WO2018147053A1 - 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板 - Google Patents

樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板 Download PDF

Info

Publication number
WO2018147053A1
WO2018147053A1 PCT/JP2018/001678 JP2018001678W WO2018147053A1 WO 2018147053 A1 WO2018147053 A1 WO 2018147053A1 JP 2018001678 W JP2018001678 W JP 2018001678W WO 2018147053 A1 WO2018147053 A1 WO 2018147053A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
resin composition
group
mass
parts
Prior art date
Application number
PCT/JP2018/001678
Other languages
English (en)
French (fr)
Inventor
宜洋 中住
健太郎 高野
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to US16/097,413 priority Critical patent/US11098195B2/en
Priority to CN201880001349.3A priority patent/CN108779330B/zh
Priority to EP18751779.2A priority patent/EP3581621B1/en
Priority to JP2018524293A priority patent/JP6519965B2/ja
Priority to KR1020187027065A priority patent/KR102115720B1/ko
Publication of WO2018147053A1 publication Critical patent/WO2018147053A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/082Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising vinyl resins; comprising acrylic resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/42Layered products comprising a layer of synthetic resin comprising condensation resins of aldehydes, e.g. with phenols, ureas or melamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4014Nitrogen containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4014Nitrogen containing compounds
    • C08G59/4028Isocyanates; Thioisocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4014Nitrogen containing compounds
    • C08G59/4042Imines; Imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5046Amines heterocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/686Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0622Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0638Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with at least three nitrogen atoms in the ring
    • C08G73/065Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/29Compounds containing one or more carbon-to-nitrogen double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3415Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • C08L61/14Modified phenol-aldehyde condensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/748Releasability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/12Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/24Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2325/00Polymers of vinyl-aromatic compounds, e.g. polystyrene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2361/00Phenoplast, aminoplast
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2363/00Epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2371/00Polyethers, e.g. PEEK, i.e. polyether-etherketone; PEK, i.e. polyetherketone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2386/00Specific polymers obtained by polycondensation or polyaddition not provided for in a single one of index codes B32B2363/00 - B32B2383/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/13Morphological aspects
    • C08G2261/135Cross-linked structures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/342Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3424Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing only carbon atoms non-conjugated, e.g. paracyclophanes or xylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/45Friedel-Crafts-type
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/70Post-treatment
    • C08G2261/76Post-treatment crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2463/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/315Compounds containing carbon-to-nitrogen triple bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/206Applications use in electrical or conductive gadgets use in coating or encapsulating of electronic parts

Definitions

  • the present invention relates to a resin composition, a prepreg, a metal foil-clad laminate, a resin sheet, and a printed wiring board.
  • Thermosetting resins such as epoxy resins used for printed wiring board insulation layers themselves have low thermal conductivity. Therefore, in order to improve thermal conductivity as a printed wiring board, a method of highly filling an inorganic filler excellent in thermal conductivity into a thermosetting resin is known.
  • the inorganic filler is highly filled in the thermosetting resin composition, the volume ratio of the thermosetting resin is decreased, the moldability is deteriorated, and cracks and voids are easily generated between the resin and the inorganic filler. Therefore, there is a problem that the moisture absorption heat resistance is deteriorated, the elastic modulus is lowered, the adhesion between the resin and the inorganic filler is insufficient, and the copper foil peel strength is lowered. In view of such a problem, it has been proposed to use various resin compositions.
  • Patent Document 1 a resin composition containing a naphthol aralkyl-type cyanate ester resin and an epoxy resin, in which a resin composition containing a specific amount of an inorganic filler has excellent heat resistance, thermal conductivity and It describes that it exhibits water absorption.
  • Patent Document 2 a resin composition containing a cyanate ester compound and an epoxy resin, in which a resin composition containing two kinds of inorganic fillers having different particle diameters has good moldability, and It describes that it exhibits high heat dissipation characteristics, high glass transition temperature, copper foil peel strength, and moisture absorption heat resistance.
  • Patent Document 3 a resin composition containing an epoxy resin and a curing agent, wherein a resin composition containing borate particles coated with hexagonal boron nitride as an inorganic filler has a high glass transition temperature.
  • a resin composition containing borate particles coated with hexagonal boron nitride as an inorganic filler has a high glass transition temperature.
  • Patent Documents 1 to 3 show some improvement in physical properties such as thermal conductivity and copper foil peel strength, these physical properties still have room for improvement.
  • a resin composition having sufficient thermal conductivity and exhibiting excellent peel strength and moisture absorption heat resistance has not been obtained.
  • the present invention has been made in view of the above problems, and has a resin composition, a prepreg, a metal foil-clad laminate, a resin that has sufficient heat conductivity and can exhibit excellent peel strength and moisture absorption heat resistance.
  • An object is to provide a sheet and a printed wiring board.
  • the present inventors diligently studied to solve the above problems. As a result, in the resin composition containing the cyanate ester compound (A), maleimide compound (B) and / or epoxy resin (C), the average aspect ratio of the hexagonal boron nitride primary particles is adjusted to a specific range. It has been found that the above problems can be achieved by blending a filler, and the present invention has been completed.
  • the cyanate ester compound (A) is a phenol novolac cyanate ester compound, a naphthol aralkyl cyanate ester compound represented by the following formula (A-1), and a biphenyl represented by the following formula (A-2).
  • the resin composition according to [1] containing at least one selected from the group consisting of aralkyl-type cyanate compounds.
  • each R1 independently represents a hydrogen atom or a methyl group, and n1 represents an integer of 1 to 50.
  • each R3 independently represents a hydrogen atom or a methyl group, and n3 represents an integer of 1 to 50.
  • the maleimide compound (B) is 2,2′-bis ⁇ 4- (4-maleimidophenoxy) -phenyl ⁇ propane, bis (3-ethyl-5-methyl-4-maleimidophenyl) methane,
  • the maleimide compound represented by 1) and at least one selected from the group consisting of a maleimide compound represented by the following formula (B-2), according to any one of [1] to [3] Resin composition.
  • each R 5 independently represents a hydrogen atom or a methyl group, and n 1 represents an integer of 1 or more.
  • a plurality of R's independently represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms or a phenyl group, n is an average value, and 1 ⁇ n ⁇ 5 Represents.
  • [5] The resin composition according to any one of [1] to [4], wherein the content of the maleimide compound (B) is 10 to 90 parts by mass with respect to 100 parts by mass of the resin solid content in the resin composition. object.
  • the epoxy resin (C) contains at least one selected from the group consisting of a biphenyl aralkyl type epoxy resin, a naphthylene ether type epoxy resin, a polyfunctional phenol type epoxy resin and a naphthalene type epoxy resin.
  • a resin composition a prepreg, a metal foil-clad laminate, a resin sheet, and a printed wiring board that have sufficient thermal conductivity and can exhibit excellent peel strength and moisture absorption heat resistance. it can.
  • the present embodiment a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail.
  • the present invention is not limited to this, and various modifications can be made without departing from the gist thereof. Is possible.
  • the resin composition of the present embodiment comprises a cyanate ester compound (A), a maleimide compound (B) and / or an epoxy resin (C), and hexagonal boron nitride primary particles (D) having an average aspect ratio of 4 to 10. ) And. Since it is comprised in this way, the resin composition of this embodiment can express the outstanding peel strength and moisture absorption heat resistance while having sufficient thermal conductivity.
  • each component which comprises the resin composition of this embodiment is demonstrated.
  • the resin composition of the present embodiment includes a cyanate ester compound (A).
  • the cyanate ester compound (A) is not particularly limited as long as it is a resin having in its molecule an aromatic moiety substituted with at least one cyanate group (cyanate ester group).
  • Examples of the cyanate ester compound (A) include those represented by the following formula (1).
  • Ar 1 represents a single bond of a benzene ring, a naphthalene ring or two benzene rings, and when there are a plurality of them, they may be the same or different.
  • Each Ra is independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, an alkoxyl group having 1 to 4 carbon atoms, an alkyl group having 1 to 6 carbon atoms, and 6 to 12 carbon atoms. Represents a group bonded to the aryl group.
  • the aromatic ring in Ra may have a substituent, and the substituent in Ar 1 and Ra can be selected at any position.
  • p represents the number of cyanato groups bonded to Ar 1 , and each independently represents an integer of 1 to 3.
  • q represents the number of Ra bonded to Ar 1, and 4-p when Ar 1 is a benzene ring, 6-p when Ar 1 is a naphthalene ring, and 8-p when two benzene rings are a single bond. is there.
  • t represents an average number of repetitions and is in the range of 0 to 50.
  • the cyanate ester compound (A) may be a mixture of compounds having different t.
  • a divalent organic group having 1 to 50 carbon atoms (a hydrogen atom may be substituted with a hetero atom), a divalent group having 1 to 10 nitrogen atoms.
  • An organic group eg, —N—R—N— (where R represents an organic group)
  • a carbonyl group (—CO—), a carboxy group (—C ( ⁇ O) O—), a carbonyl dioxide group ( —OC ( ⁇ O) O—), a sulfonyl group (—SO 2 —), a divalent sulfur atom, or a divalent oxygen atom.
  • the alkyl group in Ra in the formula (1) may have any of a linear or branched chain structure and a cyclic structure (for example, a cycloalkyl group).
  • the hydrogen atom in the alkyl group in formula (1) and the aryl group in Ra may be substituted with a halogen atom such as a fluorine atom or a chlorine atom, an alkoxyl group such as a methoxy group or a phenoxy group, or a cyano group.
  • a halogen atom such as a fluorine atom or a chlorine atom
  • an alkoxyl group such as a methoxy group or a phenoxy group
  • a cyano group cyano group.
  • alkyl group examples include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, 1-ethylpropyl group, 2,2-dimethylpropyl group.
  • aryl group examples include phenyl group, xylyl group, mesityl group, naphthyl group, phenoxyphenyl group, ethylphenyl group, o-, m- or p-fluorophenyl group, dichlorophenyl group, dicyanophenyl group, trifluorophenyl. Group, methoxyphenyl group, and o-, m- or p-tolyl group.
  • alkoxyl group examples include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, an n-butoxy group, an isobutoxy group, and a tert-butoxy group.
  • divalent organic group having 1 to 50 carbon atoms in X in the formula (1) include a methylene group, an ethylene group, a trimethylene group, a cyclopentylene group, a cyclohexylene group, a trimethylcyclohexylene group, and a biphenylylmethylene group.
  • a methylene group an ethylene group, a trimethylene group, a cyclopentylene group, a cyclohexylene group, a trimethylcyclohexylene group, and a biphenylylmethylene group.
  • the hydrogen atom in the divalent organic group may be substituted with a halogen atom such as a fluorine atom or a chlorine atom, an alkoxyl group such as a methoxy group or a phenoxy group, a cyano group, or the like.
  • a halogen atom such as a fluorine atom or a chlorine atom
  • an alkoxyl group such as a methoxy group or a phenoxy group, a cyano group, or the like.
  • Examples of the divalent organic group having 1 to 10 nitrogen atoms in X in the formula (1) include an imino group and a polyimide group.
  • examples of the organic group of X in the formula (1) include those having a structure represented by the following formula (2) or the following formula (3).
  • Ar 2 represents a benzenetetrayl group, a naphthalenetetrayl group or a biphenyltetrayl group, and when u is 2 or more, they may be the same or different.
  • Rb, Rc, Rf, and Rg each independently have at least one hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, a trifluoromethyl group, or a phenolic hydroxy group. An aryl group is shown.
  • Rd and Re are each independently selected from any one of a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, an alkoxyl group having 1 to 4 carbon atoms, and a hydroxy group.
  • the u represents an integer of 0 to 5.
  • Ar 3 represents a benzenetetrayl group, a naphthalenetetrayl group, or a biphenyltetrayl group, and when v is 2 or more, they may be the same as or different from each other.
  • Ri and Rj are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, a benzyl group, an alkoxyl group having 1 to 4 carbon atoms, a hydroxy group, a trifluoromethyl group, Alternatively, it represents an aryl group substituted with at least one cyanato group.
  • v represents an integer of 0 to 5, but may be a mixture of compounds having different v.
  • examples of X in the formula (1) include a divalent group represented by the following formula.
  • Rk each independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • Rb, Rc, Rd, Re, Rf and Rg in the formula (2), and an alkyl group and an aryl group in Ri and Rj in the formula (3) have the same meanings as those in the above formula (1).
  • cyanato-substituted aromatic compound represented by the above formula (1) examples include cyanatobenzene, 1-cyanato-2-, 1-cyanato-3-, or 1-cyanato-4-methylbenzene, Cyanato-2-, 1-cyanato-3-, or 1-cyanato-4-methoxybenzene, 1-cyanato-2,3-, 1-cyanato-2,4-, 1-cyanato-2,5-, 1 -Cyanato-2,6-, 1-cyanato-3,4- or 1-cyanato-3,5-dimethylbenzene, cyanatoethylbenzene, cyanatobutylbenzene, cyanatooctylbenzene, cyanatononylbenzene, 2- ( 4-cyanaphenyl) -2-phenylpropane (cyanate of 4- ⁇ -cumylphenol), 1-cyanato-4-cyclohexylbenzene, 1-cyanato-4-vinylbenzene 1-cyanato
  • phenol novolak resin and cresol novolak resin phenol, alkyl-substituted phenol or halogen-substituted phenol, formalin, paraformaldehyde, etc.
  • Formaldehyde compound reacted in acidic solution trisphenol novolak resin (reacted hydroxybenzaldehyde and phenol in the presence of acidic catalyst), fluorene novolak resin (fluorenone compound and 9,9-bis) (hydroxyaryl) fluorenes those reacted in the presence of an acid catalyst), phenol aralkyl resins, cresol aralkyl resin, a naphthol aralkyl resin and a biphenyl aralkyl resin (a known method, Ar 4 - (CH Y) 2 (Ar 4 represents a phenyl group, Y represents a halogen atom.
  • Bishalogenomethyl compounds represented by the phenolic compounds in this paragraph A bis (alkoxymethyl) compound represented by Ar 4 — (CH 2 OR) 2 and a phenol compound in the presence of an acidic catalyst, or Ar 4 — (CH 2 OH) Bis (hydroxymethyl) compound represented by 2 and a phenol compound in the presence of an acidic catalyst, or a polycondensation of an aromatic aldehyde compound, an aralkyl compound and a phenol compound), phenol Modified xylene formaldehyde resin (by known methods, xylene formaldehyde resin and phenolic compound ), Modified naphthalene formaldehyde resin (reacted naphthalene formaldehyde resin and hydroxy-substituted aromatic compound in the presence of an acidic catalyst by a known method), phenol-modified dicyclopentadiene resin, poly Phenols such as phenolic resins having
  • phenol novolac type cyanate ester compound, naphthol aralkyl type cyanate ester compound, biphenyl aralkyl type cyanate ester compound, naphthylene ether type cyanate ester compound, xylene resin type cyanate ester compound, adamantane skeleton type cyanate ester A compound is preferable, and a phenol novolak type cyanate ester compound, a biphenyl aralkyl type cyanate ester compound, and a naphthol aralkyl type cyanate ester compound are more preferable.
  • the cyanate ester compound (A) in this embodiment is a phenol novolak cyanate ester compound, a naphthol aralkyl cyanate ester compound represented by the following formula (A-1), and a formula (A-2) It is particularly preferred to contain at least one selected from the group consisting of biphenylaralkyl-type cyanate compounds represented by the formula:
  • the phenol novolac-type cyanate ester compound is not particularly limited, and a commercially available product can be used. For example, Primaset PT-30 manufactured by Lonza Corporation can be used.
  • each R1 independently represents a hydrogen atom or a methyl group, and n1 represents an integer of 1 to 50.
  • each R3 independently represents a hydrogen atom or a methyl group, and n3 represents an integer of 1 to 50.
  • the cured resin using these cyanate ester compounds (A) has excellent properties such as glass transition temperature (Tg) and plating adhesion.
  • the production method of these cyanate ester compounds (A) is not particularly limited, and a known method can be used. Examples of such production methods include a method of obtaining or synthesizing a hydroxy group-containing compound having a desired skeleton, and modifying the hydroxy group by a known method to form cyanate. Examples of the method for cyanating a hydroxy group include the methods described in Ian Hamerton, “Chemistry and Technology of Cyanate Ester Resins,” “Blackie Academic & Professional”.
  • the content of the cyanate ester compound (A) is preferably 1 to 90 parts by mass, more preferably 5 to 85 parts by mass with respect to 100 parts by mass of the resin solid content, from the viewpoint of desmear resistance and high thermal modulus. More preferably, it is 10 to 80 parts by mass.
  • the “resin solid content” means a component excluding the solvent and the hexagonal boron nitride primary particles (D) in the resin composition of the present embodiment unless otherwise specified.
  • Solid content of 100 parts by mass means that the total of the components excluding the solvent and the hexagonal boron nitride primary particles (D) in the resin composition of the present embodiment is 100 parts by mass.
  • the maleimide compound (B) is an optional component and may not be included, but from the viewpoint of heat resistance, the resin composition of the present embodiment includes the maleimide compound (B). It is preferable.
  • the maleimide compound (B) is not particularly limited as long as it has one or more maleimide groups in the molecule.
  • the maleimide compound (B) is at least selected from the group consisting of bis (3-ethyl-5-methyl-4-maleimidophenyl) methane and a maleimide compound represented by the following formula (B-1). It is more preferable to contain 1 type.
  • each R 5 independently represents a hydrogen atom or a methyl group, preferably a hydrogen atom.
  • n1 represents an integer greater than or equal to 1 , Preferably it is an integer of 10 or less, More preferably, it is an integer of 7 or less.
  • a plurality of R's are each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms (for example, methyl group, ethyl group, n-propyl group, isopropyl group, n- Butyl group, isobutyl group, t-butyl group, n-pentyl group, etc.) or phenyl group.
  • it is preferably a group selected from the group consisting of a hydrogen atom, a methyl group, and a phenyl group, and is one of a hydrogen atom and a methyl group Is more preferred, and a hydrogen atom is even more preferred.
  • n is an average value and represents 1 ⁇ n ⁇ 5. From the viewpoint of further improving solvent solubility, n is preferably 4 or less, more preferably 3 or less, and even more preferably 2 or less.
  • the polymaleimide compound represented by the above formula (B-2) may be prepared by a known method, or a commercially available product may be used. Examples of commercially available products include, but are not limited to, Nippon Kayaku Co., Ltd. product “MIR-3000”.
  • the content of the maleimide compound (B) in this embodiment is preferably 10 to 90 parts by mass, more preferably 5 to 85 parts by mass, and still more preferably 10 to 90 parts by mass with respect to 100 parts by mass of the resin solid content. 80 parts by mass.
  • content of a maleimide compound (B) exists in the said range, it exists in the tendency for the thermal expansion coefficient of the hardened
  • epoxy resin (C) is an optional component and may not be contained, but from the viewpoint of improving the adhesiveness and flexibility, the resin composition of the present embodiment. It is preferable that contains an epoxy resin (C).
  • an epoxy resin if it is an epoxy resin which has two or more epoxy groups in 1 molecule, a well-known thing can be used suitably, The kind is not specifically limited.
  • bisphenol A type epoxy resin bisphenol E type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, bisphenol A novolac type epoxy resin, glycidyl ester type epoxy resin, aralkyl novolak Type epoxy resin, biphenyl aralkyl type epoxy resin, naphthylene ether type epoxy resin, cresol novolac type epoxy resin, polyfunctional phenol type epoxy resin, naphthalene type epoxy resin, anthracene type epoxy resin, naphthalene skeleton modified novolak type epoxy resin, phenol aralkyl Type epoxy resin, naphthol aralkyl type epoxy resin, dicyclopentadiene type epoxy resin, biphenyl type epoxy resin, alicyclic ester Carboxy resin, a polyol type epoxy resins, phosphorus-containing epoxy resin, glycidyl amine, glycidyl ester, compounds of the double bonds epoxidized in butad
  • epoxy resins biphenyl aralkyl type epoxy resins, naphthylene ether type epoxy resins, polyfunctional phenol type epoxy resins, and naphthalene type epoxy resins are preferable in terms of flame retardancy and heat resistance.
  • the above-mentioned preferable epoxy resin can be obtained as a commercial product.
  • “HP6000” polyoxynaphthylene type epoxy resin
  • “EPPN-501HY” trisphenol type epoxy resin) manufactured by Nippon Kayaku Co., Ltd. Is preferred.
  • These epoxy resins can be used alone or in combination of two or more.
  • the epoxy equivalent of the epoxy resin (C) in this embodiment is preferably 250 to 850 g / eq, more preferably 250 to 450 g / eq, from the viewpoint of improving the adhesiveness and flexibility.
  • the said epoxy equivalent can be measured by a conventional method.
  • the content of the epoxy resin (C) in the present embodiment is not particularly limited, but is preferably 1 to 90 parts by mass, more preferably 3 to 80 parts per 100 parts by mass of the resin solid content in the resin composition. Part by mass. When the content of the epoxy resin is within the above range, the adhesiveness and flexibility tend to be excellent.
  • the resin composition of the present embodiment includes a cyanate ester compound (A), a maleimide compound (B) and / or an epoxy resin (C), but has heat resistance, combustion resistance, mechanical properties, and long-term heat resistance. From the viewpoint of chemical resistance and electrical insulation, it is preferable to contain a cyanate ester compound (A), a maleimide compound (B) and an epoxy resin (C).
  • the hexagonal boron nitride primary particles (D) in this embodiment have an average aspect ratio of 4 to 10. Since it is such an average aspect ratio, the resin composition of the present embodiment has sufficient heat conductivity and can exhibit excellent peel strength and moisture absorption heat resistance. From the same viewpoint, the average aspect ratio is preferably 5 to 10. The average aspect ratio can be calculated as an average value of the major axis / minor axis by measuring the length of the major axis and the minor axis for each hexagonal boron nitride primary particle. Specific examples of the hexagonal boron nitride primary particles (D) satisfying the above average aspect ratio include, but are not limited to, “ ⁇ BN-S03” manufactured by Tokuyama Corporation.
  • the particle shape of the hexagonal boron nitride primary particles (D) in the present embodiment is not particularly limited, and examples thereof include flaky shapes, flat shapes, granular shapes, spherical shapes, fibrous shapes, whisker shapes, and the like. Is preferred.
  • the average particle diameter of the hexagonal boron nitride primary particles is not particularly limited, but the median diameter is preferably 0.1 to 50 ⁇ m, more preferably 0.1 to 45 ⁇ m, and further preferably 0.1 to 40 ⁇ m.
  • the median diameter is a value in which the larger side and the smaller side are equal when the particle size distribution of the measured powder is divided into two. More specifically, the particle size distribution of the powder put in a predetermined amount in the aqueous dispersion medium is measured by a wet laser diffraction / scattering type particle size distribution measuring device, and the volume is integrated from small particles to obtain a total volume of 50. The value when% is reached.
  • the average particle size is within the above range, the physical property balance of thermal conductivity, peel strength, and moisture absorption heat resistance tends to be better.
  • the resin composition of this embodiment may contain various known inorganic fillers in addition to the above-described hexagonal boron nitride primary particles (D).
  • Such an inorganic filler is not particularly limited as long as it has insulating properties.
  • silica such as natural silica, fused silica, amorphous silica, and hollow silica, alumina, aluminum nitride, boron nitride (this embodiment) Excluding hexagonal boron nitride primary particles (D) in the form, the same applies hereinafter), boehmite, molybdenum oxide, titanium oxide, silicone rubber, silicone composite powder, zinc borate, zinc stannate, clay, kaolin, talc, calcined clay , Calcined kaolin, calcined talc, mica, short glass fibers (glass fine powders such as E glass and D glass), hollow glass, and spherical glass.
  • silica is preferable from the viewpoint of low thermal expansion
  • alumina, aluminum nitride, and boron nitride are preferable from the viewpoint of high thermal conductivity.
  • a silane coupling agent, a wetting dispersant, and the like are included as components other than the inorganic filler. It can also be used in combination with boron nitride primary particles (D).
  • the silane coupling agent is not particularly limited as long as it is a silane coupling agent generally used for surface treatment of inorganic substances.
  • Specific examples include aminosilane-based silane coupling agents such as ⁇ -aminopropyltriethoxysilane and N- ⁇ - (aminoethyl) - ⁇ -aminopropyltrimethoxysilane; epoxies such as ⁇ -glycidoxypropyltrimethoxysilane.
  • Silane-based silane coupling agents such as ⁇ -acryloxypropyltrimethoxysilane; N- ⁇ - (N-vinylbenzylaminoethyl) - ⁇ -aminopropyltrimethoxysilane hydrochloride, etc.
  • the wetting and dispersing agent is not particularly limited as long as it is a dispersion stabilizer used for paints.
  • DISPERBYK-110 “DISPERBYK-111”, “DISPERBYK-118”, “DISPERBYK-180”, “DISPERBYK-161”, “BYK-W996”, “BYK-W9010”, “BigKemi Japan”
  • Wetting and dispersing agents such as “BYK-W903”. These may be used individually by 1 type and may use 2 or more types together.
  • the total amount of the hexagonal boron nitride primary particles (D) and the inorganic filler in the resin composition of the present embodiment is not particularly limited, but is 50 to 1600 parts by mass with respect to 100 parts by mass of the resin solid content.
  • the amount is preferably 50 to 1500 parts by mass, and more preferably 301 to 700 parts by mass.
  • the total amount of the hexagonal boron nitride primary particles (D) and the inorganic filler is within the above range, it is preferable from the viewpoint of characteristics such as peel strength, moisture absorption heat resistance, low thermal expansion, and high thermal conductivity.
  • the content of the hexagonal boron nitride primary particles (D) in the resin composition of the present embodiment is preferably 50 to 1600 parts by mass with respect to 100 parts by mass of the resin solid content.
  • the amount is more preferably ⁇ 1500 parts by mass, and further preferably 50-700 parts by mass.
  • the resin composition of the present embodiment can contain other components in addition to the components described above as long as the desired characteristics of the present embodiment are not impaired.
  • it may further include one or more selected from the group consisting of oxetane resins, phenol resins, benzoxazine compounds, and compounds having polymerizable unsaturated groups.
  • Specific examples of the cyanate ester compound other than the cyanate ester compound (A) represented by the formula (1) and the cyanate ester compound (A) represented by the formula (2) are not particularly limited, but as described above. The cyanate ester compound is exemplified.
  • the resin composition of the present embodiment tends to be superior in adhesiveness, flexibility, and the like by including the oxetane resin.
  • the oxetane resin generally known oxetane resins can be used, and the kind thereof is not particularly limited.
  • alkyloxetanes such as oxetane, 2-methyloxetane, 2,2-dimethyloxetane, 3-methyloxetane, and 3,3-dimethyloxetane, 3-methyl-3-methoxymethyloxetane, 3,3 ′ -Di (trifluoromethyl) perfluoxetane, 2-chloromethyloxetane, 3,3-bis (chloromethyl) oxetane, biphenyl type oxetane, OXT-101 (trade name, manufactured by Toagosei), OXT-121 (produced by Toagosei) Product name).
  • These oxetane resins can be used alone or in combination of two or more.
  • the content of the oxetane resin is not particularly limited, but is preferably 0 to 99 parts by mass, more preferably 1 to 90 parts by mass, and still more preferably with respect to 100 parts by mass of the resin solid content in the resin composition. Is 3 to 80 parts by mass. When the content of the oxetane resin is within the above range, the adhesiveness and flexibility tend to be excellent.
  • phenol resin When the resin composition of this embodiment contains a phenol resin, it tends to be more excellent in adhesiveness and flexibility.
  • the phenol resin generally known resins can be used as long as they are phenol resins having two or more hydroxy groups in one molecule, and the kind thereof is not particularly limited. Specific examples thereof include bisphenol A type phenol resin, bisphenol E type phenol resin, bisphenol F type phenol resin, bisphenol S type phenol resin, phenol novolac resin, bisphenol A novolac type phenol resin, glycidyl ester type phenol resin, aralkyl novolac type.
  • the content of the phenol resin is not particularly limited, but is preferably 0 to 99 parts by mass, more preferably 1 to 90 parts by mass, and still more preferably with respect to 100 parts by mass of the resin solid content in the resin composition. Is 3 to 80 parts by mass. When the content of the phenol resin is within the above range, the adhesiveness and flexibility tend to be more excellent.
  • the resin composition of the present embodiment tends to be more excellent in flame retardancy, heat resistance, low water absorption, low dielectric constant, and the like.
  • the benzoxazine compound generally known compounds can be used as long as they have two or more dihydrobenzoxazine rings in one molecule, and the kind thereof is not particularly limited. Specific examples include bisphenol A type benzoxazine BA-BXZ (trade name, manufactured by Konishi Chemical) bisphenol F type benzoxazine BF-BXZ (trade name, manufactured by Konishi Chemical), bisphenol S type benzoxazine BS-BXZ (product manufactured by Konishi Chemical). Name). These benzoxazine compounds can be used alone or in combination.
  • the content of the benzoxazine compound is not particularly limited, but is preferably 0 to 99 parts by weight, more preferably 1 to 90 parts by weight with respect to 100 parts by weight of the resin solid content in the resin composition.
  • the amount is preferably 3 to 80 parts by mass.
  • the resin composition of this embodiment contains a compound having a polymerizable unsaturated group, it tends to be superior in heat resistance, toughness, and the like.
  • the compound having a polymerizable unsaturated group generally known compounds can be used, and the kind thereof is not particularly limited.
  • vinyl compounds such as ethylene, propylene, styrene, divinylbenzene and divinylbiphenyl; methyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, polypropylene glycol di ( Mono- or polyhydric alcohol (meth) such as (meth) acrylate, trimethylolpropane di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate Acrylates; Epoxy (meth) acrylates such as bisphenol A type epoxy (meth) acrylate and bisphenol F type epoxy (meth) acrylate; Benzocyclobutene resin; Scan) maleimide resins. These compounds having an unsaturated group can be used alone or in combination.
  • the content of the compound having a polymerizable unsaturated group is not particularly limited, but is preferably 0 to 99 parts by mass, more preferably 1 to 90 parts per 100 parts by mass of the resin solid content in the resin composition. Parts by weight, more preferably 3 to 80 parts by weight. When the content of the polymerizable unsaturated group-containing compound is within the above range, the heat resistance and toughness tend to be superior.
  • the resin composition of the present embodiment further includes a cyanate ester compound, an epoxy resin, an oxetane resin, a polymerization catalyst that catalyzes the polymerization of a compound having a polymerizable unsaturated group, and A curing accelerator for appropriately adjusting the curing rate can be blended.
  • a cyanate ester compound an epoxy resin, an oxetane resin, a polymerization catalyst that catalyzes the polymerization of a compound having a polymerizable unsaturated group
  • a curing accelerator for appropriately adjusting the curing rate can be blended.
  • the polymerization catalyst and / or curing accelerator generally known ones can be used, and the kind thereof is not particularly limited.
  • metal salts such as zinc octylate, zinc naphthenate, cobalt naphthenate, copper naphthenate, and iron acetylacetone
  • organometallic salts such as nickel octylate and manganese octylate
  • phenol, xylenol, cresol, resorcin Phenol compounds such as catechol, octylphenol and nonylphenol
  • alcohols such as 1-butanol and 2-ethylhexanol
  • 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 1-cyanoethyl-2-phenylimidazole Derivatives such as 1-cyanoethyl-2-ethyl-4-methylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole Derivatives of these imidazoles such as
  • catalysts such as Amicure PN-23 (Ajinomoto Fine Techno Co., NovaCure HX-3721 (Asahi Kasei Co., Ltd.), Fujicure FX-1000 (Fuji Kasei Kogyo Co., Ltd.), etc. These polymerization catalysts and / or curing accelerators can be used alone or in combination.
  • the contents of the polymerization catalyst and the curing accelerator can be appropriately adjusted in consideration of the degree of curing of the resin, the viscosity of the resin composition, and the like, and are not particularly limited.
  • the resin solid content in the resin composition is 100 masses.
  • the amount is preferably 0.005 to 10 parts by mass with respect to parts.
  • the resin composition of the present embodiment may include other thermosetting resins, thermoplastic resins and oligomers thereof, various polymer compounds such as elastomers, curing catalysts, curing accelerators, coloring pigments, if necessary.
  • the flame retardant generally known ones can be used, and the kind thereof is not particularly limited. Specific examples thereof include bromine compounds such as 4,4′-dibromobiphenyl; phosphoric acid esters, melamine phosphates, phosphorus-containing epoxy resins, nitrogen compounds such as melamine and benzoguanamine; oxazine ring-containing compounds, silicone compounds, and the like. .
  • the resin composition which concerns on this embodiment can use an organic solvent as needed.
  • the resin composition of this embodiment can be used as an aspect (solution or varnish) in which at least a part, preferably all, of the various resin components described above are dissolved or compatible in an organic solvent.
  • the solvent is not particularly limited as long as it can dissolve or be compatible with at least a part, preferably all of the above-described various resin components.
  • ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone
  • cellosolv solvents such as propylene glycol monomethyl ether and propylene glycol monomethyl ether acetate
  • Ester solvents such as isoamyl, ethyl lactate, methyl methoxypropionate and methyl hydroxyisobutyrate
  • polar solvents such as amides such as dimethylacetamide and dimethylformamide
  • Alcohol solvents aromatic hydrocarbons such as toluene, xylene,
  • the resin composition of this embodiment can be prepared according to a conventional method.
  • a resin that uniformly contains a cyanate ester compound (A), a maleimide compound (B) and / or an epoxy resin (C), primary hexagonal boron nitride particles (D), and other optional components described above The method by which the composition is obtained is preferred.
  • the resin composition of this embodiment can be easily prepared by sequentially blending each component in a solvent and sufficiently stirring.
  • an organic solvent can be used as necessary.
  • the kind of the organic solvent is not particularly limited as long as it can dissolve the resin in the resin composition. Specific examples thereof are as described above.
  • a known process for uniformly dissolving or dispersing each component can be performed.
  • the dispersion with respect to the resin composition can be performed by performing the stirring and dispersing treatment using a stirring tank provided with a stirrer having an appropriate stirring ability.
  • the above stirring, mixing, and kneading treatment can be appropriately performed using, for example, a known device such as a ball mill or a bead mill for mixing, or a revolving or rotating mixing device.
  • the resin composition for printed wiring boards of this embodiment can be used as a constituent material for prepregs, metal foil-clad laminates, printed wiring boards, and semiconductor packages.
  • a prepreg can be obtained by impregnating or applying a solution obtained by dissolving the resin composition for a printed wiring board of the present embodiment in a solvent to a base material and drying.
  • a solution obtained by dissolving the resin composition for printed wiring boards of the present embodiment in a solvent is applied to the plastic film and dried to build a film or dry film
  • a solder resist can be obtained.
  • the solvent can be dried by drying at a temperature of 20 ° C. to 150 ° C. for 1 to 90 minutes.
  • the resin composition for printed wiring boards of the present embodiment can be used in an uncured state by simply drying the solvent, or used in a semi-cured (B-stage) state as necessary. You can also.
  • the prepreg of this embodiment has a base material and the resin composition impregnated or coated on the base material.
  • the manufacturing method of the prepreg of this embodiment will not be specifically limited if it is a method of manufacturing a prepreg combining the resin composition for printed wiring boards of this embodiment, and a base material. Specifically, after impregnating or applying the resin composition for a printed wiring board of the present embodiment to a substrate, it is semi-cured by a method of drying for about 2 to 15 minutes in a dryer at 120 to 220 ° C. Thus, the prepreg of the present embodiment can be manufactured.
  • the adhesion amount of the resin composition to the base material that is, the content of the resin composition with respect to the total amount of the prepreg after semi-curing (including hexagonal boron nitride primary particles (D) and inorganic filler) is 20 to.
  • the range is preferably 99% by mass.
  • a base material used when manufacturing the prepreg of the present embodiment known materials used for various printed wiring board materials may be used.
  • a substrate include glass fibers such as E glass, D glass, L glass, S glass, T glass, Q glass, UN glass, NE glass, and spherical glass, and inorganic fibers other than glass such as quartz, Examples thereof include organic fibers such as polyimide, polyamide, and polyester, and woven fabrics such as liquid crystal polyester, but are not particularly limited thereto.
  • As the shape of the substrate woven fabric, non-woven fabric, roving, chopped strand mat, surfacing mat, and the like are known, and any of these may be used.
  • a base material can be used individually by 1 type or in combination of 2 or more types as appropriate.
  • a woven fabric that has been subjected to ultra-opening treatment or plugging treatment is particularly preferable from the viewpoint of dimensional stability.
  • a glass woven fabric surface-treated with a silane coupling agent such as an epoxy silane treatment or an amino silane treatment is preferable from the viewpoint of moisture absorption heat resistance.
  • a liquid crystal polyester woven fabric is preferable from the viewpoint of electrical characteristics.
  • the thickness of the substrate is not particularly limited, but is preferably in the range of 0.01 to 0.2 mm for use in a laminated board.
  • the metal foil-clad laminate of the present embodiment has at least one or more of the above-described prepregs laminated and a metal foil disposed on one or both sides of the prepreg. Specifically, it is produced by laminating and forming a metal foil such as copper or aluminum on one side or both sides of one prepreg or a plurality of prepregs stacked. be able to.
  • a metal foil such as copper or aluminum on one side or both sides of one prepreg or a plurality of prepregs stacked. be able to.
  • the metal foil used here will not be specifically limited if it is used for printed wiring board material, Copper foils, such as a rolled copper foil and a dip copper foil, are preferable.
  • the thickness of the metal foil is not particularly limited, but is preferably 2 to 70 ⁇ m and more preferably 3 to 35 ⁇ m.
  • a technique used when producing a normal laminated board for printed wiring boards and a multilayer board can be employed.
  • lamination molding is performed under conditions of a temperature of 180 to 350 ° C., a heating time of 100 to 300 minutes, and a surface pressure of 20 to 100 kg / cm 2
  • a multilayer board can also be produced by laminating and molding the above prepreg and a separately produced wiring board for the inner layer.
  • a 35 ⁇ m copper foil is disposed on both surfaces of one prepreg described above, laminated under the above conditions, an inner layer circuit is formed, and blackening treatment is performed on this circuit.
  • this inner layer circuit board and the above prepreg are alternately disposed one by one, and a copper foil is further disposed on the outermost layer, and lamination molding is performed under the above conditions, preferably under vacuum. In this way, a multilayer board can be produced.
  • the metal foil-clad laminate of this embodiment can be suitably used as a printed wiring board by further forming a pattern.
  • the printed wiring board can be manufactured according to a conventional method, and the manufacturing method is not particularly limited.
  • an example of the manufacturing method of a printed wiring board is shown.
  • the metal foil-clad laminate described above is prepared.
  • an inner layer substrate is manufactured by performing an etching process on the surface of the metal foil-clad laminate to form an inner layer circuit.
  • the inner layer circuit surface of the inner layer substrate is subjected to a surface treatment for increasing the adhesive strength as necessary, and then the required number of the prepregs described above are stacked on the inner layer circuit surface.
  • a metal foil for an outer layer circuit is laminated on the outside, and is integrally formed by heating and pressing.
  • a multilayer laminate is produced in which an insulating layer made of a cured product of the base material and the resin composition for printed wiring boards is formed between the inner layer circuit and the outer layer circuit metal foil.
  • a plated metal film is formed on the wall surface of the hole to electrically connect the inner layer circuit and the outer layer metal foil.
  • the printed circuit board is manufactured by performing an etching process on the metal foil for the outer layer circuit to form the outer layer circuit.
  • the resin sheet of the present embodiment refers to a support and the resin composition layer (laminated sheet) disposed on the surface of the support, and only the resin composition layer from which the support is removed (single layer sheet) ).
  • This laminated sheet can be obtained by applying a solution obtained by dissolving the above resin composition in a solvent to a support and drying it.
  • the mold release agent was apply
  • Examples thereof include organic film base materials such as release films and polyimide films, conductive foils such as copper foil and aluminum foil, and plate-like inorganic films such as glass plates, SUS plates, and FRP.
  • a coating method for example, a solution in which the above resin composition is dissolved in a solvent is coated on the support with a bar coater, a die coater, a doctor blade, a baker applicator, etc. Is a method of producing a laminated sheet in which are integrated.
  • seat can also be obtained by peeling or etching a support body from the resin sheet obtained by drying after application
  • a solution obtained by dissolving or dissolving the resin composition for a printed wiring board of the present embodiment in a solvent is supplied into a mold having a sheet-like cavity and dried to form a sheet.
  • a single layer sheet can be obtained without using a support.
  • the drying conditions for removing the solvent are not particularly limited, but it is preferable to dry at a temperature of 20 ° C. to 200 ° C. for 1 to 90 minutes.
  • the temperature is 20 ° C. or higher, the solvent can be prevented from remaining in the resin composition, and when the temperature is 200 ° C. or lower, the progress of curing of the resin composition can be suppressed.
  • the thickness of the resin layer in the resin sheet or single layer sheet of this embodiment can be adjusted with the density
  • Synthesis Example 1 Synthesis of 1-naphthol aralkyl-type cyanate ester resin (SNCN)
  • SNCN 1-naphthol aralkyl-type cyanate ester resin
  • ⁇ -naphthol aralkyl resin SN495V, OH group equivalent: 236 g / eq., Manufactured by Nippon Steel Chemical Co., Ltd.
  • 300 g OH group equivalent 1.28 mol
  • triethylamine 194.6 g (1.92 mol) 1.5 mol with respect to 1 mol of hydroxy group
  • the reaction solution was allowed to stand to separate the organic phase and the aqueous phase.
  • the obtained organic phase was washed 5 times with 1300 g of water, and the electric conductivity of the waste water in the fifth washing was 5 ⁇ S / cm, and it was confirmed that the ionic compounds that could be removed were sufficiently removed by washing with water.
  • the organic phase after washing with water was concentrated under reduced pressure, and finally concentrated to dryness at 90 ° C. for 1 hour to obtain 331 g of the intended naphthol aralkyl-type cyanate ester compound (SNCN) (orange viscous product).
  • SNCN naphthol aralkyl-type cyanate ester compound
  • the obtained SNCN had a mass average molecular weight Mw of 600.
  • the infrared absorption spectrum of SNCN showed an absorption of 2250 cm ⁇ 1 (cyanate group) and no absorption of a hydroxy group.
  • the average aspect ratio was measured based on an image obtained by observing hexagonal boron nitride primary particles. That is, the lengths of the major axis and the minor axis were measured for 50 hexagonal boron nitride primary particles present in a predetermined visual field, and the average value of the major axis / minor axis was calculated.
  • Example 1 30 parts by mass of SNCN (cyanate equivalent: 256 g / eq.) Obtained in Synthesis Example 1 as the cyanate ester compound (A); bis (3-ethyl-5-methyl-4-maleimide) as the maleimide compound (B) 15 parts by mass of phenyl) methane (BMI-70, manufactured by Daiwa Kasei Kogyo Co., Ltd., maleimide equivalent: 221 g / eq.) And 15 parts by mass of novolac-type bismaleimide compound (BMI-2300 manufactured by Yamato Kasei Kogyo Co., Ltd.); epoxy resin As (C), 35.3 parts by mass of a polyoxynaphthylene type epoxy resin (“HP6000” manufactured by DIC, epoxy equivalent: 169 g / eq.) And a trisphenol type epoxy resin (“EPPN-501HY” manufactured by Nippon Kayaku Co., Ltd.) , Epoxy equivalent: 169 g / eq
  • Example 1 As in Example 1, except that 60 parts by mass of “RBN” (average particle size: 2 ⁇ m) manufactured by Nissin Reflatec Co., Ltd. was used as the hexagonal boron nitride primary particles (D) instead of “ ⁇ BN-S03”. A resin varnish was obtained. The average aspect ratio of RBN calculated based on the method described above was 2.5.
  • the resin composition of the present invention has industrial applicability as a material for prepregs, metal foil-clad laminates, laminated resin sheets, resin sheets, printed wiring boards and the like.

Abstract

本発明に係る樹脂組成物は、シアン酸エステル化合物(A)を含む。さらに、本発明に係る樹脂組成物は、マレイミド化合物(B)及び/又はエポキシ樹脂(C)と、平均アスペクト比が4~10である六方晶窒化ホウ素一次粒子(D)と、を含む。

Description

樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板
 本発明は、樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板に関する。
 近年、電気機器あるいは電子機器の回路の高速・高集積化、及び発熱性電子部品のプリント配線板への実装密度の増加に伴って、電子機器内部の発熱密度は年々増加している。そのため、電子部品などにて発生する熱を効率よく放散させる高い熱伝導率と電気絶縁性を有する部材が求められている。
 プリント配線板の絶縁層に用いられるエポキシ樹脂などの熱硬化性樹脂自体は熱伝導率が低い。そこで、プリント配線板として熱伝導率を向上させるため、熱硬化性樹脂に熱伝導性に優れた無機充填材を高充填する方法が知られている。しかし、熱硬化性樹脂組成物に無機充填材を高充填すると、熱硬化性樹脂の体積比率が少なくなり成形性が悪化し、樹脂と無機充填材の間にクラックやボイドが発生しやすくなる。そのため吸湿耐熱特性の悪化や弾性率の低下、さらに樹脂と無機充填材の密着性が不充分となり、銅箔ピール強度が低下するという問題がある。このような問題に鑑み、種々の樹脂組成物を用いることが提案されている。
 例えば、特許文献1においては、ナフトールアラルキル型シアン酸エステル樹脂及びエポキシ樹脂を含む樹脂組成物であって、特定量の無機充填材を配合した樹脂組成物が、優れた耐熱性、熱伝導性及び吸水性を発現することが記載されている。
 また、特許文献2においては、シアン酸エステル化合物及びエポキシ樹脂を含む樹脂組成物であって、粒子径が異なる2種類の無機充填材を配合した樹脂組成物が、成形性が良好でありかつ、高い放熱特性、高いガラス転移温度、銅箔ピール強度、及び吸湿耐熱性を発現することが記載されている。
 さらに、特許文献3においては、エポキシ樹脂及び硬化剤を含む樹脂組成物であって、六方晶窒化ホウ素で被覆されたホウ酸塩粒子を無機充填材として配合した樹脂組成物が、高いガラス転移温度、銅箔ピール強度、吸湿耐熱性、難燃性、低熱膨張率及び高い放熱特性を発現することが記載されている。
国際公開第2011/152402号 国際公開第2013/069479号 国際公開第2012/121224号
 特許文献1~3に記載の樹脂組成物により、熱伝導性や銅箔ピール強度等の物性の改善はある程度みられるものの、これらの物性は未だに改善の余地がある。特に、これらの文献に記載の技術では、十分な熱伝導性を有すると共に、優れたピール強度及び吸湿耐熱性を発現する樹脂組成物は得られていない。
 本発明は、上記問題点に鑑みてなされたものであり、十分な熱伝導性を有すると共に、優れたピール強度及び吸湿耐熱性を発現できる、樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板を提供することを目的とする。
 本発明者らは、上記課題を解決するために鋭意検討した。その結果、シアン酸エステル化合物(A)、マレイミド化合物(B)及び/又はエポキシ樹脂(C)を含む樹脂組成物において、六方晶窒化ホウ素一次粒子の平均アスペクト比が特定の範囲に調整された無機充填材を配合することにより、上記課題が達成できることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下の態様を包含する。
[1]
 シアン酸エステル化合物(A)と、
 マレイミド化合物(B)及び/又はエポキシ樹脂(C)と、
 平均アスペクト比が4~10である六方晶窒化ホウ素一次粒子(D)と、
 を含む、樹脂組成物。
[2]
 前記シアン酸エステル化合物(A)が、フェノールノボラック型シアン酸エステル化合物、下記式(A-1)で表されるナフトールアラルキル型シアン酸エステル化合物、及び下記式(A-2)で表されるビフェニルアラルキル型シアン酸エステル化合物からなる群より選択される少なくとも1種を含有する、[1]に記載の樹脂組成物。
Figure JPOXMLDOC01-appb-C000005
(式中、R1はそれぞれ独立に水素原子又はメチル基を示し、n1は1~50の整数を示す。)
Figure JPOXMLDOC01-appb-C000006
(式中、R3はそれぞれ独立に水素原子又はメチル基を示し、n3は1~50の整数を示す。)
[3]
 前記シアン酸エステル化合物(A)の含有量が、前記樹脂組成物中の樹脂固形分100質量部に対して、1~90質量部である、[1]又は[2]に記載の樹脂組成物。
[4]
 前記マレイミド化合物(B)が、2,2’-ビス{4-(4-マレイミドフェノキシ)-フェニル}プロパン、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン、下記式(B-1)で表されるマレイミド化合物、及び下記式(B-2)で表されるマレイミド化合物からなる群より選択される少なくとも1種を含有する、[1]~[3]のいずれかに記載の樹脂組成物。
Figure JPOXMLDOC01-appb-C000007
(式(B-1)中、Rは、各々独立して、水素原子又はメチル基を表し、nは、1以上の整数を表す。)
Figure JPOXMLDOC01-appb-C000008
(上記式(B-2)中、複数存在するRは、それぞれ独立に、水素原子、炭素数1~5のアルキル基又はフェニル基を表し、nは、平均値であり、1<n≦5を表す。)
[5]
 前記マレイミド化合物(B)の含有量が、前記樹脂組成物中の樹脂固形分100質量部に対して、10~90質量部である、[1]~[4]のいずれかに記載の樹脂組成物。
[6]
 前記エポキシ樹脂(C)のエポキシ当量が、250~850g/eqである、[1]~[5]のいずれかに記載の樹脂組成物。
[7]
 前記エポキシ樹脂(C)が、ビフェニルアラルキル型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、多官能フェノール型エポキシ樹脂及びナフタレン型エポキシ樹脂からなる群より選択される少なくとも1種を含有する、[1]~[6]のいずれかに記載の樹脂組成物。
[8]
 前記エポキシ樹脂(C)の含有量が、前記樹脂組成物中の樹脂固形分100質量部に対して、1~90質量部である、[1]~[7]のいずれかに記載の樹脂組成物。
[9]
 フェノール樹脂、オキセタン樹脂、ベンゾオキサジン化合物、及び重合可能な不飽和基を有する化合物からなる群より選択される少なくとも1種をさらに含有する、[1]~[8]のいずれかに記載の樹脂組成物。
[10]
 前記六方晶窒化ホウ素一次粒子(D)の含有量が、樹脂固形分100質量部に対して、50~1600質量部である、[1]~[9]のいずれかに記載の樹脂組成物。
[11]
 基材と、
 前記基材に含浸又は塗布された、[1]~[10]のいずれかに記載の樹脂組成物と、
 を有する、プリプレグ。
[12]
 少なくとも1枚以上積層された[11]に記載のプリプレグと、
 前記プリプレグの片面又は両面に配された金属箔と、
 を有する、金属箔張積層板。
[13]
 支持体と、
 前記支持体の表面に配された、[1]~[10]のいずれかに記載の樹脂組成物と、
 を有する、樹脂シート。
[14]
 絶縁層と、
 前記絶縁層の表面に形成された導体層と、
 を有し、
 前記絶縁層が、[1]~[10]のいずれかに記載の樹脂組成物を含む、プリント配線板。
 本発明によれば、十分な熱伝導性を有すると共に、優れたピール強度及び吸湿耐熱性を発現できる、樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板を提供することができる。
 以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明するが、本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で様々な変形が可能である。
[樹脂組成物]
 本実施形態の樹脂組成物は、シアン酸エステル化合物(A)と、マレイミド化合物(B)及び/又はエポキシ樹脂(C)と、平均アスペクト比が4~10である六方晶窒化ホウ素一次粒子(D)と、を含む。このように構成されているため、本実施形態の樹脂組成物は、十分な熱伝導性を有すると共に、優れたピール強度及び吸湿耐熱性を発現できる。以下、本実施形態の樹脂組成物を構成する各成分について説明する。
(シアン酸エステル化合物(A))
 熱伝導性、ピール強度及び吸湿耐熱性の観点から、本実施形態の樹脂組成物は、シアン酸エステル化合物(A)を含む。シアン酸エステル化合物(A)としては、シアナト基(シアン酸エステル基)で少なくとも1個置換された芳香族部分を分子内に有する樹脂であれば特に限定されない。
 かかるシアン酸エステル化合物(A)の一例としては、下記式(1)で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000009
 ここで、式(1)中、Arは、ベンゼン環、ナフタレン環又は2つのベンゼン環が単結合したものを表し、複数ある場合は互いに同一であっても異なっていてもよい。Raは、各々独立に水素原子、炭素数1~6のアルキル基、炭素数6~12のアリール基、炭素数1~4のアルコキシル基、炭素数1~6のアルキル基と炭素数6~12のアリール基とが結合された基を表す。Raにおける芳香環は、置換基を有していてもよく、Ar及びRaにおける置換基は、任意の位置を選択できる。pは、Arに結合するシアナト基の数を示し、各々独立に1~3の整数である。qは、Arに結合するRaの数を示し、Arがベンゼン環のときは4-p、ナフタレン環のときは6-p、2つのベンゼン環が単結合したもののときは8-pである。tは、平均繰り返し数を示し、0~50の範囲であり、シアン酸エステル化合物(A)としては、tが異なる化合物の混合物であってもよい。Xは、複数ある場合は各々独立に、単結合、炭素数1~50の2価の有機基(水素原子がヘテロ原子に置換されていてもよい。)、窒素数1~10の2価の有機基(例えば-N-R-N-(ここでRは有機基を示す。))、カルボニル基(-CO-)、カルボキシ基(-C(=O)O-)、カルボニルジオキサイド基(-OC(=O)O-)、スルホニル基(-SO-)、2価の硫黄原子又は2価の酸素原子のいずれかを示す。
 式(1)のRaにおけるアルキル基は、直鎖又は分枝の鎖状構造、及び、環状構造(例えばシクロアルキル基等)のいずれを有していてもよい。
 また、式(1)におけるアルキル基及びRaにおけるアリール基中の水素原子は、フッ素原子、塩素原子等のハロゲン原子、メトキシ基、フェノキシ基等のアルコキシル基、又はシアノ基等で置換されていてもよい。
 アルキル基の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、1-エチルプロピル基、2,2-ジメチルプロピル基、シクロペンチル基、ヘキシル基、シクロヘキシル基、及びトリフルオロメチル基が挙げられる。
 アリール基の具体例としては、フェニル基、キシリル基、メシチル基、ナフチル基、フェノキシフェニル基、エチルフェニル基、o-,m-又はp-フルオロフェニル基、ジクロロフェニル基、ジシアノフェニル基、トリフルオロフェニル基、メトキシフェニル基、及びo-,m-又はp-トリル基等が挙げられる。さらに、アルコキシル基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、及びtert-ブトキシ基が挙げられる。
 式(1)のXにおける炭素数1~50の2価の有機基の具体例としては、メチレン基、エチレン基、トリメチレン基、シクロペンチレン基、シクロヘキシレン基、トリメチルシクロヘキシレン基、ビフェニルイルメチレン基、ジメチルメチレン-フェニレン-ジメチルメチレン基、フルオレンジイル基、及びフタリドジイル基等が挙げられる。該2価の有機基中の水素原子は、フッ素原子、塩素原子等のハロゲン原子、メトキシ基、フェノキシ基等のアルコキシル基、シアノ基等で置換されていてもよい。
 式(1)のXにおける窒素数1~10の2価の有機基としては、イミノ基、ポリイミド基等が挙げられる。
 また、式(1)中のXの有機基として、例えば、下記式(2)又は下記式(3)で表される構造であるものが挙げられる。
Figure JPOXMLDOC01-appb-C000010
 ここで、式(2)中、Arは、ベンゼンテトライル基、ナフタレンテトライル基又はビフェニルテトライル基を表し、uが2以上の場合、互いに同一であっても異なっていてもよい。Rb、Rc、Rf、及びRgは、各々独立に、水素原子、炭素数1~6のアルキル基、炭素数6~12のアリール基、トリフルオロメチル基、又はフェノール性ヒドロキシ基を少なくとも1個有するアリール基を示す。Rd及びReは、各々独立に、水素原子、炭素数1~6のアルキル基、炭素数6~12のアリール基、炭素数1~4のアルコキシル基、又はヒドロキシ基のいずれか1種から選択される。uは、0~5の整数を示す。
Figure JPOXMLDOC01-appb-C000011
 ここで、式(3)中、Arは、ベンゼンテトライル基、ナフタレンテトライル基又はビフェニルテトライル基を表し、vが2以上の場合、互いに同一であっても異なっていてもよい。Ri及びRjは、各々独立に、水素原子、炭素数1~6のアルキル基、炭素数6~12のアリール基、ベンジル基、炭素数1~4のアルコキシル基、ヒドロキシ基、トリフルオロメチル基、又はシアナト基が少なくとも1個置換されたアリール基を表す。vは、0~5の整数を示すが、vが異なる化合物の混合物であってもよい。
 さらに、式(1)中のXとしては、下記式で表される2価の基が挙げられる。
Figure JPOXMLDOC01-appb-C000012
 ここで、式中、zは、4~7の整数を示す。Rkは、各々独立に、水素原子又は炭素数1~6のアルキル基を表す。
 式(2)のAr及び式(3)のArの具体例としては、式(2)に示す2個の炭素原子又は式(3)に示す2個の酸素原子が、1,4位又は1,3位に結合するベンゼンテトライル基、上記2個の炭素原子又は2個の酸素原子が4,4’位、2,4’位、2,2’位、2,3’位、3,3’位、又は3,4’位に結合するビフェニルテトライル基、及び、上記2個の炭素原子又は2個の酸素原子が、2,6位、1,5位、1,6位、1,8位、1,3位、1,4位、又は2,7位に結合するナフタレンテトライル基が挙げられる。
 式(2)のRb、Rc、Rd、Re、Rf及びRg、並びに式(3)のRi及びRjにおけるアルキル基及びアリール基は、上記式(1)におけるものと同義である。
 上記式(1)で表されるシアナト置換芳香族化合物の具体例としては、シアナトベンゼン、1-シアナト-2-,1-シアナト-3-,又は1-シアナト-4-メチルベンゼン、1-シアナト-2-,1-シアナト-3-,又は1-シアナト-4-メトキシベンゼン、1-シアナト-2,3-,1-シアナト-2,4-,1-シアナト-2,5-,1-シアナト-2,6-,1-シアナト-3,4-又は1-シアナト-3,5-ジメチルベンゼン、シアナトエチルベンゼン、シアナトブチルベンゼン、シアナトオクチルベンゼン、シアナトノニルベンゼン、2-(4-シアナフェニル)-2-フェニルプロパン(4-α-クミルフェノールのシアネート)、1-シアナト-4-シクロヘキシルベンゼン、1-シアナト-4-ビニルベンゼン、1-シアナト-2-又は1-シアナト-3-クロロベンゼン、1-シアナト-2,6-ジクロロベンゼン、1-シアナト-2-メチル-3-クロロベンゼン、シアナトニトロベンゼン、1-シアナト-4-ニトロ-2-エチルベンゼン、1-シアナト-2-メトキシ-4-アリルベンゼン(オイゲノールのシアネート)、メチル(4-シアナトフェニル)スルフィド、1-シアナト-3-トリフルオロメチルベンゼン、4-シアナトビフェニル、1-シアナト-2-又は1-シアナト-4-アセチルベンゼン、4-シアナトベンズアルデヒド、4-シアナト安息香酸メチルエステル、4-シアナト安息香酸フェニルエステル、1-シアナト-4-アセトアミノベンゼン、4-シアナトベンゾフェノン、1-シアナト-2,6-ジ-tert-ブチルベンゼン、1,2-ジシアナトベンゼン、1,3-ジシアナトベンゼン、1,4-ジシアナトベンゼン、1,4-ジシアナト-2-tert-ブチルベンゼン、1,4-ジシアナト-2,4-ジメチルベンゼン、1,4-ジシアナト-2,3,4-ジメチルベンゼン、1,3-ジシアナト-2,4,6-トリメチルベンゼン、1,3-ジシアナト-5-メチルベンゼン、1-シアナト又は2-シアナトナフタレン、1-シアナト4-メトキシナフタレン、2-シアナト-6-メチルナフタレン、2-シアナト-7-メトキシナフタレン、2,2’-ジシアナト-1,1’-ビナフチル、1,3-,1,4-,1,5-,1,6-,1,7-,2,3-,2,6-又は2,7-ジシアナトシナフタレン、2,2’-又は4,4’-ジシアナトビフェニル、4,4’-ジシアナトオクタフルオロビフェニル、2,4’-又は4,4’-ジシアナトジフェニルメタン、ビス(4-シアナト-3,5-ジメチルフェニル)メタン、1,1-ビス(4-シアナトフェニル)エタン、1,1-ビス(4-シアナトフェニル)プロパン、2,2-ビス(4-シアナトフェニル)プロパン、2,2-ビス(4-シアナト-3-メチルフェニル)プロパン、2,2-ビス(2-シアナト-5-ビフェニルイル)プロパン、2,2-ビス(4-シアナトフェニル)ヘキサフルオロプロパン、2,2-ビス(4-シアナト-3,5-ジメチルフェニル)プロパン、1,1-ビス(4-シアナトフェニル)ブタン、1,1-ビス(4-シアナトフェニル)イソブタン、1,1-ビス(4-シアナトフェニル)ペンタン、1,1-ビス(4-シアナトフェニル)-3-メチルブタン、1,1-ビス(4-シアナトフェニル)-2-メチルブタン、1,1-ビス(4-シアナトフェニル)-2,2-ジメチルプロパン、2,2-ビス(4-シアナトフェニル)ブタン、2,2-ビス(4-シアナトフェニル)ペンタン、2,2-ビス(4-シアナトフェニル)ヘキサン、2,2-ビス(4-シアナトフェニル)-3-メチルブタン、2,2-ビス(4-シアナトフェニル)-4-メチルペンタン、2,2-ビス(4-シアナトフェニル)-3,3-ジメチルブタン、3,3-ビス(4-シアナトフェニル)ヘキサン、3,3-ビス(4-シアナトフェニル)ヘプタン、3,3-ビス(4-シアナトフェニル)オクタン、3,3-ビス(4-シアナトフェニル)-2-メチルペンタン、3,3-ビス(4-シアナトフェニル)-2-メチルヘキサン、3,3-ビス(4-シアナトフェニル)-2,2-ジメチルペンタン、4,4-ビス(4-シアナトフェニル)-3-メチルヘプタン、3,3-ビス(4-シアナトフェニル)-2-メチルヘプタン、3,3-ビス(4-シアナトフェニル)-2,2-ジメチルヘキサン、3,3-ビス(4-シアナトフェニル)-2,4-ジメチルヘキサン、3,3-ビス(4-シアナトフェニル)-2,2,4-トリメチルペンタン、2,2-ビス(4-シアナトフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、ビス(4-シアナトフェニル)フェニルメタン、1,1-ビス(4-シアナトフェニル)-1-フェニルエタン、ビス(4-シアナトフェニル)ビフェニルメタン、1,1-ビス(4-シアナトフェニル)シクロペンタン、1,1-ビス(4-シアナトフェニル)シクロヘキサン、2,2-ビス(4-シアナト-3-イソプロピルフェニル)プロパン、1,1-ビス(3-シクロヘキシル-4-シアナトフェニル)シクロヘキサン、ビス(4-シアナトフェニル)ジフェニルメタン、ビス(4-シアナトフェニル)-2,2-ジクロロエチレン、1,3-ビス[2-(4-シアナトフェニル)-2-プロピル]ベンゼン、1,4-ビス[2-(4-シアナトフェニル)-2-プロピル]ベンゼン、1,1-ビス(4-シアナトフェニル)-3,3,5-トリメチルシクロヘキサン、4-[ビス(4-シアナトフェニル)メチル]ビフェニル、4,4-ジシアナトベンゾフェノン、1,3-ビス(4-シアナトフェニル)-2-プロペン-1-オン、ビス(4-シアナトフェニル)エーテル、ビス(4-シアナトフェニル)スルフィド、ビス(4-シアナトフェニル)スルホン、4-シアナト安息香酸-4-シアナトフェニルエステル(4-シアナトフェニル-4-シアナトベンゾエート)、ビス-(4-シアナトフェニル)カーボネート、1,3-ビス(4-シアナトフェニル)アダマンタン、1,3-ビス(4-シアナトフェニル)-5,7-ジメチルアダマンタン、3,3-ビス(4-シアナトフェニル)イソベンゾフラン-1(3H)-オン(フェノールフタレインのシアネート)、3,3-ビス(4-シアナト-3-メチルフェニル)イソベンゾフラン-1(3H)-オン(o-クレゾールフタレインのシアネート)、9,9’-ビス(4-シアナトフェニル)フルオレン、9,9-ビス(4-シアナト-3-メチルフェニル)フルオレン、9,9-ビス(2-シアナト-5-ビフェニルイル)フルオレン、トリス(4-シアナトフェニル)メタン、1,1,1-トリス(4-シアナトフェニル)エタン、1,1,3-トリス(4-シアナトフェニル)プロパン、α,α,α’-トリス(4-シアナトフェニル)-1-エチル-4-イソプロピルベンゼン、1,1,2,2-テトラキス(4-シアナトフェニル)エタン、テトラキス(4-シアナトフェニル)メタン、2,4,6-トリス(N-メチル-4-シアナトアニリノ)-1,3,5-トリアジン、2,4-ビス(N-メチル-4-シアナトアニリノ)-6-(N-メチルアニリノ)-1,3,5-トリアジン、ビス(N-4-シアナト-2-メチルフェニル)-4,4’-オキシジフタルイミド、ビス(N-3-シアナト-4-メチルフェニル)-4,4’-オキシジフタルイミド、ビス(N-4-シアナトフェニル)-4,4’-オキシジフタルイミド、ビス(N-4-シアナト-2-メチルフェニル)-4,4’-(ヘキサフルオロイソプロピリデン)ジフタルイミド、トリス(3,5-ジメチル-4-シアナトベンジル)イソシアヌレート、2-フェニル-3,3-ビス(4-シアナトフェニル)フタルイミジン、2-(4-メチルフェニル)-3,3-ビス(4-シアナトフェニル)フタルイミジン、2-フェニル-3,3-ビス(4-シアナト-3-メチルフェニル)フタルイミジン、1-メチル-3,3-ビス(4-シアナトフェニル)インドリン-2-オン、及び、2-フェニル-3,3-ビス(4-シアナトフェニル)インドリン-2-オンが挙げられる。
 また、上記式(1)で表される化合物の別の具体例としては、フェノールノボラック樹脂及びクレゾールノボラック樹脂(公知の方法により、フェノール、アルキル置換フェノール又はハロゲン置換フェノールと、ホルマリンやパラホルムアルデヒド等のホルムアルデヒド化合物とを、酸性溶液中で反応させたもの)、トリスフェノールノボラック樹脂(ヒドロキシベンズアルデヒドとフェノールとを酸性触媒の存在下に反応させたもの)、フルオレンノボラック樹脂(フルオレノン化合物と9,9-ビス(ヒドロキシアリール)フルオレン類を酸性触媒の存在下に反応させたもの)、フェノールアラルキル樹脂、クレゾールアラルキル樹脂、ナフトールアラルキル樹脂及びビフェニルアラルキル樹脂(公知の方法により、Ar-(CHY)(Arはフェニル基を表し、Yはハロゲン原子を表す。以下、この段落において同様。)で表されるようなビスハロゲノメチル化合物とフェノール化合物とを酸性触媒若しくは無触媒で反応させたもの、Ar-(CHOR)で表されるようなビス(アルコキシメチル)化合物とフェノール化合物とを酸性触媒の存在下に反応させたもの、又は、Ar-(CHOH)で表されるようなビス(ヒドロキシメチル)化合物とフェノール化合物を酸性触媒の存在下に反応させたもの、或いは、芳香族アルデヒド化合物とアラルキル化合物とフェノール化合物とを重縮合させたもの)、フェノール変性キシレンホルムアルデヒド樹脂(公知の方法により、キシレンホルムアルデヒド樹脂とフェノール化合物とを酸性触媒の存在下に反応させたもの)、変性ナフタレンホルムアルデヒド樹脂(公知の方法により、ナフタレンホルムアルデヒド樹脂とヒドロキシ置換芳香族化合物を酸性触媒の存在下に反応させたもの)、フェノール変性ジシクロペンタジエン樹脂、ポリナフチレンエーテル構造を有するフェノール樹脂(公知の方法により、フェノール性ヒドロキシ基を1分子中に2つ以上有する多価ヒドロキシナフタレン化合物を、塩基性触媒の存在下に脱水縮合させたもの)等のフェノール樹脂を、上述と同様の方法によりシアネート化したもの等、並びにこれらのプレポリマー等が挙げられ、これらは、特に制限されるものではない。これらのシアン酸エステル化合物(A)は、1種を単独で又は2種以上を組み合わせて用いることができる。
 この中でも、フェノールノボラック型シアン酸エステル化合物、ナフトールアラルキル型シアン酸エステル化合物、ビフェニルアラルキル型シアン酸エステル化合物、ナフチレンエーテル型シアン酸エステル化合物、キシレン樹脂型シアン酸エステル化合物、アダマンタン骨格型シアン酸エステル化合物が好ましく、フェノールノボラック型シアン酸エステル化合物、ビフェニルアラルキル型シアン酸エステル化合物、ナフトールアラルキル型シアン酸エステル化合物がより好ましい。すなわち、本実施形態におけるシアン酸エステル化合物(A)が、フェノールノボラック型シアン酸エステル化合物、下記式(A-1)で表されるナフトールアラルキル型シアン酸エステル化合物、及び下記式(A-2)で表されるビフェニルアラルキル型シアン酸エステル化合物からなる群より選択される少なくとも1種を含有することがとりわけ好ましい。フェノールノボラック型シアン酸エステル化合物としては、特に限定されず、市販品を用いることもでき、例えば、ロンザ社製のPrimasetPT-30を用いることができる。
Figure JPOXMLDOC01-appb-C000013
(式中、R1はそれぞれ独立に水素原子又はメチル基を示し、n1は1~50の整数を示す。)
Figure JPOXMLDOC01-appb-C000014
(式中、R3はそれぞれ独立に水素原子又はメチル基を示し、n3は1~50の整数を示す。)
 これらのシアン酸エステル化合物(A)を用いた樹脂硬化物は、ガラス転移温度(Tg)、めっき密着性等に優れた特性を有する。
 これらのシアン酸エステル化合物(A)の製造方法としては、特に限定されず、公知の方法を用いることができる。かかる製法の例としては、所望の骨格を有するヒドロキシ基含有化合物を入手又は合成し、当該ヒドロキシ基を公知の手法により修飾してシアネート化する方法が挙げられる。ヒドロキシ基をシアネート化する手法としては、例えば、Ian Hamerton,“Chemistry and Technology of Cyanate Ester Resins,”Blackie Academic & Professionalに記載の手法が挙げられる。
 シアン酸エステル化合物(A)の含有量は、耐デスミア性及び高熱時弾性率の観点から、樹脂固形分100質量部に対して、1~90質量部が好ましく、より好ましくは5~85質量部であり、さらに好ましくは10~80質量部である。
 なお、本実施形態において、「樹脂固形分」とは、特に断りのない限り、本実施形態の樹脂組成物における、溶剤及び六方晶窒化ホウ素一次粒子(D)を除いた成分をいい、「樹脂固形分100質量部」とは、本実施形態の樹脂組成物における溶剤及び六方晶窒化ホウ素一次粒子(D)を除いた成分の合計が100質量部であることをいうものとする。
(マレイミド化合物(B))
 本実施形態の樹脂組成物において、マレイミド化合物(B)は任意成分であり、含まれていなくてもよいが、耐熱性の観点から、本実施形態の樹脂組成物がマレイミド化合物(B)を含むことが好ましい。マレイミド化合物(B)としては、分子中に1個以上のマレイミド基を有する化合物であれば特に限定されないが、例えば、N-フェニルマレイミド、N-ヒドロキシフェニルマレイミド、ビス(4-マレイミドフェニル)メタン、2,2-ビス{4-(4-マレイミドフェノキシ)-フェニル}プロパン、ビス(3,5-ジメチル-4-マレイミドフェニル)メタン、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン、ビス(3,5-ジエチル-4-マレイミドフェニル)メタン、下記式(B-1)で表されるマレイミド化合物、下記式(B-2)で表されるマレイミド化合物、これらマレイミド化合物のプレポリマー、若しくはマレイミド化合物とアミン化合物のプレポリマーが挙げられる。これらの中でも、2,2’-ビス{4-(4-マレイミドフェノキシ)-フェニル}プロパン、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン及び下記式(B-1)で表されるマレイミド化合物、及び下記式(B-2)で表されるマレイミド化合物からなる群より選択される少なくとも1種が好ましい。このようなマレイミド化合物(B)を含むことにより、得られる硬化物の熱膨張率がより低下し、ガラス転移温度がより優れたものとなる傾向にある。同様の観点から、マレイミド化合物(B)が、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン及び下記式(B-1)で表されるマレイミド化合物からなる群より選択される少なくとも1種を含有することがより好ましい。
Figure JPOXMLDOC01-appb-C000015
 ここで、式(B-1)中、Rは、各々独立して、水素原子又はメチル基を示し、好ましくは水素原子を示す。また、式(4)中、nは、1以上の整数を表し、好ましくは10以下の整数であり、より好ましくは7以下の整数である。
Figure JPOXMLDOC01-appb-C000016
 上記式(B-2)中、複数存在するRは、それぞれ独立して、水素原子、炭素数1~5のアルキル基(例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基等)、又はフェニル基を表す。これらの中でも、耐燃性及びピール強度をより一層向上する観点から、水素原子、メチル基、及びフェニル基からなる群より選択される基であることが好ましく、水素原子及びメチル基の一方であることがより好ましく、水素原子であることがさらに好ましい。
 上記式(B-2)中、nは、平均値であり、1<n≦5を示す。nは、溶剤溶解性がより一層優れる観点から、4以下であることが好ましく、3以下であることがより好ましく、2以下であることがさらに好ましい。
 上記式(B-2)で表されるポリマレイミド化合物は、公知の方法で調製してもよく、市販品を用いてもよい。市販品としては、以下に限定されないが、例えば、日本化薬株式会社製品「MIR-3000」が挙げられる。
 本実施形態におけるマレイミド化合物(B)の含有量は、樹脂固形分100質量部に対して、好ましくは10~90質量部であり、より好ましくは5~85質量部であり、更に好ましくは10~80質量部である。マレイミド化合物(B)の含有量が上記範囲内であることにより、得られる硬化物の熱膨張率がより低下し、耐熱性がより向上する傾向にある。
(エポキシ樹脂(C))
 本実施形態の樹脂組成物において、エポキシ樹脂(C)は任意成分であり、含まれていなくてもよいが、接着性、可撓性をより良好にする観点から、本実施形態の樹脂組成物がエポキシ樹脂(C)を含むことが好ましい。エポキシ樹脂としては、1分子中に2個以上のエポキシ基を有するエポキシ樹脂であれば、公知のものを適宜使用することができ、その種類は特に限定されない。具体的には、ビスフェノールA型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、アラルキルノボラック型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、多官能フェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、アントラセン型エポキシ樹脂、ナフタレン骨格変性ノボラック型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ビフェニル型エポキシ樹脂、脂環式エポキシ樹脂、ポリオール型エポキシ樹脂、リン含有エポキシ樹脂、グリシジルアミン、グリシジルエステル、ブタジエンなどの二重結合をエポキシ化した化合物、水酸基含有シリコーン樹脂類とエピクロルヒドリンとの反応により得られる化合物などが挙げられる。これらのエポキシ樹脂のなかでは、ビフェニルアラルキル型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、多官能フェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂が難燃性、耐熱性の面で好ましい。上記の好ましいエポキシ樹脂は市販品として入手することもでき、DIC社製の「HP6000」(ポリオキシナフチレン型エポキシ樹脂)、日本化薬社製の「EPPN-501HY」(トリスフェノール型エポキシ樹脂)が好ましい。これらのエポキシ樹脂は、1種を単独で又は2種以上を組み合わせて用いることができる。
 本実施形態におけるエポキシ樹脂(C)のエポキシ当量は、接着性、可撓性をより良好にする観点から、250~850g/eqが好ましく、より好ましくは250~450g/eqである。上記エポキシ当量は、常法により測定することができる。
 本実施形態におけるエポキシ樹脂(C)の含有量は、特に限定されないが、樹脂組成物中の樹脂固形分100質量部に対して、好ましくは1~90質量部であり、より好ましくは3~80質量部である。エポキシ樹脂の含有量が上記範囲内であることにより、接着性や可撓性等により優れる傾向にある。
 本実施形態の樹脂組成物は、シアン酸エステル化合物(A)と、マレイミド化合物(B)及び/又はエポキシ樹脂(C)とを含むものであるが、耐熱性、耐燃焼性、機械物性、長期耐熱性、耐薬品性及び電気絶縁性の観点から、シアン酸エステル化合物(A)、マレイミド化合物(B)及びエポキシ樹脂(C)を含むことが好ましい。
[六方晶窒化ホウ素一次粒子(D)]
 本実施形態における六方晶窒化ホウ素一次粒子(D)は、その平均アスペクト比が4~10となるものである。このような平均アスペクト比であるため、本実施形態の樹脂組成物は、十分な熱伝導性を有すると共に、優れたピール強度及び吸湿耐熱性を発現できる。同様の観点から、上記平均アスペクト比は、5~10が好ましい。上記平均アスペクト比は、六方晶窒化ホウ素一次粒子の各々につき長径及び短径の長さを計測し、長径/短径の平均値として算出することができる。上記の平均アスペクト比を満たす六方晶窒化ホウ素一次粒子(D)の具体例としては、以下に限定されないが、トクヤマ社製の「πBN-S03」等が挙げられる。
 本実施形態における六方晶窒化ホウ素一次粒子(D)の粒子形状としては、特に限定されないが、例えば、鱗片状、偏平状、顆粒状、球状、繊維状、ウィスカー状などが挙げられ、中でも鱗片状が好ましい。
 六方晶窒化ホウ素一次粒子の平均粒径としては、特に限定されないが、メジアン径として0.1~50μmが好ましく、0.1~45μmがより好ましく、0.1~40μmがさらに好ましい。なお、メジアン径は、測定した粉体の粒度分布を2つに分けたときの大きい側と小さい側が等量となる値である。より具体的には、湿式レーザー回折・散乱式の粒度分布測定装置により、水分散媒中に所定量投入された粉体の粒度分布を測定し、小さい粒子から体積積算して、全体積の50%に達したときの値を意味する。平均粒径が上記範囲内であることにより、熱伝導性、ピール強度及び吸湿耐熱性の物性バランスがより良好となる傾向にある。
 本実施形態の樹脂組成物は、上述した六方晶窒化ホウ素一次粒子(D)の他に、種々公知の無機充填材を含んでいてもよい。そのような無機充填材としては、絶縁性を有するものであれば特に限定されず、例えば、天然シリカ、溶融シリカ、アモルファスシリカ、中空シリカ等のシリカ類、アルミナ、窒化アルミニウム、窒化ホウ素(本実施形態における六方晶窒化ホウ素一次粒子(D)を除く。以下同様。)、ベーマイト、酸化モリブデン、酸化チタン、シリコーンゴム、シリコーン複合パウダー、ホウ酸亜鉛、錫酸亜鉛、クレー、カオリン、タルク、焼成クレー、焼成カオリン、焼成タルク、マイカ、ガラス短繊維(EガラスやDガラス等のガラス微粉末類)、中空ガラス、球状ガラス等が挙げられる。これらは1種を単独で用いてもよいし、2種以上を併用してもよい。
 上記の中でも、シリカ、アルミナ、窒化アルミニウム、及び窒化ホウ素からなる群より選ばれる、少なくとも1種を含むことが好ましい。とりわけ、低熱膨張の観点からシリカが好ましく、高熱伝導性の観点からアルミナや窒化アルミニウム、窒化ホウ素が好ましい。
 本実施形態の樹脂組成物には、微粒子の分散性、樹脂と微粒子やガラスクロスの接着強度を向上させるために、無機充填材以外の成分として、シランカップリング剤や湿潤分散剤等を六方晶窒化ホウ素一次粒子(D)と併用することも可能である。
 シランカップリング剤としては、一般に無機物の表面処理に使用されているシランカップリング剤であれば、特に限定されるものではない。具体例としては、γ-アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン等のアミノシラン系シランカップリング剤;γ-グリシドキシプロピルトリメトキシシラン等のエポキシシラン系シランカップリング剤;γ-アクリロキシプロピルトリメトキシシラン等のアクリルシラン系シランカップリング剤;N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシラン塩酸塩等のカチオニックシラン系シランカップリング剤;フェニルシラン系シランカップリング剤;p-スチリルトリメトキシシラン、p-スチリルトリエトキシシラン、p-スチリルメチルジメトキシシラン、p-スチリルメチルジエトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシラン塩酸塩等のスチリルシラン系カップリング剤等が挙げられる。これらは1種を単独で用いてもよいし、2種以上を併用してもよい。
 湿潤分散剤としては、塗料用に使用されている分散安定剤であれば、特に限定されるものではない。例えばビッグケミー・ジャパン社製の「DISPERBYK-110」、「DISPERBYK-111」、「DISPERBYK-118」、「DISPERBYK-180」、「DISPERBYK-161」、「BYK-W996」、「BYK-W9010」、「BYK-W903」等の湿潤分散剤が挙げられる。これらは1種を単独で用いてもよいし、2種以上を併用してもよい。
 本実施形態の樹脂組成物における、六方晶窒化ホウ素一次粒子(D)及び無機充填材の合計量は特に限定されないが、樹脂固形分100質量部に対して、50~1600質量部であることが好ましく、50~1500質量部であることがより好ましく、301~700質量部であることが更に好ましい。六方晶窒化ホウ素一次粒子(D)及び無機充填材の合計量が上記範囲内である場合、ピール強度、吸湿耐熱性、低熱膨張、高熱伝導といった特性の観点から好ましい。同様の観点から、本実施形態の樹脂組成物における、六方晶窒化ホウ素一次粒子(D)の含有量は、樹脂固形分100質量部に対して、50~1600質量部であることが好ましく、50~1500質量部であることがより好ましく、50~700質量部であることが更に好ましい。
[他の成分]
 本実施形態の樹脂組成物は、本実施形態の所望の特性が損なわれない範囲において、上記した成分に加え、他の成分を含むことができる。本実施形態においては、諸物性をより向上させる観点から、オキセタン樹脂、フェノール樹脂、ベンゾオキサジン化合物、並びに重合可能な不飽和基を有する化合物からなる群より選択される1種以上をさらに含むことが好ましい。式(1)で表されるシアン酸エステル化合物(A)及び式(2)で表されるシアン酸エステル化合物(A)以外のシアン酸エステル化合物の具体例は、特に限定されないが、前述したとおりのシアン酸エステル化合物が例示される。
(オキセタン樹脂)
 本実施形態の樹脂組成物は、オキセタン樹脂を含むことにより、接着性や可撓性等により優れる傾向にある。オキセタン樹脂としては、一般に公知のものを使用でき、その種類は特に限定されない。その具体例としては、オキセタン、2-メチルオキセタン、2,2-ジメチルオキセタン、3-メチルオキセタン、3,3-ジメチルオキセタン等のアルキルオキセタン、3-メチル-3-メトキシメチルオキセタン、3,3’-ジ(トリフルオロメチル)パーフルオキセタン、2-クロロメチルオキセタン、3,3-ビス(クロロメチル)オキセタン、ビフェニル型オキセタン、OXT-101(東亞合成製商品名)、OXT-121(東亞合成製商品名)等が挙げられる。これらのオキセタン樹脂は、1種又は2種以上を組み合わせて用いることができる。
 オキセタン樹脂の含有量は、特に限定されないが、樹脂組成物中の樹脂固形分100質量部に対して、好ましくは0~99質量部であり、より好ましくは1~90質量部であり、さらに好ましくは3~80質量部である。オキセタン樹脂の含有量が上記範囲内であることにより、密着性や可撓性等により優れる傾向にある。
(フェノール樹脂)
 本実施形態の樹脂組成物がフェノール樹脂を含むことにより、接着性や可撓性等により優れる傾向にある。フェノール樹脂としては、1分子中に2個以上のヒドロキシ基を有するフェノール樹脂であれば、一般に公知のものを使用でき、その種類は特に限定されない。その具体例としては、ビスフェノールA型フェノール樹脂、ビスフェノールE型フェノール樹脂、ビスフェノールF型フェノール樹脂、ビスフェノールS型フェノール樹脂、フェノールノボラック樹脂、ビスフェノールAノボラック型フェノール樹脂、グリシジルエステル型フェノール樹脂、アラルキルノボラック型フェノール樹脂、ビフェニルアラルキル型フェノール樹脂、クレゾールノボラック型フェノール樹脂、多官能フェノール樹脂、ナフトール樹脂、ナフトールノボラック樹脂、多官能ナフトール樹脂、アントラセン型フェノール樹脂、ナフタレン骨格変性ノボラック型フェノール樹脂、フェノールアラルキル型フェノール樹脂、ナフトールアラルキル型フェノール樹脂、ジシクロペンタジエン型フェノール樹脂、ビフェニル型フェノール樹脂、脂環式フェノール樹脂、ポリオール型フェノール樹脂、リン含有フェノール樹脂、水酸基含有シリコーン樹脂類等が挙げられるが、特に制限されるものではない。これらのフェノール樹脂は、1種を単独で又は2種以上を組み合わせて用いることができる。
 フェノール樹脂の含有量は、特に限定されないが、樹脂組成物中の樹脂固形分100質量部に対して、好ましくは0~99質量部であり、より好ましくは1~90質量部であり、さらに好ましくは3~80質量部である。フェノール樹脂の含有量が上記範囲内であることにより、接着性や可撓性等により優れる傾向にある。
(ベンゾオキサジン化合物)
 本実施形態の樹脂組成物は、ベンゾオキサジン化合物を含むことにより、難燃性、耐熱性、低吸水性、低誘電等により優れる傾向にある。ベンゾオキサジン化合物としては、1分子中に2個以上のジヒドロベンゾオキサジン環を有する化合物であれば、一般に公知のものを用いることができ、その種類は特に限定されない。その具体例としては、ビスフェノールA型ベンゾオキサジンBA-BXZ(小西化学製商品名)ビスフェノールF型ベンゾオキサジンBF-BXZ(小西化学製商品名)、ビスフェノールS型ベンゾオキサジンBS-BXZ(小西化学製商品名)等が挙げられる。これらのベンゾオキサジン化合物は、1種又は2種以上混合して用いることができる。
 ベンゾオキサジン化合物の含有量は、特に限定されないが、樹脂組成物中の樹脂固形分100質量部に対して、好ましくは0~99質量部であり、より好ましくは1~90質量部であり、さらに好ましくは3~80質量部である。ベンゾオキサジン化合物の含有量が上記範囲内であることにより、耐熱性等により優れる傾向にある。
(重合可能な不飽和基を有する化合物)
 本実施形態の樹脂組成物が重合可能な不飽和基を有する化合物を含むことにより、耐熱性や靱性等により優れる傾向にある。重合可能な不飽和基を有する化合物としては、一般に公知のものを使用でき、その種類は特に限定されない。その具体例としては、エチレン、プロピレン、スチレン、ジビニルベンゼン、ジビニルビフェニル等のビニル化合物;メチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の1価又は多価アルコールの(メタ)アクリレート類;ビスフェノールA型エポキシ(メタ)アクリレート、ビスフェノールF型エポキシ(メタ)アクリレート等のエポキシ(メタ)アクリレート類;ベンゾシクロブテン樹脂;(ビス)マレイミド樹脂等が挙げられる。これらの不飽和基を有する化合物は、1種又は2種以上混合して用いることができる。
 重合可能な不飽和基を有する化合物の含有量は、特に限定されないが、樹脂組成物中の樹脂固形分100質量部に対して、好ましくは0~99質量部であり、より好ましくは1~90質量部であり、さらに好ましくは3~80質量部である。重合可能な不飽和基を有する化合物の含有量が上記範囲内であることにより、耐熱性や靱性等により優れる傾向にある。
(重合触媒及び硬化促進剤)
 本実施形態の樹脂組成物には、上記した化合物ないし樹脂に加えて、更に、シアン酸エステル化合物、エポキシ樹脂、オキセタン樹脂、重合可能な不飽和基を有する化合物の重合を触媒する重合触媒、及び/又は硬化速度を適宜調節するための硬化促進剤を配合することができる。重合触媒及び/又は硬化促進剤としては、一般に公知のものを使用でき、その種類は特に限定されない。その具体例としては、オクチル酸亜鉛、ナフテン酸亜鉛、ナフテン酸コバルト、ナフテン酸銅、アセチルアセトン鉄等の金属塩;オクチル酸ニッケル、オクチル酸マンガン等の有機金属塩類;フェノール、キシレノール、クレゾール、レゾルシン、カテコール、オクチルフェノール、ノニルフェノール等のフェノール化合物;1-ブタノール、2-エチルヘキサノール等のアルコール類;2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール等のイミダゾール誘導体;これらのイミダゾール類のカルボン酸もしくはその酸無水類の付加体等の誘導体;ジシアンジアミド、ベンジルジメチルアミン、4-メチル-N,N-ジメチルベンジルアミン等のアミン化合物;ホスフィン系化合物、ホスフィンオキサイド系化合物、ホスホニウム系化合物、ダイホスフィン系化合物等のリン化合物;エポキシ-イミダゾールアダクト系化合物、ベンゾイルパーオキサイド、p-クロロベンゾイルパーオキサイド、ジ-t-ブチルパーオキサイド、ジイソプロピルパーオキシカーボネート、ジ-2-エチルヘキシルパーオキシカーボネート等の過酸化物;及びアゾビスイソブチロニトリル等のアゾ化合物等が挙げられる。これら触媒は市販のものを使用してもよく、例えば、アミキュアPN?23(味の素ファインテクノ社製、ノバキュアHX?3721(旭化成社製)、フジキュアFX?1000(富士化成工業社製)等が挙げられる。これらの重合触媒及び/又は硬化促進剤は、1種又は2種以上混合して用いることができる。
 なお、重合触媒及び硬化促進剤の含有量は、樹脂の硬化度や樹脂組成物の粘度等を考慮して適宜調整でき、特に限定されないが、通常は、樹脂組成物中の樹脂固形分100質量部に対し、好ましくは0.005~10質量部である。
(その他の添加剤)
 更に、本実施形態の樹脂組成物は、必要に応じて、他の熱硬化性樹脂、熱可塑性樹脂及びそのオリゴマー、エラストマー類などの種々の高分子化合物、硬化触媒、硬化促進剤、着色顔料、消泡剤、表面調整剤、難燃剤、溶媒、紫外線吸収剤、酸化防止剤、光重合開始剤、蛍光増白剤、光増感剤、染料、顔料、増粘剤、滑剤、流動調整剤、消泡剤、分散剤、レベリング剤、光沢剤、重合禁止剤、シランカップリング剤等の公知の添加剤を含有していてもよい。また、必要に応じて、溶媒を含有していてもよい。これら任意の添加剤は、1種又は2種以上混合して使用することができる。
 難燃剤としては、一般に公知のものを使用でき、その種類は特に限定されない。その具体例としては4,4’-ジブロモビフェニル等の臭素化合物;リン酸エステル、リン酸メラミン、リン含有エポキシ樹脂、メラミンやベンゾグアナミンなどの窒素化合物;オキサジン環含有化合物、シリコーン系化合物等が挙げられる。
 なお、本実施形態に係る樹脂組成物は、必要に応じて、有機溶剤を使用することができる。この場合、本実施形態の樹脂組成物は、上述した各種樹脂成分の少なくとも一部、好ましくは全部が有機溶剤に溶解あるいは相溶した態様(溶液あるいはワニス)として用いることができる。
 溶媒としては、上述した各種樹脂成分の少なくとも一部、好ましくは全部を溶解あるいは相溶可能なものであれば、一般に公知のものを使用でき、特に限定されない。その具体例としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒;プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート等のセロソルブ系溶媒;乳酸メチル、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸イソアミル、乳酸エチル、メトキシプロピオン酸メチル、ヒドロキシイソ酪酸メチル等のエステル系溶媒;ジメチルアセトアミド、ジメチルホルムアミド等のアミド類などの極性溶剤類;メタノール、エタノール、イソプロパノール、1-エトキシ-2-プロパノール等のアルコール系溶媒;トルエン、キシレン、アニソール等の芳香族系炭化水素等が挙げられる。これらの溶媒は、1種又は2種以上混合して用いることができる。
[樹脂組成物の製造方法]
 本実施形態の樹脂組成物は、常法に従って調製することができる。例えば、シアン酸エステル化合物(A)と、マレイミド化合物(B)及び/又はエポキシ樹脂(C)と、六方晶窒化ホウ素一次粒子(D)と、上記したその他の任意成分とを均一に含有する樹脂組成物が得られる方法が好ましい。具体的には、例えば、各成分を順次溶剤に配合し、十分に攪拌することで本実施形態の樹脂組成物を容易に調製することができる。
 本実施形態の樹脂組成物の調製時において、必要に応じて有機溶剤を使用することができる。有機溶剤の種類は、樹脂組成物中の樹脂を溶解可能なものであれば、特に限定されない。その具体例は、上記したとおりである。
 なお、樹脂組成物の調製時に、各成分を均一に溶解或いは分散させるための公知の処理(攪拌、混合、混練処理等)を行うことができる。例えば、六方晶窒化ホウ素一次粒子(D)や無機充填材の均一分散にあたり、適切な攪拌能力を有する攪拌機を付設した攪拌槽を用いて攪拌分散処理を行うことで、樹脂組成物に対する分散性が高められる。上記の攪拌、混合、混練処理は、例えば、ボールミル、ビーズミル等の混合を目的とした装置、又は、公転又は自転型の混合装置等の公知の装置を用いて適宜行うことができる。
 本実施形態のプリント配線板用樹脂組成物は、プリプレグ、金属箔張積層板、プリント配線板、及び半導体パッケージの構成材料として用いることができる。例えば、本実施形態のプリント配線板用樹脂組成物を溶剤に溶解させた溶液を基材に含浸又は塗布し乾燥することでプリプレグを得ることができる。
 また、基材として剥離可能なプラスチックフィルムを用い、本実施形態のプリント配線板用樹脂組成物を溶剤に溶解させた溶液を、そのプラスチックフィルムに塗布し乾燥することでビルドアップ用フィルム又はドライフィルムソルダーレジストを得ることができる。ここで、溶剤は、20℃~150℃の温度で1~90分間乾燥することで乾燥できる。
 また、本実施形態のプリント配線板用樹脂組成物は溶剤を乾燥しただけの未硬化の状態で使用することもできるし、必要に応じて半硬化(Bステージ化)の状態にして使用することもできる。
 以下、本実施形態のプリプレグについて詳述する。本実施形態のプリプレグは、基材と、該基材に含浸又は塗布された上記樹脂組成物とを有するものである。本実施形態のプリプレグの製造方法は、本実施形態のプリント配線板用樹脂組成物と基材とを組み合わせてプリプレグを製造する方法であれば、特に限定されない。具体的には、本実施形態のプリント配線板用樹脂組成物を基材に含浸又は塗布させた後、120~220℃の乾燥機中で、2~15分程度乾燥させる方法等によって半硬化させることで、本実施形態のプリプレグを製造することができる。このとき、基材に対する樹脂組成物の付着量、すなわち半硬化後のプリプレグの総量に対する樹脂組成物の含有量(六方晶窒化ホウ素一次粒子(D)や無機充填材を含む。)は、20~99質量%の範囲であることが好ましい。
 本実施形態のプリプレグを製造する際に用いられる基材としては、各種プリント配線板材料に用いられている公知のものであってもよい。そのような基材としては、例えば、Eガラス、Dガラス、Lガラス、Sガラス、Tガラス、Qガラス、UNガラス、NEガラス、球状ガラス等のガラス繊維、クォーツ等のガラス以外の無機繊維、ポリイミド、ポリアミド、ポリエステル等の有機繊維、液晶ポリエステル等の織布が挙げられるが、これらに特に限定されるものではない。基材の形状としては、織布、不織布、ロービング、チョップドストランドマット、及びサーフェシングマット等が知られており、これらのいずれであってもよい。基材は、1種を単独で又は2種以上を適宜組み合わせて用いることができる。織布の中では、特に超開繊処理や目詰め処理を施した織布が、寸法安定性の観点から好適である。さらに、エポキシシラン処理、又はアミノシラン処理などのシランカップリング剤などで表面処理したガラス織布は吸湿耐熱性の観点から好ましい。また、液晶ポリエステル織布は、電気特性の面から好ましい。さらに、基材の厚さは、特に限定されないが、積層板用途であれば、0.01~0.2mmの範囲が好ましい。
 本実施形態の金属箔張積層板は、少なくとも1枚以上積層された上述のプリプレグと、そのプリプレグの片面又は両面に配された金属箔とを有するものである。具体的には、前述のプリプレグ1枚に対して、又はプリプレグを複数枚重ねたものに対して、その片面又は両面に銅やアルミニウムなどの金属箔を配置して、積層成形することにより作製することができる。ここで用いられる金属箔は、プリント配線板材料に用いられているものであれば、特に限定されないが、圧延銅箔及び解銅箔等の銅箔が好ましい。また、金属箔の厚さは、特に限定されないが、2~70μmであると好ましく、3~35μmであるとより好ましい。成形条件としては、通常のプリント配線板用積層板及び多層板の作製時に用いられる手法を採用できる。例えば、多段プレス機、多段真空プレス機、連続成形機、又はオートクレーブ成形機などを用い、温度180~350℃、加熱時間100~300分、面圧20~100kg/cmの条件で積層成形することにより本実施形態の金属箔張積層板を製造することができる。また、上記のプリプレグと、別途作製した内層用の配線板とを組み合わせて積層成形することにより、多層板を作製することもできる。多層板の製造方法としては、例えば、上述したプリプレグ1枚の両面に35μmの銅箔を配置し、上記条件にて積層形成した後、内層回路を形成し、この回路に黒化処理を実施して内層回路板を形成する。さらに、この内層回路板と上記のプリプレグとを交互に1枚ずつ配置し、さらに最外層に銅箔を配置して、上記条件にて好ましくは真空下で積層成形する。こうして、多層板を作製することができる。
 本実施形態の金属箔張積層板は、更にパターン形成することにより、プリント配線板として好適に用いることができる。プリント配線板は、常法に従って製造することができ、その製造方法は特に限定されない。以下、プリント配線板の製造方法の一例を示す。まず、上述した金属箔張積層板を用意する。次に、金属箔張積層板の表面にエッチング処理を施して内層回路を形成することにより、内層基板を作製する。この内層基板の内層回路表面に、必要に応じて接着強度を高めるための表面処理を施し、次いで、その内層回路表面に上述したプリプレグを所要枚数重ねる。さらに、その外側に外層回路用の金属箔を積層し、加熱加圧して一体成形する。このようにして、内層回路と外層回路用の金属箔との間に、基材及びプリント配線板用樹脂組成物の硬化物からなる絶縁層が形成された多層の積層板が製造される。次いで、この多層の積層板にスルーホールやバイアホール用の穴あけ加工を施した後、この穴の壁面に内層回路と外層回路用の金属箔とを導通させるめっき金属皮膜を形成する。さらに、外層回路用の金属箔にエッチング処理を施して外層回路を形成することで、プリント配線板が製造される。
 上記の製造例で得られるプリント配線板は、絶縁層と、この絶縁層の表面に形成された導体層とを有し、絶縁層が上述した本実施形態のプリント配線板用樹脂組成物を含む構成となる。すなわち、上述した本実施形態のプリプレグ(基材及びこれに含浸又は塗布された本実施形態のプリント配線板用樹脂組成物)、上述した本実施形態の金属箔張積層板のプリント配線板用樹脂組成物の層(本実施形態のプリント配線板用樹脂組成物からなる層)が、本実施形態のプリント配線板用樹脂組成物を含む絶縁層から構成されることになる。
 本実施形態の樹脂シートは、支持体と、その支持体の表面に配された、上記樹脂組成物層(積層シート)とを指し、また支持体を取り除いた樹脂組成物層のみ(単層シート)も指す。この積層シートは、上記の樹脂組成物を溶剤に溶解させた溶液を支持体に塗布し乾燥することで得ることができる。ここで用いる支持体としては、特に限定されないが、例えば、ポリエチレンフィルム、ポリプロピレンフィルム、ポリカーボネートフィルム、ポリエチレンテレフタレートフィルム、エチレンテトラフルオロエチレン共重合体フィルム、並びにこれらのフィルムの表面に離型剤を塗布した離型フィルム、ポリイミドフィルム等の有機系のフィルム基材、銅箔、アルミ箔等の導体箔、ガラス板、SUS板、FRP等の板状の無機系のフィルムが挙げられる。塗布方法としては、例えば、上記の樹脂組成物を溶剤に溶解させた溶液を、バーコーター、ダイコーター、ドクターブレード、ベーカーアプリケーター等で支持体上に塗布することで、支持体と樹脂組成物層が一体となった積層シートを作製する方法が挙げられる。また、塗布後、さらに乾燥して得られる樹脂シートから支持体を剥離又はエッチングすることで、単層シートを得ることもできる。なお、上記の本実施形態のプリント配線板用樹脂組成物を溶剤に溶解又は相溶させた溶液を、シート状のキャビティを有する金型内に供給し乾燥する等してシート状に成形することで、支持体を用いることなく単層シートを得ることもできる。
 なお、本実施形態の樹脂シート又は単層シートの作製において、溶剤を除去する際の乾燥条件は、特に限定されないが、20℃~200℃の温度で1~90分間乾燥させることが好ましい。20℃以上であると樹脂組成物中への溶剤の残存をより防止でき、200℃以下であると樹脂組成物の硬化の進行を抑制することができる。また、本実施形態の樹脂シート又は単層シートにおける樹脂層の厚さは、本実施形態のプリント配線板用樹脂組成物の溶液の濃度と塗布厚さにより調整することができ、特に限定されない。ただし、その厚さは0.1~500μmであると好ましい。樹脂層の厚さが500μm以下であると、乾燥時に溶剤が更に残り難くなる。
 以下、本実施形態を実施例及び比較例を用いてより具体的に説明する。本実施形態は、以下の実施例によって何ら限定されるものではない。
(合成例1)1-ナフトールアラルキル型シアン酸エステル樹脂(SNCN)の合成
 反応器内で、α-ナフトールアラルキル樹脂(SN495V、OH基当量:236g/eq.、新日鐵化学(株)製)300g(OH基換算1.28mol)及びトリエチルアミン194.6g(1.92mol)(ヒドロキシ基1molに対して1.5mol)をジクロロメタン1800gに溶解させ、これを溶液1とした。
 塩化シアン125.9g(2.05mol)(ヒドロキシ基1molに対して1.6mol)、ジクロロメタン293.8g、36%塩酸194.5g(1.92mol)(ヒドロキシ基1molに対して1.5mol)、水1205.9gを、撹拌下、液温-2~-0.5℃に保ちながら、溶液1を30分かけて注下した。溶液1注下終了後、同温度にて30分撹拌した後、トリエチルアミン65g(0.64mol)(ヒドロキシ基1molに対して0.5mol)をジクロロメタン65gに溶解させた溶液(溶液2)を10分かけて注下した。溶液2注下終了後、同温度にて30分撹拌して反応を完結させた。
 その後反応液を静置して有機相と水相を分離した。得られた有機相を水1300gで5回洗浄し、水洗5回目の廃水の電気伝導度は5μS/cmであり、水による洗浄により、除けるイオン性化合物は十分に除けられてことを確認した。
 水洗後の有機相を減圧下で濃縮し、最終的に90℃で1時間濃縮乾固させて目的とするナフトールアラルキル型シアン酸エステル化合物(SNCN)(橙色粘性物)331gを得た。得られたSNCNの質量平均分子量Mwは600であった。また、SNCNの赤外吸収スペクトルは2250cm-1(シアン酸エステル基)の吸収を示し、且つ、ヒドロキシ基の吸収は示さなかった。
(平均アスペクト比の測定方法)
 電子走査型顕微鏡(SEM)を用い、六方晶窒化ホウ素一次粒子を観察して得られた画像に基づいて、平均アスペクト比を測定した。すなわち、所定の視野内に存在する六方晶窒化ホウ素一次粒子50個につき長径及び短径の長さを計測し、長径/短径の平均値として算出した。
(実施例1)
 シアン酸エステル化合物(A)として、合成例1により得られたSNCN(シアネート当量:256g/eq.)30質量部;マレイミド化合物(B)として、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン(BMI-70、大和化成工業(株)製、マレイミド当量:221g/eq.)15質量部及びノボラック型ビスマレイミド化合物(大和化成工業社製、BMI-2300)15質量部;エポキシ樹脂(C)として、ポリオキシナフチレン型エポキシ樹脂(DIC社製「HP6000」、エポキシ当量:169g/eq.)35.3質量部及びトリスフェノール型エポキシ樹脂(日本化薬社製「EPPN-501HY」、エポキシ当量:169g/eq.)4.7質量部;六方晶窒化ホウ素一次粒子(D)として、トクヤマ社製「πBN-S03」(平均粒径11μm)60質量部;酸基を含む分散剤(ビックケミー・ジャパン社製、「BYK-W903」)5.0質量部;エポキシ系シランカップリング剤(東レ・ダウコーニング社製「Z6040」)15.0質量部;分散剤(ビックケミー・ジャパン社製、「DISPERBYK-161」)1.0質量部;湿潤分散剤1(ビックケミー・ジャパン社製、「BYK-111」)1.0質量部;湿潤分散剤2(ビックケミー・ジャパン社製、「BYK-2009」)0.3質量部;2,4,5-トリフェニルイミダゾール(東京化成工業社製、硬化促進剤)0.50質量部;オクチル酸亜鉛(日本化学産業株式会社製、商標ニッカオクチック亜鉛)を0.01質量部加えて混合し、メチルエチルケトンで希釈することで樹脂ワニスを得た。なお、上述した方法に基づいて算出されたπBN-S03の平均アスペクト比は5.8であった。
(比較例1)
 六方晶窒化ホウ素一次粒子(D)として、「πBN-S03」に代えて、日新リフラテック社製「RBN」(平均粒径2μm)を60質量部配合したこと以外は、実施例1と同様にして樹脂ワニスを得た。なお、上述した方法に基づいて算出されたRBNの平均アスペクト比は2.5であった。
(比較例2)
 六方晶窒化ホウ素一次粒子(D)として、「πBN-S03」に代えて、Ben Tree社製「BTBN009」を凝集処理して平均粒径9μmとした凝集体を60質量部配合したこと以外は、実施例1と同様にして樹脂ワニスを得た。なお、上述した方法に基づいて算出されたBTBN009凝集体の平均アスペクト比は12.1であった。
〔銅張積層板の製造方法〕
 以上のようにして得られた実施例1及び比較例1~2の樹脂ワニスを厚さ0.1mmのEガラスクロスに含浸塗工し、乾燥機(耐圧防爆型スチーム乾燥機、(株)高杉製作所製))を用いて150℃、5分間加熱乾燥し、樹脂組成物50質量%のプリプレグを得た。このプリプレグ2枚又は8枚を重ね、両面に12μm厚の電解銅箔(3EC-M3-VLP、三井金属鉱業(株)製)を配置し、圧力30kg/cm、温度220℃で150分間真空プレスを行い、絶縁層厚さ0.2mm、0.8mmの銅張積層板を得た。得られた銅張積層板を用いて、以下の各特性の評価を行った。結果を表1にまとめて示す。
<各特性の評価方法>
(1)熱伝導率
 後述する絶縁層厚さ0.8mmの両面銅張積層板の両面全銅箔をエッチング除去した後、試験片(10mm×10mm×厚さ1mm)を切り出した。この試験片に対し、NETZSCH製キセノンフラッシュアナライザーLFA447型熱伝導率計を用いて、レーザーフラッシュで熱伝導率を測定した。各実施例及び比較例の熱伝導率は、下記の基準に基づき、3段階で評価した。
 ◎:1.00W/mk超
 ○:0.75W/mk以上1.00W/mk以下
 ×:0.75W/mk未満
(2)銅箔ピール強度
 後述する絶縁層厚さ0.8mmの両面銅張積層板の試験片(30mm×150mm×厚さ0.8mm)を用い、JIS C6481のプリント配線板用銅張積層板試験方法(5.7 引き剥がし強さ参照。)に準じて、銅箔の引き剥がし強度を3回測定し、下限値の平均値を測定値とした。
(3)吸湿耐熱性
 両面銅張積層板(50mm×50mm×絶縁層厚さ0.8mm)の片面の半分以外の全銅箔をエッチング除去して試験片を得た。得られた試験片を、プレッシャークッカー試験機(平山製作所社製、PC-3型)で121℃、2気圧で5時間処理し、その後260℃のはんだの中に60秒浸漬した。3つのサンプルのそれぞれに対して上記試験を行い、サンプル毎に浸漬後の膨れの有無を目視で観察し、異常がないものを「○」、膨れが発生したものを「×」と表記した。例えば、3つのサンプル全てに膨れが発生した場合は、「×××」と表記し、3つのサンプル中2つに膨れが発生した場合は「○××」と表記した。
Figure JPOXMLDOC01-appb-T000017
 本出願は、2017年2月7日出願の日本国特許出願(特願2017-020525号)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の樹脂組成物は、プリプレグ、金属箔張積層板、積層樹脂シート、樹脂シート、プリント配線板等の材料として、産業上の利用可能性を有する。

Claims (14)

  1.  シアン酸エステル化合物(A)と、
     マレイミド化合物(B)及び/又はエポキシ樹脂(C)と、
     平均アスペクト比が4~10である六方晶窒化ホウ素一次粒子(D)と、
     を含む、樹脂組成物。
  2.  前記シアン酸エステル化合物(A)が、フェノールノボラック型シアン酸エステル化合物、下記式(A-1)で表されるナフトールアラルキル型シアン酸エステル化合物、及び下記式(A-2)で表されるビフェニルアラルキル型シアン酸エステル化合物からなる群より選択される少なくとも1種を含有する、請求項1に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1はそれぞれ独立に水素原子又はメチル基を示し、n1は1~50の整数を示す。)
    Figure JPOXMLDOC01-appb-C000002
    (式中、R3はそれぞれ独立に水素原子又はメチル基を示し、n3は1~50の整数を示す。)
  3.  前記シアン酸エステル化合物(A)の含有量が、前記樹脂組成物中の樹脂固形分100質量部に対して、1~90質量部である、請求項1又は2に記載の樹脂組成物。
  4.  前記マレイミド化合物(B)が、2,2’-ビス{4-(4-マレイミドフェノキシ)-フェニル}プロパン、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン、下記式(B-1)で表されるマレイミド化合物、及び下記式(B-2)で表されるマレイミド化合物からなる群より選択される少なくとも1種を含有する、請求項1~3のいずれか一項に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000003
    (式(B-1)中、Rは、各々独立して、水素原子又はメチル基を表し、nは、1以上の整数を表す。)
    Figure JPOXMLDOC01-appb-C000004
    (上記式(B-2)中、複数存在するRは、それぞれ独立に、水素原子、炭素数1~5のアルキル基又はフェニル基を表し、nは、平均値であり、1<n≦5を表す。)
  5.  前記マレイミド化合物(B)の含有量が、前記樹脂組成物中の樹脂固形分100質量部に対して、10~90質量部である、請求項1~4のいずれか一項に記載の樹脂組成物。
  6.  前記エポキシ樹脂(C)のエポキシ当量が、250~850g/eqである、請求項1~5のいずれか一項に記載の樹脂組成物。
  7.  前記エポキシ樹脂(C)が、ビフェニルアラルキル型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、多官能フェノール型エポキシ樹脂及びナフタレン型エポキシ樹脂からなる群より選択される少なくとも1種を含有する、請求項1~6のいずれか一項に記載の樹脂組成物。
  8.  前記エポキシ樹脂(C)の含有量が、前記樹脂組成物中の樹脂固形分100質量部に対して、1~90質量部である、請求項1~7のいずれか一項に記載の樹脂組成物。
  9.  フェノール樹脂、オキセタン樹脂、ベンゾオキサジン化合物、及び重合可能な不飽和基を有する化合物からなる群より選択される少なくとも1種をさらに含有する、請求項1~8のいずれか一項に記載の樹脂組成物。
  10.  前記六方晶窒化ホウ素一次粒子(D)の含有量が、樹脂固形分100質量部に対して、50~1600質量部である、請求項1~9のいずれか一項に記載の樹脂組成物。
  11.  基材と、
     前記基材に含浸又は塗布された、請求項1~10のいずれか一項に記載の樹脂組成物と、
     を有する、プリプレグ。
  12.  少なくとも1枚以上積層された請求項11に記載のプリプレグと、
     前記プリプレグの片面又は両面に配された金属箔と、
     を有する、金属箔張積層板。
  13.  支持体と、
     前記支持体の表面に配された、請求項1~10のいずれか一項に記載の樹脂組成物と、
     を有する、樹脂シート。
  14.  絶縁層と、
     前記絶縁層の表面に形成された導体層と、
     を有し、
     前記絶縁層が、請求項1~10のいずれか一項に記載の樹脂組成物を含む、プリント配線板。
PCT/JP2018/001678 2017-02-07 2018-01-19 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板 WO2018147053A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/097,413 US11098195B2 (en) 2017-02-07 2018-01-19 Resin composition, prepreg, metal foil-clad laminate, resin sheet, and printed circuit board
CN201880001349.3A CN108779330B (zh) 2017-02-07 2018-01-19 树脂组合物、预浸料、覆金属箔层叠板、树脂片和印刷电路板
EP18751779.2A EP3581621B1 (en) 2017-02-07 2018-01-19 Resin composition, prepreg, metal foil attached laminate sheet, resin sheet, and printed wiring board
JP2018524293A JP6519965B2 (ja) 2017-02-07 2018-01-19 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板
KR1020187027065A KR102115720B1 (ko) 2017-02-07 2018-01-19 수지 조성물, 프리프레그, 금속박 피복 적층판, 수지 시트 및 프린트 배선판

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017020525 2017-02-07
JP2017-020525 2017-02-07

Publications (1)

Publication Number Publication Date
WO2018147053A1 true WO2018147053A1 (ja) 2018-08-16

Family

ID=63107350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001678 WO2018147053A1 (ja) 2017-02-07 2018-01-19 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板

Country Status (7)

Country Link
US (1) US11098195B2 (ja)
EP (1) EP3581621B1 (ja)
JP (1) JP6519965B2 (ja)
KR (1) KR102115720B1 (ja)
CN (1) CN108779330B (ja)
TW (1) TWI742230B (ja)
WO (1) WO2018147053A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020158623A (ja) * 2019-03-26 2020-10-01 大阪ガスケミカル株式会社 エポキシ系硬化性組成物ならびに硬化物およびその製造方法
JP2020173945A (ja) * 2019-04-10 2020-10-22 信越化学工業株式会社 低誘電放熱フィルム用組成物及び低誘電放熱フィルム
WO2021039732A1 (ja) * 2019-08-26 2021-03-04 富士フイルム株式会社 熱伝導材料形成用組成物、熱伝導材料、熱伝導シート、熱伝導層付きデバイス
CN112912445A (zh) * 2018-10-19 2021-06-04 三菱瓦斯化学株式会社 热固化性树脂组合物、预浸料、树脂片、覆金属箔层叠板和印刷电路板

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020090570A (ja) * 2018-12-03 2020-06-11 味の素株式会社 樹脂組成物
CN112955319A (zh) * 2018-12-12 2021-06-11 松下知识产权经营株式会社 树脂组合物、预浸料、具有树脂的膜、具有树脂的金属箔、覆金属层压体和印刷线路板
CN109810517B (zh) * 2018-12-25 2021-08-27 广东生益科技股份有限公司 树脂组合物、印刷电路用预浸片及覆金属层压板
JPWO2020235328A1 (ja) * 2019-05-20 2020-11-26
JP7409262B2 (ja) * 2020-08-24 2024-01-09 味の素株式会社 樹脂組成物
WO2024080455A1 (ko) * 2022-10-14 2024-04-18 삼도에이티에스(주) 고방열 고분자 복합소재시트 및 이의 제조방법

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010189470A (ja) * 2009-02-16 2010-09-02 Hitachi Chem Co Ltd 接着剤組成物、接着シート及び半導体装置
WO2011152402A1 (ja) 2010-06-02 2011-12-08 三菱瓦斯化学株式会社 樹脂組成物およびこれを用いたプリプレグ及び積層板
WO2012121224A1 (ja) 2011-03-07 2012-09-13 三菱瓦斯化学株式会社 樹脂組成物ならびにこれを用いたプリプレグおよび積層板
WO2013069479A1 (ja) 2011-11-07 2013-05-16 三菱瓦斯化学株式会社 樹脂組成物、これを用いたプリプレグ及び積層板
WO2015122378A1 (ja) * 2014-02-12 2015-08-20 電気化学工業株式会社 窒化ホウ素微粒子およびその製造方法
WO2016190260A1 (ja) * 2015-05-22 2016-12-01 日立化成株式会社 エポキシ樹脂組成物、熱伝導材料前駆体、bステージシート、プリプレグ、放熱材料、積層板、金属基板、及びプリント配線板
WO2017006891A1 (ja) * 2015-07-06 2017-01-12 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、金属箔張積層板、及びプリント配線板
WO2017145869A1 (ja) * 2016-02-22 2017-08-31 昭和電工株式会社 六方晶窒化ホウ素粉末、その製造方法、樹脂組成物及び樹脂シート
WO2017155110A1 (ja) * 2016-03-10 2017-09-14 デンカ株式会社 セラミックス樹脂複合体

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5477663A (en) * 1977-12-02 1979-06-21 Mitsubishi Gas Chem Co Inc Curable resin composition
JP4788457B2 (ja) 2006-04-18 2011-10-05 三菱瓦斯化学株式会社 プリプレグ並びに銅張積層板
KR101422315B1 (ko) 2007-05-25 2014-07-22 도쿠리츠교세이호징 붓시쯔 자이료 겐큐키코 수지 조성물
JP2009280720A (ja) 2008-05-23 2009-12-03 Denki Kagaku Kogyo Kk 六方晶窒化ホウ素粉末及び六方晶窒化ホウ素粉末含有樹脂組成物。
JP2010174242A (ja) * 2009-12-28 2010-08-12 Sumitomo Bakelite Co Ltd ビフェニルアラルキル型シアン酸エステル樹脂、並びにビフェニルアラルキル型シアン酸エステル樹脂を含む樹脂組成物、及び、当該樹脂組成物を用いてなるプリプレグ、積層板、樹脂シート、多層プリント配線板、並びに半導体装置
US20150034369A1 (en) * 2011-07-14 2015-02-05 Mitsubishi Gas Chemical Company, Inc. Resin composition for printed wiring boards
SG11201407874QA (en) 2012-06-12 2014-12-30 Mitsubishi Gas Chemical Co Resin composition, prepreg, metal foil-clad laminate and printed wiring board
US9905328B2 (en) 2013-06-03 2018-02-27 Mitsubishi Gas Chemical Company, Inc. Resin composition for printed wiring board material and prepreg, resin sheet, metal foil-clad laminate, and printed wiring board using the same
WO2014203866A1 (ja) * 2013-06-18 2014-12-24 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、樹脂シート及び金属箔張り積層板
JP6421755B2 (ja) * 2013-09-09 2018-11-14 三菱瓦斯化学株式会社 プリプレグ、金属箔張積層板及びプリント配線板
JP2015151483A (ja) * 2014-02-17 2015-08-24 三菱瓦斯化学株式会社 レジンシート、金属箔張積層板及びプリント配線板
JP6483508B2 (ja) * 2014-04-18 2019-03-13 株式会社トクヤマ 六方晶窒化ホウ素粉末及びその製造方法
WO2016093248A1 (ja) 2014-12-08 2016-06-16 日立化成株式会社 エポキシ樹脂組成物、樹脂シート、プリプレグ、樹脂付金属箔、金属基板、及びパワー半導体装置
JP6603965B2 (ja) 2015-02-02 2019-11-13 三菱ケミカル株式会社 六方晶窒化ホウ素単結晶およびその製造方法、該六方晶窒化ホウ素単結晶を配合した複合材組成物並びに該複合材組成物を成形してなる放熱部材
KR102490151B1 (ko) * 2015-03-18 2023-01-18 미츠비시 가스 가가쿠 가부시키가이샤 수지 조성물, 프리프레그, 금속박 피복 적층판, 수지 시트, 및 프린트 배선판
JP6744234B2 (ja) * 2016-02-04 2020-08-19 日本化薬株式会社 マレイミド樹脂組成物、プリプレグ及びその硬化物

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010189470A (ja) * 2009-02-16 2010-09-02 Hitachi Chem Co Ltd 接着剤組成物、接着シート及び半導体装置
WO2011152402A1 (ja) 2010-06-02 2011-12-08 三菱瓦斯化学株式会社 樹脂組成物およびこれを用いたプリプレグ及び積層板
WO2012121224A1 (ja) 2011-03-07 2012-09-13 三菱瓦斯化学株式会社 樹脂組成物ならびにこれを用いたプリプレグおよび積層板
WO2013069479A1 (ja) 2011-11-07 2013-05-16 三菱瓦斯化学株式会社 樹脂組成物、これを用いたプリプレグ及び積層板
WO2015122378A1 (ja) * 2014-02-12 2015-08-20 電気化学工業株式会社 窒化ホウ素微粒子およびその製造方法
WO2016190260A1 (ja) * 2015-05-22 2016-12-01 日立化成株式会社 エポキシ樹脂組成物、熱伝導材料前駆体、bステージシート、プリプレグ、放熱材料、積層板、金属基板、及びプリント配線板
WO2017006891A1 (ja) * 2015-07-06 2017-01-12 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、金属箔張積層板、及びプリント配線板
WO2017145869A1 (ja) * 2016-02-22 2017-08-31 昭和電工株式会社 六方晶窒化ホウ素粉末、その製造方法、樹脂組成物及び樹脂シート
WO2017155110A1 (ja) * 2016-03-10 2017-09-14 デンカ株式会社 セラミックス樹脂複合体

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112912445A (zh) * 2018-10-19 2021-06-04 三菱瓦斯化学株式会社 热固化性树脂组合物、预浸料、树脂片、覆金属箔层叠板和印刷电路板
CN112912445B (zh) * 2018-10-19 2023-04-04 三菱瓦斯化学株式会社 热固化性树脂组合物、预浸料、树脂片、覆金属箔层叠板和印刷电路板
US11760871B2 (en) 2018-10-19 2023-09-19 Mitsubishi Gas Chemical Company, Inc. Thermosetting resin composition, prepreg, resin sheet, metal foil-clad laminate, and printed wiring board
JP2020158623A (ja) * 2019-03-26 2020-10-01 大阪ガスケミカル株式会社 エポキシ系硬化性組成物ならびに硬化物およびその製造方法
JP7444543B2 (ja) 2019-03-26 2024-03-06 大阪ガスケミカル株式会社 エポキシ系硬化性組成物ならびに硬化物およびその製造方法
JP2020173945A (ja) * 2019-04-10 2020-10-22 信越化学工業株式会社 低誘電放熱フィルム用組成物及び低誘電放熱フィルム
JP7066654B2 (ja) 2019-04-10 2022-05-13 信越化学工業株式会社 低誘電放熱フィルム用組成物及び低誘電放熱フィルム
WO2021039732A1 (ja) * 2019-08-26 2021-03-04 富士フイルム株式会社 熱伝導材料形成用組成物、熱伝導材料、熱伝導シート、熱伝導層付きデバイス
JPWO2021039732A1 (ja) * 2019-08-26 2021-03-04
JP7257529B2 (ja) 2019-08-26 2023-04-13 富士フイルム株式会社 熱伝導材料形成用組成物、熱伝導材料、熱伝導シート、熱伝導層付きデバイス

Also Published As

Publication number Publication date
US20190153224A1 (en) 2019-05-23
EP3581621B1 (en) 2021-04-21
US11098195B2 (en) 2021-08-24
EP3581621A1 (en) 2019-12-18
EP3581621A4 (en) 2020-11-11
TWI742230B (zh) 2021-10-11
TW201840716A (zh) 2018-11-16
CN108779330B (zh) 2019-12-17
KR102115720B1 (ko) 2020-05-28
JP6519965B2 (ja) 2019-05-29
CN108779330A (zh) 2018-11-09
KR20190099117A (ko) 2019-08-26
JPWO2018147053A1 (ja) 2019-02-14

Similar Documents

Publication Publication Date Title
US11098195B2 (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet, and printed circuit board
JP7046602B2 (ja) 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート、及びプリント配線板
WO2016158067A1 (ja) プリント配線板用樹脂組成物、プリプレグ、樹脂複合シート及び金属箔張積層板
JP2019089929A (ja) 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板
JP6819921B2 (ja) 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板
JP6761572B2 (ja) 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板
JPWO2015119121A1 (ja) プリント配線板用樹脂組成物、プリプレグ、金属箔張り積層板、樹脂複合シート、及びプリント配線板
JP2017052884A (ja) 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板
JP6531910B2 (ja) 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板
JP6994171B2 (ja) 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板
JP6796276B2 (ja) 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板
JP6817529B2 (ja) 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート、樹脂複合シート及びプリント配線板
JP6618036B2 (ja) 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板
WO2018190292A1 (ja) 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板
JP6718588B2 (ja) 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板
JP6792204B2 (ja) 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板
JP2019119812A (ja) 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板
JP6504533B1 (ja) 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板
WO2016121957A1 (ja) プリント配線板用樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート、及びプリント配線板
JP6788807B2 (ja) 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート、及びプリント配線板
JP6829808B2 (ja) 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板
JP6761573B2 (ja) 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018524293

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187027065

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18751779

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018751779

Country of ref document: EP

Effective date: 20190909