WO2018179545A1 - 熱電変換モジュール - Google Patents

熱電変換モジュール Download PDF

Info

Publication number
WO2018179545A1
WO2018179545A1 PCT/JP2017/038345 JP2017038345W WO2018179545A1 WO 2018179545 A1 WO2018179545 A1 WO 2018179545A1 JP 2017038345 W JP2017038345 W JP 2017038345W WO 2018179545 A1 WO2018179545 A1 WO 2018179545A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
thermoelectric
conversion module
thermoelectric element
thermoelectric conversion
Prior art date
Application number
PCT/JP2017/038345
Other languages
English (en)
French (fr)
Inventor
亘 森田
邦久 加藤
豪志 武藤
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to TW107111209A priority Critical patent/TW201841398A/zh
Publication of WO2018179545A1 publication Critical patent/WO2018179545A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details

Definitions

  • the present invention relates to a thermoelectric conversion module.
  • thermoelectric power generation technology and Peltier cooling technology are known as energy conversion technologies using thermoelectric conversion.
  • Thermoelectric power generation technology is a technology that uses the conversion of thermal energy into electrical energy by the Seebeck effect, and this technology uses unused waste heat energy generated from fossil fuel resources used in buildings and factories. As an electrical energy, it is attracting a great deal of attention as an energy-saving technology that can be recovered without incurring operating costs.
  • the Peltier cooling technology is a technology that uses the conversion from electrical energy to thermal energy due to the Peltier effect, which is the reverse of thermoelectric power generation. This technology is, for example, a wine cooler, a small and portable refrigerator, It is also used in parts and devices that require precise temperature control, such as cooling for CPUs used in computers and the like, and temperature control of semiconductor laser oscillators for optical communications.
  • thermoelectric conversion module using thermoelectric conversion, the thermoelectric performance of the thermoelectric element layer is lowered and the resistance of the metal electrode is increased depending on the environmental conditions of the installation location, such as high temperature and high humidity. There is no problem.
  • a thermoelectric conversion module composed of a thin P-type thermoelectric element made of P-type material and a thin-film N-type thermoelectric element made of N-type material.
  • thermoelectric conversion element in which a flexible film-like substrate configured as described above is provided and a material having high thermal conductivity is positioned on a part of the outer surface of the substrate.
  • Patent Document 2 discloses the use of a frame made of at least one synthetic resin of polyphenylene sulfide, polybutylene terephthalate, and polypropylene in the configuration of the thermoelectric conversion device.
  • JP 2006-186255 A Japanese Patent Laid-Open No. 10-12934
  • Patent Document 1 merely discloses a configuration that efficiently applies a temperature difference between electrodes or junctions of thermoelectric elements, and a flexible film-like substrate is in direct contact with the thermoelectric elements. Although it has a configuration, there is no description or suggestion regarding its use as a coating layer for a thermoelectric element, and the durability as a thermoelectric conversion element has not been studied.
  • Patent Document 2 when a frame having a high water vapor transmission rate is used in paragraph [0032] of the frame, condensation occurs on the electrode surface or the like particularly on the heat absorption side (low temperature side), which causes a short circuit. This may cause corrosion of the electrode and increase in thermal resistance.
  • the frame is composed of a thermoelectric conversion element (thermoelectric It is not in direct contact with the element layer) and is not disposed on the upper and lower surfaces, and water vapor in the atmosphere directly in contact with the thermoelectric element layer of the thermoelectric conversion module cannot be suppressed. Further, as in Patent Document 1, the durability as a thermoelectric conversion element has not been studied.
  • an object of the present invention is to provide a thermoelectric conversion module having excellent durability.
  • thermoelectric conversion module including a coating layer on at least one surface of a thermoelectric element layer, wherein the coating layer is mainly composed of one or more selected from the group consisting of metals, inorganic compounds, and polymer compounds.
  • a thermoelectric conversion module having a gas barrier layer is mainly composed of one or more selected from the group consisting of metals, inorganic compounds, and polymer compounds.
  • thermoelectric conversion module which includes a coating layer on one surface of the thermoelectric element layer and a substrate on the other surface.
  • the thermoelectric conversion module according to (2) further including the coating layer on a surface of the substrate opposite to the side where the thermoelectric element layer exists.
  • the thermoelectric conversion module according to (2) or (3) wherein the substrate is a film substrate.
  • the thermoelectric element layer includes a P-type thermoelectric element layer and an N-type thermoelectric element layer, and the P-type thermoelectric element layer and the N-type thermoelectric element layer are alternately adjacent in the in-plane direction and arranged in series.
  • the thermoelectric conversion module according to any one of the above (1) to (4).
  • thermoelectric conversion module further includes a high heat conductive layer on at least one surface of the coating layer or a surface of the substrate opposite to the side where the thermoelectric element layer exists, and heat of the high heat conductive layer
  • the thermoelectric conversion module according to any one of (1) to (5), wherein the conductivity is 5 to 500 W / (m ⁇ K).
  • the polymer compound is a resin containing a halogen atom, and is a polyvinylidene chloride, a polyvinylidene fluoride, a polychlorotetrafluoroethylene, a tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer, or a tetrafluoroethylene / hexafluoro.
  • the thermoelectric conversion module according to any one of the above (1) to (7), which is a propylene copolymer.
  • thermoelectric conversion module according to any one of (1) to (8), wherein the polymer compound is a polysilazane compound, a polycarbosilane compound, a polysilane compound, or a polyorganosiloxane compound.
  • thermoelectric conversion module having excellent durability can be provided.
  • thermoelectric conversion module of this invention It is sectional drawing which shows an example of the embodiment of the thermoelectric conversion module of this invention. It is sectional drawing which shows the other embodiment of the thermoelectric conversion module of this invention. It is a top view which shows an example of arrangement
  • substrate which comprises some thermoelectric conversion modules used for the Example of this invention, and a thermoelectric element.
  • thermoelectric conversion module of the present invention is a thermoelectric conversion module including a coating layer on at least one surface of a thermoelectric element layer, wherein the coating layer is one or more selected from the group consisting of metals, inorganic compounds, and polymer compounds. It is a thermoelectric conversion module which has a gas barrier layer which has as a main component. By disposing a gas barrier layer containing the main component on at least one surface of the thermoelectric element layer as a coating layer, the permeation of water vapor in the atmosphere is effectively suppressed (hereinafter sometimes referred to as “gas barrier property”). In addition, the performance of the thermoelectric module can be maintained over a long period of time.
  • thermoelectric conversion module of the present invention will be described with reference to the drawings.
  • FIG. 1 is a cross-sectional view showing an example of an embodiment of the thermoelectric conversion module of the present invention.
  • a P-type thermoelectric element layer 5 and an N-type thermoelectric element layer 4 are in an in-plane direction.
  • One surface of the thermoelectric element layer 6 arranged in series alternately adjacent to each other includes a coating layer 7a.
  • the thermoelectric conversion module 1B of (b) contains the structure of (a) on one surface of the board
  • the thermoelectric conversion module 1C of (c) includes a coating layer 7b on the surface of the substrate 2 opposite to the thermoelectric element layer 6 in the configuration of (b).
  • FIG. 1 is a cross-sectional view showing an example of an embodiment of the thermoelectric conversion module of the present invention.
  • a P-type thermoelectric element layer 5 and an N-type thermoelectric element layer 4 are in an in-plane direction.
  • One surface of the thermoelectric element layer 6 arranged in series alternately adjacent to each other includes a coating layer
  • thermoelectric conversion module 1D is a cross-sectional view showing another embodiment of the thermoelectric conversion module of the present invention.
  • the thermoelectric conversion module 1D further includes high thermal conductive layers 8a and 8b in the in-plane direction of the surfaces of the coating layers 7a and 7b.
  • the thermoelectric conversion module of the present invention is preferably in the form of a sheet from the viewpoint that it can be easily installed in a narrow space or from the viewpoint that it can be easily installed on a curved surface by bending.
  • the thermoelectric conversion module of the present invention includes a coating layer.
  • the coating layer used in the present invention is used to effectively suppress the permeation of water vapor in the atmosphere and has a gas barrier layer.
  • the covering layer is laminated on at least one surface of the thermoelectric element layer in order to suppress permeation of water vapor in the atmosphere.
  • the permeation of water vapor in the atmosphere can be suppressed.
  • the thermoelectric conversion module has a substrate, it is preferable not to have the substrate on both sides of the thermoelectric element layer but to have the substrate only on one side as described later. Since the substrate usually has a certain water vapor barrier property, the surface of the thermoelectric element layer on which the substrate is present is protected from the intrusion of water vapor by the substrate.
  • thermoelectric element layer since there is no such protective effect on the surface where the substrate of the thermoelectric element layer does not exist, both surfaces of the thermoelectric element layer can be protected from intrusion of water vapor by providing a covering layer. It is more preferable that the coating layer is further included on the surface of the substrate opposite to the side where the thermoelectric element layer exists. Thereby, in addition to the water vapor barrier property of the substrate, the penetration of water vapor into the thermoelectric element layer can be further effectively suppressed.
  • the arrangement of the coating layer used in the present invention on the surface of the thermoelectric element layer is not particularly limited, but is appropriately adjusted according to the arrangement of the thermoelectric element layers used, for example, the P-type thermoelectric element layer and the N-type thermoelectric element layer. It is preferable.
  • the covering layer is preferably disposed so as to be in direct contact with the surface of the thermoelectric element layer, and is preferably disposed so as to cover the entire thermoelectric element layer.
  • the gas barrier layer used in the present invention contains, as a main component, one or more selected from the group consisting of metals, inorganic compounds, and polymer compounds.
  • the durability of the thermoelectric conversion module can be improved by the gas barrier layer.
  • the gas barrier layer may be directly laminated on the thermoelectric element layer, or is composed of a layer containing the above main component on a base material, and either side of the gas barrier layer with the base material is directly on the thermoelectric element layer. It may be laminated
  • the metal examples include aluminum, magnesium, zinc, gold, silver, copper, platinum, rhodium, chromium, nickel, palladium, molybdenum, stainless steel, and tin. From the viewpoint of improving water vapor barrier properties, it is preferable to use these as a uniform film. Among these, aluminum and nickel are preferable from the viewpoints of productivity, cost, gas barrier properties, and corrosion resistance. Moreover, these can be used individually by 1 type or in combination of 2 or more types including an alloy.
  • the uniform film may be formed by using a vapor deposition method such as a resistance heating vapor deposition method or an ion plating method, or by using a sputtering method such as a DC bipolar sputtering method or a DC magnetron sputtering method other than the vapor deposition method. Good.
  • the film may be formed by a chemical vapor phase method such as a plasma CVD method.
  • Examples of the inorganic compound include inorganic oxide (MO x ), inorganic nitride (MN y ), inorganic carbide (MC z ), inorganic oxide carbide (MO x C z ), inorganic nitride carbide (MN y C z ), inorganic oxide Examples thereof include nitrides (MO x N y ) and inorganic oxynitride carbides (MO x N y C z ).
  • M include metal elements such as silicon, zinc, aluminum, magnesium, indium, calcium, zirconium, titanium, boron, hafnium, and barium.
  • M may be a single element or two or more elements.
  • Each inorganic compound includes silicon oxide, zinc oxide, aluminum oxide, magnesium oxide, indium oxide, calcium oxide, zirconium oxide, titanium oxide, boron oxide, hafnium oxide, barium oxide, and the like; silicon nitride, aluminum nitride, boron nitride And nitrides such as magnesium nitride; carbides such as silicon carbide; sulfides; and the like. Further, it may be a composite of two or more selected from these inorganic compounds (oxynitride, oxycarbide, nitrided carbide, oxynitride carbide).
  • M is preferably a metal element such as silicon, aluminum, or titanium.
  • M is preferably a metal element such as silicon, aluminum, or titanium.
  • an inorganic layer made of silicon oxide in which M is silicon has high gas barrier properties
  • an inorganic layer made of silicon nitride has higher gas barrier properties.
  • a composite of silicon oxide and silicon nitride is preferable, and when the content of silicon nitride is large, gas barrier properties are improved.
  • These are preferably used as a uniform film, like metal, and can be formed by a physical vapor phase method such as a vacuum deposition method, a DC bipolar sputtering method, a DC magnetron sputtering method, or the like, or by plasma CVD.
  • a film formed by a chemical vapor phase method such as a method may be used.
  • Examples of the polymer compound include a polymer compound having a water vapor permeability of 2 g ⁇ m ⁇ 2 ⁇ day ⁇ 1 or less at 40 ° C. ⁇ 90% RH measured at a thickness of 100 ⁇ m.
  • the water vapor permeability of the polymer compound at 40 ° C. ⁇ 90% RH measured at a thickness of 100 ⁇ m is preferably 1 g ⁇ m ⁇ 2 ⁇ day ⁇ 1 or less.
  • a halogen-containing resin As the polymer compound satisfying the water vapor transmission rate, a halogen-containing resin is preferable, and as the halogen-containing resin, polyvinylidene chloride, polyvinylidene fluoride, polychlorotetrafluoroethylene, tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer, Tetrafluoroethylene / hexafluoropropylene copolymer is preferred. Among them, polychlorotetrafluoroethylene, tetrafluoroethylene / hexafluoro having a water vapor transmission rate at 40 ° C.
  • the polymer compound examples include silicon-containing polymer compounds such as polyorganosiloxane and polysilazane compounds, polyimide, polyamide, polyamideimide, polyphenylene ether, polyether ketone, polyether ether ketone, polyolefin, polyester, and the like. These polymer compounds can be used alone or in combination of two or more. Among these, a silicon-containing polymer compound is preferable as the polymer compound having gas barrier properties. As the silicon-containing polymer compound, polysilazane compounds, polycarbosilane compounds, polysilane compounds, polyorganosiloxane compounds, and the like are preferable. Among these, a polysilazane compound is more preferable from the viewpoint of forming a barrier layer having excellent gas barrier properties.
  • silicon-containing polymer compounds such as polyorganosiloxane and polysilazane compounds, polyimide, polyamide, polyamideimide, polyphenylene ether, polyether ketone, polyether
  • a silicon oxynitride layer made of an inorganic compound film or a layer containing a silicon-containing polymer compound, which is formed by subjecting a modification treatment to oxygen, nitrogen, and silicon as main constituent atoms, has interlayer adhesion, It is preferably used from the viewpoint of having gas barrier properties and flexibility.
  • the gas barrier layer can be formed, for example, by subjecting the silicon-containing polymer compound-containing layer to plasma ion implantation treatment, accelerated ion implantation treatment, plasma treatment, vacuum ultraviolet light irradiation treatment, heat treatment, and the like.
  • Examples of ions implanted by the ion implantation treatment include hydrogen, nitrogen, oxygen, argon, helium, neon, xenon, and krypton.
  • a method of injecting ions existing in plasma generated using an external electric field into a silicon-containing polymer compound-containing layer, or using an external electric field is used.
  • ions existing in plasma generated only by an electric field generated by a negative high voltage pulse applied to a layer made of a gas barrier layer forming material are injected into the silicon-containing polymer compound-containing layer.
  • the plasma treatment is a method for modifying a silicon-containing polymer compound-containing layer by exposing the silicon-containing polymer compound-containing layer to plasma.
  • plasma treatment can be performed according to the method described in Japanese Patent Application Laid-Open No. 2012-106421.
  • the vacuum ultraviolet light irradiation treatment is a method for modifying the silicon-containing polymer-containing layer by irradiating the silicon-containing polymer compound-containing layer with vacuum ultraviolet light.
  • vacuum ultraviolet light irradiation modification treatment can be performed according to the method described in JP2013-226757A.
  • the ion implantation treatment is preferable because it can be efficiently modified to the inside without roughening the surface of the silicon-containing polymer compound-containing layer and a gas barrier layer having better gas barrier properties can be formed.
  • the thickness of the layer containing a metal, an inorganic compound and a polymer compound varies depending on the compound used, but is usually 0.01 to 50 ⁇ m, preferably 0.03 to 10 ⁇ m, more preferably 0.05 to 0.8 ⁇ m, More preferably, it is 0.10 to 0.6 ⁇ m.
  • the thickness including the metal, the inorganic compound, and the resin is within this range, the effect of suppressing the water vapor transmission rate of the gas barrier layer becomes easier.
  • the water vapor transmission rate at 40 ° C. ⁇ 90% RH specified by JIS K7129: 2008 of the gas barrier layer is preferably 10 g ⁇ m ⁇ 2 ⁇ day ⁇ 1 or less, more preferably 5 g ⁇ m ⁇ 2 ⁇ day ⁇ 1. In the following, it is more preferably 1 g ⁇ m ⁇ 2 ⁇ day ⁇ 1 or less.
  • the water vapor transmission rate is within this range, it is preferable because the water vapor transmission to the thermoelectric element layer is further suppressed.
  • the gas barrier layer may be a single layer or two or more layers. Further, when two or more layers are laminated, they may be the same or different.
  • thermoelectric conversion module As will be described later in the method for manufacturing a thermoelectric conversion module, as a means for easily obtaining a gas barrier layer, a method for depositing a gas barrier layer material on a substrate by vapor deposition or sputtering, or a material for a gas barrier layer on a substrate. After coating the composition containing, the method of solidifying a coating film by drying or hardening can be used. In this case, the obtained gas barrier layer with a base material can be used as a layer constituting the coating layer as it is.
  • a flexible material is used as the base material.
  • a flexible material for example, polyimide, polyamide, polyamideimide, polyphenylene ether, polyether ketone, polyether ether ketone, polyolefin, polyester, polycarbonate, polysulfone, polyether sulfone, polyphenylene sulfide, polyarylate, acrylic resin, cycloolefin polymer, aromatic Group polymers and the like.
  • examples of the polyester include polyethylene terephthalate (PET), polybutylene terephthalate, polyethylene naphthalate (PEN), and polyarylate.
  • cycloolefin polymer examples include norbornene polymers, monocyclic olefin polymers, cyclic conjugated diene polymers, vinyl alicyclic hydrocarbon polymers, and hydrides thereof.
  • substrates from the viewpoints of cost and heat resistance, biaxially stretched polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) are particularly preferable.
  • the thickness of the substrate is preferably 5 to 75 ⁇ m, more preferably 8 to 50 ⁇ m, and still more preferably 10 to 35 ⁇ m. When the thickness of the substrate is in this range, it is easy to adjust the coating layer to a thickness described later.
  • thermoelectric conversion module of the present invention may further include a sealing layer as a coating layer.
  • a sealing layer can further enhance the effect of suppressing permeation of water vapor in the atmosphere by the coating layer.
  • the arrangement of the sealing layer used in the present invention is not particularly limited, but from the viewpoint of facilitating the formation of the gas barrier layer by using an adhesive layer for the sealing layer and bonding the gas barrier layer on the thermoelectric element layer. It is preferable to dispose between the thermoelectric element layer and the gas barrier layer. Moreover, it is preferable to arrange
  • the sealing layer used in the present invention a layer made of a composition containing polyolefin, epoxy resin, acrylic resin or the like can be used, and a layer made of a composition containing polyolefin is preferable.
  • the composition for forming the sealing layer (hereinafter sometimes referred to as “sealing agent composition”) is preferably an adhesive composition.
  • the adhesiveness of the sealant composition may be sticky (pressure-sensitive adhesiveness) or may be capable of being bonded by heat melting or heat softening. Moreover, adhesiveness may be strengthened by hardening, such as thermosetting.
  • Polyolefins are not particularly limited, and these acid-modified products such as polyethylene, polypropylene, ⁇ -olefin polymers, copolymers of olefin monomers and other monomers (acrylic acid, vinyl acetate, etc.), etc. And modified products such as silane-modified products, rubber-based resins and the like.
  • rubber resins include diene rubbers having carboxylic acid functional groups (hereinafter sometimes referred to as “diene rubbers”), rubber polymers having no carboxylic acid functional groups (hereinafter referred to as “rubber heavy polymers”).
  • the composition containing polyolefin will be described by taking as an example the case where a diene rubber and a rubber polymer are blended with the composition containing polyolefin.
  • the diene rubber is a diene rubber composed of a polymer having a carboxylic acid functional group at a main chain terminal and / or a side chain.
  • the “carboxylic acid functional group” refers to a “carboxyl group or carboxylic anhydride group”.
  • the “diene rubber” refers to “a rubbery polymer having a double bond in the polymer main chain”.
  • the diene rubber is not particularly limited as long as it is a diene rubber having a carboxylic acid functional group.
  • Diene rubbers include carboxylic acid functional group-containing polybutadiene rubber, carboxylic acid functional group-containing polyisoprene rubber, butadiene-isoprene copolymer rubber containing carboxylic acid functional group, and carboxylic acid functional group. Examples thereof include a co-rubber of butadiene and n-butene.
  • a carboxylic acid functional group-containing polyisoprene rubber is preferable from the viewpoint that a sealing layer having sufficiently high cohesion after crosslinking can be efficiently formed.
  • the diene rubber can be used alone or in combination of two or more.
  • the blending amount of the diene rubber is preferably 0.5 to 95.5% by mass, more preferably 1.0 to 50% by mass, and still more preferably 2.0 to 20% by mass in the sealant composition. .
  • a sealing layer having a sufficient cohesive force can be efficiently formed.
  • the composition using such a diene rubber and a rubber polymer has adhesiveness, but a sealing layer having sufficient adhesive force can be obtained by not increasing the blending amount of the diene rubber too much. It can be formed efficiently.
  • the sealant composition containing a diene rubber and a rubber polymer preferably contains a compound capable of reacting with a carboxylic acid functional group of the diene rubber to form a crosslinked structure as a crosslinking agent.
  • the crosslinking agent include isocyanate crosslinking agents, epoxy crosslinking agents, aziridine crosslinking agents, metal chelate crosslinking agents, and the like, and epoxy crosslinking agents are preferred.
  • the rubber polymer refers to “a resin that exhibits rubber elasticity at 25 ° C.”.
  • the rubber polymer is preferably a rubber having a polymethylene type saturated main chain or a rubber having an unsaturated carbon bond in the main chain.
  • Specific examples of such a rubber polymer include isobutylene homopolymer (polyisobutylene, IM), isobutylene and n-butene copolymer, natural rubber (NR), and butadiene homopolymer (butadiene).
  • Rubber, BR chloroprene homopolymer (chloroprene rubber, CR), isoprene homopolymer (isoprene rubber, IR), isobutylene-butadiene copolymer, isobutylene-isoprene copolymer (butyl rubber, IIR), Halogenated butyl rubber, copolymer of styrene and 1,3-butadiene (styrene butadiene rubber, SBR), copolymer of acrylonitrile and 1,3-butadiene (nitrile rubber), styrene-1,3-butadiene-styrene block copolymer Polymer (SBS), styrene-isoprene-styrene block copolymer ( IS), ethylene - propylene - non-conjugated diene terpolymers, and the like.
  • SBS styrene-isoprene-st
  • isobutylene homopolymers, isobutylene and n-butene are used from the viewpoint of being excellent in moisture barrier properties and being easily mixed with the diene rubber (A) and easily forming a uniform sealing layer.
  • An isobutylene polymer such as a copolymer, a copolymer of isobutylene and butadiene, and a copolymer of isobutylene and isoprene is preferable, and a copolymer of isobutylene and isoprene is more preferable.
  • the compounding amount of the rubber-based polymer is preferably 0.1 to 99.5% by mass, more preferably 10 to 99.5% by mass, and further preferably 50 to 99.0% by mass in the sealant composition. %, Particularly preferably 80 to 98.0% by mass.
  • the blending amount of the polyolefin is preferably 20 to 100% by mass, more preferably 30 to 99% by mass, and further preferably 60 to 98.5% by mass in the sealant composition.
  • the epoxy resin is not particularly limited, but a polyfunctional epoxy compound having at least two epoxy groups in the molecule is preferable.
  • epoxy compounds having two or more epoxy groups include bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, bisphenol S diglycidyl ether, brominated bisphenol A diglycidyl ether, brominated bisphenol F diglycidyl ether, and brominated bisphenol S.
  • Diglycidyl ether novolac type epoxy resin (for example, phenol novolac type epoxy resin, cresol novolac type epoxy resin, brominated phenol novolac type epoxy resin), hydrogenated bisphenol A diglycidyl ether, hydrogenated bisphenol F diglycidyl ether Hydrogenated bisphenol S diglycidyl ether, pentaerythritol polyglycidyl ether, 1,6-hexanediol diglycidyl ether Hexahydrophthalic acid diglycidyl ester, neopentyl glycol diglycidyl ether, trimethylolpropane polyglycidyl ether, 2,2-bis (3-glycidyl-4-glycidyloxyphenyl) propane, dimethylol tricyclodecane diglycidyl ether, etc.
  • novolac type epoxy resin for example, phenol novolac type epoxy resin, cresol novolac type epoxy resin, brominated phenol novolac type epoxy
  • polyfunctional epoxy compounds can be used individually by 1 type or in combination of 2 or more types.
  • the lower limit of the molecular weight of the polyfunctional epoxy compound is preferably 700 or more, more preferably 1,200 or more.
  • the upper limit of the molecular weight of the polyfunctional epoxy compound is preferably 5,000 or less, more preferably 4,500 or less.
  • the epoxy equivalent of the polyfunctional epoxy compound is preferably 100 g / eq or more and 500 g / eq or less, more preferably 150 g / eq or more and 300 g / eq or less.
  • the content of the epoxy resin in the sealant composition is preferably 10 to 50% by mass, more preferably 10 to 40% by mass.
  • the acrylic resin is not particularly limited, but a (meth) acrylic acid ester copolymer is preferable.
  • This (meth) acrylic acid ester copolymer includes (meth) acrylic acid alkyl ester having an alkyl group of 1 to 18 carbon atoms in the ester moiety and a crosslinkable functional group-containing ethylenic monomer used as necessary.
  • Preferred examples include monomers and copolymers with other monomers.
  • (Meth) acrylic acid alkyl ester having 1 to 18 carbon atoms in the alkyl group of the ester moiety includes methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, propyl acrylate, propyl methacrylate, isopropyl acrylate, isopropyl methacrylate, n-butyl Examples include acrylate, n-butyl methacrylate, isobutyl acrylate, isobutyl methacrylate, n-hexyl acrylate, n-hexyl methacrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, lauryl acrylate, lauryl methacrylate, stearyl acrylate, stearyl methacrylate and the like.
  • the crosslinkable functional group-containing ethylenic monomer used as necessary is an ethylenic monomer having a functional group such as a hydroxy group, a carboxyl group, an amino group, a substituted amino group, and an epoxy group in the molecule.
  • a functional group such as a hydroxy group, a carboxyl group, an amino group, a substituted amino group, and an epoxy group in the molecule.
  • hydroxy group-containing ethylenically unsaturated compounds and carboxyl group-containing ethylenically unsaturated compounds are used.
  • crosslinkable functional group-containing ethylenic monomer examples include 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, 2-hydroxypropyl methacrylate, 2-hydroxybutyl acrylate.
  • Hydroxyl group-containing (meth) acrylates such as 2-hydroxybutyl methacrylate, 4-hydroxybutyl acrylate and 4-hydroxybutyl methacrylate, carboxyl groups such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, itaconic acid and citraconic acid
  • An ethylenically unsaturated compound is mentioned.
  • the crosslinkable functional group-containing ethylenic monomer may be used alone or in combination of two or more.
  • Other monomers used as necessary include (meth) acrylic acid esters having an alicyclic structure such as cyclohexyl acrylate and isobornyl acrylate; vinyl esters such as vinyl acetate and vinyl propionate; ethylene, Olefins such as propylene and isobutylene; Halogenated olefins such as vinyl chloride and vinylidene chloride; Styrene monomers such as styrene and ⁇ -methylstyrene; Diene monomers such as butadiene, isoprene and chloroprene; Acrylonitrile and methacrylate Examples thereof include nitrile monomers such as nitrile; N, N-dialkyl-substituted acrylamides such as N, N-dimethylacrylamide and N, N-dimethylmethacrylamide.
  • the above (meth) acrylic acid ester, and a crosslinkable functional group-containing ethylenic monomer and other monomers used as necessary are used in a predetermined ratio, and copolymerized using a conventionally known method.
  • the said weight average molecular weight is the value of standard polystyrene conversion measured by the gel permeation chromatography (GPC) method.
  • crosslinking agent used as needed, arbitrary things can be suitably selected from what was conventionally used as a crosslinking agent in acrylic resin.
  • examples of such a cross-linking agent include polyisocyanate compounds, epoxy compounds, melamine resins, urea resins, dialdehydes, methylol polymers, aziridine compounds, metal chelate compounds, metal alkoxides, and metal salts.
  • a polyisocyanate compound is preferable, and when it has a carboxyl group, a metal chelate compound or an epoxy compound is preferable.
  • the content of the acrylic resin in the sealant composition is preferably 30 to 95% by mass, more preferably 40 to 90% by mass.
  • the sealing agent composition may contain two or more of these polyolefins, epoxy resins, acrylic resins and the like.
  • the adhesive composition described in International Publication No. WO2017 / 094591 is used as the sealant composition. Can do.
  • the sealing agent constituting the sealing layer may contain other components as long as the effects of the present invention are not impaired.
  • Other components that can be included in the sealant include, for example, highly heat conductive materials, flame retardants, tackifiers, ultraviolet absorbers, antioxidants, antiseptics, antifungal agents, plasticizers, antifoaming agents, and Examples include wettability adjusting agents.
  • the sealing layer may be a single layer or two or more layers. Further, when two or more layers are laminated, they may be the same or different.
  • the thickness of the sealing layer is preferably 0.5 to 100 ⁇ m, more preferably 3 to 80 ⁇ m, and still more preferably 5 to 50 ⁇ m. Within this range, when a coating layer is laminated on the surface of the thermoelectric element layer, the effect of suppressing the water vapor permeation of the coating layer is enhanced, and the thickness of the coating layer can be easily adjusted to the range described later. is there.
  • the thickness of the coating layer is preferably 100 ⁇ m or less, more preferably 15 to 80 ⁇ m, still more preferably 20 to 50 ⁇ m.
  • the thickness of the covering layer is within this range, it is easy to prevent the covering layer from hindering heat exchange between the thermoelectric element layer and the outside.
  • the thickness of the coating layer is preferably 3 to 50 ⁇ m, and more preferably 5 to 30 ⁇ m.
  • thermoelectric conversion module has a substrate
  • these are reinforced when the shape maintaining performance and strength of the thermoelectric element layer are not sufficient.
  • the substrate of the thermoelectric conversion module used in the present invention is not particularly limited, but it is preferable to use a plastic film that does not affect the decrease in the electrical conductivity of the thermoelectric element layer and the increase in the thermal conductivity.
  • a thin film made of a thermoelectric semiconductor composition which will be described later, is excellent in flexibility, the performance of the thermoelectric element layer can be maintained without thermal deformation of the substrate, and heat resistance and dimensional stability.
  • a polyimide film, a polyamide film, a polyetherimide film, a polyaramid film, and a polyamideimide film are preferable from the viewpoint that the film is high, and a polyimide film is particularly preferable from the viewpoint that the versatility is high.
  • the thickness of the substrate is preferably 1 to 500 ⁇ m, more preferably 10 to 100 ⁇ m, and even more preferably 20 to 75 ⁇ m from the viewpoints of flexibility, heat resistance, and dimensional stability.
  • the film preferably has a decomposition temperature of 300 ° C. or higher.
  • thermoelectric conversion module may have a substrate only on one surface of the thermoelectric element layer, or may have a substrate on both surfaces, but heat exchange between the thermoelectric element layer and the outside is possible by the substrate. In consideration of being disturbed, it is preferable to have a substrate only on one surface of the thermoelectric element layer.
  • the electrode layer used in the present invention is provided for electrical connection between a P-type thermoelectric element layer and an N-type thermoelectric element layer that constitute a thermoelectric element layer described later.
  • the electrode material include gold, silver, nickel, copper, and alloys thereof.
  • the thickness of the electrode layer is preferably 10 nm to 200 ⁇ m, more preferably 30 nm to 150 ⁇ m, and still more preferably 50 nm to 120 ⁇ m. If the thickness of the electrode layer is within the above range, the electrical conductivity is high and the resistance is low, and the total electrical resistance value of the thermoelectric element layer can be kept low. Further, sufficient strength as an electrode can be obtained.
  • thermoelectric element layer of the thermoelectric conversion module used in the present invention has a configuration in which the adjacent P-type thermoelectric element layer and the N-type thermoelectric element layer are separated so that the thermoelectric element layer constitutes a ⁇ -type thermoelectric element.
  • it includes a P-type thermoelectric element layer and an N-type thermoelectric element layer, and the P-type thermoelectric element layer and the N-type thermoelectric element layer are alternately arranged in series in the in-plane direction, and electrically
  • a thermoelectric element layer hereinafter also referred to as “in-plane type thermoelectric element layer” configured to be connected in series.
  • Another typical thermoelectric element is a ⁇ -type thermoelectric element.
  • thermoelectric conversion module of the present invention is preferably applied when the thermoelectric element is an in-plane type.
  • the connection between the P type thermoelectric element layer and the N type thermoelectric element layer is made of a metal material having high conductivity from the viewpoint of connection stability and thermoelectric performance. It may be through layers.
  • thermoelectric element layer used in the present invention is preferably a layer made of a thermoelectric semiconductor composition containing thermoelectric semiconductor fine particles, a heat resistant resin, and one or both of an ionic liquid and an inorganic ionic compound on a substrate.
  • thermoelectric semiconductor fine particles The thermoelectric semiconductor particles used for the thermoelectric element layer are preferably pulverized to a predetermined size using a pulverizer or the like.
  • the material constituting the P-type thermoelectric element layer and the N-type thermoelectric element layer used in the present invention is not particularly limited as long as it is a material that can generate a thermoelectromotive force by applying a temperature difference.
  • Bismuth-tellurium-based thermoelectric semiconductor materials such as P-type bismuth telluride and N-type bismuth telluride; Telluride-based thermoelectric semiconductor materials such as GeTe and PbTe; Antimony-tellurium-based thermoelectric semiconductor materials; ZnSb, Zn 3 Sb 2, Zn 4 Sb 3 etc.
  • Zinc-antimony-based thermoelectric semiconductor materials silicon-germanium-based thermoelectric semiconductor materials such as SiGe; bismuth selenide-based thermoelectric semiconductor materials such as Bi 2 Se 3 ; ⁇ -FeSi 2 , CrSi 2 , MnSi 1.73 , Mg 2 Si Silicide-based thermoelectric semiconductor materials such as oxide-based thermoelectric semiconductor materials; FeVA1, FeVA1Si, Heusler materials such EVTiAl, sulfide-based thermoelectric semiconductor materials such as TiS 2 is used.
  • thermoelectric semiconductor material used in the present invention is preferably a bismuth-tellurium-based thermoelectric semiconductor material such as P-type bismuth telluride or N-type bismuth telluride.
  • P-type bismuth telluride carriers are holes and the Seebeck coefficient is a positive value, and for example, those represented by Bi X Te 3 Sb 2-X are preferably used.
  • X is preferably 0 ⁇ X ⁇ 0.8, and more preferably 0.4 ⁇ X ⁇ 0.6. It is preferable that X is greater than 0 and less than or equal to 0.8 because the Seebeck coefficient and electrical conductivity are increased, and the characteristics as a p-type thermoelectric conversion material are maintained.
  • the N-type bismuth telluride preferably has an electron as a carrier and a negative Seebeck coefficient, for example, Bi 2 Te 3-Y Se Y.
  • the blending amount of the thermoelectric semiconductor fine particles in the thermoelectric semiconductor composition is preferably 30 to 99% by mass. More preferably, it is 50 to 96% by mass, and still more preferably 70 to 95% by mass. If the compounding amount of the thermoelectric semiconductor fine particles is within the above range, the Seebeck coefficient (absolute value of the Peltier coefficient) is large, the decrease in electrical conductivity is suppressed, and only the thermal conductivity is decreased, thereby exhibiting high thermoelectric performance. In addition, it is preferable to obtain a film having sufficient film strength and flexibility.
  • the average particle diameter of the thermoelectric semiconductor fine particles is preferably 10 nm to 200 ⁇ m, more preferably 10 nm to 30 ⁇ m, still more preferably 50 nm to 10 ⁇ m, and particularly preferably 1 to 6 ⁇ m. If it is in the said range, uniform dispersion
  • a method for obtaining thermoelectric semiconductor fine particles by pulverizing the thermoelectric semiconductor material is not particularly limited, and is a jet mill, ball mill, bead mill, colloid mill, conical mill, disc mill, edge mill, milling mill, hammer mill, pellet mill, wheelie mill, roller.
  • thermoelectric semiconductor fine particles was obtained by measuring with a laser diffraction particle size analyzer (CILAS, type 1064), and was the median value of the particle size distribution.
  • thermoelectric semiconductor fine particles have been subjected to an annealing treatment (hereinafter sometimes referred to as “annealing treatment A”).
  • annealing treatment A By performing the annealing treatment A, the crystallinity of the thermoelectric semiconductor fine particles is improved, and further, the surface oxide film of the thermoelectric semiconductor fine particles is removed, so that the Seebeck coefficient (absolute value of the Peltier coefficient) of the thermoelectric conversion material increases.
  • the thermoelectric figure of merit can be further improved.
  • Annealing treatment A is not particularly limited, but under an inert gas atmosphere such as nitrogen or argon in which the gas flow rate is controlled so as not to adversely affect the thermoelectric semiconductor fine particles before preparing the thermoelectric semiconductor composition.
  • thermoelectric semiconductor fine particles such as hydrogen or under vacuum conditions
  • a mixed gas atmosphere of an inert gas and a reducing gas preferably carried out under a reducing gas atmosphere such as hydrogen or under vacuum conditions
  • a reducing gas atmosphere such as hydrogen or under vacuum conditions
  • a mixed gas atmosphere of an inert gas and a reducing gas preferably carried out under a reducing gas atmosphere.
  • the specific temperature condition depends on the thermoelectric semiconductor fine particles used, but it is usually preferable to carry out the treatment at a temperature below the melting point of the fine particles and at 100 to 1500 ° C. for several minutes to several tens of hours.
  • the heat resistant resin used in the present invention serves as a binder between the thermoelectric semiconductor fine particles, and is for increasing the flexibility of the thermoelectric conversion material.
  • the heat-resistant resin is not particularly limited, but when the thermoelectric semiconductor fine particles are crystal-grown by annealing treatment or the like for the thin film made of the thermoelectric semiconductor composition, various materials such as mechanical strength and thermal conductivity as the resin are used.
  • a heat resistant resin that maintains the physical properties without being damaged is used.
  • the heat resistant resin include polyamide resin, polyamideimide resin, polyimide resin, polyetherimide resin, polybenzoxazole resin, polybenzimidazole resin, epoxy resin, and copolymers having a chemical structure of these resins. Is mentioned.
  • the heat resistant resins may be used alone or in combination of two or more.
  • polyamide resin, polyamideimide resin, polyimide resin, and epoxy resin are preferable because they have higher heat resistance and do not adversely affect the crystal growth of thermoelectric semiconductor fine particles in the thin film, and have excellent flexibility.
  • More preferred are polyamide resins, polyamideimide resins, and polyimide resins.
  • a polyimide resin is more preferable as the heat-resistant resin in terms of adhesion to the polyimide film.
  • the polyimide resin is a general term for polyimide and its precursor.
  • the heat-resistant resin preferably has a decomposition temperature of 300 ° C. or higher. If the decomposition temperature is within the above range, the flexibility of the thermoelectric conversion material can be maintained without losing the function as a binder even when the thin film made of the thermoelectric semiconductor composition is annealed as described later.
  • the heat-resistant resin preferably has a mass reduction rate at 300 ° C. by thermogravimetry (TG) of 10% or less, more preferably 5% or less, and still more preferably 1% or less. . If the mass reduction rate is in the above range, the flexibility of the thermoelectric conversion material can be maintained without losing the function as a binder even when the thin film made of the thermoelectric semiconductor composition is annealed as described later. .
  • TG thermogravimetry
  • the blending amount of the heat resistant resin in the thermoelectric semiconductor composition is preferably 0.1 to 40% by mass, more preferably 0.5 to 20% by mass, and further preferably 1 to 20% by mass.
  • a film having both high thermoelectric performance and film strength can be obtained.
  • the ionic liquid used in the present invention is a molten salt formed by combining a cation and an anion, and refers to a salt that can exist as a liquid in a wide temperature range of ⁇ 50 to 500 ° C.
  • Ionic liquids have features such as extremely low vapor pressure, non-volatility, excellent thermal stability and electrochemical stability, low viscosity, and high ionic conductivity. Therefore, the reduction of the electrical conductivity between the thermoelectric semiconductor fine particles can be effectively suppressed as a conductive auxiliary agent.
  • the ionic liquid has high polarity based on the aprotic ionic structure and is excellent in compatibility with the heat-resistant resin, the electric conductivity of the thermoelectric conversion material can be made uniform.
  • ionic liquids can be used.
  • nitrogen-containing cyclic cation compounds such as pyridinium, pyrimidinium, pyrazolium, pyrrolidinium, piperidinium, imidazolium and their derivatives; tetraalkylammonium-based amine cations and their derivatives; phosphonium, trialkylsulfonium, tetraalkylphosphonium, etc.
  • the cation component of the ionic liquid is a pyridinium cation and a derivative thereof from the viewpoints of high temperature stability, compatibility with thermoelectric semiconductor fine particles and resin, and suppression of decrease in electrical conductivity of the gap between thermoelectric semiconductor fine particles. It is preferable to contain at least one selected from imidazolium cations and derivatives thereof.
  • ionic liquids in which the cation component includes a pyridinium cation and derivatives thereof include 4-methyl-butylpyridinium chloride, 3-methyl-butylpyridinium chloride, 4-methyl-hexylpyridinium chloride, 3-methyl-hexylpyridinium Chloride, 4-methyl-octylpyridinium chloride, 3-methyl-octylpyridinium chloride, 3,4-dimethyl-butylpyridinium chloride, 3,5-dimethyl-butylpyridinium chloride, 4-methyl-butylpyridinium tetrafluoroborate, 4- And methyl-butylpyridinium hexafluorophosphate, 1-butyl-4-methylpyridinium bromide, 1-butyl-4-methylpyridinium hexafluorophosphate, and the like.Of these, 1-butyl-4-methylpyridinium bromide and 1-butyl-4-methylpyr
  • ionic liquids in which the cation component includes an imidazolium cation and derivatives thereof include [1-butyl-3- (2-hydroxyethyl) imidazolium bromide], [1-butyl-3- (2 -Hydroxyethyl) imidazolium tetrafluoroborate], 1-ethyl-3-methylimidazolium chloride, 1-ethyl-3-methylimidazolium bromide, 1-butyl-3-methylimidazolium chloride, 1-hexyl-3 -Methylimidazolium chloride, 1-octyl-3-methylimidazolium chloride, 1-decyl-3-methylimidazolium chloride, 1-decyl-3-methylimidazolium bromide, 1-dodecyl-3-methylimidazolium chloride, 1-Tetradecyl-3-methylimida 1-ethyl-3-methylimidazolium te
  • the ionic liquid preferably has an electric conductivity of 10 ⁇ 7 S / cm or more. If the ionic conductivity is in the above range, it is possible to effectively suppress a reduction in electrical conductivity between the thermoelectric semiconductor fine particles as a conductive auxiliary agent.
  • the above ionic liquid preferably has a decomposition temperature of 300 ° C. or higher. If the decomposition temperature is within the above range, the effect as a conductive additive can be maintained even when a thin film made of a thermoelectric semiconductor composition is annealed as described later.
  • the ionic liquid has a mass reduction rate at 300 ° C. by thermogravimetry (TG) of preferably 10% or less, more preferably 5% or less, and further preferably 1% or less. .
  • TG thermogravimetry
  • the blending amount of the ionic liquid in the thermoelectric semiconductor composition is preferably 0.01 to 50% by mass, more preferably 0.5 to 30% by mass, and further preferably 1.0 to 20% by mass.
  • the blending amount of the ionic liquid is within the above range, a decrease in electrical conductivity is effectively suppressed, and a film having high thermoelectric performance can be obtained.
  • the inorganic ionic compound used in the present invention is a compound composed of at least a cation and an anion.
  • Inorganic ionic compounds exist as solids in a wide temperature range of 400 to 900 ° C, and have high ionic conductivity.
  • As a conductive additive the electrical conductivity between thermoelectric semiconductor particles is reduced. Can be suppressed.
  • a metal cation is used as the cation.
  • the metal cation include an alkali metal cation, an alkaline earth metal cation, a typical metal cation, and a transition metal cation, and an alkali metal cation or an alkaline earth metal cation is more preferable.
  • the alkali metal cation include Li + , Na + , K + , Rb + , Cs + and Fr + .
  • Examples of the alkaline earth metal cation include Mg 2+ , Ca 2+ , Sr 2+ and Ba 2+ .
  • anion examples include F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , OH ⁇ , CN ⁇ , NO 3 ⁇ , NO 2 ⁇ , ClO ⁇ , ClO 2 ⁇ , ClO 3 ⁇ , ClO 4 ⁇ , CrO 4 2. -, HSO 4 -, SCN - , BF 4 -, PF 6 - , and the like.
  • a cation component such as potassium cation, sodium cation or lithium cation, chloride ion such as Cl ⁇ , AlCl 4 ⁇ , Al 2 Cl 7 ⁇ and ClO 4 ⁇ , bromide ion such as Br ⁇ , I ⁇ and the like
  • chloride ion such as Cl ⁇ , AlCl 4 ⁇ , Al 2 Cl 7 ⁇ and ClO 4 ⁇
  • bromide ion such as Br ⁇ , I ⁇ and the like
  • anion components such as NO 3 ⁇ , OH ⁇ and CN ⁇ are mentioned. It is done.
  • the cationic component of the inorganic ionic compound is potassium from the viewpoints of high temperature stability, compatibility with thermoelectric semiconductor fine particles and resin, and suppression of decrease in electrical conductivity of the gap between thermoelectric semiconductor fine particles. It is preferable to contain at least one selected from sodium, lithium, and lithium.
  • the anionic component of the inorganic ionic compound preferably contains a halide anion, and more preferably contains at least one selected from Cl ⁇ , Br ⁇ , and I ⁇ .
  • inorganic ionic compounds in which the cation component includes a potassium cation include KBr, KI, KCl, KF, KOH, K 2 CO 3 and the like. Of these, KBr and KI are preferred.
  • Specific examples of inorganic ionic compounds in which the cation component contains a sodium cation include NaBr, NaI, NaOH, NaF, Na 2 CO 3 and the like. Among these, NaBr and NaI are preferable.
  • Specific examples of the inorganic ionic compound in which the cation component includes a lithium cation include LiF, LiOH, LiNO 3 and the like. Among these, LiF and LiOH are preferable.
  • the inorganic ionic compound preferably has an electric conductivity of 10 ⁇ 7 S / cm or more, and more preferably 10 ⁇ 6 S / cm or more. If electrical conductivity is the said range, the reduction of the electrical conductivity between thermoelectric semiconductor fine particles can be effectively suppressed as a conductive support agent.
  • the inorganic ionic compound preferably has a decomposition temperature of 400 ° C. or higher. If the decomposition temperature is within the above range, the effect as a conductive additive can be maintained even when a thin film made of a thermoelectric semiconductor composition is annealed as described later.
  • the inorganic ionic compound preferably has a mass reduction rate at 400 ° C. by thermogravimetry (TG) of 10% or less, more preferably 5% or less, and preferably 1% or less. Further preferred.
  • TG thermogravimetry
  • the blending amount of the inorganic ionic compound in the thermoelectric semiconductor composition is preferably 0.01 to 50% by mass, more preferably 0.5 to 30% by mass, and still more preferably 1.0 to 10% by mass. .
  • the blending amount of the inorganic ionic compound is within the above range, a decrease in electrical conductivity can be effectively suppressed, and as a result, a film having improved thermoelectric performance can be obtained.
  • the total content of the inorganic ionic compound and the ionic liquid in the thermoelectric semiconductor composition is preferably 0.01 to 50% by mass, more preferably Preferably it is 0.5 to 30% by mass, more preferably 1.0 to 10% by mass.
  • the thickness of the thermoelectric element layer composed of the P-type thermoelectric element layer and the N-type thermoelectric element layer is not particularly limited, and may be the same thickness or a different thickness (a step is generated in the connection portion). From the viewpoint of flexibility and material cost, the thickness of the P-type thermoelectric element and the N-type thermoelectric element is preferably 0.1 to 100 ⁇ m, and more preferably 1 to 50 ⁇ m.
  • the thermoelectric conversion module of the present invention may include a high thermal conductive layer on the coating layer.
  • the high thermal conductive layer can efficiently provide a temperature difference between the electrode portions of the thermoelectric element layer.
  • the arrangement of the high thermal conductive layer used in the present invention is not particularly limited, but is preferably adjusted as appropriate depending on the thermoelectric elements of the thermoelectric conversion module to be used, that is, the arrangement of the P-type thermoelectric element and the N-type thermoelectric element and their shapes.
  • the high thermal conductive layers 8a and 8b are intermittently arranged in the in-plane direction on the surfaces of the coating layers 7a and 7b.
  • the high thermal conductive layer may be provided on the surface of the coating layer via another layer.
  • the high thermal conductive layer 8a may be provided on the surface of the substrate when the coating layer is not present on the surface of the substrate opposite to the side where the thermoelectric element layer is present.
  • the thermoelectric conversion module has the high thermal conductive layer, it becomes easy to impart a temperature difference in the in-plane direction of the thermoelectric element.
  • the thermoelectric element layer is an in-plane type thermoelectric element layer, the portion where the high thermal conductive layer is located on the surface of the coating layer or the surface of the substrate corresponds to the boundary between a pair of P-type thermoelectric element and N-type thermoelectric element It is preferable that the part to be included is included.
  • the length of the portion where the high thermal conductive layer is located on the surface of the coating layer or the surface of the substrate is the length of the portion corresponding to the full width in the series direction consisting of a pair of P-type thermoelectric elements and N-type thermoelectric elements.
  • the ratio is preferably 0.30 to 0.70, more preferably 0.40 to 0.60, still more preferably 0.48 to 0.52, particularly preferably 0.50. Is the ratio. Within this range, the effect of selectively radiating heat in a specific direction is further enhanced, and a temperature difference can be efficiently imparted in the in-plane direction. Further, as shown in FIG.
  • the high thermal conductive layers 8a and 8b are both a pair of P-type thermoelectric element and N-type thermoelectric element. It is preferable that the elements are disposed across the boundary between the elements, and the high thermal conductive layers 8a and 8b are alternately disposed at every other boundary.
  • the high thermal conductive layer used in the present invention is formed from a high thermal conductive material.
  • the method for forming the high thermal conductive layer is not particularly limited, but a sheet-like high thermal conductive material is previously obtained by a known physical treatment or chemical treatment mainly based on a photolithography method, or a combination thereof. And a method of processing into a predetermined pattern shape. Then, it is preferable to form the patterned high heat conductive layer obtained on the thermoelectric conversion module through the sealing layer etc. which have adhesiveness.
  • the substrate is heated with an acrylic adhesive or the like different from the sealing layer of the present invention.
  • the conductive layer may be fixed.
  • Examples of the high heat conductive material include single metals such as copper, silver, iron, nickel, chromium, and aluminum, and alloys such as stainless steel and brass (brass). Among these, copper (including oxygen-free copper) and stainless steel are preferred, and copper is more preferred because of its high thermal conductivity and easy workability.
  • Oxygen-free oxygen-free copper generally refers to high purity copper of 99.95% (3N) or more that does not contain oxides.
  • the Japanese Industrial Standard defines oxygen-free copper (JIS H 3100, C1020) and oxygen-free copper for electron tubes (JIS H 3510, C1011).
  • the thermal conductivity of the high thermal conductive layer is preferably 5 to 500 W / (m ⁇ K), more preferably 12 to 450 W / (m ⁇ K), and still more preferably 15 to 420 W / (m ⁇ K). ).
  • a temperature difference can be efficiently imparted in the in-plane direction of the thermoelectric conversion module.
  • the thickness of the high thermal conductive layer is preferably 40 to 550 ⁇ m, more preferably 60 to 530 ⁇ m, and further preferably 80 to 510 ⁇ m. If the thickness of the high thermal conductive layer is within this range, the effect of selectively radiating heat in a specific direction is further enhanced, and the temperature can be efficiently increased in the in-plane direction of the thermoelectric conversion module including the in-plane type thermoelectric element layer. A difference can be given.
  • thermoelectric conversion module of the present invention can be used as either a Seebeck element or a Peltier element.
  • thermoelectric conversion module includes an in-plane type thermoelectric element
  • the thermoelectric conversion module can be used as a Seebeck element and has high thermoelectric conversion efficiency. It is preferable because a module can be easily obtained.
  • thermoelectric conversion module of the present invention includes, for example, a step of forming the thermoelectric element layer, and a step of forming the covering layer on at least one surface of the thermoelectric element layer, wherein the covering layer is a metal, an inorganic compound, And a production method having a gas barrier layer mainly composed of one or more selected from the group consisting of resins.
  • a step of forming the thermoelectric element layer and a step of forming the covering layer on at least one surface of the thermoelectric element layer, wherein the covering layer is a metal, an inorganic compound, And a production method having a gas barrier layer mainly composed of one or more selected from the group consisting of resins.
  • the manufacturing process of the thermoelectric conversion module preferably includes a thermoelectric element layer forming process for forming a thermoelectric element layer.
  • a process film may be used instead of the substrate, and the thermoelectric element layer may be obtained as a single layer by removing the process film after the formation of the thermoelectric element layer.
  • this process will be described by taking as an example the case where a thermoelectric element layer is provided on a substrate.
  • the thermoelectric element layer used in the present invention is preferably formed from the thermoelectric semiconductor composition on one surface of the substrate.
  • thermoelectric semiconductor compositions examples include known methods such as screen printing, flexographic printing, gravure printing, spin coating, dip coating, die coating, spray coating, bar coating, and doctor blade. There is no particular restriction.
  • the coating film is formed in a pattern, screen printing, slot die coating, or the like that can be easily formed using a screen plate having a desired pattern is preferably used.
  • a thin film is formed by drying the obtained coating film.
  • a drying method conventionally known drying methods such as hot air drying, hot roll drying, and infrared irradiation can be adopted.
  • the heating temperature is usually 80 to 150 ° C., and the heating time is usually several seconds to several tens of minutes, although it varies depending on the heating method.
  • the heating temperature is not particularly limited as long as it is in a temperature range in which the used solvent can be dried.
  • the manufacturing process of the thermoelectric conversion module includes a coating layer forming process.
  • the covering layer forming step is, for example, a step of forming a gas barrier layer constituting the covering layer on the thermoelectric element layer.
  • the thermoelectric conversion module may include a step of forming a coating layer on the surface of the substrate opposite to the side where the thermoelectric element layer exists.
  • the gas barrier layer is formed by, for example, forming the above-described metal or inorganic compound on the base material, applying / drying a polymer compound, and, if necessary, a subsequent modification treatment, to form a gas barrier with a base material.
  • a transition layer having no self-supporting property is provided on the process film, a gas barrier layer is formed on the transition layer, and the obtained gas barrier layer is, for example, a sealing layer with a release film and is adhesive.
  • the process film removes the release film and bond the sealing layer to the thermoelectric element layer.
  • a method of removing the process film is also mentioned. In this case, since peeling occurs between the process film and the transition layer when the process film is removed, the process film can be easily separated from the gas barrier layer.
  • the covering layer forming step may include a sealing layer forming step.
  • a sealing layer forming step is a step of forming a sealing layer on the surface of the thermoelectric element layer.
  • substrate may be included.
  • the sealing layer can be formed by a known method.
  • the sealing layer may be directly formed on the surface of the thermoelectric element layer, or a sealing layer previously formed on a release sheet may be formed on the thermoelectric element layer.
  • the sealing layer may be transferred to the thermoelectric element layer by bonding.
  • thermoelectric conversion module it is preferable to further include an electrode forming step of forming an electrode layer using the electrode material described above on the film substrate.
  • an electrode forming step of forming an electrode layer using the electrode material described above on the film substrate.
  • a known physical treatment or chemical treatment mainly based on a photolithography method or those Examples thereof include a method of processing into a predetermined pattern shape by using in combination, or a method of directly forming a pattern of the electrode layer by a screen printing method, an ink jet method or the like.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • ALD atomic layer deposition
  • various coatings such as dip coating, spin coating, spray coating, gravure coating, die coating, and doctor blade
  • a wet process such as an electrodeposition method, a silver salt method, an electrolytic plating method, an electroless plating method, lamination of a metal foil, and the like, which are appropriately selected according to the material of the electrode layer.
  • the manufacturing process of the thermoelectric conversion module preferably includes a high thermal conductive layer forming process.
  • the high thermal conductive layer forming step is a step of forming a high thermal conductive layer on the surface of the coating layer or the substrate.
  • the high thermal conductive layer can be formed by a known method.
  • the high thermal conductive layer may be formed directly on the surface of the coating layer or the substrate, or as described above, the photolithography method is mainly used. What was processed into a predetermined pattern shape by a known physical treatment or chemical treatment, or a combination thereof may be bonded to the coating layer via an adhesive.
  • thermoelectric conversion module that can suppress the intrusion of water vapor in the atmosphere into the thermoelectric element layer by a simple method.
  • thermoelectric conversion modules produced in Examples and Comparative Examples, and the water vapor permeability of the gas barrier layer with a base material and the sealing layer constituting the coating layer were performed by the following methods.
  • A Evaluation of electrical resistance value The electrical resistance value between the extraction electrode portions of the obtained thermoelectric conversion module was measured using a digital high tester (manufactured by Hioki Electric Co., Ltd., model name: 3801-50) in an environment of 25 ° C. ⁇ 50% RH. Measured below.
  • WVTR Water vapor transmission rate
  • MOCON apparatus name: AQUATRAN
  • FIG. 3 is a plan view showing the configuration of the thermoelectric element layer used in the example, (a) shows a conceptual diagram of the arrangement of electrodes formed on the film substrate, and (b) shows a P-type formed on the electrodes. And the conceptual diagram of arrangement
  • a polyimide film substrate (made by Ube Eximo Co., Ltd., product name: Iupicel N, polyimide substrate thickness: 50 ⁇ m, copper foil: 9 ⁇ m) was prepared, and the copper foil on the polyimide film substrate 12 was ferric chloride.
  • a pair of P-type thermoelectric elements and N-type thermoelectric elements 380 are electrically connected in series in the plane of the polyimide film substrate 12 by arranging a pair of elements 14 adjacent to each other so as to alternately contact with the sides of 6 mm.
  • a thermoelectric element layer 16 was prepared so as to be.
  • 38 pairs of P-type thermoelectric elements 15 and N-type thermoelectric elements 14 connected in one row were provided in 10 rows.
  • an electrode 13a is a connecting electrode for each row of thermoelectric element layers
  • an electrode 13b is an electromotive force extraction electrode.
  • FIG. 3 conceptually shows the arrangement of electrodes and elements, and the number of electrodes and thermoelectric element layers actually produced is different.
  • thermoelectric semiconductor fine particles A P-type bismuth telluride Bi 0.4 Te 3 Sb 1.6 (manufactured by High-Purity Chemical Laboratory, particle size: 180 ⁇ m), which is a bismuth-tellurium-based thermoelectric semiconductor material, is converted into a planetary ball mill (French Japan, Premium line P).
  • the thermoelectric semiconductor fine particles T1 having an average particle diameter of 1.2 ⁇ m were prepared by pulverizing under a nitrogen gas atmosphere using ⁇ 7).
  • the thermoelectric semiconductor fine particles obtained by pulverization were subjected to particle size distribution measurement with a laser diffraction particle size analyzer (manufactured by Malvern, Mastersizer 3000).
  • N-type bismuth telluride Bi 2 Te 3 (manufactured by High Purity Chemical Laboratory, particle size: 180 ⁇ m), which is a bismuth-tellurium-based thermoelectric semiconductor material, is pulverized in the same manner as described above, and thermoelectric semiconductor fine particles having an average particle size of 1.4 ⁇ m. T2 was produced.
  • Coating liquid (P) 90 parts by mass of fine particles T1 of the obtained P-type bismuth-tellurium-based thermoelectric semiconductor material, polyamic acid (poly (pyromellitic dianhydride-co-4,4, manufactured by Sigma-Aldrich) as a polyimide precursor as a heat-resistant resin ′ -Oxydianiline) amic acid solution, solvent: N-methylpyrrolidone, solid content concentration: 15% by mass), and 5 parts by mass as ionic liquid [1-butyl-3- (2-hydroxyethyl) imidazolium bromide]
  • a coating liquid (P) made of a thermoelectric semiconductor composition in which 5 parts by mass were mixed and dispersed was prepared.
  • Coating liquid (N) 90 parts by mass of the fine particles T2 of the obtained N-type bismuth-tellurium-based thermoelectric semiconductor material, polyamic acid (poly (pyromellitic dianhydride-co-4,4, manufactured by Sigma-Aldrich), which is a polyimide precursor as a heat resistant resin ′ -Oxydianiline) amic acid solution, solvent: N-methylpyrrolidone, solid content concentration: 15% by mass), and 5 parts by mass as ionic liquid [1-butyl-3- (2-hydroxyethyl) imidazolium bromide]
  • a coating liquid (N) comprising a thermoelectric semiconductor composition in which 5 parts by mass were mixed and dispersed was prepared.
  • the compounding mass part in the said description is the quantity containing a solvent.
  • the coating liquid (P) prepared above was applied to a predetermined position on the polyimide film on which the electrode pattern was formed by screen printing, and the temperature was 150 The film was dried in an argon atmosphere at 10 ° C. for 10 minutes to form a thin film having a thickness of 50 ⁇ m.
  • the coating liquid (N) prepared above is applied to a predetermined position on the polyimide film, dried at a temperature of 150 ° C. for 10 minutes in an argon atmosphere, and a thin film having a thickness of 50 ⁇ m is formed. Formed.
  • thermoelectric semiconductor material fine particles were grown to form a thermoelectric element layer composed of a P-type thermoelectric element layer and an N-type thermoelectric element layer.
  • thermoelectric conversion module was prepared by attaching a sealing layer (thickness 25 ⁇ m, WVTR 6.0 g ⁇ m ⁇ 2 ⁇ day ⁇ 1 ) to the surface of the thermoelectric element layer opposite to the side on which the polyimide film substrate was present.
  • a sealing layer As a method for forming the sealing layer, first, a pressure-sensitive adhesive sheet-like material was obtained by coating and drying a composition containing a polyolefin having the following composition on a release film by a known method. Thereafter, a laminator was used for the thermoelectric element layer, and an adhesive sheet was stuck on the surface of the thermoelectric element layer, and then the release film was peeled to form a sealing layer.
  • thermoelectric conversion module a sealing layer was formed so as to cover the end portion of the thermoelectric element layer.
  • metal me S manufactured by Toray Film Processing Co., Ltd., aluminum vapor deposition film (thickness 50 nm) / PET (thickness 25 ⁇ m), WVTR 3.1 g ⁇ m ⁇ 2 ⁇ day ⁇ 1 ] was pasted so that the PET faced the sealing layer to obtain a thermoelectric conversion module.
  • the composition containing polyolefin is 5 parts by mass of carboxylic acid functional group-containing polyisoprene rubber (manufactured by Kuraray Co., Ltd., LIR410, number average molecular weight 30,000, number of carboxylic acid functional groups per molecule: 10), Rubber polymer having no acid functional group: copolymer of isobutylene and isoprene (manufactured by Nippon Butyl, Exxon Butyl 268, number average molecular weight 260,000), 100 parts by mass, epoxy compound (manufactured by Mitsubishi Chemical, TC- 5) 2 parts by mass were dissolved in toluene and prepared.
  • the compounding mass part in the said description is converted into the quantity of an active ingredient, and does not include the quantity of a solvent.
  • the active ingredient concentration of the composition containing polyolefin was 25% by mass.
  • Example 2 In Example 1, the sealing layer and the gas barrier film are further laminated in this order on the surface of the polyimide film substrate opposite to the side where the thermoelectric element layer exists (the lamination of the gas barrier film to the sealing layer is performed).
  • the thermoelectric conversion module was manufactured in the same manner as in Example 1 so that the PET faced the sealing layer.
  • Example 3 the gas barrier film laminated on the sealing layer was used as a transparent gas barrier film [Japanese Patent Application No. 2015-218292, transparent gas barrier layer used in Example 1, perhydropolysilazane layer (thickness 150 nm) / PET (thickness). 25 ⁇ m), and a thermoelectric conversion module was produced in the same manner as in Example 2 except that the WVTR was changed to 0.005 g ⁇ m ⁇ 2 ⁇ day ⁇ 1 ].
  • thermoelectric conversion module was produced in the same manner as in Example 1 except that the gas barrier film was not laminated on the sealing layer.
  • Example 1 is the same as Example 1 except that the gas barrier film is not laminated on the sealing layer, and the sealing layer is formed on the surface of the polyimide film substrate opposite to the thermoelectric element layer. Thus, a thermoelectric conversion module was produced.
  • thermoelectric conversion modules obtained in Examples 1 to 3 and Comparative Examples 1 and 2 were stored in an environment of 60 ° C. ⁇ 90% RH for 1000 hours, and the thermoelectric conversion module take-out electrode part before and after the test The electrical resistance value between them was measured.
  • the measurement results are shown in Table 1 together with the water vapor permeability of the used sealing layer and gas barrier layer.
  • thermoelectric conversion module in Example 1 in which the sealing layer and the gas barrier layer are laminated in this order on the surface of the thermoelectric element layer on the side opposite to the side having the substrate, the surface on the side opposite to the side having the substrate similarly. While the sealing layer is included, it can be seen that the resistance increase rate after the durability test is suppressed as compared with Comparative Example 1 in which the gas barrier layer is not stacked.
  • Example 2 in which a sealing layer and a gas barrier layer were laminated on both surfaces, that is, on the surface of the thermoelectric element layer opposite to the substrate and on the surface of the substrate opposite to the thermoelectric element layer in the thermoelectric conversion module 3 and 3, although depending on the type of gas barrier layer (actually WVTR value), the resistance increase rate after the durability test is smaller than that in Example 1, and the durability test time of this test is 10 It can be seen that the increase is less than%. Moreover, it turns out that the resistance increase rate after a durability test is suppressed compared with the comparative example 2 which does not laminate
  • thermoelectric conversion module of the present invention Since the thermoelectric conversion module of the present invention has excellent durability, it is expected that the thermoelectric performance is maintained over a long period of time. For this reason, it can be suitably used when installed in an environment of a waste heat source or a heat radiation source, or in a hot and humid environment.
  • Thermoelectric conversion module 2 Substrate 3: Electrode 4: N-type thermoelectric element 5: P-type thermoelectric element 6: Thermoelectric element layer 7a, 7b: Cover layer (gas barrier layer) 8a, 8b: High thermal conductive layer 12: Polyimide film substrate 13: Electrode 13a: Connecting electrode 13b in the row of thermoelectric element layers: Electromotive force extracting electrode 14: N-type thermoelectric element 15: P-type thermoelectric element 16: Thermoelectric element layer (Including electrode part)

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

耐久性に優れた熱電変換モジュールを提供するものであり、熱電素子層の少なくとも一方の面に被覆層を含む熱電変換モジュールであって、前記被覆層が、金属、無機化合物、及び高分子化合物からなる群から選ばれる一種以上を主成分とするガスバリア層を有する、熱電変換モジュール。

Description

熱電変換モジュール
 本発明は、熱電変換モジュールに関する。
 従来から、熱電変換を利用したエネルギー変換技術として、熱電発電技術及びペルチェ冷却技術が知られている。熱電発電技術は、ゼーベック効果による熱エネルギーから電気エネルギーへの変換を利用した技術であり、この技術は、特にビル、工場等で使用される化石燃料資源等から発生する未利用の廃熱エネルギーを電気エネルギーとして、しかも動作コストを掛ける必要なく、回収できる省エネルギー技術として大きな脚光を浴びている。これに対し、ペルチェ冷却技術は、熱電発電の逆で、ペルチェ効果による電気エネルギーから熱エネルギーへの変換を利用した技術であり、この技術は、例えば、ワインクーラー、小型で携帯が可能な冷蔵庫、またコンピュータ等に用いられるCPU用の冷却、さらに光通信の半導体レーザー発振器の温度制御等の精密な温度制御が必要な部品や装置に用いられている。
 このような熱電変換を利用した熱電変換モジュールにおいては、高温多湿等、設置場所の環境条件によっては、熱電素子層の熱電性能が低下、及び金属電極の抵抗が増加し、長期間の使用に耐えないという問題がある。
 特許文献1では、P型材料からなる薄膜のP型熱電素子とN型材料からなる薄膜のN型熱電素子とで構成された熱電変換モジュールの両面に、2種類以上の熱伝導率の異なる材料で構成された柔軟性を有するフィルム状基板を設け、熱伝導率の高い材料が前記基板の外面の一部分に位置するように構成した熱電変換素子が開示されている。また、特許文献2では、熱電変換装置の構成において、ポリフェニレンサルファイド、ポリブチレンテレフタレート、ポリプロピレンのうちの少なくとも1種の合成樹脂からなる枠体を使用することが開示されている。
特開2006-186255号公報 特開平10-12934号公報
 しかしながら、特許文献1は、そもそも、熱電素子の電極間又は接合部間に効率良く温度差を付与する構成が開示されているに過ぎず、柔軟性を有するフィルム状基板が熱電素子上に直接接する構成を有しているものの、熱電素子に対する被覆層としての使用に関しては記載や示唆がなく、また、熱電変換素子としての耐久性等の検討がなされていない。
 特許文献2には、前記枠体について、段落[0032]に、水蒸気透過率の高い枠体を使用すると、特に吸熱側(低温側)において電極表面などに結露が生じ、それが原因でショート、電極の腐食、熱抵抗の増加などを引き起こすことになり、そのため枠体の材料として水蒸気透過率の低いものを選定している旨の記載がされているものの、該枠体は熱電変換素子(熱電素子層)と直接接することもなく、上下面にも配置されないものであり、熱電変換モジュールの熱電素子層と直接接する大気中の水蒸気を抑制することはできない。さらに、特許文献1と同様、熱電変換素子としての耐久性等の検討がなされていない。
 本発明は、上記問題を鑑み、耐久性に優れた熱電変換モジュールを提供することを課題とする。
 本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、熱電素子層の少なくとも一方の面に被覆層としての金属、無機化合物、及び高分子化合物からなる群から選ばれる一種以上を主成分とするガスバリア層を積層することにより、上記課題を解決することを見出し、本発明を完成した。
 すなわち、本発明は、以下の(1)~(9)を提供するものである。
(1)熱電素子層の少なくとも一方の面に被覆層を含む熱電変換モジュールであって、前記被覆層が、金属、無機化合物、及び高分子化合物からなる群から選ばれる一種以上を主成分とするガスバリア層を有する、熱電変換モジュール。
(2)前記熱電素子層の一方の面に被覆層を含み、他方の面に基板を有する、上記(1)に記載の熱電変換モジュール。
(3)前記基板の、前記熱電素子層が存在する側とは反対側の面に、さらに前記被覆層を含む、上記(2)に記載の熱電変換モジュール。
(4)前記基板がフィルム基板である、上記(2)又は(3)に記載の熱電変換モジュール。
(5)前記熱電素子層が、P型熱電素子層とN型熱電素子層とを含み、前記P型熱電素子層と前記N型熱電素子層とが面内方向に交互に隣接し直列に配置される、上記(1)~(4)のいずれかに記載の熱電変換モジュール。
(6)前記熱電変換モジュールが、少なくとも前記被覆層の一つの表面又は前記基板の前記熱電素子層が存在する側とは反対側の表面にさらに高熱伝導層を有し、該高熱伝導層の熱伝導率が5~500W/(m・K)である、上記(1)~(5)のいずれかに記載の熱電変換モジュール。
(7)前記被覆層の厚さが、100μm以下である、上記(1)~(6)のいずれかに記載の熱電変換モジュール。
(8)前記高分子化合物が、ハロゲン原子を含む樹脂であり、ポリ塩化ビニリデン、ポリフッ化ビニリデン、ポリクロロテトラフルオロエチレン、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体、又はテトラフルオロエチレン・ヘキサフルオロプロピレン共重合体である、上記(1)~(7)のいずれかに記載の熱電変換モジュール。
(9)前記高分子化合物が、ポリシラザン系化合物、ポリカルボシラン系化合物、ポリシラン系化合物、又はポリオルガノシロキサン系化合物である、上記(1)~(8)のいずれかに記載の熱電変換モジュール。
 本発明によれば、耐久性に優れた熱電変換モジュールを提供することができる。
本発明の熱電変換モジュールの実施態様の一例を示す断面図である。 本発明の熱電変換モジュールの他の実施態様を示す断面図である。 本発明の実施例に用いた熱電変換モジュールの一部を構成する基板上の電極及び熱電素子の配置の一例を示す平面図である。
[熱電変換モジュール]
 本発明の熱電変換モジュールは、熱電素子層の少なくとも一方の面に被覆層を含む熱電変換モジュールであって、前記被覆層が、金属、無機化合物、及び高分子化合物からなる群から選ばれる一種以上を主成分とするガスバリア層を有する、熱電変換モジュールである。
 被覆層として、上記主成分を含むガスバリア層を熱電素子層の少なくとも一方の面に配置することにより、大気中の水蒸気の透過を効果的に抑制(以下、「ガスバリア性」ということがある。)し、熱電モジュールの性能を長期間にわたり維持することができる。
 本発明の熱電変換モジュールを、図面を使用して説明する。
 図1は、本発明の熱電変換モジュールの実施態様の一例を示す断面図であり、(a)の熱電変換モジュール1Aは、P型熱電素子層5とN型熱電素子層4とが面内方向に交互に隣接して直列に配置されてなる熱電素子層6の一方の面に被覆層7aを含む。また、(b)の熱電変換モジュール1Bは、電極3を有する基板2の一方の面上に、(a)の構成を含む。さらに、(c)の熱電変換モジュール1Cは、(b)の構成において、基板2の、熱電素子層6とは反対側の面に被覆層7bを含む。
 同様に図2は、本発明の熱電変換モジュールの他の実施態様を示す断面図である。熱電変換モジュール1Dは、図1の(c)の構成において、被覆層7a、7bの表面の面内方向にさらに高熱伝導層8a、8bを含む。本発明の熱電変換モジュールは、狭い空間にも設置することが容易であるという観点や、折り曲げることにより曲面上に設置することが容易となる観点から、シート形状であることが好ましい。
<被覆層>
 本発明の熱電変換モジュールは、被覆層を含む。本発明に用いる被覆層は、大気中の水蒸気の透過を効果的に抑制するために用いられ、ガスバリア層を有する。
 被覆層は、大気中の水蒸気の透過を抑制するために、熱電素子層の少なくとも一方の面に積層される。熱電素子層に積層することにより、大気中の水蒸気の透過を抑制できる。
 図1で示したように、熱電変換モジュールの熱電素子層の一方の面に被覆層を含み、他方の面に基板を有することが好ましい。熱電変換モジュールが基板を有する場合、後述するとおり、熱電素子層の両面に基板を有するのではなく、一方の面にのみ基板を有することが好ましい。基板は通常は一定の水蒸気遮断性を有しているため、熱電素子層の基板が存在する面は、基板により水蒸気の侵入から保護されている。一方、熱電素子層の基板が存在しない面においては、このような保護効果がないため、被覆層を設けることにより、熱電素子層の両面を水蒸気の侵入から保護することが可能となる。また、前記基板の、前記熱電素子層が存在する側とは反対側の面に、さらに前記被覆層を含むことがより好ましい。これにより、基板の水蒸気遮断性に加えて、熱電素子層への水蒸気の侵入をさらにより効果的に抑制することができる。
 なお、本発明に用いる被覆層の熱電素子層の面への配置は、特に限定されないが、用いる熱電素子層、例えば、P型熱電素子層とN型熱電素子層の配置にしたがって、適宜調整することが好ましい。被覆層が熱電素子層の面上に直接接するように配置することが好ましく、また、被覆層が熱電素子層をすべて覆うように配置することが好ましい。被覆層の、熱電素子層の面への配置を上記のようにすると、大気中の水蒸気の透過を効果的に抑制でき、熱電モジュールの性能を長期間にわたり維持することができる。
 なお、本発明に用いる被覆層には、ガスバリア層以外の層を用いてもよい。
〈ガスバリア層〉
 本発明に用いるガスバリア層は、金属、無機化合物、及び高分子化合物からなる群から選ばれる一種以上を主成分とする。ガスバリア層によって、熱電変換モジュールの耐久性を向上させることができる。
 ガスバリア層は、熱電素子層上に直接積層されていてもよいし、基材上に上記主成分を含む層から構成され、その基材付きガスバリア層のいずれかの面が熱電素子層上に直接積層されてもよいし、後述する封止層等を介し積層されていてもよい。
 金属としては、アルミニウム、マグネシウム、亜鉛、金、銀、銅、白金、ロジウム、クロム、ニッケル、パラジウム、モリブデン、ステンレス鋼及び錫等が挙げられる。水蒸気遮断性向上の観点から、これらを均一な膜として用いることが好ましい。これらの中で、生産性、コスト、ガスバリア性や耐食性の観点から、アルミニウム、ニッケルが好ましい。また、これらは1種単独で、あるいは合金を含め、2種以上を組み合わせて用いることができる。前記均一な膜は、抵抗加熱蒸着法、イオンプレーティング法等の
蒸着法を用いてもよいし、蒸着法以外のDC2極スパッタリング法、DCマグネトロンスパッタリング法等のスパッタリング法を用いて形成してもよい。また、プラズマCVD法等の化学的気相法で成膜してもよい。
 無機化合物としては、無機酸化物(MO)、無機窒化物(MN)、無機炭化物(MC)、無機酸化炭化物(MO)、無機窒化炭化物(MN)、無機酸化窒化物(MO)、及び無機酸化窒化炭化物(MO)等が挙げられる。ここで、x、y、zは、各化合物の組成比を表す。前記Mとしては、珪素、亜鉛、アルミニウム、マグネシウム、インジウム、カルシウム、ジルコニウム、チタン、ホウ素、ハフニウム、又はバリウム等の金属元素が挙げられる。Mは1種単独でもよいし2種以上の元素であってもよい。各無機化合物は、酸化珪素、酸化亜鉛、酸化アルミニウム、酸化マグネシウム、酸化インジウム、酸化カルシウム、酸化ジルコニウム、酸化チタン、酸化ホウ素、酸化ハフニウム、酸化バリウム等の酸化物;窒化珪素、窒化アルミニウム、窒化ホウ素、窒化マグネシウム等の窒化物;炭化珪素等の炭化物;硫化物;等を挙げることができる。また、これらの無機化合物から選ばれた2種以上の複合体(酸化窒化物、酸化炭化物、窒化炭化物、酸化窒化炭化物)であってもよい。また、SiOZnのように金属元素を2種以上含む複合体(酸化窒化物、酸化炭化物、窒化炭化物、酸化窒化炭化物も含む)であってもよい。
 Mとしては、珪素、アルミニウム、チタン等の金属元素が好ましい。特にMが珪素の酸化珪素からなる無機層は、高いガスバリア性を有し、また、窒化珪素からなる無機層はさらに高いガスバリア性を有する。特に酸化珪素と窒化珪素の複合体(無機酸化窒化物(MO))であることが好ましく、窒化珪素の含有量が多いとガスバリア性が向上する。
 これらは、金属と同様、均一な膜として用いることが好ましく、真空蒸着法、DC2極スパッタリング法、DCマグネトロンスパッタリング法等のスパッタリング法等の物理的気相法で形成することができ、またプラズマCVD法等の化学的気相法で成膜したものでもよい。
 高分子化合物としては、厚さ100μmで測定した40℃×90%RHでの水蒸気透過率が、2g・m-2・day-1以下である高分子化合物が挙げられる。高分子化合物の、厚さ100μmで測定した40℃×90%RHでの水蒸気透過率は、1g・m-2・day-1以下であることが好ましい。前記水蒸気透過率を満たす高分子化合物としては、含ハロゲン樹脂が好ましく、含ハロゲン樹脂としては、ポリ塩化ビニリデン、ポリフッ化ビニリデン、ポリクロロテトラフルオロエチレン、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体等が好ましい。この中で、厚さ100μmで測定した40℃×90%RHでの水蒸気透過率が、0.5g・m-2・day-1以下である、ポリクロロテトラフルオロエチレン、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体がより好ましい。水蒸気透過率が、上記の範囲であれば、大気中の水蒸気の透過を効果的に抑制できる。
 また、高分子化合物としては、ポリオルガノシロキサン、ポリシラザン系化合物等の珪素含有高分子化合物、ポリイミド、ポリアミド、ポリアミドイミド、ポリフェニレンエーテル、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリオレフィン、ポリエステル等が挙げられる。これらの高分子化合物は1種単独で、あるいは2種以上を組合せて用いることができる。
 これらの中でも、ガスバリア性を有する高分子化合物としては、珪素含有高分子化合物が好ましい。珪素含有高分子化合物としては、ポリシラザン系化合物、ポリカルボシラン系化合物、ポリシラン系化合物、及びポリオルガノシロキサン系化合物等が好ましい。これらの中でも、優れたガスバリア性を有するバリア層を形成できる観点から、ポリシラザン系化合物がより好ましい。
 また、無機化合物の膜、または珪素含有高分子化合物を含む層に改質処理を施して形成された酸素、窒素、珪素を主構成原子として有する層からなる酸窒化珪素層が、層間密着性、ガスバリア性、及び屈曲性を有する観点から、好ましく用いられる。
 ガスバリア層は、例えば、珪素含有高分子化合物含有層に、プラズマイオン注入処理、加速型イオン注入処理、プラズマ処理、真空紫外光照射処理、熱処理等を施すことにより形成できる。イオン注入処理により注入されるイオンとしては、水素、窒素、酸素、アルゴン、ヘリウム、ネオン、キセノン、及びクリプトン等が挙げられる。
 プラズマイオン注入処理の具体的な処理方法としては、外部電界を用いて発生させたプラズマ中に存在するイオンを、珪素含有高分子化合物含有層に対して注入する方法、または、外部電界を用いることなく、ガスバリア層形成用材料からなる層に印加する負の高電圧パルスによる電界のみで発生させたプラズマ中に存在するイオンを、珪素含有高分子化合物含有層に注入する方法が挙げられる。
 プラズマ処理は、珪素含有高分子化合物含有層をプラズマ中に晒して、珪素含有高分子化合物含有層を改質する方法である。例えば、特開2012-106421号公報に記載の方法に従って、プラズマ処理を行うことができる。真空紫外光照射処理は、珪素含有高分子化合物含有層に真空紫外光を照射して珪素含有高分子含有層を改質する方法である。例えば、特開2013-226757号公報に記載の方法に従って、真空紫外光照射改質処理を行うことができる。
 これらの中でも、珪素含有高分子化合物含有層の表面を荒らすことなく、その内部まで効率よく改質し、よりガスバリア性に優れるガスバリア層を形成できることから、イオン注入処理が好ましい。
 金属、無機化合物及び高分子化合物を含む層の厚さは、用いる化合物等で異なるが、通常、0.01~50μm、好ましくは0.03~10μm、より好ましくは0.05~0.8μm、さらに好ましくは0.10~0.6μmである。金属、無機化合物及び樹脂を含む厚さが、この範囲であれば、ガスバリア層の水蒸気透過率の抑止効果の調整がより容易となる。
 ガスバリア層のJIS K7129:2008で規定される40℃×90%RHにおける水蒸気透過率が、好ましくは10g・m-2・day-1以下であり、より好ましくは5g・m-2・day-1以下、さらに好ましくは1g・m-2・day-1以下である。水蒸気透過率がこの範囲にあると、熱電素子層への水蒸気の透過がいっそう抑制されるため好ましい。
 ガスバリア層は、1層であっても2層以上積層されていてもよい。また、2層以上積層される場合は、それらが同じであっても異なっていてもよい。
〈基材〉
 後述する熱電変換モジュールの製造方法において説明するように、ガスバリア層を容易に得る手段として、基材上にガスバリア層の材料を蒸着やスパッタにより堆積させる方法や、基材上にガスバリア層の材料を含む組成物を塗工した後、乾燥や硬化により塗膜を固体化する方法を用いることができる。この場合には、得られた基材付きガスバリア層をそのまま被覆層を構成する層として用いることができる。
 前記基材としては、屈曲性を有するものが用いられる。例えば、ポリイミド、ポリアミド、ポリアミドイミド、ポリフェニレンエーテル、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリオレフィン、ポリエステル、ポリカーボネート、ポリスルフォン、ポリエーテルスルフォン、ポリフェニレンスルフィド、ポリアリレート、アクリル系樹脂、シクロオレフィン系ポリマー、芳香族系重合体等が挙げられる。これらの中で、ポリエステルとしては、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート(PEN)、ポリアリレート等が挙げられる。また、シクロオレフィン系ポリマーとしては、ノルボルネン系重合体、単環の環状オレフィン系重合体、環状共役ジエン系重合体、ビニル脂環式炭化水素重合体、及びこれらの水素化物が挙げられる。このような基材の中で、コスト、耐熱性の観点から、二軸延伸されたポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)が特に好ましい。
 基材の厚さは、5~75μmであることが好ましく、より好ましくは8~50μm、さらに好ましくは10~35μmである。基材の厚さがこの範囲にあると、被覆層を後述する厚さに調整し易い。
〈封止層〉
 本発明の熱電変換モジュールは、被覆層としてさらに封止層を含んでいてもよい。封止層の使用は、被覆層による大気中の水蒸気の透過を抑制する効果をさらに高めることができる。
 本発明に用いる封止層の配置は、特に限定されないが、封止層に接着性のものを用い、ガスバリア層を熱電素子層上に貼り合せることにより、ガスバリア層の形成を容易にする観点から、熱電素子層とガスバリア層との間に配置することが好ましい。また、封止層が熱電素子層の面上に直接接するように配置することが好ましい。熱電素子層と、封止層とが直接接することにより、熱電素子層と封止層との間に大気中の水蒸気を透過しやすい材料が存在しないため、熱電素子層の水蒸気への侵入が抑制され、封止層による封止性が向上する。
 本発明に用いる封止層は、ポリオレフィン、エポキシ樹脂、アクリル系樹脂等を含有する組成物からなる層を用いることができ、ポリオレフィンを含む組成物からなる層であることが好ましい。
 また、封止層を形成するための組成物(以下、「封止剤組成物」ということがある。)は、接着性の組成物であることが好ましい。封止剤組成物の接着性は、粘着性(感圧接着性)であってもよいし、熱溶融や熱による軟化によって接着可能であることであってもよい。また、熱硬化等の硬化により接着性が強化されるものであってもよい。接着性を有する封止層を用いることで、例えば、ガスバリア層、被覆層を構成する他の層を容易に熱電素子層に積層することができ、また、後述する高熱伝導層を封止層上に固定することも容易となる。
 ポリオレフィンとしては、特に限定されず、ポリエチレン、ポリプロピレン、α-オレフィン重合体、オレフィン系単量体と他の単量体との共重合体(アクリル酸、酢酸ビニル等)等、これらの酸変性物やシラン変性物等の変性物、ゴム系樹脂等が挙げられる。ゴム系樹脂としては、カルボン酸系官能基を有するジエン系ゴム(以下、「ジエン系ゴム」ということがある。)、カルボン酸系官能基を有しないゴム系重合体(以下、「ゴム系重合体」ということがある。)が挙げられ、以下、ポリオレフィンを含む組成物にジエン系ゴム及びゴム系重合体を配合した場合を例として、ポリオレフィンを含む組成物を説明する。
 ジエン系ゴムは、主鎖末端及び/又は側鎖にカルボン酸系官能基を有する重合体で構成されるジエン系ゴムである。ここで、「カルボン酸系官能基」とは、「カルボキシル基またはカルボン酸無水物基」をいう。また、「ジエン系ゴム」とは、「ポリマー主鎖に二重結合を有するゴム状高分子」をいう。
 ジエン系ゴムは、カルボン酸系官能基を有するジエン系ゴムであれば、特に限定されない。
 ジエン系ゴムとしては、カルボン酸系官能基含有ポリブタジエン系ゴム、カルボン酸系官能基含有ポリイソプレン系ゴム、カルボン酸系官能基を含有するブタジエンとイソプレンの共重合体ゴム、カルボン酸系官能基を含有するブタジエンとn-ブテンの共重ゴム等が挙げられる。これらの中でも、ジエン系ゴムとしては、架橋後に十分に高い凝集力を有する封止層を効率よく形成し得るという観点から、カルボン酸系官能基含有ポリイソプレン系ゴムが好ましい。
 ジエン系ゴムは、1種単独で、あるいは2種以上を組み合わせて用いることができる。
 ジエン系ゴム、例えば、カルボキシル基を有する単量体を用いて共重合反応を行う方法や、特開2009-29976号公報に記載される、ポリブタジエン等の重合体に無水マレイン酸を付加させる方法により、得ることができる。
 ジエン系ゴムの配合量は、封止剤組成物中、好ましくは0.5~95.5質量%、より好ましくは1.0~50質量%、さらに好ましくは2.0~20質量%である。ジエン系ゴムの配合量が、封止剤組成物中、0.5質量%以上であることで、十分な凝集力を有する封止層を効率よく形成することができる。また、このようなジエン系ゴム及びゴム系重合体を用いた組成物は、粘着性を有するが、ジエン系ゴムの配合量を高くし過ぎないことで、十分な粘着力を有する封止層を効率よく形成することができる。
 ジエン系ゴム及びゴム系重合体を含む封止剤組成物は、ジエン系ゴムのカルボン酸系官能基と反応し、架橋構造を形成し得る化合物を架橋剤として含有することが好ましい。
 架橋剤としては、イソシアネート系架橋剤、エポキシ系架橋剤、アジリジン系架橋剤、金属キレート系架橋剤等が挙げられ、エポキシ系架橋剤が好ましい。
 ゴム系重合体は、「25℃においてゴム弾性を示す樹脂」をいう。ゴム系重合体は、ポリメチレンタイプの飽和主鎖をもつゴムや主鎖に不飽和炭素結合をもつゴムであることが好ましい。
 このようなゴム系重合体としては、具体的には、イソブチレンの単独重合体(ポリイソブチレン、IM)、イソブチレンとn-ブテンの共重合体、天然ゴム(NR)、ブタジエンの単独重合体(ブタジエンゴム、BR)、クロロプレンの単独重合体(クロロプレンゴム、CR)、イソプレンの単独重合体(イソプレンゴム、IR)、イソブチレンとブタジエンの共重合体、イソブチレンとイソプレンの共重合体(ブチルゴム、IIR)、ハロゲン化ブチルゴム、スチレンと1,3-ブタジエンの共重合体(スチレンブタジエンゴム、SBR)、アクリロニトリルと1,3-ブタジエンの共重合体(ニトリルゴム)、スチレン-1,3-ブタジエン-スチレンブロック共重合体(SBS)、スチレン-イソプレン-スチレンブロック共重合体(SIS)、エチレン-プロピレン-非共役ジエン三元共重合体等が挙げられる。これらの中で、それ自体が水分遮断性に優れるとともに、ジエン系ゴム(A)と混ざり易く、均一な封止層を形成し易いという観点から、イソブチレンの単独重合体、イソブチレンとn-ブテンの共重合体、イソブチレンとブタジエンの共重合体、イソブチレンとイソプレンの共重合体等のイソブチレン系重合体が好ましく、イソブチレンとイソプレンの共重合体がより好ましい。
 ゴム系重合体の配合量は、封止剤組成物中、好ましくは0.1質量%~99.5質量%、より好ましくは10~99.5質量%、さらに好ましくは50~99.0質量%、特に好ましくは80~98.0質量%である。
 ポリオレフィンの配合量は、封止剤組成物中、好ましくは20~100質量%、より好ましくは30~99質量%、さらに好ましくは60~98.5質量%である。ポリオレフィンの配合量を20~100質量%の範囲から選択することで、封止層の水蒸気遮断性を調整することが容易となる。
 エポキシ樹脂としては、特に制限されないが、分子内に少なくともエポキシ基を2つ以上有する多官能エポキシ化合物が好ましい。
 エポキシ基を2つ以上有するエポキシ化合物としては、ビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、ビスフェノールSジグリシジルエーテル、臭素化ビスフェノールAジグリシジルエーテル、臭素化ビスフェノールFジグリシジルエーテル、臭素化ビスフェノールSジグリシジルエーテル、ノボラック型エポキシ樹脂(例えば、フェノール・ノボラック型エポキシ樹脂、クレゾール・ノボラック型エポキシ樹脂、臭素化フェノール・ノボラック型エポキシ樹脂)、水添ビスフェノールAジグリシジルエーテル、水添ビスフェノールFジグリシジルエーテル、水添ビスフェノールSジグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、ヘキサヒドロフタル酸ジグリシジルエステル、ネオペンチルグリコールジグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、2,2-ビス(3-グリシジル-4-グリシジルオキシフェニル)プロパン、ジメチロールトリシクロデカンジグリシジルエーテル等が挙げられる。
 これらの多官能エポキシ化合物は、1種を単独で、あるいは2種以上を組み合わせて用いることができる。
 多官能エポキシ化合物の分子量の下限は、好ましくは700以上、より好ましくは1,200以上である。多官能エポキシ化合物の分子量の上限は、好ましくは5,000以下、より好ましくは4,500以下である。
 多官能エポキシ化合物のエポキシ当量は、好ましくは100g/eq以上500g/eq以下、より好ましくは150g/eq以上300g/eq以下である。
 封止剤組成物中のエポキシ樹脂の含有量は、好ましくは10~50質量%、さらに好ましくは10~40質量%である。
 アクリル系樹脂としては、特に制限はないが、(メタ)アクリル酸エステル系共重合体が好ましい。
 この(メタ)アクリル酸エステル系共重合体としては、エステル部分のアルキル基の炭素数が1~18の(メタ)アクリル酸アルキルエステルと、必要に応じて用いられる架橋性官能基含有エチレン性単量体や他の単量体との共重合体を好ましく挙げることができる。エステル部分のアルキル基の炭素数が1~18の(メタ)アクリル酸アルキルエステルとしては、メチルアクリレート、メチルメタクリレート、エチルアクリレート、エチルメタクリレート、プロピルアクリレート、プロピルメタクリレート、イソプロピルアクリレート、イソプロピルメタクリレート、n-ブチルアクリレート、n-ブチルメタクリレート、イソブチルアクリレート、イソブチルメタクリレート、n-ヘキシルアクリレートn-ヘキシルメタクリレート、2-エチルヘキシルアクリレート、2-エチルヘキシルメタクリレート、ラウリルアクリレート、ラウリルメタクリレート、ステアリルアクリレート、ステアリルメタクリレート等が挙げられる。これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 必要に応じて用いられる架橋性官能基含有エチレン性単量体は、例えばヒドロキシ基、カルボキシル基、アミノ基、置換アミノ基、エポキシ基等の官能基を分子内に有するエチレン性単量体であり、好ましくはヒドロキシ基含有エチレン性不飽和化合物、カルボキシル基含有エチレン性不飽和化合物が用いられる。このような架橋性官能基含有エチレン性単量体の具体的な例としては、2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルアクリレート、2-ヒドロキシプロピルメタクリレート、2-ヒドロキシブチルアクリレート、2-ヒドロキシブチルメタクリレート、4-ヒドロキシブチルアクリレート、4-ヒドロキシブチルメタクリレート等のヒドロキシ基含有(メタ)アクリレート、アクリル酸、メタクリル酸、クロトン酸、マレイン酸、イタコン酸、シトラコン酸等のカルボキシル基含有エチレン性不飽和化合物が挙げられる。上記の架橋性官能基含有エチレン性単量体は、1種を単独で、又は2種以上を組み合わせて用いてもよい。
 必要に応じて用いられる他の単量体としては、シクロヘキシルアクリレート、イソボルニルアクリレートなどの脂環式構造を有する(メタ)アクリル酸エステル;酢酸ビニル、プロピオン酸ビニルなどのビニルエステル類;エチレン、プロピレン、イソブチレンなどのオレフィン類;塩化ビニル、ビニリデンクロリドなどのハロゲン化オレフィン類;スチレン、α-メチルスチレンなどのスチレン系単量体;ブタジエン、イソプレン、クロロプレンなどのジエン系単量体;アクリロニトリル、メタクリロニトリルなどのニトリル系単量体;N,N-ジメチルアクリルアミド、N,N-ジメチルメタクリルアミドなどのN,N-ジアルキル置換アクリルアミド類などが挙げられる。これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 以上の(メタ)アクリル酸エステル、及び必要に応じて用いられる架橋性官能基含有エチレン性単量体や他の単量体を、それぞれ所定の割合で用い、従来公知の方法を用いて共重合を行い、重量平均分子量が、好ましくは30万~150万程度、より好ましくは35万~130万程度の(メタ)アクリル酸エステル系重合体を製造する。
 なお、上記重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法により測定した標準ポリスチレン換算の値である。
 必要に応じて用いられる架橋剤としては、従来アクリル系樹脂において架橋剤として慣用されているものの中から、任意のものを適宜選択して用いることができる。このような架橋剤としては、例えばポリイソシアネート化合物、エポキシ化合物、メラミン樹脂、尿素樹脂、ジアルデヒド類、メチロールポリマー、アジリジン系化合物、金属キレート化合物、金属アルコキシド、金属塩などが挙げられるが、前記(メタ)アクリル酸エステル系共重合体が、架橋性官能基としてヒドロキシ基を有する場合には、ポリイソシアネート化合物が好ましく、一方カルボキシル基を有する場合には、金属キレート化合物やエポキシ化合物が好ましい。
 封止剤組成物中のアクリル系樹脂の含有量は、好ましくは30~95質量%、さらに好ましくは40~90質量%である。
 封止剤組成物は、これらのポリオレフィン、エポキシ樹脂、アクリル系樹脂等の樹脂類のうち、2種以上を含有していてもよい。封止剤組成物にα-オレフィン重合体の変性物及び多官能エポキシ化合物を配合する場合として、国際公開公報WO2017/094591に記載されている接着剤組成物を、封止剤組成物として用いることができる。
 封止層を構成する封止剤には、本発明の効果を損なわない範囲で、その他の成分が含まれていてもよい。封止剤に含まれ得るその他の成分としては、例えば、高熱伝導性材料、難燃剤、粘着付与剤、紫外線吸収剤、酸化防止剤、防腐剤、防黴剤、可塑剤、消泡剤、及び濡れ性調整剤などが挙げられる。
 封止層は、1層であっても2層以上積層されていてもよい。また、2層以上積層される場合は、それらが同じであっても異なっていてもよい。
 封止層の厚さは、好ましくは0.5~100μm、より好ましくは3~80μm、さらに好ましくは5~50μmである。この範囲であれば、前記熱電素子層の面上に被覆層を積層した場合、被覆層の水蒸気透過の抑制効果が高くなるとともに、被覆層の厚さを後述する範囲に調整することも容易である。
 前記被覆層の厚さは、100μm以下であることが好ましく、より好ましくは、15~80μm、さらに好ましくは20~50μmである。被覆層の厚さがこの範囲にあると、被覆層により熱電素子層と外部との熱交換が妨げられることを防止し易い。また、熱電変換モジュールが、基板の熱電素子層が存在する側とは反対側の面に被覆層を有する場合には、基板と被覆層の合計の厚さを調整し、熱電素子層と外部との熱交換が妨げられることを防止する観点から、被覆層の厚さは3~50μmであることが好ましく、5~30μmであることがより好ましい。
〈基板〉
 熱電変換モジュールが基板を有することで、熱電素子層の形状維持性能や、強度が十分でない場合に、これらが補強される。本発明に用いる熱電変換モジュールの基板としては、特に制限されないが、熱電素子層の電気伝導率の低下、熱伝導率の増加に影響を及ぼさないプラスチックフィルムを用いることが好ましい。なかでも、屈曲性に優れ、後述する熱電半導体組成物からなる薄膜をアニール処理した場合でも、基板が熱変形することなく、熱電素子層の性能を維持することができ、耐熱性及び寸法安定性が高いという点から、ポリイミドフィルム、ポリアミドフィルム、ポリエーテルイミドフィルム、ポリアラミドフィルム、ポリアミドイミドフィルムが好ましく、さらに、汎用性が高いという点から、ポリイミドフィルムが特に好ましい。
 前記基板の厚さは、屈曲性、耐熱性及び寸法安定性の観点から、1~500μmが好ましく、10~100μmがより好ましく、20~75μmがさらに好ましい。
 また、上記フィルムは、分解温度が300℃以上であることが好ましい。
 熱電変換モジュールは、熱電素子層の一方の面にのみ基板を有していてもよいし、両方の面に基板を有していてもよいが、基板によって熱電素子層と外部との熱交換が妨げられることがあることを考慮して、熱電素子層の一方の面にのみ基板を有していることが好ましい。
〈電極層〉
 本発明に用いる電極層は、後述する熱電素子層を構成するP型熱電素子層とN型熱電素子層との電気的な接続を行うために設けられる。電極材料としては、金、銀、ニッケル、銅又はこれらの合金等が挙げられる。
 前記電極層の厚さは、好ましくは10nm~200μm、より好ましくは30nm~150μm、さらに好ましくは50nm~120μmである。電極層の厚さが、上記範囲内であれば、電気伝導率が高く低抵抗となり熱電素子層のトータルの電気抵抗値を低く抑えられる。また、電極として十分な強度が得られる。
〈熱電素子層〉
 本発明に用いる熱電変換モジュールの熱電素子層は、該熱電素子層が、π型熱電素子を構成するために、隣り合うP型熱電素子層とN型熱電素子層とが離間した構成であってもよいが、P型熱電素子層とN型熱電素子層とを含み、前記P型熱電素子層と前記N型熱電素子層とが面内方向に交互に隣接し直列に配置され、電気的には直列接続となるように構成される熱電素子層(以下「インプレーン型熱電素子層」ともいう。)を含むことが好ましい。他の代表的な熱電素子として、π型熱電素子が挙げられるが、π型熱電素子では、隣り合うP型熱電素子層とN型熱電素子層を上下で平板電極により互い違いに接続する構成とすることが通常である。この平板電極については、連続的な基体に平板電極を間欠的に設けた構成とすることが、π型熱電素子の製造上簡便であり、その場合には基体により熱電素子への水蒸気の侵入は一定程度防止される。したがって、そのような基体を設ける理由の存在しないインプレーン型熱電素子のほうが、被覆層により熱電素子への水蒸気の侵入を抑制する必要性はより高い。そのため、本発明の熱電変換モジュールの構成は、熱電素子がインプレーン型である場合に好ましく適用される。さらに、インプレーン型熱電素子層において、P型熱電素子層とN型熱電素子層との接続は、接続の安定性、熱電性能の観点から導電性の高い金属材料等から形成される前述した電極層を介してもよい。
 本発明に用いる熱電素子層は、基板上に、熱電半導体微粒子、耐熱性樹脂、並びに、イオン液体及び無機イオン性化合物の一方又は双方を含む熱電半導体組成物からなる層であることが好ましい。
(熱電半導体微粒子)
 熱電素子層に用いる熱電半導体微粒子は、熱電半導体材料を、微粉砕装置等により、所定のサイズまで粉砕することが好ましい。
 本発明に用いるP型熱電素子層及びN型熱電素子層を構成する材料としては、温度差を付与することにより、熱起電力を発生させることができる材料であれば特に制限されず、例えば、P型ビスマステルライド、N型ビスマステルライド等のビスマス-テルル系熱電半導体材料;GeTe、PbTe等のテルライド系熱電半導体材料;アンチモン-テルル系熱電半導体材料;ZnSb、ZnSb2、ZnSb等の亜鉛-アンチモン系熱電半導体材料;SiGe等のシリコン-ゲルマニウム系熱電半導体材料;BiSe等のビスマスセレナイド系熱電半導体材料;β―FeSi、CrSi、MnSi1.73、MgSi等のシリサイド系熱電半導体材料;酸化物系熱電半導体材料;FeVAl、FeVAlSi、FeVTiAl等のホイスラー材料、TiS等の硫化物系熱電半導体材料等が用いられる。
 これらの中でも、本発明に用いる前記熱電半導体材料は、P型ビスマステルライド又はN型ビスマステルライド等のビスマス-テルル系熱電半導体材料であることが好ましい。
 前記P型ビスマステルライドは、キャリアが正孔で、ゼーベック係数が正値であり、例えば、BiTeSb2-Xで表わされるものが好ましく用いられる。この場合、Xは、好ましくは0<X≦0.8であり、より好ましくは0.4≦X≦0.6である。Xが0より大きく0.8以下であるとゼーベック係数と電気伝導率が大きくなり、p型熱電変換材料としての特性が維持されるので好ましい。
 また、前記N型ビスマステルライドは、キャリアが電子で、ゼーベック係数が負値であり、例えば、BiTe3-YSeで表わされるものが好ましく用いられる。この場合、Yは、好ましくは0≦Y≦3(Y=0の時:BiTe)であり、より好ましくは0.1<Y≦2.7である。Yが0以上3以下であるとゼーベック係数と電気伝導率が大きくなり、n型熱電変換材料としての特性が維持されるので好ましい。
 熱電半導体微粒子の前記熱電半導体組成物中の配合量は、好ましくは、30~99質量%である。より好ましくは、50~96質量%であり、さらに好ましくは、70~95質量%である。熱電半導体微粒子の配合量が、上記範囲内であれば、ゼーベック係数(ペルチェ係数の絶対値)が大きく、また電気伝導率の低下が抑制され、熱伝導率のみが低下するため高い熱電性能を示すとともに、十分な皮膜強度、屈曲性を有する膜が得られ好ましい。
 熱電半導体微粒子の平均粒径は、好ましくは、10nm~200μm、より好ましくは、10nm~30μm、さらに好ましくは、50nm~10μm、特に好ましくは、1~6μmである。上記範囲内であれば、均一分散が容易になり、電気伝導率を高くすることができる。
 前記熱電半導体材料を粉砕して熱電半導体微粒子を得る方法は特に限定されず、ジェットミル、ボールミル、ビーズミル、コロイドミル、コニカルミル、ディスクミル、エッジミル、製粉ミル、ハンマーミル、ペレットミル、ウィリーミル、ローラーミル等の公知の微粉砕装置等により、所定のサイズまで粉砕すればよい。
 なお、熱電半導体微粒子の平均粒径は、レーザー回折式粒度分析装置(CILAS社製、1064型)にて測定することにより得られ、粒径分布の中央値とした。
 また、熱電半導体微粒子は、アニール処理(以下、「アニール処理A」ということがある。)されたものであることが好ましい。アニール処理Aを行うことにより、熱電半導体微粒子は、結晶性が向上し、さらに、熱電半導体微粒子の表面酸化膜が除去されるため、熱電変換材料のゼーベック係数(ペルチェ係数の絶対値)が増大し、熱電性能指数をさらに向上させることができる。アニール処理Aは、特に限定されないが、熱電半導体組成物を調製する前に、熱電半導体微粒子に悪影響を及ぼすことがないように、ガス流量が制御された、窒素、アルゴン等の不活性ガス雰囲気下、同じく水素等の還元ガス雰囲気下、または真空条件下で行うことが好ましく、不活性ガス及び還元ガスの混合ガス雰囲気下で行うことがより好ましい。具体的な温度条件は、用いる熱電半導体微粒子に依存するが、通常、微粒子の融点以下の温度で、かつ100~1500℃で、数分~数十時間行うことが好ましい。
(耐熱性樹脂)
 本発明に用いる耐熱性樹脂は、熱電半導体微粒子間のバインダーとして働き、熱電変換材料の屈曲性を高めるためのものである。該耐熱性樹脂は、特に制限されるものではないが、熱電半導体組成物からなる薄膜をアニール処理等により熱電半導体微粒子を結晶成長させる際に、樹脂としての機械的強度及び熱伝導率等の諸物性が損なわれず維持される耐熱性樹脂を用いる。
 前記耐熱性樹脂としては、例えば、ポリアミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、ポリベンゾオキサゾール樹脂、ポリベンゾイミダゾール樹脂、エポキシ樹脂、及びこれらの樹脂の化学構造を有する共重合体等が挙げられる。前記耐熱性樹脂は、単独でも又は2種以上組み合わせて用いてもよい。これらの中でも、耐熱性がより高く、且つ薄膜中の熱電半導体微粒子の結晶成長に悪影響を及ぼさないという点から、ポリアミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、エポキシ樹脂が好ましく、屈曲性に優れるという点からポリアミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂がより好ましい。前述の支持体として、ポリイミドフィルムを用いた場合、該ポリイミドフィルムとの密着性などの点から、耐熱性樹脂としては、ポリイミド樹脂がより好ましい。なお、本発明においてポリイミド樹脂とは、ポリイミド及びその前駆体を総称する。
 前記耐熱性樹脂は、分解温度が300℃以上であることが好ましい。分解温度が上記範囲であれば、後述するように、熱電半導体組成物からなる薄膜をアニール処理した場合でも、バインダーとして機能が失われることなく、熱電変換材料の屈曲性を維持することができる。
 また、前記耐熱性樹脂は、熱重量測定(TG)による300℃における質量減少率が10%以下であることが好ましく、5%以下であることがより好ましく、1%以下であることがさらに好ましい。質量減少率が上記範囲であれば、後述するように、熱電半導体組成物からなる薄膜をアニール処理した場合でも、バインダーとして機能が失われることなく、熱電変換材料の屈曲性を維持することができる。
 前記耐熱性樹脂の前記熱電半導体組成物中の配合量は、好ましくは0.1~40質量%、より好ましくは0.5~20質量%、さらに好ましくは1~20質量%である。前記耐熱性樹脂の配合量が、上記範囲内であれば、高い熱電性能と皮膜強度が両立した膜が得られる。
(イオン液体)
 本発明で用いるイオン液体は、カチオンとアニオンとを組み合わせてなる溶融塩であり、-50~500℃の幅広い温度領域において液体で存在し得る塩をいう。イオン液体は、蒸気圧が極めて低く不揮発性であること、優れた熱安定性及び電気化学安定性を有していること、粘度が低いこと、かつイオン伝導度が高いこと等の特徴を有しているため、導電補助剤として、熱電半導体微粒子間の電気伝導率の低減を効果的に抑制することができる。また、イオン液体は、非プロトン性のイオン構造に基づく高い極性を示し、耐熱性樹脂との相溶性に優れるため、熱電変換材料の電気伝導率を均一にすることができる。
 イオン液体は、公知または市販のものが使用できる。例えば、ピリジニウム、ピリミジニウム、ピラゾリウム、ピロリジニウム、ピペリジニウム、イミダゾリウム等の窒素含有環状カチオン化合物及びそれらの誘導体;テトラアルキルアンモニウム系のアミン系カチオン及びそれらの誘導体;ホスホニウム、トリアルキルスルホニウム、テトラアルキルホスホニウム等のホスフィン系カチオン及びそれらの誘導体;リチウムカチオン及びその誘導体等のカチオン成分と、Cl、Br、I、AlCl 、AlCl 、BF 、PF6、ClO4、NO 、CHCOO、CFCOO、CHSO 、CFSO 、(FSO、(CFSO、(CFSO、AsF 、SbF 、NbF 、TaF 、F(HF)n、(CN)、CSO 、(CSO、CCOO、(CFSO)(CFCO)N等のアニオン成分とから構成されるものが挙げられる。
 上記のイオン液体の中で、高温安定性、熱電半導体微粒子及び樹脂との相溶性、熱電半導体微粒子間隙の電気伝導率の低下抑制等の観点から、イオン液体のカチオン成分が、ピリジニウムカチオン及びその誘導体、イミダゾリウムカチオン及びその誘導体から選ばれる少なくとも1種を含むことが好ましい。
 カチオン成分が、ピリジニウムカチオン及びその誘導体を含むイオン液体の具体的な例として、4-メチル-ブチルピリジニウムクロライド、3-メチル-ブチルピリジニウムクロライド、4-メチル-ヘキシルピリジニウムクロライド、3-メチル-ヘキシルピリジニウムクロライド、4-メチル-オクチルピリジニウムクロライド、3-メチル-オクチルピリジニウムクロライド、3、4-ジメチル-ブチルピリジニウムクロライド、3、5-ジメチル-ブチルピリジニウムクロライド、4-メチル-ブチルピリジニウムテトラフルオロボレート、4-メチル-ブチルピリジニウムヘキサフルオロホスフェート、1-ブチル-4-メチルピリジニウムブロミド、1-ブチル-4-メチルピリジニウムヘキサフルオロホスファート等が挙げられる。この中で、1-ブチル-4-メチルピリジニウムブロミド、1-ブチル-4-メチルピリジニウムヘキサフルオロホスファートが好ましい。
 また、カチオン成分が、イミダゾリウムカチオン及びその誘導体を含むイオン液体の具体的な例として、[1-ブチル-3-(2-ヒドロキシエチル)イミダゾリウムブロミド]、[1-ブチル-3-(2-ヒドロキシエチル)イミダゾリウムテトラフルオロボレイト]、1-エチル-3-メチルイミダゾリウムクロライド、1-エチル-3-メチルイミダゾリウムブロミド、1-ブチル-3-メチルイミダゾリウムクロライド、1-ヘキシル-3-メチルイミダゾリウムクロライド、1-オクチル-3-メチルイミダゾリウムクロライド、1-デシル-3-メチルイミダゾリウムクロライド、1-デシル-3-メチルイミダゾリウムブロミド、1-ドデシル-3-メチルイミダゾリウムクロライド、1-テトラデシル-3-メチルイミダゾリウムクロライド、1-エチル-3-メチルイミダゾリウムテトラフロオロボレート、1-ブチル-3-メチルイミダゾリウムテトラフロオロボレート、1-ヘキシル-3-メチルイミダゾリウムテトラフロオロボレート、1-エチル-3-メチルイミダゾリウムヘキサフルオロホスフェート、1-ブチル-3-メチルイミダゾリウムヘキサフルオロホスフェート、1-メチル-3-ブチルイミダゾリウムメチルスルフェート、1、3-ジブチルイミダゾリウムメチルスルフェート等が挙げられる。この中で、[1-ブチル-3-(2-ヒドロキシエチル)イミダゾリウムブロミド]、[1-ブチル-3-(2-ヒドロキシエチル)イミダゾリウムテトラフルオロボレイト]が好ましい。
 上記のイオン液体は、電気伝導度が10-7S/cm以上であることが好ましい。イオン伝導度が上記範囲であれば、導電補助剤として、熱電半導体微粒子間の電気伝導率の低減を効果的に抑制することができる。 
 また、上記のイオン液体は、分解温度が300℃以上であることが好ましい。分解温度が上記範囲であれば、後述するように、熱電半導体組成物からなる薄膜をアニール処理した場合でも、導電補助剤としての効果を維持することができる。
 また、上記のイオン液体は、熱重量測定(TG)による300℃における質量減少率が10%以下であることが好ましく、5%以下であることがより好ましく、1%以下であることがさらに好ましい。質量減少率が上記範囲であれば、後述するように、熱電半導体組成物からなる薄膜をアニール処理した場合でも、導電補助剤としての効果を維持することができる。
 前記イオン液体の前記熱電半導体組成物中の配合量は、好ましくは0.01~50質量%、より好ましくは0.5~30質量%、さらに好ましくは1.0~20質量%である。前記イオン液体の配合量が、上記範囲内であれば、電気伝導率の低下が効果的に抑制され、高い熱電性能を有する膜が得られる。
(無機イオン性化合物)
 本発明で用いる無機イオン性化合物は、少なくともカチオンとアニオンから構成される化合物である。無機イオン性化合物は400~900℃の幅広い温度領域において固体で存在し、イオン伝導度が高いこと等の特徴を有しているため、導電補助剤として、熱電半導体微粒子間の電気伝導率の低減を抑制することができる。
 カチオンとしては、金属カチオンを用いる。
 金属カチオンとしては、例えば、アルカリ金属カチオン、アルカリ土類金属カチオン、典型金属カチオン及び遷移金属カチオンが挙げられ、アルカリ金属カチオン又はアルカリ土類金属カチオンがより好ましい。
 アルカリ金属カチオンとしては、例えば、Li、Na、K、Rb、Cs及びFr等が挙げられる。
 アルカリ土類金属カチオンとしては、例えば、Mg2+、Ca2+、Sr2+及びBa2+等が挙げられる。
 アニオンとしては、例えば、F、Cl、Br、I、OH、CN、NO3-、NO2-、ClO、ClO2-、ClO3-、ClO4-、CrO 2-、HSO 、SCN、BF 、PF 等が挙げられる。
 無機イオン性化合物は、公知または市販のものが使用できる。例えば、カリウムカチオン、ナトリウムカチオン、又はリチウムカチオン等のカチオン成分と、Cl、AlCl 、AlCl 、ClO 等の塩化物イオン、Br等の臭化物イオン、I等のヨウ化物イオン、BF 、PF 等のフッ化物イオン、F(HF) 等のハロゲン化物アニオン、NO 、OH、CN等のアニオン成分とから構成されるものが挙げられる。
 上記の無機イオン性化合物の中で、高温安定性、熱電半導体微粒子及び樹脂との相溶性、熱電半導体微粒子間隙の電気伝導率の低下抑制等の観点から、無機イオン性化合物のカチオン成分が、カリウム、ナトリウム、及びリチウムから選ばれる少なくとも1種を含むことが好ましい。また、無機イオン性化合物のアニオン成分が、ハロゲン化物アニオンを含むことが好ましく、Cl、Br、及びIから選ばれる少なくとも1種を含むことがさらに好ましい。
 カチオン成分が、カリウムカチオンを含む無機イオン性化合物の具体的な例として、KBr、KI、KCl、KF、KOH、KCO等が挙げられる。この中で、KBr、KIが好ましい。
 カチオン成分が、ナトリウムカチオンを含む無機イオン性化合物の具体的な例として、NaBr、NaI、NaOH、NaF、NaCO等が挙げられる。この中で、NaBr、NaIが好ましい。
 カチオン成分が、リチウムカチオンを含む無機イオン性化合物の具体的な例として、LiF、LiOH、LiNO等が挙げられる。この中で、LiF、LiOHが好ましい。
 上記の無機イオン性化合物は、電気伝導率が10-7S/cm以上であることが好ましく、10-6S/cm以上であることがより好ましい。電気伝導率が上記範囲であれば、導電補助剤として、熱電半導体微粒子間の電気伝導率の低減を効果的に抑制することができる。
 また、上記の無機イオン性化合物は、分解温度が400℃以上であることが好ましい。分解温度が上記範囲であれば、後述するように、熱電半導体組成物からなる薄膜をアニール処理した場合でも、導電補助剤としての効果を維持することができる。
 また、上記の無機イオン性化合物は、熱重量測定(TG)による400℃における質量減少率が10%以下であることが好ましく、5%以下であることがより好ましく、1%以下であることがさらに好ましい。質量減少率が上記範囲であれば、後述するように、熱電半導体組成物からなる薄膜をアニール処理した場合でも、導電補助剤としての効果を維持することができる。
 前記無機イオン性化合物の前記熱電半導体組成物中の配合量は、好ましくは0.01~50質量%、より好ましくは0.5~30質量%、さらに好ましくは1.0~10質量%である。前記無機イオン性化合物の配合量が、上記範囲内であれば、電気伝導率の低下を効果的に抑制でき、結果として熱電性能が向上した膜が得られる。
 なお、無機イオン性化合物とイオン液体とを併用する場合においては、前記熱電半導体組成物中における、無機イオン性化合物及びイオン液体の含有量の総量は、好ましくは0.01~50質量%、より好ましくは0.5~30質量%、さらに好ましくは1.0~10質量%である。
 P型熱電素子層及びN型熱電素子層からなる熱電素子層の厚さは、特に限定されるものではなく、同じ厚さでも、異なる厚さ(接続部に段差が生じる)でもよい。屈曲性、材料コストの観点から、P型熱電素子及びN型熱電素子の厚さは、0.1~100μmが好ましく、1~50μmがさらに好ましい。
〈高熱伝導層〉
 本発明の熱電変換モジュールは、被覆層上に高熱伝導層を含んでいてもよい。高熱伝導層は、熱電素子層の電極部間に効率良く温度差を付与することができる。
 本発明に用いる高熱伝導層の配置は、特に限定されないが、用いる熱電変換モジュールの熱電素子、すなわち、P型熱電素子とN型熱電素子の配置及びそれらの形状により、適宜調整することが好ましい。例えば、図2に示したように、インプレーン型熱電素子層において、高熱伝導層8a、8bが被覆層7a、7bの表面上に、面内方向に間欠的に配置される。この場合、高熱伝導層は被覆層の表面上に、他の層を介して設けられていてもよい。また、高熱伝導層8aは、基板の熱電素子層が存在する側とは反対側の面上に被覆層が存在しない場合に、基板のその面上に設けられてもよい。熱電変換モジュールが高熱伝導層を有することにより、熱電素子の面内方向に、温度差を付与することが容易となる。熱電素子層がインプレーン型熱電素子層である場合に、被覆層の表面又は基板の表面において前記高熱伝導層が位置する部分が、1対のP型熱電素子とN型熱電素子の境界に対応する部分を含んでいることが好ましい。また、被覆層の表面又は基板の表面において前記高熱伝導層が位置する部分の長さが1対のP型熱電素子とN型熱電素子とからなる直列方向の全幅に対応する部分の長さに対し、0.30~0.70の割合であることが好ましく、0.40~0.60の割合がより好ましく、0.48~0.52の割合がさらに好ましく、特に好ましくは、0.50の割合である。この範囲にあると、熱を特定の方向に選択的に放熱する効果がさらに高くなり、面内方向に効率よく温度差を付与できる。さらに、図2に示すように、熱電素子層の両面上に高熱伝導層8a、8bが設けられている場合に、高熱伝導層8a、8bがいずれも1対のP型熱電素子とN型熱電素子の境界をまたいで配置されており、高熱伝導層8a、8bの両層が上記境界おきに互い違いに配置されていることが好ましい。
 本発明に用いる高熱伝導層は、高熱伝導性材料から形成される。高熱伝導層を形成する方法としては、特に制限されないが、シート状の高熱伝導性材料を、事前にフォトリソグラフィー法を主体とした公知の物理的処理もしくは化学的処理、又はそれらを併用する等により、所定のパターン形状に加工する方法が挙げられる。その後、得られたパターン化された高熱伝導層を、接着性を有する封止層等を介して熱電変換モジュール上に形成することが好ましい。また、基板の、熱電素子層が存在する側と反対側の面上に被覆層を介さずに高熱伝導層を設ける場合には、本発明の封止層とは異なるアクリル系粘着剤等により高熱伝導層を固定すればよい。
 高熱伝導材料としては、銅、銀、鉄、ニッケル、クロム、アルミニウム等の単金属、ステンレス、真鍮(黄銅)等の合金が挙げられる。この中で、好ましくは、銅(無酸素銅含む)、ステンレスであり、熱伝導率が高く、加工性が容易であることから、さらに好ましくは、銅である。
 ここで、本発明に用いられる高熱伝導材料の代表的なものを以下に示す。
・無酸素銅
無酸素銅(OFC:Oxygen-Free Copper)とは、一般的に酸化物を含まない99.95%(3N)以上の高純度銅のことを指す。日本工業規格では、無酸素銅(JIS H 3100, C1020)および電子管用無酸素銅(JIS H 3510, C1011)が規定されている。
・ステンレス(JIS)
 SUS304:18Cr-8Ni(18%のCrと8%のNiを含む)
 SUS316:18Cr-12Ni(18%のCrと12%のNi、モリブデン(Mo)を含む)ステンレス鋼)
 高熱伝導層の熱伝導率は好ましくは、5~500W/(m・K)であり、より好ましくは、12~450W/(m・K)であり、さらに好ましくは15~420W/(m・K)である。高熱伝導層の熱伝導率が上記の範囲にあると、熱電変換モジュールの面内方向に、効率よく温度差を付与することができる。
 高熱伝導層の厚さは、40~550μmが好ましく、60~530μmがより好ましく、80~510μmがさらに好ましい。高熱伝導層の厚さがこの範囲であれば、熱を特定の方向に選択的に放熱する効果がさらに高くなり、インプレーン型熱電素子層を含む熱電変換モジュールの面内方向に、効率よく温度差を付与することができる。
[熱電変換モジュールの使用用途]
 本発明の熱電変換モジュールは、ゼーベック素子、ペルチェ素子のいずれとしても使うことができるが、熱電変換モジュールがインプレーン型熱電素子を含む場合には、ゼーベック素子として用いることが、熱電変換効率の高いモジュールを得られやすいことから好ましい。
[熱電変換モジュールの製造方法]
 本発明の熱電変換モジュールは、例えば、前記熱電素子層を形成する工程、及び前記熱電素子層の少なくとも一方の面に前記被覆層を形成する工程を含み、前記被覆層が、金属、無機化合物、及び樹脂からなる群から選ばれる一種以上を主成分とするガスバリア層を有する製造方法により得ることができる。
 以下、このような製造方法について、順次説明する。
〈熱電素子層形成工程〉
 熱電変換モジュールの製造工程には、熱電素子層を形成する熱電素子層形成工程を含むことが好ましい。また、熱電素子層が自立性を有する場合には、基板に代えて工程フィルムを用い、熱電素子層の形成後に工程フィルムを除去して熱電素子層を単層で得てもよい。以下、基板上に熱電素子層を設ける場合を例として本工程を説明する。本発明に用いる熱電素子層は、前記基板の一方の面上に前記熱電半導体組成物から形成されることが好ましい。前記熱電半導体組成物を、前記基板上に塗布する方法としては、スクリーン印刷、フレキソ印刷、グラビア印刷、スピンコート、ディップコート、ダイコート、スプレーコート、バーコート、ドクターブレード等の公知の方法が挙げられ、特に制限されない。塗膜をパターン状に形成する場合は、所望のパターンを有するスクリーン版を用いて簡便にパターン形成が可能なスクリーン印刷、スロットダイコート等が好ましく用いられる。
 次いで、得られた塗膜を乾燥することにより、薄膜が形成されるが、乾燥方法としては、熱風乾燥、熱ロール乾燥、赤外線照射等、従来公知の乾燥方法が採用できる。加熱温度は、通常、80~150℃であり、加熱時間は、加熱方法により異なるが、通常、数秒~数十分である。
 また、熱電半導体組成物の調製において溶媒を使用した場合、加熱温度は、使用した溶媒を乾燥できる温度範囲であれば、特に制限はない。
〈被覆層形成工程〉
 熱電変換モジュールの製造工程には、被覆層形成工程を含む。被覆層形成工程は、例えば、被覆層を構成するガスバリア層を、前記熱電素子層上に形成する工程である。また、熱電変換モジュールが基板を有するときは、基板の、熱電素子層が存在する側とは反対側の面に被覆層を形成する工程等を含んでいてもよい。
 ガスバリア層の形成は、例えば、基材上に上述した金属又は無機化合物の成膜や、高分子化合物の塗工・乾燥および必要に応じてこれに続く改質処理を行って、基材付きガスバリア層を得て、これを接着性の封止層を介して熱電素子層に積層させることで行うことができる。また、工程フィルム上に樹脂膜等からなる自立性のない移行層を設け、移行層上にガスバリア層を形成し、得られたガスバリア層を、例えば剥離フィルム付きの封止層であって接着性であるものと積層し、工程フィルム/移行層/ガスバリア層/封止層/剥離フィルムの順序で積層された積層体を得て、剥離フィルムを除去して封止層を熱電素子層と貼り合わせ、次いで、工程フィルムを除去するという方法も挙げられる。この場合には、工程フィルムを除去する際に、工程フィルムと移行層の間で剥離が起こるため、工程フィルムをガスバリア層から容易に分離することができる。
 被覆層形成工程には、封止層形成工程を含んでいてもよい。例えば、封止層を熱電素子層の面上に形成する工程である。また、基板を有する時は、基板の、熱電素子層とは反対の面に形成する工程等を含んでいてもよい。
 封止層の形成は、公知の方法で行うことができ、例えば、前記熱電素子層の面に直接形成してもよいし、予め剥離シート上に形成した封止層を、前記熱電素子層に貼り合わせて、封止層を熱電素子層に転写させて形成してもよい。
〈電極形成工程〉
 熱電変換モジュールの製造工程においては、さらに、フィルム基板上に前述した電極材料等を用い、電極層を形成する電極形成工程を含むことが好ましい。前記フィルム基板上に電極を形成する方法としては、フィルム基板上にパターンが形成されていない電極層を設けた後、フォトリソグラフィー法を主体とした公知の物理的処理もしくは化学的処理、又はそれらを併用する等により、所定のパターン形状に加工する方法、または、スクリーン印刷法、インクジェット法等により直接電極層のパターンを形成する方法等が挙げられる。
 電極層のパターンを形成する前段階の、パターンが形成されていない電極層の形成方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法等のPVD(物理気相成長法)、もしくは熱CVD、原子層蒸着(ALD)等のCVD(化学気相成長法)等のドライプロセス、又はディップコーティング法、スピンコーティング法、スプレーコーティング法、グラビアコーティング法、ダイコーティング法、ドクターブレード法等の各種コーティングや電着法等のウェットプロセス、銀塩法、電解めっき法、無電解めっき法、金属箔の積層等が挙げられ、電極層の材料に応じて適宜選択される。
〈高熱伝導層形成工程〉
 熱電変換モジュールの製造工程には、高熱伝導層形成工程を含むことが好ましい。高熱伝導層形成工程は被覆層又は基板の面上に高熱伝導層形成する工程である。
 高熱伝導層の形成は、公知の方法で行うことができ、例えば、高熱伝導層を前記被覆層又は基板の面に直接形成してもよいし、前述したように、フォトリソグラフィー法を主体とした公知の物理的処理もしくは化学的処理、又はそれらを併用する等により、所定のパターン形状に加工したものを、接着剤を介して前記被覆層に貼り合わせてもよい。
 本発明の製造方法によれば、簡便な方法で熱電素子層への大気中の水蒸気の侵入を抑制できる熱電変換モジュールを製造することができる。
 次に、本発明を実施例によりさらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
 実施例、比較例で作製した熱電変換モジュールの電気抵抗、また、被覆層を構成する基材付きガスバリア層、封止層の水蒸気透過率の評価は以下の方法で行った。
(a)電気抵抗値評価
 得られた熱電変換モジュールの取り出し電極部間の電気抵抗値を、ディジタルハイテスタ(日置電機社製、型名:3801-50)により、25℃×50%RHの環境下で測定した。
(b)水蒸気透過率(WVTR)
 水蒸気透過率計(MOCON社製、装置名:AQUATRAN)を用い、JIS-K7129に従い、実施例1~3の基材付きガスバリア層の40℃×90%RHにおける水蒸気透過率(g・m-2・day-1)を測定した。また、同様に、水蒸気透過率計(Systech Illinois社製、装置名:L80-5000)を用い、JIS-K7129に従い、40℃×90%RHにおける封止層の水蒸気透過率(g・m-2・day-1)を測定した。
<熱電素子層の作製>
 図3は実施例に用いた熱電素子層の構成を示す平面図であり、(a)はフィルム基板上に形成した電極の配置の概念図を示し、(b)は電極上に形成したP型及びN型熱電素子の配置の概念図を示す。
 銅箔を貼付したポリイミドフィルム基板(宇部エクシモ株式会社製、製品名:ユピセルN、ポリイミド基板厚み:50μm、銅箔:9μm)を準備し、ポリイミドフィルム基板12上の銅箔を、塩化第二鉄溶液を用いウェットエッチングし、後述するP型及びN型熱電素子の配列に対応した配置の電極パターンを形成した。パターニングされた銅箔上に、無電解めっきによりニッケル層(厚さ:9μm)を積層し、次いでニッケル層上に無電解めっきにより金層(厚さ:300nm)を積層することで、電極13のパターン層を形成した。その後、前記ポリイミドフィルム基板12上の電極13上に、後述する塗工液(P)及び(N)を用い塗布することにより、1mm×6mmのP型熱電素子15と1mm×6mmのN型熱電素子14とを交互に6mmの辺で接するように隣接して1対を配置することで、P型熱電素子及びN型熱電素子380対を、ポリイミドフィルム基板12の面内に、電気的に直列になるように設けた熱電素子層16を作製した。この際、P型熱電素子15とN型熱電素子14とを38対連結したものを一列として、これを10列設けた。図3において、電極13aは熱電素子層の各列の連結用電極、電極13bは起電力取り出し用電極である。なお、図3は電極や各素子の配置を概念的に示したものであり、実際に作製した電極及び熱電素子層とは個数が異なる。
(熱電半導体微粒子の作製方法)
 ビスマス-テルル系熱電半導体材料であるP型ビスマステルライドBi0.4TeSb1.6(高純度化学研究所製、粒径:180μm)を、遊星型ボールミル(フリッチュジャパン社製、Premium line P-7)を使用し、窒素ガス雰囲気下で粉砕することで、平均粒径1.2μmの熱電半導体微粒子T1を作製した。粉砕して得られた熱電半導体微粒子に関して、レーザー回折式粒度分析装置(Malvern社製、マスターサイザー3000)により粒度分布測定を行った。
 また、ビスマス-テルル系熱電半導体材料であるN型ビスマステルライドBiTe(高純度化学研究所製、粒径:180μm)を上記と同様に粉砕し、平均粒径1.4μmの熱電半導体微粒子T2を作製した。
(熱電半導体組成物の作製)
塗工液(P)
 得られたP型ビスマス-テルル系熱電半導体材料の微粒子T1を90質量部、耐熱性樹脂としてポリイミド前駆体であるポリアミック酸(シグマアルドリッチ社製、ポリ(ピロメリト酸二無水物-co-4,4´-オキシジアニリン)アミド酸溶液、溶媒:N-メチルピロリドン、固形分濃度:15質量%)5質量部、及びイオン液体として[1-ブチル-3-(2-ヒドロキシエチル)イミダゾリウムブロミド]5質量部を混合分散した熱電半導体組成物からなる塗工液(P)を調製した。なお、上記記載における配合質量部数は、溶媒を含む量である。
塗工液(N)
 得られたN型ビスマス-テルル系熱電半導体材料の微粒子T2を90質量部、耐熱性樹脂としてポリイミド前駆体であるポリアミック酸(シグマアルドリッチ社製、ポリ(ピロメリト酸二無水物-co-4,4´-オキシジアニリン)アミド酸溶液、溶媒:N-メチルピロリドン、固形分濃度:15質量%)5質量部、及びイオン液体として[1-ブチル-3-(2-ヒドロキシエチル)イミダゾリウムブロミド]5質量部を混合分散した熱電半導体組成物からなる塗工液(N)を調製した。なお、上記記載における配合質量部数は、溶媒を含む量である。
(熱電素子層の製造)
 図3の(b)に概念的に示すように、上記で調製した塗工液(P)を、スクリーン印刷法により前記電極パターンが形成されたポリイミドフィルム上の所定の位置に塗布し、温度150℃で、10分間アルゴン雰囲気下で乾燥し、厚さが50μmの薄膜を形成した。次いで、同様に、上記で調製した塗工液(N)を、前記ポリイミドフィルム上の所定の位置に塗布し、温度150℃で、10分間アルゴン雰囲気下で乾燥し、厚さが50μmの薄膜を形成した。
 さらに、得られたそれぞれの薄膜に対し、水素とアルゴンの混合ガス(水素:アルゴン=3体積%:97体積%)雰囲気下で、加温速度5K/minで昇温し、325℃で30分間保持し、薄膜形成後のアニール処理を行うことにより、熱電半導体材料の微粒子を結晶成長させ、P型熱電素子層及びN型熱電素子層からなる熱電素子層を形成した。
(実施例1)
<熱電変換モジュールの作製>
 熱電素子層の、ポリイミドフィルム基板が存在する側とは反対側の面に封止層(厚さ25μm、WVTR6.0g・m-2・day-1)を貼付し熱電変換モジュールを作製した。
 封止層の形成方法としては、始めに、剥離フィルム上に下記の配合のポリオレフィンを含む組成物を、既知の方法にて塗工・乾燥することにより粘着性シート状物を得た。その後、熱電素子層にラミネーターを用いて、粘着性シート状物を熱電素子層の面上に貼付したあと、剥離フィルムを剥離することで、封止層を形成した。この際、熱電素子層の端部も覆うように封止層を形成した。そして、この封止層上に、ガスバリアフィルムとして、メタルミーS[東レフィルム加工社製、アルミ蒸着膜(厚さ50nm)/PET(厚さ25μm)、WVTR3.1g・m-2・day-1]を、PETが封止層と対向するようにして貼付し、熱電変換モジュールを得た。
 ポリオレフィンを含む組成物は、カルボン酸系官能基含有ポリイソプレン系ゴム(クラレ社製、LIR410、数平均分子量30,000、1分子あたりのカルボン酸系官能基の数:10)5質量部、カルボン酸系官能基を有しないゴム系重合体:イソブチレンとイソプレンの共重合体(日本ブチル社製、Exxon Butyl 268、数平均分子量260,000)100質量部、エポキシ化合物(三菱化学社製、TC-5)2質量部をトルエンに溶解し、調製した。なお、上記記載における配合質量部数は、有効成分の量に換算したものであり、溶媒の量は含まない。ポリオレフィンを含む組成物の有効成分濃度は25質量%であった。
(実施例2)
 実施例1において、ポリイミドフィルム基板の、熱電素子層が存在する側とは反対側の面に、さらに前記封止層及び前記ガスバリアフィルムをこの順に積層し(ガスバリアフィルムの封止層への積層は、PETが封止層に対向するように行った。)、実施例1と同様にして、熱電変換モジュールを作製した。
(実施例3)
 実施例2において、前記封止層に積層した前記ガスバリアフィルムを、透明ガスバリアフィルム[特願2015-218292、実施例1で用いた透明ガスバリア層、ペルヒドロポリシラザン層(厚さ150nm)/PET(厚さ25μm)、WVTR0.005g・m-2・day-1]に変更した以外、実施例2と同様にして、熱電変換モジュールを作製した。
(比較例1)
 実施例1において、封止層上に、ガスバリアフィルムを積層しなかったこと以外は、実施例1と同様にして熱電変換モジュールを作製した。
(比較例2)
 実施例1において、封止層上に、ガスバリアフィルムを積層せず、ポリイミドフィルム基板の、熱電素子層とは反対側の面に、前記封止層を形成したこと以外は、実施例1と同様にして熱電変換モジュールを作製した。
 実施例1~3及び比較例1、2で得られた熱電変換モジュールを60℃×90%RHの環境下に1000時間保管する耐久性試験を行い、試験前後での熱電変換モジュールの取り出し電極部間の電気抵抗値を測定した。用いた封止層及びガスバリア層の水蒸気透過率とともに測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 熱電変換モジュールにおいて、熱電素子層の、基板を有する側とは反対側の面に封止層及びガスバリア層をこの順に積層した実施例1では、同様に基板を有する側とは反対側の面に封止層を含む一方で、ガスバリア層を積層しない比較例1に比べ、耐久性試験後の抵抗増加率が抑制されていることがわかる。
 熱電変換モジュールにおいて、両面に、すなわち、熱電素子層の、基板とは反対側の面、及び基板の、熱電素子層とは反対側の面に、封止層及びガスバリア層を積層した実施例2及び3では、ガスバリア層の種類(実際はWVTR値)に依存するものの、耐久性試験後の抵抗増加率が、実施例1に比べ、さらに小さくなっており、本試験の耐久性試験時間では、10%未満の増加に抑制されていることがわかる。また、同様に両面に封止層を含む一方で、ガスバリア層を積層しない比較例2に比べ、耐久性試験後の抵抗増加率が抑制されていることがわかる。上記の結果より、本発明の熱電変換モジュールは、高温多湿下にあっても、熱電性能が長期間にわたり維持されることが期待される。
 本発明の熱電変換モジュールは、優れた耐久性を有することから、長期間にわたり熱電性能が維持されることが期待される。このため、廃熱源や放熱源の環境下、又は高温多湿の環境下に設置する場合に好適に使用できる。
1A,1B,1C,1D:熱電変換モジュール
2:基板
3:電極
4:N型熱電素子
5:P型熱電素子
6:熱電素子層
7a,7b:被覆層(ガスバリア層)
8a,8b:高熱伝導層
12:ポリイミドフィルム基板
13:電極
13a:熱電素子層の列の連結用電極
13b:起電力取り出し用電極
14:N型熱電素子
15:P型熱電素子
16:熱電素子層(電極部含む)
 

Claims (9)

  1.  熱電素子層の少なくとも一方の面に被覆層を含む熱電変換モジュールであって、前記被覆層が、金属、無機化合物、及び高分子化合物からなる群から選ばれる一種以上を主成分とするガスバリア層を有する、熱電変換モジュール。
  2.  前記熱電素子層の一方の面に被覆層を含み、他方の面に基板を有する、請求項1に記載の熱電変換モジュール。
  3.  前記基板の、前記熱電素子層が存在する側とは反対側の面に、さらに前記被覆層を含む、請求項2に記載の熱電変換モジュール。
  4.  前記基板がフィルム基板である、請求項2又は3に記載の熱電変換モジュール。
  5.  前記熱電素子層が、P型熱電素子層とN型熱電素子層とを含み、前記P型熱電素子層と前記N型熱電素子層とが面内方向に交互に隣接し直列に配置される、請求項1~4のいずれか1項に記載の熱電変換モジュール。
  6.  前記熱電変換モジュールが、少なくとも前記被覆層の一つの表面又は前記基板の前記熱電素子層が存在する側とは反対側の表面にさらに高熱伝導層を有し、該高熱伝導層の熱伝導率が5~500W/(m・K)である、請求項1~5のいずれか1項に記載の熱電変換モジュール。
  7.  前記被覆層の厚さが、100μm以下である、請求項1~6のいずれか1項に記載の熱電変換モジュール。
  8.  前記高分子化合物が、ハロゲン原子を含む樹脂であり、ポリ塩化ビニリデン、ポリフッ化ビニリデン、ポリクロロテトラフルオロエチレン、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体、又はテトラフルオロエチレン・ヘキサフルオロプロピレン共重合体である、請求項1~7のいずれか1項に記載の熱電変換モジュール。
  9.  前記高分子化合物が、ポリシラザン系化合物、ポリカルボシラン系化合物、ポリシラン系化合物、又はポリオルガノシロキサン系化合物である、請求項1~8のいずれか1項に記載の熱電変換モジュール。
     
PCT/JP2017/038345 2017-03-30 2017-10-24 熱電変換モジュール WO2018179545A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107111209A TW201841398A (zh) 2017-03-30 2018-03-30 熱電轉換模組

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-068806 2017-03-30
JP2017068806 2017-03-30

Publications (1)

Publication Number Publication Date
WO2018179545A1 true WO2018179545A1 (ja) 2018-10-04

Family

ID=63674483

Family Applications (5)

Application Number Title Priority Date Filing Date
PCT/JP2017/038345 WO2018179545A1 (ja) 2017-03-30 2017-10-24 熱電変換モジュール
PCT/JP2017/038346 WO2018179546A1 (ja) 2017-03-30 2017-10-24 熱電変換モジュール
PCT/JP2017/038344 WO2018179544A1 (ja) 2017-03-30 2017-10-24 熱電変換モジュール及びその製造方法
PCT/JP2018/013111 WO2018181660A1 (ja) 2017-03-30 2018-03-29 熱電変換素子層及びその製造方法
PCT/JP2018/013112 WO2018181661A1 (ja) 2017-03-30 2018-03-29 熱電変換デバイス

Family Applications After (4)

Application Number Title Priority Date Filing Date
PCT/JP2017/038346 WO2018179546A1 (ja) 2017-03-30 2017-10-24 熱電変換モジュール
PCT/JP2017/038344 WO2018179544A1 (ja) 2017-03-30 2017-10-24 熱電変換モジュール及びその製造方法
PCT/JP2018/013111 WO2018181660A1 (ja) 2017-03-30 2018-03-29 熱電変換素子層及びその製造方法
PCT/JP2018/013112 WO2018181661A1 (ja) 2017-03-30 2018-03-29 熱電変換デバイス

Country Status (5)

Country Link
US (2) US20210036202A1 (ja)
JP (3) JPWO2018179544A1 (ja)
CN (2) CN110494997A (ja)
TW (4) TWI761485B (ja)
WO (5) WO2018179545A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020196001A1 (ja) * 2019-03-25 2020-10-01 リンテック株式会社 熱電変換モジュール及び熱電変換モジュールを製造する方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210249580A1 (en) * 2015-05-14 2021-08-12 Sridhar Kasichainula Flexible encapsulation of a flexible thin-film based thermoelectric device with sputter deposited layer of n-type and p-type thermoelectric legs
US20210249579A1 (en) * 2015-05-14 2021-08-12 Sridhar Kasichainula Flexible encapsulation of a flexible thin-film based thermoelectric device with sputter deposited layer of n-type and p-type thermoelectric legs
JP7237417B2 (ja) * 2018-11-16 2023-03-13 東京特殊電線株式会社 熱電モジュール用基板及び熱電モジュール
JP2020150215A (ja) * 2019-03-15 2020-09-17 三菱マテリアル株式会社 熱電変換モジュール
WO2021100674A1 (ja) * 2019-11-21 2021-05-27 リンテック株式会社 窓及び窓用スペーサ部材
CN114868264A (zh) 2019-12-16 2022-08-05 琳得科株式会社 热电转换体、热电转换组件、以及热电转换体的制造方法
KR20220098188A (ko) * 2019-12-19 2022-07-11 가부시키가이샤 케르쿠 열전 모듈 및 광모듈
JP7461138B2 (ja) 2019-12-19 2024-04-03 株式会社Kelk 熱電モジュール及び光モジュール
JP7461137B2 (ja) 2019-12-19 2024-04-03 株式会社Kelk 熱電モジュール及び光モジュール

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012204755A (ja) * 2011-03-28 2012-10-22 Toppan Printing Co Ltd 熱電変換素子包装体
JP2013119567A (ja) * 2011-12-06 2013-06-17 Lintec Corp ガスバリアフィルム用中間層形成用組成物、ガスバリアフィルム及びその製造方法、並びに電子部材又は光学部材
WO2016039022A1 (ja) * 2014-09-08 2016-03-17 富士フイルム株式会社 熱電変換素子および熱電変換モジュール

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6614109B2 (en) * 2000-02-04 2003-09-02 International Business Machines Corporation Method and apparatus for thermal management of integrated circuits
JP4485865B2 (ja) * 2004-07-13 2010-06-23 Okiセミコンダクタ株式会社 半導体装置、及びその製造方法
JP2006066822A (ja) * 2004-08-30 2006-03-09 Denso Corp 熱電変換装置
JP4737436B2 (ja) * 2006-11-28 2011-08-03 ヤマハ株式会社 熱電変換モジュールの接合体
JP5593175B2 (ja) * 2010-09-09 2014-09-17 リンテック株式会社 封止用粘着シート、電子デバイス、及び有機デバイス
WO2013121486A1 (ja) * 2012-02-16 2013-08-22 日本電気株式会社 熱電変換モジュール装置、及び電子機器
CN103545440B (zh) * 2012-07-13 2016-01-27 财团法人工业技术研究院 热电转换结构及使用其的散热结构
JP6325984B2 (ja) * 2012-11-30 2018-05-16 リンテック株式会社 接着剤組成物、接着シートおよび電子デバイス
JP6047413B2 (ja) * 2013-01-29 2016-12-21 富士フイルム株式会社 熱電発電モジュール
JP6358737B2 (ja) * 2013-03-22 2018-07-18 独立行政法人国立高等専門学校機構 中空管、及び発電装置
WO2015053038A1 (ja) * 2013-10-11 2015-04-16 株式会社村田製作所 積層型熱電変換素子
TWI648892B (zh) * 2013-12-26 2019-01-21 日商琳得科股份有限公司 Sheet-like sealing material, sealing sheet, electronic device sealing body, and organic EL element
JP6461910B2 (ja) * 2014-02-25 2019-01-30 リンテック株式会社 接着剤組成物、接着シート及び電子デバイス
WO2015129624A1 (ja) * 2014-02-25 2015-09-03 リンテック株式会社 接着剤組成物、接着シート及び電子デバイス
JP6256113B2 (ja) * 2014-03-07 2018-01-10 日本ゼオン株式会社 熱電変換材料含有樹脂組成物からなるフィルムの製造方法および熱電変換素子の製造方法
TW201624779A (zh) * 2014-12-23 2016-07-01 財團法人工業技術研究院 熱電轉換裝置及其應用系統
JP2016170981A (ja) * 2015-03-12 2016-09-23 パナソニックIpマネジメント株式会社 照明装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012204755A (ja) * 2011-03-28 2012-10-22 Toppan Printing Co Ltd 熱電変換素子包装体
JP2013119567A (ja) * 2011-12-06 2013-06-17 Lintec Corp ガスバリアフィルム用中間層形成用組成物、ガスバリアフィルム及びその製造方法、並びに電子部材又は光学部材
WO2016039022A1 (ja) * 2014-09-08 2016-03-17 富士フイルム株式会社 熱電変換素子および熱電変換モジュール

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020196001A1 (ja) * 2019-03-25 2020-10-01 リンテック株式会社 熱電変換モジュール及び熱電変換モジュールを製造する方法

Also Published As

Publication number Publication date
JPWO2018181661A1 (ja) 2020-02-13
TW201904099A (zh) 2019-01-16
JPWO2018179544A1 (ja) 2020-02-06
CN110462856A (zh) 2019-11-15
TW201841398A (zh) 2018-11-16
US20210036203A1 (en) 2021-02-04
TWI761485B (zh) 2022-04-21
CN110494997A (zh) 2019-11-22
WO2018179544A1 (ja) 2018-10-04
JP7303741B2 (ja) 2023-07-05
US20210036202A1 (en) 2021-02-04
JPWO2018181660A1 (ja) 2020-02-06
WO2018181660A1 (ja) 2018-10-04
WO2018179546A1 (ja) 2018-10-04
WO2018181661A1 (ja) 2018-10-04
TW201841397A (zh) 2018-11-16
TW201841399A (zh) 2018-11-16

Similar Documents

Publication Publication Date Title
WO2018179545A1 (ja) 熱電変換モジュール
JP7245652B2 (ja) フレキシブル熱電変換素子及びその製造方法
US9219179B2 (en) Multilayer thin-film back contact system for flexible photovoltaic devices on polymer substrates
TW201638259A (zh) 透明導電層層合用薄膜、該製造方法、及透明導電性薄膜
CN113748181B (zh) 导电粘合剂
US20140008634A1 (en) Electrode Sheet for Organic Device, Organic Device Module, and Method for Producing Same
JP2022075784A (ja) 太陽電池及び太陽電池の製造方法
JP2019179911A (ja) 熱電変換モジュール
JP7386801B2 (ja) 熱電変換モジュール用中間体の製造方法
WO2020196001A1 (ja) 熱電変換モジュール及び熱電変換モジュールを製造する方法
US10121923B2 (en) Laminate and thin-film solar cell comprising same
JPWO2020045376A1 (ja) 熱電変換材料のチップの製造方法及びその製造方法により得られたチップを用いた熱電変換モジュールの製造方法
US20230380288A1 (en) Thermoelectric conversion module
JP2023046931A (ja) 熱電変換モジュール
US20240023441A1 (en) Method for manufacturing thermoelectric conversion module
WO2023136155A1 (ja) 温度制御モジュール
WO2021193358A1 (ja) 熱電変換モジュール
JP2021150403A (ja) 熱電変換モジュール
JP2018134844A (ja) バリアフィルム及びバリアフィルムを備えた半導体デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17903498

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17903498

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP