WO2018168874A1 - エッチング液、エッチング方法、及び電子部品の製造方法 - Google Patents

エッチング液、エッチング方法、及び電子部品の製造方法 Download PDF

Info

Publication number
WO2018168874A1
WO2018168874A1 PCT/JP2018/009795 JP2018009795W WO2018168874A1 WO 2018168874 A1 WO2018168874 A1 WO 2018168874A1 JP 2018009795 W JP2018009795 W JP 2018009795W WO 2018168874 A1 WO2018168874 A1 WO 2018168874A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
concentration
mass
etching
etching solution
Prior art date
Application number
PCT/JP2018/009795
Other languages
English (en)
French (fr)
Inventor
友佳子 村上
平川 雅章
育生 植松
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to JP2019506057A priority Critical patent/JP6864077B2/ja
Priority to KR1020197000609A priority patent/KR102237769B1/ko
Priority to CN201880002785.2A priority patent/CN109478509B/zh
Publication of WO2018168874A1 publication Critical patent/WO2018168874A1/ja
Priority to US16/294,508 priority patent/US10957553B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • C09K13/04Etching, surface-brightening or pickling compositions containing an inorganic acid
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • C09K13/04Etching, surface-brightening or pickling compositions containing an inorganic acid
    • C09K13/08Etching, surface-brightening or pickling compositions containing an inorganic acid containing a fluorine compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67075Apparatus for fluid treatment for etching for wet etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67075Apparatus for fluid treatment for etching for wet etching
    • H01L21/67086Apparatus for fluid treatment for etching for wet etching with the semiconductor substrates being dipped in baths or vessels

Definitions

  • Embodiments described herein relate generally to an etching solution, an etching method, and a method for manufacturing an electronic component.
  • wet etching using a phosphoric acid aqueous solution is widely used. This wet etching is performed by immersing the above-described laminated body in a phosphoric acid aqueous solution heated to a temperature of about 150 ° C. for a certain period of time.
  • wet etching it is required to increase the ratio between the etching rate of silicon nitride and the etching rate of silicon oxide, that is, the selectivity.
  • wet etching using a mixed solution of sulfuric acid, phosphoric acid, and water has been studied.
  • the problem to be solved by the present invention is to provide an etching solution capable of realizing a high selectivity with respect to silicon nitride, an etching method using this etching solution, and a method for manufacturing an electronic component.
  • the problem to be solved by the present invention is to provide an etching solution capable of realizing a balanced etching process in high silicon nitride etching rate, high selectivity, and suppression of silicon oxide precipitation, and the etching solution. It is providing the etching method and the manufacturing method of an electronic component which used the.
  • Etching liquid according to the first embodiment is a etchant used for etching the silicon nitride, and phosphoric acid, an acid having a smaller acid dissociation index than the first acid dissociation exponent pK a1 of phosphoric acid, silicic acid compound And water.
  • the ratio M1 / M2 between the mass M1 of phosphoric acid and the mass M2 of the acid is in the range of 0.82 to 725.
  • the etching method according to the second embodiment includes etching silicon nitride using the etching solution according to the first embodiment.
  • the method for manufacturing an electronic component according to the third embodiment includes etching silicon nitride using the etching solution according to the first embodiment.
  • FIG. 3 is a cross-sectional view schematically showing a step that follows the step of FIG. 2.
  • FIG. 4 is a cross-sectional view schematically showing a step that follows the step of FIG. 3.
  • FIG. 5 is a cross-sectional view schematically showing a step that follows the step of FIG. 4.
  • Sectional drawing which shows roughly 1 process of the manufacturing method of the board
  • FIG. 7 is a cross-sectional view schematically showing a step that follows the step of FIG. 6.
  • FIG. 8 is a cross-sectional view schematically showing a step that follows the step of FIG. 7.
  • FIG. 9 is a cross-sectional view schematically showing a step that follows the step of FIG. 8.
  • FIG. 10 is a cross-sectional view schematically showing a step that follows the step of FIG. 9.
  • FIG. 11 is a cross-sectional view schematically showing a step that follows the step of FIG. 10.
  • the graph which shows an example of the relationship between the water concentration and silicon concentration in the etching liquid which concerns on 4th Embodiment Explanatory drawing for demonstrating the function of a sulfuric acid as a polymerization inhibitor of a silicic acid.
  • the etching solution according to the first embodiment is used for etching silicon nitride (Si 3 N 4 ).
  • This etchant is particularly preferably used as an etchant for selectively removing only silicon nitride from a structure containing silicon oxide and silicon nitride.
  • This etching solution contains phosphoric acid, the acid having a smaller acid dissociation index pK than the first acid dissociation exponent pK a1 of phosphoric acid, a silicic acid compound, and water.
  • Acid having a smaller acid dissociation index pK than the first acid dissociation exponent pK a1 of phosphoric acid serves selective ratio improver.
  • the selection ratio means the ratio ER SiN / ER SiO between the etching rate of silicon nitride (ER SiN ) and the etching rate of silicon oxide (ER SiO 2 ).
  • the first acid dissociation exponent pK a1 of phosphoric acid in water at a temperature of 25 ° C. is 2.12.
  • As the first acid dissociation exponent pK a1 of the phosphoric acid it is used the values listed in the first page of the non-patent document 1.
  • the ratio M1 / M2 between the mass M1 of phosphoric acid and the mass M2 of the acid having an acid dissociation index pK smaller than the first acid dissociation index pK a1 of phosphoric acid is in the range of 0.82 to 725. Is in. When the mass ratio M1 / M2 is within this range, the selectivity to silicon nitride tends to be improved.
  • Silicic acid compound plays a role as a selective ratio improver. That is, the etching liquid according to the first embodiment contains a silicate compound in advance. When such an etching solution is used, the etching rate of silicon oxide can be further reduced as compared with an etching solution that does not contain a silicate compound in advance. The reason for this will be described below.
  • Phosphoric acid can be the main component of the etching solution.
  • Wet etching using a phosphoric acid aqueous solution heated to a temperature of 140 ° C. to 180 ° C. is widely used. In the wet etching using this phosphoric acid aqueous solution, only silicon nitride can be selectively removed from the structure containing silicon oxide and silicon nitride.
  • the mechanism of wet etching using this high-temperature phosphoric acid aqueous solution has not been completely elucidated, but the present inventors believe that it is as follows.
  • silicon nitride (Si 3 N 4 ) provided on a substrate is made of silicic acid (Si (OH) by water (H 2 O) and phosphoric acid (H 3 PO 4 ) in an etching solution at a high temperature.
  • Si (OH) silicic acid
  • H 2 O water
  • phosphoric acid H 3 PO 4
  • etching solution at a high temperature.
  • ) 4 is decomposed into a silicate compound containing 4 ) and ammonium phosphate ((NH 4 ) 3 PO 4 ).
  • This reaction formula (A) is shown below.
  • the etching solution according to the first embodiment contains a silicate compound in advance.
  • the equilibrium of the above reaction formula (B) moves to the right before the silicon oxide provided on the substrate is etched, that is, from the start of etching. It's easy to do. Therefore, when the etching solution according to the first embodiment is used, silicon nitride is more selectively selected from the structure containing silicon oxide and silicon nitride, compared to the case where the phosphoric acid aqueous solution not containing the silicate compound is used. It is thought that it can be removed.
  • the proportion of phosphoric acid in the etching solution is preferably in the range of 60% by mass to 95% by mass. When the proportion of phosphoric acid is within this range, the etching rate of silicon nitride tends to increase and the etching rate of silicon oxide tends to decrease.
  • the ratio of phosphoric acid in the etching solution is more preferably in the range of 70% by mass to 85% by mass.
  • Acid having a smaller acid dissociation index pK than the first acid dissociation exponent pK a1 of phosphoric acid, as described above, serves selection ratio improver. That is, such an acid can generate a proton in an aqueous phosphoric acid solution. This proton reacts with at least a part of hydroxide ions in the etching solution to generate water. As a result, the hydroxide ion concentration in the etching solution is lowered, and the equilibrium in the equilibrium reaction formula (C) moves to the left. Therefore, the concentration of silicic acid is reduced and the concentration of silicon oxide is increased. Therefore, such an acid can further reduce the etching rate of silicon oxide.
  • Examples of such an acid include acids having an acid dissociation index pK of less than 2.12, and it is preferable to use an acid having a value of 1.8 or less.
  • the acid dissociation index pK has no particular lower limit, but according to an example, it is ⁇ 15 or more.
  • an acid for example, sulfuric acid, hydrochloric acid, nitric acid, trifluorosulfonic acid or a mixture thereof
  • the first acid dissociation exponent pK a1 of sulfuric acid is -3.0
  • the second acid dissociation exponent pK a2 of sulfuric acid is 1.99
  • acid dissociation exponent of hydrochloric acid pK is ⁇ 8
  • the acid dissociation index pK of nitric acid is ⁇ 1.3
  • the acid dissociation index pK of trifluorosulfonic acid is ⁇ 15.
  • exponents the value described in the 1st page of the nonpatent literature 1 is described.
  • sulfuric acid is a dibasic acid capable of separating two protons by two-stage ionization in an etching solution. In the first stage of ionization, sulfuric acid is almost completely dissociated into protons and hydrogen sulfate ions as shown in the following reaction formula (D). A part of hydrogen sulfate ions is ionized into protons and sulfate ions as shown in the following reaction formula (E).
  • the mass M1 of the phosphoric acid, the ratio M1 / M2 of the mass M2 of the acid with a small acid dissociation constant pK than the first acid dissociation exponent pK a1 of phosphoric acid is in the range of 0.9 to 725 less It is preferably within the range of 4.07 or more and 725 or less.
  • Ratio of acid having a smaller acid dissociation index pK than the first acid dissociation exponent pK a1 of phosphoric acid to total etchant is preferably in the range from 0.1 wt% to 48.3 wt%.
  • Ratio of acid having a smaller acid dissociation index pK than the first acid dissociation exponent pK a1 of phosphoric acid to total etching solution more preferably in a range from 0.1 wt% to 28.33 wt%, More preferably, it is in the range of 0.1 mass% or more and 17.2 mass% or less.
  • the silicic acid compound typically contains silicic acid (Si (OH) 4 ).
  • the silicic acid compound may be a monomer or multimer having a structure represented by the following general formula (I) as a basic unit.
  • the number of basic units contained in the silicate compound multimer is, for example, 2 or more and 5 or less.
  • the silicate compound in the etching solution may be in the form of ions.
  • the monomer or multimer of the silicate compound include monomers and pentamers described in Non-Patent Document 2.
  • the monomer of the silicate compound for example, [Si (OH) 3 O] H, [Si (OH) 3 O (H 2 O)] H, [Si (OH) 3 O (H 2 O) ) 2 ] H and mixtures thereof.
  • dimers of silicate compounds include [Si 2 (OH) O 4 ] H, [Si 2 (OH) 3 O 3 ] H, [Si 2 (OH) 5 O 2 ] H, and [Si 2 (OH) 5 O 2 (H 2 O)] H, can be exemplified [Si 2 (OH) 5 O 2 (H 2 O) 2] H, or mixtures thereof.
  • trimer of the silicate compound examples include [Si 3 (OH) 3 O 5 ] H, [Si 3 (OH) 5 O 4 ] H, [Si 3 (OH) 7 O 3 ] H, [Si 3 (OH) 5 O 4 (H 2 O)] H, [Si 3 (OH) 7 O 3 (H 2 O) 2 ] H, or a mixture thereof.
  • Examples of the tetramer of the silicate compound include [Si 4 (OH) 3 O 7 ] H, [Si 4 (OH) 5 O 6 ] H, [Si 4 (OH) 7 O 5 ] H, [Si 4 (OH) 5 O 6 (H 2 O)] H, or mixtures thereof.
  • An example of a pentamer of a silicate compound is [Si 5 (OH) 7 O 7 ] H.
  • This silicate compound can be introduced into the etching solution by, for example, dissolving a silicate compound source in an aqueous solution containing sulfuric acid and phosphoric acid.
  • a silicate compound source for example, silicon nitride, silica, or a mixture thereof can be used.
  • the amount of the silicate compound contained in the etching solution can be grasped by measuring the silicon (Si) concentration in the etching solution.
  • This silicon concentration can be measured using, for example, a high-frequency plasma emission spectrometer (ICP-AES).
  • the silicon concentration in the etching solution is preferably 5 ppm or more, more preferably 10 ppm or more, and further preferably 20 ppm or more. If the etching solution contains a sufficient amount of silicon, the selectivity tends to be high.
  • the silicon concentration (ppm) means the amount (mg) of silicon contained in 1 kg of etching solution.
  • the silicon concentration in this etching solution is preferably 98 ppm or less, more preferably 73 ppm or less, and further preferably 50 ppm or less.
  • silicon oxide tends not to precipitate.
  • the deposition of silicon oxide means a phenomenon in which a polymer produced by polymerization of silicic acid contained in an etching solution adheres to the surface of an object to be processed. Details of the deposition of silicon oxide will be described later.
  • the silicon concentration in the etching solution the concentration of the acid having a smaller acid dissociation index pK than the first acid dissociation exponent pK a1 of phosphoric acid, at least one of the relationships represented by the following (1) to (4) It is preferable to satisfy.
  • FIG. 1 is a graph showing an example of the relationship between the sulfuric acid concentration and the silicon concentration in the etching solution according to the first embodiment.
  • the horizontal axis represents the sulfuric acid concentration in the etching solution
  • the vertical axis represents the silicon concentration in the etching solution.
  • the lower line represented by a solid line indicates the lower limit value of the silicon concentration at each sulfuric acid concentration.
  • the silicon concentration Y1 in the range where the concentration of sulfuric acid is 0.11 mass% or more and 2.9 mass% or less is represented by the following formula (1).
  • This equation (1) is obtained by performing multivariate analysis on the experimental results conducted by the inventors. Details of the multivariate analysis will be described later.
  • X means the reciprocal of the concentration value of sulfuric acid.
  • the silicon concentration Y2 in the range where the concentration of sulfuric acid is higher than 2.9% by mass and not more than 28.33% by mass is represented by the following formula (2) and 5 or more. Value.
  • This equation (2) is obtained by performing multivariate analysis on the experimental results conducted by the inventors.
  • X means the reciprocal of the concentration value of sulfuric acid.
  • etching solution concentration of the acid having a smaller acid dissociation index pK than the first acid dissociation exponent pK a1 of phosphoric acid is in the range of more than 0.29 mass% to 2.9 mass%, a silicon concentration Y1ppm above and By doing so, a higher selection ratio ER SiN / ER SiO can be realized.
  • the silicon concentration of the acid having a smaller acid dissociation index pK than the first acid dissociation exponent pK a1 is in the range of higher 28.33 mass% or less than 2.9 wt% of phosphoric acid, the silicon concentration By setting Y2 ppm or more, a higher selection ratio ER SiN / ER SiO can be realized.
  • the silicon concentration of the acid having a smaller acid dissociation index pK than the first acid dissociation exponent pK a1 is in a range of less 48.3 wt% higher than 28.33% by weight of phosphoric acid, the silicon concentration By setting it as 5 ppm or more, a higher selection ratio ER SiN / ER SiO can be realized.
  • the silicon concentration of the etchant if the concentration of the acid having a smaller acid dissociation index pK than the first acid dissociation exponent pK a1 of phosphoric acid is in the range of 2.9 mass% or more 0.11 wt% Y1 ppm or more, and when the acid concentration is higher than 2.9 mass% and in the range of 28.33 mass% or less, Y2 ppm or more, and the acid concentration is higher than 28.33 mass% and higher than 48.3 mass%.
  • a high selection ratio ER SiN / ER SiO can be realized by setting it to 5 ppm or more.
  • the upper line represented by a broken line indicates the upper limit value of the silicon concentration at each sulfuric acid concentration.
  • the silicon concentration Y3 in the range where the concentration of sulfuric acid is 0.11% by mass or more and 0.58% by mass or less is represented by the following formula (3).
  • This equation (3) is obtained by performing multivariate analysis on the experimental results conducted by the inventors.
  • X means the reciprocal of the sulfuric acid concentration value.
  • Y3 18.958 ⁇ log e (X) +53.58 Equation (3)
  • the silicon concentration Y3 in the range where the concentration of sulfuric acid is higher than 0.58 mass% and not more than 28.33 mass% is represented by the following formula (4).
  • This equation (4) is obtained by performing multivariate analysis on the experimental results conducted by the inventors.
  • X means the reciprocal of the sulfuric acid concentration value.
  • Y4 18.111 ⁇ log e (X) +65.953 Equation (4)
  • concentration of the first acid dissociation exponent pK acid having a smaller acid dissociation index pK than a1 is in a range of less 5.78 mass% or more 0.11% by weight of phosphoric acid, and the silicon concentration Y3ppm less By doing so, precipitation of silicon oxide can be sufficiently suppressed.
  • the silicon concentration of the acid having a smaller acid dissociation index pK than the first acid dissociation exponent pK a1 falls within the following ranges 28.33 wt% higher than 5.78 wt% of phosphoric acid, the silicon concentration By setting it to Y4 ppm or less, precipitation of silicon oxide can be sufficiently suppressed.
  • the silicon concentration of the etchant if the concentration of the acid having a smaller acid dissociation index pK than the first acid dissociation exponent pK a1 of phosphoric acid is in the range of 0.58 mass% or more 0.11 wt%
  • the acid concentration is within the range of 5 ppm or more and Y3 ppm or less and the acid concentration is higher than 0.58 mass% and within the range of 28.33 mass% or less
  • silicon oxide is precipitated. Can be sufficiently suppressed.
  • the etching solution concentration of the acid having a smaller acid dissociation index pK than the first acid dissociation exponent pK a1 of phosphoric acid is in the range of 0.11 mass% or more 0.58% by mass or less, silicon
  • the silicon concentration of the acid having a smaller acid dissociation index pK than the first acid dissociation exponent pK a1 is in the range of less 2.9 wt% higher than 0.58 wt% of phosphoric acid, the silicon concentration By setting it to Y1 ppm or more and Y4 ppm or less, it is possible to realize a high selection ratio ER SiN / ER SiO and suppression of silicon oxide precipitation.
  • the silicon concentration of the acid having a smaller acid dissociation index pK than the first acid dissociation exponent pK a1 is in the range of higher 28.33 mass% or less than 2.9 wt% of phosphoric acid, the silicon concentration By setting it to Y2 ppm or more and Y4 ppm or less, it is possible to realize a high selection ratio ER SiN / ER SiO and suppression of silicon oxide precipitation.
  • the silicon concentration of the etchant if the concentration of the acid having a smaller acid dissociation index pK than the first acid dissociation exponent pK a1 of phosphoric acid is in the range of 0.58 mass% or more 0.11 wt% Y1 ppm or more and Y3 ppm or less, and when the acid concentration is higher than 0.58 mass% and 2.9 mass% or less, the acid concentration is within the range of Y1 ppm or more and Y4 ppm or less, and the acid concentration is 2.9.
  • Elucidation of the phenomenon is performed using data, but the data is a figure representing the phenomenon / characteristic, which indicates the result of the influence of the related characteristic on each other.
  • the data contains useful information that needs to be extracted effectively and combined into a universal result.
  • the analysis is called multivariate analysis, and the data is called multivariate data.
  • Multivariate analysis is part of statistics and is a mathematical model that summarizes data based on assumptions and assumptions. It is necessary to objectively extract the factors used there based on the phenomenon mechanism. The conclusion of the analysis is also based on the combination of data that is the form of the factor, so the characteristics of the data and how to measure it are important points. Examining whether the data satisfies the assumptions and assumptions that are the premise of the method is an indispensable element in conducting multivariate analysis.
  • the equation (3.18) can be transformed into multiple regression analysis (MultiplegressRegression Analysis), principal component analysis (Principle Component Analysis), canonical correlation analysis (Canonical Correlation Analysis), factor analysis ( Factor Analysis) and Discriminant Function.
  • the statistical analysis software JMP SAS Institute Inc. used here is based on multiple regression analysis.
  • the multiple regression analysis is represented by the above formula (3.18), and is characterized in that x i are independent of each other.
  • Non-patent documents 3 to 5 are listed as references for multivariate analysis.
  • Water serves as an etchant of silicon nitride as shown in the above reaction formula (A).
  • the proportion of water in the etching solution is preferably 4% by mass or more, and more preferably 10% by mass or more. When the proportion of water is high, the selectivity to silicon nitride tends to improve.
  • the boiling point of water is lower than that of phosphoric acid and sulfuric acid. Therefore, when the ratio of water contained in the etching solution is excessively increased, the boiling point of the etching solution is lowered and the etching solution may boil. Therefore, from the viewpoint of making the etching solution difficult to boil, the proportion of water in the etching solution is preferably 17% by mass or less, more preferably 15% by mass or less, and 12% by mass or less. More preferably, it is 5 mass% or less.
  • the silicon concentration of the etchant by adjusting in accordance with the concentration of the acid having a smaller acid dissociation index pK than the first acid dissociation exponent pK a1 of phosphoric acid etchant described to be able to achieve better etchant
  • the present inventors have further found that a more excellent etching solution can be realized by adjusting the silicon concentration of the etching solution according to the water concentration of the etching solution. That is, if the concentration of the acid having a smaller acid dissociation index pK than the first acid dissociation exponent pK a1 of phosphoric acid are the same, by the water concentration to lower to increase the concentration of the silicic acid compound, high selectivity Can be realized.
  • the silicon concentration Is preferably 45 ppm or more, more preferably 55 ppm or more, and still more preferably 90 ppm or more.
  • the acid concentration has a smaller acid dissociation index pK than the first acid dissociation exponent pK a1 of phosphoric acid etching solution, not more than 2 wt%, and water concentration is not more than 5 wt%
  • the etching solution according to the first embodiment has a hydration number of 3.5 in addition to phosphoric acid, an acid having an acid dissociation index pK smaller than the first acid dissociation index pK a1 of phosphoric acid, and water.
  • the following salt containing a monovalent cation may be further included.
  • Such a salt functions as a silicon oxide precipitation inhibitor. That is, such a salt generates a monovalent cation A + having a hydration number of 3.5 or less in the etching solution.
  • This monovalent cation A + can replace the hydrogen of the silanol group (Si—O—H) of silicate Si (OH) 4 to produce (OH) 3 —Si—O—A +. .
  • This (OH) 3 —Si—O—A + is less polymerized than Si (OH) 4 silicate. Therefore, when the etching solution further contains this salt, it is possible to suppress the formation of a polymer due to polymerization of silicic acid in the etching solution.
  • the monovalent cation A + having a hydration number of 3.5 or less has a small number of coordinated water molecules in the etching solution.
  • the water contained in the etching solution is an etchant of silicon nitride. Therefore, an etching solution containing a monovalent cation A + having a hydration number of 3.5 or less is more suitable in an etching solution than an etching solution containing a cation monovalent cation having a hydration number greater than 3.5.
  • the concentration of water acting as an etchant tends to be higher.
  • Examples of the monovalent cation A + having a hydration number of 3.5 or less include, for example, sodium ion (Na + ), silver ion (Ag + ), potassium ion (K + ), ammonium ion (NH 4 + ), Rubidium ions (Rb + ), titanium ions (Ti + ), and cesium ions (Cs + ) can be mentioned.
  • the monovalent cation A + having a hydration number of 3.5 or less may contain two or more of these ions.
  • the hydration number of Na + is 3.5
  • the hydration number of Ag + is 3.1
  • the hydration number of K + is 2.6
  • the hydration number of NH 4 + is 2.4.
  • Rb + has a hydration number of 2.4
  • Ti + has a hydration number of 2.4
  • Cs + has a hydration number of 2.1.
  • this hydration number the value described in the nonpatent literature 6 is used.
  • Examples of the salt containing a monovalent cation A + having a hydration number of 3.5 or less include sodium chloride (NaCl), potassium chloride (KCl), sodium sulfate (Na 2 SO 4 ), and potassium sulfate (K 2 SO It is preferable to use at least one salt selected from the group consisting of 4 ).
  • the concentration of this salt in the etching solution is preferably in the range of 0.05 mol / L or more and 2 mol / L or less. If the salt concentration is within this range, suppression of silicon oxide precipitation and a high selectivity tend to be easily achieved.
  • the ratio M1 / M2 between the phosphoric acid mass M1 and the acid mass M2 is in the range of 0.82 to 725.
  • the etching method according to the second embodiment includes etching silicon nitride using the etching solution according to the first embodiment. Details of the etching method according to the second embodiment will be described below.
  • FIG. 2 is a cross-sectional view schematically showing one step of a method for manufacturing a structure to be processed by the etching method according to the second embodiment.
  • a method for manufacturing a substrate using the STI (Shallow Trench Isolation) technique will be described as an example.
  • the structure shown in FIG. 2 includes a silicon layer 11, an insulating film 12, a mask 13, a high-temperature oxide film 14, and a coating-type oxide film 15.
  • the structure shown in FIG. 2 can be obtained, for example, by the following method.
  • silicon oxide is deposited on the silicon layer 11 by, for example, chemical vapor deposition (CVD) to form the insulating film 12.
  • the silicon layer 11 is made of single crystal silicon, for example.
  • silicon nitride is deposited on the insulating film 12 by CVD to form a mask 13. In this way, a laminate composed of the silicon layer 11, the insulating film 12, and the mask 13 is obtained.
  • shallow grooves are provided in a part of these stacked bodies by reactive ion etching (RIE).
  • RIE reactive ion etching
  • the surface of the stacked body is oxidized at a high temperature, and a high temperature oxide film 14 is formed in a portion of the stacked body where the shallow groove is provided.
  • the high temperature oxide film 14 is typically made of silicon oxide.
  • the high temperature oxide film 14 can be omitted.
  • a silica-based coating forming coating solution is applied onto the high-temperature oxide film 14, and the shallow grooves are filled with the silica-based coating forming coating solution.
  • this coating solution for forming a silica-based film is oxidized to form a coating type oxide film 15.
  • the coating type oxide film 15 is typically made of silicon oxide. In this way, the structure shown in FIG. 2 is obtained.
  • the surface of the laminate is planarized by a chemical mechanical polishing (CMP) method.
  • CMP chemical mechanical polishing
  • the upper surface portions of the high temperature oxide film 14 and the coating type oxide film 15 are removed by the RIE method. In this way, a structure to be processed by the etching method according to the second embodiment can be obtained.
  • this structure is immersed in the etching solution according to the first embodiment, and the mask 13 is selectively etched from this structure.
  • the temperature of this etching solution can be about 160 ° C. In this way, the structure shown in FIG. 5 is obtained.
  • FIG. 4 is described as an example of the structure to be processed by the etching method according to the second embodiment, but a structure other than the structure shown in FIG. 4 may be used.
  • substrate used as the process target of the etching method which concerns on 2nd Embodiment is demonstrated, referring FIG. 6 thru
  • FIG. 6 is a cross-sectional view schematically showing one step of a method for manufacturing a substrate to be processed by the etching method according to the second embodiment.
  • the structure shown in FIG. 6 includes a substrate 1 and a silicon oxide film 2.
  • the substrate 1 is, for example, a semiconductor substrate.
  • a substrate mainly composed of an inorganic substance such as a silicon substrate (Si substrate), a gallium nitride substrate (GaN substrate), or a silicon carbide substrate (SiC substrate) can be used.
  • the silicon oxide film 2 is provided on at least one main surface of the substrate 1.
  • the silicon oxide film 2 is formed, for example, by sputtering or chemical vapor deposition (CVD). Note that a material other than silicon oxide may be used as a material for the film provided over the substrate 1.
  • a resist layer 3 is provided on the silicon oxide film 2.
  • the resist layer 3 can be formed, for example, by applying a fluid resist material on the silicon oxide film 2.
  • the resist layer 3 may be formed by laminating a dry film resist using a roll laminator or the like.
  • a pattern is formed in the silicon oxide film 2. Specifically, for example, a portion of the silicon oxide film 2 that is not covered with the resist layer 3 is etched by a dry etching method. Thereby, the silicon oxide film 2 having a pattern including a plurality of convex portions can be obtained.
  • the resist layer 3 is stripped from the silicon oxide film 2 using a resist stripping solution such as an alkaline solution.
  • a silicon nitride film 4 is formed on the substrate 1 and the silicon oxide film 2. Specifically, for example, silicon nitride is formed on the silicon oxide film 2 and on a portion of the main surface of the substrate 1 that is not covered with the silicon oxide film 2 by sputtering or chemical vapor deposition (CVD). A silicon nitride film 4 is formed by deposition.
  • the substrate 10 to be processed by the etching method according to the second embodiment can be obtained.
  • the silicon oxide film 2 and the silicon nitride film 4 have a structure in which at least a part thereof is alternately arranged in a direction parallel to the main surface of the substrate 1.
  • the structure in which the silicon oxide film 2 and the silicon nitride film 4 are alternately arranged on one main surface of the substrate 1 has been described as an example.
  • the silicon oxide film 2 and the silicon nitride film 4 are alternately arranged.
  • the structures arranged in a row may be provided on both sides of the substrate 1.
  • the silicon nitride film 4 can be selectively etched from the processing target substrate 10 by immersing the processing target substrate 10 thus obtained in the etching solution according to the first embodiment.
  • FIG. 12 is a cross-sectional view schematically showing a state before the etching process is completed in the etching method according to the second embodiment.
  • the silicon nitride film 4 is etched from the surface of the silicon nitride film 4 facing the main surface of the substrate 1. To dissolve. That is, when this etching process is performed, the thickness of the silicon nitride film 4 extending in the direction perpendicular to the substrate 1 becomes thinner as the processing time elapses.
  • a trench T is formed in a portion where the silicon nitride film 4 exists between the convex portions made of the pair of silicon oxide films 2.
  • the depth of the groove T becomes deeper as the processing time elapses.
  • the groove T is filled with an etching solution. Therefore, as the etching of the silicon nitride film 4 proceeds, the number of the surfaces of the silicon oxide film 2 exposed to the silicon nitride film 4 that are in contact with the etching solution increases.
  • the etching solution according to the first embodiment used in the etching method according to the second embodiment can achieve a high selectivity. Therefore, even if the side surface of the convex portion made of the silicon oxide film 2 is exposed to the etching solution for a long time, side etching is unlikely to occur. Therefore, according to the etching method according to the second embodiment, the side surface of the pattern of the silicon oxide film 2 is etched, and the problem that a desired shape cannot be obtained can be made difficult to occur.
  • the silicon concentration in the etching solution the relationship between the concentration of the acid having a smaller acid dissociation index pK than the first acid dissociation exponent pK a1 of phosphoric acid, formula (3) And by satisfy
  • FIG. 13 is a cross-sectional view schematically showing the substrate after the etching process.
  • This processed substrate 100 is obtained by performing an etching process on the processing target substrate 10 shown in FIG.
  • the portion where the silicon nitride film 4 is formed in the processing target substrate 10 shown in FIG. 12 is selectively removed to have a pattern having a plurality of convex portions 20 made of silicon oxide. Is formed. Then, in the substrate 10 to be processed shown in FIG. 12, the groove T shown in FIG. 13 is provided between the pair of silicon oxide protrusions 20 where the silicon nitride film 4 has been formed.
  • the precipitate 201 is attached to the side surface of the tip of the silicon oxide protrusion 20. This precipitate 201 is made of a silicon oxide polymer produced by polymerization of silicic acid contained in the etching solution.
  • the amount of precipitate 201 deposited can be quantified by measuring the thickness X along the direction parallel to the substrate 1 from the side surface of the silicon oxide projection 20 as shown in FIG.
  • the thickness X can be obtained by observing the substrate 100 after processing using, for example, an electron microscope.
  • FIG. 14 is a cross-sectional view schematically showing an example of an etching processing apparatus.
  • the etching apparatus 300 includes a processing tank 30, a buffer tank 31, a drain tank 32, a water supply source W, a pump P, a heater H, a filter F, pipes L1 to L8, and valves V1 to V1. V3.
  • the processing tank 30 includes a storage tank 301 and a heater and a stirrer (not shown).
  • the processing tank 30 can accommodate the etching solution E and the sample S according to the first embodiment.
  • the storage tank 301 has a frame shape.
  • the storage tank 301 surrounds an area adjacent to the upper layer of the processing tank 30, and forms a storage part that can store the etching solution E overflowing from the processing tank 30.
  • the buffer tank 31 can store the buffer solution B.
  • the buffer tank 31 is connected to the processing tank 30 by a pipe L1.
  • the pipe L ⁇ b> 1 supplies the buffer solution B accommodated in the buffer tank 31 to the processing tank 30.
  • the valve V1 is provided in the pipe L1.
  • the valve V1 is a motor-operated valve that includes a pair of inflow ports and outflow ports, and can switch between a state in which these are in communication and a state in which they are not in communication under electrical control.
  • the water supply source W is connected to the treatment tank 30 by a pipe L2.
  • the pipe L ⁇ b> 2 supplies water from the water supply source W to the treatment tank 30.
  • the valve V2 is provided in the pipe L2.
  • the valve V2 is a motor-operated valve that includes a pair of inlets and outlets and can be switched between a state in which these are in communication and a state in which they are not in communication under electrical control.
  • the pipes L3 to L5, L7, and L8, the valve V3, the pump P, the heater H, and the filter F constitute a circulation channel.
  • This circulation channel connects the lower part of the storage tank 301 and the processing tank 30.
  • the pipes L3 to L6, the valve V3, the pump P, and the drainage tank 32 constitute a discharge channel.
  • the drainage channel connects the lower part of the storage tank 301 and the drainage tank 32.
  • the pump P has a pair of suction ports and discharge ports.
  • the valve V3 includes one inlet and two outlets, and switches between a state where the inlet and one outlet are in communication and a state where the inlet and the other outlet are in communication. This is an electric valve that can be operated under electrical control.
  • the pipe L3 connects the lower part of the storage tank 301 and the suction port of the pump P.
  • the pipe L4 connects the discharge port of the pump P and the inflow port of the valve V3.
  • the pipe L5 connects the first outlet of the valve V3 and the heater H.
  • the pipe L6 connects the second outlet of the valve V3 and the drainage tank 32.
  • the pipe L7 connects the heater H and the filter F.
  • the pipe L8 connects the filter F and the processing tank 30.
  • the first etching solution E according to the first embodiment is prepared in the treatment tank 30.
  • the phosphoric acid aqueous solution and the sulfuric acid aqueous solution are mixed so that the mass ratio of phosphoric acid and sulfuric acid becomes a predetermined value to obtain a mixed solution.
  • the phosphoric acid aqueous solution for example, an 85 mass% phosphoric acid aqueous solution may be used, or a heat-treated phosphoric acid aqueous solution may be used.
  • the phosphoric acid concentration in the heat-treated phosphoric acid aqueous solution is, for example, in the range of 85% by mass to 95% by mass, and the water concentration is, for example, in the range of 5% by mass to 15% by mass.
  • the sulfuric acid aqueous solution for example, a 96 mass% sulfuric acid aqueous solution can be used.
  • a silicate compound source is further mixed into this mixed solution.
  • this mixed solution is heated to a temperature within the range of 130 ° C. to 180 ° C. to dissolve the silicate compound source in the mixed solution.
  • the 1st etching liquid E which concerns on 1st Embodiment is obtained.
  • the 1st etching liquid E accommodated in this processing tank 30 what was prepared outside may be used instead of what was prepared in the processing tank 30.
  • the water concentration in the 1st etching liquid E can be suitably adjusted by adjusting the preparation temperature and heating time of the 1st etching liquid E.
  • the concentration of silicon contained in the first etching solution E is measured to obtain an initial silicon concentration A1.
  • the substrate 10 to be processed shown in FIG. 11 as the sample S is immersed in the first etching solution E for a certain period of time.
  • the structure shown in FIG. 4 may be used.
  • the same amount of water as the amount of water that evaporates and decreases when the first etching liquid E is heated is constantly added from the water supply source W to the processing tank 30 through the pipe L2. Or supplied at regular intervals.
  • the first etching solution E is constantly stirred by a stirrer (not shown) provided in the processing tank 30.
  • the first etching solution E overflowing from the processing tank 30 is temporarily stored in the storage tank 301.
  • the first etching liquid E flowing into the circulation channel from the storage tank 301 is heated by the heater H provided in the circulation channel, passes through the filter F, and is returned to the processing tank 30.
  • the filter F removes foreign matters contained in the first etching solution E.
  • the silicon concentration of the first etching solution E is measured to obtain a first silicon concentration A2.
  • the inlet and the second outlet are connected to the valve V3 from the state where the inlet and the first outlet are in communication. Switch to a contacted state. In this way, the first etching liquid E overflowing from the processing tank 30 is guided to the drainage tank 32 via the discharge channel.
  • a buffer solution B is prepared in the buffer tank 31. Specifically, the phosphoric acid aqueous solution and the sulfuric acid aqueous solution are mixed so that the mass ratio of phosphoric acid and sulfuric acid becomes the same value as the mass ratio of sulfuric acid and phosphoric acid in the first etching solution E, and the buffer is mixed. Liquid B is obtained.
  • this buffer solution B is supplied to the treatment tank 30 via the pipe L1, and a mixed solution of the buffer solution B and the first etching solution E having the silicon concentration of the first silicon concentration A2 is obtained.
  • an amount of a silicate compound source sufficient to make the silicon concentration the same as the initial silicon concentration A1 is added to the mixed solution and dissolved in the mixed solution.
  • a second etching solution E ′ is obtained.
  • the composition of the second etching solution E ′ is the same as the composition of the first etching solution E before the sample S is immersed.
  • the sample S is continuously etched using the second etching solution E ′.
  • silicon nitride can be selectively removed from the sample S. Note that the number of times to repeat these steps can be appropriately adjusted according to the amount of silicon nitride contained in the sample S.
  • the etching process of the sample S can be continuously performed by repeating this series of processes.
  • the electronic component manufacturing method according to the third embodiment includes etching silicon nitride using the etching solution according to the first embodiment.
  • the method of manufacturing an electronic component according to the third embodiment includes a step of etching a silicon nitride film from a substrate provided with a silicon nitride film and a silicon oxide film by an etching method according to the second embodiment, A step of depositing a conductive material on at least a part of the portion from which the silicon film has been removed may be included.
  • the substrate 10 shown in FIG. 11 is prepared.
  • the silicon nitride film 4 is selectively removed from the substrate shown in FIG. 11 using the etching solution according to the first embodiment. In this way, as shown in FIG. 12, a substrate having a pattern including a plurality of convex portions made of silicon oxide and provided with a groove T is obtained.
  • a conductive material is deposited in the trench T by sputtering or chemical vapor deposition (CVD).
  • CVD chemical vapor deposition
  • a metal such as tungsten can be used as the conductive material.
  • the conductive material embedded in the trench T functions as, for example, a control gate.
  • a semiconductor chip can be manufactured by the method including the above steps.
  • Examples of the semiconductor chip include an integrated circuit (IC), a large-scale integrated circuit (LSI), and a solid-state imaging device.
  • the integrated circuit can be used as a general-purpose memory and a dedicated memory, for example.
  • the solid-state image sensor is, for example, a CMOS image sensor or a CCD sensor.
  • the semiconductor chip obtained in this way is mounted on a wiring board.
  • the gap between the semiconductor chip and the wiring substrate is filled with a sealing resin. In this way, an electronic component such as a semiconductor package can be obtained.
  • the etching method according to the second embodiment since silicon nitride can be selectively removed, a substrate having a desired shape with a small amount of side etching can be obtained. Therefore, according to the method for manufacturing an electronic component according to the third embodiment, the yield rate of the electronic component can be increased.
  • the etching solution according to the fourth embodiment is an etching solution used for etching silicon nitride.
  • Etching liquid according to the fourth embodiment includes a phosphoric acid, an acid having a smaller acid dissociation index than the first acid dissociation exponent pK a1 of phosphoric acid, a silicic acid compound, and water.
  • the concentration of phosphoric acid is 95% or less by mass% or more to 88 weight%, the concentration of the acid having a smaller acid dissociation index than the first acid dissociation exponent pK a1 of phosphoric acid, It is 2 mass% or more and 5 mass% or less, and the density
  • concentration of water is 4 mass% or more and 11 mass% or less.
  • Water contained in the etchant acts as an etchant for silicon nitride. Therefore, if the etching solution contains too little water, the selectivity tends to decrease. On the other hand, when the content of water in the etching solution is large, the etching solution tends to boil, the processing efficiency is lowered, and the processing apparatus tends to be complicated. In the etching solution according to the fourth embodiment, the concentration of water is 4% by mass or more and 11% by mass or less. Such an etchant is difficult to boil during the etching process, and can realize a high selectivity. Therefore, when such an etching solution is used, the etching processing apparatus can be simplified.
  • the concentration of water contained in the etching solution is preferably in the range of 7.00 mass% to 9.00 mass%. When the water concentration is within this range, the selectivity can be further increased.
  • the concentration of water contained in the etching solution is more preferably in the range of 8.00 mass% to 9.00 mass%. When an etching solution having a water concentration within this range is used, deposition of silicon oxide can be suppressed, so that a substrate having a desired shape can be easily obtained.
  • the phosphoric acid contained in the etching solution is combined with a part of Si (OH) 4 produced by the above-described formulas (A) and (C), and dehydrates and condenses.
  • an acid having a smaller acid dissociation index than the first acid dissociation exponent pK a1 of phosphoric acid contained in the etching solution is sulfuric acid.
  • Sulfuric acid is highly effective in suppressing the precipitation of silicon oxide.
  • the concentration of sulfuric acid contained in the etching solution is preferably 4.00% by mass or less.
  • the silicon concentration contained in the etching solution is preferably 40 ppm or more. When an etching solution having a high silicon concentration is used, the selectivity tends to increase.
  • the silicon concentration contained in the etching solution is preferably 160 ppm or less, and more preferably 100 ppm or less. When an etching solution having a low silicon concentration is used, precipitation of silicon oxide can be suppressed, so that a substrate having a desired shape tends to be easily obtained.
  • the preferred range of silicon concentration may vary depending on the concentration of the acid having a smaller acid dissociation index than the first acid dissociation exponent pK a1 of phosphoric acid.
  • FIG. 15 is a graph showing an example of the relationship between the acid concentration and the silicon concentration in the etching solution according to the fourth embodiment.
  • the horizontal axis represents the concentration of the acid having a smaller acid dissociation index than the first acid dissociation exponent pK a1 of phosphoric acid in the etching solution
  • the vertical axis represents the silicon concentration in the etchant.
  • the lower line represented by a broken line indicates the lower limit value of the preferable range of the silicon concentration at each acid concentration.
  • the silicon concentration Y10 in the range where the acid concentration is 2.00% by mass or more and 3.00% by mass or less is represented by the following formula (10). This equation (10) is calculated from the results of experiments conducted by the inventors and the results of Examples 101 to 119 described later.
  • Y10 13.032 ⁇ e (0.4683 ⁇ X) (10)
  • concentration of the acid is in the range of 2.00% by mass or more and 3.00% by mass or less
  • silicon concentration is Y10 or more
  • the etching rate of silicon oxide tends to decrease and the selectivity increases.
  • the acid concentration is 2.00% by mass
  • the value of Y10 is approximately 33.248 ppm.
  • the value of Y10 is approximately 49.043 ppm.
  • the value of Y10 is approximately 53.107 ppm.
  • the upper line represented by a solid line indicates the upper limit value of the preferable range of the silicon concentration at each acid concentration.
  • the silicon concentration Y20 in the range where the acid concentration is 2.00% by mass or more and 3.00% by mass or less is represented by the following formula (20). This equation (20) is calculated from the results of experiments conducted by the inventors and the results of Examples 101 to 119 described later.
  • Y20 62.238 ⁇ e (0.3136 ⁇ X) (20)
  • the acid concentration is in the range of 2.00% by mass or more and 3.00% by mass or less
  • the silicon concentration is a value of Y20 or less
  • the selectivity increases and the precipitation of silicon oxide tends to be suppressed.
  • the value of Y20 is approximately 116.532 ppm.
  • the value of Y20 is approximately 151.177 ppm.
  • the value of Y20 is approximately 159.456 ppm.
  • the silicon concentration and the sulfuric acid concentration are preferably set so as to be in the region A1 and on each line. That is, when the sulfuric acid concentration X is in the range of 2.00% by mass to 3.00% by mass, the silicon concentration is preferably in the range of Y10 ppm to Y20 ppm. When such an etchant is used, a substrate having a more desired shape can be obtained.
  • FIG. 16 is a graph showing an example of the relationship between the water concentration and the silicon concentration in the etching solution according to the fourth embodiment.
  • the horizontal axis represents the concentration of water in the etching solution
  • the vertical axis represents the silicon concentration in the etching solution.
  • the lower line represented by a broken line indicates the lower limit value of the preferable range of the silicon concentration at each water concentration.
  • the silicon concentration Y30 in the range where the water concentration is 8.00 mass% or more and 9.00 mass% or less is represented by the following formula (30). This equation (30) is calculated from the results of experiments conducted by the inventors and the results of Examples 101 to 119 described later.
  • Y30 1958.9 ⁇ e ( ⁇ 0.453 ⁇ X) (30)
  • the water concentration is in the range of 8.00 mass% or more and 9.00 mass% or less, if the silicon concentration is Y30 or more, the etching rate of silicon oxide tends to decrease and the selectivity increases.
  • the value of Y30 is approximately 33.220 ppm.
  • the value of Y30 is approximately 48.382 ppm.
  • the value of Y30 is approximately 52.255 ppm.
  • the upper line represented by a solid line indicates the upper limit value of the preferable range of the silicon concentration at each water concentration.
  • the silicon concentration Y40 in the range where the water concentration is 8.00 mass% or more and 9.00 mass% or less is represented by the following formula (40). This equation (40) is calculated from the results of experiments conducted by the inventors and the results of Examples 101 to 119 described later.
  • Y40 1958.7 ⁇ e ( ⁇ 0.314 ⁇ X) (40)
  • the silicon concentration is a value of Y40 or less
  • the selectivity increases and the precipitation of silicon oxide tends to be suppressed.
  • the value of Y40 is approximately 116.052 ppm.
  • the value of Y40 is approximately 150.604 ppm.
  • the value of Y40 is approximately 158.862 ppm.
  • the silicon concentration and the water concentration are preferably set so as to be in the region A2 and on each line. That is, when the water concentration X is in the range of 8.00 mass% or more and 9.00 mass% or less, the silicon concentration is preferably in the range of Y30 ppm or more and Y40 ppm or less. When such an etchant is used, a substrate having a more desired shape can be obtained.
  • the etching solution according to the fourth embodiment can be used in the above-described etching method according to the second embodiment and the electronic component manufacturing method according to the third embodiment.
  • the etching solution according to the fifth embodiment is an etching solution used for etching silicon nitride.
  • Etching liquid according to the fifth embodiment includes a phosphoric acid, an acid having a smaller acid dissociation index than the first acid dissociation exponent pK a1 of phosphoric acid, and silicic hydrofluoric acid, and water.
  • the etching solution according to the fifth embodiment it is possible to realize a balanced etching process in terms of a high silicon nitride etching rate, a high selectivity, and suppression of silicon oxide precipitation.
  • This hydrogen fluoride serves as a strong etchant for silicon nitride (Si 3 N 4 ), and as shown in the following formula (A2), silicon nitride is converted into silicon tetrafluoride (SiF 4 ) and ammonia (NH 3 ). Disassembled into Therefore, when the etching solution containing hydrogen fluoride is used, the etching rate of silicon nitride can be further increased as compared with the case of using the etching solution not containing hydrogen fluoride. This reaction is an irreversible reaction.
  • silicohydrofluoric acid H 2 SiF 6
  • sicic acid Si (OH) 4
  • hydrofluoric acid HF
  • Silicic acid Si (OH) 4
  • SiO 2 silicon oxide
  • This reaction is a reversible reaction. Therefore, when an etching solution containing silicic acid (Si (OH) 4 ) is used, silicon oxide (SiO 2 ) is hardly etched.
  • silicohydrofluoric acid H 2 SiF 6
  • silicon oxide SiO 2
  • silicic acid Si (OH) 4
  • the etching solution according to the fifth embodiment includes an acid having a smaller acid dissociation index than the first acid dissociation exponent pK a1 of phosphoric acid.
  • This acid inhibits silicic acid (Si (OH) 4 ) from polymerizing into a multimer represented by SiO n (OH) 4-2n .
  • This multimer can be chemically changed to silicon oxide (SiO 2 ) in the etching solution and deposited in the etching solution.
  • SiO 2 silicon oxide
  • FIG. 17 is an explanatory diagram for explaining the function of sulfuric acid as a polymerization inhibitor of silicic acid. As shown by the formula on the right side of FIG. 17, sulfuric acid is ionized into protons (H + ) and hydrogen sulfate ions (HSO 4 ⁇ ).
  • the concentration of silicofluoric acid (H 2 SiF 6 ) in the etching solution is preferably 0.1% by mass or more, and preferably 0.15% by mass or more from the viewpoint of increasing the etching rate of silicon nitride. It is preferably 0.18% by mass or more.
  • the concentration of hydrofluoric acid (H 2 SiF 6 ) in the etching solution is preferably 0.71% by mass or less from the viewpoint of suppressing the etching of silicon oxide and increasing the selectivity. It is preferably 25% by mass or less, and more preferably 0.2% by mass or less.
  • the concentration of the acid having a smaller acid dissociation index than the first acid dissociation exponent pK a1 of phosphoric acid in the etching solution from the viewpoint of suppressing the precipitation of silicon oxide (SiO 2), or 0.70 wt%
  • it is 5.00% by mass or more, and more preferably 10.00% by mass or more.
  • the acid concentration in the etching solution is preferably 48.00% by mass or less, and preferably 30.00% by mass or less. More preferably, it is at most mass%.
  • the concentration of phosphoric acid contained in the etching solution is preferably 63% by mass or more and 89% by mass or less. When the concentration of phosphoric acid is within this range, both high selectivity and suppression of silicon oxide precipitation tend to be achieved.
  • the concentration of water contained in the etching solution is preferably 6.00 mass% or more and 11.50 mass% or less. When the concentration of water contained in the etching solution is within this range, the etching solution is less likely to boil during the etching process, and the processing efficiency can be increased.
  • the concentration of water contained in the etching solution is more preferably 6.00% by mass or more and 8.00% by mass or less.
  • Etching liquid according to the fifth embodiment phosphoric acid, acids having a smaller acid dissociation index than the first acid dissociation exponent pK a1 of phosphoric acid, in addition to silicic hydrofluoric acid and water, further hydrogen fluoride (HF) May be included.
  • the etching rate of silicon nitride can be further increased by adding hydrogen fluoride (HF) to the etching solution in advance.
  • the concentration of hydrogen fluoride added in advance is preferably 0.01% by mass or more and 0.10% by mass or less, and more preferably 0.03% by mass or more and 0.05% by mass or less.
  • the etching solution according to the fifth embodiment may contain hydrogen fluoride (HF) and a silicate compound instead of silicofluoric acid.
  • HF hydrogen fluoride
  • silicate compound instead of silicofluoric acid.
  • Such an etching solution has the same effect as an etching solution containing hydrofluoric acid.
  • FIG. 18 is a diagram schematically showing an example of a batch type etching apparatus.
  • the batch type etching apparatus 400 shown in FIG. 18 includes a processing unit 410, an etchant storage unit 420, an etchant preparation unit 430, a water storage unit 440, an acid storage unit 450, an additive storage unit 460, The concentration phosphoric acid storage part 470, the low concentration phosphoric acid storage part 480, and the control part which is not shown in figure are provided.
  • the processing unit 410 includes a processing tank 411 that performs an etching process on a processing substrate, a storage tank 412 that stores an etching solution, and a recovery unit 413 that collects an overflowing etching solution.
  • the processing tank 411 contains the etching solution and the processing substrate SB1.
  • the storage tank 412 surrounds a region adjacent to the upper layer of the processing tank 411 and forms a storage section that can store the etching liquid overflowing from the processing tank 411.
  • the collection unit 413 includes a pipe L11 that connects the lower part of the storage tank 412 and the tank T1.
  • the pipe L11 may include a filter for removing impurities.
  • the etching solution storage unit 420 includes a tank T1 that stores the etching solution, a circulation unit 421 that heats and circulates the etching solution to detect the temperature of the etching solution and the concentration of each component, and the etching solution to the processing tank 411.
  • a supply unit 422 to supply and a discharge unit 423 for discharging the etching solution to the outside are provided.
  • the circulation unit 421 includes a pipe L12 that connects the lower part of the tank T1 and the upper part of the tank T1.
  • a pump P1 a heater TH1 with a thermometer, and a concentration meter D1 capable of measuring concentrations of phosphoric acid, hydrofluoric acid and sulfuric acid are provided.
  • the pump P1, the concentration meter D1, and the thermometer-equipped heater TH1 are connected to a control unit (not shown).
  • the pipe L12 may include a filter for removing impurities.
  • the supply unit 422 includes a pipe L13 that connects the tank T1 and the processing tank 411.
  • a valve V10 and a flow meter F1 are provided in the pipe L13.
  • the valve V10 and the flow meter F1 are connected to a control unit (not shown).
  • the discharge unit 423 includes a pipe L14 that connects the lower part of the tank T1 and the outside of the etching apparatus 400.
  • a valve V11, a flow meter F2, and a cooling unit CL1 are provided in the pipe L14.
  • the valve V11, the flow meter F2, and the cooling unit CL1 are connected to a control unit (not shown).
  • the etchant preparation unit 430 contains a raw material of the etchant and prepares the tank T2 for preparing the etchant, the circulation unit 431 for detecting the concentration of each component in the etchant by circulating the etchant, and the etchant tank And a supply unit 432 for supplying to T1.
  • the circulation unit 431 includes a pipe L15 that connects the lower part of the tank T2 and the upper part of the tank T2.
  • a pump P2 and a concentration meter D2 for phosphoric acid, hydrofluoric acid and sulfuric acid are provided in the pipe L15.
  • the pump P2 and the concentration meter D2 are connected to a control unit (not shown).
  • the supply unit 432 includes a pipe L16 that connects the tank T2 and the pipe L11.
  • a valve V12 and a flow meter F3 are provided in the pipe L16.
  • the valve V12 and the flow meter F3 are connected to a control unit (not shown).
  • the pipe L16 may be connected to the tank T1 instead of the pipe L11.
  • the water storage unit 440 includes a tank T3 that stores water (H 2 O), a first supply unit 441 that supplies water to the tank T2, and a second supply unit 442 that supplies water to the tank T1. ing.
  • the 1st supply part 441 is provided with piping L17 which connects tank T3 and tank T2.
  • a pump P3, a valve V13, and a flow meter F4 are provided in the pipe L17.
  • the pump P3, the valve V13, and the flow meter F4 are connected to a control unit (not shown).
  • the second supply unit 442 includes a pipe L18 that connects the tank T3 and the pipe L16.
  • a pump P4, a valve V14, and a flow meter F5 are provided in the pipe L18.
  • the pump P4, the valve V14, and the flow meter F5 are connected to a control unit (not shown).
  • the pipe L18 may be connected to the pipe L11 instead of the pipe L16, or may be connected to the tank T1.
  • the acid storage unit 450 includes a tank T4 that stores a sulfuric acid aqueous solution, and a supply unit 451 that supplies the sulfuric acid aqueous solution to the tank T2.
  • the concentration of sulfuric acid in the sulfuric acid aqueous solution is, for example, 98% by mass.
  • the supply unit 451 includes a pipe L19 that connects the tank T4 and the pipe L17.
  • a pump P5, a valve V15, and a flow meter F6 are provided in the pipe L19.
  • the pump P5, the valve V15, and the flow meter F6 are connected to a control unit (not shown).
  • the pipe L19 may be connected to the tank T2 instead of the pipe L17.
  • the additive storage unit 460 includes a tank T5 that stores the aqueous solution of silicofluoric acid and a supply unit 461 that supplies the aqueous solution of silicofluoric acid to the tank T2.
  • the concentration of silicohydrofluoric acid in the silicohydrofluoric acid aqueous solution is, for example, 40% by mass.
  • the tank T5 may contain hydrogen fluoride in addition to silicofluoric acid.
  • the supply unit 461 includes a pipe L20 that connects the tank T5 and the pipe L19.
  • a pump P6, a valve V16, and a flow meter F7 are provided in the pipe L20.
  • the pump P6, the valve V16, and the flow meter F7 are connected to a control unit (not shown).
  • the pipe L20 may be connected to the pipe L17 instead of the pipe L19, or may be connected to the tank T2.
  • the high-concentration phosphoric acid storage unit 470 includes a tank T6 that stores a high-concentration phosphoric acid aqueous solution, a circulation unit 471 that increases the concentration of the phosphoric acid aqueous solution by heating and circulating the phosphoric acid aqueous solution, and a high-concentration phosphoric acid aqueous solution. And a supply unit 472 for supplying to the tank T2.
  • the concentration of phosphoric acid in the high concentration phosphoric acid aqueous solution is, for example, 98% by mass.
  • the circulation unit 471 includes a pipe L21 that connects the lower part of the tank T6 and the upper part of the tank T6, and a pipe L21a that connects the cooling unit CL2 with thermometer and the pipe L21.
  • a heater TH2 with a thermometer, a phosphoric acid concentration meter D3, and a pump P7 are provided in the pipe L21.
  • the thermometer-equipped heater TH2, the phosphoric acid concentration meter D3, and the pump P7 are connected to a control unit (not shown).
  • the supply unit 472 includes a pipe L22 that connects the tank T6 and the pipe L20.
  • a valve V19, a flow meter F10, a cooling unit CL2 with a thermometer, a valve V17, and a flow meter F8 are provided in the pipe L22.
  • the valve V19, the flow meter F10, the thermometer-equipped cooling unit CL2, the valve V17, and the flow meter F8 are connected to a control unit (not shown).
  • the pipe L22 may be connected to the pipe L19 instead of the pipe L20, may be connected to the pipe L17, or may be connected to the tank T2.
  • the low concentration phosphoric acid storage unit 480 includes a tank T7 that stores a low concentration phosphoric acid aqueous solution, and a supply unit 481 that supplies the heated low concentration phosphoric acid aqueous solution to the tank T6.
  • the concentration of phosphoric acid in the low concentration phosphoric acid aqueous solution is, for example, 85% by mass.
  • the supply unit 481 includes a pipe L23 that connects the tank T7 and the tank T6.
  • a pump P8, a valve V18, and a flow meter F9 are provided in the pipe L23.
  • the pump P8, the valve V18, and the flow meter F9 are connected to a control unit (not shown).
  • the etching process is performed along the first to twelfth operations described below under the control of the control unit.
  • the valve V18 is opened, and the pump P8 and the flow meter F9 are activated. Thereby, the predetermined amount of the low concentration phosphoric acid aqueous solution accommodated in the tank T7 is supplied to the tank T6.
  • the heater TH2 with thermometer, the phosphoric acid concentration meter D3, and the pump P7 are started.
  • the low concentration phosphoric acid aqueous solution supplied to the tank T6 circulates in the tank T6 and the pipe L21, and is heated to a predetermined temperature by the heater TH2 with a thermometer.
  • This operation is performed until the phosphoric acid concentration in the pipe L21 detected by the phosphoric acid concentration meter D3 reaches the treatment concentration.
  • the high-concentration phosphoric acid aqueous solution thus prepared is maintained at a predetermined temperature and concentration.
  • the valve V19 and the valve V17 are opened, and the cooling unit CL2, thermometer F10, and flow meter F8 with a thermometer are activated.
  • a predetermined amount of the high-concentration phosphoric acid aqueous solution stored in the tank T6 is cooled to a predetermined temperature by the cooling unit CL2 with a thermometer and then supplied to the tank T2.
  • the high-concentration phosphoric acid aqueous solution is recovered to the circulation unit 471 via the pipe L21a. Thereby, only the high concentration phosphoric acid aqueous solution sufficiently cooled by the cooling unit with thermometer CL2 is supplied to the tank T2.
  • valve V13 is opened, and the pump P3 and the flow meter F4 are started. As a result, a predetermined amount of water stored in the tank T3 is supplied to the tank T2.
  • valve V15 is opened, and the pump P5 and the flow meter F6 are started.
  • a predetermined amount of the sulfuric acid aqueous solution stored in the tank T4 is supplied to the tank T2.
  • valve V16 is opened, and the pump P6 and the flow meter F7 are started.
  • a predetermined amount of the silicohydrofluoric acid aqueous solution stored in the tank T5 is supplied to the tank T2.
  • the pump P2 and the concentration meter D2 are started. Thereby, the high concentration phosphoric acid aqueous solution, water, the hydrofluoric acid aqueous solution, and the sulfuric acid aqueous solution supplied to the tank T2 are sufficiently mixed while circulating in the tank T2 and the pipe L15.
  • the concentration meter D2 detects the concentration of phosphoric acid, the concentration of sulfuric acid, and the concentration of silicofluoric acid in the solution circulating in the pipe L15, and transmits the information to the control unit via a wiring (not shown). .
  • control unit adjusts the supply amount and temperature of the high-concentration phosphoric acid aqueous solution, water, sulfuric acid aqueous solution, and hydrofluoric acid aqueous solution. In this way, an etching solution is prepared.
  • the prepared etchant is maintained at a predetermined temperature and composition.
  • valve V12 is opened and the flow meter F3 is activated.
  • a predetermined amount of the etching solution stored in the tank T2 is supplied to the tank T1.
  • the pump P1, the heater TH1 with thermometer, and the concentration meter D1 are started.
  • the etching solution supplied to the tank T1 circulates in the tank T1 and the pipe L2, and is heated to a predetermined temperature by the heater TH1 with a thermometer.
  • the concentration meter D1 detects the concentration of phosphoric acid, the concentration of sulfuric acid, and the concentration of silicofluoric acid in the solution circulating in the pipe L2, and transmits the information to the control unit via a wiring (not shown). .
  • the buffer solution is prepared and the temperature is adjusted based on the information transmitted to the control unit. That is, water, hydrogen fluoride, and the like can be volatilized from the etching solution at a high temperature.
  • the control unit supplies water or a buffer solution to the tank T1.
  • the valve V14 is opened, and the pump P4 and the flow meter F5 are started. Accordingly, water is supplied to the tank T1 so that the composition of the etching solution becomes a predetermined value.
  • the first to eighth operations are repeated to prepare a buffer solution for adjusting the composition of the etching solution, and the buffer solution is supplied to the tank T1.
  • the composition of each component of the etching liquid in the tank T1 is always kept at a predetermined value.
  • the tenth operation can be performed in the same manner during the eleventh operation and the twelfth operation described below.
  • the valve V10 is opened and the flow meter F1 is activated. Thereby, the etching solution is supplied to the treatment tank 411.
  • the etching liquid overflowing from the processing tank 411 is temporarily stored in the storage tank 412 and then collected into the tank T1 through the pipe L11.
  • the processing substrate SB1 is immersed in the processing tank 411 filled with the etching solution. Thereby, the silicon nitride in the processing substrate can be selectively etched. After a predetermined time has elapsed, the processing substrate SB1 is taken out from the processing bath 411 and dried.
  • the processing substrate can be processed continuously.
  • the valve V11 is opened, the flowmeter F2 and the cooling unit CL1 are started, and thereby the cooled etching solution is removed. Discharge out of the device.
  • the etching apparatus including the etching solution preparation mechanism has been described as an example, but an etching solution adjusted outside the etching apparatus may be used.
  • the acid reservoir 450, the additive reservoir 460, the high concentration phosphoric acid reservoir 470, and the low concentration phosphoric acid reservoir 480 may be omitted.
  • the etchant preparation unit 430 may be omitted.
  • FIG. 19 is a diagram schematically showing an example of a single wafer etching apparatus.
  • a single wafer etching apparatus 500 shown in FIG. 19 has the same configuration as the batch etching apparatus 400 described above except that a single wafer processing section 510 is provided instead of the processing section 410. The description of the parts having the same reference numerals will be omitted.
  • the single wafer processing unit 510 includes a processing tank 511 for storing the etching solution and the processing substrate SB1, a nozzle 512 for supplying the etching solution onto the processing substrate SB1, a rotating mechanism for rotating the processing substrate, and a recovery unit 513. I have. In FIG. 19, the rotation mechanism is omitted.
  • the nozzle 512 is connected to the end of the pipe L11.
  • the collection unit 513 includes a pipe L24 that connects the lower portion of the processing tank 511 and the tank T1.
  • the pipe L24 may include a filter for removing impurities.
  • the first to tenth operations are performed in the same manner as described above.
  • the processing substrate SB1 is installed on the rotation mechanism in the processing tank 511.
  • the rotation mechanism is operated to rotate the processing substrate SB1 at a predetermined speed.
  • the valve V10 is opened and the flow meter F1 is activated.
  • the etching solution is supplied onto the rotating processing substrate SB1 from the nozzle 512 connected to the pipe L11.
  • the silicon nitride in the processing substrate can be selectively etched.
  • the processing substrate SB1 is taken out from the processing bath 511 and dried.
  • the etching solution collected in the lower part of the processing tank 511 is collected into the tank T1 through the pipe L24.
  • the processing substrate can be processed continuously.
  • Etching liquid according to the fifth embodiment phosphoric acid, acids having a smaller acid dissociation index than the first acid dissociation exponent pK a1 of phosphoric acid, contains silicic hydrofluoric acid and water. Therefore, when the etching solution according to the fifth embodiment is used, it is possible to realize a balanced etching process in terms of high silicon nitride etching rate, high selectivity, and suppression of silicon oxide precipitation.
  • the etching solution according to the fifth embodiment can be used in the above-described etching method according to the second embodiment and the electronic component manufacturing method according to the third embodiment.
  • the etching solution described above can also be used for etching nitrides other than silicon nitride.
  • the nitride other than silicon nitride is, for example, gallium nitride (GaN), aluminum gallium nitride (AlGaN), or indium aluminum gallium nitride (InGaAlN). That is, the etching solution described above can also be used as an etching solution for manufacturing a power device containing a nitride semiconductor.
  • a substrate to be processed shown in FIG. 11 was prepared.
  • This substrate to be treated was provided with a substrate, a convex portion made of silicon oxide, and a convex portion made of silicon nitride.
  • the convex portions made of silicon oxide and the convex portions made of silicon nitride were provided on both surfaces of the substrate and extended in a direction perpendicular to the main surface of the substrate.
  • the convex part which consists of silicon oxides, and the convex part which consists of silicon nitride were located in a line along the main surface of a board
  • this substrate to be processed was etched using the etching processing apparatus shown in FIG.
  • the temperature of the etching solution was 155 ° C.
  • the concentration of sulfuric acid is 0.58% by mass
  • the concentration of silicon is 0 ppm
  • the concentration of phosphoric acid is 84.49% by mass
  • the concentration of water is 14.03. It was mass%.
  • an 85 mass% phosphoric acid aqueous solution and a 96 mass% sulfuric acid aqueous solution were used.
  • Example 2 to Example 49 Etching was performed in the same manner as described in Example 1 except that the etching solution was prepared to have the compositions shown in Tables 1 to 3. The relationship between the sulfuric acid concentration and the silicon concentration in the etching solutions of Examples 1 to 49 is shown in FIG.
  • Example 11 to Example 18, Example 20 to Example 25, Example 27, Example 29, Example 30, and Examples 32 to 49 silicon nitride was used as the silicate compound source.
  • Example 47 instead of using a sulfuric acid aqueous solution as a raw material for the etching solution, a 1.18 mass% hydrochloric acid aqueous solution was used.
  • sodium chloride was used as a salt containing a monovalent cation having a hydration number of 3.5 or less.
  • Example A to Example F First, a substrate to be processed shown in FIG. 11 was prepared. Next, an etching solution was prepared so as to have the composition shown in Table 4. In Examples A to E, silicon nitride was used as the silicate compound source. Moreover, 94.18 mass% phosphoric acid aqueous solution was used as a raw material of etching liquid. This 94.18 mass% phosphoric acid aqueous solution was prepared by heat-treating an 85 mass% phosphoric acid aqueous solution. Next, an etching process was performed on the processing target substrate using an etching processing apparatus. The temperature of the etching solution was 156 ° C.
  • etching amount means an amount of decrease in thickness in a direction perpendicular to the main surface of the substrate at the convex portions of silicon nitride and the convex portions of silicon oxide provided on both surfaces of the substrate.
  • the etching rate ER SiN of silicon nitride and the etching rate ER SiO of silicon oxide were calculated from the etching amounts of silicon nitride and silicon oxide per unit time.
  • the sign of the silicon oxide etching rate ER SiO was negative.
  • the silicon oxide etching rate ER SiO having a negative sign is considered to mean the deposition amount of silicon oxide per unit time.
  • the ratio between the etching rate ER SiN of silicon nitride and the etching rate ER SiO of silicon oxide was determined, and the selection ratio ER SiN / ER SiO was calculated.
  • the sign of the silicon oxide etching rate ER SiO is negative, the sign of the selectivity is negative.
  • the high or low selection ratio means that the absolute value of the selection ratio is high or low.
  • the deposition level 2 when the ratio W1 / W0 is in the range of greater than 0.8 and 1.05 or less, the deposition level 2 was designated. Further, when the ratio W1 / W0 is larger than 1.05 and within the range of 1.2 or less, the deposition level 3 was set. In addition, when the ratio W1 / W0 is greater than 1.2 and within a range of 2 or less, the deposition level was set to 4. Further, when the ratio W1 / W0 is 2 or more and the groove T shown in FIG.
  • the width W1 of the front end portion is the width W0 of the front end portion of the convex portion of the silicon oxide in the direction parallel to the main surface of the substrate before the etching process when precipitation is observed on the convex portion of the silicon oxide.
  • Table 1 and as shown in Table 2, include a phosphoric acid, an acid having a smaller acid dissociation index pK than the first acid dissociation exponent pK a1 of phosphoric acid, a silicic acid compound, and water, the phosphoric acid mass M1 the ratio M1 / M2 of the mass M2 of the acid, the use of an etching solution in the range of 0.82 or more 725 or less, an acid having a smaller acid dissociation index than the first acid dissociation exponent pK a1 of phosphoric acid, Or compared with the case where the etching liquid which does not contain a silicate compound was used, the high selectivity was realizable.
  • equations (1) and (2) are calculated by performing JMP analysis on these experimental data, respectively.
  • the contribution ratio R 2 according to the formula (1) was 0.8901. Further, the contribution ratio R 2 according to the formula (2) was 0.8656.
  • Equation (1) when the value of X is an inverse of 0.58, the value of Y is approximately 29.39.
  • the concentration of the acid having an acid dissociation index pK smaller than the first acid dissociation index pK a1 of phosphoric acid in the etching solution is 0.58% by mass, and the silicon concentration is 29.39 ppm or more.
  • the selection ratios according to Examples 3 to 9 were higher than the selection ratios according to Example 1 and Example 2 in which the silicon concentration was smaller than 29.39 ppm, respectively.
  • Examples 33 to 45 shown in Table 3 Examples 33 to 36 and Examples 40 to 43 satisfying Expression (1) and Examples satisfying Expression (2) are satisfied.
  • the selection ratios according to Examples 37 to 39 and Example 44 were higher than the selection ratio according to Example 45 that did not satisfy Equation (2).
  • Example 33 to 45 shown in Table 3 Example 33, Example 34, Example 40 and Example 41 satisfying Expression (3), and Examples 35 to 37, Example 39 and Example satisfying Expression (4) are satisfied.
  • the precipitation levels according to 42 to Example 45 were respectively lower than the precipitation levels according to Example 38 that did not satisfy Equation (4).
  • the deposition level according to Examples B to D in which the silicon concentration of the etching solution is within the range of 55 ppm to 115 ppm was 2, and almost no silicon oxide deposition was observed.
  • Example 100 to Example 121 First, a substrate to be processed shown in FIG. 11 was prepared. As a processing substrate, the width of silicon nitride in a direction parallel to the main surface of the substrate and the width of silicon oxide in a direction parallel to the main surface of the substrate are compared with those used in the etching processing according to Examples 1 to 49. The same thing was used except that is small.
  • an etching solution was prepared so as to have the composition shown in Table 5.
  • a 98% by mass phosphoric acid aqueous solution and a 98% by mass sulfuric acid aqueous solution were used.
  • silicon nitride was used as the silicate compound source.
  • the substrate to be processed was etched using an etching processing apparatus.
  • the temperature of the etching solution was 160 ° C.
  • etching amount of silicon nitride and silicon oxide was measured by checking the substrates after the etching treatment obtained in Examples 100 to 121 with an electron microscope.
  • the etching amount means an amount of decrease in thickness in a direction perpendicular to the main surface of the substrate at the convex portions of silicon nitride and the convex portions of silicon oxide provided on both surfaces of the substrate. .
  • the etching rate ER SiN of silicon nitride and the etching rate ER SiO of silicon oxide were calculated from the etching amounts of silicon nitride and silicon oxide per unit time.
  • the sign of the silicon oxide etching rate ER SiO was negative.
  • the silicon oxide etching rate ER SiO having a negative sign is considered to mean the deposition amount of silicon oxide per unit time.
  • the ratio between the etching rate ER SiN of silicon nitride and the etching rate ER SiO of silicon oxide was determined, and the selection ratio ER SiN / ER SiO was calculated.
  • the sign of the silicon oxide etching rate ER SiO is negative, the sign of the selectivity is negative.
  • the high or low selection ratio means that the absolute value of the selection ratio is high or low. The results are shown in Table 5.
  • the deposition level 1 was designated. Further, when the ratio W1 / W0 is in the range of greater than 0.9 and less than or equal to 0.97, the deposition level was set to 1.9. In addition, when the ratio W1 / W0 is greater than 0.97 and within a range of 1.05 or less, the deposition level 2 was determined. In addition, when the ratio W1 / W0 is greater than 1.05 and within a range of 1.1 or less, the deposition level is 2.1. In addition, when the ratio W1 / W0 is greater than 1.1 and within a range of 1.3 or less, the deposition level is 2.5. In addition, when the ratio W1 / W0 is greater than 1.7 and within a range of 2 or less, the deposition level is 4.5. Further, when the ratio W1 / W0 is 2 or more and the groove T shown in FIG.
  • the width W1 of the front end portion is the width W0 of the front end portion of the convex portion of the silicon oxide in the direction parallel to the main surface of the substrate before the etching process when precipitation is observed on the convex portion of the silicon oxide.
  • the width X of the precipitate 201 shown in FIG. The results are shown in Table 5.
  • an acid having a smaller acid dissociation index than the first acid dissociation exponent pK a1 of phosphoric acid wherein the silicic acid compound, and water, the concentration of the acid, 1 wt%
  • the etching rate, the selection ratio, and the deposition level of the silicon nitride according to Examples 100 to 121 using the etching solution that is 5% by mass or less and the water concentration is 4% by mass or more and 11% by mass or less are all used.
  • the silicon nitride etching rate, selectivity, and precipitation level of Examples 120 and 121 according to Examples 120 and 121 were higher than 5% by mass of acid and lower than 5% by mass of water.
  • the above-described equations (10) to (40) are calculated from the experimental data shown in Table 5, respectively.
  • the contribution ratio R 2 according to the formula (10) was 0.975.
  • the contribution ratio R 2 according to the equation (20) was 0.9926.
  • the contribution ratio R 2 according to the equation (30) was 0.9785.
  • the contribution ratio R 2 according to the formula (40) was 0.9926.
  • Examples 101 to 105, Examples 108 to 111, and Examples 113 to 116 using an etching solution having a silicon concentration in the range of Y10 ppm to Y20 ppm and in the range of Y30 ppm to Y40 ppm are as follows: The deposition level was 1.9 or more and 2.5 or less, and a substrate having a desired shape could be obtained.
  • Example 200 to Example 202 First, a square-shaped single crystal silicon plate having a side of 2.5 cm was prepared as a base material. . Next, a silicon oxide film was formed on the base material, and a silicon nitride film was further formed thereon to obtain a processed substrate. The film thickness of silicon oxide was 0.1 ⁇ m, and the film thickness of silicon nitride was 0.4 ⁇ m to 0.5 ⁇ m.
  • a 98% by mass phosphoric acid aqueous solution a 40% by mass silicofluoric acid aqueous solution (manufactured by Wako Pure Chemical Industries, Ltd.), a 98% by mass sulfuric acid aqueous solution, and water were mixed in a glass beaker.
  • An etching solution was prepared so as to have the composition shown in FIG.
  • the 98% by mass phosphoric acid aqueous solution was prepared by heating an 85% by mass phosphoric acid aqueous solution.
  • a glass beaker whose inner wall was coated with a tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA) was used.
  • PFA tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer
  • the beaker was heated using an mantle heater stirrer while stirring the etching solution at a speed of 100 rpm.
  • the processing substrate was immersed in the etching solution, and the etching solution was stirred at a speed of 100 rpm for 12 minutes to perform the etching process.
  • the treated substrate was taken out from the etching solution, and the treated substrate was washed with pure water for 1 minute, and then the treated substrate was dried by blowing nitrogen (N 2 ) gas onto the treated substrate.
  • Example 300 to Example 312 Etching treatment was performed in the same manner as described in Examples 200 to 202 except that the composition of the etching solution and the etching treatment temperature were changed to those shown in Table 12.
  • Example 400 to Example 404 Etching treatment was performed in the same manner as described in Examples 200 to 202 except that the composition of the etching solution and the etching treatment temperature were changed to those shown in Table 13. In addition, as HF, 49 mass% hydrogen fluoride aqueous solution was used.
  • Example 500 to Example 504 Etching treatment was performed in the same manner as described in Examples 400 to 404 except that the composition of the etching solution and the etching treatment temperature were changed to those shown in Table 14.
  • etching rate The silicon nitride film thickness and silicon oxide film of the substrates before and after the etching treatment obtained in Examples 200 to 202, 300 to 312, 400 to 404, and 500 to 504 The thickness was measured using a spectroscopic ellipsometer (M-2000 manufactured by JAWoollam). The measurement was performed at nine locations, and the average value obtained was divided by the processing time to calculate the etching rate ER SiN of silicon nitride and the etching rate ER SiO of silicon oxide.
  • ⁇ Evaluation of precipitation degree> The degree of precipitation was evaluated for Examples 200 to 202, Examples 300 to 312, Examples 400 to 404, and Examples 500 to 504. Specifically, the amount of the white substance deposited in the etching solution after the etching treatment was visually confirmed. At this time, the precipitation amount was set to 1 when the precipitation amount was small or not, the precipitation degree 2 was set as the precipitation amount, and the precipitation degree 3 was set as the precipitation amount was high. The results are shown in Tables 11 to 14.
  • Examples 200 to Example 202 using an etchant which does not contain an acid having a smaller acid dissociation index than the first acid dissociation exponent pK a1 of phosphoric acid are all high deposition degree, comprehensive evaluation Is C, and a balanced etching process could not be realized.
  • Example 200 where the concentration of silicofluoric acid was low, the selectivity was high, but the etching rate of silicon nitride was low.
  • Example 312 As shown in Table 12, and phosphoric acid, an acid having a smaller acid dissociation index than the first acid dissociation exponent pK a1 of phosphoric acid, and silicic hydrofluoric acid, to example 300 using an etching solution containing a water
  • the overall evaluation is A or B, and a balanced etching process can be realized.
  • Example 304 and Example 305 using an etching solution in which the concentration of sulfuric acid is 5% by mass or more and 15% by mass or less and the concentration of silicofluoric acid is 0.15% by mass or more and 0.20% by mass or less,
  • the overall evaluation was A, and a high etching rate of silicon nitride, a high selectivity, and suppression of silicon oxide precipitation could be realized.
  • Example 401 using an etching solution having a sulfuric acid concentration of 5% by mass or more, a hydrofluoric acid concentration of 0.15% by mass or more, and a hydrogen fluoride concentration of 0.05% by mass or more, and No. 402 has an overall evaluation of A, and a high etching rate of silicon nitride, a high selectivity, and suppression of silicon oxide precipitation could be realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Weting (AREA)

Abstract

一実施形態に係るエッチング液は、窒化シリコンのエッチングに用いるエッチング液であって、リン酸と、リン酸の第1酸解離指数pKa1よりも小さい酸解離指数を有する酸と、ケイ酸化合物と、水とを含む。リン酸の質量M1と、酸の質量M2との比M1/M2は、0.82以上725以下の範囲内にある。

Description

エッチング液、エッチング方法、及び電子部品の製造方法
 本発明の実施形態は、エッチング液、エッチング方法、及び電子部品の製造方法に関する。
 近年、半導体装置の製造において、基板上に設けられた酸化シリコン(SiO2)と窒化シリコン(Si34)とから、窒化シリコンのみを選択的に除去する技術が求められている。
 このような技術として、リン酸水溶液を用いたウェットエッチングが広く用いられている。このウェットエッチングでは、およそ150℃の温度に温めたリン酸水溶液に、上述した積層体を、一定時間にわたって浸漬することにより行われる。
 このようなウェットエッチングでは、窒化シリコンのエッチングレートと酸化シリコンのエッチングレートとの比、すなわち、選択比を高めることが求められる。この選択比を高める方法として、硫酸とリン酸と水との混合液を用いたウェットエッチングが検討されている。
特開2008-71801号公報 特表2007-517413号公報
J. M. Tour et al., 「evans_pKa_Table」、[online]、2011年4月5日、ACS Nano、[2017年3月10日検索]、インターネット〈URL:http://evans.rc.fas.harvard.edu/pdf/evans_pKa_table.pdf〉 有我洋香、田中美穂著、「ESI-MSを用いたケイ酸と金属イオンの反応機構の解明」、分析化学、日本分析化学会、2015年、第64巻、第5号、p.349-358 奥野忠一、久米均、芳賀敏郎、及び吉澤正著、「多変量解析法」、日科技連出版社、1971年、p.1-6 B. Flury及びH. Riedwyl著、田畑吉雄訳、「多変量解析とその応用」、現代数学社、1990年6月、p.57-80 中村正一著、「例解多変量解析入門」、日刊工業新聞社、1979年10月、p.1-21 Yizhak Marcus, "Thermodynamics of Solvation of ions, Part 5 ―Gibbs Free Energy of Hydration at 298.15 K" JOURNAL OF THE CHEMICAL SOCIETY, FARADAY TRANSACTIONS., 1991, VOL. 87。
 本発明が解決しようとする課題は、窒化シリコンに対して、高い選択比を実現可能なエッチング液と、このエッチング液を用いたエッチング方法及び電子部品の製造方法を提供することである。
 あるいは、本発明が解決しようとする課題は、高い窒化シリコンのエッチングレート、高い選択比、及び酸化シリコンの析出の抑制においてバランスのとれたエッチング処理を実現することができるエッチング液と、このエッチング液を用いたエッチング方法及び電子部品の製造方法を提供することである。
 第1実施形態に係るエッチング液は、窒化シリコンのエッチングに用いるエッチング液であって、リン酸と、リン酸の第1酸解離指数pKa1よりも小さい酸解離指数を有する酸と、ケイ酸化合物と、水とを含む。リン酸の質量M1と、酸の質量M2との比M1/M2は、0.82以上725以下の範囲内にある。
 第2実施形態に係るエッチング方法は、第1実施形態に係るエッチング液を用いて、窒化シリコンのエッチングを行うことを含む。
 第3実施形態に係る電子部品の製造方法は、第1実施形態に係るエッチング液を用いて、窒化シリコンのエッチングを行うことを含む。
第1実施形態に係るエッチング液における硫酸濃度とケイ素濃度との関係の一例を示すグラフ。 第2実施形態に係るエッチング方法の処理対象となる構造の製造方法の一工程を概略的に示す断面図。 図2の工程に続く工程を概略的に示す断面図。 図3の工程に続く工程を概略的に示す断面図。 図4の工程に続く工程を概略的に示す断面図。 第2実施形態に係るエッチング液の処理対象となる基板の製造方法の一工程を概略的に示す断面図。 図6の工程に続く工程を概略的に示す断面図。 図7の工程に続く工程を概略的に示す断面図。 図8の工程に続く工程を概略的に示す断面図。 図9の工程に続く工程を概略的に示す断面図。 図10の工程に続く工程を概略的に示す断面図。 第2実施形態に係るエッチング方法においてエッチング処理が完了する前の様子を概略的に示す断面図。 エッチング処理後の基板を概略的に示す断面図。 エッチング処理装置の一例を概略的に示す断面図。 第4実施形態に係るエッチング液における酸濃度とケイ素濃度との関係の一例を示すグラフ。 第4実施形態に係るエッチング液における水濃度とケイ素濃度との関係の一例を示すグラフ 硫酸がケイ酸の重合阻害剤としての機能を説明するための説明図。 バッチ式エッチング装置の一例を概略的に示す図。 枚葉式エッチング装置の一例を概略的に示す図。
  以下、実施の形態について、図面を参照しながら説明する。
 [第1実施形態]
 第1実施形態に係るエッチング液は、窒化シリコン(Si34)のエッチングに用いられる。このエッチング液は、特に、酸化シリコンと窒化シリコンとを含む構造から、窒化シリコンのみを選択的に除去するためのエッチング液として好適に用いられる。
 このエッチング液は、リン酸と、リン酸の第1酸解離指数pKa1よりも小さい酸解離指数pKを有する酸と、ケイ酸化合物と、水とを含んでいる。
 リン酸の第1酸解離指数pKa1よりも小さい酸解離指数pKを有する酸は、選択比向上剤の役割を果たす。ここで、選択比とは、窒化シリコンのエッチングレート(ERSiN)と酸化シリコンのエッチングレート(ERSiO)との比ERSiN/ERSiOを意味している。なお、25℃の温度の水中におけるリン酸の第1酸解離指数pKa1は、2.12である。このリン酸の第1酸解離指数pKa1としては、非特許文献1の第1頁に記載された値を用いている。
 エッチング液において、リン酸の質量M1と、リン酸の第1酸解離指数pKa1よりも小さい酸解離指数pKを有する酸の質量M2との比M1/M2は、0.82以上725以下の範囲内にある。質量比M1/M2がこの範囲内にあると、窒化シリコンに対する選択比が向上する傾向にある。
 ケイ酸化合物は、選択比向上剤の役割を果たす。すなわち、第1実施形態に係るエッチング液には、あらかじめケイ酸化合物が含まれている。このようなエッチング液を用いると、ケイ酸化合物をあらかじめ含まないエッチング液と比較して、酸化シリコンのエッチングレートをより低下させることができる。この理由について、以下に説明する。
 リン酸(H3PO4)は、エッチング液の主成分になり得る。140℃乃至180℃の温度に加熱されたリン酸水溶液を用いたウェットエッチングは、広く用いられている。このリン酸水溶液を用いたウェットエッチングでは、酸化シリコンと窒化シリコンとを含む構造から、窒化シリコンのみを選択的に除去することができる。この高温のリン酸水溶液を用いたウェットエッチングのメカニズムは、完全には解明されていないが、本発明者らは、以下のとおりであると考えている。
 先ず、基板上に設けられた窒化シリコン(Si34)は、高温下において、エッチング液中の水(H2O)とリン酸(H3PO4)とにより、ケイ酸(Si(OH)4)を含むケイ酸化合物と、リン酸アンモニウム((NH4)3PO4)とへ分解される。この反応式(A)を以下に示す。
  3Si34+36H2O+4H3PO4 → 3Si(OH)4+4(NH4)3PO4 (A)
 この分解により生じたリン酸アンモニウムは、エッチング液に溶解し得る。また、ケイ酸化合物の一部は、脱水反応により、酸化シリコン(SiO2)を生じる。この反応は、可逆反応である。この平衡反応式(B)を以下に示す。
    3Si(OH)4 ⇔ 6H2O+3SiO2  (B)
 次に、基板上に設けられた酸化シリコンの一部は、高温下において、水酸化物イオン(OH-)及びプロトンと反応して、ケイ酸(Si(OH)4)を含むケイ酸化合物を生成する。この水酸化物イオンは、リン酸に含有されていた水が電離して生じたものである。この反応は、可逆反応である。この平衡反応式(C)を以下に示す。
    SiO2+2OH-+2H+ ⇔ Si(OH)4   (C)
 基板上に設けられた酸化シリコンがエッチングされると、反応式(C)の平衡が右方向へと移動し、エッチング液において、ケイ酸化合物の濃度が高まる。その結果、上記反応式(B)の平衡が右方向へと移動して、エッチング液におけるケイ酸化合物の濃度が低下し、酸化シリコンの濃度が高まりやすくなる。
 ここで、第1実施形態に係るエッチング液は、あらかじめケイ酸化合物を含んでいる。このようなケイ酸化合物をあらかじめ含むエッチング液中では、基板上に設けられた酸化シリコンがエッチングされる以前、すなわち、エッチング開始時から、上記反応式(B)の平衡が、右方向へと移動しやすい。それゆえ、第1実施形態に係るエッチング液を用いると、ケイ酸化合物を含まないリン酸水溶液を用いた場合と比較して、酸化シリコンと窒化シリコンとを含む構造から、窒化シリコンをより選択的に除去することができると考えられる。
 次に、第1実施形態に係るエッチング液について、具体的に説明する。
 エッチング液に占めるリン酸の割合は、60質量%以上95質量%以下の範囲内にあることが好ましい。リン酸の割合がこの範囲内にあると、窒化シリコンのエッチングレートが高まり、酸化シリコンのエッチングレートが低下する傾向にある。エッチング液に占めるリン酸の割合は、70質量%以上85質量%以下の範囲内にあることがより好ましい。
 リン酸の第1酸解離指数pKa1よりも小さい酸解離指数pKを有する酸は、上述したように、選択比向上剤の役割を果たす。すなわち、このような酸は、リン酸水溶液中で、プロトンを生成することができる。このプロトンは、エッチング液中の水酸化物イオンの少なくとも一部と反応して、水を生成する。その結果、エッチング液中の水酸化物イオンの濃度が低くなり、上記平衡反応式(C)の平衡が、左方向へと移動する。したがって、ケイ酸の濃度が低下し、酸化シリコンの濃度が高まる。それゆえ、このような酸は、酸化シリコンのエッチングレートをより低下させることができる。
 このような酸としては、例えば、酸解離指数pKが、2.12未満の酸を挙げることができ、1.8以下の酸を用いることが好ましい。この酸解離指数pKに下限値は特にないが、一例によると、-15以上である。
 このような酸としては、例えば、硫酸、塩酸、硝酸、トリフルオロスルホン酸又はこれらの混合物を用いることができる。なお、25℃の温度の水中において、硫酸の第1酸解離指数pKa1は、-3.0であり、硫酸の第2酸解離指数pKa2は、1.99であり、塩酸の酸解離指数pKは、-8であり、硝酸の酸解離指数pKは、-1.3であり、トリフルオロスルホン酸の酸解離指数pKは、-15である。なお、これらの酸解離指数としては、非特許文献1の第1頁に記載された値を記載している。
 このような酸としては、特に、硫酸を用いることが好ましい。この理由について、以下に説明する。先ず、硫酸は、エッチング液中において、2段階の電離により2つのプロトンを分離可能な二塩基酸である。硫酸は、一段階目の電離において、下記反応式(D)に示すように、プロトンと、硫酸水素イオンとにほぼ完全に解離する。そして、硫酸水素イオンの一部は、下記反応式(E)に示すように、プロトンと、硫酸イオンとに電離する。
    H2SO4 → H++HSO4 -   (D)
    HSO4 - ⇔ H++SO4 2-   (E)
 このように、硫酸は、2つのプロトンを提供できるため、1つのプロトンを提供する酸よりも、酸化シリコンのエッチングレートを低下させることができると考えられる。
 エッチング液において、リン酸の質量M1と、リン酸の第1酸解離指数pKa1よりも小さい酸解離指数pKを有する酸の質量M2との比M1/M2は、0.9以上725以下の範囲内にあることが好ましく、4.07以上725以下の範囲内にあることが更に好ましい。
 エッチング液に占めるリン酸の第1酸解離指数pKa1よりも小さい酸解離指数pKを有する酸の割合は、0.1質量%以上48.3質量%以下の範囲内にあることが好ましい。
 すなわち、エッチング液中に含まれるリン酸の第1酸解離指数pKa1よりも小さい酸解離指数pKを有する酸の量が多すぎると、析出した酸が、被処理物に付着することがある。そのため、ウェットエッチング後に、水などを用いて被処理物を洗浄して、付着した酸を除去する工程が必要となることがある。したがって、この酸の濃度が高いエッチング液を用いてウェットエッチングを行うと、生産効率の低下を引き起こすことがある。これに対して、エッチング液中に含まれる酸の量が上記の範囲内にあるエッチング液を用いると、高い選択比の実現と、酸の析出の抑制とを両立することができるため、生産効率を高めることができる。
 エッチング液に占めるリン酸の第1酸解離指数pKa1よりも小さい酸解離指数pKを有する酸の割合は、0.1質量%以上28.33質量%以下の範囲内にあることがより好ましく、0.1質量%以上17.2質量%以下の範囲内にあることが更に好ましい。
 ケイ酸化合物は、典型的には、ケイ酸(Si(OH)4)を含んでいる。ケイ酸化合物は、下記一般式(I)で表される構造を基本単位とした単量体又は多量体であってもよい。ケイ酸化合物の多量体に含まれる基本単位の数は、例えば、2以上5以下である。なお、エッチング液中のケイ酸化合物は、イオンの形態にあってもよい。
Figure JPOXMLDOC01-appb-C000002
 ケイ酸化合物の単量体又は多量体の具体例としては、非特許文献2に記載された単量体乃至5量体を挙げることができる。
 すなわち、ケイ酸化合物の単量体としては、例えば、[Si(OH)3O]H、[Si(OH)3O(H2O)]H、[Si(OH)3O(H2O)2]H、及びこれらの混合物を挙げることができる。
 ケイ酸化合物の二量体としては、例えば、[Si2(OH)O4]H、[Si2(OH)33]H、[Si2(OH)52]H、[Si2(OH)52(H2O)]H、[Si2(OH)52(H2O)2]H、又はこれらの混合物を挙げることができる。
 ケイ酸化合物の三量体としては、例えば、[Si3(OH)35]H、[Si3(OH)54]H、[Si3(OH)73]H、[Si3(OH)54(H2O)]H、[Si3(OH)73(H2O)2]H、又はこれらの混合物を挙げることができる。
 ケイ酸化合物の四量体としては、例えば、[Si4(OH)37]H、[Si4(OH)56]H、[Si4(OH)75]H、[Si4(OH)56(H2O)]H、又はこれらの混合物を挙げることができる。
 ケイ酸化合物の五量体としては、例えば、[Si5(OH)77]Hを挙げることができる。
 このケイ酸化合物は、例えば、ケイ酸化合物源を、硫酸及びリン酸を含む水溶液に溶かし込むことにより、エッチング液に導入することができる。ケイ酸化合物源としては、例えば、窒化シリコン、シリカ又はこれらの混合物を用いることができる。
 エッチング液に含まれるケイ酸化合物の量は、エッチング液中のケイ素(Si)濃度を測定することにより、把握することができる。このケイ素濃度は、例えば、高周波プラズマ発光分析装置(ICP-AES)などを用いて測定することができる。
 エッチング液におけるケイ素濃度は、5ppm以上であることが好ましく、10ppm以上であることがより好ましく、20ppm以上であることが更に好ましい。エッチング液に十分な量のケイ素が含まれていると、選択比が高い傾向にある。なお、このケイ素濃度(ppm)は、1kgのエッチング液に含まれるケイ素の量(mg)を意味している。
 また、このエッチング液におけるケイ素濃度は、98ppm以下であることが好ましく、73ppm以下であることがより好ましく、50ppm以下であることが更に好ましい。エッチング液に含まれるケイ素の量が少ないと、酸化シリコンの析出が生じにくい傾向にある。
 ここで、酸化シリコンの析出とは、エッチング液に含まれるケイ酸が重合して生成されたポリマーが、被処理物の表面に付着する現象を意味している。この酸化シリコンの析出について、詳細は後述する。
 エッチング液におけるケイ素濃度は、リン酸の第1酸解離指数pKa1よりも小さい酸解離指数pKを有する酸の濃度と、下記(1)乃至(4)式で表される関係の少なくとも1つを満たすことが好ましい。
 図1は、第1実施形態に係るエッチング液における硫酸濃度とケイ素濃度との関係の一例を示すグラフである。このグラフにおいて、横軸はエッチング液中の硫酸濃度を表し、縦軸はエッチング液中のケイ素濃度を表している。
 このグラフにおいて、実線で表される下側の線は、各硫酸濃度におけるケイ素濃度の下限値を示している。この下側の線において、硫酸の濃度が0.11質量%以上2.9質量%以下の範囲におけるケイ素濃度Y1は、下記式(1)で表される。この式(1)は、発明者らが実施した実験結果について多変量解析を行うことにより得られたものである。なお、多変量解析の詳細については、後述する。なお、下記式(1)において、Xは、硫酸の濃度の値の逆数を意味している。
   Y1=21.876×e0.1712x   式(1)
 また、この下側の線において、硫酸の濃度が2.9質量%よりも高く、28.33質量%以下の範囲におけるケイ素濃度Y2は、下記式(2)で表され、かつ、5以上の値である。この式(2)は、発明者らが実施した実験結果について多変量解析を行うことにより得られたものである。なお、下記式(2)において、Xは、硫酸の濃度の値の逆数を意味している。
   Y2=6.6356×loge(X)+29.083   式(2)
 更に、この下側の線において、硫酸の濃度が28.33質量%より高く48.3質量%以下の範囲に係るケイ素濃度は、Y=5の直線で表される。
 リン酸の第1酸解離指数pKa1よりも小さい酸解離指数pKを有する酸の濃度が0.29質量%以上2.9質量%以上の範囲内にあるエッチング液において、ケイ素濃度をY1ppm以上とすることにより、より高い選択比ERSiN/ERSiOを実現することができる。
 また、リン酸の第1酸解離指数pKa1よりも小さい酸解離指数pKを有する酸の濃度が2.9質量%より高く28.33質量%以下の範囲内にあるエッチング液において、ケイ素濃度をY2ppm以上とすることにより、より高い選択比ERSiN/ERSiOを実現することができる。
 更に、リン酸の第1酸解離指数pKa1よりも小さい酸解離指数pKを有する酸の濃度が28.33質量%より高く48.3質量%以下の範囲内にあるエッチング液において、ケイ素濃度を5ppm以上とすることにより、より高い選択比ERSiN/ERSiOを実現することができる。
 すなわち、エッチング液のケイ素濃度を、リン酸の第1酸解離指数pKa1よりも小さい酸解離指数pKを有する酸の濃度が0.11質量%以上2.9質量%以下の範囲内にある場合、Y1ppm以上とし、酸の濃度が2.9質量%より高く28.33質量%以下の範囲内にある場合、Y2ppm以上とし、上記酸の濃度が28.33質量%より高く48.3質量%以下の範囲内にある場合、5ppm以上とすることにより、高い選択比ERSiN/ERSiOを実現することができる。
 また、このグラフにおいて、破線で表される上側の線は、各硫酸濃度におけるケイ素濃度の上限値を示している。この上側の線において、硫酸の濃度が0.11質量%以上0.58質量%以下の範囲におけるケイ素濃度Y3は、下記式(3)で表される。この式(3)は、発明者らが実施した実験結果について多変量解析を行うことにより得られたものである。なお、下記式(3)において、Xは、硫酸の濃度の値の逆数を意味している。
   Y3=18.958×loge(X)+53.583   式(3)
 また、この上側の線において、硫酸の濃度が0.58質量%よりも大きく、28.33質量%以下の範囲におけるケイ素濃度Y3は、下記式(4)で表される。この式(4)は、発明者らが実施した実験結果について多変量解析を行うことにより得られたものである。なお、下記式(4)において、Xは、硫酸の濃度の値の逆数を意味している。
   Y4=18.111×loge(X)+65.953   式(4)
 リン酸の第1酸解離指数pKa1よりも小さい酸解離指数pKを有する酸の濃度が0.11質量%以上5.78質量%以下の範囲内にあるエッチング液において、ケイ素濃度をY3ppm以下とすることにより、酸化シリコンの析出を十分に抑制することができる。
 また、リン酸の第1酸解離指数pKa1よりも小さい酸解離指数pKを有する酸の濃度が5.78質量%より高く28.33質量%以下の範囲内にあるエッチング液において、ケイ素濃度をY4ppm以下とすることにより、酸化シリコンの析出を十分に抑制することができる。
 すなわち、エッチング液のケイ素濃度を、リン酸の第1酸解離指数pKa1よりも小さい酸解離指数pKを有する酸の濃度が0.11質量%以上0.58質量%以下の範囲内にある場合、5ppm以上Y3ppm以下の範囲内とし、酸の濃度が0.58質量%より高く28.33質量%以下の範囲内にある場合、5ppm以上Y4ppm以下の範囲内とすることにより、酸化シリコンの析出を十分に抑制することができる。
 以上のことから、リン酸の第1酸解離指数pKa1よりも小さい酸解離指数pKを有する酸の濃度が0.11質量%以上0.58質量%以下の範囲内にあるエッチング液において、ケイ素濃度をY1ppm以上Y3ppm以下とすることにより、高い選択比ERSiN/ERSiOと、酸化シリコンの析出の抑制とを実現することができる。
 また、リン酸の第1酸解離指数pKa1よりも小さい酸解離指数pKを有する酸の濃度が0.58質量%より高く2.9質量%以下の範囲内にあるエッチング液において、ケイ素濃度をY1ppm以上Y4ppm以下とすることにより、高い選択比ERSiN/ERSiOと、酸化シリコンの析出の抑制とを実現することができる。
 また、リン酸の第1酸解離指数pKa1よりも小さい酸解離指数pKを有する酸の濃度が2.9質量%より高く28.33質量%以下の範囲内にあるエッチング液において、ケイ素濃度をY2ppm以上Y4ppm以下とすることにより、高い選択比ERSiN/ERSiOと、酸化シリコンの析出の抑制とを実現することができる。
 すなわち、エッチング液のケイ素濃度を、リン酸の第1酸解離指数pKa1よりも小さい酸解離指数pKを有する酸の濃度が0.11質量%以上0.58質量%以下の範囲内にある場合、Y1ppm以上Y3ppm以下の範囲内とし、酸の濃度が0.58質量%より高く2.9質量%以下の範囲内にある場合、Y1ppm以上Y4ppm以下の範囲内とし、酸の濃度が2.9質量%より高く28.33質量%以下の範囲内にある場合、Y2ppm以上Y4ppm以下の範囲内とすることにより、高い選択比ERSiN/ERSiOと、酸化シリコンの析出の抑制とを実現することができる。
 ここで、上述した多変量解析について詳細を説明する。
 現象の解明はデータを用いて行われるが、データは現象・特性を表わす姿であり、それらは関係のある特性が互いに影響しあった結果を示すものである。データの中には有効な情報が含まれており、その情報を効果的に引き出し、さらに普遍的な結果にまとめることが必要になる。特性が多数関連してくるときその解析を多変量解析といい、データを多変量のデータという。多変量解析は統計学の一部であり、数学的モデルであり、前提・仮定に基づいてデータを要約するものである。そこに用いられる要因の抽出は、現象のメカニズムに基づき客観的に行う必要がある。解析の結論も、その要因の姿であるデータの組み合わせによるものであるため、データの特性、その測定の仕方は重要なポイントになる。データが手法の前提になっている仮定・前提を満足しているかどうかを検討しておくことは、多変量解析を行う上で必要不可欠な要素となる。
 多変量解析では1つの母集団に含まれる多数の変数間の解析を行う。目的の方向が同一でないため、その手法も定まった1つの方法ではない。変数xiを結合して1つの外部変数Yと対応させると、形式的には以下の式(3.18)となる。
Figure JPOXMLDOC01-appb-M000003
 この式の変数の性質と式の目的によって、式(3.18)は、重回帰分析(Multiple Regression Analysis)、主成分分析(Principle Component Analysis)、正準相関分析(Canonical Correlation Analysis、因子分析(Factor Analysis)、及び判別関数(Discriminant Function)に分類される。
 今回用いた統計解析ソフトウェアJMP SAS Institute Inc.社製は、重回帰分析を基本としたものである。重回帰分析は、上記式(3.18)で表され、xiが互いに独立であることが特徴である。 
 非特許文献3乃至5を、多変量解析の参考文献として挙げる。
 水は、上記反応式(A)に示すように、窒化シリコンのエッチャントの役割を果たす。エッチング液に占める水の割合は、4質量%以上であることが好ましく、10質量%以上であることがより好ましい。水の割合が高いと、窒化シリコンに対する選択比が向上する傾向にある。
 ところで、水の沸点は、リン酸及び硫酸の沸点よりも低い。したがって、エッチング液に含まれる水の割合を過剰に高めると、エッチング液の沸点が下がり、エッチング液が沸騰することがある。したがって、エッチング液を沸騰させにくくするという観点からは、エッチング液に占める水の割合は、17質量%以下であることが好ましく、15質量%以下であることがより好ましく、12質量%以下であることが更に好ましく、5質量%以下であることが更に好ましい。
 エッチング液のケイ素濃度を、エッチング液のリン酸の第1酸解離指数pKa1よりも小さい酸解離指数pKを有する酸の濃度に応じて調整することにより、より優れたエッチング液を実現できることを説明したが、更に、本発明者らは、エッチング液のケイ素濃度を、エッチング液の水濃度に応じて調整することにより、更に優れたエッチング液を実現できることを見出している。すなわち、リン酸の第1酸解離指数pKa1よりも小さい酸解離指数pKを有する酸の濃度が同じである場合、水濃度を低くしてケイ酸化合物の濃度を高くすることにより、高い選択比を実現することができる。
 例えば、エッチング液のリン酸の第1酸解離指数pKa1よりも小さい酸解離指数pKを有する酸濃度が、2質量%以下であり、かつ、水濃度が5質量%以下である場合、ケイ素濃度は45ppm以上であることが好ましく、55ppm以上であることがより好ましく、90ppm以上であることが更に好ましい。
 また、エッチング液のリン酸の第1酸解離指数pKa1よりも小さい酸解離指数pKを有する酸濃度が、2質量%以下であり、かつ、水濃度が5質量%以下である場合、ケイ素濃度は129ppm以下であることが好ましく、115ppm以下であることがより好ましい。エッチング液に含まれるケイ素の量が少ないと、酸化シリコンの析出が生じにくい傾向にある。
 第1実施形態に係るエッチング液は、リン酸、リン酸の第1酸解離指数pKa1よりも小さい酸解離指数pKを有する酸、ケイ酸化合物、及び水以外に、水和数が3.5以下である1価のカチオンを含む塩を更に含んでいてもよい。
 このような塩は、酸化シリコンの析出抑制剤として機能する。すなわち、このような塩は、エッチング液において、水和数が3.5以下である1価のカチオンA+を生成する。この1価のカチオンA+は、ケイ酸Si(OH)4のシラノール基(Si-O-H)の水素を置換して、(OH)3-Si-O-A+を生成することができる。この(OH)3-Si-O-A+は、ケイ酸Si(OH)4と比較して、重合しにくい。したがって、エッチング液がこの塩を更に含むと、エッチング液中のケイ酸が重合して、ポリマーを生成することを抑制することができる。
 また、水和数が3.5以下である1価のカチオンA+は、エッチング液中において、配位する水分子の数が少ない。そして、上述したように、エッチング液に含まれる水は、窒化シリコンのエッチャントである。したがって、水和数が3.5以下である1価のカチオンA+を含むエッチング液は、水和数が3.5より大きいカチオン1価のカチオンを含むエッチング液と比較して、エッチング液においてエッチャントとして機能する水の濃度がより高い傾向にある。
 更に、酸化シリコン(Si-O-Si)の析出は、下記反応式(G)に示すように、水の生成を伴う平衡反応である。
   Si-OH + HO-Si ⇔ Si-O-Si + H2O   (G)
 したがって、エッチング液にカチオンを生成する塩を加えることにより、エッチング液中の水和したカチオンの濃度が高まり、エッチャントとして機能する水の濃度が低下すると、上記反応式(G)の平衡が右方向へと移動して、酸化シリコンの濃度が高まりやすくなる。したがって、水和数が3.5以下である1価のカチオンA+を含む塩を、エッチング液に加えた場合、水和数が3.5より大きいカチオンを含む塩を、エッチング液に加えた場合と比較して、酸化シリコンの析出をより抑制することができる。
 水和数が3.5以下である1価のカチオンA+としては、例えば、ナトリウムイオン(Na+)、銀イオン(Ag+)、カリウムイオン(K+)、アンモニウムイオン(NH4 +)、ルビジウムイオン(Rb+)、チタンイオン(Ti+)、及びセシウムイオン(Cs+)を挙げることができる。なお、水和数が3.5以下である1価のカチオンA+としては、これらのイオンを2種類以上含んでいてもよい。
 Na+の水和数は3.5であり、Ag+の水和数は3.1であり、K+の水和数は2.6でありNH4 +の水和数は2.4であり、Rb+の水和数は2.4であり、Ti+の水和数は2.4であり、Cs+の水和数は2.1である。なお、この水和数としては、非特許文献6に記載された値を用いている。
 水和数が3.5以下である1価のカチオンA+を含む塩としては、塩化ナトリウム(NaCl)、塩化カリウム(KCl)、硫酸ナトリウム(Na2SO4)、及び硫酸カリウム(K2SO4)からなる群より選ばれる少なくとも1つの塩を用いることが好ましい。
 エッチング液におけるこの塩の濃度は、0.05mol/L以上2mol/L以下の範囲内にあることが好ましい。塩の濃度がこの範囲内にあると、酸化シリコンの析出の抑制と、高い選択比とを実現しやすい傾向にある。
 第1実施形態に係るエッチング液は、上述したように、リン酸と、リン酸の第1酸解離指数pKa1よりも小さい酸解離指数を有する酸と、ケイ酸化合物と、水とを含んでいる。そして、第1実施形態に係るエッチング液において、リン酸の質量M1と、酸の質量M2との比M1/M2は、0.82以上725以下の範囲内にある。このようなエッチング液を用いて、窒化シリコンを含む構造についてウェットエッチングを行うと、十分に高い選択比を実現することができるため、窒化シリコンを選択的に除去することができる。
 [第2実施形態]
 第2実施形態に係るエッチング方法は、第1実施形態に係るエッチング液を用いて、窒化シリコンのエッチングを行うことを含んでいる。以下、第2実施形態に係るエッチング方法について、詳細を説明する。
 先ず、第2実施形態に係るエッチング方法の処理対象となる基板について、図2乃至図5を参照しながら説明する。図2は、第2実施形態に係るエッチング方法の処理対象となる構造の製造方法の一工程を概略的に示す断面図である。ここでは、STI(Shallow Trench Isolation)技術を用いた基板の製造方法を一例に挙げて説明する。
 図2に示す構造は、シリコン層11と、絶縁膜12と、マスク13と、高温酸化膜14と、塗布型酸化膜15とを含んでいる。図2に示す構造は、例えば、以下の方法により得ることができる。先ず、シリコン層11上に、例えば、化学気相堆積(CVD)により、酸化シリコンを堆積して、絶縁膜12を形成する。なお、シリコン層11は、例えば、単結晶シリコンからなる。次いで、この絶縁膜12上に、CVD法により、窒化シリコンを堆積して、マスク13を形成する。このようにして、シリコン層11、絶縁膜12及びマスク13からなる積層体を得る。次いで、反応性イオンエッチング(RIE)法により、これらの積層体の一部に浅溝を設ける。次いで、この積層体の表面を高温で酸化させて、積層体のうち浅溝が設けられた部分に、高温酸化膜14を形成する。この高温酸化膜14は、典型的には、酸化シリコンからなる。なお、この高温酸化膜14は、省略することができる。次いで、この高温酸化膜14上に、シリカ系被膜形成用塗布液を塗布して、浅溝をシリカ系被膜形成用塗布液で充填する。次いで、このシリカ系被膜形成用塗布液を酸化させて、塗布型酸化膜15を形成する。塗布型酸化膜15は、典型的には、酸化シリコンからなる。このようにして、図2に示す構造を得る。
 次に、図3に示すように、化学機械研磨(CMP)法により、積層体の表面を平坦化する。この際、マスク13は、ストッパ膜の役割を果たす。
 次に、図4に示すように、RIE法により、高温酸化膜14及び塗布型酸化膜15の上面部を除去する。このようにして、第2実施形態に係るエッチング方法の処理対象となる構造を得ることができる。
 次に、第1実施形態に係るエッチング液にこの構造を浸漬して、この構造からマスク13を選択的にエッチングする。このエッチング液の温度は、およそ160℃とすることができる。このようにして、図5に示す構造を得る。
 なお、ここでは、第2実施形態に係るエッチング方法の処理対象となる構造として、図4に示す構造を一例に挙げて説明したが、図4に示す構造以外のものを用いてもよい。以下に、第2実施形態に係るエッチング方法の処理対象となる基板の製造方法について、図6乃至図11を参照しながら説明する。図6は、第2実施形態に係るエッチング方法の処理対象となる基板の製造方法の一工程を概略的に示す断面図である。図6に示す構造は、基板1と、酸化シリコン膜2とを含んでいる。
 基板1は、例えば、半導体基板である。半導体基板としては、例えば、シリコン基板(Si基板)、窒化ガリウム基板(GaN基板)、又は炭化ケイ素基板(SiC基板)などの無機物を主成分とした基板を用いることができる。
 酸化シリコン膜2は、基板1の少なくとも一方の主面上に設けられている。酸化シリコン膜2は、例えば、スパッタ法又は化学気相堆積(CVD)法により形成される。なお、基板1上に設ける膜の材料としては、酸化シリコン以外の材料を用いてもよい。
 次に、図7に示すように、酸化シリコン膜2上に、レジスト層3を設ける。レジスト層3は、例えば、酸化シリコン膜2上に流動性のレジスト材料を塗布することにより形成することができる。レジスト層3は、ロールラミネート装置などを用いてドライフィルムレジストをラミネートすることにより形成してもよい。
 次に、図8に示すように、フォトリソグラフィ法により、レジスト層3の一部を除去して、開口部3aを設ける。
 次に、図9に示すように、酸化シリコン膜2にパターンを形成する。具体的には、例えば、ドライエッチング法により、酸化シリコン膜2のうちレジスト層3により被覆されていない部分をエッチングする。これにより、複数の凸部を含むパターンを有する酸化シリコン膜2を得ることができる。
 次に、図10に示すように、アルカリ溶液などのレジスト剥離液を用いて、酸化シリコン膜2からレジスト層3を剥離する。
 次に、図11に示すように、基板1及び酸化シリコン膜2上に、窒化シリコン膜4を形成する。具体的には、例えば、酸化シリコン膜2上と、基板1の主面のうち酸化シリコン膜2により被覆されていない部分上とに、スパッタ法又は化学気相堆積(CVD)法により窒化シリコンを堆積させて、窒化シリコン膜4を形成する。
 このようにして、第2実施形態に係るエッチング方法の処理対象となる基板10を得ることができる。この処理対象基板10において、酸化シリコン膜2と、窒化シリコン膜4とは、基板1の主面に対して平行な方向において、少なくとも一部が交互に並んだ構造を備えている。
 なお、ここでは、基板1の一方の主面に、酸化シリコン膜2及び窒化シリコン膜4が交互に並んだ構造を例に挙げて説明したが、この酸化シリコン膜2及び窒化シリコン膜4が交互に並んだ構造は、基板1の両面に設けられていてもよい。
 次に、このようにして得られた処理対象基板10を、第1実施形態に係るエッチング液に浸漬することにより、処理対象基板10から、窒化シリコン膜4を選択的にエッチングすることができる。
 図12は、第2実施形態に係るエッチング方法においてエッチング処理が完了する前の様子を概略的に示す断面図である。図12に示すように、第1実施形態に係るエッチング液に処理対象基板10を浸漬すると、窒化シリコン膜4のうち基板1の主面と対向する面側から、窒化シリコン膜4が、エッチング液に溶解していく。すなわち、このエッチング処理を行うと、基板1に対して垂直方向に延びる窒化シリコン膜4の厚さは、処理時間の経過とともに薄くなっていく。そして、更にエッチング処理が進行すると、一対の酸化シリコン膜2からなる凸部の間において窒化シリコン膜4が存在した部分に、溝Tが形成される。この溝Tの深さは、処理時間の経過とともに深くなっていく。そして、この溝Tには、エッチング液が満たされる。したがって、窒化シリコン膜4のエッチングが進むにつれて、酸化シリコン膜2のパターンのうち窒化シリコン膜4のエッチングにより露出した側面において、エッチング液と接する面が増加する。
 ここで、第2実施形態に係るエッチング方法に用いられる第1実施形態に係るエッチング液は、高い選択比を実現可能である。したがって、酸化シリコン膜2からなる凸部の側面が、長時間にわたってエッチング液に曝されたとしても、サイドエッチングが生じにくい。それゆえ、第2実施形態に係るエッチング方法によると、酸化シリコン膜2のパターンの側面がエッチングされて、所望の形状が得られないという問題を生じにくくすることができる。
 更に、第2実施形態に係るエッチング方法において、エッチング液におけるケイ素濃度と、リン酸の第1酸解離指数pKa1よりも小さい酸解離指数pKを有する酸の濃度との関係が、式(3)及び式(4)の少なくとも一方を満たすことにより、酸化シリコンの析出を抑制することができる。
 ここで、酸化シリコンの析出について、図面を参照しながら詳細を説明する。図13は、エッチング処理後の基板を概略的に示す断面図である。この処理後基板100は、図11に示す処理対象基板10について、エッチング処理を行うことにより得られたものである。
 図13に示す処理後基板100では、図12に示す処理対象基板10において窒化シリコン膜4が形成されていた部分は、選択的に除去されて、酸化シリコンからなる複数の凸部20を有するパターンが形成されている。そして、図12に示す処理対象基板10において窒化シリコン膜4が形成されていた部分であって、一対の酸化シリコンの凸部20の間には、図13に示す溝Tが設けられている。この処理後基板100では、酸化シリコンの凸部20の先端部の側面に、析出物201が付着している。この析出物201は、エッチング液に含まれるケイ酸が重合して生成した酸化シリコンのポリマーからなる。
 このように析出物201が酸化シリコンの凸部20に多量に付着すると、所望の形状が得られないため好ましくない。また、この析出物201の量が過剰に多いと、溝Tの上部が、析出物201により塞がれた状態となり、所望の形状からかけ離れた形状となるため、より好ましくない。
 この析出物201の析出量は、図13に示すように、酸化シリコンの凸部20の側面から基板1と平行な方向に沿った厚さXを測定することにより数値化することができる。この厚さXは、例えば、電子顕微鏡などを用いて、処理後基板100を観察することにより求めることができる。
 第2実施形態に係るエッチング方法は、エッチング処理装置を用いることにより、連続的に行うことができる。図14は、エッチング処理装置の一例を概略的に示す断面図である。このエッチング処理装置300は、処理槽30と、バッファー槽31と、排液槽32と、水供給源Wと、ポンプPと、ヒータHと、フィルタFと、配管L1乃至L8と、バルブV1乃至V3とを備えている。
 処理槽30は、貯留槽301と、図示しないヒータ及び攪拌機とを備えている。処理槽30は、第1実施形態に係るエッチング液Eと、サンプルSとを収容することができる。
 貯留槽301は、枠形状を有している。貯留槽301は、処理槽30の上層と隣接する領域を取り囲んで、処理槽30から溢れたエッチング液Eを貯留可能とする貯留部を形成している。
 バッファー槽31は、バッファー液Bを収容することができる。バッファー槽31は、配管L1により処理槽30に接続されている。配管L1は、バッファー槽31に収容されたバッファー液Bを、処理槽30に供給する。バルブV1は、配管L1に設けられている。バルブV1は、一対の流入口と流出口とを備え、これらが連通した状態と、連通していない状態との切り替えを、電気的制御のもとで行うことが可能な電動バルブである。
 水供給源Wは、配管L2により処理槽30に接続している。配管L2は、水供給源Wから、水を処理槽30に供給する。バルブV2は、配管L2に設けられている。バルブV2は、一対の流入口と流出口とを備え、これらが連通した状態と、連通していない状態との切り替えを、電気的制御のもとで行うことが可能な電動バルブである。
 配管L3乃至L5、L7及びL8と、バルブV3と、ポンプPと、ヒータHと、フィルタFとは、循環流路を構成している。この循環流路は、貯留槽301の下部と処理槽30とを接続している。また、配管L3乃至L6と、バルブV3と、ポンプPと、排液槽32とは、排出流路を構成している。この排出流路は、貯留槽301の下部と、排液槽32とを接続している。
 ポンプPは、一対の吸込み口と吐出し口とを備えている。バルブV3は、1つの流入口と2つの流出口とを備え、流入口と一方の流出口とが連通した状態と、流入口と他方の流出口とが連通した状態との間での切り替えを、電気的制御のもとで行うことが可能な電動バルブである。
 配管L3は、貯留槽301の下部と、ポンプPの吸込み口とを接続している。配管L4は、ポンプPの吐出し口と、バルブV3の流入口とを接続している。配管L5は、バルブV3の第1流出口と、ヒータHとを接続している。配管L6は、バルブV3の第2流出口と、排液槽32とを接続している。配管L7は、ヒータHとフィルタFとを接続している。配管L8は、フィルタFと処理槽30とを接続している。
 次に、このエッチング処理装置300を用いた連続的なエッチング方法について、図14を参照しながら説明する。 
 先ず、第1実施形態に係る第1エッチング液Eを、処理槽30内で調製する。具体的には、リン酸と硫酸との質量比が所定の値となるように、リン酸水溶液と硫酸水溶液とを混合して、混合液を得る。リン酸水溶液としては、例えば、85質量%リン酸水溶液を用いてもよく、加熱処理したリン酸水溶液を用いてもよい。加熱処理したリン酸水溶液におけるリン酸濃度は、例えば、85質量%以上95質量%以下の範囲内にあり、水濃度は、例えば、5質量%以上乃至15質量%以下の範囲内にある。硫酸水溶液としては、例えば、96質量%硫酸水溶液を用いることができる。
 次いで、この混合液にケイ酸化合物源を更に混合する。次いで、処理槽30に備えられた図示しないヒータを用いて、この混合液を、130℃乃至180℃の範囲内の温度となるように加熱して、混合液にケイ酸化合物源を溶解させる。このようにして、第1実施形態に係る第1エッチング液Eを得る。なお、この処理槽30に収容された第1エッチング液Eとしては、処理槽30内で調製されたものの代わりに、外部で調製したものを用いてもよい。また、第1エッチング液Eの調製温度及び加熱時間を、調整することにより、第1エッチング液Eにおける水濃度を適宜調整することができる。
 次いで、この第1エッチング液Eに含まれるケイ素の濃度を測定して、初期ケイ素濃度A1を得る。次いで、この第1エッチング液E中に、サンプルSとして図11に示す処理対象基板10を一定時間にわたって浸漬させる。なお、サンプルSとしては、図4に示す構造を用いてもよい。
 エッチング処理の間、処理槽30には、第1エッチング液Eが加熱されることにより蒸発して減少する量の水と同じ量の水が、配管L2を介して水供給源Wから常に加え続けられているか、又は、一定時間ごとに供給される。また、第1エッチング液Eは、処理槽30に備えられた図示しない攪拌機により、常に撹拌されている。
 第1エッチング液Eの調製中及びエッチング処理の間に、処理槽30から溢れた第1エッチング液Eは、貯留槽301に一時的に貯留される。貯留槽301から循環流路に流入した第1エッチング液Eは、循環流路に備えられたヒータHで加熱された後、フィルタFを通過して、処理槽30に戻される。フィルタFは、第1エッチング液E中に含まれる異物を取り除く。
 次いで、一定時間経過後に、第1エッチング液Eのケイ素濃度を測定して、第1ケイ素濃度A2を得る。この第1ケイ素濃度A2が、あらかじめ定めておいたケイ素濃度の閾値を超えていた場合、バルブV3について、流入口と第1流出口とが連絡した状態から、流入口と第2流出口とが連絡した状態へと切り替える。このようにして、処理槽30から溢れた第1エッチング液Eを、排出流路を介して排液槽32へと導く。
 次いで、バッファー槽31において、バッファー液Bを調製する。具体的には、リン酸と硫酸との質量比が、第1エッチング液Eにおける硫酸とリン酸との質量比と同じ値となるように、リン酸水溶液と硫酸水溶液とを混合して、バッファー液Bを得る。
 次いで、このバッファー液Bを、配管L1を介して処理槽30に供給して、バッファー液Bと、ケイ素濃度が第1ケイ素濃度A2である第1エッチング液Eとの混合液を得る。次いで、この混合液に、必要に応じて、ケイ素濃度が初期ケイ素濃度A1と同じ濃度になるだけの量のケイ酸化合物源を加えて、混合液に溶解させる。このようにして、第2エッチング液E’を得る。第2エッチング液E’の組成は、サンプルSを浸漬させる前の第1エッチング液Eの組成と同じである。
 次いで、この第2エッチング液E’を用いて、引き続きサンプルSについて、エッチング処理を行う。これらの工程を繰り返すことにより、サンプルSから窒化シリコンを選択的に除去することができる。なお、これらの工程を繰り返す回数は、サンプルSに含まれる窒化シリコンの量に応じて、適宜調整することができる。
 そして、この一連の処理を繰り返すことにより、連続的にサンプルSのエッチング処理を行うことができる。
 [第3実施形態]
 第3実施形態に係る電子部品の製造方法は、第1実施形態に係るエッチング液を用いて、窒化シリコンのエッチングを行うことを含んでいる。
 また、第3実施形態に係る電子部品の製造方法は、窒化シリコン膜と酸化シリコン膜とが設けられた基板から、第2実施形態に係るエッチング方法により、窒化シリコン膜をエッチングする工程と、窒化シリコン膜が除去された部分の少なくとも一部に、導電性材料を堆積させる工程とを含んでいてもよい。
 具体的には、先ず、図11に示す基板10を準備する。次いで、第1実施形態に係るエッチング液を用いて、図11に示す基板から、窒化シリコン膜4を選択的に除去する。このようにして、図12に示すように、酸化シリコンからなる複数の凸部を含むパターンを有し、溝Tが設けられた基板を得る。
 次いで、この溝Tに、スパッタ法又は化学気相堆積(CVD)法により導電性材料を堆積させる。導電性材料としては、例えば、タングステンなどの金属を用いることができる。この溝Tに埋め込まれた導電性材料は、例えば、コントロールゲートとして機能する。
 以上の工程を含む方法により、半導体チップを製造することができる。半導体チップとしては、例えば、集積回路(IC)、大規模集積回路(LSI)又は固体撮像素子を挙げることができる。集積回路は、例えば、汎用メモリ及び専用メモリとして用いることができる。固体撮像素子は、例えば、CMOSイメージセンサ又はCCDセンサである。
 次いで、このようにして得られた半導体チップを、配線基板に実装する。次いで、半導体チップと配線基板との隙間を封止樹脂を用いて充填する。このようにして、半導体パッケージなどの電子部品を得ることができる。
 上述したように、第2実施形態に係るエッチング方法によると、窒化シリコンを選択的に除去できるため、サイドエッチングの量が少ない所望の形状を備えた基板を得ることができる。それゆえ、第3実施形態に係る電子部品の製造方法によると、電子部品の歩留まり率を高めることができる。
 [第4実施形態]
 次に、第4実施形態に係るエッチング液について説明する。第4実施形態に係るエッチング液は、窒化シリコンのエッチングに用いるエッチング液である。第4実施形態に係るエッチング液は、リン酸と、リン酸の第1酸解離指数pKa1よりも小さい酸解離指数を有する酸と、ケイ酸化合物と、水とを含む。第4実施形態に係るエッチング液において、リン酸の濃度は88質量%以上95%質量%以下であり、リン酸の第1酸解離指数pKa1よりも小さい酸解離指数を有する酸の濃度は、2質量%以上5質量%以下であり、水の濃度は4質量%以上11質量%以下である。
 エッチング液に含まれる水は、窒化シリコンのエッチャントとしてはたらく。したがって、エッチング液において水が過剰に少ないと、選択比が低下する傾向にある。一方で、エッチング液中の水の含有量が多いと、エッチング液が沸騰し易く、処理効率が低下し、処理装置が複雑化する傾向にある。第4の実施形態に係るエッチング液において、水の濃度は4質量%以上11質量%以下である。このようなエッチング液は、エッチング処理中にも沸騰しにくく、かつ、高い選択比を実現することができる。それゆえ、このようなエッチング液を用いると、エッチング処理装置を簡略化することができる。
 エッチング液に含まれる水の濃度は、7.00質量%以上9.00質量%以下の範囲内にあることが好ましい。水濃度がこの範囲内にあると、選択比をより高めることができる。また、エッチング液に含まれる水の濃度は、8.00質量%以上9.00質量%以下の範囲内にあることがより好ましい。水濃度がこの範囲内にあるエッチング液を用いると、酸化シリコンの析出を抑えることができるため、所望の形状を有する基板を得られやすい。
 エッチング液に含まれるリン酸は、上述した式(A)及び(C)で生成されるSi(OH)4の一部と結合して、脱水縮合する。
 エッチング液に含まれるリン酸の第1酸解離指数pKa1よりも小さい酸解離指数を有する酸は硫酸であることが好ましい。硫酸は、酸化シリコンの析出を抑制する効果が高い。一方で、エッチング液中に硫酸が過剰に含まれていると、水の活量が低下し、選択比が低下する恐れがある。したがって、エッチング液に含まれる硫酸の濃度は、4.00質量%以下であることが好ましい。
 エッチング液に含まれるケイ素濃度は、40ppm以上であることが好ましい。ケイ素濃度が高いエッチング液を用いると、選択比が高まる傾向にある。エッチング液に含まれるケイ素濃度は、160ppm以下であることが好ましく、100ppm以下であることがより好ましい。ケイ素濃度が低いエッチング液を用いると、酸化シリコンの析出を抑えることができるため、所望の形状を有する基板を得られやすい傾向にある。
 第4実施形態に係るエッチング液において、ケイ素濃度の好ましい範囲は、リン酸の第1酸解離指数pKa1よりも小さい酸解離指数を有する酸の濃度に応じて変化し得る。図15は、第4実施形態に係るエッチング液における酸濃度とケイ素濃度との関係の一例を示すグラフである。このグラフにおいて、横軸はエッチング液中のリン酸の第1酸解離指数pKa1よりも小さい酸解離指数を有する酸の濃度を表し、縦軸はエッチング液中のケイ素濃度を表している。
 図15に示すグラフにおいて、破線で表される下側の線は、各酸濃度におけるケイ素濃度の好ましい範囲の下限値を示している。この下側の線において、酸の濃度が2.00質量%以上3.00質量%以下の範囲におけるケイ素濃度Y10は、下記式(10)で表される。この式(10)は、発明者らが実施した実験結果、後述する例101乃至例119の結果から算出し得られたものである。
   Y10=13.032×e(0.4683×X)   (10)
 酸の濃度が2.00質量%以上3.00質量%以下の範囲において、ケイ素濃度がY10以上の値であると、酸化シリコンのエッチングレートが低下し、選択比が高まる傾向にある。なお、酸の濃度が2.00質量%であるとき、Y10の値は、およそ33.248ppmである。また、酸の濃度が2.83質量%にあるとき、Y10の値は、およそ49.043ppmである。また、酸の濃度が3.00質量%にあるとき、Y10の値は、およそ53.107ppmである。
 また、図15に示すグラフにおいて、実線で表される上側の線は、各酸濃度におけるケイ素濃度の好ましい範囲の上限値を示している。この上側の線において、酸の濃度が2.00質量%以上3.00質量%以下の範囲におけるケイ素濃度Y20は、下記式(20)で表される。この式(20)は、発明者らが実施した実験結果、後述する例101乃至例119の結果から算出し得られたものである。
   Y20=62.238×e(0.3136×X)   (20)
 酸の濃度が2.00質量%以上3.00質量%以下の範囲において、ケイ素濃度がY20以下の値であると、選択比が高まり、酸化シリコンの析出を抑制できる傾向にある。なお、酸の濃度が2.00質量%であるとき、Y20の値は、およそ116.532ppmである。また、酸の濃度が2.83質量%にあるとき、Y20の値は、およそ151.177ppmである。また、酸の濃度が3.00質量%にあるとき、Y20の値は、およそ159.456ppmである。
 図15に示すグラフにおいて、領域A1は、式(10)に係る点線と、式(20)に係る実線と、X=2である直線と、X=3である直線とに囲まれた領域である。エッチング液において、ケイ素濃度と硫酸濃度とは、この領域A1内及び各線上となるようそれぞれ設定されることが好ましい。すなわち、硫酸濃度Xが2.00質量%以上3.00質量%以下の範囲内にあるとき、ケイ素濃度は、Y10ppm以上Y20ppm以下の範囲内にあることが好ましい。このようなエッチング液を用いると、より所望の形状を有する基板を得ることができる。
 また、第4実施形態に係るエッチング液において、ケイ素濃度の好ましい範囲は、水の濃度に応じて変化し得る。図16は、第4実施形態に係るエッチング液における水濃度とケイ素濃度との関係の一例を示すグラフである。このグラフにおいて、横軸はエッチング液中の水の濃度を表し、縦軸はエッチング液中のケイ素濃度を表している。
 図16に示すグラフにおいて、破線で表される下側の線は、各水濃度におけるケイ素濃度の好ましい範囲の下限値を示している。この下側の線において、水の濃度が8.00質量%以上9.00質量%以下の範囲におけるケイ素濃度Y30は、下記式(30)で表される。この式(30)は、発明者らが実施した実験結果、後述する例101乃至例119の結果から算出し得られたものである。
   Y30=1958.9×e(-0.453×X)   (30)
 水の濃度が8.00質量%以上9.00質量%以下の範囲において、ケイ素濃度がY30以上の値であると、酸化シリコンのエッチングレートが低下し、選択比が高まる傾向にある。なお、水の濃度が8.00質量%であるとき、Y30の値は、およそ33.220ppmである。また、水の濃度が8.17質量%であるとき、Y30の値は、およそ48.382ppmである。また、水の濃度が9.00質量%であるとき、Y30の値は、およそ52.255ppmである。
 また、図16に示すグラフにおいて、実線で表される上側の線は、各水濃度におけるケイ素濃度の好ましい範囲の上限値を示している。この上側の線において、水の濃度が8.00質量%以上9.00質量%以下の範囲におけるケイ素濃度Y40は、下記式(40)で表される。この式(40)は、発明者らが実施した実験結果、後述する例101乃至例119の結果から算出し得られたものである。
   Y40=1958.7×e(-0.314×X)   (40)
 水の濃度が8.00質量%以上9.00質量%以下の範囲において、ケイ素濃度がY40以下の値であると、選択比が高まり、酸化シリコンの析出を抑制できる傾向にある。なお、水の濃度が8.00質量%であるとき、Y40の値は、およそ116.052ppmである。また、水の濃度が8.17質量%にあるとき、Y40の値は、およそ150.604ppmである。また、水の濃度が9.00質量%にあるとき、Y40の値は、およそ158.862ppmである。
 図15に示すグラフにおいて、領域A2は、式(30)に係る点線と、式(40)に係る実線と、X=8である直線と、X=9である直線とに囲まれた領域である。エッチング液において、ケイ素濃度と水濃度とは、この領域A2内及び各線上となるようそれぞれ設定されることが好ましい。すなわち、水濃度Xが8.00質量%以上9.00質量%以下の範囲内にあるとき、ケイ素濃度は、Y30ppm以上Y40ppm以下の範囲内にあることが好ましい。このようなエッチング液を用いると、より所望の形状を有する基板を得ることができる。
 第4実施形態に係るエッチング液は、上述した第2実施形態に係るエッチング方法及び第3実施形態に係る電子部品の製造方法に用いることができる。
 [第5実施形態]
 次に、第5実施形態に係るエッチング液について説明する。第5実施形態に係るエッチング液は、窒化シリコンのエッチングに用いるエッチング液である。第5実施形態に係るエッチング液は、リン酸と、リン酸の第1酸解離指数pKa1よりも小さい酸解離指数を有する酸と、ケイフッ化水素酸と、水とを含む。
 第5実施形態に係るエッチング液を用いると、高い窒化シリコンのエッチングレート、高い選択比、及び酸化シリコンの析出の抑制においてバランスのとれたエッチング処理を実現することができる。
 ケイフッ化水素酸(H2SiF6)の一部は、下記式(A1)に示すように、水(H2O)と反応して、フッ化水素(HF)とケイ酸(Si(OH)4)とに分解される。なお、この反応は、可逆反応である。
   H2SiF6 + 4H2O ⇔ 6HF + Si(OH)4   (A1)
 このフッ化水素は、窒化シリコン(Si34)に対する強力なエッチャントとしてはたらき、下記式(A2)に示すように、窒化シリコンを、四フッ化ケイ素(SiF4)とアンモニア(NH3)とに分解する。したがって、フッ化水素を含むエッチング液を用いると、フッ化水素を含まないエッチング液を用いた場合と比較して、窒化シリコンのエッチングレートをより高めることができる。なお、この反応は不可逆反応である。
   Si34 + 12HF → 3SiF4 + 4NH3    (A2)
 一方、フッ化水素は、強力なエッチャントであるため、フッ化水素を含むエッチング液を、窒化シリコンと酸化シリコンとを含む基板の処理に用いた場合、窒化シリコンに加えて、酸化シリコンもエッチングされる。したがって、フッ化水素を含むエッチング液を用いると、選択比が低下する傾向にある。
 ここで、式(A1)に示したように、ケイフッ化水素酸(H2SiF6)は、フッ化水素酸(HF)とともにケイ酸(Si(OH)4)を生成する。ケイ酸(Si(OH)4)は、上述した式(B)で示したように、脱水反応により、酸化シリコン(SiO2)を生じる。この反応は、可逆反応である。したがって、ケイ酸(Si(OH)4)を含むエッチング液を用いると、酸化シリコン(SiO2)がエッチングされにくくなる。
 すなわち、このエッチング液において、ケイフッ化水素酸(H2SiF6)と、酸化シリコン(SiO2)と、ケイ酸(Si(OH)4)とは、下記式(A3)に示す関係にある。
   H2SiF6 ⇔ SiO2 ⇔ Si(OH)4   (A3)
 上記式(A3)に示す左側の矢印に示すように、フッ化水素(HF)と反応してエッチングされた酸化シリコン(SiO2)の一部は、ケイフッ化水素酸(H2SiF6)へと化学変化する。この反応は、可逆反応である。すなわち、エッチング液中のケイフッ化水素酸(H2SiF6)の濃度が高まると、上記式(A3)における左側の可逆反応の平衡が、右方向へと移動する。また、エッチング液中のケイ酸(Si(OH)4)の濃度が高まると、上記式(A3)の右側の可逆反応の平衡が、左方向へと移動する。ケイフッ化水素酸(H2SiF6)を含むエッチング液では、このような平衡移動が生じるため、酸化シリコンのエッチングを抑制することができる。
 更に、第5実施形態に係るエッチング液は、リン酸の第1酸解離指数pKa1よりも小さい酸解離指数を有する酸を含んでいる。この酸は、ケイ酸(Si(OH)4)が重合して、SiOn(OH)4-2nで表される多量体となることを抑制する。この多量体は、エッチング液中で酸化シリコン(SiO2)へと化学変化し、エッチング液中に析出し得る。したがって、リン酸の第1酸解離指数pKa1よりも小さい酸解離指数を有する酸を含むエッチング液を用いると、酸化シリコン(SiO2)の析出を抑制することができる。
 リン酸の第1酸解離指数pKa1よりも小さい酸解離指数を有する酸のうち、硫酸(H2SO4)は、ケイ酸の重合阻害剤としての効果が高い。硫酸が、ケイ酸の重合阻害剤としてはたらくメカニズムについて、図17を参照しながら説明する。図17は、硫酸がケイ酸の重合阻害剤としての機能を説明するための説明図である。図17の右側の式で示したように、硫酸は、プロトン(H+)と硫酸水素イオン(HSO4 -)とに電離する。そして、上述した式(E)に示すように、硫酸水素イオン(HSO4 -)の一部は、プロトン(H+)と硫酸イオン(SO4 -)とに電離する。この硫酸イオン(SO4 -)は、図17に示すように、ケイ酸(Si(OH)4)のヒドロキシル基と水素結合する。これにより、ケイ酸(Si(OH)4)の重合を阻害することができる。
 エッチング液中のケイフッ化水素酸(H2SiF6)の濃度は、窒化シリコンのエッチングレートを高めるという観点からは、0.1質量%以上であることが好ましく、0.15質量%以上であることが好ましく、0.18質量%以上であることが更に好ましい。また、エッチング液中におけるケイフッ化水素酸(H2SiF6)の濃度は、酸化シリコンのエッチングを抑制して選択比を高めるという観点からは、0.71質量%以下であることが好ましく、0.25質量%以下であることが好ましく、0.2質量%以下であることが更に好ましい。
 また、エッチング液におけるリン酸の第1酸解離指数pKa1よりも小さい酸解離指数を有する酸の濃度は、酸化シリコン(SiO2)の析出を抑制するという観点からは、0.70質量%以上であることが好ましく、5.00質量%以上であることが好ましく、10.00質量%以上であることが更に好ましい。
 一方で、この酸の濃度が過剰に高いと、窒化シリコンのエッチングレートが低下する傾向にある。したがって、窒化シリコンのエッチングレートを高めるという観点からは、エッチング液中の酸の濃度は、48.00質量%以下であることが好ましく、30.00質量%以下であることが好ましく、20.00質量%以下であることが更に好ましい。
 また、エッチング液に含まれるリン酸の濃度は、63質量%以上89質量%以下であることが好ましい。リン酸の濃度がこの範囲内にあると、選択比の高さと酸化シリコンの析出の抑制とを両立できる傾向にある。
 また、エッチング液に含まれる水の濃度は、6.00質量%以上11.50質量%以下であることが好ましい。エッチング液に含まれる水の濃度がこの範囲内にあると、エッチング処理中にエッチング液が沸騰しにくくなり、処理効率を高めることができる。エッチング液に含まれる水の濃度は、6.00質量%以上8.00質量%以下であることがより好ましい。
 第5実施形態に係るエッチング液は、リン酸、リン酸の第1酸解離指数pKa1よりも小さい酸解離指数を有する酸、ケイフッ化水素酸及び水に加えて、更にフッ化水素(HF)を含んでいてもよい。ケイフッ化水素酸の分解により生じるフッ化水素(HF)とは別に、あらかじめフッ化水素(HF)をエッチング液に加えておくことにより、窒化シリコンのエッチングレートをより高めることができる。このあらかじめ加えておくフッ化水素の濃度は、0.01質量%以上0.10質量%以下であることが好ましく、0.03質量%以上0.05質量%以下であることがより好ましい。
 また、第5実施形態に係るエッチング液は、ケイフッ化水素酸の代わりに、フッ化水素(HF)とケイ酸化合物とを含んでいてもよい。このようなエッチング液は、ケイフッ化水素酸を含むエッチング液と同様の効果を奏する。
 次に、第5実施形態に係るエッチング液に適用可能なエッチング装置について、図18を参照しながら説明する。図18は、バッチ式エッチング装置の一例を概略的に示す図である。図18に示すバッチ式エッチング装置400は、処理部410と、エッチング液貯留部420と、エッチング液調製部430と、水貯留部440と、酸貯留部450と、添加剤貯留部460と、高濃度リン酸貯留部470と、低濃度リン酸貯留部480と、図示しない制御部とを備えている。ここでは、リン酸の第1酸解離指数pKa1よりも小さい酸解離指数を有する酸として、硫酸を例に挙げて説明する。なお、図18において、矢印の向きは、流体の流れる方向を示している。
 処理部410は、処理基板についてエッチング処理を行う処理槽411と、エッチング液を貯留する貯留槽412と、溢れたエッチング液を回収する回収部413とを備えている。処理槽411は、エッチング液と処理基板SB1とを収容する。貯留槽412は、処理槽411の上層と隣接する領域を取り囲んで、処理槽411から溢れたエッチング液を貯留可能とする貯留部を形成している。回収部413は、貯留槽412の下部とタンクT1とを接続する配管L11を備えている。なお、配管L11は、夾雑物を取り除くためのフィルタを備えていてもよい。
 エッチング液貯留部420は、エッチング液を収容するタンクT1と、エッチング液を加熱し、循環させてエッチング液の温度及び各成分の濃度を検出する循環部421と、エッチング液を処理槽411へと供給する供給部422と、エッチング液を外部へと排出する排出部423とを備えている。
 循環部421は、タンクT1の下部とタンクT1の上部とを接続する配管L12を備えている。配管L12内には、ポンプP1と、温度計付きヒータTH1と、リン酸、ケイフッ化水素酸及び硫酸の濃度を測定可能な濃度計D1と、が備えられている。ポンプP1、濃度計D1、及び温度計付きヒータTH1は、図示しない制御部に接続されている。なお、配管L12は、夾雑物を取り除くためのフィルタを備えていてもよい。
 供給部422は、タンクT1と処理槽411とを接続する配管L13を備えている。配管L13内には、バルブV10と、流量計F1とが備えられている。バルブV10と、流量計F1とは、図示しない制御部に接続されている。
 排出部423は、タンクT1の下部とエッチング装置400の外部とを接続する配管L14を備えている。配管L14内には、バルブV11と、流量計F2と、冷却ユニットCL1とが備えられている。バルブV11、流量計F2、及び冷却ユニットCL1は、図示しない制御部に接続されている。
 エッチング液調製部430は、エッチング液の原料を収容し、エッチング液を調製するタンクT2と、エッチング液を循環させて、エッチング液中の各成分の濃度を検出する循環部431、エッチング液をタンクT1へと供給する供給部432とを備えている。
 循環部431は、タンクT2の下部とタンクT2の上部とを接続する配管L15を備えている。配管L15内には、ポンプP2と、リン酸、ケイフッ化水素酸及び硫酸の濃度計D2とが備えられている。ポンプP2及び濃度計D2は、図示しない制御部に接続されている。
 供給部432は、タンクT2と配管L11とを接続する配管L16が備えられている。配管L16内には、バルブV12と、流量計F3とが備えられている。バルブV12及び流量計F3は、図示しない制御部に接続されている。なお、配管L16は、配管L11の代わりにタンクT1と接続されていてもよい。
 水貯留部440は、水(H2O)を収容するタンクT3と、水をタンクT2へと供給する第1供給部441と、水をタンクT1へと供給する第2供給部442とを備えている。
 第1供給部441は、タンクT3と、タンクT2とを接続する配管L17を備えている。配管L17内には、ポンプP3と、バルブV13と、流量計F4とが備えられている。ポンプP3、バルブV13、及び流量計F4は、図示しない制御部に接続されている。
 第2供給部442は、タンクT3と配管L16とを接続する配管L18を備えている。配管L18内には、ポンプP4と、バルブV14と、流量計F5とが備えられている。ポンプP4、バルブV14及び流量計F5は、図示しない制御部に接続されている。配管L18は、配管L16の代わりに、配管L11に接続されていてもよく、タンクT1に接続されていてもよい。
 酸貯留部450は、硫酸水溶液を収容するタンクT4と、硫酸水溶液をタンクT2へと供給する供給部451とを備えている。硫酸水溶液における硫酸の濃度は、例えば、98質量%である。
 供給部451は、タンクT4と配管L17とを接続する配管L19を備えている。配管L19内には、ポンプP5と、バルブV15と、流量計F6とが備えられている。ポンプP5、バルブV15、及び流量計F6は、図示しない制御部に接続されている。なお、配管L19は、配管L17の代わりにタンクT2に接続されていてもよい。
 添加剤貯留部460は、ケイフッ化水素酸水溶液を収容するタンクT5と、ケイフッ化水素酸水溶液をタンクT2へと供給する供給部461とを備えている。ケイフッ化水素酸水溶液におけるケイフッ化水素酸の濃度は、例えば、40質量%である。なお、タンクT5は、ケイフッ化水素酸の他に、フッ化水素を含んでいてもよい。
 供給部461は、タンクT5と配管L19とを接続する配管L20を備えている。配管L20内には、ポンプP6と、バルブV16と、流量計F7とが備えられている。ポンプP6、バルブV16及び流量計F7は、図示しない制御部に接続されている。配管L20は、配管L19の代わりに、配管L17に接続されていてもよく、タンクT2に接続されていてもよい。
 高濃度リン酸貯留部470は、高濃度リン酸水溶液を収容するタンクT6と、リン酸水溶液を加熱し、循環させることによりリン酸水溶液の濃度を高める循環部471と、高濃度リン酸水溶液をタンクT2に供給する供給部472とを備えている。高濃度リン酸水溶液におけるリン酸の濃度は、例えば、98質量%である。
 循環部471は、タンクT6の下部とタンクT6の上部とを接続する配管L21と、温度計付き冷却ユニットCL2と配管L21とを接続する配管L21aとを備えている。配管L21内には、温度計付きヒータTH2と、リン酸濃度計D3と、ポンプP7とが備えられている。温度計付きヒータTH2、リン酸濃度計D3、及びポンプP7は、図示しない制御部に接続されている。
 供給部472は、タンクT6と配管L20とを接続する配管L22を備えている。配管L22内には、バルブV19と、流量計F10と、温度計付き冷却ユニットCL2と、バルブV17と、流量計F8とが備えられている。バルブV19、流量計F10、温度計付き冷却ユニットCL2、バルブV17、及び流量計F8は、図示しない制御部に接続されている。なお、配管L22は、配管L20の代わりに、配管L19に接続されていてもよく、配管L17に接続されていてもよく、タンクT2に接続されていてもよい。
 低濃度リン酸貯留部480は、低濃度リン酸水溶液を収容するタンクT7と、加熱した低濃度リン酸水溶液をタンクT6へと供給する供給部481とを備えている。低濃度リン酸水溶液におけるリン酸の濃度は、例えば、85質量%である。
 供給部481は、タンクT7とタンクT6とを接続する配管L23を備えている。配管L23内には、ポンプP8と、バルブV18と、流量計F9とが備えられている。ポンプP8、バルブV18、及び流量計F9は、図示しない制御部に接続されている。
 このように構成されたバッチ式エッチング装置400では、制御部の制御により、以下に説明する第1乃至第12動作に沿ってエッチング処理を行う。
 先ず、第1動作として、バルブV18を開き、ポンプP8及び流量計F9を起動する。これにより、タンクT7に収容された低濃度リン酸水溶液の所定量が、タンクT6に供給される。
 次いで、第2動作として、温度計付きヒータTH2、リン酸濃度計D3及びポンプP7を起動する。これにより、タンクT6に供給された低濃度リン酸水溶液は、タンクT6及び配管L21内を循環し、温度計付きヒータTH2により、所定温度まで加熱される。この動作は、リン酸濃度計D3が検知した配管L21内のリン酸濃度が、処置の濃度に達するまで行う。このようにして調製された高濃度リン酸水溶液は、所定の温度及び濃度に維持される。
 次いで、第3動作として、バルブV19及びバルブV17を開き、温度計付き冷却ユニットCL2、流量計F10及び流量計F8を起動する。これにより、タンクT6に収容された高濃度リン酸水溶液の所定量が、温度計付き冷却ユニットCL2により所定の温度まで冷却された後、タンクT2に供給される。ここで、高濃度リン酸水溶液が温度計付き冷却ユニットCL2において所定の温度まで冷却されなかった場合には、高濃度リン酸水溶液は、配管L21aを介して、循環部471へと回収される。これにより、温度計付き冷却ユニットCL2により十分に冷却された高濃度リン酸水溶液のみが、タンクT2へ供給される。
 次いで、第4動作として、バルブV13を開き、ポンプP3及び流量計F4を起動する。これにより、タンクT3に収容された水の所定量が、タンクT2へと供給される。
 次いで、第5動作として、バルブV15を開き、ポンプP5及び流量計F6を起動する。これにより、タンクT4に収容された硫酸水溶液の所定量が、タンクT2へと供給される。
 次いで、第6動作として、バルブV16を開き、ポンプP6及び流量計F7を起動する。これにより、タンクT5に収容されたケイフッ化水素酸水溶液の所定量が、タンクT2へと供給される。
 次いで、第7動作として、ポンプP2及び濃度計D2を起動する。これにより、タンクT2に供給された高濃度リン酸水溶液、水、ケイフッ化水素酸水溶液及び硫酸水溶液が、タンクT2及び配管L15内を循環しながら十分に混合される。また、濃度計D2は、配管L15内を循環する溶液内のリン酸の濃度、硫酸の濃度、及びケイフッ化水素酸の濃度を検出し、その情報を図示しない配線を介して制御部に伝達する。この情報に基づいて、制御部は、高濃度リン酸水溶液、水、硫酸水溶液、及びケイフッ化水素酸水溶液の供給量及び温度の調整を行う。このようにして、エッチング液を調製する。調製されたエッチング液は、所定の温度及び組成に維持される。
 次いで、第8動作として、バルブV12を開き、流量計F3を起動する。これにより、タンクT2に収容されたエッチング液の所定量を、タンクT1へと供給する。
 次いで、第9動作として、ポンプP1、温度計付きヒータTH1、及び濃度計D1を起動する。これにより、タンクT1に供給されたエッチング液は、タンクT1及び配管L2内を循環し、温度計付きヒータTH1により、所定温度まで加熱される。また、濃度計D1は、配管L2内を循環する溶液内のリン酸の濃度、硫酸の濃度、及びケイフッ化水素酸の濃度を検出し、その情報を図示しない配線を介して制御部に伝達する。
 次いで、第10動作として、制御部に伝達された情報に基づいて、バッファー液の調製及び温度の調整を行う。すなわち、高温下において、エッチング液からは、水やフッ化水素などが揮発し得る。これらの濃度低下によるエッチング液の組成変化を防止するために、制御部は、タンクT1に水やバッファー液を供給する。水を供給する場合には、バルブV14を開き、ポンプP4及び流量計F5を起動する。これにより、エッチング液の組成が所定の値となるように、タンクT1に水が供給される。また、バッファー液を供給する場合には、第1乃至第8動作を繰り返し、エッチング液の組成を調整するためのバッファー液を調製して、タンクT1にバッファー液を供給する。これにより、タンクT1中のエッチング液の各成分の組成は、常に所定の値となるように保たれる。この第10動作は、以下に説明する第11動作及び第12動作中においても同様に行われ得る。
 次いで、第11動作として、バルブV10を開き、流量計F1を起動する。これにより、処理槽411へエッチング液を供給する。処理槽411から溢れたエッチング液は、一時的に貯留槽412に蓄えられ、その後、配管L11を介してタンクT1へと回収される。
 次いで、第12動作として、エッチング液が満たされた処理槽411内に、処理基板SB1を浸漬させる。これにより、処理基板中の窒化シリコンを選択的にエッチングすることができる。所定時間経過後に、処理基板SB1を処理槽411内から取り出し、乾燥させる。
 以上説明した第1乃至第12動作をすべて、あるいは、第9乃至第12動作を繰り返すことにより、処理基板を連続的に処理することができる。また、エッチング処理完了後、あるいは、エッチング液中の夾雑物の量が非常に増えた場合には、バルブV11を開き、流量計F2及び冷却ユニットCL1を起動させ、これにより、冷却したエッチング液を装置の外部へと排出する。
 ここでは、エッチング液調製機構を含むエッチング装置を例に挙げて説明したが、エッチング液は、エッチング装置の外部で調整したものを用いてもよい。この場合、酸貯留部450、添加剤貯留部460、高濃度リン酸貯留部470、及び低濃度リン酸貯留部480は省略してもよい。また、エッチング液調製部430を省略してもよい。
 次に、第5実施形態に係るエッチング液に適用可能な他のエッチング装置について、図19を参照しながら説明する。図19は、枚葉式エッチング装置の一例を概略的に示す図である。図19に示す枚葉式エッチング装置500は、処理部410の代わりに、枚葉式処理部510を備えていること以外は、上述したバッチ式エッチング装置400と同様の構成を有している。同一の符号をふった各部については、説明を省略する。
 枚葉式処理部510は、エッチング液及び処理基板SB1を収容する処理槽511と、処理基板SB1上にエッチング液を供給するノズル512と、処理基板を回転させる回転機構と、回収部513とを備えている。なお、図19において、回転機構は省略している。ノズル512は、配管L11の端部に接続されている。回収部513は、処理槽511の下部とタンクT1とを接続する配管L24を備えている。なお、配管L24は、夾雑物を取り除くためのフィルタを備えていてもよい。
 次に、この枚葉式エッチング装置500を用いた処理基板SB1のエッチング処理について、図19を参照しながら説明する。
 先ず、上述したのと同様に、第1乃至第10動作を行う。
 次いで、第11動作として、処理槽511内の回転機構に、処理基板SB1を設置する。次いで、回転機構を動作させ、処理基板SB1を所定の速さで回転させる。
 次いで、第12動作として、バルブV10を開き、流量計F1を起動する。これにより、配管L11に接続されたノズル512から、回転する処理基板SB1上にエッチング液を供給する。これにより、処理基板中の窒化シリコンを選択的にエッチングすることができる。所定時間経過後に、処理基板SB1を処理槽511内から取り出し、乾燥させる。処理槽511の下部に溜まったエッチング液は、配管L24を介してタンクT1へと回収される。
 以上説明した第1乃至第12動作をすべて、あるいは、第9乃至第12動作を繰り返すことにより、処理基板を連続的に処理することができる。
 第5実施形態に係るエッチング液は、リン酸、リン酸の第1酸解離指数pKa1よりも小さい酸解離指数を有する酸、ケイフッ化水素酸及び水を含んでいる。したがって、第5実施形態に係るエッチング液を用いると、高い窒化シリコンのエッチングレート、高い選択比、及び酸化シリコンの析出の抑制においてバランスのとれたエッチング処理を実現することができる。
 第5実施形態に係るエッチング液は、上述した第2実施形態に係るエッチング方法及び第3実施形態に係る電子部品の製造方法に用いることができる。
 なお、以上説明したエッチング液は、窒化シリコン以外の窒化物のエッチングにも使用され得る。窒化シリコン以外の窒化物は、例えば、窒化ガリウム(GaN)、窒化アルミニウムガリウム(AlGaN)、又は窒化インジウムアルミニウムガリウム(InGaAlN)である。すなわち、以上説明したエッチング液は、窒化物半導体を含むパワーデバイス製造用のエッチング液としても用いることができる。
 以下、本発明の実施例について説明する。
 <例1>
 先ず、図11に示す処理対象基板を準備した。この処理対象基板は、基板と、酸化シリコンからなる凸部と、窒化シリコンからなる凸部とを備えていた。酸化シリコンからなる凸部と、窒化シリコンとからなる凸部とは、基板の両面上に設けられ、基板の主面に対して垂直方向に延びていた。そして、酸化シリコンからなる凸部と、窒化シリコンからなる凸部とは、基板の主面と平行方向に沿って交互に並んでいた。
 次いで、図14に示すエッチング処理装置を用いて、この処理対象基板についてエッチング処理を行った。エッチング液の温度は、155℃とした。このエッチング処理に用いたエッチング液において、硫酸の濃度は0.58質量%であり、ケイ素の濃度は0ppmであり、リン酸の濃度は84.49質量%であり、水の濃度は14.03質量%であった。なお、エッチング液の調製に際しては、85質量%リン酸水溶液と、96質量%硫酸水溶液とを用いた。
 <例2乃至例49>
 表1乃至表3に示す組成となるようにエッチング液を調製したこと以外は、例1に記載したのと同様の方法でエッチング処理を行った。 
 例1乃至例49のエッチング液における硫酸濃度とケイ素濃度との関係を、図1に示す。
 なお、例2乃至例9、例11乃至例18、例20乃至例25、例27、例29、例30、及び例32乃至例49において、ケイ酸化合物源としては、窒化シリコンを用いた。また、例47においては、エッチング液の原料として、硫酸水溶液を用いる代わりに、1.18質量%塩酸水溶液を用いた。また、例48及び例49では、水和数が3.5以下の1価のカチオンを含む塩として、塩化ナトリウムを用いた。
 <例A乃至例F>
 先ず、図11に示す処理対象基板を準備した。次いで、表4に示す組成となるようにエッチング液を調製した。なお、例A乃至例Eにおいて、ケイ酸化合物源としては、窒化シリコンを用いた。また、エッチング液の原料としては、94.18質量%リン酸水溶液を用いた。この94.18質量%リン酸水溶液は、85質量%リン酸水溶液を加熱処理することにより調製した。次いで、エッチング処理装置を用いて、処理対象基板についてエッチング処理を行った。エッチング液の温度は、156℃とした。
 <エッチングレートの測定>
 例1乃至例49並びに例A乃至例Eで得られたエッチング処理後の基板について、電子顕微鏡で確認することにより、窒化シリコン及び酸化シリコンのエッチング量を測定した。ここで、エッチング量とは、基板の両面上に設けられた窒化シリコンの凸部及び酸化シリコンの凸部における、基板の主面に対して垂直な方向の厚さの減少量を意味している。
 次いで、単位時間当たりの窒化シリコン及び酸化シリコンのエッチング量から、窒化シリコンのエッチングレートERSiN及び酸化シリコンのエッチングレートERSiOを算出した。なお、一部の例では、酸化シリコンのエッチングレートERSiOの符号が負であった。この負の符号を有する酸化シリコンのエッチングレートERSiOは、単位時間当たりの酸化シリコンの析出量を意味していると考えられる。
 次いで、窒化シリコンのエッチングレートERSiNと酸化シリコンのエッチングレートERSiOとの比を求め、選択比ERSiN/ERSiOを算出した。なお、酸化シリコンのエッチングレートERSiOの符号が負である例では、この選択比の符号は負であった。ここで、選択比が高い又は低いとは、選択比の絶対値が高い又は低いことを意味している。
 この結果を、表1及び表2に示す。
 <析出レベルの評価>
 例1乃至例49並びに例A乃至例Fで得られたエッチング処理後の基板について、電子顕微鏡で確認することにより、酸化シリコンの析出レベルを評価した。この評価においては、エッチング処理後の基板の主面と平行方向における酸化シリコンの凸部の先端部の幅W1と、エッチング処理前の基板の主面と平行方向における酸化シリコンの凸部の先端部の幅W0との比W1/W0が、0.8より小さい、すなわち、サイドエッチング量が多かった状態を析出レベル1とした。
 また、比W1/W0が、0.8より大きく、1.05以下の範囲内にあるときを析出レベル2とした。また、比W1/W0が、1.05より大きく、1.2以下の範囲内にあるときを析出レベル3とした。また、比W1/W0が、1.2より大きく、2以下の範囲内にあるときを析出レベル4とした。また、比W1/W0が、2以上であり、かつ、図13に示す溝Tが、析出物201により完全に閉塞した状態にあるときを析出レベル5とした。
 なお、先端部の幅W1とは、酸化シリコンの凸部に析出が見られた場合、エッチング処理前の基板の主面と平行方向における酸化シリコンの凸部の先端部の幅W0に、図13に示す析出物201の幅Xを加えたものである。
  この結果を、表1乃至表4に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 上記表1乃至表4において、「エッチング液」という見出しの下方の列のうち、「酸」と表記した列には、リン酸の第1酸解離指数pKa1よりも小さい酸解離指数を有する酸の種類を記載している。「酸濃度(質量%)」、「ケイ素濃度(ppm)」、「リン酸濃度(質量%)」、「水濃度(質量%)」、及び「塩濃度(mol/L)」と表記した列には、それぞれ、エッチング液における、リン酸の第1酸解離指数pKa1よりも小さい酸解離指数を有する酸の濃度、ケイ素の濃度、リン酸の濃度、水の濃度、及び塩化ナトリウムの濃度を記載している。「リン酸質量/酸質量」と表記した列には、エッチング液における、リン酸の質量と、リン酸の第1酸解離指数pKa1よりも小さい酸解離指数を有する酸の質量との比を記載している。
 また、上記表1、表2及び表4において、「評価結果」という見出しの下方の列のうち、「ERSiN(nm/min)」及び「ERSiO(nm/min)」と表記した列には、それぞれ、窒化シリコン及び酸化シリコンのエッチングレートを記載している。「選択比(ERSiN/ERSiO)」と表記した列には、窒化シリコンのエッチングレートと酸化シリコンのエッチングレートとの比を記載している。また、「析出レベル」と表記した列には、上述した酸化シリコンの析出レベルの評価結果を記載している。
 表1及び表2に示すとおり、リン酸と、リン酸の第1酸解離指数pKa1よりも小さい酸解離指数pKを有する酸と、ケイ酸化合物と、水とを含み、リン酸の質量M1と酸の質量M2との比M1/M2は、0.82以上725以下の範囲内にあるエッチング液を用いると、リン酸の第1酸解離指数pKa1よりも小さい酸解離指数を有する酸、又はケイ酸化合物を含まないエッチング液を用いた場合と比較して、高い選択比を実現することができた。
 ここで、上述した式(1)及び式(2)は、それぞれ、これらの実験データについてJMP解析を行うことにより算出したものである。式(1)に係る寄与率R2は、0.8901であった。また、式(2)に係る寄与率R2は、0.8656であった。
 式(1)において、Xの値が、0.58の逆数であるとき、Yの値は、およそ29.39である。表1及び図1に示すとおり、エッチング液におけるリン酸の第1酸解離指数pKa1よりも小さい酸解離指数pKを有する酸の濃度が0.58質量%であり、ケイ素濃度が29.39ppm以上である例3乃至例9に係る選択比は、それぞれ、ケイ素濃度が29.39ppmよりも小さい例1及び例2に係る選択比よりも高かった。
 式(1)において、Xの値が、1.45の逆数であるとき、Yの値は、およそ24.62である。表1及び図1に示すとおり、エッチング液における酸の濃度が1.45質量%であり、ケイ素濃度が24.62ppm以上である例11乃至例18に係る選択比は、それぞれ、ケイ素濃度が24.62ppmよりも低い例10に係る選択比よりも高かった。
 式(1)において、Xの値が、2.9の逆数であるとき、Yの値は、およそ23.21である。表2及び図1に示すとおり、エッチング液における酸の濃度が2.9質量%であり、ケイ素濃度が23.21ppm以上である例32に係る選択比は、ケイ素濃度が23.21ppmよりも低い例31に係る選択比よりも高かった。
 式(2)において、Xの値が、5.78の逆数であるとき、Yの値は、およそ17.44である。表2及び図1に示すとおり、エッチング液における酸の濃度が5.78質量%であり、ケイ素濃度が17.44ppm以上である例29及び例30に係る選択比は、それぞれ、ケイ素濃度が17.44ppmよりも低い例28に係る選択比よりも高かった。
 式(2)において、Xの値が、17.17の逆数であるとき、Yの値は、およそ10.22である。表1、表2及び図1に示すとおり、エッチング液における酸の濃度が17.17質量%であり、ケイ素濃度が10.22ppm以上である例21乃至例25、例48及び例49に係る選択比は、それぞれ、ケイ素濃度が10.22ppmよりも低い例19に係る選択比よりも高かった。また、ケイ素濃度が13.5ppm以上である例22、例23、例25及び例49に係る選択比は、それぞれ、ケイ素濃度が13.5ppmよりも低い例19乃至例21、例24及び例48に係る選択比よりも高かった。
 また、上述した式(3)及び(4)は、これらの実験データについてJMP解析を行うことにより算出したものである。式(3)に係る寄与率R2は、1であった。また、式(4)に係る寄与率R2は、0.9988であった。
 式(3)において、Xの値が、0.58の逆数であるとき、Yの値は、およそ63.91である。表1及び図1に示すとおり、エッチング液におけるリン酸の第1酸解離指数pKa1よりも小さい酸解離指数pKを有する酸の濃度が0.58質量%であり、ケイ素濃度が5ppm以上63.91ppm以下の範囲内にある例2乃至例8に係る析出レベルは、それぞれ、2又は3であり、酸化シリコンの析出はほぼ見られなかった。なお、ケイ素濃度が63.91ppmよりも高い例9に係る析出量は、例2乃至例8に係る析出量よりも多かった。
 式(4)において、Xの値が、1.45の逆数であるとき、Yの値は、およそ59.22である。表1及び図1に示すとおり、エッチング液における酸の濃度が1.45質量%であり、ケイ素濃度が5ppm以上59.22ppm以下の範囲内にある例11乃至例18に係る析出レベルは、それぞれ、2又は3であり、酸化シリコンの析出はほぼ見られなかった。
 式(4)において、Xの値が、2.9の逆数であるとき、Yの値は、およそ46.67である。表2及び図1に示すとおり、エッチング液における酸の濃度が2.9質量%であり、ケイ素濃度が5ppm以上46.67ppm以下の範囲内にある例32に係る析出レベルは、3であり、酸化シリコンの析出はほぼ見られなかった。
 式(4)において、Xの値が、5.78の逆数であるとき、Yの値は、およそ34.18である。表2及び図1に示すとおり、エッチング液における酸の濃度が5.78質量%であり、ケイ素濃度が5ppm以上34.18ppm以下の範囲内にある例29に係る析出レベルは、2であり、酸化シリコンの析出はほぼ見られなかった。
 式(4)において、Xの値が、17.17の逆数であるとき、Yの値は、およそ14.46である。表1、表2及び図1に示すとおり、エッチング液における酸の濃度が17.17質量%であり、ケイ素濃度が5ppm以上14.46ppm以下の範囲内にある例20、例21及び例24に係る析出レベルは、それぞれ、2であり、酸化シリコンの析出はほぼ見られなかった。
 なお、ここでは詳細なデータは示さないが、表3に示す例33乃至例45において、式(1)を満たす例33乃至例36及び例40乃至例43、並びに、式(2)を満たす例37乃至例39及び例44に係る選択比は、それぞれ、式(2)を満たさない例45に係る選択比よりも高かった。
 また、表3に示す例33乃至例45において、式(3)を満たす例33、例34、例40及び例41、並びに、式(4)を満たす例35乃至例37、例39、及び例42乃至例45に係る析出レベルは、それぞれ、式(4)を満たさない例38に係る析出レベルよりも低かった。
 また、表4に示すとおり、リン酸と、リン酸の第1酸解離指数pKa1よりも小さい酸解離指数pKを有する酸と、ケイ酸化合物と、水とを含み、リン酸の質量M1と酸の質量M2との比M1/M2は、0.82以上725以下の範囲内にあり、水の濃度が5質量%以下のエッチング液を用いることにより、高い選択比を実現することができた。
 また、エッチング液のケイ素濃度が、55ppm以上である例B乃至例Eに係る選択比は、ケイ素濃度が55ppmより低い例A及び例Fに係る選択比よりも高かった。
 更に、エッチング液のケイ素濃度が、55ppm以上115ppm以下の範囲内にある例B乃至例Dに係る析出レベルは2であり、酸化シリコンの析出はほぼ見られなかった。これに対して、エッチング液のケイ素濃度が115ppmよりも高い例Eに係る析出レベルは4であり、酸化シリコンの析出が見られた。
 <例100乃至例121>
 先ず、図11に示す処理対象基板を準備した。処理基板としては、例1乃至例49に係るエッチング処理で用いたものと比較して、基板の主面と平行方向の窒化シリコンの幅、及び、基板の主面と平行方向の酸化シリコンの幅が小さいこと以外は同様のものを用いた。
 次いで、表5に示す組成となるようにエッチング液を調製した。なお、エッチング液の調製の際には、98質量%リン酸水溶液と、98質量%硫酸水溶液とを用いた。また、ケイ酸化合物源としては、窒化シリコンを用いた。
 次いで、エッチング処理装置を用いて、処理対象基板についてエッチング処理を行った。エッチング液の温度は、160℃とした。
 <エッチングレートの測定>
 例100乃至例121で得られたエッチング処理後の基板について、電子顕微鏡で確認することにより、窒化シリコン及び酸化シリコンのエッチング量を測定した。ここで、エッチング量とは、基板の両面上に設けられた窒化シリコンの凸部及び酸化シリコンの凸部における、基板の主面に対して垂直な方向の厚さの減少量を意味している。
 次いで、単位時間当たりの窒化シリコン及び酸化シリコンのエッチング量から、窒化シリコンのエッチングレートERSiN及び酸化シリコンのエッチングレートERSiOを算出した。なお、一部の例では、酸化シリコンのエッチングレートERSiOの符号が負であった。この負の符号を有する酸化シリコンのエッチングレートERSiOは、単位時間当たりの酸化シリコンの析出量を意味していると考えられる。
 次いで、窒化シリコンのエッチングレートERSiNと酸化シリコンのエッチングレートERSiOとの比を求め、選択比ERSiN/ERSiOを算出した。なお、酸化シリコンのエッチングレートERSiOの符号が負である例では、この選択比の符号は負であった。ここで、選択比が高い又は低いとは、選択比の絶対値が高い又は低いことを意味している。 
 この結果を、表5に示す。
 <析出レベルの評価>
 例100乃至例121で得られたエッチング処理後の基板について、電子顕微鏡で確認することにより、酸化シリコンの析出レベルを評価した。この評価においては、エッチング処理後の基板の主面と平行方向における酸化シリコンの凸部の先端部の幅W1と、エッチング処理前の基板の主面と平行方向における酸化シリコンの凸部の先端部の幅W0との比W1/W0が、0.8より小さい、すなわち、サイドエッチング量が多かった状態を析出レベル0とした。
 また、比W1/W0が、0.8より大きく、0.9以下の範囲内にあるときを析出レベル1とした。また、比W1/W0が、0.9より大きく、0.97以下の範囲内にあるときを析出レベル1.9とした。また、比W1/W0が、0.97より大きく、1.05以下の範囲内にあるときを析出レベル2とした。また、比W1/W0が、1.05より大きく、1.1以下の範囲内にあるときを析出レベル2.1とした。また、比W1/W0が、1.1より大きく、1.3以下の範囲内にあるときを析出レベル2.5とした。また、比W1/W0が、1.7より大きく、2以下の範囲内にあるときを析出レベル4.5とした。また、比W1/W0が、2以上であり、かつ、図13に示す溝Tが、析出物201により完全に閉塞した状態にあるときを析出レベル5とした。
 なお、先端部の幅W1とは、酸化シリコンの凸部に析出が見られた場合、エッチング処理前の基板の主面と平行方向における酸化シリコンの凸部の先端部の幅W0に、図13に示す析出物201の幅Xを加えたものである。 
 この結果を、表5に示す。
Figure JPOXMLDOC01-appb-T000008
 上記表5において、「エッチング液」という見出しの下方の列のうち、「酸」と表記した列には、リン酸の第1酸解離指数pKa1よりも小さい酸解離指数を有する酸の種類を記載している。「酸濃度(質量%)」、「ケイ素濃度(ppm)」、「リン酸濃度(質量%)」、及び「水濃度(質量%)」と表記した列には、それぞれ、エッチング液における、リン酸の第1酸解離指数pKa1よりも小さい酸解離指数を有する酸の濃度、ケイ素の濃度、リン酸の濃度、及び水の濃度を記載している。「リン酸質量/酸質量」と表記した列には、エッチング液における、リン酸の質量と、リン酸の第1酸解離指数pKa1よりも小さい酸解離指数を有する酸の質量との比を記載している。
 また、上記表5において、「評価結果」という見出しの下方の列のうち、「ERSiN(nm/min)」及び「ERSiO(nm/min)」と表記した列には、それぞれ、窒化シリコン及び酸化シリコンのエッチングレートを記載している。「選択比(ERSiN/ERSiO)」と表記した列には、窒化シリコンのエッチングレートと酸化シリコンのエッチングレートとの比を記載している。また、「析出レベル」と表記した列には、上述した酸化シリコンの析出レベルの評価結果を記載している。
 表5に示すように、リン酸と、リン酸の第1酸解離指数pKa1よりも小さい酸解離指数を有する酸と、ケイ酸化合物と、水とを含み、酸の濃度が、1質量%以上5質量%以下であり、水の濃度は4質量%以上11質量%以下であるエッチング液を用いた例100乃至例121に係る窒化シリコンのエッチングレート、選択比、及び析出レベルは、何れも、酸の濃度が5質量%より高く、水の濃度が5質量%より低い例120及び例121に係る窒化シリコンのエッチングレート、選択比、及び析出レベルよりも優れていた。
 ここで、上述した式(10)乃至式(40)は、それぞれ、表5に示す実験データより算出したものである。式(10)に係る寄与率R2は、0.975であった。また、式(20)に係る寄与率R2は、0.9926であった。また、式(30)に係る寄与率R2は、0.9785であった。また、式(40)に係る寄与率R2は、0.9926であった。ケイ素の濃度がY10ppm以上Y20ppm以下の範囲内にあり、かつ、Y30ppm以上Y40ppm以下の範囲内にあるエッチング液を用いた例101乃至例105、例108乃至例111、及び、例113乃至例116は、析出レベルが1.9以上2.5以下であり、所望の形状の基板を得ることができた。
 <例200乃至例202>
 先ず、基材として、一辺を2.5cmとする正方形状の単結晶シリコン板を準備した。。次いで、この基材上に、酸化シリコン膜を形成し、更にその上に窒化シリコン膜を形成して、処理基板を得た。なお、酸化シリコンの膜厚は0.1μmであり、窒化シリコンの膜厚は0.4μm~0.5μmであった。
 次いで、98質量%リン酸水溶液と、40質量%ケイフッ化水素酸水溶液(和光純薬工業社製)と、98質量%硫酸水溶液と、水とを、ガラスビーカ内で混合することにより、表11に示す組成となるようにエッチング液を調製した。なお、98質量%リン酸水溶液は、85質量%リン酸水溶液を加熱することにより作製した。また、ガラスビーカとしては、内壁がテトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)によりコーティングされたものを用いた。
 次いで、このビーカにカバーと還流冷却管とを取り付けた後、マントルヒータースターラーを用いて、100rpmの速さでエッチング液を撹拌しながらビーカを加熱した。次いで、エッチング液の温度が所定の温度に達した後、エッチング液中に処理基板を浸漬させ、100rpmの速度でエッチング液を12分間にわたって撹拌して、エッチング処理を行った。次いで、エッチング液中から処理基板を取り出し、この処理基板を純水で1分間にわたって洗浄し、その後、この処理基板に窒素(N2)ガスを吹き付けることにより、処理基板を乾燥させた。
 <例300乃至例312>
 エッチング液の組成及びエッチング処理温度を表12に示すものに変更したこと以外は、例200乃至例202に記載したのと同様の方法で、エッチング処理を行った。
 <例400乃至例404>
 エッチング液の組成及びエッチング処理温度を表13に示すものに変更したこと以外は、例200乃至例202に記載したのと同様の方法で、エッチング処理を行った。なお、HFとしては、49質量%フッ化水素水溶液を用いた。
 <例500乃至例504>
 エッチング液の組成及びエッチング処理温度を表14に示すものに変更したこと以外は、例400乃至例404に記載したのと同様の方法で、エッチング処理を行った。
 <エッチングレートの測定>
 例200乃至例202、例300乃至例312、例400乃至例404、及び例500乃至例504で得られたエッチング処理前の基板及び処理後の基板について、窒化シリコンの膜厚と酸化シリコンの膜厚とを、分光エリプソメータ(J.A.Woollam社製 M-2000)を用いて測定した。測定は9か所で行い、得られた平均値を処理時間で割ることにより、窒化シリコンのエッチングレートERSiN及び酸化シリコンのエッチングレートERSiOを算出した。
 次いで、窒化シリコンのエッチングレートERSiNと酸化シリコンのエッチングレートERSiOとの比を求め、選択比ERSiN/ERSiOを算出した。この結果を、表11乃至表14に示す。
 <析出度の評価>
 例200乃至例202、例300乃至例312、例400乃至例404、及び例500乃至例504について、析出度を評価した。具体的には、エッチング処理後のエッチング液中に析出した白色状の物質の量を、目視で確認した。この際、析出量が少ない又は無かったものを析出度1とし、やや析出したものを析出度2として、析出量が多かったものを析出度3とした。この結果を、表11乃至表14に示す。
 <総合評価>
 例200乃至例202、例300乃至例312、例400乃至例404、及び例500乃至例504について、窒化シリコンのエッチングレートERSiNが15.00nm/min以上であること、選択比が15以上であること、及び析出度が1又は2であることの3つの要件のうち、すべての要件を満たすものを総合評価A、2つの要件を満たすものを総合評価B、1つの要件を満たすもの及びすべての要件を満たさないものを総合評価Cとした。この結果を、表11乃至14に示す。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 上記表11乃至表14において、「エッチング液」という見出しの下方の列のうち、「H3PO4(mass%)」、「H2SO4(mass%)」、「H2SiF6(mass%)」、「HF(mass%)」、「H2O(mass%)」と表記した列には、それぞれ、エッチング液における、リン酸の濃度、硫酸の濃度、ケイフッ化水素酸の濃度、フッ化水素の濃度、及び水の濃度を記載している。また、「温度(℃)」と表記した列には、エッチング処理の温度を記載している。
 また、上記表11乃至表14において、「評価結果」という見出しの下方の列のうち、「ERSiN(nm/min)」及び「ERSiO(nm/min)」と表記した列には、それぞれ、窒化シリコン及び酸化シリコンのエッチングレートを記載している。「選択比(ERSiN/ERSiO)」と表記した列には、窒化シリコンのエッチングレートと酸化シリコンのエッチングレートとの比を記載している。また、「析出度」と表記した列には、上述した酸化シリコンの析出度の評価結果を記載している。また、「総合評価」と表記した列には、上述した総合評価結果を記載している。
 表11に示すように、リン酸の第1酸解離指数pKa1よりも小さい酸解離指数を有する酸を含まないエッチング液を用いた例200乃至例202は、何れも析出度が高く、総合評価がCであり、バランスのとれたエッチング処理を実現することができなかった。また、ケイフッ化水素酸の濃度が低い例200では、選択比は高いが、窒化シリコンのエッチングレートが低かった。また、ケイフッ化水素酸の濃度が高い例201及び例202では、窒化シリコンのエッチングレートが高かったが、選択比が低かった。
 表12に示すように、リン酸と、リン酸の第1酸解離指数pKa1よりも小さい酸解離指数を有する酸と、ケイフッ化水素酸と、水とを含むエッチング液を用いた例300乃至例312は、総合評価がA又はBであり、バランスのとれたエッチング処理を実現することができた。特に、硫酸の濃度が5質量%以上15質量%以下であり、ケイフッ化水素酸の濃度が0.15質量%以上0.20質量%以下であるエッチング液を用いた例304及び例305は、総合評価がAであり、高い窒化シリコンのエッチングレート、高い選択比、及び酸化シリコンの析出の抑制を実現できた。
 表13に示すように、リン酸と、リン酸の第1酸解離指数pKa1よりも小さい酸解離指数を有する酸と、ケイフッ化水素酸と、水とを含むエッチング液に、更にフッ化水素を加えたエッチング液を用いた例400乃至例404は、総合評価がA又はBであり、バランスのとれたエッチング処理を実現することができた。特に、硫酸濃度が5質量%以上であり、ケイフッ化水素酸の濃度が0.15質量%以上であり、フッ化水素の濃度が0.05質量%以上であるエッチング液を用いた例401及び402は、総合評価がAであり、高い窒化シリコンのエッチングレート、高い選択比、及び酸化シリコンの析出の抑制を実現できた。
 表14に示すように、ケイフッ化水素酸を含まないエッチング液を用いた例500乃至例504は、何れも総合評価がCであり、バランスのとれたエッチング処理を実現することができなかった。例500乃至例504では、ケイフッ化水素酸を含まないため、ケイ酸が生成されにくく、酸化シリコンの析出は生じなかったが、窒化シリコンのエッチングレートは向上しなかった。また、フッ化水素を用いたため、酸化シリコンのエッチングレートが高まり、選択比が非常に低かった。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。

Claims (28)

  1.  窒化シリコンのエッチングに用いるエッチング液であって、リン酸と、リン酸の第1酸解離指数pKa1よりも小さい酸解離指数を有する酸と、ケイ酸化合物と、水とを含み、
     前記リン酸の質量M1と、前記酸の質量M2との比M1/M2は、0.82以上725以下の範囲内にあるエッチング液。
  2.  ケイ素濃度は、5ppm以上98ppm以下の範囲内にある請求項1に記載のエッチング液。
  3.  ケイ素濃度は、前記酸の濃度が0.11質量%以上2.9質量%以下の範囲内にある場合、Y1ppm以上であり、
     前記酸の濃度が2.9質量%より高く28.33質量%以下の範囲内にある場合、Y2ppm以上であり、
     前記酸の濃度が28.33質量%より高く48.3質量%以下の範囲内にある場合、5ppm以上であり、
     前記Y1は、前記酸の濃度の値の逆数Xと、下記式(1)とから導かれ、前記Y2は、前記酸の濃度の値の逆数Xと、下記式(2)とから導かれる5ppm以上の値である請求項1又は2に記載のエッチング液。
       Y1=21.876×e0.1712x   式(1)
       Y2=6.6356×loge(X)+29.083   式(2)
  4.  ケイ素濃度は、前記酸の濃度が0.11質量%以上0.58質量%以下の範囲内にある場合、5ppm以上Y3ppm以下の範囲内にあり、
     前記酸の濃度が0.58質量%より高く28.33質量%以下の範囲内にある場合、5ppm以上Y4ppm以下の範囲内にあり、
     前記Y3は、前記酸の濃度の値の逆数Xと、下記式(3)とから導かれ、前記Y4は、前記酸の濃度の値の逆数Xと、下記式(4)とから導かれる請求項1又は2に記載のエッチング液。
       Y3=18.958×loge(X)+53.583   式(3)
       Y4=18.111×loge(X)+65.953   式(4)
  5.  ケイ素濃度は、前記酸の濃度が0.11質量%以上0.58質量%以下の範囲内にある場合、前記Y1ppm以上前記Y3ppm以下の範囲内にあり、
     前記酸の濃度が0.58質量%より高く2.9質量%以下の範囲内にある場合、前記Y1ppm以上前記Y4ppm以下の範囲内にあり、
     前記酸の濃度が2.9質量%より高く28.33質量%以下の範囲内にある場合、前記Y2ppm以上前記Y4ppm以下の範囲内にある請求項4に記載のエッチング液。
  6.  水濃度は、12質量%以下である請求項1乃至5の何れか1項に記載のエッチング液。
  7.  前記ケイ酸化合物は、下記一般式(I)で表される構造を基本単位とする単量体又は多量体を含み、nは1以上5以下の範囲内の整数である請求項1乃至6の何れか1項に記載のエッチング液。
    Figure JPOXMLDOC01-appb-C000001
  8.  水和数が3.5以下である1価のカチオンを含む塩を更に含む請求項1乃至7の何れか1項に記載のエッチング液。
  9.  前記塩の濃度は、0.05mol/L以上2mol/L以下の範囲内にある請求項8に記載のエッチング液。
  10.  請求項1乃至9の何れか1項に記載のエッチング液を用いて、窒化シリコンのエッチングを行うことを含むエッチング方法。
  11.  請求項1乃至9の何れか1項に記載のエッチング液を用いて、窒化シリコンのエッチングを行うことを含む電子部品の製造方法。
  12.  窒化シリコン膜と酸化シリコン膜とが設けられた基板から、請求項10に記載のエッチング方法により、前記窒化シリコン膜をエッチングする工程と、
     前記窒化シリコン膜が除去された部分の少なくとも一部に、導電性材料を堆積させる工程とを含む電子部品の製造方法。
  13.  窒化シリコンのエッチングに用いるエッチング液であって、リン酸と、リン酸の第1酸解離指数pKa1よりも小さい酸解離指数を有する酸と、ケイ酸化合物と、水とを含み、
     前記リン酸の濃度は88質量%以上95%質量%以下であり、前記酸の濃度は、1質量%以上5質量%以下であり、前記水の濃度は4質量%以上11質量%以下であるエッチング液。
  14.  ケイ素濃度は、40ppm以上160ppm以下である請求項13に記載のエッチング液。
  15.  ケイ素濃度は、40ppm以上100ppm以下である請求項13又は14に記載のエッチング液。
  16.  前記酸の濃度は4.0質量%以下である請求項13乃至15の何れか1項に記載のエッチング液。
  17.  前記水の濃度は、6.0質量%以上9.0質量%以下である請求項13乃至16の何れか1項に記載のエッチング液。
  18.  請求項13乃至17の何れか1項に記載のエッチング液を用いて、窒化シリコンのエッチングを行うことを含むエッチング方法。
  19.  請求項13乃至17の何れか1項に記載のエッチング液を用いて、窒化シリコンのエッチングを行うことを含む電子部品の製造方法。
  20.  窒化シリコン膜と酸化シリコン膜とが設けられた基板から、請求項18に記載のエッチング方法により、前記窒化シリコン膜をエッチングする工程と、
     前記窒化シリコン膜が除去された部分の少なくとも一部に、導電性材料を堆積させる工程とを含む電子部品の製造方法。
  21.  窒化シリコンのエッチングに用いるエッチング液であって、リン酸と、リン酸の第1酸解離指数pKa1よりも小さい酸解離指数を有する酸と、ケイフッ化水素酸と、水とを含むエッチング液。
  22.  前記酸の濃度は、5質量%以上30質量%以下である請求項21に記載のエッチング液。
  23.  前記ケイフッ化水素酸の濃度は、0.1質量%以上0.2質量%以下である請求項21又は22に記載のエッチング液。
  24.  前記リン酸の濃度は、63質量%以上89質量%以下である請求項21乃至23の何れか1項に記載のエッチング液。
  25.  フッ化水素を更に含む請求項21乃至24の何れか1項に記載のエッチング液。
  26.  請求項21乃至25の何れか1項に記載のエッチング液を用いて、窒化シリコンのエッチングを行うことを含むエッチング方法。
  27.  請求項21乃至25の何れか1項に記載のエッチング液を用いて、窒化シリコンのエッチングを行うことを含む電子部品の製造方法。
  28.  窒化シリコン膜と酸化シリコン膜とが設けられた基板から、請求項26に記載のエッチング方法により、前記窒化シリコン膜をエッチングする工程と、
     前記窒化シリコン膜が除去された部分の少なくとも一部に、導電性材料を堆積させる工程とを含む電子部品の製造方法。
PCT/JP2018/009795 2017-03-15 2018-03-13 エッチング液、エッチング方法、及び電子部品の製造方法 WO2018168874A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019506057A JP6864077B2 (ja) 2017-03-15 2018-03-13 エッチング液、エッチング方法、及び電子部品の製造方法
KR1020197000609A KR102237769B1 (ko) 2017-03-15 2018-03-13 에칭액, 에칭 방법, 및 전자 부품의 제조 방법
CN201880002785.2A CN109478509B (zh) 2017-03-15 2018-03-13 蚀刻液、蚀刻方法及电子部件的制造方法
US16/294,508 US10957553B2 (en) 2017-03-15 2019-03-06 Etching solution, etching method, and method for manufacturing an electronic component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-050306 2017-03-15
JP2017050306 2017-03-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/294,508 Continuation US10957553B2 (en) 2017-03-15 2019-03-06 Etching solution, etching method, and method for manufacturing an electronic component

Publications (1)

Publication Number Publication Date
WO2018168874A1 true WO2018168874A1 (ja) 2018-09-20

Family

ID=63522206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009795 WO2018168874A1 (ja) 2017-03-15 2018-03-13 エッチング液、エッチング方法、及び電子部品の製造方法

Country Status (6)

Country Link
US (1) US10957553B2 (ja)
JP (2) JP6864077B2 (ja)
KR (1) KR102237769B1 (ja)
CN (1) CN109478509B (ja)
TW (1) TWI661033B (ja)
WO (1) WO2018168874A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019067810A (ja) * 2017-09-28 2019-04-25 東京エレクトロン株式会社 基板処理装置および基板処理方法
JP2020031182A (ja) * 2018-08-24 2020-02-27 株式会社東芝 測定器、エッチングシステム、シリコン濃度測定方法、及びシリコン濃度測定プログラム
JP2020096058A (ja) * 2018-12-12 2020-06-18 東京エレクトロン株式会社 基板処理装置および処理液濃縮方法
JP2020155768A (ja) * 2019-03-15 2020-09-24 東京エレクトロン株式会社 基板処理装置、混合方法および基板処理方法
JP2020161626A (ja) * 2019-03-26 2020-10-01 株式会社東芝 エッチング液、添加剤及びエッチング方法
JP2021044593A (ja) * 2020-12-22 2021-03-18 東京エレクトロン株式会社 混合装置、混合方法および基板処理システム
JP2021067532A (ja) * 2019-10-21 2021-04-30 住友金属鉱山株式会社 Cod測定装置
KR20220012376A (ko) * 2018-09-21 2022-02-03 세메스 주식회사 식각 조성물 및 이를 제조하는 방법 및 이를 이용한 기판 처리 방법
US11724235B2 (en) 2019-03-13 2023-08-15 Tokyo Electron Limited Mixing apparatus, mixing method and substrate processing system
WO2024006723A1 (en) 2022-06-30 2024-01-04 The Procter & Gamble Company Absorbent articles and methods and apparatuses for making absorbent articles with frangible pathways

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210016656A (ko) * 2019-08-05 2021-02-17 오씨아이 주식회사 실리콘 질화막 식각 용액 및 이를 사용한 반도체 소자의 제조 방법
KR20210033155A (ko) * 2019-09-18 2021-03-26 오씨아이 주식회사 실리콘 질화막 식각 용액 및 이를 사용한 반도체 소자의 제조 방법
CN110878208A (zh) * 2019-11-08 2020-03-13 湖北兴福电子材料有限公司 一种提高氮化硅蚀刻均匀性的酸性蚀刻液
CN110804441A (zh) * 2019-11-08 2020-02-18 湖北兴福电子材料有限公司 一种抑制二氧化硅蚀刻的磷酸蚀刻液
JP2023168669A (ja) * 2022-05-16 2023-11-29 関東化学株式会社 窒化ケイ素エッチング液組成物

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008311436A (ja) * 2007-06-14 2008-12-25 Tosoh Corp エッチング用組成物及びエッチング方法
JP2009021538A (ja) * 2007-01-12 2009-01-29 Tosoh Corp エッチング用組成物及びエッチング方法
US20170062231A1 (en) * 2015-08-27 2017-03-02 Kabushiki Kaisha Toshiba Substrate treatment apparatus, substrate treatment method, and etchant

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5885903A (en) * 1997-01-22 1999-03-23 Micron Technology, Inc. Process for selectively etching silicon nitride in the presence of silicon oxide
JP2007517413A (ja) 2003-12-30 2007-06-28 アクリオン・エルエルシー 基板処理中の窒化ケイ素の選択エッチングのための装置及び方法
TW200616071A (en) * 2004-11-05 2006-05-16 Mitsubishi Chem Corp Etchant and method of etching
US20070207622A1 (en) * 2006-02-23 2007-09-06 Micron Technology, Inc. Highly selective doped oxide etchant
JP5003057B2 (ja) * 2006-08-21 2012-08-15 東ソー株式会社 エッチング用組成物及びエッチング方法
JP4799332B2 (ja) * 2006-09-12 2011-10-26 株式会社東芝 エッチング液、エッチング方法および電子部品の製造方法
TW200849371A (en) * 2007-02-28 2008-12-16 Tosoh Corp Etching method and etching composition useful for the method
KR20080079999A (ko) * 2007-02-28 2008-09-02 토소가부시키가이샤 에칭 방법 및 그것에 이용되는 에칭용 조성물
CN101807572A (zh) * 2010-02-25 2010-08-18 友达光电股份有限公司 刻蚀液、主动组件阵列基板及其制作方法
JP2014099480A (ja) * 2012-11-13 2014-05-29 Fujifilm Corp 半導体基板のエッチング方法及び半導体素子の製造方法
JP6580397B2 (ja) * 2014-07-17 2019-09-25 ソウルブレイン シーオー., エルティーディー. エッチング用組成物及びこれを用いた半導体素子の製造方法
KR20160050536A (ko) * 2014-10-30 2016-05-11 램테크놀러지 주식회사 질화막 식각 조성물 및 이를 이용한 반도체 장치의 제조 방법
JP6446003B2 (ja) * 2015-08-27 2018-12-26 東芝メモリ株式会社 基板処理装置、基板処理方法およびエッチング液

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009021538A (ja) * 2007-01-12 2009-01-29 Tosoh Corp エッチング用組成物及びエッチング方法
JP2008311436A (ja) * 2007-06-14 2008-12-25 Tosoh Corp エッチング用組成物及びエッチング方法
US20170062231A1 (en) * 2015-08-27 2017-03-02 Kabushiki Kaisha Toshiba Substrate treatment apparatus, substrate treatment method, and etchant

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019067810A (ja) * 2017-09-28 2019-04-25 東京エレクトロン株式会社 基板処理装置および基板処理方法
JP2020031182A (ja) * 2018-08-24 2020-02-27 株式会社東芝 測定器、エッチングシステム、シリコン濃度測定方法、及びシリコン濃度測定プログラム
KR20220012376A (ko) * 2018-09-21 2022-02-03 세메스 주식회사 식각 조성물 및 이를 제조하는 방법 및 이를 이용한 기판 처리 방법
KR102485975B1 (ko) * 2018-09-21 2023-01-11 세메스 주식회사 식각 조성물 및 이를 제조하는 방법 및 이를 이용한 기판 처리 방법
US11615971B2 (en) 2018-12-12 2023-03-28 Tokyo Electron Limited Substrate processing apparatus and processing liquid concentration method
JP7190892B2 (ja) 2018-12-12 2022-12-16 東京エレクトロン株式会社 基板処理装置および処理液濃縮方法
JP2020096058A (ja) * 2018-12-12 2020-06-18 東京エレクトロン株式会社 基板処理装置および処理液濃縮方法
US11724235B2 (en) 2019-03-13 2023-08-15 Tokyo Electron Limited Mixing apparatus, mixing method and substrate processing system
JP2021052214A (ja) * 2019-03-15 2021-04-01 東京エレクトロン株式会社 基板処理装置、混合方法および基板処理方法
JP7105937B2 (ja) 2019-03-15 2022-07-25 東京エレクトロン株式会社 基板処理装置および基板処理方法
JP2020155768A (ja) * 2019-03-15 2020-09-24 東京エレクトロン株式会社 基板処理装置、混合方法および基板処理方法
JP2020161626A (ja) * 2019-03-26 2020-10-01 株式会社東芝 エッチング液、添加剤及びエッチング方法
JP7246990B2 (ja) 2019-03-26 2023-03-28 株式会社東芝 エッチング液、及びエッチング方法
JP2021067532A (ja) * 2019-10-21 2021-04-30 住友金属鉱山株式会社 Cod測定装置
JP7303493B2 (ja) 2019-10-21 2023-07-05 住友金属鉱山株式会社 Cod測定装置
JP2021044593A (ja) * 2020-12-22 2021-03-18 東京エレクトロン株式会社 混合装置、混合方法および基板処理システム
WO2024006723A1 (en) 2022-06-30 2024-01-04 The Procter & Gamble Company Absorbent articles and methods and apparatuses for making absorbent articles with frangible pathways

Also Published As

Publication number Publication date
US10957553B2 (en) 2021-03-23
CN109478509A (zh) 2019-03-15
JP2021101492A (ja) 2021-07-08
US20190198344A1 (en) 2019-06-27
JPWO2018168874A1 (ja) 2019-04-25
JP6864077B2 (ja) 2021-04-21
TW201839100A (zh) 2018-11-01
KR20190016091A (ko) 2019-02-15
TWI661033B (zh) 2019-06-01
KR102237769B1 (ko) 2021-04-09
CN109478509B (zh) 2024-01-12

Similar Documents

Publication Publication Date Title
WO2018168874A1 (ja) エッチング液、エッチング方法、及び電子部品の製造方法
US7973388B2 (en) Semiconductor structures including square cuts in single crystal silicon
TWI359453B (ja)
CN102934207B (zh) 保护膜形成用化学溶液
Seo et al. Selective wet etching of Si3N4/SiO2 in phosphoric acid with the addition of fluoride and silicic compounds
JPWO2009044647A1 (ja) シリコンエッチング液およびエッチング方法
JP2019075546A (ja) 半導体デバイスの製造中に窒化チタンに対して窒化タンタルを選択的に除去するためのエッチング液
CN108513679A (zh) 用于具有SiN层和Si层的基板的湿蚀刻组合物和使用其的湿蚀刻方法
CN104039925B (zh) 蚀刻溶液组合物和使用该蚀刻溶液组合物的湿蚀刻方法
KR101992224B1 (ko) 실리콘 에칭액 및 에칭방법 그리고 미소전기기계소자
CN108538814A (zh) 金属绝缘体金属元件的制造方法
KR102395594B1 (ko) 에칭액, 첨가제 및 에칭 방법
Cho et al. Development of high selectivity phosphoric acid and its application to flash STI pattern
CN105070683B (zh) 一种硅穿孔结构的绝缘层底部开窗制造方法和硅穿孔结构
WO2023223936A1 (ja) 窒化ケイ素エッチング液組成物
Son et al. Chemical modification of subcritical water for the dissolution of Si3N4 layer in the fabrication of microelectronic devices
WO2022025161A1 (ja) シリコンエッチング液、並びに該エッチング液を用いたシリコンデバイスの製造方法およびシリコン基板の処理方法
WO2022138754A1 (ja) シリコンエッチング液、該エッチング液を用いたシリコンデバイスの製造方法および基板処理方法
JP2009105306A (ja) シリコンエッチング液およびエッチング方法
CN107564849A (zh) 半导体器件的制造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019506057

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18766873

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197000609

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18766873

Country of ref document: EP

Kind code of ref document: A1