ましい。反応は、Qで示される官能基に応じた反応であればよく、例えば、重合反応または架橋反応として一般的な反応であればよい。
 円盤状化合物がD1~D16のいずれかの一般式で示される化合物がQにおいて反応した化合物としては、上記化合物の重合物が挙げられる。重合物は、D1~D16のいずれかの一般式で示される1種の化合物のみから形成されるモノポリマーであってもよく、D1~D16の一般式で示される化合物の2種以上を含むコポリマーまたはD1~D16のいずれかの一般式で示される化合物の1種以上および他のコモノマー(例えば後述の硬化剤または主剤)を含むコポリマーであってもよい。重合物は架橋構造を含んでいてもよい。
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
D1~D16中、Lは二価の連結基を示し;
Qは、水素原子、ハロゲン原子、シアノ基、または官能基を示し、
2x、A3xおよびA4xはそれぞれ独立に-CH=またはN=を表し、R17x、R18x、およびR19xはそれぞれ独立に、*-X211x-(Z21x-X212xn21x-L21x-Qを表し、*は中心環との結合位置を表し、X211X、およびX212Xはそれぞれ独立に、単結合、-O-、-C(=O)-、-OC(=O)-、-OC(=O)O-、-OC(=O)NH-、-OC(=O)S-、-C(=O)O-、-C(=O)NH-、-C(=O)S-、-NHC(=O)-、-NHC(=O)O-、-NHC(=O)NH-、-NHC(=O)S-、-S-、-SC(=O)-、-SC(=O)O-、-SC(=O)NH-、または-SC(=O)S-を表し、Z21Xはそれぞれ独立に、5員環もしくは6員環の芳香族基、または5員環もしくは6員環の非芳香族基を表し、L21Xは、X212XとQを連結する2価の連結基もしくは単結合を表し、n21Xは、0~3の整数を表し、n21Xが2以上の場合の複数個あるZ21X-X212Xは同一でも異なっていてもよい。
 D1~D15における二価の連結基(L)は、アルキレン基、アルケニレン基、アリーレン基、-CO-、-NH-、-O-、-S-およびそれらの組み合わせからなる群より選ばれる二価の連結基であることが好ましい。二価の連結基(L)は、アルキレン基、アルケニレン基、アリーレン基、-CO-、-NH-、-O-および-S-からなる群より選ばれる二価の基を少なくとも二つ組み合わせた基であることがさらに好ましい。二価の連結基(L)は、アルキレン基、アルケニレン基、アリーレン基、-CO-および-O-からなる群より選ばれる二価の基を少なくとも二つ組み合わせた基であることが最も好ましい。アルキレン基の炭素原子数は、1~12であることが好ましい。アルケニレン基の炭素原子数は、2~12であることが好ましい。アリーレン基の炭素原子数は、~10であることが好ましい。アルキレン基、アルケニレン基およびアリーレン基は、置換基(例、アルキル基、ハロゲン原子、シアノ、アルコキシ基、アシルオキシ基)を有していてもよい。
 二価の連結基(L)の例を以下に示す。左側が円盤状コア(D)に結合し、右側がQに結合する。ALはアルキレン基またはアルケニレン基を意味し、ARはアリーレン基を意味する。
L101:-AL-CO-O-AL-
L102:-AL-CO-O-AL-O-
L103:-AL-CO-O-AL-O-AL-
L104:-AL-CO-O-AL-O-CO-
L105:-CO-AR-O-AL-
L106:-CO-AR-O-AL-O-
L107:-CO-AR-O-AL-O-CO-
L108:-CO-NH-AL-
L109:-NH-AL-O-
L110:-NH-AL-O-CO-
L111:-O-AL-
L112:-O-AL-O-
L113:-O-AL-O-CO-
L114:-O-AL-O-CO-NH-AL-
L115:-O-AL-S-AL-
L116:-O-CO-AL-AR-O-AL-O-CO-
L117:-O-CO-AR-O-AL-CO-
L118:-O-CO-AR-O-AL-O-CO-
L119:-O-CO-AR-O-AL-O-AL-O-CO-
L120:-O-CO-AR-O-AL-O-AL-O-AL-O-CO-
L121:-S-AL-
L122:-S-AL-O-
L123:-S-AL-O-CO-
L124:-S-AL-S-AL-
L125:-S-AR-AL-
L126:-O-CO-AL
L127:-O-CO-AL-O
L128:-O-CO-AR-O-AL
 Qは、水素原子、ハロゲン原子、シアノ基、または官能基を示す、官能基としては、不飽和重合性基、オキシラニル基、オキセタニル基、アジリジニル基、水酸基、アミノ基、チオール基、イソシアネート基、チオイソシアネート基、アルデヒド基、カルボキシル基、無水カルボン酸基、およびスルホ基が挙げられる。不飽和重合性基としては、(メタ)アクリル基、(メタ)アクリルアミド基、および以下Q1~Q7で示される置換基が挙げられる。
Figure JPOXMLDOC01-appb-C000020
 なお、本明細書において、オキシラニル基はエポキシ基とも呼ばれる官能基であり、オキサシクロプロパン(オキシラン)を含む基であればよく、例えば飽和炭化水素環基の隣接する炭素原子2つがオキソ基(-O-)を介して結合してオキシラン環を形成している基なども含む。
 また、本明細書において、官能基として「水酸基」を挙げるときは、その水酸基はフェニル基などの芳香族環に直接結合している水酸基であることが好ましい。さらに、無水カルボン酸基は、無水マレイン酸、無水フタル酸、無水ピロメリット酸、無水トリメリット酸等の酸無水物から任意の水素原子を除いて得られる置換基であればよい。
 Qで示される官能基としては、不飽和重合性基、オキシラニル基、オキセタニル基、アジリジニル基であることが好ましく、(メタ)アクリル基、(メタ)アクリル基、オキシラニル基、またはオキセタニル基であることがより好ましい。
 D1~D16の一般式で示される化合物において、複数のLは互いに同一でも異なっていてもよいが、同一であることが好ましい。
 D1~D16の一般式で示される化合物において、複数のQは互いに同一でも異なっていてもよい。
 樹脂組成物において用いられる円盤状化合物としては、D1~D16の一般式で示される化合物においてQとして、1つ以上の官能基を含む化合物が好ましく、2つ以上の官能基を含む化合物であることがより好ましく、3つ以上の官能基を含む化合物であることがさらに好ましい。円盤状化合物はD1~D16の一般式で示される化合物においてすべてのQが官能基である化合物であることも好ましい。
 一方、例えば、円盤状化合物を含む組成物を硬化せずに熱伝導材料が作製される本発明の第2の態様において、円盤状化合物はD1~D16の一般式で示される化合物において、いずれのQも、水素原子、ハロゲン原子、またはシアノ基である化合物であってもよい。
 円盤状化合物の例として具体的には、C. Destrade et al., Mol. Crysr. Liq. Cryst., vol. 71, page 111 (1981) ;日本化学会編、季刊化学総説、No.22、液晶の化学、第5章、第10章第2節(1994);B. Kohne et al., Angew. Chem. Soc. Chem. Comm., page 1794 (1985);J. Zhang et al., J. Am. Chem. Soc., vol. 116, page 2655 (1994))、特許第4592225号に記載されている化合物が挙げられる。好ましい円盤状化合物の構造の例としてAngew.Chem.Int. Ed. 2012, 51, 7990-7993または特開平7-306317号公報に記載のトリフェニレン構造や、特開2007-2220号公報、特開2010-244038号公報に記載の3置換ベンゼン構造などが挙げられる。
<樹脂組成物>
 本発明の第1の態様において、熱伝導材料は、円盤状化合物を含む樹脂組成物の硬化物を含むことが好ましい。熱伝導材料は、上記樹脂組成物の硬化物として形成されていてもよい。熱伝導材料は、上記樹脂組成物の硬化物からなる層を含むことも好ましい。硬化物とすることにより、熱伝導材料を成形体として得ることが可能である。例えば、上記樹脂組成物の硬化物からなる層のみからなる自立膜を得ることができる。
 樹脂組成物中の円盤状化合物は1個以上の官能基を有することが好ましい。D1~D16のいずれかの一般式で示される化合物からなる群より選択されるいずれか1つ以上であって、かつ1個以上の官能基を含む化合物であることがより好ましい。特に、樹脂組成物中の円盤状化合物は2個以上の官能基を有することが好ましく、3個以上の官能基を有することがより好ましい。3個以上の官能基を有するモノマーを含む樹脂組成物の硬化物はガラス転移温度が高く、耐熱性が高い傾向がある。円盤状化合物は棒状の構造を有する化合物と比較して、メソゲン部分の特性に影響を与えることなく3個以上の官能基を有しやすい。円盤状化合物が有する官能基の数は8個以下であることが好ましく、6個以下であることがより好ましい。この官能基は(メタ)アクリル基、(メタ)アクリルアミド基、オキシラニル基、オキセタニル基、水酸基、アミノ基、チオール基、イソシアネート基、カルボキシル基および無水カルボン酸基からなる群より選択されることが好ましい。
 樹脂組成物は、円盤状化合物を主剤として含んでいても、硬化剤として含んでいてもよい。また、樹脂組成物は主剤および硬化剤の双方として円盤状化合物を含んでいてもよい。樹脂組成物は、円盤状化合物を少なくとも主剤として含むことが好ましい。
 樹脂組成物に主剤として含まれているとき、円盤状化合物は官能基として、(メタ)アクリル基、(メタ)アクリルアミド基、オキシラニル基、およびオキセタニル基からなる群より選択される官能基を有することが好ましい。このとき、円盤状化合物が有する官能基の、好ましくは2個以上、より好ましくは全て、の官能基が、(メタ)アクリル基、(メタ)アクリルアミド基、オキシラニル基、およびオキセタニル基からなる群より選択される官能基であればよい。樹脂組成物に主剤として含まれているとき、円盤状化合物が有する官能基は、オキシラニル基またはオキセタニル基であることがより好ましく、オキシラニル基であることがさらに好ましい。
 樹脂組成物に硬化剤として含まれているとき円盤状化合物は官能基として、水酸基、アミノ基、チオール基、イソシアネート基、カルボキシル基および無水カルボン酸基からなる群より選択される官能基を有することが好ましい。このとき、円盤状化合物が有する官能基の、好ましくは2個以上、より好ましくは全て、の官能基が、水酸基、アミノ基、チオール基、イソシアネート基、カルボキシル基および無水カルボン酸基からなる群より選択される官能基であればよい。
 樹脂組成物に硬化剤として含まれているとき、円盤状化合物が有する官能基は、水酸基、アミノ基、および無水カルボン酸基からなる群より選択される官能基であることがより好ましく、アミノ基であることがさらに好ましい。
 樹脂組成物において用いられる円盤状化合物としては以下の一般式(XI)で表される化合物または一般式(XII)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000021
 式中、R11、R12、R13、R14、R15、およびR16はそれぞれ独立に*-X11-L11-P11または*-X12-Y12を表し、*はトリフェニレン環との結合位置を表し、R11、R12、R13、R14、R15、およびR16のうち2つ以上は*-X11-L11-P11であり、X11およびX12はそれぞれ独立に、単結合、-O-、-C(=O)-、-OC(=O)-、-OC(=O)O-、-OC(=O)NH-、-OC(=O)S-、-C(=O)O-、-C(=O)NH-、-C(=O)S-、-NHC(=O)-、-NHC(=O)O-、-NHC(=O)NH-、-NHC(=O)S-、-S-、-SC(=O)-、-SC(=O)O-、-SC(=O)NH-、または-SC(=O)S-を表し、L11は2価の連結基または単結合を表し、P11は (メタ)アクリル基、(メタ)アクリルアミド基、オキシラニル基、オキセタニル基、水酸基、アミノ基、チオール基、イソシアネート基、カルボキシル基および無水カルボン酸基からなる群より選択される置換基を表し、Y12は、水素原子、炭素数1~20の直鎖状、分岐鎖状、もしくは環状のアルキル基、または炭素数1~20の直鎖状、分岐鎖状、もしくは環状のアルキル基において1つまたは2つ以上のメチレン基が-O-、-S-、-NH-、-N(CH3)-、-C(=O)-、-OC(=O)-、または-C(=O)O-で置換された基を表す。
 R11、R12、R13、R14、R15、およびR16は3つ以上が*-X11-L11-P11であることが好ましい。特にR11、R12のいずれか1つ以上、R13、R14のいずれか1つ以上、およびR15、R16のいずれか1つ以上が*-X11-L11-P11であることが好ましい。R11、R12、R13、R14、R15、およびR16が全て*-X11-L11-P11であることがさらに好ましく、R11、R12、R13、R14、R15、およびR16が全て同一であることが特に好ましい。
 X11およびX12としては、それぞれ独立に、-O-、-OC(=O)-、-OC(=O)O-、-OC(=O)NH-、-C(=O)O-、-C(=O)NH-、-NHC(=O)-、またはNHC(=O)O-が好ましく、-OC(=O)-、-C(=O)O-、-OC(=O)NH-、またはC(=O)NH-がより好ましく、-C(=O)O-が特に好ましい。
 L11は、X11とP11を連結する2価の連結基もしくは単結合を表す。2価の連結基としては、-O-、-OC(=O)-、-C(=O)O-、炭素数1~10(好ましくは炭素数1~8、より好ましくは炭素数1~6)のアルキレン基、炭素数6~20(好ましくは炭素数6~14、より好ましくは炭素数6~10)のアリーレン基、またはこれらの組み合わせからなる基などが挙げられる。炭素数1~10のアルキレン基としては、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基等が挙げられ、メチレン基、エチレン基、プロピレン基、ブチレン基が好ましい。炭素数6~20のアリーレン基としては、1,4-フェニレン基、1,3-フェニレン基、1,4-ナフチレン基、1,5-ナフチレン基、アントラセニレン基等が挙げられ、1,4-フェニレン基が好ましい。
 上記アルキレン基および上記アリーレン基はそれぞれ置換基を有していてもよい。ここでの置換基としては後述する置換基群Yに示す置換基のほか、アルキル基、アルケニル基が含まれる。置換基の数は1~3であることが好ましく、1つであることがより好ましい。置換位置は特に限定されない。ここでの置換基としてはハロゲン原子または炭素数1~3のアルキル基が好ましく、メチル基がより好ましい。アルキレン基およびアリーレン基は無置換であることも好ましい。特にアルキレン基は無置換であることが好ましい。
 P11は、(メタ)アクリル基、(メタ)アクリルアミド基、オキシラニル基、オキセタニル基、水酸基、アミノ基、チオール基、イソシアネート基、カルボキシル基および無水カルボン酸基からなる群より選択される官能基を表す。P11の好ましい範囲は、上述の円盤状化合物の官能基としての好ましい範囲と同様である。
 なお、P11が水酸基であるとき、L11はアリーレン基を含み、このアリーレン基はP11と結合していることが好ましい。
 Y12は、水素原子、炭素数1~20の直鎖状、分岐鎖状、もしくは環状のアルキル基、または炭素数1~20の直鎖状、分岐鎖状、もしくは環状のアルキル基において1つまたは2つ以上のメチレン基が-O-、-S-、-NH-、-N(CH3)-、-C(=O)-、-OC(=O)-、または-C(=O)O-で置換された基を表す。Y12が炭素数1~20の直鎖状、分岐鎖状、もしくは環状のアルキル基、または炭素数1~20の直鎖状、分岐鎖状、もしくは環状のアルキル基において1つまたは2つ以上のメチレン基が-O-、-S-、-NH-、-N(CH3)-、-C(=O)-、-OC(=O)-、または-C(=O)O-で置換された基の場合、ハロゲン原子で置換されていてもよい。炭素数1~20の直鎖状もしくは分岐鎖状のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、1,1-ジメチルプロピル基、n-ヘキシル基、イソヘキシル基、直鎖状または分岐鎖状のヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、またはドデシル基が挙げられる。環状のアルキル基の炭素数は、3~20が好ましく、5以上がより好ましく、また、10以下が好ましく、8以下がより好ましく、6以下がさらに好ましい。環状のアルキル基の例としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基を挙げることができる。
 Y12としては、水素原子、炭素数1~20の直鎖状、分岐鎖状、もしくは環状のアルキル基、または炭素数1~20のアルキレンオキシド基が好ましく、炭素数1~12の直鎖状もしくは分岐鎖状のアルキル基、または炭素数1~20のエチレンオキシド基もしくはプロピレンオキシド基がより好ましい。
 上記一般式(XI)で表される化合物の具体例については、特開平7-281028号公報の段落番号0028~0036、特開平7-306317号公報特開2005-156822号公報の段落番号0016~0018、特開2006-301614号公報の段落番号0067~0072、および液晶便覧(平成12年丸善株式会社発刊)330頁~333頁に記載のものを参照することができる。
Figure JPOXMLDOC01-appb-C000022
 式中、A2、A3およびA4はそれぞれ独立に-CH=または-N=を表し、R17、R18、およびR19はそれぞれ独立に、*-X211-(Z21-X212n21-L21-P21または*-X211-(Z22-X222n22-Y22を表し、*は中心環との結合位置を表し、R17、R18、およびR19のうち2つ以上は*-X211-(Z21-X212n21-L21-P21であり、X211、およびX212はそれぞれ独立に、単結合、-O-、-C(=O)-、-OC(=O)-、-OC(=O)O-、-OC(=O)NH-、-OC(=O)S-、-C(=O)O-、-C(=O)NH-、-C(=O)S-、-NHC(=O)-、-NHC(=O)O-、-NHC(=O)NH-、-NHC(=O)S-、-S-、-SC(=O)-、-SC(=O)O-、-SC(=O)NH-、またはSC(=O)S-を表し、Z21およびZ22はそれぞれ独立に、5員環もしくは6員環の芳香族基、または5員環もしくは6員環の非芳香族基を表し、L21は、X212とP21を連結する2価の連結基もしくは単結合を表し、P21は (メタ)アクリル基、(メタ)アクリルアミド基、オキシラニル基、オキセタニル基、水酸基、アミノ基、チオール基、イソシアネート基、カルボキシル基および無水カルボン酸基からなる群より選択される置換基を表し、Y22は水素原子、炭素数1~20の直鎖状、分岐鎖状、もしくは環状のアルキル基、または炭素数1~20の直鎖状、分岐鎖状、もしくは環状のアルキル基において1つまたは2つ以上のメチレン基が-O-、-S-、-NH-、-N(CH3)-、-C(=O)-、-OC(=O)-、または-C(=O)O-で置換された基を表し、n21およびn22はそれぞれ独立に、0~3の整数を表し、n21およびn22が2以上の場合の複数個あるZ21-X212およびZ22-X222は同一でも異なっていてもよい。
 R17、R18、およびR19は全て、*-X211-(Z21-X212n21-L21-P21であることが好ましい。R17、R18、およびR19は全て同一であることがより好ましい。
 X211、X212、X221およびX222としては、単結合、-OC(=O)-が好ましい。
 Z21およびZ22はそれぞれ独立に、5員環もしくは6員環の芳香族基、または5員環もしくは6員環の非芳香族基を表し、例えば、1,4-フェニレン基、1,3-フェニレン基、複素環基などが挙げられる。
 上記芳香族基および非芳香族基は置換基を有していてもよい。ここでの置換基としては後述する置換基群Yに示す置換基のほか、アルキル基、アルケニル基が含まれる。置換基は1つまたは2つであることが好ましく、1つであることがより好ましい。置換位置は特に限定されない。ここでの置換基としてはハロゲン原子またはメチル基が好ましい。ハロゲン原子としては塩素原子またはフッ素原子が好ましい。上記芳香族基および非芳香族基は無置換であることも好ましい。
 複素環としては、例えば、以下の複素環が挙げられる。
Figure JPOXMLDOC01-appb-C000023
 式中、*はX211に結合する部位を示し、**はX212に結合する部位を示し;A41およびA42はそれぞれ独立にメチンまたは窒素原子を表し;X4は、酸素原子、硫黄原子、メチレンまたはイミノを表す。
 A41およびA42は、少なくとも一方が窒素原子であることが好ましく、両方が窒素原子であることがより好ましい。また、X4は酸素原子であることが好ましい。
 L21はそれぞれ独立に、X212とP21を連結する2価の連結基もしくは単結合を表し、一般式(XI)におけるL11と同義である。L21としては、-O-、-OC(=O)-、-C(=O)O-、炭素数1~10(好ましくは炭素数1~8、より好ましくは炭素数1~6)のアルキレン基、またはこれらの組み合わせからなる基が好ましい。
 P21はそれぞれ独立に、官能基を表し、一般式(XI)におけるP11と同義であり、好ましい範囲も同様である。
 Y22はそれぞれ独立に、水素原子、炭素数1~20の直鎖状、分岐鎖状、もしくは環状のアルキル基、または炭素数1~20の直鎖状、分岐鎖状、もしくは環状のアルキル基において1つまたは2つ以上のメチレン基が-O-、-S-、-NH-、-N(CH3)-、-C(=O)-、-OC(=O)-、または-C(=O)O-で置換された基を表し、一般式(XI)におけるY12と同義であり、好ましい範囲も同様である。
 n21およびn22はそれぞれ独立に、0~3の整数を表し、1~3の整数が好ましく、2~3がより好ましい。
 一般式(XII)で表される化合物の詳細、および具体例については、特開2010-244038号公報の段落[0013]~[0077]記載を参照することができ、その内容は本明細書に組み込まれる。
 一般式(XI)または一般式(XII)で表される化合物としては、水素結合性官能基を有する化合物であることが、電子密度を減らすことでスタッキングを強くし、カラム状集合体を形成しやすくなるという観点から好ましい。水素結合性官能基としては、-OC(=O)NH-、-C(=O)NH-、-NHC(=O)-、-NHC(=O)O-、-NHC(=O)NH-、-NHC(=O)S-、またはSC(=O)NH-などが挙げられる。
 一般式(XI)で表される化合物、一般式(XII)で表される化合物として特に好ましい具体例としては以下の化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
 一般式(XI)で表される化合物は、特開平7-306317号公報、特開平7-281028号公報、特開2005-156822号公報、および特開2006-301614号公報に記載の方法に準じて合成することができる。
 一般式(XII)で表される化合物は、特開2010-244038号公報、特開2006-76992号公報、および特開2007-2220号公報に記載の方法に準じて合成することができる。
 円盤状化合物は樹脂組成物中に樹脂組成物中の総固形分質量(溶媒を除いた質量)に対して、10質量%~90質量%で含まれていることが好ましく、20質量%~70質量%で含まれていることがより好ましく、30質量%~60質量%で含まれていることがさらに好ましい。
[その他の硬化剤または主剤]
 樹脂組成物は円盤状化合物に該当しないその他の硬化剤または主剤を含んでいてもよい。
 硬化剤としては、水酸基、アミノ基、チオール基、イソシアネート基、カルボキシル基および無水カルボン酸基からなる群より選択される官能基を有する化合物であれば特に限定されないが、主剤として用いられる化合物に適合した硬化剤を用いることが好ましい。例えば、樹脂組成物が、オキシラニル基を有する円盤状化合物を主剤として含む場合、水酸基、アミノ基、または無水カルボン酸基を有するその他のモノマーである硬化剤を用いることが好ましい。
 また、硬化剤は上記官能基を2個以上含むことが好ましく、2個含むことがより好ましい。
 円盤状化合物ではない硬化剤の例としては、特許第4118691号の0028に記載のエポキシ樹脂用硬化剤、特開2008-13759号公報の0016~0018に記載の、アミン系硬化剤、フェノール系硬化剤または酸無水物系硬化剤、特開2013-227451号公報の0101~0150に記載のアミン系硬化剤、フェノール系硬化剤などが挙げられる。
 これらのうち、特に、アミン系硬化剤が好ましく、例えば、4,4'-ジアミノジフェニルメタン、4,4'-ジアミノジフェニルエーテル、4,4'-ジアミノジフェニルスルホン、4,4'-ジアミノ-3,3'-ジメトキシビフェニル、4,4'-ジアミノフェニルベンゾエート、1,5-ジアミノナフタレン、1,3-ジアミノナフタレン、1,4-ジアミノナフタレン、1,8-ジアミノナフタレン等を好ましい例として挙げることができる。
 主剤としては、(メタ)アクリル基、(メタ)アクリルアミド基、オキシラニル基、およびオキセタニル基からなる群より選択される官能基を有するモノマーであれば特に限定されないが、硬化剤として用いられる化合物に適合した主剤を用いることが好ましい。例えば、樹脂組成物が、官能基として水酸基、アミノ基、または無水カルボン酸基を有する円盤状化合物を硬化剤として含む場合、オキシラニル基を有する主剤を用いることが好ましい。
 また、主剤は上記官能基を2個以上含むことが好ましい。
 円盤状化合物ではない主剤の例としては、公知の各種エポキシ樹脂モノマーまたはアクリル樹脂モノマーが挙げられる。例えば、特許第4118691号の0028に記載のエポキシ樹脂モノマーおよびアクリル樹脂モノマー、特開2008-13759号公報の0006~0011に記載のエポキシ化合物、特開2013-227451号公報の0032~0100に記載のエポキシ樹脂混合物なども用いることができる。
 円盤状化合物ではない硬化剤は、樹脂組成物中に樹脂組成物中の総固形分質量(溶媒を除いた質量)に対して、90質量%~10質量%で含まれていることが好ましく、80質量%~30質量%で含まれていることがより好ましい。円盤状化合物ではない主剤は、樹脂組成物中に樹脂組成物中の総固形分質量(溶媒を除いた質量)に対して、50質量%~0質量%で含まれていることが好ましく、30質量%~0質量%で含まれていることがより好ましい。
[硬化促進剤]
 樹脂組成物は硬化促進剤を含んでいてもよい。硬化促進剤の例としては、トリフェニルホスフィン、2-エチル-4-メチルイミダゾール、三フッ化ホウ素アミン錯体、1-ベンジル-2-メチルイミダゾール等、および特開2012-67225号公報段落0052に記載のものが挙げられる。
[重合開始剤]
 特に、官能基として(メタ)アクリル基または(メタ)アクリルアミド基を有する円盤状化合物または(メタ)アクリル基または(メタ)アクリルアミド基を有するその他の主剤を含む場合において、樹脂組成物は、特開2010-125782の[0062]段落および特開2015-052710の[0054]段落に記載の重合開始剤を含むことも好ましい。
 硬化促進剤および重合開始剤は樹脂組成物中に樹脂組成物中の総固形分質量(溶媒を除いた質量)に対して、20質量%~0.1質量%で含まれていることが好ましく、10質量%~1質量%で含まれていることがより好ましい。
<無機物>
 円盤状化合物を含む組成物は無機物を含んでいてもよい。無機物がフィラーとして添加された組成物により、さらに熱伝導性の高い熱伝導材料の作製が可能である。組成物は、無機物を1種含んでいても2種以上含んでいてもよい。無機物は組成物中にそのまま含まれていてもよく、後述の表面修飾剤で表面修飾されている表面修飾無機物として含まれていてもよい。
 無機物としては、従来から熱伝導材料の無機フィラーに用いられているいずれの無機物を用いてもよい。無機物としては、無機酸化物、無機窒化物が好ましい。無機物は、無機酸化窒化物であってもよい。無機物の形状は特に限定されず、粒子状であってもよく、フィルム状もしくは板状であってもよい。粒子は米粒状、球形状、立方体状、紡錘形状、鱗片状、凝集状または不定形状であればよい。
 無機酸化物は、特に限定されないが、例えば、酸化ジルコニウム(ZrO2)、酸化チタン(TiO2)、酸化ケイ素(SiO2)、酸化アルミニウム(Al23)、酸化鉄(Fe23、FeO、Fe34)、酸化銅(CuO、Cu2O)、酸化亜鉛(ZnO)、酸化イットリウム(Y23)、酸化ニオブ(Nb25)、酸化モリブデン(MoO3)、酸化インジウム(In23、In2O)、酸化スズ(SnO2)、酸化タンタル(Ta25)、酸化タングステン(WO3、W25)、酸化鉛(PbO、PbO2)、酸化ビスマス(Bi23)、酸化セリウム(CeO2、Ce23)、酸化アンチモン(Sb23、Sb25)、酸化ゲルマニウム(GeO2、GeO)、酸化ランタン(La23)、酸化ルテニウム(RuO2)等が挙げられる。
 上記の無機酸化物は、単独で用いてもよく、複数を組み合わせて用いてもよい。
 無機酸化物は、酸化チタン、酸化アルミニウム、または酸化亜鉛であることが好ましい。
 無機酸化物は、非酸化物として用意された金属が、環境下などで酸化したことにより生じている酸化物であってもよい。
 無機窒化物は、特に限定されない。無機窒化物の例としては、窒化ホウ素(BN)、窒化炭素(C34)、窒化ケイ素(Si34)、窒化ガリウム(GaN)、窒化インジウム(InN)、窒化アルミニウム(AlN)、窒化クロム(Cr2N)、窒化銅(Cu3N)、窒化鉄(Fe4N)、窒化鉄(Fe3N)、窒化ランタン(LaN)、窒化リチウム(Li3N)、窒化マグネシウム(Mg32)、窒化モリブデン(Mo2N)、窒化ニオブ(NbN)、窒化タンタル(TaN)、窒化チタン(TiN)、窒化タングステン(W2N)、窒化タングステン(WN2)、窒化イットリウム(YN)、窒化ジルコニウム(ZrN)などが挙げられる。
 上記の無機窒化物は、単独で用いてもよく、複数を組み合わせて用いてもよい。
 無機窒化物はアルミニウム、ホウ素または珪素を含むことが好ましく、窒化アルミニウム、窒化ホウ素、または窒化珪素であることが好ましい。
 円盤状化合物を含む組成物が無機物を含む場合、無機物は円盤状化合物を含む組成物の固形分質量(溶媒を除いた質量)に対して、30質量%以上であることが好ましく、40質量%以上であることがより好ましく、50質量%以上であることがさらに好ましい。また、90質量%以下であることが好ましく、80質量%以下であることがより好ましく、70質量%以下であることがさらに好ましい。
<表面修飾剤>
 円盤状化合物を含む組成物は表面修飾剤を含んでいてもよい。
 本明細書において、「表面修飾」とは無機物の表面の少なくとも一部に有機物が吸着している状態を意味する。吸着の形態は特に限定されないが、結合している状態であればよい。すなわち、表面修飾は、有機物の一部が脱離して得られる有機基が無機物表面に結合している状態も含む。結合は、共有結合、配位結合、イオン結合、水素結合、ファンデルワールス結合、金属結合など、いずれの結合であってもよいが、共有結合であることが好ましい。表面修飾は、表面の少なくとも一部に単分子膜を形成するようになされていてもよい。単分子膜は、有機分子の化学吸着によって形成される単層膜であり、Self-Assembled Monolayer(SAM)として知られている。有機物は、いわゆる有機化合物であり、炭素原子を含む化合物であって、慣例上無機化合物に分類される一酸化炭素、二酸化炭素、炭酸塩等を除いたものを意味する。なお、本明細書において、表面修飾は、無機物の表面の一部のみであっても、全体であってもよい。
 本明細書において、「表面修飾無機物」は、表面修飾剤により表面修飾されている無機物、すなわち無機物の表面に有機物が吸着している物質を意味する。
 表面修飾剤としては、長鎖アルキル脂肪酸などのカルボン酸、有機ホスホン酸、有機リン酸エステル、有機シラン分子(シランカップリング剤)など従来公知の表面修飾剤を用いることができる。その他、例えば、特開2009-502529号公報、特開2001-192500号公報、特許4694929号に記載の表面修飾剤を利用してもよい。
 また、以下に説明するボロン酸化合物またはアルデヒド化合物を用いることも好ましい。
(ボロン酸化合物)
 ボロン酸化合物は、ホウ酸の水酸基の1つ以上が炭化水素基などの有機基で置換された構造を有する。ボロン酸化合物は、通常ホウ素部分で無機物に吸着することにより、無機物を表面修飾する。ボロン酸化合物を表面修飾剤とする場合の無機物としては、無機窒化物が好ましく、窒化アルミニウム、窒化ホウ素、または窒化珪素がより好ましい。
 ボロン酸化合物は、例えば、以下一般式Iで表される化合物であればよい。
Figure JPOXMLDOC01-appb-C000033
 一般式I中、Zは、アミノ基、チオール基、水酸基、イソシアネート基、カルボキシル基、無水カルボン酸基、重合性基、水素原子、ハロゲン原子、第4級アンモニウム基もしくはその塩、第4級ピリジニウム基もしくはその塩を表す。第4級ピリジニウム基は置換基を有していてもよい。
 Xは、2価の連結基を表す。Xは、置換基を有していてもよい2価の脂肪族炭化水素基、置換基を有していてもよいアリーレン基、および置換基を有していてもよいヘテロアリーレン基からなる群より選択される連結基Aを少なくとも1つ含む。Xは、-O-、-CO-、-NH-、-CO-NH-、-COO-、および-O-COO-からなる群より選択される連結基Bを1つ以上含んでいてもよい。すなわち、Xは連結基A、2つ以上の連結基Aの組み合わせで構成される連結基、または1つ以上の連結基Aおよび1つ以上の連結基Bの組み合わせで構成される連結基である。
 R1およびR2はそれぞれ独立に、水素原子、置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよいアリール基、または置換基を有していてもよいヘテロアリール基を表す。
 また、R1とR2とは、アルキレン連結基、アリーレン連結基、またはこれらの組み合わせからなる連結基を介して連結していてもよい。
 上記の置換基を有していてもよい2価の脂肪族炭化水素基には、置換基を有していてもよいアルキレン基および置換基を有していてもよいアルケニレン基が含まれる。
 R1およびR2がそれぞれ表す置換基を有していてもよい脂肪族炭化水素基には、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基および置換基を有していてもよいアルキニル基が含まれる。
 本明細書において、「アルキル基」というとき、アルキル基は直鎖状、分岐鎖状または環状のいずれでもよい。アルキル基の炭素数は1~30が好ましく、2~10がより好ましい。アルキル基の具体例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、ヘキサデシル基、オクタデシル基、エイコシル基、イソプロピル基、イソブチル基、sec-ブチル基、tert-ブチル基、イソペンチル基、ネオペンチル基、1-メチルブチル基、イソヘキシル基、2-メチルヘキシル基、シクロペンチル基、シクロヘキシル基、1-アダマンチル基、2-ノルボルニル基等が挙げられる。アルキル基に関する上記説明はアルキル基を含むアルコキシ基等の他の基においても同様である。また、アルキレン基はアルキル基の任意の水素原子を除いて得られる基であり、アルキレン基の例としては上記のアルキル基の例のそれぞれから任意の水素原子を除いて得られる基を挙げることができる。
 本明細書において、「アルケニル基」というとき、アルケニル基は直鎖状、分岐鎖または環状のいずれでもよい。アルケニル基の炭素数は2~30が好ましく、2~10がより好ましい。アルケニル基の具体例としては、ビニル基、1-プロペニル基、1-ブテニル基、1-メチル-1-プロペニル基、1-シクロペンテニル基、1-シクロヘキセニル基等が挙げられる。アルケニル基に関する上記説明はアルケニル基を含む他の基においても同様である。また、アルケニレン基はアルケニル基の任意の水素原子を除いて得られる基であり、アルケニレン基の例としては上記のアルケニル基の例のそれぞれから任意の水素原子を除いて得られる基を挙げることができる。
 本明細書において言及されるアルキニル基の炭素数は2~30が好ましく、2~10がより好ましい。アルキニル基の具体例としては、エチニル基、1-プロピニル基、1-ブチニル基、1-オクチニル基等が挙げられる。
 本明細書において、「アリール基」というとき、アリール基は単環の基であっても、2以上の環を含む縮合環の基であってもよい。アリール基の炭素数は、5~18が好ましく、5~10がより好ましい。アリール基の具体例としては、フェニル基、ナフチル基、アントリル基、フェナントリル基、インデニル基、アセナブテニル基、フルオレニル基、ピレニル基等が挙げられる。また、アリーレン基はアリール基の任意の水素原子を除いて得られる基であり、アリーレン基の例としては上記のアリール基の例のそれぞれから任意の水素原子を除いて得られる基を挙げることができる。
 本明細書において言及されるヘテロアリール基の例には、窒素原子、酸素原子および硫黄原子からなる群から選ばれるヘテロ原子を1個以上含む複素芳香環上の水素原子を1個除き、ヘテロアリール基としたものが挙げられる。窒素原子、酸素原子および硫黄原子からなる群から選ばれるヘテロ原子を1個以上含む複素芳香環の具体例としては、ピロール、フラン、チオフェン、ピラゾール、イミダゾール、トリアゾール、オキサゾール、イソオキサゾール、オキサジアゾール、チアゾール、チアジアゾール、インドール、カルバゾール、ベンゾフラン、ジベンゾフラン、チアナフテン、ジベンゾチオフェン、インダゾールベンズイミダゾール、アントラニル、ベンズイソオキサゾール、ベンズオキサゾール、ベンゾチアゾール、プリン、ピリジン、ピリダジン、ピリミジン、ピラジン、トリアジン、キノリン、アクリジン、イソキノリン、フタラジン、キナゾリン、キノキザリン、ナフチリジン、フェナントロリン、プテリジン等が挙げられる。また、ヘテロアリーレン基はヘテロアリール基の任意の水素原子を除いて得られる基であり、ヘテロアリーレン基の例としては上記のヘテロアリール基の例のそれぞれから任意の水素原子を除いて得られる基を挙げることができる。
 本明細書において、「置換基を有していてもよい」というときの置換基の種類、置換基の位置、置換基の数は特に限定されない。置換基の数は例えば、1つ、2つ、3つ、またはそれ以上であればよい。置換基の例としては水素を除く1価の非金属原子団を挙げることができ、例えば、以下の置換基群Yから選択することができる。
置換基群Y:
ハロゲン原子(-F、-Br、-Cl、-I)、ヒドロキシル基、アルコキシ基、アリーロキシ基、メルカプト基、アルキルチオ基、アリールチオ基、アルキルジチオ基、アリールジチオ基、アミノ基、N-アルキルアミノ基、N,N-ジアルキルアミノ基、N-アリールアミノ基、N,N-ジアリールアミノ基、N-アルキル-N-アリールアミノ基、アシルオキシ基、カルバモイルオキシ基、N-アルキルカルバモイルオキシ基、N-アリールカルバモイルオキシ基、N,N-ジアルキルカルバモイルオキシ基、N,N-ジアリールカルバモイルオキシ基、N-アルキル-N-アリールカルバモイルオキシ基、アルキルスルホキシ基、アリールスルホキシ基、アシルチオ基、アシルアミノ基、N-アルキルアシルアミノ基、N-アリールアシルアミノ基、ウレイド基、N'-アルキルウレイド基、N',N'-ジアルキルウレイド基、N'-アリールウレイド基、N',N'-ジアリールウレイド基、N'-アルキル-N'-アリールウレイド基、N-アルキルウレイド基、N-アリールウレイド基、N'-アルキル-N-アルキルウレイド基、N'-アルキル-N-アリールウレイド基、N',N'-ジアルキル-N-アルキルウレイド基、N',N'-ジアルキル-N-アリールウレイド基、N'-アリール-N-アルキルウレイド基、N'-アリール-N-アリールウレイド基、N',N'-ジアリール-N-アルキルウレイド基、N',N'-ジアリール-N-アリールウレイド基、N'-アルキル-N'-アリール-N-アルキルウレイド基、N'-アルキル-N'-アリール-N-アリールウレイド基、アルコキシカルボニルアミノ基、アリーロキシカルボニルアミノ基、N-アルキル-N-アルコキシカルボニルアミノ基、N-アルキル-N-アリーロキシカルボニルアミノ基、N-アリール-N-アルコキシカルボニルアミノ基、N-アリール-N-アリーロキシカルボニルアミノ基、ホルミル基、アシル基、カルボキシル基およびその共役塩基基、アルコキシカルボニル基、アリーロキシカルボニル基、カルバモイル基、N-アルキルカルバモイル基、N,N-ジアルキルカルバモイル基、N-アリールカルバモイル基、N,N-ジアリールカルバモイル基、N-アルキル-N-アリールカルバモイル基、アルキルスルフィニル基、アリールスルフィニル基、アルキルスルホニル基、アリールスルホニル基、スルホ基(-SO3H)およびその共役塩基基、アルコキシスルホニル基、アリーロキシスルホニル基、スルフィナモイル基、N-アルキルスルフィナモイル基、N,N-ジアルキルスルフィナモイル基、N-アリールスルフィナモイル基、N,N-ジアリールスルフィナモイル基、N-アルキル-N-アリールスルフィナモイル基、スルファモイル基、N-アルキルスルファモイル基、N,N-ジアルキルスルファモイル基、N-アリールスルファモイル基、N,N-ジアリールスルファモイル基、N-アルキル-N-アリールスルファモイル基、N-アシルスルファモイル基およびその共役塩基基、N-アルキルスルホニルスルファモイル基(-SO2NHSO2(alkyl))およびその共役塩基基、N-アリールスルホニルスルファモイル基(-SO2NHSO2(aryl))およびその共役塩基基、N-アルキルスルホニルカルバモイル基(-CONHSO2(alkyl))およびその共役塩基基、N-アリールスルホニルカルバモイル基(-CONHSO2(aryl))およびその共役塩基基、アルコキシシリル基(-Si(Oalkyl)3)、アリーロキシシリル基(-Si(Oaryl)3)、ヒドロキシシリル基(-Si(OH)3)およびその共役塩基基、ホスホノ基(-PO32)およびその共役塩基基、ジアルキルホスホノ基(-PO3(alkyl)2)、ジアリールホスホノ基(-PO3(aryl)2)、アルキルアリールホスホノ基(-PO3(alkyl)(aryl))、モノアルキルホスホノ基(-PO3H(alkyl))およびその共役塩基基、モノアリールホスホノ基(-PO3H(aryl))およびその共役塩基基、ホスホノオキシ基(-OPO32)およびその共役塩基基、ジアルキルホスホノオキシ基(-OPO3(alkyl)2)、ジアリールホスホノオキシ基(-OPO3(aryl)2)、アルキルアリールホスホノオキシ基(-OPO3(alkyl)(aryl))、モノアルキルホスホノオキシ基(-OPO3H(alkyl))およびその共役塩基基、モノアリールホスホノオキシ基(-OPO3H(aryl))およびその共役塩基基、シアノ基、ニトロ基、アリール基、アルケニル基およびアルキニル基。
 また、これらの置換基は、可能であるならば置換基同士、または置換している基と結合して環を形成してもよい。
 重合性基の例としては、(メタ)アクリレート基、スチリル基、ビニルケトン基、ブタジエン基、ビニルエーテル基、オキシラニル基、アジリジニル基またはオキセタン基等が挙げられる。これらのうち、(メタ)アクリレート基、スチリル基、オキシラニル基もしくはオキセタン基がより好ましく、(メタ)アクリレート基もしくはオキシラニル基がさらに好ましい。
 一般式I中のR1およびR2としては水素原子が好ましい。
 一般式I中のXとしては、少なくとも1つの置換基を有していてもよいフェニレン基を含む連結基が好ましい。2つの置換基を有していてもよいフェニレン基が-COO-で連結されている部分構造を有する連結基がより好ましい。また、Xとしては、無置換のフェニレン基を含む連結基が好ましく、この無置換のフェニレン基がボロン酸のホウ素原子に直接結合していることが特に好ましい。
 一般式I中のZとしては、アミノ基、チオール基、水酸基、(メタ)アクリレート基、オキシラニル基または水素原子が好ましい。
 ボロン酸化合物は、鎖状の構造を有していることも好ましい。単分子膜を形成しやすいからである。
 以下に一般式Iで示されるボロン酸化合物の好ましい例を示すが、これらの例に限定されるものではない。
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
 また下記のような一般式IIで表されるボロン酸化合物を使用してもよい。
Figure JPOXMLDOC01-appb-C000041
 一般式II中、Z、R1およびR2の定義は一般式Iとそれぞれ同様であり、好ましい範囲もそれぞれ同様である。
 X2は、上記Xで表される2価の連結基からさらに任意のn-1個の水素原子を除いて得られるn+1価の連結基である。このときのXの好ましい範囲は上述したものと同様である。さらに、X2は、連結基Aまたは2つ以上の連結基Aの組み合わせで構成される2価の連結基からさらに水素原子を除いて得られるn+1価の連結基であることが好ましく、このときの連結基Aは、置換基を有していてもよいアリーレン基または置換基を有していてもよいヘテロアリーレン基であることが好ましく、フェニル基またはピロール、フラン、チオフェンから水素原子を除いて形成される2価の基であることがより好ましい。
 nは2以上の整数である。nは2~10であることが好ましく、もしくは3であることがより好ましい。
Figure JPOXMLDOC01-appb-C000042
 無機物と接触させることにより、または溶媒中で、容易に分解して上記ボロン酸化合物を与える化合物も、本明細書において、ボロン酸化合物に含まれるものとする。
 このような化合物としては例えば上記ボロン酸化合物においてホウ素に結合する1つまたは2つの水酸基の水素が水素原子以外の他の置換基に置換した化合物が挙げられる。また、上記ボロン酸化合物のボロン酸(-B(OH)2)部位の代わりに、無機物との接触時に平衡または吸着により(-B(OH)2)と同様の効果を発現する構造を有する部位を有する化合物が挙げられる。無機物と接触させることにより容易に分解して上記ボロン酸化合物を与える化合物の例として具体的には、以下のいずれかの式で表される部分構造を含む化合物が挙げられる。なお、以下の式で表される部分構造は、いずれも置換可能な部位において置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000043
 ボロン酸化合物としては、無機物と接触させることにより、容易に分解してまたは溶媒中で、上記の一般式Iまたは一般式IIで示されるボロン酸化合物を与えるボロン酸化合物も好ましい。このような化合物の例としては以下が挙げられる。
Figure JPOXMLDOC01-appb-C000044
 ボロン酸化合物としては、市販のボロン酸化合物をそのまま用いてもよく、置換基を有するボロン酸化合物を原料として、エステル化、アミド化、アルキル化など一般的な合成反応を施すことによって合成してもよい。例えば、ハロゲン化物(例えばアリールブロマイド等)からn-ブチルリチウムとトリアルコキシボラン(例えばトリメトキシボラン等)によって合成したり、金属マグネシウムを用いたWittig反応を施すことで合成することができる。
(アルデヒド化合物)
 アルデヒド化合物は、アルデヒド基部分で無機物表面と反応することにより、無機物を表面修飾していればよい。アルデヒド化合物は、例えば、以下一般式VIで表される化合物であればよい。
 ZZ-XX-CHO           一般式VI
 式中、ZZはアミノ基、チオール基、水酸基、イソシアネート基、カルボキシル基、無水カルボン酸基、オキセタニル基、オキシラニル基、(メタ)アクリレート基、および水素原子からなる群より選択される基を示す。
 XXは2価の連結基を示す。XXは、置換基を有していてもよい2価の脂肪族炭化水素基、置換基を有していてもよいアリーレン基、および置換基を有していてもよいヘテロアリーレン基からなる群より選択される連結基Aを少なくとも1つ含む。XXは、-O-、-CO-、-NH-、-CO-NH-、-COO-、および-O-COO-からなる群より選択される連結基Bを1つ以上含んでいてもよい。すなわち、XXは連結基A、2つ以上の連結基Aの組み合わせで構成される連結基、または1つ以上の連結基Aおよび1つ以上の連結基Bの組み合わせで構成される連結基である。
 上記の置換基を有していてもよい2価の脂肪族炭化水素基には、置換基を有していてもよいアルキレン基および置換基を有していてもよいアルケニレン基が含まれる。
 一般式VI中のXXとしては、少なくとも1つの置換基を有していてもよいフェニレン基を含む連結基が好ましい。2つの置換基を有していてもよいフェニレン基が-COO-で連結されている部分構造を有する連結基がより好ましい。また、XXとしては、無置換のフェニレン基を含む連結基が好ましく、この無置換のフェニレン基がアルデヒド基由来の炭素原子に直接結合していることが特に好ましい。
 一般式VI中のZZとしては、アミノ基、チオール基、水酸基、イソシアネート基、カルボキシル基、無水カルボン酸基がより好ましく、アミノ基、チオール基、水酸基、がさらに好ましい。また、特に樹脂組成物が硬化剤として、アミノ基、チオール基、水酸基、イソシアネート基、カルボキシル基、および無水カルボン酸基からなる群より選択される基を有する硬化剤を含む場合においては、一般式VI中のZZは、オキシラニル基であることも好ましい。
 アルデヒド化合物は、鎖状の構造を有していることも好ましい。単分子膜を形成しやすいからである。
 以下に一般式VIで示されるアルデヒド化合物の好ましい例を示すが、これらの例に限定されるものではない。
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
 無機物と接触させることによりまたは溶媒中で、容易に分解して一般式VIで示されるアルデヒド化合物を与えるアルデヒド化合物も好ましい。このような化合物の例としては以下が挙げられる。
Figure JPOXMLDOC01-appb-C000047
 アルデヒド化合物としては、市販のアルデヒド化合物をそのまま用いてもよく、合成してもよい。
 芳香族アルデヒドは対応する化合物のVilsmeier(ヴィルスマイヤー)反応により合成することができる。また、脂肪族アルデヒドは対応する化合物の酸化反応によって合成することができる。
<表面修飾無機物>
 上述のように、円盤状化合物を含む組成物は無機物を表面修飾無機物として含んでいてもよい。
 表面修飾無機物において、表面修飾剤は、無機窒化物または無機酸化物である無機物を表面修飾している。表面修飾剤は、無機物と化学反応し、表面修飾を達成していることが好ましい。
 表面修飾無機物の形状は、特に限定されず、粒子状であってもよく、フィルム状もしくは板状であってもよい。粒子状の表面修飾無機物は分散等の処理を用いてさらに微粒子とされていてもよい。また、表面修飾無機物はナノシート、ナノチューブ、ナノロッド等の形状であってもよい。
 表面修飾無機物は無機物をカルボン酸などの酸との酸塩基反応により化学結合を形成させることによって、またはシランカップリング反応などを利用した表面修飾剤との化学結合によって製造することができる。上記無機粒子への表面修飾については「シランカップリング剤の効果と使用法(サイエンス&テクノロジー、中村吉伸著)」を参照することができる。
 例えば、表面修飾剤がボロン酸化合物であるとき、典型的には、ボロン酸化合物は無機物表面の-NH2基またはOH基と反応し、-NH-B-で表される結合またはO-B-で表される結合を形成していればよい。このような結合を介して、例えば、ボロン酸化合物として、一般式Iで表される化合物を用いた場合、Z-X-で表される有機鎖が無機物表面に存在することができる。有機鎖は、好ましくは整列して、単分子膜を形成していればよい。
 表面修飾剤としてボロン酸化合物またはアルデヒド化合物を用いる場合の表面修飾無機物は、無機物をボロン酸化合物またはアルデヒド化合物と接触させることにより容易に製造することができる。無機物とボロン酸化合物またはアルデヒド化合物との接触は、例えば、無機窒化物または無機酸化物およびボロン酸化合物またはアルデヒド化合物を含む溶液を攪拌することにより行うことができる。特に、無機窒化物または無機酸化物が粒子状である場合、攪拌で上記接触が行われることが好ましい。
 上記溶液の溶媒は、特に限定されないが、有機溶媒であることが好ましい。有機溶媒の例としては、酢酸エチル、メチルエチルケトン、ジクロロメタン、テトラヒドロフラン(THF)などを挙げることができる。
 上記溶液は、円盤状化合物を含む組成物におけるその他の成分を含むものであってもよい。
 無機物と表面修飾剤との混合比は、無機物の構造、表面積、表面修飾剤の分子のアスペクト比などの構造を考慮して決定すればよい。
 攪拌条件は特に限定されない。例えば、室温下であってもよく、攪拌回転数50rpm程度の攪拌を1~10秒程度行ってもよい。
<溶媒>
 円盤状化合物を含む組成物は溶液として調製されていてもよい。
 上記溶液の溶媒は、特に限定されないが、有機溶媒であることが好ましい。有機溶媒の例としては、酢酸エチル、メチルエチルケトン(MEK)、ジクロロメタン、テトラヒドロフラン(THF)などを挙げることができる。
<硬化物>
 本発明の第1の態様において、熱伝導材料は、円盤状化合物を含む樹脂組成物の硬化物を含む。この態様において、円盤状化合物は官能基を有していることが好ましい。硬化物は上記樹脂組成物の硬化反応により作製することができる。硬化は熱硬化反応であっても光硬化反応であってもよく、樹脂組成物中のモノマーの官能基に応じて選択すればよい。一般的には硬化は熱硬化反応であることが好ましい。硬化の際の加熱温度は特に限定さない。例えば、50℃~200℃、好ましくは60℃~150℃の範囲で適宜選択すればよい。
 硬化は、フィルム状またはシート状とした樹脂組成物について行うことが好ましい。具体的には、例えば、樹脂組成物を塗布成膜し硬化反応を行えばよい。その際、プレス加工を行ってもよい。
 また、硬化は、半硬化であってもよく、本発明の熱伝導材料は、使用されるデバイス等に接触するように配置した後にさらに加熱等により硬化を進行させ、本硬化するものであってもよい。上記本硬化のときの加熱等によって、デバイスと本発明の熱伝導材料とが接着することも好ましい。
 硬化反応を含む熱伝導材料の作製については、「高熱伝導性コンポジット材料」(シーエムシー出版、竹澤由高著)を参照することができる。
<未硬化物>
 本発明の第2の態様において、熱伝導材料は、円盤状化合物を含む組成物であって未硬化の組成物を含む。円盤状化合物は、重合物ではない場合であっても、比較的高い熱伝導率を示す。未硬化の組成物は使用されるデバイス等に接触するように配置することがさらに容易である。接着剤の用途に使用できる。
この態様において、円盤状化合物は官能基を有していなくてもよく、例えば、D1~D16のいずれかの一般式で示される化合物において、いずれのQも、水素原子、ハロゲン原子、またはシアノ基である化合物を用いることができる。
<支持体等>
 熱伝導材料は、円盤状化合物を含む組成物から形成される部材の他に、他の部材を含んでいてもよい。
 例えば、シート状の熱伝導材料は、円盤状化合物を含む組成物から形成された層の他にシート状の支持体を含んでいてもよい。
 シート状の支持体としては、プラスチックフィルム、金属フィルムまたはガラス板が挙げられる。プラスチックフィルムの材料の例としては、ポリエチレンテレフタレート(PET)などのポリエステル、ポリカーボネート、アクリル樹脂、エポキシ樹脂、ポリウレタン、ポリアミド、ポリオレフィン、セルロース誘導体、シリコーンなどが挙げられる。金属フィルムの例としては銅フィルムが挙げられる。
<熱伝導材料の用途>
 熱伝導材料は放熱シートなどの放熱材として用いることができ、各種デバイスの放熱用途に用いることができる。
 本発明の熱伝導材料(特に、第1の態様の熱伝導材料)は十分な熱伝導性を有するとともに、高い耐熱性を有しているため、パーソナルコンピュータ、一般家電、自動車などの様々な電気装置に用いられているパワー半導体デバイスの放熱用途に適している。
 さらに、本発明の熱伝導材料は、円盤状化合物を含む組成物を用いることにより、未硬化物または半硬化物の状態であっても十分な熱伝導性を有するため、各種装置の部材の隙間などの、光硬化のための光を到達させることが困難な部位に配置する放熱材としても使用できる。また、熱伝導性を有する接着剤としての使用も可能である。
 以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、試薬、物質量とその割合、操作等は本発明の趣旨から逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下の実施例に限定されるものではない。
<実施例1~28および比較例1、2の熱伝導材料の作製>
 それぞれ、表1の材料を混合してスラリーを作製し、2.0cm×2.5cmのPETフィルム(コスモシャイン、東洋紡社製、膜厚50μm)上に1mLをスピンコーターを用いて塗布して均一な面状を有する膜を作製した。上記膜をホットプレート上に配置し、60℃30秒、80℃30秒、100℃30秒と段階的に溶剤を蒸発させた。その後、さらに160℃で30秒で加熱した後に室温まで冷却して、PETフィルムから剥離し、約400μmの自立膜の形態の熱伝導材料を得た。
 表1中の材料は以下のように用意した。
[主剤]
(円盤状液晶化合物1)
 有機合成化学協会誌2002年12月号1190頁に記載の方法に従い、化合物THABBを合成し、円盤状液晶化合物1とした。
Figure JPOXMLDOC01-appb-C000048
(円盤状液晶化合物2)
 特許2696480号の実施例に記載の方法に従い、化合物TP-85を合成し、円盤状液晶化合物2とした。
Figure JPOXMLDOC01-appb-C000049
(円盤状液晶化合物3)
 特許5385937号に記載の実施例13に記載の方法に従い、化合物D-227)を合成し円盤状液晶化合物3とした。
Figure JPOXMLDOC01-appb-C000050
(円盤状液晶化合物4)
 特許5385937号に記載の実施例に記載の方法に従い下記トリヒドロキシ体を合成した。これを特許2696480の実施例に記載の方法に倣い、アルキル化の後にmCPBAで酸化して下記円盤状液晶化合物4を得た。
Figure JPOXMLDOC01-appb-C000051
(円盤状液晶化合物5)
 特許5620129号に記載の実施例14の方法に従い、例示化合物13を合成し、円盤状液晶化合物5とした。
Figure JPOXMLDOC01-appb-C000052
(円盤状液晶化合物6)
 特許5620129号に記載の実施例13に記載の方法にしたがって下記中間体を合成した後に、エピクロロヒドリンと反応させて円盤状液晶化合物6を合成した。
Figure JPOXMLDOC01-appb-C000053
(棒状液晶化合物)
 棒状液晶1:Makromol.Chem. 190, 59頁(1991年)に記載されている下記棒状液晶化合物を合成した。
Figure JPOXMLDOC01-appb-C000054
(棒状化合物1)
 4,4'-イソプロピリデンジフェノール ジメタクリレート(和光純薬工業社製)を用いた。
[硬化剤および重合開始剤]
硬化剤1:1,5-ナフタレンジアミン(東京化成工業社製)
硬化剤2:4,4'-ジアミノジフェニルメタン(東京化成工業社製)
硬化剤3:4,4'-ジアミノジフェニルスルホン(東京化成工業社製)
熱重合開始剤(開始剤1):2、2'-アゾビス(N-ブチル-2-メチルプロピオンアミド(VAm-110、和光純薬工業社製)
[無機物]
窒化ホウ素1(以下、BN1):BORONID Cooling Filer AGGLOMERATE 50(スリーエム社製)
窒化ホウ素2(以下、BN2):BORONID Cooling Filer AGGLOMERATE 100(スリーエム社製)
窒化ホウ素3(以下、BN3):DENKA BORON NITRIDE FP70(デンカ社製)
アルミナ:AW70(マイクロン社製)
[表面修飾剤]
シランカップリング剤:3-アミノプロピルトリメトキシシランKBM-903(信越化学社製)
ボロン酸1:p-ヒドロキシフェニルボロン酸(和光純薬社製)
ボロン酸2:m-アミノフェニルボロン酸(和光純薬社製)
アルデヒド1:4-ヒドロキシベンズアルデヒド(アルドリッチ製)
<実施例1~28および比較例1、2の熱伝導材料の評価>
[線膨張率の測定]
 セイコー電子工業(株)製熱応力歪測定装置TMA/SS120Uを用いて30℃から270℃の範囲で測定した。昇温速度は5℃/分とした。40℃と60℃の2点で結ばれた直線の傾きから線膨張率を算出した。結果を表1に示す。
[ガラス転移温度の測定]
 セイコー電子工業(株)製熱応力歪測定装置TMA/SS120Uを用いて30℃から270℃の範囲で測定した。昇温速度は5℃/分とした。線膨張率の変化した温度をガラス転移温度とした。なお、Tgが室温以下の場合、<25とした。
 結果を表1に示す。
[熱伝導率の測定]
(1)アイフェイズ社製の「アイフェイズ・モバイル 1u」を用いて、厚み方向の熱拡散率を測定した。
(2)メトラー・トレド社製の天秤「XS204」「固体比重測定キット」使用)を用いて比重を測定した。
(3)セイコーインスツル社製の「DSC320/6200」を用い、10℃/分の昇温条件の下、25℃における比熱をDSC7のソフトウエアを用いて比熱を求めた。
(4)得られた熱拡散率に比重および比熱を乗じることで熱伝導率を算出した。
結果を表1に示す。
Figure JPOXMLDOC01-appb-T000055
 表1に示した結果より、円盤状化合物を含む樹脂組成物の硬化物を含む例で、棒状化合物を含む樹脂組成物の硬化物を含む例と比較して、高い熱伝導度とともに、高い耐熱性が得られていることがわかる。
<実施例31~34および比較例31、32(無機物を使用しない例)>
 上記の円盤状液晶化合物1、円盤状液晶化合物5、棒状液晶化合物1、棒状化合物1、重合開始剤1および硬化剤2,ならびに、以下で示す円盤状化合物7および円盤状化合物8を用いて、無機物を使用しない熱伝導材料として実施例31~34および比較例31、32の熱伝導材料を以下に示すように作製した。得られた熱伝導材料中の各硬化膜の熱伝導率を上記実施例1の熱伝導材料の熱伝導率と同様に測定した。結果を表2に示す。
[実施例31]
 円盤状液晶化合物1:10.0g、三官能モノマー(大阪有機化学社製、ビスコート#360, TMPTEOA):0.50g、および光重合開始剤1:0.1gをMEK(メチルエチルケトン)10gに溶解して塗布液を調製した。得られた塗布液を600μ厚になるようにジメチルジクロロシロキサンで疎水化処理した1mm厚ガラス基板に塗布した。室温で乾燥後の塗膜に、90℃で1000mJで光照射した。室温まで冷却して、ガラス基板から剥離し硬化膜Aを得た。
[実施例32]
 円盤状液晶化合物5:10.0g、および光重合開始剤1:0.1gをMEK10gに溶解して塗布液を調製した。得られた塗布液を600μ厚になるようにジメチルジクロロシロキサンで疎水化処理した1mm厚ガラス基板に塗布した。室温で乾燥後の塗膜に、90℃で1000mJで光照射した。室温まで冷却して、ガラス基板から剥離し硬化膜Bを得た。
[実施例33]
(円盤状化合物7の作製)
Figure JPOXMLDOC01-appb-C000056
 1Lの三口フラスコに2,3,6,7,10,11-ヘキサヒドロキシトリフェニレン(TP-B)30g、アリルブロミド100.7g、炭酸カリウム84.4g、ヨウ化ナトリウム1.39gおよびN,N-ジメチルアセトアミド200mLを入れ、90℃で5時間撹拌した。冷却後、反応混合物に蒸留水300mLを加え、酢酸エチル500mLで抽出し、蒸留水300mLで2回洗浄後、無水硫酸マグネシウムで乾燥した。溶媒を減圧濃縮後、酢酸エチル50mL/メタノール200mLの混合溶媒に加え加熱溶解した。冷却後、生じた結晶を減圧ろ過した。50℃で減圧乾燥後、円盤状化合物7中間体を41.2g得た(82%)。
 1Lの三口フラスコにリンタングステン酸20.9g、ヘキサドデシルピリジニウム塩化物3.7gにクロロホルム200mLを注ぎ、次いで30%過酸化水素水55.775.0gを注いだ。10分撹拌後、円盤状化合物7中間体10gを加え60℃で4時間撹拌した。冷却後、反応混合物を飽和亜硫酸ナトリウム水溶液および飽和食塩水で洗浄した。無水硫酸マグネシウムで乾燥後、減圧濃縮した。シリカゲルクロマトグラフィーを用いて精製し、円盤状化合物7(3.6g、収率30%)を得た。
(熱伝導材料の作製)
 円盤状化合物7:10gおよび硬化剤2(4,4'-ジアミノジフェニルメタン):5gをMEK10gに溶解した塗布液を600μ厚になるようにPETフィルム上に塗布、室温で乾燥させた後に160℃で10分の条件で硬化させた。室温まで冷却して、PETフィルムから剥離し硬化膜Cを得た。
[実施例34]
(円盤状化合物8の作製)
Figure JPOXMLDOC01-appb-C000057
 1Lの三口フラスコに2,3,6,7,10,11-ヘキサヒドロキシトリフェニレン(TP-B)30g、5-ブロモ-1-ペンテン124.1g、炭酸カリウム84.4g、ヨウ化ナトリウム1.39gおよびN,N-ジメチルアセトアミド300mLを入れ、90℃で5時間撹拌した。冷却後、反応混合物に蒸留水300mLを加え、酢酸エチル500mLで抽出し、蒸留水300mLで2回洗浄後、無水硫酸マグネシウムで乾燥した。溶媒を減圧濃縮後、酢酸エチル120mL/メタノール400mLの混合溶媒に加え加熱溶解した。冷却後、生じた結晶を減圧ろ過した。50℃で減圧乾燥後、円盤状化合物8中間体を57.5g得た(85%)。
 1Lの三口フラスコにリンタングステン酸55.7g、ヘキサドデシルピリジニウム塩化物2.8gにクロロホルム200mLを注ぎ、次いで30%過酸化水素水55.7gを注いだ。10分撹拌後、円盤状化合物8中間体10gを加え60℃に7時間撹拌した。冷却後、飽和亜硫酸ナトリウム水溶液および飽和食塩水で洗浄した。無水硫酸マグネシウムで乾燥後、減圧濃縮した。シリカゲルクロマトグラフィーを用いて精製し、円盤状化合物8(3.6g、収率32%)を得た。
(熱伝導材料の作製)
 円盤状化合物8:10g、硬化剤2(4,4'-ジアミノジフェニルメタン):5g、MEK10gに溶解した塗布液を600μ厚になるようにPETフィルム上に塗布、室温で乾燥させた後に160℃で10分の条件で硬化させた。室温まで冷却して、PETフィルムから剥離し硬化膜Dを得た。
[比較例31]
 棒状液晶化合物1:10.0g、および光重合開始剤1:0.1gをMEK10gに溶解した塗布液を600μ厚になるようにジメチルジクロロシロキサンで疎水化処理した1mm厚ガラス基板に塗布した。室温で乾燥後の塗膜に、90℃で1000mJで光照射した。室温まで冷却して、ガラス基板を剥離し、硬化膜Fを得た。
[比較例32]
 棒状化合物1:10.0g、および光重合開始剤(Irg-907、BASF社製):0.1gをMEK10gに溶解した塗布液を600μ厚になるようにジメチルジクロロシロキサンで疎水化処理した1mm厚ガラス基板に塗布した。室温で乾燥後の塗膜に、90℃で1000mJで光照射した。室温まで冷却して、ガラス基板を剥離し、硬化膜Gを得た。
Figure JPOXMLDOC01-appb-T000058
 表2から円盤状化合物は棒状化合物と比較して高い熱伝導率を示すことがわかる。また、無機物を含まない樹脂組成物を用いて形成されても、高い熱伝導率を示すことがわかる。
<実施例41~43および比較例41、42(未硬化物(無機物を使用しない)の例)>
 実施例31,32,および比較例31、32の硬化前の塗膜(硬化前塗膜A、B、F、G)、ならびに官能基(重合性基)のない円盤状液晶化合物9を用いて以下のように作製した塗膜Eの熱伝導率を上記実施例1の熱伝導材料の熱伝導率と同様に測定した。結果を表3に示す。
[実施例43]
(円盤状液晶化合物9の作製)
 Polymer for Advanced Technologies,111,398-403,(2000)に記載の方法に従い、円盤状液晶化合物9を合成した。
Figure JPOXMLDOC01-appb-C000059
(熱伝導材料の作製)
 円盤状化合物9:10gをMEK10gに溶解した塗布液を600μ厚になるようにPETフィルムに塗布した。室温で乾燥後、さらに160℃で10分放置した後に室温に戻して塗膜Eを作製した。
Figure JPOXMLDOC01-appb-T000060
 表3より、円盤状化合物は未重合状態でも比較的高い熱伝導率を示すことがわかる。

Claims (22)

  1. 円盤状化合物を含む熱伝導材料。
  2. 前記円盤状化合物が、以下D1~D16のいずれかの一般式で示される化合物からなる群より選択される1つ以上の化合物がQにおいて反応した化合物であるか、またはD1~D16のいずれかの一般式で示される化合物からなる群より選択される1つ以上の化合物である請求項1に記載の熱伝導材料。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    D1~D16中、Lは二価の連結基を示し;
    Qは、水素原子、ハロゲン原子、シアノ基、または官能基を示し、
    2x、A3xおよびA4xはそれぞれ独立に-CH=またはN=を表し、R17x、R18x、およびR19xはそれぞれ独立に、*-X211x-(Z21x-X212xn21x-L21x-Qを表し、*は中心環との結合位置を表し、X211X、およびX212Xはそれぞれ独立に、単結合、-O-、-C(=O)-、-OC(=O)-、-OC(=O)O-、-OC(=O)NH-、-OC(=O)S-、-C(=O)O-、-C(=O)NH-、-C(=O)S-、-NHC(=O)-、-NHC(=O)O-、-NHC(=O)NH-、-NHC(=O)S-、-S-、-SC(=O)-、-SC(=O)O-、-SC(=O)NH-、または-SC(=O)S-を表し、Z21Xはそれぞれ独立に、5員環もしくは6員環の芳香族基、または5員環もしくは6員環の非芳香族基を表し、L21Xは、X212XとP21Xを連結する2価の連結基もしくは単結合を表し、n21Xは、0~3の整数を表し、n21Xが2以上の場合の複数個あるZ21X-X212Xは同一でも異なっていてもよい。
  3. 前記円盤状化合物を含む樹脂組成物の硬化物を含み、
    前記円盤状化合物が1個以上の官能基を含む、
    請求項2に記載の熱伝導材料。
  4. 請求項1に記載の熱伝導材料であって、
    2個以上の官能基を有する円盤状化合物を含む樹脂組成物の硬化物を含み、前記官能基が(メタ)アクリル基、(メタ)アクリルアミド基、オキシラニル基、オキセタニル基、水酸基、アミノ基、チオール基、イソシアネート基、カルボキシル基および無水カルボン酸基からなる群より選択される熱伝導材料。
  5. 前記円盤状化合物が3~8個の前記官能基を有する請求項4に記載の熱伝導材料。
  6. 前記円盤状化合物が一般式(XI)で表される化合物である請求項4または5に記載の熱伝導材料。
    Figure JPOXMLDOC01-appb-C000006
    式中、R11、R12、R13、R14、R15、およびR16はそれぞれ独立に*-X11-L11-P11または*-X12-Y12を表し、*はトリフェニレン環との結合位置を表し、R11、R12、R13、R14、R15、およびR16のうち2つ以上は*-X11-L11-P11であり、X11およびX12はそれぞれ独立に、単結合、-O-、-C(=O)-、-OC(=O)-、-OC(=O)O-、-OC(=O)NH-、-OC(=O)S-、-C(=O)O-、-C(=O)NH-、-C(=O)S-、-NHC(=O)-、-NHC(=O)O-、-NHC(=O)NH-、-NHC(=O)S-、-S-、-SC(=O)-、-SC(=O)O-、-SC(=O)NH-、または-SC(=O)S-を表し、L11は2価の連結基または単結合を表し、P11は (メタ)アクリル基、(メタ)アクリルアミド基、オキシラニル基、オキセタニル基、水酸基、アミノ基、チオール基、イソシアネート基、カルボキシル基および無水カルボン酸基からなる群より選択される官能基を表し、Y12は水素原子、炭素数1~20の直鎖状、分岐鎖状、もしくは環状のアルキル基、または炭素数1~20の直鎖状、分岐鎖状、もしくは環状のアルキル基において1つまたは2つ以上のメチレン基が-O-、-S-、-NH-、-N(CH3)-、-C(=O)-、-OC(=O)-、または-C(=O)O-で置換された基を表す。
  7. 11、R12、R13、R14、R15、およびR16が同一である請求項6に記載の熱伝導材料。
  8. 前記円盤状化合物が一般式(XII)で表される化合物である請求項4または5に記載の熱伝導材料。
    Figure JPOXMLDOC01-appb-C000007
    式中、A2、A3およびA4はそれぞれ独立に-CH=またはN=を表し、R17、R18、およびR19はそれぞれ独立に、*-X211-(Z21-X212n21-L21-P21または*-X211-(Z22-X222n22-Y22を表し、*は中心環との結合位置を表し、R17、R18、およびR19のうち2つ以上は*-X211-(Z21-X212n21-L21-P21であり、X211、およびX212はそれぞれ独立に、単結合、-O-、-C(=O)-、-OC(=O)-、-OC(=O)O-、-OC(=O)NH-、-OC(=O)S-、-C(=O)O-、-C(=O)NH-、-C(=O)S-、-NHC(=O)-、-NHC(=O)O-、-NHC(=O)NH-、-NHC(=O)S-、-S-、-SC(=O)-、-SC(=O)O-、-SC(=O)NH-、または-SC(=O)S-を表し、Z21およびZ22はそれぞれ独立に、5員環もしくは6員環の芳香族基、または5員環もしくは6員環の非芳香族基を表し、L21は、X212とP21を連結する2価の連結基もしくは単結合を表し、P21は(メタ)アクリル基、(メタ)アクリルアミド基、オキシラニル基、オキセタニル基、水酸基、アミノ基、チオール基、イソシアネート基、カルボキシル基および無水カルボン酸基からなる群より選択される官能基を表し、Y22は水素原子、炭素数1~20の直鎖状、分岐鎖状、もしくは環状のアルキル基、または炭素数1~20の直鎖状、分岐鎖状、もしくは環状のアルキル基において1つまたは2つ以上のメチレン基が-O-、-S-、-NH-、-N(CH3)-、-C(=O)-、-OC(=O)-、または-C(=O)O-で置換された基を表し、n21およびn22はそれぞれ独立に、0~3の整数を表し、n21およびn22が2以上の場合の複数個あるZ21-X212およびZ22-X222は同一でも異なっていてもよい。
  9. 17、R18、およびR19が同一である請求項8に記載の熱伝導材料。
  10. 前記樹脂組成物が、アミノ基、チオール基、水酸基、カルボキシル基、無水カルボン酸基、およびイソシアネート基からなる群より選択される基を有する硬化剤を含む請求項3~9のいずれか一項に記載の熱伝導材料。
  11. 前記樹脂組成物がオキシラニル基を有する前記円盤状化合物を含む請求項10に記載の熱伝導材料。
  12. 前記樹脂組成物が、無機物を前記樹脂組成物の固形分質量に対して30質量%~90質量%で含む請求項3~11のいずれか一項に記載の熱伝導材料。
  13. 前記円盤状化合物として、D1~D16のいずれかの一般式で示される化合物からなる群より選択される1つ以上の化合物であって、全てのQが、水素原子、ハロゲン原子、またはシアノ基である化合物を含む請求項2に記載の熱伝導材料。
  14. 前記円盤状化合物が液晶化合物である請求項1~13のいずれか一項に記載の熱伝導材料。
  15. 無機物を含む請求項1~14のいずれか一項に記載の熱伝導材料。
  16. 前記無機物が無機窒化物または無機酸化物である請求項15に記載の熱伝導材料。
  17. 前記無機物が窒化ホウ素または窒化アルミニウムである請求項16に記載の熱伝導材料。
  18. 前記無機物がボロン酸化合物およびアルデヒド化合物で表面修飾されている請求項16または17に記載の熱伝導材料。
  19. シート状であり、
    前記円盤状化合物を含む組成物から形成された層を含む請求項1~18のいずれか一項に記載の熱伝導材料。
  20. 放熱シートである請求項19に記載の熱伝導材料。
  21. 請求項3~12のいずれか一項に記載の熱伝導材料の製造に用いるための前記樹脂組成物。
  22. 請求項1~20のいずれか一項に記載の熱伝導材料を含むデバイス。
PCT/JP2017/002469 2016-01-26 2017-01-25 熱伝導材料、樹脂組成物、およびデバイス WO2017131007A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187021732A KR20180099794A (ko) 2016-01-26 2017-01-25 열전도 재료, 수지 조성물, 및 디바이스
JP2017564296A JP6625669B2 (ja) 2016-01-26 2017-01-25 熱伝導材料、樹脂組成物、およびデバイス
CN201780008386.2A CN108603099A (zh) 2016-01-26 2017-01-25 导热材料、树脂组合物及器件
US16/045,711 US10774212B2 (en) 2016-01-26 2018-07-25 Thermally conductive material, resin composition, and device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016012616 2016-01-26
JP2016-012616 2016-01-26
JP2016-241362 2016-12-13
JP2016241362 2016-12-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/045,711 Continuation US10774212B2 (en) 2016-01-26 2018-07-25 Thermally conductive material, resin composition, and device

Publications (1)

Publication Number Publication Date
WO2017131007A1 true WO2017131007A1 (ja) 2017-08-03

Family

ID=59398573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002469 WO2017131007A1 (ja) 2016-01-26 2017-01-25 熱伝導材料、樹脂組成物、およびデバイス

Country Status (5)

Country Link
US (1) US10774212B2 (ja)
JP (1) JP6625669B2 (ja)
KR (1) KR20180099794A (ja)
CN (1) CN108603099A (ja)
WO (1) WO2017131007A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019013299A1 (ja) * 2017-07-14 2019-01-17 富士フイルム株式会社 熱伝導材料、熱伝導層付きデバイス、熱伝導材料形成用組成物、液晶性円盤状化合物
WO2019131332A1 (ja) * 2017-12-27 2019-07-04 富士フイルム株式会社 組成物、熱伝導材料、熱伝導層付きデバイス、及び熱伝導材料の製造方法
JP2019116595A (ja) * 2017-12-27 2019-07-18 富士フイルム株式会社 熱伝導材料形成用組成物、熱伝導材料、熱伝導層付きデバイス
WO2021131803A1 (ja) * 2019-12-26 2021-07-01 富士フイルム株式会社 組成物、熱伝導シート、熱伝導シート付きデバイス

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102579529B1 (ko) * 2019-01-23 2023-09-15 후지필름 가부시키가이샤 조성물, 열전도 시트, 열전도층 부착 디바이스
EP3919540A4 (en) * 2019-02-01 2022-02-16 FUJIFILM Corporation COMPOSITION FOR MAKING A THERMAL CONDUCTIVE MATERIAL AND THERMAL CONDUCTIVE MATERIAL
EP4036174A4 (en) * 2019-09-27 2022-11-23 FUJIFILM Corporation COMPOSITION FOR FORMING THERMAL CONDUCTION MATERIAL, THERMAL CONDUCTION MATERIAL, THERMAL CONDUCTION FOIL AND DEVICE WITH THERMAL CONDUCTION COATING
CN111282548B (zh) * 2020-02-24 2022-03-25 中国科学院合肥物质科学研究院 木质素磺酸钠修饰的g-C3N4/木炭凝胶复合材料的制备方法及应用
CN113234042A (zh) * 2021-05-26 2021-08-10 西北工业大学 一种盘状液晶环氧树脂单体及其制备方法、本征高导热液晶环氧树脂材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6086192A (ja) * 1983-10-19 1985-05-15 Yoshiro Nakamura 伝熱促進剤およびその使用方法
JPH10307208A (ja) * 1997-05-09 1998-11-17 Nippon Oil Co Ltd 光学フィルムの製造法
JP2000119652A (ja) * 1998-10-09 2000-04-25 Fuji Photo Film Co Ltd 光学的異方性材料、異方導電性材料、それらの製造方法およびディスコティック液晶性分子

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5337999A (en) 1976-09-19 1978-04-07 Nippon Steel Corp Method of cutting hard and soft material laminated panel
JP2802719B2 (ja) 1994-04-08 1998-09-24 富士写真フイルム株式会社 光学異方性シートおよびそれを用いた液晶表示素子
JP2696480B2 (ja) 1994-05-11 1998-01-14 富士写真フイルム株式会社 新規なトリフェニレン誘導体およびそれを含む光学異方性材料
JPH11323162A (ja) 1998-03-19 1999-11-26 Hitachi Ltd 絶縁組成物
JP2001192500A (ja) 2000-01-12 2001-07-17 Edison Polymer Innovation Corp 低粘度高熱伝導性ポリマー系窒化ホウ素組成物形成用表面処理窒化ホウ素及び該組成物の形成方法
JP4592225B2 (ja) 2000-07-06 2010-12-01 富士フイルム株式会社 液晶組成物および光学異方性素子
US7109288B2 (en) 2001-05-18 2006-09-19 Hitachi, Ltd. Cured thermosetting resin product
JP2003073672A (ja) * 2001-09-06 2003-03-12 Fuji Photo Film Co Ltd 液晶組成物および光学補償シート
JP4344591B2 (ja) 2003-11-25 2009-10-14 富士フイルム株式会社 位相差板、トリフェニレン化合物および液晶表示装置
JP4738034B2 (ja) 2004-08-12 2011-08-03 富士フイルム株式会社 液晶性化合物、組成物および薄膜
JP4694929B2 (ja) 2004-09-30 2011-06-08 富士フイルム株式会社 重合性組成物、位相差板、高分子膜の作製方法、液晶表示装置
JP2006113175A (ja) * 2004-10-13 2006-04-27 Konica Minolta Opto Inc 光学フィルム、偏光板及び表示装置
JP5209181B2 (ja) 2005-03-15 2013-06-12 富士フイルム株式会社 化合物、組成物、位相差板、楕円偏光板および液晶表示装置
US7431971B2 (en) * 2005-03-24 2008-10-07 Fujifilm Corporation Retardation plate
JP4866638B2 (ja) * 2005-03-24 2012-02-01 富士フイルム株式会社 位相差板
CN101233453A (zh) 2005-07-28 2008-07-30 皇家飞利浦电子股份有限公司 组合物及其应用
JP2007057608A (ja) * 2005-08-22 2007-03-08 Fujifilm Corp 光学補償フィルム、これを用いた偏光板および液晶表示装置
JP2008013759A (ja) 2006-06-07 2008-01-24 Sumitomo Chemical Co Ltd エポキシ樹脂組成物及びエポキシ樹脂硬化物
JP5380058B2 (ja) 2008-11-28 2014-01-08 富士フイルム株式会社 インプリント材料及びインプリント方法
JP5620129B2 (ja) 2009-03-19 2014-11-05 富士フイルム株式会社 光学フィルム、位相差板、楕円偏光板、液晶表示装置、及び化合物
JP2012067225A (ja) 2010-09-24 2012-04-05 Hitachi Chemical Co Ltd 樹脂シート硬化物の製造方法、樹脂シート硬化物、樹脂付金属箔、金属基板、led基板、及びパワーモジュール
JP5999369B2 (ja) * 2011-03-07 2016-09-28 三菱瓦斯化学株式会社 樹脂組成物ならびにこれを用いたプリプレグおよび積層板
JP6102082B2 (ja) * 2012-04-26 2017-03-29 日立化成株式会社 エポキシ樹脂組成物、半硬化エポキシ樹脂組成物、硬化エポキシ樹脂組成物、樹脂シート、プリプレグ、積層板、金属基板、及びプリント配線板
KR101482852B1 (ko) * 2013-05-09 2015-01-15 전북대학교산학협력단 이방성 열 전기전도 액정 조성물 및 이를 이용한 방열 및 전자파 차폐 매트릭스의 제조방법
US9745499B2 (en) * 2013-09-06 2017-08-29 Korea Advanced Institute Of Science And Technology Hexagonal boron nitride nanosheet/ceramic nanocomposite powder and producing method of the same, and hexagonal boron nitride nanosheet/ceramic nanocomposite materials and producing method of the same
JP2015052710A (ja) 2013-09-06 2015-03-19 富士フイルム株式会社 偏光板およびその製造方法
KR102267910B1 (ko) * 2014-12-02 2021-06-22 삼성디스플레이 주식회사 액정 배향막 형성용 전구체 입자, 액정표시패널 및 이의 제조 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6086192A (ja) * 1983-10-19 1985-05-15 Yoshiro Nakamura 伝熱促進剤およびその使用方法
JPH10307208A (ja) * 1997-05-09 1998-11-17 Nippon Oil Co Ltd 光学フィルムの製造法
JP2000119652A (ja) * 1998-10-09 2000-04-25 Fuji Photo Film Co Ltd 光学的異方性材料、異方導電性材料、それらの製造方法およびディスコティック液晶性分子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KANG, DONG-GUE ET AL.: "Heat Transfer Organic Materials: Robust Polymer Films with the Outstanding Thermal Conductivity Fabricated by the Photopolymerization of Uniaxially Oriented Reactive Discogens", ACS APPL. MATER. INTERFACES, vol. 8, no. 44, 9 November 2016 (2016-11-09), pages 30492 - 30501, XP055564710, ISSN: 1944-8244, DOI: 10.1021/acsami.6b10256 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019013299A1 (ja) * 2017-07-14 2019-01-17 富士フイルム株式会社 熱伝導材料、熱伝導層付きデバイス、熱伝導材料形成用組成物、液晶性円盤状化合物
US11702578B2 (en) 2017-07-14 2023-07-18 Fujifilm Corporation Thermally conductive material, device with thermally conductive layer, composition for forming thermally conductive material, and disk-like liquid crystal compound
WO2019131332A1 (ja) * 2017-12-27 2019-07-04 富士フイルム株式会社 組成物、熱伝導材料、熱伝導層付きデバイス、及び熱伝導材料の製造方法
JP2019116595A (ja) * 2017-12-27 2019-07-18 富士フイルム株式会社 熱伝導材料形成用組成物、熱伝導材料、熱伝導層付きデバイス
CN111527119A (zh) * 2017-12-27 2020-08-11 富士胶片株式会社 组合物、导热材料、带导热层的器件及导热材料的制造方法
JPWO2019131332A1 (ja) * 2017-12-27 2020-11-19 富士フイルム株式会社 組成物、熱伝導材料、熱伝導層付きデバイス、及び熱伝導材料の製造方法
JP6997215B2 (ja) 2017-12-27 2022-01-17 富士フイルム株式会社 組成物、熱伝導材料、熱伝導層付きデバイス、及び熱伝導材料の製造方法
WO2021131803A1 (ja) * 2019-12-26 2021-07-01 富士フイルム株式会社 組成物、熱伝導シート、熱伝導シート付きデバイス

Also Published As

Publication number Publication date
JP6625669B2 (ja) 2019-12-25
KR20180099794A (ko) 2018-09-05
CN108603099A (zh) 2018-09-28
US20180327586A1 (en) 2018-11-15
US10774212B2 (en) 2020-09-15
JPWO2017131007A1 (ja) 2019-01-10

Similar Documents

Publication Publication Date Title
JP6625669B2 (ja) 熱伝導材料、樹脂組成物、およびデバイス
KR102172827B1 (ko) 표면 수식 무기물을 포함하는 수지 조성물, 열전도 재료, 및 디바이스
JP6434990B2 (ja) 表面修飾無機物、表面修飾無機物の製造方法、および無機物表面を有機物で修飾する方法、ならびに放熱材料、熱伝導材料、および潤滑剤
KR102148585B1 (ko) 표면 수식 무기물 및 그 제조 방법, 수지 조성물, 열전도 재료, 디바이스, 및 윤활제
KR102252723B1 (ko) 표면 수식 무기 질화물, 조성물, 열전도 재료, 열전도층 부착 디바이스
CN110869411A (zh) 导热材料、带导热层的器件、导热材料形成用组合物、液晶性圆盘状化合物
CN109153567B (zh) 表面修饰无机氮化物及制造法、组合物、导热材料、器件
CN110785376A (zh) 表面修饰无机氮化物、组合物、导热材料及带导热层的器件
CN110234664B (zh) 固化性组合物、导热材料、带导热层的器件
JP7191988B2 (ja) 熱伝導材料形成用組成物、熱伝導材料
JP7182692B2 (ja) 組成物、熱伝導材料
JP7183307B2 (ja) 熱伝導材料形成用組成物、熱伝導材料、熱伝導シート、熱伝導層付きデバイス
JP7440626B2 (ja) 硬化性組成物、熱伝導材料、熱伝導シート、熱伝導層付きデバイス、化合物
JP2020033330A (ja) 組成物、熱伝導シート、熱伝導層付きデバイス
EP3858885B1 (en) Composition for forming heat conductive materials, heat conductive material, heat conductive sheet, device with heat conductive layer, and film
JP2019116595A (ja) 熱伝導材料形成用組成物、熱伝導材料、熱伝導層付きデバイス

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17744237

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2017564296

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20187021732

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17744237

Country of ref document: EP

Kind code of ref document: A1