WO2018045693A1 - 一种加氢催化剂、其制造方法及其应用 - Google Patents

一种加氢催化剂、其制造方法及其应用 Download PDF

Info

Publication number
WO2018045693A1
WO2018045693A1 PCT/CN2017/000318 CN2017000318W WO2018045693A1 WO 2018045693 A1 WO2018045693 A1 WO 2018045693A1 CN 2017000318 W CN2017000318 W CN 2017000318W WO 2018045693 A1 WO2018045693 A1 WO 2018045693A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
weight
hydrogenation catalyst
catalyst
carrier
Prior art date
Application number
PCT/CN2017/000318
Other languages
English (en)
French (fr)
Inventor
张乐
李明丰
李会峰
聂红
丁石
刘学芬
胡志海
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司石油化工科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610819780.1A external-priority patent/CN107812526B/zh
Priority claimed from CN201610817658.0A external-priority patent/CN107812528B/zh
Priority claimed from CN201610818804.1A external-priority patent/CN107812525B/zh
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司石油化工科学研究院 filed Critical 中国石油化工股份有限公司
Priority to RU2019106451A priority Critical patent/RU2745607C2/ru
Priority to JP2019513763A priority patent/JP7074746B2/ja
Priority to MYPI2019001222A priority patent/MY190669A/en
Priority to US16/332,292 priority patent/US11161105B2/en
Priority to EP17847869.9A priority patent/EP3511074A4/en
Publication of WO2018045693A1 publication Critical patent/WO2018045693A1/zh
Priority to SA519401259A priority patent/SA519401259B1/ar

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/12Silica and alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/882Molybdenum and cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • B01J23/8885Tungsten containing also molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • B01J27/049Sulfides with chromium, molybdenum, tungsten or polonium with iron group metals or platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • B01J27/051Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • B01J27/051Molybdenum
    • B01J27/0515Molybdenum with iron group metals or platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/132Halogens; Compounds thereof with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • B01J27/19Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/34Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0203Impregnation the impregnation liquid containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0213Preparation of the impregnating solution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/086Decomposition of an organometallic compound, a metal complex or a metal salt of a carboxylic acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/20Sulfiding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/28Phosphorising
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1048Middle distillates
    • C10G2300/1055Diesel having a boiling range of about 230 - 330 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P

Definitions

  • the invention relates to a catalyst, in particular a hydrogenation catalyst.
  • the invention also relates to a process for the manufacture of the hydrogenation catalyst and its use in the hydrotreating of feedstock oils.
  • hydrogenation catalysts are usually produced by an impregnation method.
  • Chinese Patent Application No. CN 103551162 A discloses a method of producing a hydrogenation catalyst.
  • the hydrogenation catalyst produced by the conventional impregnation method has room for further improvement in catalytic activity.
  • the hydrogenation catalyst can also be produced by a complex impregnation method.
  • Chinese Patent Application No. CN102909027A discloses a method of producing a hydrogenation catalyst by using an organic complexing agent in combination in an impregnation step.
  • the complex impregnation method can improve the catalytic activity of the hydrogenation catalyst to some extent, there is a problem that the catalytic activity is lowered too fast and the catalyst life is too short.
  • the prior art still requires a hydrogenation catalyst that exhibits improved catalytic activity compared to existing hydrogenation catalysts while exhibiting a significantly extended catalyst life.
  • the inventors of the present invention have found through intensive research that, on the one hand, in the prior art complex impregnation method, the active component and the carrier can be weakened by introducing an organic complexing agent in the impregnation process and drying at a low temperature. Function, increase metal dispersion, change the metal vulcanization sequence, form more highly active active phase and increase the number of active centers.
  • the metal compound is still present on the surface of the carrier in the form of metal salts, the active component and the carrier. The weak force causes the metal to accumulate during the reaction under the conditions of high temperature and high pressure and hydrogenation of the harsh raw materials.
  • the auxiliary effect is weakened, the number of active centers is reduced, and the intrinsic activity is decreased, resulting in the hydrogenation produced thereby.
  • the catalytic activity and stability of the catalyst are lowered.
  • the hydrogenation catalyst prepared by the prior art impregnation method has better stability, but the active component and the carrier have stronger interaction, and the active center has lower intrinsic activity, because there is no dispersion of the complexing agent.
  • the barrier effect the active component platelets are larger, the number of active centers is smaller, and the catalytic activity is difficult to increase.
  • the inventors of the present invention believe that the catalytic activity of the catalyst can be improved not only by adding an organic complexing agent in the first impregnation step but also by calcining according to the production method of the present invention. Moreover, it is possible to effectively maintain the high activity of the catalyst for a long time, thereby greatly increasing the service life of the catalyst.
  • the reason may be that when the organic complexing agent is added in the first impregnation step, the presence of the organic complexing agent hinders the aggregation of the active metal during the calcination, making the dispersion more uniform; at the same time, the first impregnation step Subsequent calcination can convert the metal compound into a metal oxide, thereby making the bond between the active metal and the support stronger, improving the catalytic activity and stability of the catalyst.
  • the active metal can be effectively prevented from agglomerating during the vulcanization process, the metal dispersity is improved, and the formation of a higher activity is more favorable. Class II active phase and more active centers to further increase the catalytic activity of the catalyst.
  • the inventors of the present invention have completed the present invention based on the foregoing findings and have solved the aforementioned problems existing in the prior art.
  • the present invention relates to the following aspects.
  • a method of producing a hydrogenation catalyst comprising the steps of:
  • the method of manufacture also optionally includes one or more of the following steps:
  • step (0) comprises the steps of:
  • the carrier precursor composition comprises a carrier precursor, a molding aid, and an optional coagent
  • the coagent is selected from the group consisting of metal coagents (preferably selected from the group IIB metal elements (such as one or more selected from the group consisting of zinc and cadmium), and the Group IA metal elements (such as selected from the group consisting of lithium and sodium).
  • metal coagents preferably selected from the group IIB metal elements (such as one or more selected from the group consisting of zinc and cadmium)
  • Group IA metal elements such as selected from the group consisting of lithium and sodium
  • the non-metallic coagent in terms of non-metallic elements and the total weight of the hydroprocessing catalyst as a reference, in an amount of from 0% to 10% by weight, preferably from 0.5 wt% to 6 wt%.
  • calcination conditions of the step (0-2) comprise: calcination temperature from 250 ° C to 500 ° C, preferably from 350 ° C to 450 ° C, calcination time from 2 h to 8h, preferably from 3h to 6h.
  • step (0-3) comprises the following steps:
  • step (1) comprises the steps of:
  • the impregnation product is heat-treated at a temperature of from 100 ° C to 250 ° C (preferably from 100 ° C to 200 ° C) to obtain the composite carrier.
  • the calcination conditions of the step (2) comprise: calcination temperature from 350 ° C to 500 ° C, preferably from 360 ° C to 450 ° C, calcination time from 0.5 h to 8 h
  • an oxygen-containing gas preferably having an oxygen content of not less than 20 vol% is introduced, and the oxygen-containing gas is introduced in an amount of more than 0.2 liter/(g ⁇ hr) based on the weight of the carrier. It is preferably from 0.2 liter / (gram hour) to 20 liter / (gram hour), further preferably from 0.3 liter / (gram hour) to 10 liter / (gram hour).
  • step (3) comprises the following steps:
  • the impregnation product is heat-treated at a temperature of from 100 ° C to 250 ° C (preferably from 100 ° C to 200 ° C) to obtain the hydrogenation catalyst.
  • the content of the first active metal component or the first active metal group is based on an oxide and based on the total weight of the hydrogenation catalyst
  • the total content of the second active metal component is from 6% by weight to 70% by weight, preferably from 15% by weight to 60% by weight, preferably from 20% by weight to 50% by weight, preferably from 20% by weight to 40% by weight % by weight; a molar ratio of the first organic complexing agent to the first active metal component of from 0.03:1 to 2:1, preferably from 0.08:1 to 1.5:1; the first organic complex
  • the molar ratio of the agent to the second organic complexing agent is from 1:0.25 to 1:4, preferably from 1:0.5 to 1:2; the first active metal component and the second active metal component
  • the molar ratio is from 1:0 to 1:0.4, preferably from 1:0 to 1:0.1.
  • the carrier precursor is selected from the group consisting of alumina, silica, alumina-silica, titania, magnesia, silica-magnesia, Silica-zirconia, silica-yttria, silica-yttria, silica-titania, silica-zirconia, titania-zirconia, silica-alumina-yttria, silica-alumina
  • the carrier precursor is selected from the group consisting of alumina, silica, alumina-silica, titania, magnesia, silica-magnesia, Silica-zirconia, silica-yttria, silica-yttria, silica-titania, silica-zirconia, titania-zirconia, silica-alumina-yttria, silica-alumina
  • organic compound A and the organic compound B do not contain oxygen-oxygen direct bonding, nitrogen-nitrogen direct bonding, and nitrogen-oxygen direct bonding in their molecular structures.
  • the first organic complexing agent and the second organic complexing agent are the same or different from each other, each independently selected from (i) optionally with one or more (such as 1 to 5, 1 to 4) , 1 to 3, 1 to 2 or 1)-R 2 —OH (wherein the group R 2 represents a single bond or a C 1-10 linear or branched alkylene group, preferably a single bond or C a linear or branched alkylene group, preferably a single bond or a C 1-3 linear or branched alkylene group, as a substituent, a C 1-20 (preferably C 2-7 ) aliphatic or C 5 a -10 alicyclic mono- or polycarboxylic acid or a salt thereof (such as one or more selected from the group consisting of acetic acid, maleic acid, oxalic acid, citric acid, tartaric acid, and malic acid), (ii) optionally with one or A plurality (for example, 1 to 5, 1 to 4, 1 to 3, 1 to 2 or 1)
  • first active metal component and the second active metal component are the same or different from each other, each independently selected from a metal element of Group VIB of the periodic table. (preferably one or more selected from the group consisting of molybdenum and tungsten) and one or more of the metal elements of Group VIII of the Periodic Table of the Elements (preferably selected from one or more of cobalt and nickel), preferably each independently Selected from one or more of the Group VIB metal elements of the Periodic Table of the Elements and one or more of the Group VIII metal elements of the Periodic Table of the Elements, more preferably each independently selected from the group consisting of molybdenum and/or tungsten and cobalt And / nickel combination.
  • a metal element of Group VIB of the periodic table preferably one or more selected from the group consisting of molybdenum and tungsten
  • the metal elements of Group VIII of the Periodic Table of the Elements preferably selected from one or more of cobalt and nickel combination.
  • step (3) In or after, the calcination step is not included, and/or, in or after the step (3), the step of introducing a coagent and/or a hydrogenation-active metal element is not included.
  • a hydrogenation catalyst composition comprising a hydrogenation catalyst I and a hydrogenation catalyst II, wherein the hydrogenation catalyst I is different from the hydrogenation catalyst II by volume and by the hydrogenation catalyst composition
  • the hydrogenation catalyst I is contained in an amount of 5 to 95%, preferably 10 to 80%, more preferably 20 to 70%, based on the total volume, and the hydrogenation catalyst I is produced according to any of the preceding aspects. Process for the manufacture of hydrogenation catalysts.
  • a hydrotreating process comprising contacting a feedstock oil with a hydrogenation catalyst according to any one of the preceding aspects or a hydrogenation catalyst composition according to any of the preceding aspects in the presence of hydrogen to carry out a hydrogenation reaction A step of.
  • the conditions of the hydrogenation reaction comprise: a reaction temperature of from 300 ° C to 400 ° C, preferably from 320 ° C to 380 ° C, and a reaction pressure of from 1 MPa to 10 MPa. (gauge pressure), preferably from 1 MPa to 8 MPa (gauge pressure), when the liquid hourly space velocity of the feedstock of from 0.5 hr -1 to 3 hr-1, preferably of from 0.5 hr -1 to 2.5 hours - 1.
  • the hydrogen oil volume ratio is from 100 to 800, preferably from 100 to 700.
  • the hydrogenation catalyst according to the present invention has both excellent hydrodesulfurization activity and hydrodenitrogenation activity.
  • the hydrogenation catalyst according to the present invention exhibits a significantly prolonged catalyst life.
  • the expression "optionally substituted” means, optionally, one or more selected from the group consisting of hydroxy, amino, C 1-10 straight or branched alkyl, C 2 - unless otherwise specifically indicated. Substituted by a substituent of 10 straight or branched alkenyl, C 3-20 cycloalkyl and C 6-20 aryl. Examples of the substituent group, preferably a hydroxyl group, an amino group and C 1-10 straight or branched chain alkyl, more preferably C 1-10 straight-chain or branched-chain alkyl group.
  • C 1-10 linear or branched alkyl group specifically, for example, a C 1-6 linear or branched alkyl group or a C 1-4 linear or branched alkyl group may be mentioned, more specifically, for example.
  • Methyl, ethyl, propyl, n-butyl, isobutyl and n-hexyl groups can be mentioned.
  • C 2-10 linear or branched alkenyl group examples include a C 2-6 straight-chain or branched alkenyl group or a C 2-4 straight-chain or branched alkenyl group, and more specifically, for example, Vinyl, allyl, propenyl, n-butenyl, isobutenyl and n-hexenyl.
  • C3-20 cycloalkane refers to a monocyclic, bicyclic or polycyclic cycloalkane having from 3 to 20 ring carbon atoms.
  • specific examples of the C 3-20 cycloalkane include monocyclic cycloalkanes such as cyclopropane, cyclohexane, and cyclopentane, and dicyclopentane, decalin, adamantane, and spiro[2.4].
  • C 3-20 cycloalkane a C 3-15 cycloalkane is preferred, and a C 5-10 cycloalkane or a C 5-7 cycloalkane is more preferred.
  • C 3-20 cycloalkyl refers to a monovalent group obtained by the C 3-20 cycloalkane losing one hydrogen atom.
  • C 6-20 aryl refers to an aromatic hydrocarbon radical having from 6 to 20 carbon atoms on the ring.
  • the C 6-20 aryl group include a group in which two or more benzene rings such as a phenyl group, a biphenyl group, and a terphenyl group are directly bonded by a single bond, and a naphthyl group, a fluorenyl group, and the like.
  • a phenyl group, a naphthyl group, and a biphenyl group are more preferable.
  • the term "unsaturated impregnation method” applies to the most conventional understanding in the art, meaning that the volume of the dampening fluid for dipping (also referred to as the dipping or wetting fluid) is less than that when impregnating.
  • the saturated liquid absorption of the object to be impregnated such as carrier particles, etc.
  • the ratio of the volume of the dampening solution to the saturated liquid absorption (converted to volume) of the object to be impregnated is generally 0.01-0.6. : 1, preferably 0.02-0.4:1.
  • the unsaturated impregnation method is generally carried out under normal temperature and normal pressure, but may be carried out under heating, reduced pressure or under pressure as needed, and is not particularly limited.
  • the term "saturated impregnation method" (also referred to as an equal volume impregnation method) is applied in the most conventional manner of understanding in the art, and refers to a dampening solution for dipping (also referred to as an impregnating liquid) during impregnation.
  • the volume of the wetting fluid (substantially) is equal to the saturated liquid absorption of the object to be impregnated (such as carrier particles, etc.).
  • the ratio of the volume of the dampening solution to the saturated liquid absorption (converted to volume) of the object to be impregnated is generally 0.9-1.1. : 1, preferably 0.95-1.05:1.
  • the saturated dipping method is generally carried out under normal temperature and normal pressure, but may be carried out under heating, reduced pressure or under pressure as needed, and is not particularly limited.
  • the term "excessive impregnation” applies to the most conventional understanding in the art, meaning that the volume of the dampening fluid (also referred to as the impregnation or wetting fluid) is greater than that when being impregnated.
  • the saturated liquid absorption of the impregnated object such as carrier particles, etc.
  • the ratio of the volume of the dampening solution to the saturated liquid absorption (converted to volume) of the object to be impregnated is generally 1.5-15. : 1, preferably 5-10:1.
  • the excessive impregnation method is generally carried out under normal temperature and normal pressure, but may be carried out under heating, reduced pressure or under pressure as needed, and is not particularly limited.
  • the manufacturing method includes at least the following steps:
  • the carrier for example, any material known in the art which can be used as a hydrogenation catalyst carrier can be cited, and is not particularly limited.
  • Specific examples include, for example, a porous refractory carrier.
  • a porous refractory carrier for example, a porous refractory oxide is preferable, and a porous inorganic refractory oxide is preferable.
  • the porous inorganic refractory oxide include oxides of Group II, Group III, and Group IV elements of the periodic table, and more specifically, for example, alumina, silica, and oxidation.
  • specific examples of the alumina include ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, and cerium-alumina, and ⁇ -alumina is preferable.
  • the carrier in the step (1), contains alumina as an essential component.
  • alumina include ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, and cerium-alumina, and ⁇ -alumina is preferable.
  • the carrier is a particulate material (i.e., a molding material) instead of an amorphous material such as a powder.
  • a shape of the particles various shapes conventionally used as a (forming) carrier known as a hydrogenation catalyst in the art may be mentioned, and for example, a spherical shape, a column shape, a sheet shape, and the like may be further exemplified, and a spherical shape or a column shape is preferable.
  • the spherical shape include a spherical shape and an ellipsoidal shape.
  • the columnar shape include a columnar shape, a square column shape, and a columnar shape having a profiled cross section (for example, a clover).
  • the carrier in the step (1), can be molded into a pellet by any method conventionally known in the art, and a commercially available granular product can also be used.
  • the specific surface area (BET method) of the carrier is generally from 100 to 500 m 2 /g, preferably from 150 to 400 m 2 /g.
  • the pore volume (BET method) of the carrier is generally from 0.1 to 1.0 ml/g, preferably from 0.3 to 0.9 ml/g.
  • the bulk density (mechanical percussion method) of the carrier is generally from 40 to 100 g/100 ml, preferably from 45 to 70 g/100 ml.
  • the saturated liquid absorption of the carrier is generally from 40 to 140 ml/100 g, preferably from 60 to 120 ml/100 g.
  • 100 g of the granular porous refractory carrier was weighed into a separatory funnel, and then 300 ml of purified water was added to make the water surface exceed the surface of the carrier, and it was left for 30 minutes, and then the excess water was drained. In the graduated cylinder, the volume L of excess water is obtained. At this time, the formula for calculating the saturated liquid absorption amount is (300-L) ⁇ 100 (ml/100 g).
  • the average particle size (sieving method) of the carrier is generally from 2 mm to 8 mm, preferably from 3 mm to 5 mm.
  • the order of contact between the first active metal component and the first organic complexing agent and the carrier is not particularly limited, and specific examples thereof include a method in which an active metal component and the first organic complexing agent simultaneously contact the carrier (referred to as a one-step contact method), and the first active metal component and the first organic complex may also be mentioned
  • a multi-step contact method The manner in which the agents are sequentially contacted with the carrier in a sequential order (referred to as a multi-step contact method).
  • heat treatment e.g., drying
  • the present invention does not limit the drying method and drying conditions of the contact product, and can refer to information known in the art.
  • the drying temperature is generally from 100 ° C to 250 ° C, preferably from 100 ° C to 200 ° C
  • the drying time is generally from 1 h to 12 h, preferably from 1 h to 10 h.
  • a coagent in addition to the first active metal component and the first organic complexing agent, a coagent may be further introduced and made Carrier contact.
  • the order of contact between the first active metal component, the first organic complexing agent, and the coagent and the carrier is not particularly limited.
  • the first active metal component, the first a method in which an organic complexing agent and the coagent are simultaneously contacted with the carrier referred to as a one-step contact method
  • the first active metal component, the first organic complexing agent, and the The manner in which the coagents are sequentially contacted with the carrier in sequence or in any combination with each other referred to as a multi-step contact method.
  • heat treatment e.g., drying
  • the present invention does not limit the drying method and drying conditions of the contact product, and can refer to information known in the art.
  • the drying conditions for example, the drying temperature is generally from 100 ° C to 250 ° C, preferably from 100 ° C to 200 ° C, and the drying time is generally from 1 h to 12 h, preferably from 1 h to 10 h.
  • the drying temperature is generally from 100 ° C to 250 ° C, preferably from 100 ° C to 200 ° C
  • the drying time is generally from 1 h to 12 h, preferably from 1 h to 10 h.
  • it is preferred to heat-treat the obtained contact product after the end of the contacting step such as drying, roasting, or drying. Roasting.
  • the present invention does not limit the drying method and drying conditions of the contact product, and can refer to information known in the art.
  • the drying temperature is generally from 100 ° C to 250 ° C, preferably from 100 ° C to 200 ° C, and the drying time is generally from 1 h to 12 h, preferably from 1 h to 10 h.
  • the present invention does not have any limitation on the calcination method and the calcination conditions of the contact product, and can refer to information known in the art.
  • the calcination conditions for example, the calcination temperature is generally from 250 ° C to 600 ° C, preferably from 350 ° C to 500 ° C, and the calcination time is generally from 2 h to 8 h, preferably from 3 h to 6 h.
  • the manner of contacting the first active metal component, the first organic complexing agent, and the optional coagent with the carrier is not particularly limited, Specifically, for example, any manner in which the first active metal component, the first organic complexing agent, and the optional coagent may be supported on the carrier may be mentioned, and more specifically, for example, The first active metal component, the first organic complexing agent and the optional coagent are impregnated with the support to obtain a manner of impregnating the product.
  • the impregnation can be carried out in any manner known in the art.
  • the temperature of the impregnation in the present invention is not particularly limited, and may be various temperatures which can be achieved by the immersion liquid, and the time of the immersion is not particularly limited as long as the desired amount of the desired component can be loaded. can.
  • the temperature of the impregnation may be from 15 to 60 ° C, and the time of the impregnation may be from 0.5 to 5 hours.
  • step (1) more specifically by way of example, as the contact
  • an impregnation liquid preferably an aqueous solution
  • a prepreg carrier is obtained, and then the predetermined amount is contained.
  • the impregnation liquid preferably an aqueous solution
  • the impregnation liquid is impregnated with the carrier, and after drying as described above,
  • an impregnation liquid preferably an aqueous solution
  • An impregnation liquid preferably an aqueous solution
  • An impregnation liquid is impregnated into the carrier, and after drying as described above, a prepreg carrier is obtained, and then an impregnation liquid containing a predetermined amount of the first active metal component and the remaining amount of the first organic complexing agent is obtained.
  • the preferred pre-impregnated support is impregnated (preferably aqueous) to obtain a manner of impregnating the product.
  • the obtained composite carrier or impregnated product may be subjected to a heat treatment such as drying.
  • a heat treatment such as drying.
  • the present invention does not limit the drying mode and drying conditions of the composite carrier or the impregnated product, and can refer to information known in the art.
  • the drying conditions for example, the drying temperature is generally from 100 ° C to 250 ° C, preferably from 100 ° C to 200 ° C, and the drying time is generally from 1 h to 12 h, preferably from 1 h to 10 h.
  • the heat treatment product obtained by the heat treatment in the present invention is also referred to as a composite carrier.
  • the composite carrier is fired, whereby the calcined composite carrier is obtained.
  • the total carbon content of the calcined composite carrier must be 1% by weight or less based on the dry basis and based on the dry basis weight of the calcined composite carrier.
  • the calcination mode and the calcination conditions of the composite carrier are not limited as long as they can make the calcined composite carrier finally obtained.
  • the total carbon content may be 1% by weight or less (on a dry basis and based on the dry basis weight of the calcined composite carrier).
  • Specific examples of the calcination conditions include, for example, a calcination temperature of usually from 350 ° C to 500 ° C, preferably from 360 ° C to 450 ° C, and a calcination time of generally from 0.5 h to 8 h, preferably from 1 h to 6 h.
  • the calcination is preferably carried out under an oxygen-containing atmosphere, more preferably under an oxygen-containing gas.
  • the oxygen-containing gas is generally introduced in an amount of more than 0.2 liter / (grams per hour), preferably 0.2 to 20 liters / gram per hour, more preferably 0.3 - 10 based on the weight of the carrier. l / (g ⁇ hour). " ⁇ " herein means the weight of the carrier.
  • the oxygen-containing gas for example, air, oxygen, and other oxygen-containing gas may be mentioned.
  • the volume content of oxygen in the oxygen-containing gas is generally not less than 20% by volume.
  • the range of the total carbon content may further be 0.5% by weight or less or less than 0.5% by weight, 0.4% by weight or less, or less than 0.4% by weight and 0.3% by weight or less. Or less than 0.3% by weight, 0.1% by weight or less or less than 0.1% by weight, 0.08% by weight or less or less than 0.08% by weight, 0.06% by weight or less or less than 0.06% by weight, 0.04% by weight or less or less than 0.04% by weight , 0.03 wt% or less or less than 0.03 wt%, 0.01 wt% or less or less than 0.01 wt%, 0.005 wt% or less or less than 0.005 wt%, based on the dry basis and the dry weight of the calcined composite carrier Benchmark.
  • the total carbon content refers to the total content of carbon in any form in the calcined composite carrier, including but not limited to organic compound carbon (such as organic matter), inorganic compound carbon (such as carbonate). ) and elemental carbon.
  • the second organic complexing agent is contacted with the calcined composite carrier to obtain the hydrogenation catalyst of the invention.
  • the manner of contacting the second organic complexing agent with the calcined composite carrier is not particularly limited, and specifically, for example, the second organic complexing agent can be made Any manner of supporting the calcined composite carrier, more specifically, for example, immersing the second organic complexing agent in the calcined composite carrier to obtain a dip The way of staining products.
  • the impregnation can be carried out in any manner known in the art. For example, as the impregnation method, an unsaturated impregnation method, a saturated impregnation method, and an excessive impregnation method can be mentioned.
  • the temperature of the impregnation in the present invention is not particularly limited, and may be various temperatures which can be achieved by the immersion liquid, and the time of the immersion is not particularly limited as long as the desired amount of the desired component can be loaded. can.
  • the temperature of the impregnation may be from 15 to 60 ° C, and the time of the impregnation may be from 0.5 to 5 hours.
  • the contact means for example, immersing the immersion liquid (preferably an aqueous solution) containing the predetermined amount of the second organic complexing agent
  • An amount of the impregnation liquid (preferably an aqueous solution) of the second organic complexing agent is impregnated with the prepreg carrier to obtain a manner of impregnating the product.
  • the present invention does not limit the manner and conditions of the drying, and can refer to information known in the art.
  • the drying conditions for example, the drying temperature is generally from 100 ° C to 250 ° C, preferably from 100 ° C to 200 ° C, and the drying time is generally from 1 h to 12 h, preferably from 1 h to 10 h.
  • the obtained hydrogenation catalyst or impregnated product may be subjected to heat treatment such as drying.
  • the present invention does not limit the manner and conditions of the drying, and can refer to information known in the art.
  • the drying conditions for example, the drying temperature is generally from 100 ° C to 250 ° C, preferably from 100 ° C to 200 ° C, and the drying time is generally from 1 h to 12 h, preferably from 1 h to 10 h.
  • the heat treatment product obtained by the heat treatment in the present invention is also referred to as a hydrogenation catalyst.
  • the heat treatment is such that at least 50% by weight (for example at least 60% by weight, at least 70% by weight or at least 80% by weight) of the second organic complexing agent or its thermal decomposition product remains in the In the hydrogenation catalyst. More preferably, the heat treatment does not include calcination, or in other words, in the step (3) or after the end of the step (3), the obtained hydrogenation catalyst or impregnation product is not subjected to Roasting.
  • the term "baking" can be understood according to the general knowledge in the art, for example, it can be understood that the sample to be treated is placed at a temperature of from 300 ° C to 500 ° C for at least 0.1 h or longer.
  • the calcined composite support incorporates any effective amount of a coagent (described below) and/or any effective amount of a hydrogenation active metal element (described below), preferably without introducing any effective amount into the calcined composite support.
  • a coagent described below
  • a hydrogenation active metal element described below
  • the term "effective amount” refers to the minimum amount of the relevant component capable of exerting the intended function or effect, as will be readily understood by those skilled in the art.
  • the method of producing the hydrogenation catalyst may further include a step of producing the carrier (referred to as step (0)).
  • the method for producing the carrier is not limited in any way, and any method known in the art which can be used for the production of a carrier for a hydrogenation catalyst can be employed without particular limitation.
  • the step (0) may be performed in a manner including at least the following two steps.
  • the preformed carrier is fired to obtain the carrier.
  • the carrier precursor composition comprises a carrier precursor and a shaping aid.
  • the carrier precursor composition may further comprise a coagent.
  • any material known in the art which can be used as a precursor of a hydrogenation catalyst carrier can be cited, and is not particularly limited.
  • Specific examples include, for example, a porous refractory oxide (including a precursor thereof), and a porous inorganic refractory oxide (including a precursor thereof).
  • examples of the porous inorganic refractory oxide include oxides of Group II, Group III, and Group IV elements of the periodic table, and more specifically, for example, alumina, silica, and oxidation.
  • the precursor of the alumina hydrated alumina, an aluminum salt, an organoaluminum, and an aluminum sol are particularly exemplified.
  • alumina trihydrate, alumina monohydrate, amorphous aluminum hydroxide, and boehmite may be mentioned.
  • a water-soluble silicon-containing compound or a hydrogel can be hydrolyzed to form a silicone gel or
  • the silicon-containing compound of the sol is more specifically, for example, water glass, silica sol, silica gel, and silicate.
  • These carrier precursors may be used alone or in combination of any ones in any ratio.
  • the carrier precursor contains alumina (including its precursor) as an essential component.
  • any molding aid which can be used in the production of a catalyst carrier is known in the art, and is not particularly limited.
  • Specific examples thereof include water, a squeezing agent, a peptizing agent, a pH adjuster, a pore forming agent, and a lubricant, and more specifically, for example, phthalocyanine powder, citric acid, methyl cellulose, starch, polyvinyl alcohol, and poly Ethanol.
  • These molding aids may be used alone or in combination of any ones in any ratio. Further, the amount of these forming aids can be referred to the information known in the art, and is not particularly limited.
  • the method for producing the carrier precursor composition is not particularly limited as long as the carrier precursor, the molding aid, and the optional A combination of coagents can be used.
  • the carrier precursor, the molding aid, and the optional coagent may be mixed in a predetermined ratio until uniform. method.
  • the molding method of the carrier precursor or the carrier precursor composition is not limited as long as it is known in the art to be used for the production of a carrier for a hydrogenation catalyst. Any molding method can be used. Specific examples of the molding method include a dropping ball molding method, a ball granulation method, an extrusion molding method, and a compression molding method, and more particularly, a dropping ball molding method and an extrusion molding method.
  • the shape of the preformed support is not limited in any way, as long as it is various shapes conventionally used as a shaped support of a hydrogenation catalyst in the art, and is applicable. of.
  • Specific examples of the shape of the preformed carrier include a spherical shape, a column shape, a sheet shape, and the like, and a spherical shape or a column shape is preferable.
  • Examples of the spherical shape include a spherical shape and an ellipsoidal shape.
  • the columnar shape include a columnar shape, a square column shape, and a columnar shape having a profiled cross section (for example, a clover).
  • the size of the preformed support is not limited in any way, as long as it is various sizes conventionally used as a hydrogenation catalyst carrier in the art, and is applicable.
  • an average particle size is generally from 2 mm to 8 mm, preferably from 3 mm to 5 mm.
  • the calcination mode and the calcination conditions of the preformed support are not limited as long as it is any calcination method known in the art which can be used for the production of a support for a hydrogenation catalyst and Calcination conditions can be used.
  • Specific examples of the calcination conditions include, for example, a calcination temperature of usually from 250 ° C to 500 ° C, preferably from 350 ° C to 450 ° C, and a calcination time of generally from 2 h to 8 h, preferably from 3 h to 6 h.
  • the preformed support may be dried prior to performing the step (0-2).
  • the present invention does not have any limitation on the drying mode and drying conditions of the preform carrier, and any drying method and drying conditions which can be used in the art for producing a carrier for a hydrogenation catalyst can be employed.
  • the drying condition for example, the drying temperature is generally from 100 ° C to 250 ° C, preferably from 100 ° C to 200 ° C, and the drying time is generally from 1 h to 12 h, preferably from 1 h to 10 h.
  • the step (0) may further comprise the step of contacting the coagent with the support to obtain a contact product (referred to as step (0-3)).
  • the carrier refers to a carrier obtained after the end of the step (0-2).
  • the step (0) may further comprise the step of contacting the second active metal component with the support to obtain a contact product (also referred to as step (0-3)).
  • the carrier refers to a carrier obtained after the end of the step (0-2).
  • the step (0) may further comprise the step of contacting the coagent and the second active metal component with the support to obtain a contact product (also referred to as step (0-3). )).
  • the carrier refers to a carrier obtained after the end of the step (0-2).
  • the coagent and the second active metal component are The order of contact of the carrier is not particularly limited, and specific examples thereof include a method in which the coagent and the second active metal component are simultaneously contacted with the carrier (referred to as a one-step contact method), and The manner in which the coagent and the second active metal component are sequentially contacted with the carrier in a sequential order (referred to as a multi-step contact method).
  • a multi-step contact method it is preferred to subject the obtained contact product to heat treatment (for example, calcination, or drying and calcination) after the end of each contact step.
  • the present invention does not have any limitation on the drying mode and drying conditions of the contact product, and can be referred to in the art. information.
  • the drying conditions for example, the drying temperature is generally from 100 ° C to 250 ° C, preferably from 100 ° C to 200 ° C, and the drying time is generally from 1 h to 12 h, preferably from 1 h to 10 h.
  • the present invention does not have any limitation on the calcination method and the calcination conditions of the contact product, and can refer to information known in the art.
  • the calcination temperature is generally from 250 ° C to 600 ° C, preferably from 350 ° C to 500 ° C
  • the calcination time is generally from 2 h to 8 h, preferably from 3 h to 6 h.
  • the manner of contacting the coagent and/or the second active metal component with the carrier is not particularly limited, and specific examples thereof include Any means for supporting the coagent and/or the second active metal component to be supported on the carrier, more specifically, for example, impregnating the coagent and/or the second active metal component
  • the carrier is obtained to obtain a manner of impregnating the product.
  • the impregnation can be carried out in any manner known in the art.
  • an unsaturated impregnation method a saturated impregnation method, and an excessive impregnation method can be mentioned.
  • the temperature of the impregnation in the present invention is not particularly limited, and may be various temperatures which can be achieved by the immersion liquid, and the time of the immersion is not particularly limited as long as the desired amount of the desired component can be loaded. can.
  • the temperature of the impregnation may be from 15 to 60 ° C, and the time of the impregnation may be from 0.5 to 5 hours.
  • an impregnation liquid preferably an aqueous solution containing a predetermined amount of the coagent may be immersed in the carrier.
  • an impregnation liquid preferably an aqueous solution
  • an impregnation liquid preferably an aqueous solution
  • an impregnation liquid preferably an aqueous solution
  • an impregnation liquid preferably an aqueous solution
  • an impregnation liquid preferably an aqueous solution
  • an impregnation liquid preferably an aqueous solution
  • Immersing the prepreg carrier with an impregnation liquid preferably an aqueous solution
  • an impregnation liquid preferably an aqueous solution
  • a predetermined amount of the second active metal component to obtain an impregnation product
  • firstly immersing an impregnation liquid containing a partial amount of the coagent The aqueous solution is impregnated with the carrier, dried and calcined as described above to obtain a pre-impregnated carrier, and then An impregnation liquid (preferably an aqueous solution) having a predetermined amount of the second active metal component and a remaining amount of the coagent is impregnated with the prepreg carrier to obtain a manner of impregnating the product.
  • the obtained contact product or impregnated product may be subjected to heat treatment such as baking, drying or drying and then calcination.
  • the present invention does not limit the manner and conditions of the drying, and can refer to information known in the art.
  • the drying conditions for example, the drying temperature is generally from 100 ° C to 250 ° C, preferably from 100 ° C to 200 ° C, and the drying time is generally from 1 h to 12 h, preferably from 1 h to 10 h.
  • the present invention does not limit the manner and conditions of the calcination, and can refer to information known in the art.
  • the calcination temperature is generally from 250 ° C to 600 ° C, preferably from 350 ° C to 500 ° C
  • the calcination time is generally from 2 h to 8 h, preferably from 3 h to 6 h.
  • the heat treatment product obtained by the heat treatment in the present invention is also referred to as a carrier.
  • the method of producing the hydrogenation catalyst may further include a step of vulcanizing the hydrogenation catalyst (referred to as step (4)).
  • the hydrogenation catalyst refers to any hydrogenation catalyst produced by the above-described method for producing a hydrogenation catalyst of the present invention.
  • the vulcanization conditions generally include: in the presence of hydrogen, the vulcanization temperature is from 180 ° C to 450 ° C, and the sulfurization reagent is sulfur, hydrogen sulfide, carbon disulfide, dimethyl disulfide or polysulfide, and the vulcanization time is From 2h to 48h.
  • the vulcanization can be carried out outside the hydrogenation reactor or in the hydrogenation reactor (corresponding to in-situ vulcanization).
  • any hydrogenation-active metal element known in the art may be used, specifically The metal element of Group VIB of the periodic table and the metal element of Group VIII of the periodic table can be cited.
  • the metal element of Group VIB of the periodic table more specifically, for example, molybdenum and tungsten are exemplified as the metal element of Group VIII of the periodic table, and more specifically, cobalt and nickel are exemplified.
  • These hydrogenation-active metal elements may be used alone or in combination of any ones in any ratio.
  • the first active metal component and the second active metal component may be the same or different, each independently representing a A hydrogenation active metal element.
  • the molar ratio of the first active metal component to the second active metal component is generally from 1:0 to 1:0.4, preferably from 1:0 to 1:0.1, more preferably not introduced A second active metal component.
  • the metal element of Group VIB of the periodic table and the metal element of Group VIII of the periodic table are used in combination.
  • the combination specifically, for example, a combination of molybdenum and tungsten and cobalt, a combination of molybdenum and tungsten and nickel, a combination of tungsten and cobalt and nickel, a combination of molybdenum and nickel, molybdenum and cobalt or tungsten and nickel may be mentioned. .
  • the hydrogenation-active metal element can be used in any form known in the art.
  • a use form of the hydrogenation-active metal element for example, a water-soluble compound whose solubility of the corresponding metal element can satisfy the load requirement or which can form a solubility in water in the presence of a co-solvent can be mentioned, and specific examples thereof can be mentioned.
  • the salts and oxides of the metal elements are preferably nitrates, chlorides, sulfates and carbonates of the corresponding metal elements, more preferably nitrates of the corresponding metal elements.
  • These water-soluble compounds may be used alone or in combination of any ones in any ratio.
  • the Group VIB metal element of the Periodic Table of the Elements can be used in any form known in the art.
  • Examples of the use form of the metal element of Group VIB of the periodic table include salts of the corresponding metal elements, oxoacid salts and oxides, and particularly ammonium molybdate, ammonium paramolybdate, and metatungstic acid. Ammonium, molybdenum oxide and tungsten oxide.
  • These use forms of the Group VIB metal element of the periodic table may be used singly or in combination of any ones in any ratio.
  • the Group VIII metal element of the Periodic Table of the Elements can be used in any form known in the art.
  • salts and oxides of the corresponding metal elements may be mentioned, preferably nitrates, chlorides, sulfates, formates, acetates of the corresponding metal elements.
  • An oxalate, a nitrate, a sulfate, an acetate, a chloride, a carbonate, a basic carbonate, a hydroxide, a phosphate, a molybdate, a tungstate, and a water-soluble oxide More preferred are nickel nitrate, nickel sulfate, nickel acetate, basic nickel carbonate, cobalt nitrate, cobalt sulfate, cobalt acetate, basic cobalt carbonate, cobalt chloride and nickel chloride.
  • These use forms of the metal element of Group VIII of the periodic table may be used singly or in combination of any ones in any ratio.
  • the hydrogenation-active metal element (including the metal element of Group VIB of the periodic table and the metal element of Group VIII of the periodic table) is generally used in the form of an immersion liquid (preferably an aqueous solution), such as in a step ( 1) or when contacting or immersing in step (0-3).
  • the concentration of the hydrogenation-active metal element in the impregnation liquid is generally from 0.2 to 8 mol/L, preferably from 0.2 to 5 mol/L, more preferably from 0.2 to 2 mol/L, based on the corresponding metal element.
  • the concentration refers to the respective concentrations of each of the hydrogenation-active metal elements in the impregnation liquid, and not the total concentration of all of the hydrogenation-active metal elements.
  • the impregnation liquid may further contain other components, such as the first organic complexing agent or the co-agent, depending on the case, in addition to the hydrogenation-active metal element. The trouble of separately preparing the corresponding impregnation liquid for the first organic complexing agent or the coagent is avoided.
  • the first organic complexing agent or the coagent is present in the impregnation solution in an amount specified in the context of the present specification.
  • the impregnation liquid comprises at least the first active metal component and the first organic complexing agent at the same time.
  • the amount used is not particularly limited as long as it is an amount (referred to as an effective amount) which enables the hydrogenation catalyst finally obtained by the present invention to exhibit an effective catalytic activity, which is easily understood by those skilled in the art.
  • the amount of the hydrogenation-active metal element (including a hydrogenation-active metal element as the first active metal component and/or a hydrogenation-active metal element as the second active metal component) is such
  • the content of the hydrogenation-active metal element is generally based on the oxide of the corresponding metal element and based on the total weight of the hydrogenation catalyst. It is 6 to 70% by weight, preferably 15 to 60% by weight, preferably 20 to 50% by weight, further preferably 20 to 40% by weight.
  • the metal element of Group VIII of the Periodic Table of the Elements (including the metal element of Group VIII of the Periodic Table of the Elements as the first active metal component and/or the period of the element as the second active metal component
  • the amount of the Group VIII metal element is such that, in the hydrogenation catalyst finally obtained by the production method of the hydrogenation catalyst of the present invention, based on the oxide of the corresponding metal element and based on the total weight of the hydrogenation catalyst,
  • the content of the metal element of Group VIII of the periodic table is generally from 1 to 10% by weight.
  • the Group VIB metal element of the Periodic Table of the Elements (including the Group VIB gold of the Periodic Table of the Elements as the first active metal component)
  • the amount of the genus element and/or the metal element of the group VIB of the periodic table as the second active metal component is such that the corresponding metal element is obtained in the hydrogenation catalyst finally obtained by the production method of the hydrogenation catalyst of the present invention.
  • the content of the Group VIB metal element of the periodic table is generally from 5 to 60% by weight based on the total weight of the hydrogenation catalyst.
  • the order of the impregnation is not particularly limited, and specific examples thereof include a method in which a plurality of the hydrogenation-active metal elements are simultaneously contacted with the carrier (referred to as a one-step contact method), and a plurality of the hydrogenation methods may be mentioned.
  • the manner in which the active metal elements are successively contacted with the carrier in sequential order or in different combinations with each other referred to as a multi-step contact method).
  • the drying temperature is generally from 100 ° C to 250 ° C, preferably from 100 ° C to 200 ° C
  • the drying time is generally from 1 h to 12 h, preferably from 1 h to 10 h.
  • the first organic complexing agent and the second organic complexing agent various organic substances generally used in the production of a hydrogenation catalyst in the art can be used.
  • the additive include the organic compound A, the organic compound B, and the alkylene oxide polymer described below. These organic additives may be used alone or in combination of any ones in any ratio.
  • the first organic complexing agent and the second organic complexing agent may be the same or different, each independently representing the organic additive.
  • the molar ratio of the first organic complexing agent to the second organic complexing agent is generally from 1:0.25 to 1:4, preferably from 1:0.5 to 1:2.
  • the organic compound A it is meant that the carbon chain structure of a C 2-30 linear or branched alkane is interrupted by one or more hetero groups selected from -O- and -NR 1 - Organic compounds.
  • the group R 1 is selected from H and an optionally substituted C 1-10 straight or branched alkyl group, preferably H.
  • the C 1-10 linear or branched alkyl group specifically, for example, a C 1-6 linear or branched alkyl group or a C 1-4 linear or branched alkyl group may be mentioned, more specifically, for example.
  • Methyl, ethyl, propyl, n-butyl, isobutyl and n-hexyl groups can be mentioned.
  • C 2-30 linear or branched alkane include a C 2-20 linear or branched alkane or a C 2-10 linear or branched alkane, and more specifically, for example, ethane.
  • a C 4 linear alkane (n-butane, CH 3 -CH 2 -CH 2 -CH 3 ) is interrupted by a hetero group -O- to obtain CH 3 -O-CH 2 -CH 2 -
  • An organic compound such as CH 3 or CH 3 -CH 2 -O-CH 2 -CH 3 can be obtained by interrupting two hetero groups -O- to obtain CH 3 -O-CH 2 -O-CH 2 -CH 3 or CH
  • An organic compound such as 3- O-CH 2 -CH 2 -O-CH 3 can be obtained by interrupting three hetero groups -O- to obtain organic compounds such as CH 3 -O-CH 2 -O-CH 2 -O-CH 3 Compound.
  • C 4 linear alkane (n-butane, CH 3 -CH 2 -CH 2 -CH 3 ) can be interrupted by a hetero group -NCH 3 - to obtain CH 3 -NCH 3 -CH 2 -CH 2 -CH 3 or an organic compound such as CH 3 -CH 2 -NCH 3 -CH 2 -CH 3 , which can be obtained by interrupting two hetero-groups -NCH 3 - to obtain CH 3 -NCH 3 -CH 2 -NCH 3 -CH 2 -CH 3 or an organic compound such as CH 3 -NCH 3 -CH 2 -CH 2 -NCH 3 -CH 3 , which is interrupted by three hetero-groups -NCH 3 - to obtain CH 3 -NCH 3 -CH 2 -NCH 3 -CH An organic compound such as 2- NCH 3 -CH 3 .
  • These organic compounds A may be used alone or in combination of any ones in any ratio.
  • These organic compounds A can be produced by a known
  • organic compound B a C 1-30 linear or branched alkane, a C 2-30 linear or branched olefin, an optionally substituted C 3-20 cycloalkane or the organic
  • An organic compound obtained by substituting one or more hydrogen atoms in the molecular structure of Compound A with a substituent selected from the group consisting of -R 2 -OH, -R 3 -NR 4 R 5 and -R 6 -C( O)OM .
  • C 1-30 linear or branched alkane specifically, for example, a C 2-20 linear or branched alkane or a C 2-10 linear or branched alkane may be mentioned, and more specifically, for example, Ethane, n-propane, isopropane, n-butane, t-butane, isobutane, n-pentane, isopentane, neopentane, n-hexane, isohexane, neohexane, n-octane, isooctane , t-octane, n-decane, n-decane, isodecane and tert-decane.
  • Ethane n-propane, isopropane, n-butane, t-butane, isobutane, n-pentane, isopentane, neopentane, n
  • C 2-30 linear or branched olefin examples include a C 2-20 linear or branched olefin or a C 2-10 linear or branched olefin, and more specifically, for example, ethylene or propylene.
  • organic compounds B may be used alone or in combination of any ones in any ratio. These organic compounds B can be produced according to a known method, and are also commercially available.
  • the group R 2 represents a single bond or a C 1-10 straight or branched alkylene group, preferably a single bond or a C 1-6 straight or branched alkylene group, preferably a single bond or C 1 -3 linear or branched alkylene groups such as ethylene or methylene.
  • the group R 3 represents a single bond or a C 1-10 straight or branched alkylene group, preferably a C 1-6 straight or branched alkylene group, preferably a C 1-3 straight chain or branch A chain alkylene group such as an ethylene group or a methylene group.
  • examples of the C 1-3 linear or branched alkyl group include an ethyl group or a methyl group.
  • the group R 6 represents a single bond or a C 1-10 straight or branched alkylene group, preferably a C 1-6 straight or branched alkylene group, preferably a C 1-3 straight chain or branch A chain alkylene group such as an ethylene group or a methylene group.
  • the group M represents H, an alkali metal or an alkaline earth metal.
  • specific examples of the alkali metal include sodium and potassium
  • specific examples of the alkaline earth metal include magnesium, calcium, and barium.
  • the alkylene oxide polymer it is meant an alkylene oxide homopolymer or copolymer.
  • specific examples of the alkylene oxide homopolymer include polyethylene glycol and polypropylene glycol.
  • Specific examples of the alkylene oxide copolymer include an ethylene oxide/propylene oxide copolymer.
  • a polyfunctional compound derived from glycerin may be contained as needed.
  • a structural unit of a monomer in addition to those structural units derived from ethylene oxide and propylene oxide.
  • the molecular weight of the alkylene oxide polymer is not particularly limited in the present invention, and information conventionally known in the art can be directly applied, but specifically, for example, may be from 100 to 3,000, preferably from 200 to 1,500, more preferably from 200 to 600. These alkylene oxide polymers may be used alone or in combination of any ones in any ratio. These alkylene oxide polymers can be produced by a known method or commercially available.
  • a C 1-20 aliphatic or C 5-10 fat optionally having one or more -R 2 -OH as a substituent may be mentioned.
  • the group R 2 represents a single bond or a C 1-10 linear or branched alkylene group, preferably a single bond or a C 1-6 straight or branched alkylene group, preferably a single bond or C 1- 3 linear or branched alkylene, such as ethylene or methylene.
  • a C 2-7 aliphatic mono or polycarboxylic acid or a salt thereof is preferable, and more specifically, acetic acid, maleic acid, and oxalic acid are exemplified.
  • the one or more -R 2 -OH C 1-20 aliphatic group as a substituent mono- or polycarboxylic acids or their salts, preferably with one or more -R 2 -OH C as a substituent 2-7 aliphatic mono- or polycarboxylic acid or a salt thereof, and more specifically, for example, citric acid, tartaric acid and malic acid can be mentioned.
  • C 5-10 alicyclic monohydric or polycarboxylic acid or a salt thereof a C 5-7 alicyclic monohydric or polyvalent carboxylic acid or a salt thereof is preferable, and more specifically, cyclohexane dicarboxylic acid is exemplified.
  • These monobasic or polybasic carboxylic acids or salts thereof may be used alone or in combination of any ones in any ratio.
  • These monobasic or polybasic carboxylic acids or salts thereof can be produced according to known methods, and are also commercially available.
  • the group R 2 represents a single bond or a C 1-10 linear or branched alkylene group, preferably a single bond or a C 1-6 straight or branched alkylene group, preferably a single bond or C 1- 3 linear or branched alkylene, such as ethylene or methylene.
  • the group R 6 represents a single bond or a C 1-10 straight or branched alkylene group, preferably a C 1-6 straight or branched alkylene group, preferably a C 1-3 straight or branched alkylene group Such as ethylene or methylene.
  • the group M represents H, an alkali metal or an alkaline earth metal. Specific examples of the alkali metal include sodium and potassium, and specific examples of the alkaline earth metal include magnesium, calcium and barium.
  • the C 1-20 aliphatic monohydric or polyvalent amine a C 2-7 aliphatic monohydric or polyvalent amine is preferable, and more specifically, for example, ethylenediamine, triethylamine and hexamethylenediamine can be mentioned.
  • -R 2 -OH C having as the substituent groups of the aliphatic C 1-20 mono- or polyamines, preferably with one or more substituents -R 2 -OH group as a fat 2-7
  • the mono- or poly-amines more specifically, for example, ethanolamine, diethanolamine and triethanolamine.
  • the C 2-7 aliphatic mono- or polyamine as the substituent of OM more specifically, for example, ethylenediaminetetraacetic acid or a salt thereof and nitrogen triacetic acid or a salt thereof.
  • a C 5-7 alicyclic monohydric or polyvalent amine is preferable, and more specifically, 1,2-cyclohexanediamine is exemplified.
  • the C 5-7 alicyclic monohydric or polyvalent amine to which OM is a substituent more specifically, for example, 1,2-cyclohexanediaminetetraacetic acid or a salt thereof.
  • These monohydric or polybasic amines may be used alone or in combination of any ones in any ratio.
  • These monohydric or polybasic amines can be produced according to known methods or commercially available.
  • a C 2-20 aliphatic or C 5-10 alicyclic polyol can be mentioned.
  • the C 2-20 aliphatic polyol a C 2-6 aliphatic polyol is preferable, and more specifically, ethylene glycol, butylene glycol, and glycerin are exemplified.
  • the C 5-10 alicyclic polyol a C 5-7 alicyclic polyol is preferable, and more specifically, cyclohexane dimethanol is exemplified.
  • a polymer of the polyol including an oligomer or a polymer of the polyol, more specifically, for example, polyethylene glycol, polypropylene glycol, or the like may be mentioned.
  • the molecular weight of the polymer is generally from 100 to 3,000, preferably from 200 to 1,500, more preferably from 200 to 600, but is not limited thereto.
  • a C 1-6 linear or branched alkyl ether compound of the polymer may be further mentioned, and more specifically, diethylene glycol monomethyl ether may be mentioned.
  • These polyols, polymers or etherates may be used singly or in combination of any ones in any ratio. These polyols, polymers or etherates can be produced according to known methods, and are also commercially available.
  • organic additive more specifically, for example, ethylene glycol, glycerin, polyethylene glycol (having a molecular weight of generally from 200 to 1,500, more preferably from 200 to 600), diethylene glycol may be mentioned. , butanediol, acetic acid, maleic acid, oxalic acid, nitrogen triacetic acid or its salt, 1,2-cyclohexanediaminetetraacetic acid or its salt, citric acid, tartaric acid, malic acid, ethylenediamine and ethylene Aminetetraacetic acid or a salt thereof.
  • organic additives may be used alone or in combination of any ones in any ratio.
  • These organic additives can be produced according to known methods, and are also commercially available.
  • the organic additive (including an organic additive as the first organic complexing agent and/or as the second organic network) for convenience of operation
  • the organic additive of the mixture is generally used in the form of an immersion liquid, preferably an aqueous solution, such as during the contacting or impregnation involved in carrying out step (1) or step (3).
  • the organic additive is present in any amount conventionally used in the art.
  • the impregnation liquid may further comprise other components, such as the first active metal component or the coagent, depending on the case, thereby avoiding The first active metal component or the coagent can be used to separately prepare the corresponding impregnation liquid.
  • the first active metal component or the coagent is present in the impregnation solution in an amount specified in the context of the present specification.
  • the first organic complexing agent in the method for producing the hydrogenation catalyst, particularly in the step (1), may be
  • the molar ratio of the first active metal component is generally from 0.03:1 to 2:1, preferably from 0.08:1 to 1.5:1.
  • the coagent involved in each of the relevant steps such as step (1), step (0-1) or step (0-3)
  • active elements known in the art which can be used to improve the performance of the hydrogenation catalyst can be mentioned. These active elements may be used alone or in combination of any ones in any ratio.
  • the active element for example, a metal coagent and a non-metal coagent may be mentioned. More specifically, the metal coagent may, for example, be a Group IIB metal element, a Group IA metal element, a Group IIA metal element, and a rare earth metal element. Examples of the Group IIB metal element include zinc and cadmium.
  • Examples of the Group IA metal element include lithium, sodium, potassium, rubidium, cesium, and cesium.
  • the Group IIA metal element for example, barium, magnesium, calcium, and barium may be mentioned.
  • the rare earth metal element for example, ruthenium, osmium, iridium, and osmium may be mentioned.
  • the metal coagent zinc, sodium, potassium, magnesium, calcium, strontium and barium are preferred. These metal coagents may be used alone or in combination of any ones in any ratio.
  • the non-metal coagent more specifically, for example, a Group IVA element, a Group VIIA element, a Group VA element, and a Group IIIA element may be mentioned.
  • Group IVA element examples include silicon.
  • Examples of the Group VIIA element include fluorine, chlorine, bromine and iodine.
  • Examples of the Group VA element include phosphorus and arsenic.
  • IIIA For the family element, for example, boron can be cited.
  • fluorine, silicon, phosphorus and boron are more preferable.
  • These non-metallic coagents may be used alone or in combination of any ones in any ratio. It should be particularly noted that, as described above, a carrier precursor or a carrier may be involved in the method of producing the hydrogenation catalyst, and both of the carrier precursor or carrier and the non-metal coagent may contain silicon.
  • the carrier precursor or carrier when the content of silicon exceeds 10% by weight and the silicon is present in the form of an oxide, it is regarded as the carrier precursor or carrier, otherwise It is considered to be the non-metallic coagent.
  • the non-metallic coagent may be used in any form known in the art.
  • various water-soluble salts of the corresponding non-metal elements may be mentioned, and more specifically, for example, oxides, chlorides, acid salts and ammonium salts of the corresponding non-metal elements may be mentioned. . These water-soluble salts may be used alone or in combination of any ones in any ratio.
  • the metal coagent may be used in any form known in the art.
  • various water-soluble salts of the corresponding metal elements can be mentioned, and more specifically, for example, chlorides, nitrates and sulfates of the corresponding metal elements can be mentioned. These water-soluble salts may be used alone or in combination of any ones in any ratio.
  • the coagent in the method for producing the hydrogenation catalyst, may sometimes be an immersion liquid (preferably an aqueous solution) for the convenience of operation. ) used in the form of .
  • the content of the coagent in the impregnation liquid is generally from 0.05 to 3 mol/L, preferably from 0.1 to 2 mol/L, based on the corresponding metal element or the corresponding non-metal element.
  • the impregnation liquid may further comprise other components, such as the first active metal component, the first organic complexing agent or the like, in addition to the coagent.
  • the second active metal component thereby avoiding the trouble of separately formulating the respective impregnation liquid for the first active metal component, the first organic complexing agent or the second active metal component.
  • the first active metal component, the first organic complexing agent or the second active metal component is present in the impregnation liquid in an amount specified in the context of the present specification.
  • the coagents used in each of the relevant steps may be identical or different from one another, each independently representing the activity element.
  • the specific amount of the coagent used in each of the relevant steps in the present invention is not particularly limited as long as the coagent is in the hydrogenation of the present invention.
  • the total amount in the method for producing the chemical agent that is, the sum of the amounts of the respective related steps
  • the total amount in the method for producing the chemical agent is such that the content of the coagent in the hydrogenation catalyst finally obtained by the production method of the hydrogenation catalyst reaches the conventional routine in the art.
  • the known content is sufficient.
  • the total amount of the metal coagent in the method for producing a hydrogenation catalyst of the present invention for example, it can be mentioned that in the hydrogenation catalyst finally obtained by the production method of the hydrogenation catalyst
  • the metal coagent is generally present in an amount of from 0% by weight to 10% by weight, preferably from 0.5% by weight to 6% by weight, based on the total weight of the hydrogenation catalyst.
  • the metal element is generally present in an amount of from 0% by weight to 10% by weight, preferably from 0.5% by weight to 6% by weight, based on the total weight of the hydrogenation catalyst.
  • the hydrogenation catalyst is produced in accordance with the aforementioned method for producing a hydrogenation catalyst of the present invention.
  • the hydrogenation catalyst composition comprises at least two different hydrogenation catalysts, namely a hydrogenation catalyst I and a hydrogenation catalyst II.
  • a hydrogenation catalyst I namely a hydrogenation catalyst I and a hydrogenation catalyst II.
  • the term "different” may specifically refer to a structure, a composition, a manufacturing method, or a difference in performance, and as long as those skilled in the art believe that there is a non-negligible difference between the two hydrogenation catalysts, it can be considered that these two The hydrogenation catalysts are different.
  • the hydrogenation catalyst I is a hydrogenation catalyst produced by the method for producing a hydrogenation catalyst of the present invention or a hydrogenation catalyst of the present invention
  • the hydrogenation catalyst II is other additions known in the art. Hydrogen catalyst. These other hydrogenation catalysts may be used alone or in combination of any ones in any ratio. Further, the other hydrogenation catalyst may be produced according to a production method known in the art, or may be commercially available.
  • the hydrogenation catalyst II may, for example, comprise a support, a Group VIB metal element and a Group VIII metal element, and based on the total metal oxide and based on the total weight of the hydrogenation catalyst II.
  • the content of the Group VIII metal element may be 1-10% by weight, and the content of the Group VIB metal element may be 5 to 60% by weight.
  • the carrier, the Group VIB metal element, and the Group VIII metal element reference may be made to the related content described earlier in the specification.
  • the content of the hydrogenation catalyst I is generally based on the volume and based on the total volume of the hydrogenation catalyst composition. 5-95%, preferably 10-80%, more preferably 20-70%, and the content of the hydrogenation catalyst II is generally from 5 to 95%, preferably from 20 to 90%, more preferably from 30 to 80%.
  • the hydrotreating method includes contacting a feedstock oil with a hydrogenation catalyst of the present invention, a hydrogenation catalyst produced by the method for producing a hydrogenation catalyst of the present invention, or a hydrogenation catalyst composition of the present invention in the presence of hydrogen to carry out The step of hydrogenation reaction.
  • the hydrotreating is directly applied to the conventional understanding by those skilled in the art, and specific examples thereof include hydrotreating, and particularly, hydrodesulfurization and hydrodenitrogenation, but the invention is not limited thereto.
  • examples of the raw material oil include those well known to those skilled in the art, and specific examples thereof include gasoline, diesel oil, lubricating oil, kerosene, naphtha, atmospheric residue, and vacuum residue. , petroleum wax and Fischer-Tropsch synthetic oil. These raw material oils may be used alone or in combination of any ones in any ratio.
  • the reaction temperature is usually from 300 ° C to 400 ° C, preferably from 320 ° C to 380 ° C.
  • the reaction pressure is usually from 1 MPa to 10 MPa (gauge pressure), preferably from 1 MPa to 8 MPa (gauge pressure).
  • liquid hourly space velocity of the feedstock when the liquid hourly space velocity of the feedstock is generally from 0.5 to 3 hr -1 hr -1, preferably of from 0.5 hr -1 to 2.5 hr -1.
  • the hydrogen oil volume ratio is generally from 100 to 800, preferably from 100 to 700.
  • the hydrogen oil volume ratio means a ratio of a volume flow rate of hydrogen gas to a volume flow rate of a feedstock oil.
  • the feedstock oil is contacted with the hydrogenation catalyst composition in the presence of hydrogen.
  • the raw material oil may be first contacted with the hydrogenation catalyst I, and then contacted with the hydrogenation catalyst II.
  • the method of contacting the feedstock oil with the hydrogenation catalyst II and then contacting the hydrogenation catalyst I, or in the presence of a plurality of stages of the hydrogenation catalyst I and the plurality of stages of the hydrogenation catalyst II At the time, the raw material oil is alternately contacted with these hydrogenation catalysts.
  • the hydrogenation catalyst I Since the hydrogenation catalyst I has higher catalytic activity and longer service life than the hydrogenation catalyst II, it is preferred to make the hydrogenation catalyst I contact the raw material oil more late, so as to be more severe.
  • the hydrogenation reaction is carried out with the feedstock oil under the reaction conditions.
  • the charging method of the hydrogenation catalyst I and the hydrogenation catalyst II in the hydrogenation reactor for carrying out the hydrogenation reaction is not particularly limited.
  • Specific examples of the filling method include a layered filling method and a mixed packing method.
  • Specific examples of the layered charging method include a method of charging the hydrogenation catalyst I upstream of the hydrogenation catalyst II according to the flow direction of the feedstock oil, or loading the hydrogenation catalyst II.
  • the hydrogenation catalyst I is loaded upstream of the hydrogenation catalyst I in a manner of upstream of the hydrogenation catalyst I or alternately layering the hydrogenation catalyst I and the hydrogenation catalyst II. the way.
  • the hydrogenation catalyst I and the hydrogenation catalyst II may be charged in the same hydrogenation reactor to form the same catalyst bed or different catalyst beds, or may be separately loaded in separate or in any combination. Multiple hydrogenation reactors in series.
  • any other catalyst or filler that helps to improve the beneficial properties of these hydrogenation catalysts may be directly applied.
  • the filler for example, a ceramic ball and an active support can be exemplified.
  • a bed composed of a filler may be provided in front of the bed of the hydrogenation catalyst I in order to improve The distribution of the feedstock oil in the hydrogenation reactor.
  • the content of each element in the hydrogenation catalyst was measured using a 3271 E-ray fluorescence spectrometer of Nippon Science & Technology Co., Ltd.
  • the total carbon content of the calcined composite carrier (hereinafter sometimes referred to as a semi-finished catalyst) was measured using an EMIA-320V carbon sulfur analyzer manufactured by HORIBA, Japan.
  • the dry basis weight determination method of the calcined composite carrier (hereinafter sometimes referred to as a semi-finished catalyst) is: A certain weight (for example, 30 g) of the sample to be tested is taken, and the sample is baked in a muffle furnace at 450 ° C for 3 hours, and after cooling, it is weighed, and the weight is the dry basis weight.
  • the dry basis of the hydrated alumina or aluminum hydroxide powder is determined by weighing a certain weight (for example, 30 g) of the sample to be tested, and the sample is The muffle furnace was calcined at 600 ° C for 3 hours, and after cooling, it was weighed, and the weight was the dry basis weight. The ratio of the dry weight to the original weight of the sample to be tested is the dry basis of the sample to be tested.
  • This example is intended to illustrate a hydrogenation catalyst and a method of producing the same according to the present invention.
  • the total carbon content of the semi-finished catalyst Z-S1, Z-S1 is shown in Table I-1; 5 g of ethanol is added to 150 g of deionized water, stirred to obtain a clear solution, and the above solution is used by saturated impregnation method. Z-S1 was impregnated, the immersion time was 2 hours, and then dried at 110 ° C for 3 hours to obtain a catalyst S1. The content of the hydrogenation-active metal element based on the total amount of S1, based on the oxide, is shown in Table I-1.
  • a hydrogenation catalyst was produced in the same manner as in Example I-1 except that the hydrogenation catalyst S1 produced in Example I-1 was calcined at 400 ° C for 3 hours to obtain a catalyst D1, which was D1 in the catalyst D1.
  • the total amount is based on the oxide, and the content of the hydrogenation-active metal element is shown in Table I-1.
  • This example is intended to illustrate a hydrogenation catalyst and a method of producing the same according to the present invention.
  • the total carbon content of the semi-finished catalyst Z-S2, Z-S2 is shown in Table I-1; 30 g of citric acid is added 150 g of deionized water was stirred to obtain a clear solution, and Z-S2 was impregnated with the above solution by a saturated impregnation method for 2 hours, and then dried at 150 ° C for 3 hours to obtain a catalyst S2.
  • the content of the hydrogenation-active metal element based on the total amount of S2 is shown in Table I-1.
  • This example is intended to illustrate a hydrogenation catalyst and a method of producing the same according to the present invention.
  • the total carbon content of the semi-finished catalysts Z-S3 and Z-S3 is shown in Table I-1; 10 g of diethylene glycol is placed in 150 g of deionized water, stirred to obtain a clear solution, and Z-S3 is impregnated with the above solution by a saturated dipping method. The immersion time was 2 hours, and then dried at 120 ° C for 6 hours to obtain a catalyst S3.
  • the content of the hydrogenation-active metal element based on the total amount of S3, based on the oxide, is shown in Table I-1.
  • This example is intended to illustrate a hydrogenation catalyst and a method of producing the same according to the present invention.
  • the calcination was carried out at a calcination temperature of 450 ° C for 3 hours, and an air-to-agent ratio of 0.8 liter / (g ⁇ hr) to obtain a semi-finished catalyst Z-S4.
  • the total carbon content of Z-S4 is shown in Table I-1; Ethylenediamine was placed in 150 g of deionized water, stirred to obtain a clear solution, and Z-S4 was impregnated with the above solution by a saturated impregnation method for 2 hours, and then dried at 120 ° C for 3 hours to obtain a catalyst S4.
  • the content of the hydrogenation-active metal element based on the total amount of S4 is shown in Table I-1.
  • This example is intended to illustrate a hydrogenation catalyst and a method of producing the same according to the present invention.
  • a hydrogenation catalyst was produced in the same manner as in Example I-3 except that the metal active component was impregnated into a carrier and calcined at a temperature of 480 ° C for 6 hours.
  • the total carbon content in the obtained catalyst semi-finished product is shown in Table I-1, and the obtained catalyst S5 is based on the total amount of S5, and the content of the hydrogenation-active metal element is shown in Table I-1.
  • This example is intended to illustrate a hydrogenation catalyst and a method of producing the same according to the present invention.
  • a hydrogenation catalyst was produced in the same manner as in Example I-2 except that the gas ratio at the time of calcination was 1.0 liter / (g ⁇ hr), and the obtained catalyst S6 was based on the total amount of S6.
  • the content of the hydrogenation-active metal element in the oxide meter is shown in Table I-1.
  • This example is intended to illustrate a hydrogenation catalyst and a method of producing the same according to the present invention.
  • a hydrogenation catalyst was produced in the same manner as in Example I-2 except that the ratio of the first organic complexing agent to the second organic complexing agent was changed from 30 g: 30 g to 50 g: 10 g.
  • the content of the hydrogenation-active metal element is shown in Table I-1 based on the total amount of S7, based on the oxide.
  • the Middle East blended diesel (85% straight-run diesel + 15% catalytic cracked diesel) is used as raw material, and its properties are as follows:
  • the desulfurization and denitrification activities of the catalyst were evaluated on a 30 ml diesel hydrogenation unit.
  • the catalyst needs to be pre-vulcanized before the reaction, and the catalyst is packed with 30 mL.
  • the pre-vulcanization conditions are: 6.4 MPa, 320 ° C, 4 h, the hydrogen oil volume ratio is 300:1, and the vulcanized oil feed rate is 8 mL/h.
  • the reaction conditions were: hydrogen partial pressure of 6.4 MPa, reaction temperature of 350 ° C, hydrogen oil volume ratio of 300, and liquid hourly space velocity of 1.5 h -1 .
  • the samples were reacted for 4 hours and reacted for 500 hours, respectively, and the sulfur and nitrogen contents in the hydrodesulfurization, hydrodenitrogenation reaction, and the obtained product were determined by gas chromatography.
  • the LHSV in the formula (1) is a liquid hour volume space velocity of the hydrocarbon oil at the time of performing the hydrotreating reaction.
  • the relative hydrodesulfurization activity of Catalyst X was calculated according to formula (2) based on the hydrodesulfurization activity of catalyst D2 produced in Comparative Example I-2 [denoted as k(D2) HDS ]:
  • the hydrodenitrogenation activity of the catalyst was evaluated using relative hydrodenitrogenation activity relative to the reference agent D (the catalyst produced in Comparative Example I-2), and the hydrodesulfurization reaction was treated as a first-order reaction, according to the formula (3). Calculate the reaction rate constant k(X) HDN of Catalyst X:
  • the LHSV in the formula (1) is a liquid hour volume space velocity of the hydrocarbon oil at the time of performing the hydrotreating reaction.
  • Table I-1 and Table I-2 illustrate that the catalyst provided by the present invention has significantly better hydrodesulfurization activity than the hydrogenation catalyst produced by the prior art manufacturing process. Hydrodenitrogenation activity.
  • Table I-2 comparing the data of the relative hydrodesulfurization activity and the relative hydrodenitrogenation activity of the reaction for 4 hours and the reaction for 500 hours in Table I-2, it can be seen that the long-term reaction, the catalyst activity provided by the present invention decreases little, and Significantly less than the comparative example, therefore, the catalyst produced by the process of the present invention significantly extends the useful life of the catalyst.
  • the above results fully demonstrate that the manufacturing method provided by the present invention has advantages unmatched by other existing methods.
  • This example is intended to illustrate a hydrogenation catalyst and a method of producing the same according to the present invention.
  • magnesium nitrate weigh 270 g of magnesium nitrate, add deionized water and stir to dissolve, add deionized water to 850 ml, saturate and impregnate 1000 g of alumina carrier for 2 hours, then dry at 120 ° C for 2 hours, and calcine at 400 ° C for 4 hours to obtain water absorption. 0.85 magnesium-containing alumina Z1.
  • the magnesium-containing alumina Z1 carrier was immersed for 2 hours, and then dried at 120 ° C for 2 hours, and then calcined under a flow of air, and the calcination temperature was 360 ° C for 6 hours, and the gas ratio was For 10.0 liter / (gram ⁇ hour), the semi-finished catalyst Z-S1, Z-S1 total carbon content is shown in Table II-1; 30 grams of citric acid was added to 150 grams of deionized water, stirred to obtain a clear solution, using saturated impregnation The solution was impregnated with Z-S1 in the above solution for 2 hours, and then dried at 200 ° C for 2 hours to obtain a catalyst S1. The content of the hydrogenation-active metal element is shown in Table II-1 based on the total amount of S1.
  • a hydrogenation catalyst was produced in the same manner as in Example II-1 except that the hydrogenation catalyst S1 produced in Example II-1 was calcined at 400 ° C for 3 hours to obtain a catalyst D1, which was D1 in the catalyst D1.
  • the total amount is based on the oxide, and the content of the hydrogenation-active metal element is shown in Table II-2.
  • This example is intended to illustrate a hydrogenation catalyst and a method of producing the same according to the present invention.
  • cerium-containing alumina Z2 Weigh 37 g of cerium nitrate, add deionized water and stir to dissolve, add deionized water to 850 ml, saturate and impregnate 1000 g of alumina carrier for 2 hours, then dry at 100 ° C for 2 hours, and calcine at 500 ° C for 4 hours to obtain water absorption. 0.85 of cerium-containing alumina Z2.
  • the total carbon content of Z-S2 is shown in Table II-1; 10 g of diethylene glycol was placed in 150 g of deionized water, stirred to obtain a clear solution, and Z-S2 was impregnated with the above solution by a saturated dipping method for 2 hours, and then dried at 150 ° C for 3 hours to obtain a catalyst S2.
  • the content of the hydrogenation-active metal element based on the total amount of S2 is shown in Table II-1.
  • This example is intended to illustrate a hydrogenation catalyst and a method of producing the same according to the present invention.
  • cerium-containing silicon oxide Z3 weigh 37 g of cerium nitrate, add deionized water and stir to dissolve, add deionized water to 850 ml, saturate and impregnate 1000 g of silica carrier for 2 hours, then dry at 100 ° C for 2 hours, and calcine at 500 ° C for 4 hours to obtain water absorption. 0.85 of cerium-containing silicon oxide Z3.
  • This example is intended to illustrate a hydrogenation catalyst and a method of producing the same according to the present invention.
  • the solution was impregnated with 200 g of alumina-silica support (weight ratio 1:1) for 2 hours, then dried at 120 ° C for 2 hours, and then calcined under a flow of air, the calcination temperature was At 400 ° C, the calcination time is 2 hours, the gas-to-agent ratio is 2.0 liters / (grams / hour), the semi-finished catalyst Z-S4 is obtained, the total carbon content of Z-S4 is shown in Table II-1; 5 grams of ethanol is put into 150 grams Deionized water, stirred for clarification The solution was impregnated with Z-S4 using the above solution by a saturated impregnation method for an immersion time of 0.5 hours, and then dried at 110 ° C for 3 hours to obtain a catalyst S4. The content of the hydrogenation-active metal element is shown in Table II-1 based on the total amount of S4.
  • a hydrogenation catalyst was produced in the same manner as in Example II-2 except that the metal active component was impregnated into a carrier and calcined at a temperature of 450 ° C for 6 hours.
  • the total carbon content in the obtained catalyst semi-finished product is shown in Table II-1, and the obtained catalyst S5 is based on the total amount of S5, and the content of the hydrogenation-active metal element is shown in Table II-1.
  • a hydrogenation catalyst was produced in the same manner as in Example II-1 except that the gas ratio at the time of calcination was 1.0 liter/(g ⁇ hr), and the obtained catalyst S6 was based on the total amount of S6.
  • the content of the hydrogenation-active metal element in the oxide meter is shown in Table II-1.
  • a hydrogenation catalyst was produced in the same manner as in Example II-1 except that the ratio of the first organic complexing agent to the second organic complexing agent was changed from 30 g: 30 g to 50 g: 10 g.
  • the Middle East blended diesel (85% straight-run diesel + 15% catalytic cracked diesel) is used as raw material, and its properties are as follows:
  • the desulfurization and denitrification activities of the catalyst were evaluated on a 30 ml diesel hydrogenation unit.
  • the catalyst needs to be pre-vulcanized before the reaction, and the catalyst is packed with 30 mL.
  • the pre-vulcanization conditions are: 6.4 MPa, 320 ° C, 4 h, the hydrogen oil volume ratio is 300:1, and the vulcanized oil feed rate is 8 mL/h.
  • the reaction conditions were: hydrogen partial pressure of 6.4 MPa, reaction temperature of 350 ° C, hydrogen oil volume ratio of 300, and liquid hourly space velocity of 1.5 h -1 .
  • the samples were reacted for 4 hours and reacted for 500 hours, respectively, and the sulfur and nitrogen contents in the hydrodesulfurization, hydrodenitrogenation reaction, and the obtained product were determined by gas chromatography.
  • the LHSV in the formula (1) is a liquid hour volume space velocity of the hydrocarbon oil at the time of performing the hydrotreating reaction.
  • the relative hydrodesulfurization activity of Catalyst X was calculated according to formula (2) based on the hydrodesulfurization activity of catalyst D2 produced in Comparative Example II-2 [denoted as k(D2) HDS ]:
  • the hydrodenitrogenation activity of the catalyst was evaluated by relative hydrodenitrogenation activity relative to the reference agent D (the catalyst produced in Comparative Example II-2), and the hydrodesulfurization reaction was treated as a first-order reaction, according to the formula (3). Calculate the reaction rate constant k(X) HDN of Catalyst X:
  • the LHSV in the formula (1) is a liquid hour volume space velocity of the hydrocarbon oil at the time of performing the hydrotreating reaction.
  • Tables II-1 to II-3 illustrate that the catalyst provided by the present invention has significantly better hydrodesulfurization activity and hydrodenitrogenation activity than the hydrogenation catalyst produced by the prior art manufacturing process.
  • Table II-3 comparing the data of the relative hydrodesulfurization activity and the relative hydrodenitrogenation activity of the reaction in Table II-3 for 4 hours and the reaction for 500 hours, it can be seen that the long-term reaction, the catalyst activity provided by the present invention decreases little, and Significantly less than the comparative example, therefore, the catalyst produced by the process of the present invention significantly extends the useful life of the catalyst.
  • the above results fully demonstrate that the manufacturing method provided by the present invention has advantages unmatched by other existing methods.
  • This example is intended to illustrate a hydrogenation catalyst and a method of producing the same according to the present invention.
  • the Z1 carrier was immersed for 2 hours, and then dried at 120 ° C for 2 hours, and then calcined under a flow of air, the calcination temperature was 400 ° C, the time was 2 hours, and the gas ratio was 1 liter / (g ⁇ hr), the total carbon content of the semi-finished catalyst Z-S1, Z-S1 is shown in Table III-1; 30 g of citric acid is added to 150 g of deionized water, stirred to obtain a clear solution, and the above solution is used by saturated impregnation method. Z-S1 was immersed, the immersion time was 2 hours, and then dried at 150 ° C for 3 hours to obtain a catalyst S1. The content of the hydrogenation-active metal element is shown in Table III-1 based on the total amount of S1, based on the oxide.
  • a hydrogenation catalyst was produced in the same manner as in Example III-1 except that the hydrogenation catalyst S1 produced in Example III-1 was calcined at 400 ° C for 3 hours to obtain a catalyst D1, which was D1 in the catalyst D1.
  • the total amount is based on the oxide, and the content of the hydrogenation-active metal element is shown in Table III-2.
  • This example is intended to illustrate a hydrogenation catalyst and a method of producing the same according to the present invention.
  • the carrier was immersed for 2 hours, and then dried at 120 ° C for 2 hours, and then calcined under a flow of air, the calcination temperature was 360 ° C, the time was 6 hours, and the gas ratio was 10.0 liter / ( ⁇ hr), the total carbon content of the semi-finished catalyst Z-S2, Z-S2 is shown in Table III-1; 10 g of diethylene glycol is placed in 150 g of deionized water, and stirred to obtain a clear solution, which is saturated with the above method. The solution was impregnated with Z-S2 for an immersion time of 2 hours, and then dried at 150 ° C for 3 hours to obtain a catalyst S2. The content of the hydrogenation-active metal element is shown in Table III-1 based on the total amount of S2.
  • This example is intended to illustrate a hydrogenation catalyst and a method of producing the same according to the present invention.
  • the total carbon content of Z-S3 is shown in Table III-1; 15 g of ethylenediamine is placed in 150 g of deionized water and stirred. A clear solution was obtained, and Z-S3 was impregnated with the above solution by a saturated impregnation method for 2 hours, and then dried at 120 ° C for 3 hours to obtain a catalyst S3.
  • the content of the hydrogenation-active metal element is shown in Table III-1 based on the total amount of S3.
  • a hydrogenation catalyst was produced in the same manner as in Example III-1 except that after the metal active component was impregnated into the support, the calcination temperature was 480 ° C for 6 hours.
  • the total carbon content in the obtained catalyst semi-finished product is shown in Table III-1, and the obtained catalyst S4 is based on the total amount of S4, and the content of the hydrogenation-active metal element is shown in Table III-1.
  • a hydrogenation catalyst was produced in the same manner as in Example III-2 except that the gas ratio at the time of calcination was 1.0 liter/(g ⁇ hr), and the obtained catalyst S5 was based on the total amount of S5.
  • the content of the hydrogenation-active metal element in the oxide meter is shown in Table III-1.
  • a hydrogenation catalyst was produced in the same manner as in Example III-1 except that the ratio of the first organic complexing agent to the second organic complexing agent was changed from 30 g: 30 g to 50 g: 10 g.
  • the content of the hydrogenation-active metal element is represented by Table III-1 based on the total amount of S6.
  • the Middle East blended diesel (85% straight-run diesel + 15% catalytic cracked diesel) is used as raw material, and its properties are as follows:
  • the desulfurization and denitrification activities of the catalyst were evaluated on a 30 ml diesel hydrogenation unit.
  • the catalyst needs to be pre-vulcanized before the reaction, and the catalyst is packed with 30 mL.
  • the pre-vulcanization conditions are: 6.4 MPa, 320 ° C, 4 h, the hydrogen oil volume ratio is 300:1, and the vulcanized oil feed rate is 8 mL/h.
  • the reaction conditions were: hydrogen partial pressure of 6.4 MPa, reaction temperature of 350 ° C, hydrogen oil volume ratio of 300, and liquid hourly space velocity of 1.5 h -1 .
  • the samples were reacted for 4 hours and reacted for 500 hours, respectively, and the sulfur and nitrogen contents in the hydrodesulfurization, hydrodenitrogenation reaction, and the obtained product were determined by gas chromatography.
  • the LHSV in the formula (1) is a liquid hour volume space velocity of the hydrocarbon oil at the time of performing the hydrotreating reaction.
  • the relative hydrodesulfurization activity of Catalyst X was calculated according to formula (2) based on the hydrodesulfurization activity of catalyst D2 produced in Comparative Example III-2 [denoted as k(D2) HDS ]:
  • the hydrodenitrogenation activity of the catalyst was evaluated using relative hydrodenitrogenation activity relative to the reference agent D (the catalyst produced in Comparative Example III-2), and the hydrodesulfurization reaction was treated as a first-order reaction, according to the formula (3). Calculate the reaction rate constant k(X) HDN of Catalyst X:
  • the LHSV in the formula (1) is a liquid hour volume space velocity of the hydrocarbon oil at the time of performing the hydrotreating reaction.
  • Examples IV-1 to IV-7 are used to illustrate a hydrogenation catalyst I and a method for producing the same according to the present invention, and Comparative Example IV-1 is used to illustrate a contrast agent and a method for producing the same.
  • the catalyst precursor IZ-S1 is obtained, the total carbon content is shown in Table IV-1; 5 g of ethanol is added to 150 g of deionized water, stirred to obtain a clear solution, and the impregnation method is used to impregnate IZ with the above solution. S1, the immersion time was 2 hours, and then dried at 110 ° C for 3 hours to obtain a catalyst I-1.
  • a hydrogenation catalyst was produced in the same manner as in Example IV-1 except that the hydrogenation catalyst I-1 produced in Example IV-1 was calcined at 400 ° C for 3 hours to obtain a catalyst D1 as a total of the catalyst D1.
  • the content of the hydrogenation-active metal element in terms of weight, based on the oxide, is shown in Table IV-1.
  • the catalyst precursor IZ-S2 is obtained, the total carbon content is shown in Table IV-1; 30 g of citric acid is added to 150 g of deionized water, stirred to obtain a clear solution, and the IZ is impregnated with the above solution by a saturated impregnation method. -S2, the immersion time was 2 hours, and then dried at 150 ° C for 3 hours to obtain a catalyst I-2.
  • Catalyst precursor IZ-S3, total carbon The content is shown in Table IV-1; 10 g of diethylene glycol is placed in 150 g of deionized water, stirred to obtain a clear solution, and IZ-S3 is impregnated with the above solution by a saturated impregnation method, the immersion time is 2 hours, and then dried at 120 ° C. Catalyst I-3 was obtained in 6 hours.
  • the content of the hydrogenation-active metal element based on the total amount of I-3, based on the oxide, is shown in Table IV-1.
  • the temperature is 450 ° C, the time is 3 hours, the air load ratio is 0.8 liter / (gram ⁇ hour), the catalyst precursor IZ-S4 is obtained, the total carbon content of IZ-S4 is shown in Table IV-1; 15 grams of ethylenediamine The mixture was placed in 150 g of deionized water, stirred to obtain a clear solution, and IZ-S4 was impregnated with the above solution by a saturated impregnation method for 2 hours, and then dried at 120 ° C for 3 hours to obtain a catalyst I-4. The content of the hydrogenation-active metal element based on the total amount of I-4, based on the oxide, is shown in Table IV-1.
  • a hydrogenation catalyst was produced in the same manner as in Example IV-3 except that the metal active component was immersed in a carrier and calcined at a temperature of 480 ° C for 6 hours.
  • the total carbon content in the obtained catalyst precursor is shown in Table IV-1, and the obtained catalyst I-5 is based on the total amount of I-5.
  • the content of the hydrogenation-active metal element is shown in Table IV-1. .
  • a hydrogenation catalyst was produced in the same manner as in Example IV-2 except that the air-load ratio at the time of calcination was 1.0 liter / (g ⁇ hr), and the total amount of I-6 in the obtained catalyst I-6 was obtained.
  • the content of the hydrogenation-active metal element in terms of oxide is shown in Table IV-1.
  • a hydrogenation catalyst was produced in the same manner as in Example IV-2 except that the ratio of the first organic complexing agent and the second organic complexing agent was changed from 30 g: 30 g to 50 g: 10 g.
  • the content of the hydrogenation-active metal element is shown in Table IV-1 based on the total amount of I-7, based on the oxide.
  • Examples IV-8 to IV-11 illustrate a method of producing the hydrogenation catalyst II.
  • the hydrogenation catalyst II-1 is produced as follows:
  • the product name is dry boehmite, produced by Shandong Aluminum Factory, one of which The content of aluminum stone is 80% by weight, and the content of gibbsite is 5% by weight.
  • a precursor of a certain amount of macroporous alumina (second hydrated alumina, sodium metaaluminate-aluminum sulfate method of industrial products, the product name is Changling dry rubber powder, produced by Changling Refinery Catalyst Factory, The gibbsite content is 68% by weight, and the gibbsite content is 5% by weight.
  • the two kinds of hydrated alumina were uniformly mixed at a dry weight ratio of 75:25, and a squeezing agent, an adhesive and water were added to extrude into a trilobal strip having a diameter of 1.4 mm, and dried at 120 ° C, respectively, at 550 ⁇ .
  • a hydrogenation catalyst carrier was prepared, and a certain amount of alumina carrier was weighed, immersed in an ammonium fluoride (chemically pure) aqueous solution for 1 hour, dried at 120 ° C, and calcined at 530 ° C for 4 hours to obtain Fluorinated alumina carrier.
  • the fluorine-containing alumina carrier was impregnated with a mixed aqueous solution of ammonium metatungstate (chemically pure) and nickel nitrate (chemically pure) for 4 hours, dried at 120 ° C, and calcined at 530 ° C for 4 hours to obtain a hydrogenation catalyst II- 1, which comprises 4% by weight of nickel (as NiO), 30% by weight of tungsten (as tungsten oxide), 4% by weight of fluorine (calculated as elemental fluorine), and the balance being alumina.
  • a hydrogenation catalyst II- 1 which comprises 4% by weight of nickel (as NiO), 30% by weight of tungsten (as tungsten oxide), 4% by weight of fluorine (calculated as elemental fluorine), and the balance being alumina.
  • the manufacturing method of the hydrogenation catalyst II-2 is as follows:
  • silica sol Qingdao Ocean Chemical Plant product, silica content: 30% by weight
  • the obtained mixture was extruded into a butterfly strip having a diameter of 1.4 mm by a squeezer, and the extruded wet strip was dried at 120 ° C for 4 hours, followed by calcination at 600 ° C for 3 hours to obtain a carrier, and the carrier was oxidized.
  • the silicon content was 18.0% by weight, and the alumina content was 82.0% by weight.
  • the water absorption of the carrier was 0.85.
  • the production method of the hydrogenation catalyst II-3 is as follows:
  • a high concentration NaAlO 2 solution containing 210 g of alumina/liter and a causticity coefficient of 1.62 was mixed with deionized water to prepare a solution of Al 2 O 3 concentration of 40 g/L for 5 liters, and then 16.3 g of sodium gluconate was added to obtain glucose.
  • the sodium NaAlO 2 solution was then transferred to a total volume of 8 L of a gelation reactor with an auto-diameter ratio of 8 and a CO 2 gas distributor at the lower portion.
  • the temperature of the control solution was 25 ⁇ 5°C, and a concentration of 90% by volume of CO 2 gas was introduced from the bottom of the reactor to form a gelation reaction.
  • the gelation temperature was controlled at 20-40 ° C, and the flow rate of the CO 2 gas was adjusted to 15 ⁇ 2 liters / minute.
  • the pH of the reaction endpoint was brought to 8.0-8.5 in 4-6 minutes, that is, the aeration was stopped, and the gelation reaction was terminated.
  • the resulting slurry was heated to 70 ° C for 4 hours, and then filtered using a vacuum filter. After filtration, the filter cake was rinsed with 20 liters of deionized water (temperature 70 ° C) for about 30 minutes. The washed filter cake was added to 1.5 liters of deionized water and stirred to form a slurry. The slurry was pumped into a spray dryer and dried to obtain hydrated alumina P1-2.
  • aqueous solution containing 20.6 g of nickel nitrate, 34.8 g of ammonium paramolybdate and 11.4 g of phosphoric acid for 1.5 hours, dried at 120 ° C for 5 hours, treated at 380 ° C for 4 hours, and then contained 8.4 g of C III.
  • the aqueous solution of the alcohol was immersed in 55 ml for 2 hours, and dried at 140 ° C for 5 hours to obtain a hydrogenation catalyst II-3 containing 3.5% by weight of nickel (as NiO), 19.1% by weight of molybdenum (calculated as MoO 3 ), 4.8% by weight. % phosphorus (as P 2 O 5 ), 5.7% organic additive, and the balance alumina.
  • the production method of the hydrogenation catalyst II-4 is as follows:
  • the carrier was weighed, and the carrier was immersed in 176 ml of an aqueous solution containing 16.9 g of ammonium fluoride for 2 hours, dried at 120 ° C for 3 hours, and calcined at 420 ° C for 3 hours to obtain a fluorine-containing silica-alumina carrier.
  • the carrier was impregnated with 170 ml of an aqueous solution containing 23.0 g of ammonium paramolybdate for 3 hours, dried at 120 ° C for 4 hours, and further dried at 170 ° C for 4 hours to obtain a molybdenum-containing carrier.
  • the carrier was impregnated with 162 ml of an aqueous solution containing 53.2 g of nickel nitrate, 140.7 g of ammonium metatungstate and 18.1 g of phosphoric acid for 3 hours, dried at 200 ° C for 4 hours, and then impregnated with 121 ml of an aqueous solution containing 77.3 g of ethylene glycol at 120 ° C.
  • hydrogenation catalyst II-4 was obtained, which contained 3.6% by weight of nickel (as NiO), 5.0% by weight of molybdenum (calculated as MoO 3 ), and 32.5% by weight of tungsten (based on tungsten oxide), 2.2 % by weight of fluorine (calculated as elemental fluorine), 3.0% by weight of phosphorus (based on P 2 O 5 ), 5.0% by weight of ethylene glycol, and the balance being alumina-silica.
  • the Middle East straight-run diesel fraction which is blended with 15% catalytic diesel, is classified as a raw material, and its properties are shown in Table IV-3.
  • the desulfurization and denitrification activities of the catalyst were evaluated on a 30 ml diesel hydrogenation unit.
  • the catalyst needs to be pre-vulcanized before the reaction, the catalyst is filled with 30 mL, the feedstock oil inlet is above the hydrogenation unit, the hydrogenation catalyst II is packed in the upper bed of the reactor, and the hydrogenation catalyst I (or D1) is charged in the hydrogenation reactor.
  • the lower bed ie downstream of the hydrogenation catalyst II.
  • the pre-vulcanization conditions are: 6.4 MPa, 320 ° C, 4 h, a hydrogen oil volume ratio of 300, and a vulcanized oil feed rate of 8 mL/h.
  • the reaction conditions were: hydrogen partial pressure of 6.4 MPa, reaction temperature of 350 ° C, hydrogen oil volume ratio of 300, and liquid hourly space velocity of 1.5 h -1 .
  • the samples were reacted for 4 hours and reacted for 500 hours, respectively, and the sulfur and nitrogen contents in the raw materials and the obtained products were determined by gas chromatography.
  • the catalyst D1, the catalyst combination D1+II-1 and the catalyst II-1 were subjected to hydrotreating evaluation according to the methods of Example IV-12 to Example IV-18, and were calculated according to the calculation method of the hydrorefining evaluation result, and the evaluation result was obtained. See Table IV-2 below.
  • the hydrodesulfurization activity of the catalyst was evaluated relative to the relative hydrodesulfurization activity of the reference agent D1 (the catalyst produced in Comparative Example IV-1), and the hydrodesulfurization reaction was treated as a 1.65-stage reaction, which was calculated according to the formula (1).
  • Catalyst X reaction rate constant k(X) HDS
  • the LHSV in the formula (1) is a liquid hour volume space velocity of the hydrocarbon oil at the time of performing the hydrotreating reaction.
  • the relative hydrodesulfurization activity of Catalyst X was calculated according to formula (2) based on the hydrodesulfurization activity of catalyst D1 produced in Comparative Example IV-1 [denoted as k(D1) HDS ]:
  • the hydrodenitrogenation activity of the catalyst was evaluated using relative hydrodenitrogenation activity relative to the reference agent D1 (the catalyst produced in Comparative Example IV-1), and the hydrodenitrogenation reaction was treated as a first-order reaction, according to the formula ( 3) Calculate the reaction rate constant k(X) of catalyst X: HDN :
  • the LHSV in the formula (1) is a liquid hour volume space velocity of the hydrocarbon oil at the time of performing the hydrotreating reaction.
  • This example is intended to illustrate the hydrogenation catalyst I and the method of producing the same according to the present invention.
  • magnesium-containing alumina I-Z weigh 270 g of magnesium nitrate, add deionized water and stir to dissolve, add deionized water to 850 ml, saturate and impregnate 1000 g of alumina carrier for 2 hours, then dry at 120 ° C for 2 hours, and calcine at 400 ° C for 4 hours to obtain water absorption. 0.85 magnesium-containing alumina I-Z1.
  • the total carbon content is shown in Table V-1; 30 g of citric acid was added to 150. The mixture was stirred in deionized water to obtain a clear solution, and IZ-S1 was impregnated with the above solution by a saturated impregnation method for 2 hours, and then dried at 200 ° C for 2 hours to obtain a catalyst I-1.
  • a hydrogenation catalyst was produced in the same manner as in Example V-1 except that the hydrogenation catalyst I-1 produced in Example V-1 was calcined at 400 ° C for 3 hours to obtain a catalyst D1 as a total of the catalyst D1.
  • the content of the hydrogenation-active metal element and the metal auxiliary element in terms of weight, based on the oxide, is shown in Table V-1.
  • This example is intended to illustrate a hydrogenation catalyst and a method of producing the same according to the present invention.
  • the immersion time was 2 hours, and then dried at 120 ° C for 2 hours, followed by calcination under a condition of passing air flow, the calcination temperature was 400 ° C, the time was 2 hours, and the air load ratio was 1.0 liter / (g ⁇ hour), the semi-finished catalyst IZ-S2 is obtained, the total carbon content is shown in Table V-1; 10 g of diethylene glycol is placed in 150 g of deionized water, stirred to obtain a clear solution, and the solution is impregnated with the above solution by saturated impregnation method IZ-S2 The immersion time was 2 hours, and then dried at 150 ° C for 3 hours to obtain a catalyst I-2. The content of the hydrogenation-active metal element and the metal auxiliary element based on the total weight of the catalyst I-2, based on the oxide, is shown in Table V-1.
  • This example is intended to illustrate a hydrogenation catalyst and a method of producing the same according to the present invention.
  • the total carbon content is shown in Table V-1; 15 g of ethylenediamine is placed in 150 g of deionized water, stirred to obtain a clear solution, and the IZ-S3 is impregnated with the above solution by a saturated impregnation method, the immersion time is 1 hour, and then, Drying at 120 ° C for 3 hours gave Catalyst I-3.
  • This example is intended to illustrate a hydrogenation catalyst and a method of producing the same according to the present invention.
  • a hydrogenation catalyst was produced in the same manner as in Example V-2 except that the metal active component was impregnated into a carrier and calcined at a temperature of 450 ° C for 6 hours.
  • the total carbon content of the obtained semi-finished catalyst is shown in Table V-1, and the obtained catalyst I-5 is based on the total weight of the catalyst I-5, and the content of the hydrogenation-active metal element and the metal auxiliary element is determined by the oxide. See Table V-1.
  • a hydrogenation catalyst was produced in the same manner as in Example V-1 except that the airborne ratio at the time of calcination was 1.0 liter / (g ⁇ hr), and the obtained catalyst I-6 was obtained as the total of the catalyst I-6. Based on weight, based on oxides, hydrogenation of active metal elements and metal auxiliaries The content is shown in Table V-1.
  • a hydrogenation catalyst was produced in the same manner as in Example V-1 except that the ratio of the first organic complexing agent to the second organic complexing agent was changed from 30 g and 30 g to 50 g and 10 g, respectively.
  • Catalyst I-7 was obtained.
  • the content of the hydrogenation-active metal element and the metal auxiliary element based on the total weight of the catalyst I-7, based on the oxide, is shown in Table V-1.
  • Examples V-8 to V-11 illustrate a method for producing the hydrogenation catalyst II.
  • the hydrogenation catalyst II-1 is produced as follows:
  • the product name is dry boehmite, produced by Shandong Aluminum Factory, one of which The content of aluminum stone is 80% by weight, and the content of gibbsite is 5% by weight.
  • a precursor of a certain amount of macroporous alumina (second hydrated alumina, sodium metaaluminate-aluminum sulfate method of industrial products, the product name is Changling dry rubber powder, produced by Changling Refinery Catalyst Factory, The gibbsite content is 68% by weight, and the gibbsite content is 5% by weight.
  • the two kinds of hydrated alumina were uniformly mixed at a dry weight ratio of 75:25, and a squeezing agent, an adhesive and water were added to extrude into a trilobal strip having a diameter of 1.4 mm, and dried at 120 ° C, respectively, at 550 ⁇ .
  • a hydrogenation catalyst carrier was prepared, and a certain amount of alumina carrier was weighed, immersed in an ammonium fluoride (chemically pure) aqueous solution for 1 hour, dried at 120 ° C, and calcined at 530 ° C for 4 hours to obtain Fluorinated alumina carrier.
  • the fluorine-containing alumina carrier was impregnated with a mixed aqueous solution of ammonium metatungstate (chemically pure) and nickel nitrate (chemically pure) for 4 hours, dried at 120 ° C, and calcined at 530 ° C for 4 hours to obtain a hydrogenation catalyst II- 1, which comprises 4% by weight of nickel (as NiO), 30% by weight of tungsten (as tungsten oxide), 4% by weight of fluorine (calculated as elemental fluorine), and the balance being alumina.
  • a hydrogenation catalyst II- 1 which comprises 4% by weight of nickel (as NiO), 30% by weight of tungsten (as tungsten oxide), 4% by weight of fluorine (calculated as elemental fluorine), and the balance being alumina.
  • the manufacturing method of the hydrogenation catalyst II-2 is as follows:
  • silica sol Qingdao Ocean Chemical Plant product, silica content: 30% by weight
  • the obtained mixture was extruded into a butterfly strip having a diameter of 1.4 mm by a squeezer, and the extruded wet strip was dried at 120 ° C for 4 hours, followed by calcination at 600 ° C for 3 hours to obtain a carrier, and the carrier was oxidized.
  • the silicon content was 18.0% by weight and the alumina content was 82.0% by weight.
  • the water absorption of the carrier was 0.85.
  • the production method of the hydrogenation catalyst II-3 is as follows:
  • a high concentration NaAlO 2 solution containing 210 g of alumina/liter and a causticity coefficient of 1.62 was mixed with deionized water to prepare a solution of Al 2 O 3 concentration of 40 g/L for 5 liters, and then 16.3 g of sodium gluconate was added to obtain glucose.
  • the sodium NaAlO 2 solution was then transferred to a total volume of 8 L of a gelation reactor with an auto-diameter ratio of 8 and a CO 2 gas distributor at the lower portion.
  • the temperature of the control solution was 25 ⁇ 5°C, and a concentration of 90% by volume of CO 2 gas was introduced from the bottom of the reactor to form a gelation reaction.
  • the gelation temperature was controlled at 20-40 ° C, and the flow rate of the CO 2 gas was adjusted to 15 ⁇ 2 liters / minute.
  • the pH of the reaction endpoint was brought to 8.0-8.5 in 4-6 minutes, that is, the aeration was stopped, and the gelation reaction was terminated.
  • the resulting slurry was heated to 70 ° C for 4 hours, and then filtered using a vacuum filter. After filtration, the filter cake was rinsed with 20 liters of deionized water (temperature 70 ° C) for about 30 minutes. The washed filter cake was added to 1.5 liters of deionized water and stirred to form a slurry. The slurry was pumped into a spray dryer and dried to obtain hydrated alumina P1-2.
  • aqueous solution containing 20.6 g of nickel nitrate, 34.8 g of ammonium paramolybdate and 11.4 g of phosphoric acid for 1.5 hours, dried at 120 ° C for 5 hours, treated at 380 ° C for 4 hours, and then contained 8.4 g of C III.
  • the aqueous solution of the alcohol was immersed in 55 ml for 2 hours, and dried at 140 ° C for 5 hours to obtain a hydrogenation catalyst II-3 containing 3.5% by weight of nickel (as NiO), 19.1% by weight of molybdenum (calculated as MoO 3 ), 4.8% by weight. % phosphorus (as P 2 O 5 ), 5.7% organic additive, and the balance alumina.
  • the production method of the hydrogenation catalyst II-4 is as follows:
  • the carrier was weighed, and the carrier was immersed in 176 ml of an aqueous solution containing 16.9 g of ammonium fluoride for 2 hours, dried at 120 ° C for 3 hours, and calcined at 420 ° C for 3 hours to obtain a fluorine-containing silica-alumina carrier.
  • the carrier was impregnated with 170 ml of an aqueous solution containing 23.0 g of ammonium paramolybdate for 3 hours, dried at 120 ° C for 4 hours, and further dried at 170 ° C for 4 hours to obtain a molybdenum-containing carrier.
  • the carrier was impregnated with 162 ml of an aqueous solution containing 53.2 g of nickel nitrate, 140.7 g of ammonium metatungstate and 18.1 g of phosphoric acid for 3 hours, dried at 200 ° C for 4 hours, and then impregnated with 121 ml of an aqueous solution containing 77.3 g of ethylene glycol at 120 ° C.
  • hydrogenation catalyst II-4 was obtained, which contained 3.6% by weight of nickel (as NiO), 5.0% by weight of molybdenum (calculated as MoO 3 ), and 32.5% by weight of tungsten (based on tungsten oxide), 2.2 % by weight of fluorine (calculated as elemental fluorine), 3.0% by weight of phosphorus (based on P 2 O 5 ), 5.0% by weight of ethylene glycol, and the balance being alumina-silica.
  • the desulfurization activity and the denitrification activity of the hydrogenation catalyst produced by the method provided by the present invention and the hydrogenation catalyst provided in the comparative example were evaluated by hydrotreating according to the following method. The calculation was carried out according to the calculation method of the hydrorefining evaluation result, and the evaluation results are shown in Table V-2.
  • the Middle East straight-run diesel fraction which is blended with 15% catalytic diesel, is classified as a raw material, and its properties are shown in Table V-3.
  • the desulfurization and denitrification activities of the catalyst were evaluated on a 30 ml diesel hydrogenation unit.
  • the catalyst was packed in 30 mL, the feed oil inlet was placed above the hydrogenation unit, and the hydrogenation catalyst II was packed in the upper bed of the reactor.
  • Hydrogenation catalyst I (or D1) It is packed in the lower bed of the hydrogenation reactor, ie downstream of the hydrogenation catalyst II.
  • the catalyst needs to be pre-vulcanized before the reaction.
  • the pre-vulcanization conditions are: hydrogen partial pressure 6.4 MPa, temperature 320 ° C, liquid hourly space velocity 4 h -1 , hydrogen oil volume ratio 300, and sulfurized oil feed rate 8 mL / h.
  • the reaction conditions were: hydrogen partial pressure of 6.4 MPa, reaction temperature of 350 ° C, hydrogen oil volume ratio of 300, and liquid hourly space velocity of 1.5 h -1 .
  • the samples were reacted for 4 hours and reacted for 500 hours, respectively, and the sulfur and nitrogen contents in the raw materials and the obtained products were determined by gas chromatography.
  • the catalyst D1, the catalyst combination D1+II-1 and the catalyst II-1 were subjected to hydrotreating evaluation according to the methods of Example V-12 to Example V-18, and were calculated according to the calculation method of the hydrorefining evaluation result, and the evaluation result was obtained. See Table V-2 below.
  • the LHSV in the formula (1) is a liquid hour volume space velocity of the hydrocarbon oil at the time of performing the hydrotreating reaction.
  • the relative hydrodesulfurization activity of Catalyst X was calculated according to formula (2) based on the hydrodesulfurization activity of catalyst D1 produced in Comparative Example V-1 [denoted as k(D1) HDS ]:
  • the hydrodenitrogenation activity of the catalyst was evaluated using relative hydrodenitrogenation activity relative to the reference agent D1 (the catalyst produced in Comparative Example V-1), and the hydrodenitrogenation reaction was treated as a first-order reaction, according to the formula ( 3) Calculate the reaction rate constant k(X) of catalyst X: HDN :
  • the LHSV in the formula (3) is a liquid hour volume space velocity of the hydrocarbon oil at the time of performing the hydrotreating reaction.
  • the relative hydrodenitrogenation activity of the catalyst X was calculated according to the formula (4) based on the hydrodenitrogenation activity of the catalyst D1 produced in Comparative Example V-1 [indicated as k(D1) HDN ]:
  • This example is intended to illustrate the hydrogenation catalyst I and the method of producing the same according to the present invention.
  • the I-Z1 carrier was immersed for 2 hours, and then dried at 120 ° C for 2 hours, and then calcined under a flow of air, the calcination temperature was 400 ° C, the time was 2 hours, and the gas ratio was 1 l / (g ⁇ hour), get the semi-finished catalyst IZ-S1, the total carbon content is shown in Table VI-1; add 30 grams of citric acid to 150 grams of deionized water, stir to obtain a clear solution, using a saturated impregnation method to impregnate IZ with the above solution -S1, the immersion time was 2 hours, and then dried at 150 ° C for 3 hours to obtain a catalyst I-1.
  • the content of the hydrogenation-active metal element based on the total amount of the catalyst I-1, based on the oxide, is shown in Table VI-1.
  • a hydrogenation catalyst was produced in the same manner as in Example VI-1 except that the hydrogenation catalyst I-1 produced in Example VI-1 was calcined at 400 ° C for 3 hours to obtain a catalyst D1 as a total of the catalyst D1.
  • the amount of the hydrogenation-active metal element is shown in Table VI-1 based on the amount of the oxide.
  • This example is intended to illustrate the hydrogenation catalyst I and the method of producing the same according to the present invention.
  • This example is intended to illustrate the hydrogenation catalyst I and the method of producing the same according to the present invention.
  • the time is 3 hours, the gas-to-agent ratio is 0.3 liter/(g ⁇ hr), and the semi-finished catalyst IZ-S3 is obtained.
  • the total carbon content is shown in Table VI-1; 15 g of ethylenediamine is placed in 150 g of deionized water and stirred to obtain The solution was clarified, and IZ-S3 was impregnated with the above solution by a saturated impregnation method for 2 hours, and then dried at 120 ° C for 3 hours to obtain a catalyst I-3.
  • the content of the hydrogenation-active metal element based on the total amount of the catalyst I-3, based on the oxide, is shown in Table VI-1.
  • Hydrogenation catalyst I was produced in the same manner as in Example VI-1 except that after the metal active component was impregnated into the support, the calcination temperature was 480 ° C for 6 hours.
  • the total carbon content in the obtained catalyst semi-finished product is shown in Table VI-1, and the obtained catalyst I-4 is based on the total amount of the catalyst I-4, and the content of the hydrogenation-active metal element is shown in Table VI-1. .
  • Hydrogenation catalyst I was produced in the same manner as in Example VI-2 except that baking was carried out.
  • the gas-to-agent ratio at the time of calcination is 1.0 liter/(g ⁇ hr), and the obtained catalyst I-5 is based on the total amount of the catalyst I-5, and the content of the hydrogenation-active metal element is shown in Table VI. -1.
  • Hydrogenation catalyst I was produced in the same manner as in Example VI-1 except that the ratio of the first organic complexing agent to the second organic complexing agent was changed from 30 g: 30 g to 50 g: 10 g.
  • the content of the hydrogenation-active metal element is shown in Table VI-1 based on the total amount of the catalyst I-6, based on the oxide.
  • Examples VI-7 to VI-10 illustrate a method of producing Catalyst II.
  • the hydrogenation catalyst II-1 is produced as follows:
  • the product name is dry boehmite, produced by Shandong Aluminum Factory, one of which The content of aluminum stone is 80% by weight, and the content of gibbsite is 5% by weight.
  • a precursor of a certain amount of macroporous alumina (second hydrated alumina, sodium metaaluminate-aluminum sulfate method of industrial products, the product name is Changling dry rubber powder, produced by Changling Refinery Catalyst Factory, The gibbsite content is 68% by weight, and the gibbsite content is 5% by weight.
  • the two kinds of hydrated alumina were uniformly mixed at a dry weight ratio of 75:25, and a squeezing agent, an adhesive and water were added to extrude into a trilobal strip having a diameter of 1.4 mm, and dried at 120 ° C, respectively, at 550 ⁇ .
  • a hydrogenation catalyst carrier was prepared, and a certain amount of alumina carrier was weighed, immersed in an ammonium fluoride (chemically pure) aqueous solution for 1 hour, dried at 120 ° C, and calcined at 530 ° C for 4 hours to obtain Fluorinated alumina carrier.
  • the fluorine-containing alumina carrier was impregnated with a mixed aqueous solution of ammonium metatungstate (chemically pure) and nickel nitrate (chemically pure) for 4 hours, dried at 120 ° C, and calcined at 530 ° C for 4 hours to obtain a hydrogenation catalyst II- 1, which comprises 4% by weight of nickel (as NiO), 30% by weight of tungsten (as tungsten oxide), 4% by weight of fluorine (calculated as elemental fluorine), and the balance being alumina.
  • a hydrogenation catalyst II- 1 which comprises 4% by weight of nickel (as NiO), 30% by weight of tungsten (as tungsten oxide), 4% by weight of fluorine (calculated as elemental fluorine), and the balance being alumina.
  • the manufacturing method of the hydrogenation catalyst II-2 is as follows:
  • silica sol Qingdao Ocean Chemical Plant product, silica content: 30% by weight
  • the obtained mixture was extruded into a butterfly strip having a diameter of 1.4 mm by a squeezer, and the extruded wet strip was dried at 120 ° C for 4 hours, followed by calcination at 600 ° C for 3 hours to obtain a carrier, and the carrier was oxidized.
  • the silicon content was 18.0% by weight and the alumina content was 82.0% by weight.
  • the water absorption of the carrier was 0.85.
  • the production method of the hydrogenation catalyst II-3 is as follows:
  • a high concentration NaAlO 2 solution containing 210 g of alumina/liter and a causticity coefficient of 1.62 was mixed with deionized water to prepare a solution of Al 2 O 3 concentration of 40 g/L for 5 liters, and then 16.3 g of sodium gluconate was added to obtain glucose.
  • the sodium NaAlO 2 solution was then transferred to a total volume of 8 L of a gelation reactor with an auto-diameter ratio of 8 and a CO 2 gas distributor at the lower portion.
  • the temperature of the control solution was 25 ⁇ 5°C, and a concentration of 90% by volume of CO 2 gas was introduced from the bottom of the reactor to form a gelation reaction.
  • the gelation temperature was controlled at 20-40 ° C, and the flow rate of the CO 2 gas was adjusted to 15 ⁇ 2 liters / minute.
  • the pH of the reaction endpoint was brought to 8.0-8.5 in 4-6 minutes, that is, the aeration was stopped, and the gelation reaction was terminated.
  • the resulting slurry was heated to 70 ° C for 4 hours, and then filtered using a vacuum filter. After filtration, the filter cake was rinsed with 20 liters of deionized water (temperature 70 ° C) for about 30 minutes. The washed filter cake was added to 1.5 liters of deionized water and stirred to form a slurry. The slurry was pumped into a spray dryer and dried to obtain hydrated alumina P1-2.
  • aqueous solution containing 20.6 g of nickel nitrate, 34.8 g of ammonium paramolybdate and 11.4 g of phosphoric acid for 1.5 hours, dried at 120 ° C for 5 hours, treated at 380 ° C for 4 hours, and then contained 8.4 g of C III.
  • the aqueous solution of the alcohol was immersed in 55 ml for 2 hours, and dried at 140 ° C for 5 hours to obtain a hydrogenation catalyst II-3 containing 3.5% by weight of nickel (as NiO), 19.1% by weight of molybdenum (calculated as MoO 3 ), 4.8% by weight. % phosphorus (as P 2 O 5 ), 5.7% organic additive, and the balance alumina.
  • the production method of the hydrogenation catalyst II-4 is as follows:
  • the carrier was weighed, and the carrier was immersed in 176 ml of an aqueous solution containing 16.9 g of ammonium fluoride for 2 hours, dried at 120 ° C for 3 hours, and calcined at 420 ° C for 3 hours to obtain a fluorine-containing silica-alumina carrier.
  • the carrier was impregnated with 170 ml of an aqueous solution containing 23.0 g of ammonium paramolybdate for 3 hours, dried at 120 ° C for 4 hours, and further dried at 170 ° C for 4 hours to obtain a molybdenum-containing carrier.
  • the carrier was impregnated with 162 ml of an aqueous solution containing 53.2 g of nickel nitrate, 140.7 g of ammonium metatungstate and 18.1 g of phosphoric acid for 3 hours, dried at 200 ° C for 4 hours, and then impregnated with 121 ml of an aqueous solution containing 77.3 g of ethylene glycol at 120 ° C.
  • hydrogenation catalyst II-4 was obtained, which contained 3.6% by weight of nickel (as NiO), 5.0% by weight of molybdenum (calculated as MoO 3 ), and 32.5% by weight of tungsten (based on tungsten oxide), 2.2 % by weight of fluorine (calculated as elemental fluorine), 3.0% by weight of phosphorus (based on P 2 O 5 ), 5.0% by weight of ethylene glycol, and the balance being alumina-silica.
  • Example VI-11 to VI-6 the desulfurization activity and the denitrification activity of the hydrogenation catalyst produced by the method provided by the present invention and the hydrogenation catalyst provided in the comparative example were evaluated by hydrotreating according to the following methods. And calculated according to the hydro-refining evaluation result calculation method, the evaluation results are shown in Table VI-2.
  • the Middle East straight-run diesel fraction blended with 15% catalytic diesel oil is as shown in Table VI-3.
  • the desulfurization and denitrification activities of the catalyst are evaluated on a 30 ml diesel hydrogenation unit, and the catalyst is filled with 30 mL.
  • the hydrogenation catalyst II is packed in the upper bed of the reactor, and the hydrogenation catalyst I (or D1) is packed in the lower bed of the hydrogenation reactor, ie downstream of the hydrogenation catalyst II.
  • the catalyst needs to be pre-vulcanized before the reaction.
  • the pre-vulcanization conditions are: hydrogen partial pressure 6.4 MPa, temperature 320 ° C, liquid hourly space velocity 4 h -1 , hydrogen oil volume ratio 300, and sulfurized oil feed rate 8 mL / h.
  • the reaction conditions were: hydrogen partial pressure of 6.4 MPa, reaction temperature of 350 ° C, hydrogen oil volume ratio of 300, and liquid hourly space velocity of 1.5 h -1 .
  • the samples were reacted for 4 hours and reacted for 500 hours, respectively, and the sulfur and nitrogen contents in the raw materials and the obtained products were determined by gas chromatography.
  • the catalyst D1, the catalyst combination D1+II-1 and the catalyst II-1 were subjected to hydrotreating evaluation according to the methods of Example VI-11 to Example VI-16, and the hydrofinishing evaluation results were carried out.
  • the calculation method is used for calculation, and the evaluation results are shown in Table VI-2.
  • the hydrodesulfurization activity of the catalyst was evaluated relative to the relative hydrodesulfurization activity of the reference agent D1 (the catalyst produced in Comparative Example VI-1), and the hydrodesulfurization reaction was treated as a 1.65-stage reaction, which was calculated according to the formula (1).
  • Catalyst X reaction rate constant k(X) HDS
  • the LHSV in the formula (1) is a liquid hour volume space velocity of the hydrocarbon oil at the time of performing the hydrotreating reaction.
  • the relative hydrodesulfurization activity of Catalyst X was calculated according to formula (2) based on the hydrodesulfurization activity of catalyst D1 produced in Comparative Example VI-1 [denoted as k(D1) HDS ]:
  • the hydrodenitrogenation activity of the catalyst was evaluated using relative hydrodenitrogenation activity relative to the reference agent D1 (the catalyst produced in Comparative Example VI-1), and the hydrodenitrogenation reaction was treated as a first-order reaction, according to the formula ( 3) Calculate the reaction rate constant k(X) of catalyst X: HDN :
  • the LHSV in the formula (3) is a liquid hour volume space velocity of the hydrocarbon oil at the time of performing the hydrotreating reaction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

一种加氢催化剂及其制造方法,该制造方法至少包括(1)使第一活性金属组分和第一有机络合剂与载体接触,获得复合载体;(2)焙烧复合载体,获得焙烧复合载体,其中焙烧复合载体的总碳含量为1重量%以下;和(3)使第二有机络合剂与述焙烧复合载体接触,获得加氢催化剂。该加氢催化剂兼具优异的加氢脱硫活性和加氢脱氮活性,并且显示出显著延长的催化剂使用寿命。

Description

一种加氢催化剂、其制造方法及其应用 技术领域
本发明涉及一种催化剂,特别是一种加氢催化剂。本发明还涉及所述加氢催化剂的制造方法及其在原料油加氢处理中的应用。
背景技术
日益增强的环保意识和越来越严格的环保法规迫使炼油工业更加注重清洁燃料生产技术的开发。在未来市场上,车用燃料越来越趋向于“超低硫”,不能满足排放标准的燃料将无法进入市场。加氢技术作为一种有效的脱硫手段,在清洁车用燃料的生产中发挥着越来越重要的作用。在此,加氢催化剂是该类加氢技术的核心。因此,开发具有更高催化活性的新型加氢催化剂则成为炼油工业最迫切的需求之一。
众所周知,加氢催化剂通常采用浸渍方法进行制造。比如,中国专利申请CN103551162A公开一种加氢催化剂的制造方法。但是,通过该传统的浸渍方法所制造的加氢催化剂在催化活性上还存在进一步改善的余地。另外,加氢催化剂还可以采用络合浸渍方法进行制造。比如,中国专利申请CN102909027A公开了一种在浸渍步骤中配合使用有机络合剂来制造加氢催化剂的方法。该络合浸渍方法虽然能够在一定程度上改善加氢催化剂的催化活性,但却存在催化活性降低过快而导致催化剂使用寿命过短等问题。
因此,现有技术仍旧需要一种加氢催化剂,与已有的加氢催化剂相比,显示出改善的催化活性,同时显示出显著延长的催化剂使用寿命。
发明内容
本发明的发明人通过刻苦的研究发现,一方面,在现有技术的络合浸渍方法中,通过在浸渍过程中引入有机络合剂,并在低温下干燥,可以减弱活性组分和载体相互作用、提高金属分散度、改变金属硫化顺序,形成更多的高活性的活性相并提高活性中心数目。但是由于在该类络合浸渍技术中采用了低温干燥,并没有经过高温焙烧的过程,金属化合物仍然以金属盐类的形式存在于载体表面,活性组分与载体 作用力较弱,致使在高温高压以及恶劣原料的加氢反应条件下,金属在反应过程中不断聚集,助剂化效应减弱,活性中心数目减少,本征活性下降,导致由此制造的加氢催化剂的催化活性、稳定性下降。另一方面,采用现有技术的浸渍方法制造的加氢催化剂虽然稳定性较好,但是活性组分与载体作用力较强,活性中心的本征活性较低,由于没有络合剂的分散和阻隔作用,活性组分片晶较大,活性中心数目较少,催化活性很难提高。
在不受任何理论限制的情况下,本发明的发明人认为,根据本发明的制造方法,通过在第一个浸渍步骤中加入有机络合剂,然后进行焙烧,不仅能够提高催化剂的催化活性,而且能够有效地长时间保持催化剂的高活性,从而大大提高催化剂的使用寿命。推测其原因可能是因为在第一个浸渍步骤中加入有机络合剂时,有机络合剂的存在阻碍了焙烧过程中活性金属的聚集,使其分散的更加均匀;同时,第一个浸渍步骤之后的焙烧能够使金属化合物转化为金属氧化物,从而使活性金属与载体之间的结合更加牢固,提高了催化剂的催化活性和稳定性。另外,通过在第二个浸渍步骤中加入有机络合剂,使其覆盖在催化剂的表面,能够有效防止活性金属在硫化过程中的聚集,提高金属分散度,更有利于形成具有更高活性的II类活性相和更多的活性中心,从而进一步提高催化剂的催化活性。
本发明的发明人基于前述发现完成了本发明,并解决了现有技术存在的前述问题。
具体而言,本发明涉及以下方面的内容。
1.一种加氢催化剂的制造方法,包括以下步骤:
(1)使第一活性金属组分、第一有机络合剂和任选的活性助剂与载体接触,获得复合载体;
(2)焙烧所述复合载体,获得焙烧复合载体,其中以干基计并以所述焙烧复合载体的干基重量为基准,所述焙烧复合载体的总碳含量为1重量%以下、0.5重量%以下、0.4重量%以下、0.3重量%以下、0.1重量%以下、0.08重量%以下、0.06重量%以下、0.04重量%以下、0.03重量%以下、0.01重量%以下或者0.005重量%以下;和
(3)使第二有机络合剂与所述焙烧复合载体接触,获得所述加氢催化剂,
所述制造方法还任选包括以下步骤中的一个或多个:
(0)制造所述载体;和
(4)硫化所述加氢催化剂。
2.按照前述方面任一项所述的制造方法,其中所述步骤(0)包括以下步骤:
(0-1)成型载体前驱物或载体前驱物组合物,获得预成型载体,其中所述载体前驱物组合物包含载体前驱物、成型助剂和任选的活性助剂;
(0-2)焙烧所述预成型载体,获得所述载体;和
(0-3)任选地,使活性助剂和/或第二活性金属组分与所述载体接触,
其中所述活性助剂选自金属活性助剂(优选选自第IIB族金属元素(比如选自锌和镉中的一种或多种)、第IA族金属元素(比如选自锂、钠、钾、铷、铯和钫中的一种或多种)、第IIA族金属元素(比如选自铍、镁、钙和锶中的一种或多种)和稀土金属元素(比如选自镧、铈、镨和钕中的一种或多种)中的一种或多种,优选选自锌、钠、钾、镁、钙、镧和铈中的一种或多种)和非金属活性助剂(优选选自第IVA族元素(比如硅)、第VIIA族元素(比如选自氟、氯、溴和碘中的一种或多种)、第VA族元素(比如选自磷和砷中的一种或多种)和第IIIA族元素(比如硼)中的一种或多种,优选选自氟、硅、磷和硼中的一种或多种)中的一种或多种,并且在所述加氢催化剂中,以金属元素计且以所述加氢催化剂的总重量为基准,所述金属活性助剂的含量为从0重量%至10重量%,优选从0.5重量%至6重量%,以非金属元素计且以所述加氢催化剂的总重量为基准,所述非金属活性助剂的含量为从0重量%至10重量%,优选从0.5重量%至6重量%。
3.按照前述方面任一项所述的制造方法,其中所述步骤(0-2)的焙烧条件包括:焙烧温度从250℃至500℃,优选从350℃至450℃,焙烧时间从2h至8h,优选从3h至6h。
4.按照前述方面任一项所述的制造方法,其中所述步骤(0-3)包括以下步骤:
(0-3-1)使所述活性助剂和/或所述第二活性金属组分浸渍所述载体,获得浸渍产物,和
(0-3-2)在从100℃至250℃(优选从100℃至200℃)的温度下干燥所述浸渍产物,和/或,在从250℃至600℃(优选从350℃至500℃)的温度下焙烧所述浸渍产物。
5.按照前述方面任一项所述的制造方法,其中所述步骤(1)包括以下步骤:
(1-1)使所述第一活性金属组分、所述第一有机络合剂和所述任选的活性助剂浸渍所述载体,获得浸渍产物,和
(1-2)在从100℃至250℃(优选从100℃至200℃)的温度下热处理所述浸渍产物,获得所述复合载体。
6.按照前述方面任一项所述的制造方法,其中所述步骤(2)的焙烧条件包括:焙烧温度从350℃至500℃,优选从360℃至450℃,焙烧时间从0.5h至8h,优选从1h至6h,通入含氧气体(优选氧气含量不低于20vol%),以所述载体的重量为基准,所述含氧气体的通入量大于0.2升/(克·小时),优选从0.2升/(克·小时)至20升/(克·小时),进一步优选从0.3升/(克·小时)至10升/(克·小时)。
7.按照前述方面任一项所述的制造方法,其中所述步骤(3)包括以下步骤:
(3-1)使所述第二有机络合剂浸渍所述焙烧复合载体,获得浸渍产物,和
(3-2)在从100℃至250℃(优选从100℃至200℃)的温度下热处理所述浸渍产物,获得所述加氢催化剂。
8.按照前述方面任一项所述的制造方法,其中以氧化物计且以所述加氢催化剂的总重量为基准,所述第一活性金属组分的含量或者所述第一活性金属组分与所述第二活性金属组分的总含量为从6重量%至70重量%,优选从15重量%至60重量%,优选从20重量%至50重量%,优选从20重量%至40重量%;所述第一有机络合剂与所述第一活性金属组分的摩尔比为从0.03∶1至2∶1,优选从0.08∶1至1.5∶1;所述第一有机络合剂与所述第二有机络合剂的摩尔比为从1∶0.25至1∶4,优选从1∶0.5至1∶2;所述第一活性金属组分与所述第二活性金属组分的摩尔比为从1∶0至1∶0.4,优选从1∶0至1∶0.1。
9.按照前述方面任一项所述的制造方法,其中所述载体前驱物选自氧化铝、氧化硅、氧化铝-氧化硅、氧化钛、氧化镁、氧化硅-氧化镁、 氧化硅-氧化锆、氧化硅-氧化钍、氧化硅-氧化铍、氧化硅-氧化钛、氧化硅-氧化锆、氧化钛-氧化锆、氧化硅-氧化铝-氧化钍、氧化硅-氧化铝-氧化钛、氧化硅-氧化铝-氧化镁和氧化硅-氧化铝-氧化锆中的一种或多种,优选氧化铝,包括其各自的前身物。
10.按照前述方面任一项所述的制造方法,其中所述第一有机络合剂和所述第二有机络合剂彼此相同或不同,各自独立地选自以下物质中的一种或多种:
(i)C2-30(优选C2-10)直链或支链烷烃的碳链结构被一个或多个(比如1至5个、1至4个、1至3个、1至2个或者1个)选自-O-和-NR1-(其中,基团R1选自H和任选取代的C1-10直链或支链烷基)的杂基团中断而获得的有机化合物A,
(ii)C1-30(优选C2-10)直链或支链烷烃、C2-30(优选C2-10)直链或支链烯烃、任选取代的C3-20(优选C5-10)环烷烃或者所述有机化合物A的分子结构中的一个或多个(比如1至5个、1至4个、1至3个、1至2个或者1个)氢原子被选自-R2-OH(其中,基团R2代表单键或者C1-10直链或支链亚烷基,优选代表单键或者C1-6直链或支链亚烷基,优选代表单键或者C1-3直链或支链亚烷基)、-R3-NR4R5(其中,基团R3代表单键或者C1-10直链或支链亚烷基,优选代表C1-6直链或支链亚烷基,优选代表C1-3直链或支链亚烷基;基团R4和R5彼此相同或不同,各自独立地选自氢、C1-10直链或支链烷基和-R6-C(=O)OM,优选各自独立地选自氢、C1-6直链或支链烷基和-R6-C(=O)OM,优选各自独立地选自C1-3直链或支链烷基和-R6-C(=O)OM,更优选各自独立地代表-R6-C(=O)OM;基团R6代表单键或者C1-10直链或支链亚烷基,优选代表C1-6直链或支链亚烷基,优选代表C1-3直链或支链亚烷基;M代表H、碱金属或碱土金属)和-R6-C(=O)OM(其中,基团R6代表单键或者C1-10直链或支链亚烷基,优选代表C1-6直链或支链亚烷基,优选代表C1-3直链或支链亚烷基;M代表H、碱金属或碱土金属)的取代基取代而获得的有机化合物B,
前提是所述有机化合物A和所述有机化合物B在其分子结构中均不包含氧氧直接键合、氮氮直接键合和氮氧直接键合,
(iii)烯化氧均聚物或共聚物,
更优选所述第一有机络合剂和所述第二有机络合剂彼此相同或不同,各自独立地选自(i)任选带有一个或多个(比如1至5个、1至4个、1至3个、1至2个或者1个)-R2-OH(其中,基团R2代表单键或者C1-10直链或支链亚烷基,优选代表单键或者C1-6直链或支链亚烷基,优选代表单键或者C1-3直链或支链亚烷基)作为取代基的C1-20(优选C2-7)脂肪族或C5-10脂环族一元或多元羧酸或其盐(比如选自乙酸、马来酸、草酸、柠檬酸、酒石酸和苹果酸中的一种或多种)、(ii)任选带有一个或多个(比如1至5个、1至4个、1至3个、1至2个或者1个)选自-R2-OH(其中,基团R2代表单键或者C1-10直链或支链亚烷基,优选代表单键或者C1-6直链或支链亚烷基,优选代表单键或者C1-3直链或支链亚烷基)和-R6-C(=O)OM(其中,基团R6代表单键或者C1-10直链或支链亚烷基,优选代表C1-6直链或支链亚烷基,优选代表C1-3直链或支链亚烷基;M代表H、碱金属或碱土金属)的取代基的C1-20(优选C2-7)脂肪族或C5-10脂环族一元或多元胺(比如选自乙二胺、三乙胺、己二胺、乙醇胺、二乙醇胺、三乙醇胺、乙二胺四乙酸或其盐、氮川三乙酸或其盐和1,2-环己烷二胺四乙酸或其盐中的一种或多种)和(iii)C2-20(优选C2-6)脂肪族或C5-10脂环族多元醇、其低聚物或高聚物、或者其C1-6直链或支链烷基醚化物(比如选自乙二醇、丙三醇、聚乙二醇、二乙二醇、二乙二醇单甲基醚和丁二醇中的一种或多种)中的一种或多种,更优选各自独立地选自乙二醇、丙三醇、聚乙二醇(分子量为从200至1500,优选从200至600)、二乙二醇、丁二醇、乙酸、马来酸、草酸、氮川三乙酸或其盐、1,2-环己烷二胺四乙酸或其盐、柠檬酸、酒石酸、苹果酸、乙二胺和乙二胺四乙酸或其盐中的一种或多种。
11.按照前述方面任一项所述的制造方法,其中所述第一活性金属组分和所述第二活性金属组分彼此相同或不同,各自独立地选自元素周期表第VIB族金属元素(优选选自钼和钨中的一种或多种)和元素周期表第VIII族金属元素(优选选自钴和镍中的一种或多种)中的一种或多种,优选各自独立地选自一种或多种所述元素周期表第VIB族金属元素与一种或多种所述元素周期表第VIII族金属元素的组合,更优选各自独立地选自钼和/钨与钴和/镍的组合。
12.按照前述方面任一项所述的制造方法,其中在所述步骤(3) 之中或者之后,不包括焙烧步骤,和/或,在所述步骤(3)之中或者之后,不包括引入活性助剂和/或加氢活性金属元素的步骤。
13.根据按照前述方面任一项所述的制造方法制造的加氢催化剂。
14.一种加氢催化剂组合物,包含加氢催化剂I和加氢催化剂II,其中所述加氢催化剂I与所述加氢催化剂II不同,以体积计并以所述加氢催化剂组合物的总体积为基准,所述加氢催化剂I的含量为5-95%,优选10-80%,更优选20-70%,并且所述加氢催化剂I是按照前述方面任一项所述的制造方法制造的加氢催化剂。
15.一种加氢处理方法,包括使原料油在氢气的存在下与前述方面任一项所述的加氢催化剂或者前述方面任一项所述的加氢催化剂组合物接触以进行加氢反应的步骤。
16.按照前述方面任一项所述的方法,其中使所述原料油(i)先与所述加氢催化剂I接触,然后再与所述加氢催化剂II接触,(ii)先与所述加氢催化剂II接触,然后再与所述加氢催化剂I接触,或者(iii)与多段所述加氢催化剂I和多段所述加氢催化剂II交替接触。
17.按照前述方面任一项所述的方法,其中所述加氢反应的条件包括:反应温度从300℃至400℃,优选从320℃至380℃,反应压力从1兆帕至10兆帕(表压),优选从1兆帕至8兆帕(表压),所述原料油的液时体积空速从0.5小时-1至3小时-1,优选从0.5小时-1至2.5小时-1,氢油体积比从100至800,优选从100至700。
技术效果
根据本发明的加氢催化剂,兼具优异的加氢脱硫活性和加氢脱氮活性。
根据本发明的加氢催化剂,显示出显著延长的催化剂使用寿命。
具体实施方式
下面对本发明的具体实施方式进行详细说明,但是需要指出的是,本发明的保护范围并不受这些具体实施方式的限制,而是由附录的权利要求书来确定。
本说明书提到的所有出版物、专利申请、专利和其它参考文献全都引于此供参考。除非另有定义,本说明书所用的所有技术和科学术 语都具有本领域技术人员常规理解的含义。在有冲突的情况下,以本说明书的定义为准。
当本说明书以词头“本领域技术人员公知”、“现有技术”、“常规已知”或其类似用语来导出材料、物质、方法、步骤、装置或部件等时,该词头导出的对象涵盖本申请提出时本领域常规使用的那些,但也包括目前还不常用,却将变成本领域公认为适用于类似目的的那些。
在本说明书的上下文中,除了明确说明的内容之外,未提到的任何事宜或事项均直接适用本领域已知的那些而无需进行任何改变。而且,本文描述的任何实施方式均可以与本文描述的一种或多种其他实施方式自由结合,由此而形成的技术方案或技术思想均视为本发明原始公开或原始记载的一部分,而不应被视为是本文未曾披露或预期过的新内容,除非本领域技术人员认为该结合是明显不合理的。
在本说明书的上下文中,除非另外有明确说明,表述“任选取代”指的是任选被一个或多个选自羟基、氨基、C1-10直链或支链烷基、C2-10直链或支链烯基、C3-20环烷基和C6-20芳基的取代基取代。作为所述取代基,优选羟基、氨基和C1-10直链或支链烷基,更优选C1-10直链或支链烷基。在此,作为所述C1-10直链或支链烷基,具体比如可以举出C1-6直链或支链烷基或者C1-4直链或支链烷基,更具体比如可以举出甲基、乙基、丙基、正丁基、异丁基和正己基。作为所述C2-10直链或支链烯基,具体比如可以举出C2-6直链或支链烯基或者C2-4直链或支链烯基,更具体比如可以举出乙烯基、烯丙基、丙烯基、正丁烯基、异丁烯基和正己烯基。
在本说明书的上下文中,术语“C3-20环烷烃”指的是具有3-20个环上碳原子的单环、双环或多环环烷烃。在此,作为所述C3-20环烷烃,具体比如可以举出环丙烷、环己烷和环戊烷等单环环烷烃,以及双环戊烷、十氢化萘、金刚烷、螺[2.4]庚烷、螺[4.5]癸烷、二环[3.2.1]辛烷、三环[2.2.1.02,6]辛烷、降冰片烷、
Figure PCTCN2017000318-appb-000001
等螺环、桥环或稠环式双环或多环环烷烃。作为所述C3-20环烷烃,优选C3-15环烷烃,更优选C5-10环烷烃或者C5-7环烷烃。另外,术语“C3-20环烷基”指的是所述C3-20环烷烃失去一个氢原子而获得的一价基团。
在本说明书的上下文中,术语“C6-20芳基”指的是具有6-20个环上碳原子的芳香族烃基。作为所述C6-20芳基,比如可以举出苯基、联苯基和三联苯基等两个或多个苯环以单键直接相连而成的基团、以及萘基、蒽基、菲基等两个或多个苯环稠合而成的基团。作为所述C6-20芳基,更优选苯基、萘基和联苯基。
在本说明书的上下文中,除非另外有明确说明,表述“一个或多个”通常指的是1至5个、1至4个、1至3个、1至2个或者1个。
在本说明书的上下文中,术语“不饱和浸渍法”适用本领域最常规的理解方式,指的是在进行浸渍时,浸渍用润湿液(也称为浸渍液或润湿液)的体积小于被浸渍对象(比如载体颗粒等)的饱和吸液量。比如按照体积计,对于给定质量的被浸渍对象(比如载体颗粒等)而言,该润湿液的体积与该被浸渍对象的饱和吸液量(换算为体积)之比一般为0.01-0.6∶1,优选0.02-0.4∶1。该不饱和浸渍法一般在常温常压下进行,但有时根据需要也可以在加热、减压或加压下进行,并没有特别的限定。
在本说明书的上下文中,术语“饱和浸渍法”(也称为等体积浸渍法)适用本领域最常规的理解方式,指的是在进行浸渍时,浸渍用润湿液(也称为浸渍液或润湿液)的体积(基本上)等于被浸渍对象(比如载体颗粒等)的饱和吸液量。比如按照体积计,对于给定质量的被浸渍对象(比如载体颗粒等)而言,该润湿液的体积与该被浸渍对象的饱和吸液量(换算为体积)之比一般为0.9-1.1∶1,优选0.95-1.05∶1。该饱和浸渍法一般在常温常压下进行,但有时根据需要也可以在加热、减压或加压下进行,并没有特别的限定。
在本说明书的上下文中,术语“过量浸渍法”适用本领域最常规的理解方式,指的是在进行浸渍时,浸渍用润湿液(也称为浸渍液或润湿液)的体积大于被浸渍对象(比如载体颗粒等)的饱和吸液量。比如按照体积计,对于给定质量的被浸渍对象(比如载体颗粒等)而言,该润湿液的体积与该被浸渍对象的饱和吸液量(换算为体积)之比一般为1.5-15∶1,优选5-10∶1。该过量浸渍法一般在常温常压下进行,但有时根据需要也可以在加热、减压或加压下进行,并没有特别的限定。
在没有明确指明的情况下,本说明书内所提到的所有百分数、份 数、比率等都是以重量为基准的,除非以重量为基准时不符合本领域技术人员的常规认识。
根据本发明,首先涉及一种加氢催化剂的制造方法。在此,所述制造方法至少包括以下步骤:
(1)使第一活性金属组分和第一有机络合剂与载体接触,获得复合载体;
(2)焙烧所述复合载体,获得焙烧复合载体,其中以干基计并以所述焙烧复合载体的干基重量为基准,所述焙烧复合载体的总碳含量为1重量%以下;和
(3)使第二有机络合剂与所述焙烧复合载体接触,获得所述加氢催化剂。
根据本发明,在步骤(1)中,作为所述载体,比如可以举出本领域已知可以用作加氢催化剂载体的任何材料,并没有特别的限定。具体举例而言,比如可以举出多孔性耐熔载体。在此,作为所述多孔性耐熔载体,更具体比如可以举出多孔性耐熔氧化物,优选多孔性无机耐熔氧化物。作为所述多孔性无机耐熔氧化物,更具体比如可以举出元素周期表中第II族、第III族和第IV族元素的氧化物,更具体比如可以举出氧化铝、氧化硅、氧化铝-氧化硅、氧化钛、氧化镁、氧化硅-氧化镁、氧化硅-氧化锆、氧化硅-氧化钍、氧化硅-氧化铍、氧化硅-氧化钛、氧化硅-氧化锆、氧化钛-氧化锆、氧化硅-氧化铝-氧化钍、氧化硅-氧化铝-氧化钛、氧化硅-氧化铝-氧化镁和氧化硅-氧化铝-氧化锆,优选氧化铝。在此,作为所述氧化铝,具体比如可以举出γ-氧化铝、η-氧化铝、θ-氧化铝、δ-氧化铝和χ-氧化铝,优选γ-氧化铝。
根据本发明的一个实施方式,在步骤(1)中,所述载体含有氧化铝作为必要组分。在此,作为所述氧化铝,具体比如可以举出γ-氧化铝、η-氧化铝、θ-氧化铝、δ-氧化铝和χ-氧化铝,优选γ-氧化铝。
根据本发明,在步骤(1)中,所述载体是颗粒状材料(即,成型材料),而不是粉末等无定形材料。作为所述颗粒的形状,可以举出本领域中已知作为加氢催化剂的(成型)载体常规使用的各种形状,比如可以进一步举出球形、柱状和片状等,优选球形或柱状。作为所述球形,比如可以举出圆球形和椭球形等。作为所述柱状,比如可以举出圆柱状、方柱状和异型截面(比如三叶草等)柱状等。
根据本发明,在步骤(1)中,所述载体可以通过本领域常规已知的任何方法成型为颗粒状,也可以使用市售的颗粒状产品。
根据本发明,在步骤(1)中,所述载体的比表面积(BET法)一般为100-500m2/g,优选150-400m2/g。
根据本发明,在步骤(1)中,所述载体的孔容(BET法)一般为0.1-1.0ml/g,优选0.3-0.9ml/g。
根据本发明,在步骤(1)中,所述载体的堆积密度(机械敲击法)一般为40-100g/100ml,优选45-70g/100ml。
根据本发明,在步骤(1)中,所述载体的饱和吸液量一般为40-140ml/100g,优选60-120ml/100g。为了测量该饱和吸液量,称100g所述颗粒状的多孔性耐熔载体放入分液漏斗中,然后加入300ml净水,使水面超过载体料面,放置30分钟,然后将多余的水排到量筒中,得到多余水的体积L。此时,饱和吸液量的计算公式为(300-L)÷100(ml/100g)。
根据本发明,在步骤(1)中,所述载体的平均粒度(筛分法)一般为从2mm至8mm,优选从3mm至5mm。
根据本发明,在步骤(1)中,对所述第一活性金属组分和所述第一有机络合剂与所述载体的接触顺序没有特别的限定,具体比如可以举出使所述第一活性金属组分和所述第一有机络合剂同时接触所述载体的方式(称为一步接触方法),也可以举出使所述第一活性金属组分和所述第一有机络合剂按照先后顺序依次接触所述载体的方式(称为多步接触方法)。在采用多步接触方法时,优选在每一个接触步骤结束之后,均对所获得的接触产物进行热处理(比如干燥)。在此,本发明对所述接触产物的干燥方式和干燥条件没有任何的限定,可以参照本领域已知的信息。举例而言,作为所述干燥条件,比如可以举出干燥温度一般为从100℃至250℃,优选从100℃至200℃,干燥时间一般为从1h至12h,优选从1h至10h。
根据本发明的一个实施方式,在步骤(1)中,除了所述第一活性金属组分和所述第一有机络合剂之外,还可以进一步引入活性助剂,并使其与所述载体接触。
根据本发明的该实施方式,在步骤(1)中,对所述第一活性金属组分、所述第一有机络合剂和所述活性助剂与所述载体的接触顺序没有特别的限定,具体比如可以举出使所述第一活性金属组分、所述第 一有机络合剂和所述活性助剂同时接触所述载体的方式(称为一步接触方法),也可以举出使所述第一活性金属组分、所述第一有机络合剂和所述活性助剂按照先后顺序依次或者彼此任意组合先后接触所述载体的方式(称为多步接触方法)。在采用多步接触方法时,优选在每一个接触步骤结束之后,均对所获得的接触产物进行热处理(比如干燥)。在此,本发明对所述接触产物的干燥方式和干燥条件没有任何的限定,可以参照本领域已知的信息。举例而言,作为所述干燥条件,比如可以举出干燥温度一般为从100℃至250℃,优选从100℃至200℃,干燥时间一般为从1h至12h,优选从1h至10h。或者,在采用多步接触方法并且使所述活性助剂最先接触所述载体时,优选在所述接触步骤结束之后,对所获得的接触产物进行热处理,比如干燥、焙烧、或者先干燥后焙烧。在此,本发明对所述接触产物的干燥方式和干燥条件没有任何的限定,可以参照本领域已知的信息。举例而言,作为所述干燥条件,比如可以举出干燥温度一般为从100℃至250℃,优选从100℃至200℃,干燥时间一般为从1h至12h,优选从1h至10h。另外,本发明对所述接触产物的焙烧方式和焙烧条件没有任何的限定,可以参照本领域已知的信息。举例而言,作为所述焙烧条件,比如可以举出焙烧温度一般为从250℃至600℃,优选从350℃至500℃,焙烧时间一般为从2h至8h,优选从3h至6h。
根据本发明,在步骤(1)中,对所述第一活性金属组分、所述第一有机络合剂和所述任选的活性助剂与所述载体的接触方式没有特别的限定,具体比如可以举出可以使得所述第一活性金属组分、所述第一有机络合剂和所述任选的活性助剂能够负载于所述载体的任何方式,更具体比如可以举出使所述第一活性金属组分、所述第一有机络合剂和所述任选的活性助剂浸渍所述载体而获得浸渍产物的方式。在此,所述浸渍可以按照本领域已知的任何方式进行。举例而言,作为所述浸渍方法,可以举出不饱和浸渍法、饱和浸渍法和过量浸渍法。另外,本发明对所述浸渍的温度没有特别限定,可以是浸渍液所能达到的各种温度,并且对所述浸渍的时间没有特别限定,只要能负载上所需量的所需组分即可。举例而言,所述浸渍的温度可以为15-60℃,所述浸渍的时间可以为0.5-5小时。
根据本发明,在步骤(1)中,更具体举例而言,作为所述接触方 式,比如可以举出先使含有预定量的所述活性助剂的浸渍液(优选水溶液)浸渍所述载体,按照前述规定干燥和焙烧之后获得预浸渍载体,再使含有预定量的所述第一活性金属组分和预定量的所述第一有机络合剂的浸渍液(优选水溶液)浸渍所述预浸渍载体而获得浸渍产物的方式,或者使含有预定量的所述第一活性金属组分、预定量的所述第一有机络合剂和预定量的所述活性助剂的浸渍液(优选水溶液)浸渍所述载体而获得浸渍产物的方式,或者使含有预定量的所述第一活性金属组分和预定量的所述第一有机络合剂的浸渍液(优选水溶液)浸渍所述载体而获得浸渍产物的方式,或者先使含有预定量的所述第一活性金属组分的浸渍液(优选水溶液)浸渍所述载体,按照前述规定干燥之后获得预浸渍载体,再使含有预定量的所述第一有机络合剂的浸渍液(优选水溶液)浸渍所述预浸渍载体而获得浸渍产物的方式,或者先使含有预定量的所述第一有机络合剂的浸渍液(优选水溶液)浸渍所述载体,按照前述规定干燥之后获得预浸渍载体,再使含有预定量的所述第一活性金属组分的浸渍液(优选水溶液)浸渍所述预浸渍载体而获得浸渍产物的方式,或者先使含有部分量的所述第一有机络合剂的浸渍液(优选水溶液)浸渍所述载体,按照前述规定干燥之后获得预浸渍载体,再使含有预定量的所述第一活性金属组分和剩余量的所述第一有机络合剂的浸渍液(优选水溶液)浸渍所述预浸渍载体而获得浸渍产物的方式。
根据本发明的一个实施方式,在步骤(1)全部结束之后,可以对所述获得的复合载体或浸渍产物进行热处理,比如干燥。在此,本发明对所述复合载体或所述浸渍产物的干燥方式和干燥条件没有任何的限定,可以参照本领域已知的信息。举例而言,作为所述干燥条件,比如可以举出干燥温度一般为从100℃至250℃,优选从100℃至200℃,干燥时间一般为从1h至12h,优选从1h至10h。本发明将通过所述热处理而获得的热处理产物也称为复合载体。
根据本发明,在步骤(2)中,焙烧所述复合载体,由此获得所述焙烧复合载体。在此,以干基计并以所述焙烧复合载体的干基重量为基准,所述焙烧复合载体的总碳含量必须为1重量%以下。
根据本发明,在步骤(2)中,对所述复合载体的焙烧方式和焙烧条件没有任何的限定,只要其可以使得最终获得的所述焙烧复合载体 的总碳含量达到1重量%以下(以干基计并以所述焙烧复合载体的干基重量为基准)即可。具体举例而言,作为所述焙烧条件,比如可以举出焙烧温度一般为从350℃至500℃,优选从360℃至450℃,焙烧时间一般为从0.5h至8h,优选从1h至6h。另外,所述焙烧优选在含氧气氛下进行,更优选在通入含氧气体的条件下进行。为此,以所述载体的重量为基准,所述含氧气体的通入量一般为大于0.2升/(克·小时),优选0.2-20升/(克·小时),进一步优选0.3-10升/(克·小时)。此处的“克”表示所述载体的重量。在此,作为所述含氧气体,比如可以举出空气、氧气和其它含氧气体。优选的是,氧气在所述含氧气体中的体积含量一般不低于20体积%。
根据本发明,在步骤(2)中,作为所述总碳含量的范围,进一步可以举出0.5重量%以下或者低于0.5重量%、0.4重量%以下或者低于0.4重量%、0.3重量%以下或者低于0.3重量%、0.1重量%以下或者低于0.1重量%、0.08重量%以下或者低于0.08重量%、0.06重量%以下或者低于0.06重量%、0.04重量%以下或者低于0.04重量%、0.03重量%以下或者低于0.03重量%、0.01重量%以下或者低于0.01重量%、0.005重量%以下或者低于0.005重量%,以干基计并以所述焙烧复合载体的干基重量为基准。另外,作为所述总碳含量的下限值,具体比如可以举出0.04重量%、0.03重量%、0.01重量%、0.005重量%或者0重量%,以干基计并以所述焙烧复合载体的干基重量为基准。在此,所谓“0重量%”,指的是所述总碳含量的数值低于测量仪器的阈值,无法被所述测量仪器有效测量,但这并不一定意味着所述总碳含量已经达到真正意义上的0或者在所述焙烧复合载体中已经完全不含碳。另外,所谓“总碳含量”,指的是所述焙烧复合载体中以任何形式存在的碳的总含量,包括但不限于有机化合物态碳(比如有机物)、无机化合物态碳(比如碳酸盐)和单质碳。
根据本发明,在步骤(3)中,使第二有机络合剂与所述焙烧复合载体接触,获得本发明的加氢催化剂。
根据本发明,在步骤(3)中,对所述第二有机络合剂与所述焙烧复合载体的接触方式没有特别的限定,具体比如可以举出可以使得所述第二有机络合剂能够负载于所述焙烧复合载体的任何方式,更具体比如可以举出使所述第二有机络合剂浸渍所述焙烧复合载体而获得浸 渍产物的方式。在此,所述浸渍可以按照本领域已知的任何方式进行。举例而言,作为所述浸渍方法,可以举出不饱和浸渍法、饱和浸渍法和过量浸渍法。另外,本发明对所述浸渍的温度没有特别限定,可以是浸渍液所能达到的各种温度,并且对所述浸渍的时间没有特别限定,只要能负载上所需量的所需组分即可。举例而言,所述浸渍的温度可以为15-60℃,所述浸渍的时间可以为0.5-5小时。
根据本发明,在步骤(3)中,更具体举例而言,作为所述接触方式,比如可以举出使含有预定量的所述第二有机络合剂的浸渍液(优选水溶液)浸渍所述焙烧复合载体而获得浸渍产物的方式,或者先使含有部分量的所述第二有机络合剂的浸渍液(优选水溶液)浸渍所述焙烧复合载体,干燥之后获得预浸渍载体,再使含有剩余量的所述第二有机络合剂的浸渍液(优选水溶液)浸渍所述预浸渍载体而获得浸渍产物的方式。在此,本发明对所述干燥的方式和条件没有任何的限定,可以参照本领域已知的信息。举例而言,作为所述干燥条件,比如可以举出干燥温度一般为从100℃至250℃,优选从100℃至200℃,干燥时间一般为从1h至12h,优选从1h至10h。
根据本发明的一个实施方式,在步骤(3)结束之后,可以对所述获得的加氢催化剂或浸渍产物进行热处理,比如干燥。在此,本发明对所述干燥的方式和条件没有任何的限定,可以参照本领域已知的信息。举例而言,作为所述干燥条件,比如可以举出干燥温度一般为从100℃至250℃,优选从100℃至200℃,干燥时间一般为从1h至12h,优选从1h至10h。本发明将通过所述热处理而获得的热处理产物也称为加氢催化剂。在此优选的是,所述热处理能够使得至少50重量%(比如至少60重量%、至少70重量%或者至少80重量%)的所述第二有机络合剂或其热分解产物保留在所述加氢催化剂中。更为优选的是,所述热处理不包括焙烧,或者换句话说,在所述步骤(3)中或者在所述步骤(3)结束之后,对所述获得的加氢催化剂或浸渍产物不进行焙烧。在此,术语“焙烧”可以按照本领域的通常知识进行理解,比如可以理解为将待处理样品置于从300℃至500℃的温度下至少0.1h或更长时间。
根据本发明的一个实施方式,为了使本发明的预期技术效果能够充分实现,在所述步骤(3)中或者在所述步骤(3)结束之后,不向 所述焙烧复合载体中引入任何有效量的活性助剂(参见下文描述)和/或任何有效量的加氢活性金属元素(参见下文描述),优选不向所述焙烧复合载体中引入任何有效量的所述活性助剂和任何有效量的所述加氢活性金属元素。在此,所谓“有效量”,指的是相关组分能够发挥预期功能或作用的最小用量,这一点是本领域技术人员所容易理解的。
根据本发明的一个实施方式,所述加氢催化剂的制造方法还可以进一步包括制造所述载体的步骤(称为步骤(0))。
根据本发明的该实施方式,对所述载体的制造方法没有任何的限定,只要是本领域已知可以用于制造加氢催化剂用载体的任何方法,都可以采用,并没有特别的限定。具体举例而言,所述步骤(0)可以按照至少包括以下两个步骤的方式进行。
(0-1)成型载体前驱物或载体前驱物组合物,获得预成型载体;和
(0-2)焙烧所述预成型载体,获得所述载体。
根据本发明,在步骤(0-1)中,所述载体前驱物组合物包含载体前驱物和成型助剂。
根据本发明的一个实施方式,在步骤(0-1)中,所述载体前驱物组合物还可以进一步包含活性助剂。
根据本发明,在步骤(0-1)中,作为所述载体前驱物,比如可以举出本领域已知可以用作加氢催化剂载体前驱物的任何材料,并没有特别的限定。具体举例而言,比如可以举出多孔性耐熔氧化物(包括其前身物),优选多孔性无机耐熔氧化物(包括其前身物)。作为所述多孔性无机耐熔氧化物,更具体比如可以举出元素周期表中第II族、第III族和第IV族元素的氧化物,更具体比如可以举出氧化铝、氧化硅、氧化铝-氧化硅、氧化钛、氧化镁、氧化硅-氧化镁、氧化硅-氧化锆、氧化硅-氧化钍、氧化硅-氧化铍、氧化硅-氧化钛、氧化硅-氧化锆、氧化钛-氧化锆、氧化硅-氧化铝-氧化钍、氧化硅-氧化铝-氧化钛、氧化硅-氧化铝-氧化镁和氧化硅-氧化铝-氧化锆,优选氧化铝。另外,作为所述氧化铝的前身物,特别可以举出水合氧化铝、铝盐、有机铝和铝溶胶。作为所述水合氧化铝,更特别可以举出三水合氧化铝、一水合氧化铝、无定形氢氧化铝和薄水铝石。作为所述氧化硅的前身物,特别可以举出水溶性含硅化合物或者在水介质中可以水解形成硅凝胶或 溶胶的含硅化合物,更具体比如可以举出水玻璃、硅溶胶、硅胶和硅酸酯。这些载体前驱物(包括其前身物)可以单独使用一种,或者以任意的比例组合使用多种。优选的是,所述载体前驱物含有氧化铝(包括其前身物)作为必要组分。
根据本发明,在步骤(0-1)中,作为所述成型助剂,比如可以举出本领域已知在制造催化剂用载体时可以使用的任何成型助剂,并没有特别的限定。具体比如可以举出水、助挤剂、胶溶剂、pH调节剂、成孔剂和润滑剂等,更具体比如可以举出田菁粉、柠檬酸、甲基纤维素、淀粉、聚乙烯醇和聚乙醇。这些成型助剂可以单独使用一种,或者以任意的比例组合使用多种。另外,这些成型助剂的用量可以参照本领域的已知信息,并没有特别的限定。
根据本发明,在步骤(0-1)中,对所述载体前驱物组合物的制造方法没有特别的限定,只要是可以将所述载体前驱物、所述成型助剂和所述任选的活性助剂组合在一起方法,都可以使用。举例而言,作为所述载体前驱物组合物的制造方法,比如可以举出将所述载体前驱物、所述成型助剂和所述任选的活性助剂按照预定的比例进行混合直至均匀的方法。
根据本发明,在步骤(0-1)中,对所述载体前驱物或所述载体前驱物组合物的成型方法没有任何的限定,只要是本领域已知可以用于制造加氢催化剂用载体的任何成型方法,都可以采用。作为所述成型方法,具体比如可以举出滴球成型法、滚球造粒法、挤出成型法或者压缩成型法,更特别可以举出滴球成型法和挤出成型法。
根据本发明,在步骤(0-1)中,对所述预成型载体的形状没有任何的限定,只要是本领域中已知作为加氢催化剂的成型载体常规使用的各种形状,都是适用的。作为所述预成型载体的形状,具体比如可以举出球形、柱状和片状等,优选球形或柱状。作为所述球形,比如可以举出圆球形和椭球形等。作为所述柱状,比如可以举出圆柱状、方柱状和异型截面(比如三叶草等)柱状等。
根据本发明,在步骤(0-1)中,对所述预成型载体的尺寸没有任何的限定,只要是本领域中已知作为加氢催化剂载体而常规使用的各种尺寸,都是适用的。作为所述尺寸,具体比如可以举出平均粒度(筛分法)一般为从2mm至8mm,优选从3mm至5mm。
根据本发明,在步骤(0-2)中,对所述预成型载体的焙烧方式和焙烧条件没有任何的限定,只要是本领域已知可以用于制造加氢催化剂用载体的任何焙烧方式和焙烧条件,都可以采用。具体举例而言,作为所述焙烧条件,比如可以举出焙烧温度一般为从250℃至500℃,优选从350℃至450℃,焙烧时间一般为从2h至8h,优选从3h至6h。
根据本发明的一个实施方式,在进行所述步骤(0-2)之前,可以将所述预成型载体进行干燥。在此,本发明对所述预成型载体的干燥方式和干燥条件没有任何的限定,只要是本领域已知可以用于制造加氢催化剂用载体的任何干燥方式和干燥条件,都可以采用。具体举例而言,作为所述干燥条件,比如可以举出干燥温度一般为从100℃至250℃,优选从100℃至200℃,干燥时间一般为从1h至12h,优选从1h至10h。
根据本发明的一个特别实施方式,所述步骤(0)还可以进一步包括使活性助剂与所述载体接触而获得接触产物的步骤(称为步骤(0-3))。在此,所谓载体,指的是步骤(0-2)结束之后获得的载体。
根据本发明的一个特别实施方式,所述步骤(0)还可以进一步包括使第二活性金属组分与所述载体接触而获得接触产物的步骤(也称为步骤(0-3))。在此,所谓载体,指的是步骤(0-2)结束之后获得的载体。
根据本发明的一个特别实施方式,所述步骤(0)还可以进一步包括使活性助剂和第二活性金属组分与所述载体接触而获得接触产物的步骤(也称为步骤(0-3))。在此,所谓载体,指的是步骤(0-2)结束之后获得的载体。
根据本发明,在步骤(0-3)中,在同时使用所述活性助剂和所述第二活性金属组分时,对所述活性助剂和所述第二活性金属组分与所述载体的接触顺序没有特别的限定,具体比如可以举出使所述活性助剂和所述第二活性金属组分同时接触所述载体的方式(称为一步接触方法),也可以举出使所述活性助剂和所述第二活性金属组分按照先后顺序依次接触所述载体的方式(称为多步接触方法)。在采用多步接触方法时,优选在每一个接触步骤结束之后,均对所获得的接触产物进行热处理(比如焙烧,或者先干燥后焙烧)。在此,本发明对所述接触产物的干燥方式和干燥条件没有任何的限定,可以参照本领域已知的 信息。举例而言,作为所述干燥条件,比如可以举出干燥温度一般为从100℃至250℃,优选从100℃至200℃,干燥时间一般为从1h至12h,优选从1h至10h。另外,本发明对所述接触产物的焙烧方式和焙烧条件没有任何的限定,可以参照本领域已知的信息。举例而言,作为所述焙烧条件,比如可以举出焙烧温度一般为从250℃至600℃,优选从350℃至500℃,焙烧时间一般为从2h至8h,优选从3h至6h。
根据本发明,在步骤(0-3)中,对所述活性助剂和/或所述第二活性金属组分与所述载体的接触方式没有特别的限定,具体比如可以举出可以使得所述活性助剂和/或所述第二活性金属组分能够负载于所述载体的任何方式,更具体比如可以举出使所述活性助剂和/或所述第二活性金属组分浸渍所述载体而获得浸渍产物的方式。在此,所述浸渍可以按照本领域已知的任何方式进行。举例而言,作为所述浸渍方法,可以举出不饱和浸渍法、饱和浸渍法和过量浸渍法。另外,本发明对所述浸渍的温度没有特别限定,可以是浸渍液所能达到的各种温度,并且对所述浸渍的时间没有特别限定,只要能负载上所需量的所需组分即可。举例而言,所述浸渍的温度可以为15-60℃,所述浸渍的时间可以为0.5-5小时。
根据本发明,在步骤(0-3)中,更具体举例而言,作为所述接触方式,比如可以举出使含有预定量的所述活性助剂的浸渍液(优选水溶液)浸渍所述载体而获得浸渍产物的方式,或者使含有预定量的所述第二活性金属组分的浸渍液(优选水溶液)浸渍所述载体而获得浸渍产物的方式,或者使含有预定量的所述活性助剂和预定量的所述第二活性金属组分的浸渍液(优选水溶液)浸渍所述载体而获得浸渍产物的方式,或者先使含有预定量的所述第二活性金属组分的浸渍液(优选水溶液)浸渍所述载体,按照前述规定干燥和焙烧之后获得预浸渍载体,再使含有预定量的所述活性助剂的浸渍液(优选水溶液)浸渍所述预浸渍载体而获得浸渍产物的方式,或者先使含有预定量的所述活性助剂的浸渍液(优选水溶液)浸渍所述载体,按照前述规定干燥和焙烧之后获得预浸渍载体,再使含有预定量的所述第二活性金属组分的浸渍液(优选水溶液)浸渍所述预浸渍载体而获得浸渍产物的方式,或者先使含有部分量的所述活性助剂的浸渍液(优选水溶液)浸渍所述载体,按照前述规定干燥和焙烧之后获得预浸渍载体,再使含 有预定量的所述第二活性金属组分和剩余量的所述活性助剂的浸渍液(优选水溶液)浸渍所述预浸渍载体而获得浸渍产物的方式。
根据本发明的一个实施方式,在步骤(0-3)中,在所述接触或浸渍结束之后,可以对所述获得的接触产物或浸渍产物进行热处理,比如焙烧、干燥或者先干燥后焙烧。在此,本发明对所述干燥的方式和条件没有任何的限定,可以参照本领域已知的信息。举例而言,作为所述干燥条件,比如可以举出干燥温度一般为从100℃至250℃,优选从100℃至200℃,干燥时间一般为从1h至12h,优选从1h至10h。另外,本发明对所述焙烧的方式和条件没有任何的限定,可以参照本领域已知的信息。举例而言,作为所述焙烧条件,比如可以举出焙烧温度一般为从250℃至600℃,优选从350℃至500℃,焙烧时间一般为从2h至8h,优选从3h至6h。本发明将通过所述热处理而获得的热处理产物也称为载体。
根据本发明的一个实施方式,所述加氢催化剂的制造方法还可以进一步包括硫化所述加氢催化剂的步骤(称为步骤(4))。在此,所述加氢催化剂指的是按照本发明前述的加氢催化剂的制造方法制造的任何加氢催化剂。
根据本发明,在步骤(4)中,任何本领域已知可以硫化加氢催化剂的方法,都可以采用。举例而言,所述硫化的条件一般包括:在氢气存在下,硫化温度为从180℃至450℃,硫化试剂为硫、硫化氢、二硫化碳、二甲基二硫或者多硫化物,硫化时间为从2h至48h。在此,所述硫化可在加氢反应器外进行,也可在加氢反应器内进行(相当于原位硫化)。
根据本发明,在所述加氢催化剂的制造方法中,作为所述第一活性金属组分和所述第二活性金属组分,可以使用本领域已知的任何加氢活性金属元素,具体比如可以举出元素周期表第VIB族金属元素和元素周期表第VIII族金属元素。在此,作为所述元素周期表第VIB族金属元素,更具体比如可以举出钼和钨,作为所述元素周期表第VIII族金属元素,更具体比如可以举出钴和镍。这些加氢活性金属元素可以单独使用一种,或者以任意的比例组合使用多种。
根据本发明,在所述加氢催化剂的制造方法中,所述第一活性金属组分和所述第二活性金属组分可以相同或不同,各自独立地代表所 述加氢活性金属元素。另外,所述第一活性金属组分与所述第二活性金属组分的摩尔比一般为从1∶0至1∶0.4,优选从1∶0至1∶0.1,更优选不引入所述第二活性金属组分。
根据本发明的一个特别实施方式,作为所述加氢活性金属元素,组合使用所述元素周期表第VIB族金属元素和所述元素周期表第VIII族金属元素。在此,作为所述组合,具体比如可以举出钼和钨与钴的组合、钼和钨与镍的组合、钨与钴和镍的组合、钼与镍、钼与钴或者钨与镍的组合。
根据本发明,所述加氢活性金属元素可以以本领域已知的任何形式使用。作为所述加氢活性金属元素的使用形式,比如可以举出相应金属元素的溶解度能够满足负载要求或者在助溶剂的存在下能够在水中形成溶解度满足要求的水溶性化合物,具体比如可以举出相应金属元素的盐类和氧化物,优选相应金属元素的硝酸盐、氯化物、硫酸盐和碳酸盐,更优选相应金属元素的硝酸盐。这些水溶性化合物可以单独使用一种,或者以任意的比例组合使用多种。更为具体而言,所述元素周期表第VIB族金属元素可以以本领域已知的任何形式使用。作为所述元素周期表第VIB族金属元素的使用形式,比如可以举出相应金属元素的盐类、含氧酸盐和氧化物,特别可以举出钼酸铵、仲钼酸铵、偏钨酸铵、氧化钼和氧化钨。所述元素周期表第VIB族金属元素的这些使用形式可以单独使用一种,或者以任意的比例组合使用多种。所述元素周期表第VIII族金属元素可以以本领域已知的任何形式使用。作为所述元素周期表第VIII族金属元素的使用形式,比如可以举出相应金属元素的盐类和氧化物,优选相应金属元素的硝酸盐、氯化物、硫酸盐、甲酸盐、乙酸盐、磷酸盐、柠檬酸盐、草酸盐、碳酸盐、碱式碳酸盐、氢氧化物、磷酸盐、磷化物、硫化物、铝酸盐、钼酸盐、钨酸盐和水溶性氧化物,优选草酸盐、硝酸盐、硫酸盐、乙酸盐、氯化物、碳酸盐、碱式碳酸盐、氢氧化物、磷酸盐、钼酸盐、钨酸盐和水溶性氧化物,更优选硝酸镍、硫酸镍、醋酸镍、碱式碳酸镍、硝酸钴、硫酸钴、醋酸钴、碱式碳酸钴、氯化钴和氯化镍。所述元素周期表第VIII族金属元素的这些使用形式可以单独使用一种,或者以任意的比例组合使用多种。
根据本发明,在所述加氢催化剂的制造方法中,为了方便操作起 见,所述加氢活性金属元素(包括所述元素周期表第VIB族金属元素和所述元素周期表第VIII族金属元素)一般以浸渍液(优选水溶液)的形式使用,比如在进行步骤(1)或步骤(0-3)所涉及的接触或浸渍时。为此,以相应金属元素计,所述加氢活性金属元素在所述浸渍液中的浓度一般为0.2-8mol/L,优选0.2-5mol/L,更优选0.2-2mol/L。在此,所述浓度指的是每一种所述加氢活性金属元素在所述浸渍液中各自的浓度,而并非所有所述加氢活性金属元素的总浓度。另外,所述浸渍液除了包含所述加氢活性金属元素之外,根据不同情况,有时还可能进一步包含其他组分,比如所述第一有机络合剂或者所述活性助剂,由此可以避免针对所述第一有机络合剂或者所述活性助剂再行单独配制相应浸渍液的麻烦。此时,所述第一有机络合剂或者所述活性助剂在所述浸渍液中以在本说明书的上下文中规定的含量存在。优选的是,所述浸渍液至少同时包含所述第一活性金属组分和所述第一有机络合剂。
根据本发明,对所述加氢活性金属元素(包括作为所述第一活性金属组分的加氢活性金属元素和/或作为所述第二活性金属组分的加氢活性金属元素)的具体用量并没有特别的限定,只要是能使得本发明最终获得的加氢催化剂表现出有效的催化活性的用量(称为有效量)即可,这一点是本领域技术人员所容易理解的。举例而言,所述加氢活性金属元素(包括作为所述第一活性金属组分的加氢活性金属元素和/或作为所述第二活性金属组分的加氢活性金属元素)的用量使得在通过本发明的加氢催化剂的制造方法最终获得的加氢催化剂中,以相应金属元素的氧化物计并以所述加氢催化剂的总重量为基准,所述加氢活性金属元素的含量一般为6-70重量%,优选为15-60重量%,优选为20-50重量%,进一步优选为20-40重量%。进一步举例而言,所述元素周期表第VIII族金属元素(包括作为所述第一活性金属组分的元素周期表第VIII族金属元素和/或作为所述第二活性金属组分的元素周期表第VIII族金属元素)的用量使得在通过本发明的加氢催化剂的制造方法最终获得的加氢催化剂中,以相应金属元素的氧化物计并以所述加氢催化剂的总重量为基准,所述元素周期表第VIII族金属元素的含量一般为1-10重量%。进一步举例而言,所述元素周期表第VIB族金属元素(包括作为所述第一活性金属组分的元素周期表第VIB族金 属元素和/或作为所述第二活性金属组分的元素周期表第VIB族金属元素)的用量使得在通过本发明的加氢催化剂的制造方法最终获得的加氢催化剂中,以相应金属元素的氧化物计并以所述加氢催化剂的总重量为基准,所述元素周期表第VIB族金属元素的含量一般为5-60重量%。
根据本发明,在步骤(1)中或者在步骤(0-3)中,在组合使用多种所述加氢活性金属元素时,对各个所述加氢活性金属元素与所述载体的接触(比如浸渍)顺序没有特别的限定,具体比如可以举出使多种所述加氢活性金属元素同时接触所述载体的方式(称为一步接触方法),也可以举出使多种所述加氢活性金属元素按照先后顺序依次或按照不同的彼此组合方式先后接触所述载体的方式(称为多步接触方法)。在采用多步接触方法时,优选在每一个接触步骤结束之后,均对所获得的接触产物进行热处理(比如干燥)。在此,本发明对所述接触产物的干燥方式和干燥条件没有任何的限定,可以参照本领域已知的信息。举例而言,作为所述干燥条件,比如可以举出干燥温度一般为从100℃至250℃,优选从100℃至200℃,干燥时间一般为从1h至12h,优选从1h至10h。
根据本发明,在所述加氢催化剂的制造方法中,作为所述第一有机络合剂和所述第二有机络合剂,可以使用本领域在制造加氢催化剂时通常使用的各种有机添加物,具体比如可以举出如下所述的有机化合物A、有机化合物B和烯化氧聚合物。这些有机添加物可以单独使用一种,或者以任意的比例组合使用多种。
根据本发明,所述第一有机络合剂和所述第二有机络合剂可以相同或不同,各自独立地代表所述有机添加物。另外,所述第一有机络合剂与所述第二有机络合剂的摩尔比一般为从1∶0.25至1∶4,优选从1∶0.5至1∶2。
根据本发明,作为所述有机化合物A,指的是C2-30直链或支链烷烃的碳链结构被一个或多个选自-O-和-NR1-的杂基团中断而获得的有机化合物。在此,基团R1选自H和任选取代的C1-10直链或支链烷基,优选H。在此,作为所述C1-10直链或支链烷基,具体比如可以举出C1-6直链或支链烷基或者C1-4直链或支链烷基,更具体比如可以举出甲基、乙基、丙基、正丁基、异丁基和正己基。作为所述C2-30直链或支链烷 烃,具体比如可以举出C2-20直链或支链烷烃或者C2-10直链或支链烷烃,更具体比如可以举出乙烷、正丙烷、异丙烷、正丁烷、叔丁烷、异丁烷、正戊烷、异戊烷、新戊烷、正己烷、异己烷、新己烷、正辛烷、异辛烷、叔辛烷、正壬烷、正癸烷、异癸烷和叔癸烷。从结构稳定性角度出发优选的是,在存在多个时,任意两个所述杂基团之间不直接键合。显然的是,所述杂基团不处于所述直链或支链烷烃或所述有机化合物A的碳链末端。具体举例而言,C4直链烷烃(正丁烷,CH3-CH2-CH2-CH3)被一个杂基团-O-中断后可以获得CH3-O-CH2-CH2-CH3或者CH3-CH2-O-CH2-CH3等有机化合物,被两个杂基团-O-中断后可以获得CH3-O-CH2-O-CH2-CH3或者CH3-O-CH2-CH2-O-CH3等有机化合物,被三个杂基团-O-中断后可以获得CH3-O-CH2-O-CH2-O-CH3等有机化合物。或者,C4直链烷烃(正丁烷,CH3-CH2-CH2-CH3)被一个杂基团-NCH3-中断后可以获得CH3-NCH3-CH2-CH2-CH3或者CH3-CH2-NCH3-CH2-CH3等有机化合物,被两个杂基团-NCH3-中断后可以获得CH3-NCH3-CH2-NCH3-CH2-CH3或者CH3-NCH3-CH2-CH2-NCH3-CH3等有机化合物,被三个杂基团-NCH3-中断后可以获得CH3-NCH3-CH2-NCH3-CH2-NCH3-CH3等有机化合物。这些有机化合物A可以单独使用一种,或者以任意的比例组合使用多种。这些有机化合物A可以按照已知的方法进行制造,也可以市售获得。
根据本发明,作为所述有机化合物B,指的是C1-30直链或支链烷烃、C2-30直链或支链烯烃、任选取代的C3-20环烷烃或者所述有机化合物A的分子结构中的一个或多个氢原子被选自-R2-OH、-R3-NR4R5和-R6-C(=O)OM的取代基取代而获得的有机化合物。在此,作为所述C1-30直链或支链烷烃,具体比如可以举出C2-20直链或支链烷烃或者C2-10直链或支链烷烃,更具体比如可以举出乙烷、正丙烷、异丙烷、正丁烷、叔丁烷、异丁烷、正戊烷、异戊烷、新戊烷、正己烷、异己烷、新己烷、正辛烷、异辛烷、叔辛烷、正壬烷、正癸烷、异癸烷和叔癸烷。作为所述C2-30直链或支链烯烃,具体比如可以举出C2-20直链或支链烯烃或者C2-10直链或支链烯烃,更具体比如可以举出乙烯、丙烯、1-丁烯、2-丁烯、1-戊烯、2-戊烯、2-甲基-1-丁烯、1-己烯、2-己烯、3-己烯、2-甲基-1-戊烯、1-庚烯、2-庚烯、2-甲基-1-己烯、3-甲基-1-己烯、 1-辛烯、2-辛烯、2-甲基-1-辛烯、4-甲基-2-辛烯、4-辛烯、1-壬烯、2-壬烯、1-癸烯、2-癸烯、5-癸烯、2-甲基-1-壬烯、3-甲基-1-壬烯、5-甲基-1-壬烯、3-甲基-2-壬烯和2-甲基-5-壬烯。这些有机化合物B可以单独使用一种,或者以任意的比例组合使用多种。这些有机化合物B可以按照已知的方法进行制造,也可以市售获得。
根据本发明,基团R2代表单键或者C1-10直链或支链亚烷基,优选代表单键或者C1-6直链或支链亚烷基,优选代表单键或者C1-3直链或支链亚烷基,比如亚乙基或者亚甲基。
根据本发明,基团R3代表单键或者C1-10直链或支链亚烷基,优选代表C1-6直链或支链亚烷基,优选代表C1-3直链或支链亚烷基,比如亚乙基或者亚甲基。
根据本发明,基团R4和R5彼此相同或不同,各自独立地选自氢、C1-10直链或支链烷基和-R6-C(=O)OM,优选各自独立地选自氢、C1-6直链或支链烷基和-R6-C(=O)OM,更优选各自独立地选自C1-3直链或支链烷基和-R6-C(=O)OM,更优选各自独立地代表-R6-C(=O)OM。在此,作为所述C1-3直链或支链烷基,比如可以举出乙基或者甲基。另外,-C(=O)OM代表羧酸基或者羧酸盐基。
根据本发明,基团R6代表单键或者C1-10直链或支链亚烷基,优选代表C1-6直链或支链亚烷基,优选代表C1-3直链或支链亚烷基,比如亚乙基或者亚甲基。
根据本发明,基团M代表H、碱金属或碱土金属。在此,作为所述碱金属,具体比如可以举出钠和钾,作为所述碱土金属,具体比如可以举出镁、钙和锶。
根据本发明,从结构稳定性角度出发,在所述有机化合物A和所述有机化合物B的分子结构中,均不包含氧氧直接键合(比如O-O)、氮氮直接键合(比如N-N或者N=N)和氮氧直接键合(比如N-O或者N=O)。
根据本发明,作为所述烯化氧聚合物,指的是烯化氧均聚物或共聚物。在此,作为所述烯化氧均聚物,具体比如可以举出聚乙二醇和聚丙二醇。作为所述烯化氧共聚物,具体比如可以举出环氧乙烷/环氧丙烷共聚物。在所述烯化氧共聚物中,根据需要,除了衍生自环氧乙烷和环氧丙烷的那些结构单元之外,还可以包含衍生自甘油等多官能 单体的结构单元。本发明对所述烯化氧聚合物的分子量没有特别的限定,可以直接适用本领域常规已知的信息,但具体比如可以举出从100至3000,优选从200至1500,更优选从200至600。这些烯化氧聚合物可以单独使用一种,或者以任意的比例组合使用多种。这些烯化氧聚合物可以按照已知的方法进行制造,也可以市售获得。
根据本发明的一个实施方式,作为所述有机添加物,更具体比如可以举出任选带有一个或多个-R2-OH作为取代基的C1-20脂肪族或C5-10脂环族一元或多元羧酸或其盐。在此,基团R2代表单键或者C1-10直链或支链亚烷基,优选代表单键或者C1-6直链或支链亚烷基,优选代表单键或者C1-3直链或支链亚烷基,比如亚乙基或者亚甲基。作为所述C1-20脂肪族一元或多元羧酸或其盐,优选C2-7脂肪族一元或多元羧酸或其盐,更具体比如可以举出乙酸、马来酸和草酸。作为所述带有一个或多个-R2-OH作为取代基的C1-20脂肪族一元或多元羧酸或其盐,优选带有一个或多个-R2-OH作为取代基的C2-7脂肪族一元或多元羧酸或其盐,更具体比如可以举出柠檬酸、酒石酸和苹果酸。作为所述C5-10脂环族一元或多元羧酸或其盐,优选C5-7脂环族一元或多元羧酸或其盐,更具体比如可以举出环己烷二甲酸。这些一元或多元羧酸或其盐可以单独使用一种,或者以任意的比例组合使用多种。这些一元或多元羧酸或其盐可以按照已知的方法进行制造,也可以市售获得。
根据本发明的一个实施方式,作为所述有机添加物,更具体比如可以举出任选带有一个或多个选自-R2-OH和-R6-C(=O)OM的取代基的C1-20脂肪族或C5-10脂环族一元或多元胺。在此,基团R2代表单键或者C1-10直链或支链亚烷基,优选代表单键或者C1-6直链或支链亚烷基,优选代表单键或者C1-3直链或支链亚烷基,比如亚乙基或者亚甲基。基团R6代表单键或者C1-10直链或支链亚烷基,优选代表C1-6直链或支链亚烷基,优选代表C1-3直链或支链亚烷基,比如亚乙基或者亚甲基。基团M代表H、碱金属或碱土金属。作为所述碱金属,具体比如可以举出钠和钾,作为所述碱土金属,具体比如可以举出镁、钙和锶。另外,作为所述C1-20脂肪族一元或多元胺,优选C2-7脂肪族一元或多元胺,更具体比如可以举出乙二胺、三乙胺和己二胺。作为所述带有一个或多个-R2-OH作为取代基的C1-20脂肪族一元或多元胺,优选带有一个或多个-R2-OH作为取代基的C2-7脂肪族一元或多元胺,更具体比如 可以举出乙醇胺、二乙醇胺和三乙醇胺。作为所述带有一个或多个-R6-C(=O)OM作为取代基的C1-20脂肪族一元或多元胺,优选带有一个或多个-R6-C(=O)OM作为取代基的C2-7脂肪族一元或多元胺,更具体比如可以举出乙二胺四乙酸或其盐和氮川三乙酸或其盐。作为所述C5-10脂环族一元或多元胺,优选C5-7脂环族一元或多元胺,更具体比如可以举出1,2-环己烷二胺。作为所述带有一个或多个-R6-C(=O)OM作为取代基的C5-10脂环族一元或多元胺,优选带有一个或多个-R6-C(=O)OM作为取代基的C5-7脂环族一元或多元胺,更具体比如可以举出1,2-环己烷二胺四乙酸或其盐。这些一元或多元胺可以单独使用一种,或者以任意的比例组合使用多种。这些一元或多元胺可以按照已知的方法进行制造,也可以市售获得。
根据本发明的一个实施方式,作为所述有机添加物,更具体比如可以举出C2-20脂肪族或C5-10脂环族多元醇。在此,作为所述C2-20脂肪族多元醇,优选C2-6脂肪族多元醇,更具体比如可以举出乙二醇、丁二醇和丙三醇。作为所述C5-10脂环族多元醇,优选C5-7脂环族多元醇,更具体比如可以举出环己烷二甲醇。另外,作为所述有机添加物,比如可以进一步举出所述多元醇的聚合物,包括所述多元醇的低聚物或高聚物,更具体比如可以举出聚乙二醇、聚丙二醇、二乙二醇、三乙二醇和三丙二醇。在此,所述聚合物的分子量一般为从100至3000,优选从200至1500,更优选从200至600,但并不限于此。而且,作为所述有机添加物,比如还可以进一步举出所述聚合物的C1-6直链或支链烷基醚化物,更具体比如可以举出二乙二醇单甲基醚。这些多元醇、聚合物或者醚化物可以单独使用一种,或者以任意的比例组合使用多种。这些多元醇、聚合物或者醚化物可以按照已知的方法进行制造,也可以市售获得。
根据本发明,作为所述有机添加物,更具体比如可以举出乙二醇、丙三醇、聚乙二醇(分子量一般为从200至1500,更优选从200至600)、二乙二醇、丁二醇、乙酸、马来酸、草酸、氮川三乙酸或其盐、1,2-环己烷二胺四乙酸或其盐、柠檬酸、酒石酸、苹果酸、乙二胺和乙二胺四乙酸或其盐。这些有机添加物可以单独使用一种,或者以任意的比例组合使用多种。这些有机添加物可以按照已知的方法进行制造,也可以市售获得。
根据本发明,在所述加氢催化剂的制造方法中,为了方便操作起见,所述有机添加物(包括作为所述第一有机络合剂的有机添加物和/或作为所述第二有机络合剂的有机添加物)一般以浸渍液(优选水溶液)的形式使用,比如在进行步骤(1)或步骤(3)所涉及的接触或浸渍时。在所述浸渍液中,所述有机添加物以本领域常规使用的任何含量存在。另外,所述浸渍液除了包含所述有机添加物之外,根据不同情况,有时还可能进一步包含其他组分,比如所述第一活性金属组分或者所述活性助剂,由此可以避免针对所述第一活性金属组分或者所述活性助剂再行单独配制相应浸渍液的麻烦。此时,所述第一活性金属组分或者所述活性助剂在所述浸渍液中以在本说明书的上下文中规定的含量存在。
根据本发明,在所述加氢催化剂的制造方法中,特别是在步骤(1)中,作为所述第一有机络合剂的用量,比如可以举出使得所述第一有机络合剂与所述第一活性金属组分的摩尔比一般为从0.03∶1至2∶1,优选从0.08∶1至1.5∶1。
根据本发明,在所述加氢催化剂的制造方法中,对每一个相关步骤(比如步骤(1)、步骤(0-1)或者步骤(0-3))中所涉及的所述活性助剂并没有特别的限定,比如可以举出本领域已知的能够用于改善加氢催化剂性能的各种活性元素。这些活性元素可以单独使用一种,或者以任意的比例组合使用多种。在此,作为所述活性元素,具体比如可以举出金属活性助剂和非金属活性助剂。作为所述金属活性助剂,更具体比如可以举出第IIB族金属元素、第IA族金属元素、第IIA族金属元素和稀土金属元素。作为所述第IIB族金属元素,比如可以举出锌和镉。作为所述第IA族金属元素,比如可以举出锂、钠、钾、铷、铯和钫。作为所述第IIA族金属元素,比如可以举出铍、镁、钙和锶。作为所述稀土金属元素,比如可以举出镧、铈、镨和钕。作为所述金属活性助剂,优选锌、钠、钾、镁、钙、镧和铈。这些金属活性助剂可以单独使用一种,或者以任意的比例组合使用多种。另外,作为所述非金属活性助剂,更具体比如可以举出第IVA族元素、第VIIA族元素、第VA族元素和第IIIA族元素。作为所述第IVA族元素,具体比如可以举出硅。作为所述第VIIA族元素,比如可以举出氟、氯、溴和碘。作为所述第VA族元素,比如可以举出磷和砷。作为所述第IIIA 族元素,比如可以举出硼。作为所述非金属活性助剂,更优选氟、硅、磷和硼。这些非金属活性助剂可以单独使用一种,或者以任意的比例组合使用多种。需要特别说明的是,如前所述,在所述加氢催化剂的制造方法中可能会涉及载体前驱物或载体,而这些载体前驱物或载体与所述非金属活性助剂均可能包含硅。鉴于此,在本说明书的上下文中,除非另外有明确说明,在硅的含量超过10重量%且所述硅以氧化物的形式存在时,将其视为所述载体前驱物或载体,否则将其视为所述非金属活性助剂。
根据本发明,所述非金属活性助剂可以以本领域已知的任何形式使用。作为所述非金属活性助剂的使用形式,比如可以举出相应非金属元素的各种水可溶性盐,更具体比如可以举出相应非金属元素的氧化物、氯化物、含酸盐和铵盐。这些水可溶性盐可以单独使用一种,或者以任意的比例组合使用多种。另外,所述金属活性助剂可以以本领域已知的任何形式使用。作为所述金属活性助剂的使用形式,比如可以举出相应金属元素的各种水可溶性盐,更具体比如可以举出相应金属元素的氯化物、硝酸盐和硫酸盐。这些水可溶性盐可以单独使用一种,或者以任意的比例组合使用多种。
根据本发明,在所述加氢催化剂的制造方法中,为了方便操作起见,所述活性助剂(包括所述金属活性助剂和所述非金属活性助剂)有时可以以浸渍液(优选水溶液)的形式使用。在此,以相应金属元素或者相应非金属元素计,所述活性助剂在所述浸渍液中的含量一般为0.05-3mol/L,优选0.1-2mol/L。另外,所述浸渍液除了包含所述活性助剂之外,根据不同情况,有时还可能进一步包含其他组分,比如所述第一活性金属组分、所述第一有机络合剂或者所述第二活性金属组分,由此可以避免针对所述第一活性金属组分、所述第一有机络合剂或者所述第二活性金属组分再行单独配制相应浸渍液的麻烦。此时,所述第一活性金属组分、所述第一有机络合剂或者所述第二活性金属组分在所述浸渍液中以在本说明书的上下文中规定的含量存在。
根据本发明,各相关步骤(比如步骤(1)、步骤(0-1)或者步骤(0-3))中所使用的所述活性助剂可以彼此相同或不同,各自独立地代表所述活性元素。并且,本发明对每一个所述相关步骤中所述活性助剂的具体用量没有特别的限定,只要所述活性助剂在本发明的加氢催 化剂的制造方法中的总体用量(即,各相关步骤的用量之和)使得在通过所述加氢催化剂的制造方法最终获得的加氢催化剂中,所述活性助剂的含量达到本领域常规已知的含量即可。更为具体而言,作为所述金属活性助剂在本发明的加氢催化剂的制造方法中的总体用量,比如可以举出使得在通过所述加氢催化剂的制造方法最终获得的加氢催化剂中,以金属元素计且以所述加氢催化剂的总重量为基准,所述金属活性助剂的含量一般为从0重量%至10重量%,优选从0.5重量%至6重量%。另外,作为所述非金属活性助剂在本发明的加氢催化剂的制造方法中的总体用量,比如可以举出使得在通过所述加氢催化剂的制造方法最终获得的加氢催化剂中,以非金属元素计且以所述加氢催化剂的总重量为基准,所述非金属活性助剂的含量一般为从0重量%至10重量%,优选从0.5重量%至6重量%。
根据本发明,还涉及一种加氢催化剂。所述加氢催化剂是按照本发明前述的加氢催化剂的制造方法制造的。
根据本发明,进一步涉及一种加氢催化剂组合物。所述加氢催化剂组合物至少包含两种不同的加氢催化剂,即加氢催化剂I和加氢催化剂II。在此,所谓“不同”,具体比如可以举出结构、组成、制造方法或者性能上的不同,并且只要本领域技术人员认为两种加氢催化剂之间存在不可忽略的差异,就可以认定这两种加氢催化剂是不同的。
根据本发明,所述加氢催化剂I是按照本发明的加氢催化剂的制造方法制造的加氢催化剂或者是本发明的加氢催化剂,而所述加氢催化剂II是本领域已知的其他加氢催化剂。这些其他加氢催化剂可以单独使用一种,或者以任意的比例组合使用多种。另外,所述其他加氢催化剂可以按照现有技术已知的制造方法进行制造,也可以市售获得。具体举例而言,所述加氢催化剂II比如可以包含载体、第VIB族金属元素和第VIII族金属元素,并且以相应金属氧化物计且以所述加氢催化剂II的总重量为基准,所述第VIII族金属元素的含量可以为1-10重量%,所述第VIB族金属元素的含量可以为5-60重量%。在此,关于所述载体、所述第VIB族金属元素和所述第VIII族金属元素,可以参照本说明书之前描述的相关内容。
根据本发明,在所述加氢催化剂组合物中,以体积计并以所述加氢催化剂组合物的总体积为基准,所述加氢催化剂I的含量一般为 5-95%,优选10-80%,更优选20-70%,而且所述加氢催化剂II的含量一般为5-95%,优选20-90%,更优选30-80%。
根据本发明,进一步涉及一种加氢处理方法。所述加氢处理方法包括使原料油在氢气的存在下与本发明的加氢催化剂、按照本发明的加氢催化剂的制造方法制造的加氢催化剂或者本发明的加氢催化剂组合物接触以进行加氢反应的步骤。在此,所谓加氢处理,直接适用本领域技术人员的常规理解,具体比如可以举出加氢精制,特别可以举出加氢脱硫和加氢脱氮,但有时并不限于此。
根据本发明,作为所述原料油,比如可以举出本领域技术人员所熟知的那些,具体比如可以举出汽油、柴油、润滑油、煤油、石脑油、常压渣油、减压渣油、石油蜡和费托合成油。这些原料油可以单独使用一种,或者以任意的比例组合使用多种。
根据本发明,作为所述加氢反应的条件,反应温度一般为从300℃至400℃,优选从320℃至380℃。
根据本发明,作为所述加氢反应的条件,反应压力一般为从1兆帕至10兆帕(表压),优选从1兆帕至8兆帕(表压)。
根据本发明,作为所述加氢反应的条件,所述原料油的液时体积空速一般为从0.5小时-1至3小时-1,优选从0.5小时-1至2.5小时-1
根据本发明,作为所述加氢反应的条件,氢油体积比一般为从100至800,优选从100至700。在此,所谓氢油体积比,指的是指氢气的体积流速与原料油的体积流速的比值。
根据本发明的一个特别实施方式,使所述原料油在氢气的存在下与所述加氢催化剂组合物进行接触。在此,作为所述原料油与所述加氢催化剂组合物的接触方式,具体比如可以举出使所述原料油先与所述加氢催化剂I接触,然后再与所述加氢催化剂II接触的方式,或者使所述原料油先与所述加氢催化剂II接触,然后再与所述加氢催化剂I接触的方式,或者在存在多段所述加氢催化剂I和多段所述加氢催化剂II时,使所述原料油与这些加氢催化剂交替接触的方式。由于与所述加氢催化剂II相比,所述加氢催化剂I的催化活性更高,使用寿命更长,因此优选使所述加氢催化剂I更迟接触所述原料油,以便在更为苛刻的反应条件下使其与所述原料油进行所述加氢反应。
根据本发明,在使用所述催化剂组合物进行所述加氢反应时,对 于所述加氢催化剂I和所述加氢催化剂II在用于进行所述加氢反应的加氢反应器中的装填方式没有特别的限定。作为所述装填方式,具体比如可以举出分层装填方式或者混合装填方式。作为所述分层装填方式,具体比如可以举出按照所述原料油的流向,将所述加氢催化剂I装填在所述加氢催化剂II上游的方式,或者将所述加氢催化剂II装填在所述加氢催化剂I上游的方式,或者将所述加氢催化剂I与所述加氢催化剂II交替分层装填的方式,优选将所述加氢催化剂II装填在所述加氢催化剂I上游的方式。另外,所述加氢催化剂I和所述加氢催化剂II可以装填在同一个加氢反应器中,构成同一个催化剂床层或者不同催化剂床层,也可以分别或者按照任意组合的方式分别装填在多个串联的加氢反应器中。
根据本发明,在所述加氢催化剂I的床层之前、之后和/或之中,和/或,在所述加氢催化剂II的床层之前、之后和/或之中,还可以进一步设置任何有助于改善这些加氢催化剂的有益性能的其它催化剂或填料。在此,作为所述填料的种类或者使用方式,可以直接适用本领域常规已知的信息。举例而言,作为所述填料,具体比如可以举出瓷球和活性支撑物。进一步举例而言,如果所述加氢催化剂I的床层位于所述加氢催化剂II的床层上游,则可以在所述加氢催化剂I的床层之前设置由填料构成的床层,以便改善所述原料油在所述加氢反应器中的分布。
实施例
以下采用实施例进一步详细地说明本发明,但本发明并不限于这些实施例。
在本说明书的上下文中,包括在以下的实施例和对比例中,采用日本理学电机工业株式会社3271E型X射线荧光光谱仪,对加氢催化剂中各元素的含量进行测定。
在本说明书的上下文中,包括在以下的实施例和对比例中,焙烧复合载体(以下有时称为半成品催化剂)的总碳含量使用日本HORIBA公司生产的EMIA-320V碳硫分析仪进行测定。
在本说明书的上下文中,包括在以下的实施例和对比例中,焙烧复合载体(以下有时称为半成品催化剂)的干基重量测定方法为:称 取一定重量(例如30g)的待测样品,将该样品于马弗炉中在450℃焙烧3小时,经冷却后称重,该重量即为干基重量。
在本说明书的上下文中,包括在以下的实施例和对比例中,水合氧化铝或氢氧化铝粉的干基测定方法为:称取一定重量(例如30g)的待测样品,将该样品于马弗炉中在600℃焙烧3小时,经冷却后称重,该重量即为干基重量。所述干基重量与所述待测样品的原始重量的比值即为所述待测样品的干基。
实施例I-1
本实施例用来说明根据本发明的加氢催化剂及其制造方法。
分别称取54克三氧化钼、19克碱式碳酸钴、20克磷酸、20克柠檬酸放入140克去离子水中,加热搅拌溶解得到澄清浸渍溶液,采用饱和浸渍法用上述溶液浸渍200克氧化铝载体,浸渍时间为2小时,然后,在120℃干燥2小时,接着将其在通入空气流的状态下进行焙烧,焙烧温度为400℃,时间为2小时,气剂比为2升/(克·小时),得到半成品催化剂Z-S1,Z-S1的总碳含量见表I-1;将5克乙醇加入150克去离子水中,搅拌得到澄清溶液,采用饱和浸渍法用上述溶液浸渍Z-S1,浸渍时间为2小时,然后,在110℃干燥3个小时,得到催化剂S1。以S1的总量为基准,以氧化物计,加氢活性金属元素的含量见表I-1。
对比例I-1
采用与实施例I-1相同的方法制造加氢催化剂,不同的是,将实施例I-1所制造的加氢催化剂S1在400℃焙烧3小时,得到催化剂D1,催化剂D1中,以D1的总量为基准,以氧化物计,加氢活性金属元素的含量见表I-1。
实施例I-2
本实施例用来说明根据本发明的加氢催化剂及其制造方法。
分别称取54克三氧化钼、21克碱式碳酸镍、13克磷酸、30克柠檬酸放入140克去离子水中,加热搅拌溶解得到澄清浸渍溶液,采用饱和浸渍法用上述溶液浸渍200克氧化锆载体,浸渍时间为2小时,然后,在150℃干燥2小时,接着将其在通入空气流的状态下进行焙烧,焙烧温度为360℃,时间为3小时,气剂比为10升/(克·小时),得到半成品催化剂Z-S2,Z-S2的总碳含量见表I-1;将30克柠檬酸加入 150克去离子水中,搅拌得到澄清溶液,采用饱和浸渍法用上述溶液浸渍Z-S2,浸渍时间为2小时,然后,在150℃干燥3个小时,得到催化剂S2。以S2的总量为基准,以氧化物计,加氢活性金属元素的含量见表I-1。
实施例I-3
本实施例用来说明根据本发明的加氢催化剂及其制造方法。
分别称取30克硝酸镍、45克偏钨酸铵和15克草酸放入140克去离子水中,搅拌溶解得到澄清溶液,采用饱和浸渍法用上述溶液浸渍200克氧化硅载体,浸渍时间为2小时,然后,在120℃干燥2小时,接着将其在通入空气流的状态下进行焙烧,焙烧温度为450℃,时间为4小时,气剂比为0.3升/(克·小时),得到半成品催化剂Z-S3,Z-S3的总碳含量见表I-1;将10克二甘醇放入150克去离子水中,搅拌得到澄清溶液,采用饱和浸渍法用上述溶液浸渍Z-S3,浸渍时间为2小时,然后,在120℃干燥6个小时,得到催化剂S3。以S3的总量为基准,以氧化物计,加氢活性金属元素的含量见表I-1。
对比例I-2
分别称取30克硝酸镍、45克偏钨酸铵和15克草酸放入140克去离子水中,搅拌溶解得到澄清溶液,采用饱和浸渍法用上述溶液浸渍200克氧化硅载体,浸渍时间为2小时,然后,在120℃干燥2小时,接着将其在通入空气流的状态下进行焙烧,焙烧温度为450℃,时间为4小时,气剂比为0.3升/(克·小时),得到催化剂D2。以D2的总量为基准,以氧化物计,加氢活性金属元素的含量见表I-1。
对比例I-3
分别称取30克硝酸镍、45克偏钨酸铵、15克草酸和10克二甘醇放入140克去离子水中,搅拌溶解得到澄清溶液,采用饱和浸渍法用上述溶液浸渍200克氧化硅载体,浸渍时间为2小时,然后,在120℃干燥2小时,得到催化剂D3。以D3的总量为基准,以氧化物计,加氢活性金属元素的含量见表I-1。
实施例I-4
本实施例用来说明根据本发明的加氢催化剂及其制造方法。
分别称取83克硝酸镍、60克偏钨酸铵、10克钼酸铵、20克磷酸二氢铵和20克柠檬酸放入140克去离子水中,搅拌溶解得到澄清溶液, 采用饱和浸渍法用上述溶液浸渍200克氧化铝-氧化硅载体(重量比1∶1),浸渍时间为2小时,然后,在120℃干燥2小时,接着将其在通入空气流的状态下进行焙烧,焙烧温度为450℃,时间为3小时,气剂比为0.8升/(克·小时),得到半成品催化剂Z-S4,Z-S4的总碳含量见表I-1;将15克乙二胺放入150克去离子水中,搅拌得到澄清溶液,采用饱和浸渍法用上述溶液浸渍Z-S4,浸渍时间为2小时,然后,在120℃干燥3个小时,得到催化剂S4。以S4的总量为基准,以氧化物计,加氢活性金属元素的含量见表I-1。
实施例I-5
本实施例用来说明根据本发明的加氢催化剂及其制造方法。
采用与实施例I-3相同的方法制造加氢催化剂,不同的是,金属活性组分浸渍到载体后,对其进行焙烧时,焙烧温度为480℃,时间为6小时。得到的催化剂半成品中总碳含量见表I-1,得到的催化剂S5中,以S5的总量为基准,以氧化物计,加氢活性金属元素的含量见表I-1。
实施例I-6
本实施例用来说明根据本发明的加氢催化剂及其制造方法。
采用与实施例I-2相同的方法制造加氢催化剂,不同的是,焙烧时的气剂比为1.0升/(克·小时),得到的催化剂S6中,以S6的总量为基准,以氧化物计,加氢活性金属元素的含量见表I-1。
实施例I-7
本实施例用来说明根据本发明的加氢催化剂及其制造方法。
采用与实施例I-2相同的方法制造加氢催化剂,不同的是,第一有机络合剂和第二有机络合剂的用量比由30克∶30克改为50克∶10克,得到的催化剂S7中,以S7的总量为基准,以氧化物计,加氢活性金属元素的含量见表I-1。
表I-1
Figure PCTCN2017000318-appb-000002
Figure PCTCN2017000318-appb-000003
试验例I-1
在本试验例中,对采用本发明所提供的方法制造的加氢催化剂和对比例提供的加氢催化剂的脱硫活性和脱氮活性按照以下方法进行评价,评价结果如下表I-2所示。
以中东混合柴油(85%直馏柴油+15%催化裂化柴油)为原料,其性质如下:
Figure PCTCN2017000318-appb-000004
在30毫升柴油加氢装置上评价催化剂的脱硫、脱氮活性。在反应前需对催化剂进行预硫化,催化剂装填30mL,其预硫化条件为:6.4MPa,320℃,4h,氢油体积比300∶1,硫化油进油速度为8mL/h。反应条件为:氢分压6.4MPa,反应温度350℃,氢油体积比300,液时空速1.5h-1。分别取反应4小时、反应500小时的样品,用气相色谱测定加氢脱硫、加氢脱氮反应的原料和获得的产品中的硫、氮含量。
采用相对于参比剂D(对比例I-2中制造的催化剂)的相对加氢脱硫活性来评价催化剂的加氢脱硫活性,将加氢脱硫反应作为1.65级反应处理,按式(1)计算催化剂X的反应速率常数k(X)HDS
Figure PCTCN2017000318-appb-000005
式(1)中LHSV为进行加氢精制反应时烃油的液时体积空速。
以对比例I-2制造的催化剂D2的加氢脱硫活性[记为k(D2)HDS]为基准,按式(2)计算催化剂X的相对加氢脱硫活性:
Figure PCTCN2017000318-appb-000006
采用相对于参比剂D(对比例I-2中制造的催化剂)的相对加氢脱氮活性来评价催化剂的加氢脱氮活性,将加氢脱硫反应作为1级反应处理,按式(3)计算催化剂X的反应速率常数k(X)HDN
Figure PCTCN2017000318-appb-000007
式(1)中LHSV为进行加氢精制反应时烃油的液时体积空速。
以对比例I-2制造的催化剂D2的加氢脱氮活性[记为k(D2)HDN]为基准,按式(4)计算催化剂X的相对加氢脱氮活性:
Figure PCTCN2017000318-appb-000008
各实施例和对比例所制造的加氢催化剂的加氢精制评价结果如表I-2所示。
表I-2
Figure PCTCN2017000318-appb-000009
注:表I-2中,“-”表示未进行检测。
表I-1和表I-2的结果可以说明,与现有技术的制造方法制造的加氢催化剂相比,本发明提供的催化剂具有明显更佳的加氢脱硫活性和 加氢脱氮活性。另外,对比表I-2中反应4小时和反应500小时的相对加氢脱硫活性和相对加氢脱氮活性的数据可以看出,长时间反应,本发明提供的催化剂活性下降幅度很小,并且明显小于对比例,因此,本发明提供的方法制造的催化剂明显延长了催化剂的使用寿命。上述结果充分表明,本发明所提供的制造方法具有现有其他方法所不可比拟的优越性。
实施例II-1
本实施例用来说明根据本发明的加氢催化剂及其制造方法。
称取270克硝酸镁,加入去离子水搅拌溶解,加去离子水至850毫升,饱和浸渍1000克氧化铝载体2小时,然后在120℃干燥2小时,400℃焙烧4小时,得到吸水率为0.85的含镁氧化铝Z1。
分别称取54克三氧化钼、21克碱式碳酸镍、13克磷酸、30克柠檬酸放入140克去离子水中,加热搅拌溶解得到澄清浸渍溶液,采用饱和浸渍法用上述溶液浸渍200克含镁氧化铝Z1载体,浸渍时间为2小时,然后,在120℃干燥2小时,接着将其在通入空气流的状态下进行焙烧,焙烧温度为360℃,时间为6小时,气剂比为10.0升/(克·小时),得到半成品催化剂Z-S1,Z-S1的总碳含量见表II-1;将30克柠檬酸加入150克去离子水中,搅拌得到澄清溶液,采用饱和浸渍法用上述溶液浸渍Z-S1,浸渍时间为2小时,然后,在200℃干燥2个小时,得到催化剂S1。以S1的总量为基准,以氧化物计,加氢活性金属元素的含量见表II-1。
对比例II-1
采用与实施例II-1相同的方法制造加氢催化剂,不同的是,将实施例II-1所制造的加氢催化剂S1在400℃焙烧3小时,得到催化剂D1,催化剂D1中,以D1的总量为基准,以氧化物计,加氢活性金属元素的含量见表II-2。
实施例II-2
本实施例用来说明根据本发明的加氢催化剂及其制造方法。
称取37克硝酸镧,加入去离子水搅拌溶解,加去离子水至850毫升,饱和浸渍1000克氧化铝载体2小时,然后在100℃干燥2小时,500℃焙烧4小时,得到吸水率为0.85的含镧氧化铝Z2。
分别称取30克硝酸镍、45克偏钨酸铵、15克草酸放入140克去 离子水中,搅拌溶解得到澄清溶液,采用饱和浸渍法用上述溶液浸渍200克含镧氧化铝Z2载体,浸渍时间为2小时,然后,在120℃干燥2小时,接着将其在通入空气流的状态下进行焙烧,焙烧温度为400℃,时间为2小时,气剂比为1.0升/(克·小时),得到半成品催化剂Z-S2,Z-S2的总碳含量见表II-1;将10克二甘醇放入150克去离子水中,搅拌得到澄清溶液,采用饱和浸渍法用上述溶液浸渍Z-S2,浸渍时间为2小时,然后,在150℃干燥3个小时,得到催化剂S2。以S2的总量为基准,以氧化物计,加氢活性金属元素的含量见表II-1。
实施例II-3
本实施例用来说明根据本发明的加氢催化剂及其制造方法。
称取37克硝酸镧,加入去离子水搅拌溶解,加去离子水至850毫升,饱和浸渍1000克氧化硅载体2小时,然后在100℃干燥2小时,500℃焙烧4小时,得到吸水率为0.85的含镧氧化硅Z3。
分别称取83克硝酸镍、60克偏钨酸铵、10克钼酸铵、20克磷酸二氢铵、20克柠檬酸放入140克去离子水中,搅拌溶解得到澄清溶液,采用饱和浸渍法用上述溶液浸渍200克含镧氧化硅Z3载体,浸渍时间为2小时,然后,在180℃干燥2小时,接着将其在通入空气流的状态下进行焙烧,焙烧温度为430℃,时间为3小时,气剂比为0.3升/(克·小时),得到半成品催化剂Z-S3,Z-S3的总碳含量见表II-1;将15克乙二胺放入150克去离子水中,搅拌得到澄清溶液,采用饱和浸渍法用上述溶液浸渍Z-S3,浸渍时间为1小时,然后,在120℃干燥3个小时,得到催化剂S3。以S3的总量为基准,以氧化物计,加氢活性金属元素的含量见表II-1。
实施例II-4
本实施例用来说明根据本发明的加氢催化剂及其制造方法。
分别称取54克三氧化钼、19克碱式碳酸钴、20克磷酸、20克柠檬酸、20g硝酸锌放入140克去离子水中,加热搅拌溶解得到澄清浸渍溶液,采用饱和浸渍法用上述溶液浸渍200克氧化铝-氧化硅载体(重量比1∶1),浸渍时间为2小时,然后,在120℃干燥2小时,接着将其在通入空气流的状态下进行焙烧,焙烧温度为400℃,焙烧时间为2小时,气剂比为2.0升/(克·小时),得到半成品催化剂Z-S4,Z-S4的总碳含量见表II-1;将5克乙醇放入150克去离子水中,搅拌得到澄清 溶液,采用饱和浸渍法用上述溶液浸渍Z-S4,浸渍时间为0.5小时,然后,在110℃干燥3个小时,得到催化剂S4。以S4的总量为基准,以氧化物计,加氢活性金属元素的含量见表II-1。
对比例II-2
分别称取54克三氧化钼、19克碱式碳酸钴、20克磷酸、20克柠檬酸、20g硝酸锌放入140克去离子水中,加热搅拌溶解得到澄清浸渍溶液,采用饱和浸渍法用上述溶液浸渍200克与实施例II-4相同的载体,浸渍时间为2小时,然后,在120℃干燥2小时,接着将其在通入空气流的状态下进行焙烧,焙烧温度为400℃,焙烧时间为2小时,气剂比为2.0升/(克·小时),得到催化剂D2。以D2的总量为基准,以氧化物计,加氢活性金属元素的含量见表II-2。
对比例II-3
分别称取54克三氧化钼、19克碱式碳酸钴、20克磷酸、20克柠檬酸、20g硝酸锌和5克乙醇放入140克去离子水中,加热搅拌溶解得到澄清浸渍溶液,采用饱和浸渍法用上述溶液浸渍200克与实施例II-4相同的载体,浸渍时间为2小时,然后,在120℃干燥2小时,得到催化剂D3。以D3的总量为基准,以氧化物计,加氢活性金属元素的含量见表II-2。
实施例II-5
采用与实施例II-2相同的方法制造加氢催化剂,不同的是,金属活性组分浸渍到载体后,对其进行焙烧时,焙烧温度为450℃,时间为6小时。得到的催化剂半成品中总碳含量见表II-1,得到的催化剂S5中,以S5的总量为基准,以氧化物计,加氢活性金属元素的含量见表II-1。
实施例II-6
采用与实施例II-1相同的方法制造加氢催化剂,不同的是,焙烧时的气剂比为1.0升/(克·小时),得到的催化剂S6中,以S6的总量为基准,以氧化物计,加氢活性金属元素的含量见表II-1。
实施例II-7
采用与实施例II-1相同的方法制造加氢催化剂,不同的是,第一有机络合剂和第二有机络合剂的用量比由30克∶30克改为50克∶10克,得到催化剂S7。以S7的总量为基准,以氧化物计,加氢活性金属 元素的含量见表II-1。
表II-1
Figure PCTCN2017000318-appb-000010
表II-2
Figure PCTCN2017000318-appb-000011
试验例II-1
在本试验例中,对采用本发明所提供的方法制造的加氢催化剂和对比例提供的加氢催化剂的脱硫活性和脱氮活性按照以下方法进行评价,评价结果如下表II-4所示。
以中东混合柴油(85%直馏柴油+15%催化裂化柴油)为原料,其性质如下:
Figure PCTCN2017000318-appb-000012
在30毫升柴油加氢装置上评价催化剂的脱硫、脱氮活性。在反应前需对催化剂进行预硫化,催化剂装填30mL,其预硫化条件为:6.4MPa,320℃,4h,氢油体积比300∶1,硫化油进油速度为8mL/h。反应条件为:氢分压6.4MPa,反应温度350℃,氢油体积比300,液时空速1.5h-1。分别取反应4小时、反应500小时的样品,用气相色谱测定加氢脱硫、加氢脱氮反应的原料和获得的产品中的硫、氮含量。
采用相对于参比剂D(对比例II-2中制造的催化剂)的相对加氢脱硫活性来评价催化剂的加氢脱硫活性,将加氢脱硫反应作为1.65级反应处理,按式(1)计算催化剂X的反应速率常数k(X)HDS
Figure PCTCN2017000318-appb-000013
式(1)中LHSV为进行加氢精制反应时烃油的液时体积空速。
以对比例II-2制造的催化剂D2的加氢脱硫活性[记为k(D2)HDS]为基准,按式(2)计算催化剂X的相对加氢脱硫活性:
Figure PCTCN2017000318-appb-000014
采用相对于参比剂D(对比例II-2中制造的催化剂)的相对加氢脱氮活性来评价催化剂的加氢脱氮活性,将加氢脱硫反应作为1级反应处理,按式(3)计算催化剂X的反应速率常数k(X)HDN
Figure PCTCN2017000318-appb-000015
式(1)中LHSV为进行加氢精制反应时烃油的液时体积空速。
以对比例II-2制造的催化剂D2的加氢脱氮活性[记为k(D2)HDN]为基准,按式(4)计算催化剂X的相对加氢脱氮活性:
Figure PCTCN2017000318-appb-000016
各实施例和对比例所制造的加氢催化剂的加氢精制评价结果如表II-3所示。
表II-3
Figure PCTCN2017000318-appb-000017
注:表II-3中“-”表示未进行检测。
表II-1至表II-3的结果可以说明,与现有技术的制造方法制造的加氢催化剂相比,本发明提供的催化剂具有明显更佳的加氢脱硫活性和加氢脱氮活性。另外,对比表II-3中反应4小时和反应500小时的相对加氢脱硫活性和相对加氢脱氮活性的数据可以看出,长时间反应,本发明提供的催化剂活性下降幅度很小,并且明显小于对比例,因此,本发明提供的方法制造的催化剂明显延长了催化剂的使用寿命。上述结果充分表明,本发明所提供的制造方法具有现有其他方法所不可比拟的优越性。
实施例III-1
本实施例用来说明根据本发明的加氢催化剂及其制造方法。
将2000克氢氧化铝粉(长岭炼化公司催化剂厂生产的干胶粉,干基71重量%)和1039克硅溶胶(青岛海洋化工厂产品,二氧化硅含量为30重量%)混合均匀。将得到的混合物用挤条机挤成外接圆直径为1.4毫米的蝶形条,并将挤出的湿条在120℃干燥4小时,接着在600 ℃焙烧3小时,制得载体Z1,载体Z1中氧化硅含量为18.0重量%,氧化铝含量为82.0重量%。
分别称取54克三氧化钼、19克碱式碳酸钴、13克磷酸、30克柠檬酸放入140克去离子水中,加热搅拌溶解得到澄清浸渍溶液,采用饱和浸渍法用上述溶液浸渍200克Z1载体,浸渍时间为2小时,然后,在120℃干燥2小时,接着将其在通入空气流的状态下进行焙烧,焙烧温度为400℃,时间为2小时,气剂比为1升/(克·小时),得到半成品催化剂Z-S1,Z-S1的总碳含量见表III-1;将30克柠檬酸加入150克去离子水中,搅拌得到澄清溶液,采用饱和浸渍法用上述溶液浸渍Z-S1,浸渍时间为2小时,然后,在150℃干燥3个小时,得到催化剂S1。以S1的总量为基准,以氧化物计,加氢活性金属元素的含量见表III-1。
对比例III-1
采用与实施例III-1相同的方法制造加氢催化剂,不同的是,将实施例III-1所制造的加氢催化剂S1在400℃焙烧3小时,得到催化剂D1,催化剂D1中,以D1的总量为基准,以氧化物计,加氢活性金属元素的含量见表III-2。
实施例III-2
本实施例用来说明根据本发明的加氢催化剂及其制造方法。
分别称取30克硝酸镍、45克偏钨酸铵、15克草酸和21克氟化铵放入140克去离子水中,搅拌溶解得到澄清溶液,采用饱和浸渍法用上述溶液浸渍200克氧化铝载体,浸渍时间为2小时,然后,在120℃干燥2小时,接着将其在通入空气流的状态下进行焙烧,焙烧温度为360℃,时间为6小时,气剂比为10.0升/(克·小时),得到半成品催化剂Z-S2,Z-S2的总碳含量见表III-1;将10克二甘醇放入150克去离子水中,搅拌得到澄清溶液,采用饱和浸渍法用上述溶液浸渍Z-S2,浸渍时间为2小时,然后,在150℃干燥3个小时,得到催化剂S2。以S2的总量为基准,以氧化物计,加氢活性金属元素的含量见表III-1。
对比例III-2
分别称取30克硝酸镍、45克偏钨酸铵、15克草酸和21克氟化铵放入140克去离子水中,搅拌溶解得到澄清溶液,采用饱和浸渍法用 上述溶液浸渍200克氧化铝载体,浸渍时间为2小时,然后,在120℃干燥2小时,接着将其在通入空气流的状态下进行焙烧,焙烧温度为350℃,时间为6小时,气剂比为10.0升/(克·小时),得到催化剂D2。以D2的总量为基准,以氧化物计,加氢活性金属元素的含量见表III-2。
对比例III-3
分别称取30克硝酸镍、45克偏钨酸铵、15克草酸、10克二甘醇和21克氟化铵放入140克去离子水中,搅拌溶解得到澄清溶液,采用饱和浸渍法用上述溶液浸渍200克氧化铝载体,浸渍时间为2小时,然后,在120℃干燥2小时,得到催化剂D3。以D3的总量为基准,以氧化物计,加氢活性金属元素的含量见表III-2。
实施例III-3
本实施例用来说明根据本发明的加氢催化剂及其制造方法。
称取60克氟化铵,加入去离子水搅拌溶解,加去离子水至850毫升,饱和浸渍1000克氧化锆载体2小时,然后在120℃干燥2小时,400℃焙烧4小时,得到含氟氧化锆Z3。
分别称取83克硝酸镍、60克偏钨酸铵、10克钼酸铵、20克磷酸二氢铵和20克柠檬酸放入180克去离子水中,搅拌溶解得到澄清溶液,采用饱和浸渍法用上述溶液浸渍200克含氟氧化锆Z3,浸渍时间为2小时,然后,在120℃干燥2小时,接着将其在通入空气流的状态下进行焙烧,焙烧温度为450℃,时间为3小时,气剂比为0.3升/(克·小时),得到半成品催化剂Z-S3,Z-S3的总碳含量见表III-1;将15克乙二胺放入150克去离子水中,搅拌得到澄清溶液,采用饱和浸渍法用上述溶液浸渍Z-S3,浸渍时间为2小时,然后,在120℃干燥3个小时,得到催化剂S3。以S3的总量为基准,以氧化物计,加氢活性金属元素的含量见表III-1。
实施例III-4
采用与实施例III-1相同的方法制造加氢催化剂,不同的是,金属活性组分浸渍到载体后,对载体进行焙烧时,焙烧温度为480℃,时间为6小时。得到的催化剂半成品中总碳含量见表III-1,得到的催化剂S4中,以S4的总量为基准,以氧化物计,加氢活性金属元素的含量见表III-1。
实施例III-5
采用与实施例III-2相同的方法制造加氢催化剂,不同的是,焙烧时的气剂比为1.0升/(克·小时),得到的催化剂S5中,以S5的总量为基准,以氧化物计,加氢活性金属元素的含量见表III-1。
实施例III-6
采用与实施例III-1相同的方法制造加氢催化剂,不同的是,第一有机络合剂和第二有机络合剂的用量比由30克∶30克改为50克∶10克,得到的催化剂S6中,以S6的总量为基准,以氧化物计,加氢活性金属元素的含量见表III-1。
表III-1
Figure PCTCN2017000318-appb-000018
表III-2
Figure PCTCN2017000318-appb-000019
试验例III-1
在本试验例中,对采用本发明所提供的方法制造的加氢催化剂和对比例提供的加氢催化剂的脱硫活性和脱氮活性按照以下方法进行评价,评价结果如下表III-3所示。
以中东混合柴油(85%直馏柴油+15%催化裂化柴油)为原料,其性质如下:
Figure PCTCN2017000318-appb-000020
在30毫升柴油加氢装置上评价催化剂的脱硫、脱氮活性。在反应前需对催化剂进行预硫化,催化剂装填30mL,其预硫化条件为:6.4MPa,320℃,4h,氢油体积比300∶1,硫化油进油速度为8mL/h。反应条件为:氢分压6.4MPa,反应温度350℃,氢油体积比300,液时空速1.5h-1。分别取反应4小时、反应500小时的样品,用气相色谱测定加氢脱硫、加氢脱氮反应的原料和获得的产品中的硫、氮含量。
采用相对于参比剂D(对比例III-2中制造的催化剂)的相对加氢脱硫活性来评价催化剂的加氢脱硫活性,将加氢脱硫反应作为1.65级反应处理,按式(1)计算催化剂X的反应速率常数k(X)HDS
Figure PCTCN2017000318-appb-000021
式(1)中LHSV为进行加氢精制反应时烃油的液时体积空速。
以对比例III-2制造的催化剂D2的加氢脱硫活性[记为k(D2)HDS]为基准,按式(2)计算催化剂X的相对加氢脱硫活性:
Figure PCTCN2017000318-appb-000022
采用相对于参比剂D(对比例III-2中制造的催化剂)的相对加氢脱氮活性来评价催化剂的加氢脱氮活性,将加氢脱硫反应作为1级反应处理,按式(3)计算催化剂X的反应速率常数k(X)HDN
Figure PCTCN2017000318-appb-000023
式(1)中LHSV为进行加氢精制反应时烃油的液时体积空速。
以对比例III-2制造的催化剂D2的加氢脱氮活性[记为k(D2)HDN]为基准,按式(4)计算催化剂X的相对加氢脱氮活性:
Figure PCTCN2017000318-appb-000024
各实施例和对比例所制造的加氢催化剂的加氢精制评价结果如表III-3所示。
表III-3
Figure PCTCN2017000318-appb-000025
注:表III-3中“-”表示未进行检测。
表III-1至表III-3的结果可以说明,与现有技术的制造方法制造的加氢催化剂相比,本发明提供的催化剂具有明显更佳的加氢脱硫活性和加氢脱氮活性。另外,对比表III-3中反应4小时和反应500小时的相对加氢脱硫活性和相对加氢脱氮活性的数据可以看出,长时间反应,本发明提供的催化剂活性下降幅度很小,并且明显小于对比例,因此,本发明提供的方法制造的催化剂明显延长了催化剂的使用寿命。上述结果充分表明,本发明所提供的制造方法具有现有其他方法所不可比拟的优越性。
实施例IV-1至实施例IV-7用来说明根据本发明提供的加氢催化剂I及其制造方法,对比例IV-1用来说明对比剂及其制造方法。
实施例IV-1
分别称取54克三氧化钼、21克碱式碳酸镍、13克磷酸、30克柠檬酸放入140克去离子水中,加热搅拌溶解得到澄清浸渍溶液,采用饱和浸渍法用上述溶液浸渍200克氧化铝载体,浸渍时间为2小时,然后,在120℃干燥2小时,接着将其在通入空气流的状态下进行焙烧,焙烧温度为360℃,时间为6小时,气载比为2升/(克·小时),得到催化剂前体I-Z-S1,总碳含量见表IV-1;将5克乙醇加入150克去离子水中,搅拌得到澄清溶液,采用饱和浸渍法用上述溶液浸渍I-Z-S1,浸渍时间为2小时,然后,在110℃干燥3个小时,得到催化剂I-1。以催化剂I-1的总重量为基准,以氧化物计,加氢活性金属元素含量见表IV-1。
对比例IV-1
采用与实施例IV-1相同的方法制造加氢催化剂,不同的是,将实施例IV-1所制造的加氢催化剂I-1在400℃焙烧3小时,得到催化剂D1,以催化剂D1的总重量为基准,以氧化物计,加氢活性金属元素的含量见表IV-1。
实施例IV-2
分别称取54克三氧化钼、21克碱式碳酸镍、13克磷酸、30克柠檬酸放入140克去离子水中,加热搅拌溶解得到澄清浸渍溶液,采用饱和浸渍法用上述溶液浸渍200克氧化锆载体,浸渍时间为2小时,然后,在150℃干燥2小时,接着将其在通入空气流的状态下进行焙烧,焙烧温度为360℃,时间为3小时,气载比为10升/(克·小时),得到催化剂前体I-Z-S2,总碳含量见表IV-1;将30克柠檬酸加入150克去离子水中,搅拌得到澄清溶液,采用饱和浸渍法用上述溶液浸渍I-Z-S2,浸渍时间为2小时,然后,在150℃干燥3个小时,得到催化剂I-2。以I-2的总量为基准,以氧化物计,加氢活性金属元素的含量见表IV-1。
实施例IV-3
分别称取30克硝酸镍、45克偏钨酸铵和15克草酸放入140克去离子水中,搅拌溶解得到澄清溶液,采用饱和浸渍法用上述溶液浸渍200克氧化硅载体,浸渍时间为2小时,然后,在120℃干燥2小时,接着将其在通入空气流的状态下进行焙烧,焙烧温度为450℃,时间为4小时,气载比为0.3升/(克·小时),得到催化剂前体I-Z-S3,总碳 含量见表IV-1;将10克二甘醇放入150克去离子水中,搅拌得到澄清溶液,采用饱和浸渍法用上述溶液浸渍I-Z-S3,浸渍时间为2小时,然后,在120℃干燥6个小时,得到催化剂I-3。以I-3的总量为基准,以氧化物计,加氢活性金属元素的含量见表IV-1。
实施例IV-4
分别称取83克硝酸镍、60克偏钨酸铵、10克钼酸铵、20克磷酸二氢铵和20克柠檬酸放入140克去离子水中,搅拌溶解得到澄清溶液,采用饱和浸渍法用上述溶液浸渍200克氧化铝-氧化硅载体(重量比1∶1),浸渍时间为2小时,然后,在120℃干燥2小时,接着将其在通入空气流的状态下进行焙烧,焙烧温度为450℃,时间为3小时,气载比为0.8升/(克·小时),得到催化剂前体I-Z-S4,I-Z-S4的总碳含量见表IV-1;将15克乙二胺放入150克去离子水中,搅拌得到澄清溶液,采用饱和浸渍法用上述溶液浸渍I-Z-S4,浸渍时间为2小时,然后,在120℃干燥3个小时,得到催化剂I-4。以I-4的总量为基准,以氧化物计,加氢活性金属元素的含量见表IV-1。
实施例IV-5
采用与实施例IV-3相同的方法制造加氢催化剂,不同的是,金属活性组分浸渍到载体后,对其进行焙烧时,焙烧温度为480℃,时间为6小时。得到的催化剂前体中总碳含量见表IV-1,得到的催化剂I-5中,以I-5的总量为基准,以氧化物计,加氢活性金属元素的含量见表IV-1。
实施例IV-6
采用与实施例IV-2相同的方法制造加氢催化剂,不同的是,焙烧时的气载比为1.0升/(克·小时),得到的催化剂I-6中,以I-6的总量为基准,以氧化物计,加氢活性金属元素的含量见表IV-1。
实施例IV-7
采用与实施例IV-2相同的方法制造加氢催化剂,不同的是,第一有机络合剂和第二有机络合剂的用量比由30克∶30克改为50克∶10克,得到的催化剂I-7中,以I-7的总量为基准,以氧化物计,加氢活性金属元素的含量见表IV-1。
表IV-1
Figure PCTCN2017000318-appb-000026
实施例IV-8至实施例IV-11说明加氢催化剂II的制造方法。
实施例IV-8
加氢催化剂II-1制造方法如下:
称取一定量小孔氧化铝的前身物(第一种水合氧化铝,偏铝酸钠-二氧化碳法制得的工业产品,产品名称为干拟薄水铝石,山东省铝厂出品,其中一水铝石含量80重%,三水铝石含量5重%)。另称取一定量大孔氧化铝的前身物(第二种水合氧化铝,偏铝酸钠-硫酸铝法制得的工业产品,产品名称为长岭干胶粉,长岭炼油厂催化剂厂出品,一水铝石含量68重%,三水铝石含量5重%)。将两种水合氧化铝按75∶25的干基重量比混合均匀,加入助挤剂、胶粘剂和水,挤成外接圆直径为1.4毫米的三叶型条,120℃烘干,分别在550~650℃焙烧4小时,制造加氢催化剂载体,分别称取一定量的氧化铝载体,用氟化铵(化学纯)水溶液浸渍1小时,120℃烘干,在530℃下焙烧4小时,得到含氟氧化铝载体。用定量偏钨酸铵(化学纯)和硝酸镍(化学纯)的混合水溶液浸渍含氟氧化铝载体4小时,120℃烘干,在530℃温度下焙烧4小时,制得加氢催化剂II-1,其包含4重量%的镍(以NiO计),30重量%的钨(以氧化钨计),4重量%的氟(以元素氟计算),其余为氧化铝。
实施例IV-9
加氢催化剂II-2的制造方法如下:
分别称取27.2克三氧化钼、9.1克碱式碳酸钴、5.5克磷酸、7.6克柠檬酸放入55mL去离子水中,加热到80℃进行搅拌溶解,约1小 时后变为棕红色澄清溶液。将该溶液放入烧杯中,加热至90℃并在搅拌下恒温8小时,加水至85mL,得到澄清浸渍溶液。将2000克氢氧化铝粉(长岭炼化公司催化剂厂生产的干胶粉,干基71重量%)和1039克硅溶胶(青岛海洋化工厂产品,二氧化硅含量为30重量%)混合均匀。将得到的混合物用挤条机挤成外接圆直径为1.4毫米的蝶形条,并将挤出的湿条在120℃干燥4小时,接着在600℃焙烧3小时,制得载体,载体中氧化硅含量为18.O重量%,氧化铝含量为82.O重量%。载体的吸水率为0.85。用澄清浸渍溶液85mL饱和浸渍100克载体2小时,120℃干燥2个小时,250℃干燥3个小时,得到加氢催化剂II-2,其中包含3.9重量%的Co(以CoO计),20.1重量%的钼(以MoO3计),2.1%重量%的磷(以P2O5计),5.6%的柠檬酸,其余为氧化铝。
实施例IV-10
加氢催化剂II-3的制造方法如下:
将含210克氧化铝/升、苛性系数为1.62的高浓度NaAlO2溶液与去离子水配制成Al2O3浓度为40克/升的溶液5升,然后加入葡萄糖酸钠16.3克得到含葡萄糖酸钠的NaAlO2溶液,然后转移至总体积8L的成胶反应釜中,反应釜高径比为8,下部带CO2气体分布器。控制溶液温度为25±5℃,从反应器底部通入浓度90体积%的CO2气体进行成胶反应,成胶温度控制在20-40℃,调节CO2气体流量为15±2升/分钟,在4-6分钟内使反应终点pH值达到8.0-8.5,即停止通气,结束成胶反应。将所得浆液加热升温至70℃老化4小时,然后用真空过滤机进行过滤,待过滤完后,在滤饼上补充加入20升去离子水(温度70℃)冲洗滤饼约30分钟。将洗涤合格的滤饼加入到1.5升去离子水中搅拌成浆液,浆液用泵送入喷雾干燥器进行干燥,得到水合氧化铝P1-2。称取300克拟薄水铝石P1-2和700克拟薄水铝石P2-3(山东铝业公司生产的商业拟薄水铝石SD粉),混合后,用挤条机挤成外接圆直径为1.6毫米的三叶草形条,120℃干燥8小时。取其中300克,在800℃,通空气条件下焙烧处理4小时,制得载体,其中空气流量为1.5标准立方米/千克·小时。称取载体100克,用含硝酸镍20.6克、仲钼酸铵34.8克和磷酸11.4克的水溶液85毫升浸渍1.5小时,120℃干燥5小时,380℃处理4小时,然后以含8.4克丙三醇的水溶液55毫升浸渍2小时,140℃干燥5小时得到加氢催化剂II-3,其中包含3.5重量%的镍(以 NiO计),19.1重量%的钼(以MoO3计),4.8%重量%的磷(以P2O5计),5.7%的有机添加剂,其余为氧化铝。
实施例IV-11
加氢催化剂II-4的制造方法如下:
称取2000克氢氧化铝粉(长岭分公司催化剂厂生产的干胶粉,干基70重量%)和299克含二氧化硅25%的硅溶胶(青岛海洋化工厂产品),用挤条机挤成外接圆直径为1.3毫米的蝶形条,湿条于120℃干燥4小时,600℃条件下焙烧3小时,制得载体,载体中氧化硅含量为5.0重量%。称取载体200克,将该载体用含氟化铵16.9克的水溶液176毫升浸渍2小时,120℃干燥3小时,420℃焙烧3小时,制得含氟氧化硅-氧化铝载体。用含仲钼酸铵23.0克的水溶液170毫升浸渍上述载体3小时,120℃干燥4小时,再170℃干燥4小时,得到含钼载体。接着用含硝酸镍53.2克、偏钨酸铵140.7克、磷酸18.1克的水溶液162毫升浸渍该载体3小时,200℃干燥4小时,之后以含乙二醇77.3克的水溶液121毫升浸渍,120℃干燥6小时后得到加氢催化剂II-4,其中包含3.6重量%的镍(以NiO计),5.0重量%的钼(以MoO3计),32.5重量%的钨(以氧化钨计),2.2重量%的氟(以元素氟计算),3.0%重量%的磷(以P2O5计),5.0重量%的乙二醇,其余为氧化铝-氧化硅。
实施例IV-12至实施例IV-18
实施例IV-12至实施例IV-18中,对采用本发明所提供的方法制造的加氢催化剂和对比例提供的加氢催化剂的脱硫活性和脱氮活性按照以下方法进行加氢精制评价,并按照加氢精制评价结果计算方法进行计算,评价结果如下表IV-2所示。
以掺混15%催化柴油的中东直馏柴油馏分为原料,其性质如表IV-3所示。在30毫升柴油加氢装置上评价催化剂的脱硫、脱氮活性。在反应前需对催化剂进行预硫化,催化剂装填30mL,原料油入口在加氢装置上方,加氢催化剂II装填在反应器的上床层,加氢催化剂I(或D1)装填在加氢反应器的下床层,即加氢催化剂II的下游。其预硫化条件为:6.4MPa,320℃,4h,氢油体积比300,硫化油进油速度为8mL/h。反应条件为:氢分压6.4MPa,反应温度350℃,氢油体积比300,液时空速1.5h-1。分别取反应4小时、反应500小时的样品,用气相色谱测 定原料和获得的产品中的硫、氮含量。
对比例IV-2至对比例IV-4
按照实施例IV-12至实施例IV-18的方法对催化剂D1、催化剂组合D1+II-1和催化剂II-1进行加氢精制评价,并按照加氢精制评价结果计算方法进行计算,评价结果如下表IV-2所示。
加氢精制评价结果计算方法:
采用相对于参比剂D1(对比例IV-1中制造的催化剂)的相对加氢脱硫活性来评价催化剂的加氢脱硫活性,将加氢脱硫反应作为1.65级反应处理,按式(1)计算催化剂X的反应速率常数k(X)HDS
Figure PCTCN2017000318-appb-000027
式(1)中LHSV为进行加氢精制反应时烃油的液时体积空速。
以对比例IV-1制造的催化剂D1的加氢脱硫活性[记为k(D1)HDS]为基准,按式(2)计算催化剂X的相对加氢脱硫活性:
Figure PCTCN2017000318-appb-000028
采用相对于参比剂D1(对比例IV-1中制造的催化剂)的相对加氢脱氮活性来评价催化剂的加氢脱氮活性,将加氢脱氮反应作为1级反应处理,按式(3)计算催化剂X的反应速率常数k(X)HDN
Figure PCTCN2017000318-appb-000029
式(1)中LHSV为进行加氢精制反应时烃油的液时体积空速。
以对比例IV-1制造的催化剂D1的加氢脱氮活性[记为k(D1)HDN]为基准,按式(4)计算催化剂X的相对加氢脱氮活性:
Figure PCTCN2017000318-appb-000030
表IV-2的结果可以说明,本发明提供的加氢催化剂组合物具有更好的相对加氢脱硫活性和相对加氢脱氮活性,且单位时间内相对活性下降幅度小,使用寿命更长。
表IV-2
Figure PCTCN2017000318-appb-000031
注:表IV-2中,“-”表示未进行检测。
表IV-3
S含量 12000μg/g
N含量 220μg/g
密度(20℃) 0.8588g/cm3
折光指数(20℃) 1.4841
实施例V-1
本实施例用来说明根据本发明的加氢催化剂I及其制造方法。
称取270克硝酸镁,加入去离子水搅拌溶解,加去离子水至850毫升,饱和浸渍1000克氧化铝载体2小时,然后在120℃干燥2小时,400℃焙烧4小时,得到吸水率为0.85的含镁氧化铝I-Z1。
分别称取54克三氧化钼、21克碱式碳酸镍、13克磷酸、30克柠檬酸放入140克去离子水中,加热搅拌溶解得到澄清浸渍溶液,采用饱和浸渍法用上述溶液浸渍200克含镁氧化铝I-Z1载体,浸渍时间为2小时,然后,在120℃干燥2小时,接着将其在通入空气流的状态下 进行焙烧,焙烧温度为360℃,时间为6小时,气载比为10.0升/(克·小时),得到半成品催化剂I-Z-S1,总碳含量见表V-1;将30克柠檬酸加入150克去离子水中,搅拌得到澄清溶液,采用饱和浸渍法用上述溶液浸渍I-Z-S1,浸渍时间为2小时,然后,在200℃干燥2个小时,得到催化剂I-1。以催化剂I-1的总重量为基准,以氧化物计,加氢活性金属元素和金属助剂元素的含量见表V-1。
对比例V-1
采用与实施例V-1相同的方法制造加氢催化剂,不同的是,将实施例V-1所制造的加氢催化剂I-1在400℃焙烧3小时,得到催化剂D1,以催化剂D1的总重量为基准,以氧化物计,加氢活性金属元素和金属助剂元素的含量见表V-1。
实施例V-2
本实施例用来说明根据本发明的加氢催化剂及其制造方法。
称取37克硝酸镧,加入去离子水搅拌溶解,加去离子水至850毫升,饱和浸渍1000克氧化铝载体2小时,然后在100℃干燥2小时,500℃焙烧4小时,得到吸水率为0.85的含镧氧化铝I-Z2。
分别称取30克硝酸镍、45克偏钨酸铵、15克草酸放入140克去离子水中,搅拌溶解得到澄清溶液,采用饱和浸渍法用上述溶液浸渍200克含镧氧化铝I-Z2载体,浸渍时间为2小时,然后,在120℃干燥2小时,接着将其在通入空气流的状态下进行焙烧,焙烧温度为400℃,时间为2小时,气载比为1.0升/(克·小时),得到半成品催化剂I-Z-S2,总碳含量见表V-1;将10克二甘醇放入150克去离子水中,搅拌得到澄清溶液,采用饱和浸渍法用上述溶液浸渍I-Z-S2,浸渍时间为2小时,然后,在150℃干燥3个小时,得到催化剂I-2。以催化剂I-2的总重量为基准,以氧化物计,加氢活性金属元素和金属助剂元素的含量见表V-1。
实施例V-3
本实施例用来说明根据本发明的加氢催化剂及其制造方法。
称取37克硝酸镧,加入去离子水搅拌溶解,加去离子水至850毫升,饱和浸渍1000克氧化硅载体2小时,然后在100℃干燥2小时,500℃焙烧4小时,得到吸水率为0.85的含镧氧化硅I-Z3。
分别称取83克硝酸镍、60克偏钨酸铵、10克钼酸铵、20克磷酸 二氢铵、20克柠檬酸放入140克去离子水中,搅拌溶解得到澄清溶液,采用饱和浸渍法用上述溶液浸渍200克含镧氧化硅I-Z3载体,浸渍时间为2小时,然后,在180℃干燥2小时,接着将其在通入空气流的状态下进行焙烧,焙烧温度为430℃,时间为3小时,气载比为0.3升/(克·小时),得到半成品催化剂I-Z-S3,总碳含量见表V-1;将15克乙二胺放入150克去离子水中,搅拌得到澄清溶液,采用饱和浸渍法用上述溶液浸渍I-Z-S3,浸渍时间为1小时,然后,在120℃干燥3个小时,得到催化剂I-3。以催化剂I-3的总重量为基准,以氧化物计,加氢活性金属元素和金属助剂元素的含量见表V-1。
实施例V-4
本实施例用来说明根据本发明的加氢催化剂及其制造方法。
分别称取54克三氧化钼、19克碱式碳酸钴、20克磷酸、20克柠檬酸、20g硝酸锌放入140克去离子水中,加热搅拌溶解得到澄清浸渍溶液,采用饱和浸渍法用上述溶液浸渍200克氧化铝-氧化硅载体(氧化铝与氧化硅量比1∶1),浸渍时间为2小时,然后,在120℃干燥2小时,接着将其在通入空气流的状态下进行焙烧,焙烧温度为400℃,焙烧时间为2小时,气载比为2.0升/(克·小时),得到半成品催化剂I-Z-S4,总碳含量见表V-1;将5克乙醇放入150克去离子水中,搅拌得到澄清溶液,采用饱和浸渍法用上述溶液浸渍I-Z-S4,浸渍时间为0.5小时,然后,在110℃干燥3个小时,得到催化剂I-4。以催化剂I-4的总重量为基准,以氧化物计,加氢活性金属元素和金属助剂元素的含量见表V-1。
实施例V-5
采用与实施例V-2相同的方法制造加氢催化剂,不同的是,金属活性组分浸渍到载体后,对其进行焙烧时,焙烧温度为450℃,时间为6小时。得到的半成品催化剂中总碳含量见表V-1,得到的催化剂I-5中,以催化剂I-5的总重量为基准,以氧化物计,加氢活性金属元素和金属助剂元素的含量见表V-1。
实施例V-6
采用与实施例V-1相同的方法制造加氢催化剂,不同的是,焙烧时的气载比为1.0升/(克·小时),得到的催化剂I-6中,以催化剂I-6的总重量为基准,以氧化物计,加氢活性金属元素和金属助剂元素的 含量见表V-1。
实施例V-7
采用与实施例V-1相同的方法制造加氢催化剂,不同的是,第一有机络合剂和第二有机络合剂的用量比分别由30克和30克改为50克和10克,得到催化剂I-7。以催化剂I-7的总重量为基准,以氧化物计,加氢活性金属元素和金属助剂元素的含量见表V-1。
实施例V-8至实施例V-11说明加氢催化剂II的制造方法。
实施例V-8
加氢催化剂II-1制造方法如下:
称取一定量小孔氧化铝的前身物(第一种水合氧化铝,偏铝酸钠-二氧化碳法制得的工业产品,产品名称为干拟薄水铝石,山东省铝厂出品,其中一水铝石含量80重%,三水铝石含量5重%)。另称取一定量大孔氧化铝的前身物(第二种水合氧化铝,偏铝酸钠-硫酸铝法制得的工业产品,产品名称为长岭干胶粉,长岭炼油厂催化剂厂出品,一水铝石含量68重%,三水铝石含量5重%)。将两种水合氧化铝按75∶25的干基重量比混合均匀,加入助挤剂、胶粘剂和水,挤成外接圆直径为1.4毫米的三叶型条,120℃烘干,分别在550~650℃焙烧4小时,制造加氢催化剂载体,分别称取一定量的氧化铝载体,用氟化铵(化学纯)水溶液浸渍1小时,120℃烘干,在530℃下焙烧4小时,得到含氟氧化铝载体。用定量偏钨酸铵(化学纯)和硝酸镍(化学纯)的混合水溶液浸渍含氟氧化铝载体4小时,120℃烘干,在530℃温度下焙烧4小时,制得加氢催化剂II-1,其包含4重量%的镍(以NiO计),30重量%的钨(以氧化钨计),4重量%的氟(以元素氟计算),其余为氧化铝。
实施例V-9
加氢催化剂II-2的制造方法如下:
分别称取27.2克三氧化钼、9.1克碱式碳酸钴、5.5克磷酸、7.6克柠檬酸放入55mL去离子水中,加热到80℃进行搅拌溶解,约1小时后变为棕红色澄清溶液。将该溶液放入烧杯中,加热至90℃并在搅拌下恒温8小时,加水至85mL,得到澄清浸渍溶液。将2000克氢氧化铝粉(长岭炼化公司催化剂厂生产的干胶粉,干基71重量%)和1039克硅溶胶(青岛海洋化工厂产品,二氧化硅含量为30重量%)混合均匀。将得到的混合物用挤条机挤成外接圆直径为1.4毫米的蝶形条,并将挤 出的湿条在120℃干燥4小时,接着在600℃焙烧3小时,制得载体,载体中氧化硅含量为18.0重量%,氧化铝含量为82.0重量%。载体的吸水率为0.85。用澄清浸渍溶液85mL饱和浸渍100克载体2小时,120℃干燥2个小时,250℃干燥3个小时,得到加氢催化剂II-2,其中包含3.9重量%的Co(以CoO计),20.1重量%的钼(以MoO3计),2.1%重量%的磷(以P2O5计),5.6%的柠檬酸,其余为氧化铝。
实施例V-10
加氢催化剂II-3的制造方法如下:
将含210克氧化铝/升、苛性系数为1.62的高浓度NaAlO2溶液与去离子水配制成Al2O3浓度为40克/升的溶液5升,然后加入葡萄糖酸钠16.3克得到含葡萄糖酸钠的NaAlO2溶液,然后转移至总体积8L的成胶反应釜中,反应釜高径比为8,下部带CO2气体分布器。控制溶液温度为25±5℃,从反应器底部通入浓度90体积%的CO2气体进行成胶反应,成胶温度控制在20-40℃,调节CO2气体流量为15±2升/分钟,在4-6分钟内使反应终点pH值达到8.0-8.5,即停止通气,结束成胶反应。将所得浆液加热升温至70℃老化4小时,然后用真空过滤机进行过滤,待过滤完后,在滤饼上补充加入20升去离子水(温度70℃)冲洗滤饼约30分钟。将洗涤合格的滤饼加入到1.5升去离子水中搅拌成浆液,浆液用泵送入喷雾干燥器进行干燥,得到水合氧化铝P1-2。称取300克拟薄水铝石P1-2和700克拟薄水铝石P2-3(山东铝业公司生产的商业拟薄水铝石SD粉),混合后,用挤条机挤成外接圆直径为1.6毫米的三叶草形条,120℃干燥8小时。取其中300克,在800℃,通空气条件下焙烧处理4小时,制得载体,其中空气流量为1.5标准立方米/千克·小时。称取载体100克,用含硝酸镍20.6克、仲钼酸铵34.8克和磷酸11.4克的水溶液85毫升浸渍1.5小时,120℃干燥5小时,380℃处理4小时,然后以含8.4克丙三醇的水溶液55毫升浸渍2小时,140℃干燥5小时得到加氢催化剂II-3,其中包含3.5重量%的镍(以NiO计),19.1重量%的钼(以MoO3计),4.8%重量%的磷(以P2O5计),5.7%的有机添加剂,其余为氧化铝。
实施例V-11
加氢催化剂II-4的制造方法如下:
称取2000克氢氧化铝粉(长岭分公司催化剂厂生产的干胶粉,干基 70重量%)和299克含二氧化硅25%的硅溶胶(青岛海洋化工厂产品),用挤条机挤成外接圆直径为1.3毫米的蝶形条,湿条于120℃干燥4小时,600℃条件下焙烧3小时,制得载体,载体中氧化硅含量为5.0重量%。称取载体200克,将该载体用含氟化铵16.9克的水溶液176毫升浸渍2小时,120℃干燥3小时,420℃焙烧3小时,制得含氟氧化硅-氧化铝载体。用含仲钼酸铵23.0克的水溶液170毫升浸渍上述载体3小时,120℃干燥4小时,再170℃干燥4小时,得到含钼载体。接着用含硝酸镍53.2克、偏钨酸铵140.7克、磷酸18.1克的水溶液162毫升浸渍该载体3小时,200℃干燥4小时,之后以含乙二醇77.3克的水溶液121毫升浸渍,120℃干燥6小时后得到加氢催化剂II-4,其中包含3.6重量%的镍(以NiO计),5.0重量%的钼(以MoO3计),32.5重量%的钨(以氧化钨计),2.2重量%的氟(以元素氟计算),3.0%重量%的磷(以P2O5计),5.0重量%的乙二醇,其余为氧化铝-氧化硅。
实施例V-12至实施例V-18
实施例V-12至实施例V-18中,对采用本发明所提供的方法制造的加氢催化剂和对比例提供的加氢催化剂的脱硫活性和脱氮活性按照以下方法进行加氢精制评价,并按照加氢精制评价结果计算方法进行计算,评价结果如表V-2所示。
以掺混15%催化柴油的中东直馏柴油馏分为原料,其性质如表V-3所示。在30毫升柴油加氢装置上评价催化剂的脱硫、脱氮活性,催化剂装填30mL,原料油入口位于加氢装置上方,加氢催化剂II装填在反应器的上床层,加氢催化剂I(或D1)装填在加氢反应器的下床层,即加氢催化剂II的下游。在反应前需对催化剂进行预硫化,其预硫化条件为:氢分压6.4MPa,温度320℃,液时空速4h-1,氢油体积比300,硫化油进油速度为8mL/h。反应条件为:氢分压6.4MPa,反应温度350℃,氢油体积比300,液时空速1.5h-1。分别取反应4小时、反应500小时的样品,用气相色谱测定原料和获得的产品中的硫、氮含量。
对比例V-2至对比例V-4
按照实施例V-12至实施例V-18的方法对催化剂D1、催化剂组合D1+II-1和催化剂II-1进行加氢精制评价,并按照加氢精制评价结果计算方法进行计算,评价结果如下表V-2所示。
加氢精制评价结果计算方法:
采用相对于参比剂D1(对比例V-1中制造的催化剂)的相对加氢脱硫活性来评价催化剂的加氢脱硫活性,将加氢脱硫反应作为1.65级反应处理,按式(1)计算催化剂X的反应速率常数k(X)HDS
Figure PCTCN2017000318-appb-000032
式(1)中LHSV为进行加氢精制反应时烃油的液时体积空速。
以对比例V-1制造的催化剂D1的加氢脱硫活性[记为k(D1)HDS]为基准,按式(2)计算催化剂X的相对加氢脱硫活性:
Figure PCTCN2017000318-appb-000033
采用相对于参比剂D1(对比例V-1中制造的催化剂)的相对加氢脱氮活性来评价催化剂的加氢脱氮活性,将加氢脱氮反应作为1级反应处理,按式(3)计算催化剂X的反应速率常数k(X)HDN
Figure PCTCN2017000318-appb-000034
式(3)中LHSV为进行加氢精制反应时烃油的液时体积空速。
以对比例V-1制造的催化剂D1的加氢脱氮活性[记为k(D1)HDN]为基准,按式(4)计算催化剂X的相对加氢脱氮活性:
Figure PCTCN2017000318-appb-000035
表V-2的结果说明,本发明提供的加氢催化剂组合物具有更好的相对加氢脱硫活性和相对加氢脱氮活性,且单位时间内相对活性下降幅度小,使用寿命更长。
表V-1
Figure PCTCN2017000318-appb-000036
表V-2
Figure PCTCN2017000318-appb-000037
注:表V-2中,“-”表示未进行检测。
表V-3
S含量 12000μg/g
N含量 220μg/g
密度(20℃) 0.8588g/cm3
折光指数(20℃) 1.4841
实施例VI-1
本实施例用来说明根据本发明的加氢催化剂I及其制造方法。
将2000克氢氧化铝粉(长岭炼化公司催化剂厂生产的干胶粉,干基71重量%)和1039克硅溶胶(青岛海洋化工厂产品,二氧化硅含量为30重量%)混合均匀。将得到的混合物用挤条机挤成外接圆直径为1.4毫米的蝶形条,并将挤出的湿条在120℃干燥4小时,接着在600℃焙烧3小时,制得载体I-Z1,载体I-Z1中氧化硅含量为18.0重量%,氧化铝含量为82.0重量%。
分别称取54克三氧化钼、19克碱式碳酸钴、13克磷酸、30克柠檬酸放入140克去离子水中,加热搅拌溶解得到澄清浸渍溶液,采用饱和浸渍法用上述溶液浸渍200克I-Z1载体,浸渍时间为2小时,然后,在120℃干燥2小时,接着将其在通入空气流的状态下进行焙烧,焙烧温度为400℃,时间为2小时,气剂比为1升/(克·小时),得到半成品催化剂I-Z-S1,总碳含量见表VI-1;将30克柠檬酸加入150克去离子水中,搅拌得到澄清溶液,采用饱和浸渍法用上述溶液浸渍I-Z-S1,浸渍时间为2小时,然后,在150℃干燥3个小时,得到催化剂I-1。以催化剂I-1的总量为基准,以氧化物计,加氢活性金属元素的含量见表VI-1。
对比例VI-1
采用与实施例VI-1相同的方法制造加氢催化剂,不同的是,将实施例VI-1所制造的加氢催化剂I-1在400℃焙烧3小时,得到催化剂D1,以催化剂D1的总量为基准,以氧化物计,加氢活性金属元素的含量见表VI-1。
实施例VI-2
本实施例用来说明根据本发明的加氢催化剂I及其制造方法。
分别称取30克硝酸镍、45克偏钨酸铵、15克草酸和21克氟化铵 放入140克去离子水中,搅拌溶解得到澄清溶液,采用饱和浸渍法用上述溶液浸渍200克氧化铝载体,浸渍时间为2小时,然后,在120℃干燥2小时,接着将其在通入空气流的状态下进行焙烧,焙烧温度为360℃,时间为6小时,气剂比为10.0升/(克·小时),得到半成品催化剂I-Z-S2,总碳含量见表VI-1;将10克二甘醇放入150克去离子水中,搅拌得到澄清溶液,采用饱和浸渍法用上述溶液浸渍I-Z-S2,浸渍时间为2小时,然后,在150℃干燥3个小时,得到催化剂I-2。以催化剂I-2的总量为基准,以氧化物计,加氢活性金属元素的含量见表VI-1。
实施例VI-3
本实施例用来说明根据本发明的加氢催化剂I及其制造方法。
称取60克氟化铵,加入去离子水搅拌溶解,加去离子水至850毫升,饱和浸渍1000克氧化锆载体2小时,然后在120℃干燥2小时,400℃焙烧4小时,得到含氟氧化锆载体I-Z3。
分别称取83克硝酸镍、60克偏钨酸铵、10克钼酸铵、20克磷酸二氢铵和20克柠檬酸放入180克去离子水中,搅拌溶解得到澄清溶液,采用饱和浸渍法用上述溶液浸渍200克含氟氧化锆载体I-Z3,浸渍时间为2小时,然后,在120℃干燥2小时,接着将其在通入空气流的状态下进行焙烧,焙烧温度为450℃,时间为3小时,气剂比为0.3升/(克·小时),得到半成品催化剂I-Z-S3,总碳含量见表VI-1;将15克乙二胺放入150克去离子水中,搅拌得到澄清溶液,采用饱和浸渍法用上述溶液浸渍I-Z-S3,浸渍时间为2小时,然后,在120℃干燥3个小时,得到催化剂I-3。以催化剂I-3的总量为基准,以氧化物计,加氢活性金属元素的含量见表VI-1。
实施例VI-4
采用与实施例VI-1相同的方法制造加氢催化剂I,不同的是,金属活性组分浸渍到载体后,对载体进行焙烧时,焙烧温度为480℃,时间为6小时。得到的催化剂半成品中总碳含量见表VI-1,得到的催化剂I-4中,以催化剂I-4的总量为基准,以氧化物计,加氢活性金属元素的含量见表VI-1。
实施例VI-5
采用与实施例VI-2相同的方法制造加氢催化剂I,不同的是,焙 烧时的气剂比为1.0升/(克·小时),得到的催化剂I-5中,以催化剂I-5的总量为基准,以氧化物计,加氢活性金属元素的含量见表VI-1。
实施例VI-6
采用与实施例VI-1相同的方法制造加氢催化剂I,不同的是,第一有机络合剂和第二有机络合剂的用量比由30克∶30克改为50克∶10克,得到的催化剂I-6中,以催化剂I-6的总量为基准,以氧化物计,加氢活性金属元素的含量见表VI-1。
实施例VI-7至实施例VI-10说明催化剂II的制造方法。
实施例VI-7
加氢催化剂II-1制造方法如下:
称取一定量小孔氧化铝的前身物(第一种水合氧化铝,偏铝酸钠-二氧化碳法制得的工业产品,产品名称为干拟薄水铝石,山东省铝厂出品,其中一水铝石含量80重%,三水铝石含量5重%)。另称取一定量大孔氧化铝的前身物(第二种水合氧化铝,偏铝酸钠-硫酸铝法制得的工业产品,产品名称为长岭干胶粉,长岭炼油厂催化剂厂出品,一水铝石含量68重%,三水铝石含量5重%)。将两种水合氧化铝按75∶25的干基重量比混合均匀,加入助挤剂、胶粘剂和水,挤成外接圆直径为1.4毫米的三叶型条,120℃烘干,分别在550~650℃焙烧4小时,制造加氢催化剂载体,分别称取一定量的氧化铝载体,用氟化铵(化学纯)水溶液浸渍1小时,120℃烘干,在530℃下焙烧4小时,得到含氟氧化铝载体。用定量偏钨酸铵(化学纯)和硝酸镍(化学纯)的混合水溶液浸渍含氟氧化铝载体4小时,120℃烘干,在530℃温度下焙烧4小时,制得加氢催化剂II-1,其包含4重量%的镍(以NiO计),30重量%的钨(以氧化钨计),4重量%的氟(以元素氟计算),其余为氧化铝。
实施例VI-8
加氢催化剂II-2的制造方法如下:
分别称取27.2克三氧化钼、9.1克碱式碳酸钴、5.5克磷酸、7.6克柠檬酸放入55mL去离子水中,加热到80℃进行搅拌溶解,约1小时后变为棕红色澄清溶液。将该溶液放入烧杯中,加热至90℃并在搅拌下恒温8小时,加水至85mL,得到澄清浸渍溶液。将2000克氢氧化铝粉(长岭炼化公司催化剂厂生产的干胶粉,干基71重量%)和1039克硅溶胶(青岛海洋化工厂产品,二氧化硅含量为30重量%)混合均匀。 将得到的混合物用挤条机挤成外接圆直径为1.4毫米的蝶形条,并将挤出的湿条在120℃干燥4小时,接着在600℃焙烧3小时,制得载体,载体中氧化硅含量为18.0重量%,氧化铝含量为82.0重量%。载体的吸水率为0.85。用澄清浸渍溶液85mL饱和浸渍100克载体2小时,120℃干燥2个小时,250℃干燥3个小时,得到加氢催化剂II-2,其中包含3.9重量%的Co(以CoO计),20.1重量%的钼(以MoO3计),2.1%重量%的磷(以P2O5计),5.6%的柠檬酸,其余为氧化铝。
实施例VI-9
加氢催化剂II-3的制造方法如下:
将含210克氧化铝/升、苛性系数为1.62的高浓度NaAlO2溶液与去离子水配制成Al2O3浓度为40克/升的溶液5升,然后加入葡萄糖酸钠16.3克得到含葡萄糖酸钠的NaAlO2溶液,然后转移至总体积8L的成胶反应釜中,反应釜高径比为8,下部带CO2气体分布器。控制溶液温度为25±5℃,从反应器底部通入浓度90体积%的CO2气体进行成胶反应,成胶温度控制在20-40℃,调节CO2气体流量为15±2升/分钟,在4-6分钟内使反应终点pH值达到8.0-8.5,即停止通气,结束成胶反应。将所得浆液加热升温至70℃老化4小时,然后用真空过滤机进行过滤,待过滤完后,在滤饼上补充加入20升去离子水(温度70℃)冲洗滤饼约30分钟。将洗涤合格的滤饼加入到1.5升去离子水中搅拌成浆液,浆液用泵送入喷雾干燥器进行干燥,得到水合氧化铝P1-2。称取300克拟薄水铝石P1-2和700克拟薄水铝石P2-3(山东铝业公司生产的商业拟薄水铝石SD粉),混合后,用挤条机挤成外接圆直径为1.6毫米的三叶草形条,120℃干燥8小时。取其中300克,在800℃,通空气条件下焙烧处理4小时,制得载体,其中空气流量为1.5标准立方米/千克·小时。称取载体100克,用含硝酸镍20.6克、仲钼酸铵34.8克和磷酸11.4克的水溶液85毫升浸渍1.5小时,120℃干燥5小时,380℃处理4小时,然后以含8.4克丙三醇的水溶液55毫升浸渍2小时,140℃干燥5小时得到加氢催化剂II-3,其中包含3.5重量%的镍(以NiO计),19.1重量%的钼(以MoO3计),4.8%重量%的磷(以P2O5计),5.7%的有机添加剂,其余为氧化铝。
实施例VI-10
加氢催化剂II-4的制造方法如下:
称取2000克氢氧化铝粉(长岭分公司催化剂厂生产的干胶粉,干基70重量%)和299克含二氧化硅25%的硅溶胶(青岛海洋化工厂产品),用挤条机挤成外接圆直径为1.3毫米的蝶形条,湿条于120℃干燥4小时,600℃条件下焙烧3小时,制得载体,载体中氧化硅含量为5.0重量%。称取载体200克,将该载体用含氟化铵16.9克的水溶液176毫升浸渍2小时,120℃干燥3小时,420℃焙烧3小时,制得含氟氧化硅-氧化铝载体。用含仲钼酸铵23.0克的水溶液170毫升浸渍上述载体3小时,120℃干燥4小时,再170℃干燥4小时,得到含钼载体。接着用含硝酸镍53.2克、偏钨酸铵140.7克、磷酸18.1克的水溶液162毫升浸渍该载体3小时,200℃干燥4小时,之后以含乙二醇77.3克的水溶液121毫升浸渍,120℃干燥6小时后得到加氢催化剂II-4,其中包含3.6重量%的镍(以NiO计),5.0重量%的钼(以MoO3计),32.5重量%的钨(以氧化钨计),2.2重量%的氟(以元素氟计算),3.0%重量%的磷(以P2O5计),5.0重量%的乙二醇,其余为氧化铝-氧化硅。
实施例VI-11至实施例VI-16
在实施例VI-11至实施例VI-16中,对采用本发明所提供的方法制造的加氢催化剂和对比例提供的加氢催化剂的脱硫活性和脱氮活性按照以下方法进行加氢精制评价,并按照加氢精制评价结果计算方法进行计算,评价结果如下表VI-2所示。
以掺混15%催化柴油的中东直馏柴油馏分为原料,其性如表VI-3所示,在30毫升柴油加氢装置上评价催化剂的脱硫、脱氮活性,催化剂装填30mL,原料油入口位于加氢装置上方,加氢催化剂II装填在反应器的上床层,加氢催化剂I(或D1)装填在加氢反应器的下床层,即加氢催化剂II的下游。在反应前需对催化剂进行预硫化,其预硫化条件为:氢分压6.4MPa,温度320℃,液时空速4h-1,氢油体积比300,硫化油进油速度为8mL/h。反应条件为:氢分压6.4MPa,反应温度350℃,氢油体积比300,液时空速1.5h-1。分别取反应4小时、反应500小时的样品,用气相色谱测定原料和获得的产品中的硫、氮含量。
对比例VI-2至对比例VI-4
按照实施例VI-11至实施例VI-16的方法对催化剂D1、催化剂组合D1+II-1和催化剂II-1进行加氢精制评价,并按照加氢精制评价结果 计算方法进行计算,评价结果如下表VI-2所示。
加氢精制评价结果计算方法:
采用相对于参比剂D1(对比例VI-1中制造的催化剂)的相对加氢脱硫活性来评价催化剂的加氢脱硫活性,将加氢脱硫反应作为1.65级反应处理,按式(1)计算催化剂X的反应速率常数k(X)HDS
Figure PCTCN2017000318-appb-000038
式(1)中LHSV为进行加氢精制反应时烃油的液时体积空速。
以对比例VI-1制造的催化剂D1的加氢脱硫活性[记为k(D1)HDS]为基准,按式(2)计算催化剂X的相对加氢脱硫活性:
Figure PCTCN2017000318-appb-000039
采用相对于参比剂D1(对比例VI-1中制造的催化剂)的相对加氢脱氮活性来评价催化剂的加氢脱氮活性,将加氢脱氮反应作为1级反应处理,按式(3)计算催化剂X的反应速率常数k(X)HDN
Figure PCTCN2017000318-appb-000040
式(3)中LHSV为进行加氢精制反应时烃油的液时体积空速。
以对比例VI-1制造的催化剂D1的加氢脱氮活性[记为k(D1)HDN]为基准,按式(4)计算催化剂X的相对加氢脱氮活性:
Figure PCTCN2017000318-appb-000041
表VI-2的结果说明,本发明提供的加氢催化剂组合物具有更好的相对加氢脱硫活性和相对加氢脱氮活性,且单位时间内相对活性下降幅度小,使用寿命更长。
表VI-1
Figure PCTCN2017000318-appb-000042
表VI-2
Figure PCTCN2017000318-appb-000043
注:表VI-2中,“-”表示未进行检测。
表VI-3
S含量 12000μg/g
N含量 220μg/g
密度(20℃) 0.8588g/cm3
折光指数(20℃) 1.4841
以上虽然已结合实施例对本发明的具体实施方式进行了详细的说明,但是需要指出的是,本发明的保护范围并不受这些具体实施方式的限制,而是由附录的权利要求书来确定。本领域技术人员可在不脱离本发明的技术思想和主旨的范围内对这些实施方式进行适当的变更,而这些变更后的实施方式显然也包括在本发明的保护范围之内。

Claims (17)

  1. 一种加氢催化剂的制造方法,包括以下步骤:
    (1)使第一活性金属组分、第一有机络合剂和任选的活性助剂与载体接触,获得复合载体;
    (2)焙烧所述复合载体,获得焙烧复合载体,其中以干基计并以所述焙烧复合载体的干基重量为基准,所述焙烧复合载体的总碳含量为1重量%以下、0.5重量%以下、0.4重量%以下、0.3重量%以下、0.1重量%以下、0.08重量%以下、0.06重量%以下、0.04重量%以下、0.03重量%以下、0.01重量%以下或者0.005重量%以下;和
    (3)使第二有机络合剂与所述焙烧复合载体接触,获得所述加氢催化剂,
    所述制造方法还任选包括以下步骤中的一个或多个:
    (0)制造所述载体;和
    (4)硫化所述加氢催化剂。
  2. 按照权利要求1所述的制造方法,其中所述步骤(0)包括以下步骤:
    (0-1)成型载体前驱物或载体前驱物组合物,获得预成型载体,其中所述载体前驱物组合物包含载体前驱物、成型助剂和任选的活性助剂;
    (0-2)焙烧所述预成型载体,获得所述载体;和
    (0-3)任选地,使活性助剂和/或第二活性金属组分与所述载体接触,
    其中所述活性助剂选自金属活性助剂(优选选自第IIB族金属元素(比如选自锌和镉中的一种或多种)、第IA族金属元素(比如选自锂、钠、钾、铷、铯和钫中的一种或多种)、第IIA族金属元素(比如选自铍、镁、钙和锶中的一种或多种)和稀土金属元素(比如选自镧、铈、镨和钕中的一种或多种)中的一种或多种,优选选自锌、钠、钾、镁、钙、镧和铈中的一种或多种)和非金属活性助剂(优选选自第IVA族元素(比如硅)、第VIIA族元素(比如选自氟、氯、溴和碘中的一种或多种)、第VA族元素(比如选自磷和砷中的一种或多种)和第IIIA族元素(比如硼)中的一种或多种,优选选自氟、硅、磷和硼中的一 种或多种)中的一种或多种,并且在所述加氢催化剂中,以金属元素计且以所述加氢催化剂的总重量为基准,所述金属活性助剂的含量为从0重量%至10重量%,优选从0.5重量%至6重量%,以非金属元素计且以所述加氢催化剂的总重量为基准,所述非金属活性助剂的含量为从0重量%至10重量%,优选从0.5重量%至6重量%。
  3. 按照权利要求2所述的制造方法,其中所述步骤(0-2)的焙烧条件包括:焙烧温度从250℃至500℃,优选从350℃至450℃,焙烧时间从2h至8h,优选从3h至6h。
  4. 按照权利要求2所述的制造方法,其中所述步骤(0-3)包括以下步骤:
    (0-3-1)使所述活性助剂和/或所述第二活性金属组分浸渍所述载体,获得浸渍产物,和
    (0-3-2)在从100℃至250℃(优选从100℃至200℃)的温度下干燥所述浸渍产物,和/或,在从250℃至600℃(优选从350℃至500℃)的温度下焙烧所述浸渍产物。
  5. 按照权利要求1所述的制造方法,其中所述步骤(1)包括以下步骤:
    (1-1)使所述第一活性金属组分、所述第一有机络合剂和所述任选的活性助剂浸渍所述载体,获得浸渍产物,和
    (1-2)在从100℃至250℃(优选从100℃至200℃)的温度下热处理所述浸渍产物,获得所述复合载体。
  6. 按照权利要求1所述的制造方法,其中所述步骤(2)的焙烧条件包括:焙烧温度从350℃至500℃,优选从360℃至450℃,焙烧时间从0.5h至8h,优选从1h至6h,通入含氧气体(优选氧气含量不低于20vol%),以所述载体的重量为基准,所述含氧气体的通入量大于0.2升/(克·小时),优选从0.2升/(克·小时)至20升/(克·小时),进一步优选从0.3升/(克·小时)至10升/(克·小时)。
  7. 按照权利要求1所述的制造方法,其中所述步骤(3)包括以下步骤:
    (3-1)使所述第二有机络合剂浸渍所述焙烧复合载体,获得浸渍产物,和
    (3-2)在从100℃至250℃(优选从100℃至200℃)的温度下热 处理所述浸渍产物,获得所述加氢催化剂。
  8. 按照权利要求1或2所述的制造方法,其中以氧化物计且以所述加氢催化剂的总重量为基准,所述第一活性金属组分的含量或者所述第一活性金属组分与所述第二活性金属组分的总含量为从6重量%至70重量%,优选从15重量%至60重量%,优选从20重量%至50重量%,优选从20重量%至40重量%;所述第一有机络合剂与所述第一活性金属组分的摩尔比为从0.03∶1至2∶1,优选从0.08∶1至1.5∶1;所述第一有机络合剂与所述第二有机络合剂的摩尔比为从1∶0.25至1∶4,优选从1∶0.5至1∶2;所述第一活性金属组分与所述第二活性金属组分的摩尔比为从1∶0至1∶0.4,优选从1∶0至1∶0.1。
  9. 按照权利要求2所述的制造方法,其中所述载体前驱物选自氧化铝、氧化硅、氧化铝-氧化硅、氧化钛、氧化镁、氧化硅-氧化镁、氧化硅-氧化锆、氧化硅-氧化钍、氧化硅-氧化铍、氧化硅-氧化钛、氧化硅-氧化锆、氧化钛-氧化锆、氧化硅-氧化铝-氧化钍、氧化硅-氧化铝-氧化钛、氧化硅-氧化铝-氧化镁和氧化硅-氧化铝-氧化锆中的一种或多种,优选氧化铝,包括其各自的前身物。
  10. 按照权利要求1所述的制造方法,其中所述第一有机络合剂和所述第二有机络合剂彼此相同或不同,各自独立地选自以下物质中的一种或多种:
    (i)C2-30(优选C2-10)直链或支链烷烃的碳链结构被一个或多个(比如1至5个、1至4个、1至3个、1至2个或者1个)选自-O-和-NR1-(其中,基团R1选自H和任选取代的C1-10直链或支链烷基)的杂基团中断而获得的有机化合物A,
    (ii)C1-30(优选C2-10)直链或支链烷烃、C2-30(优选C2-10)直链或支链烯烃、任选取代的C3-20(优选C5-10)环烷烃或者所述有机化合物A的分子结构中的一个或多个(比如1至5个、1至4个、1至3个、1至2个或者1个)氢原子被选自-R2-OH(其中,基团R2代表单键或者C1-10直链或支链亚烷基,优选代表单键或者C1-6直链或支链亚烷基,优选代表单键或者C1-3直链或支链亚烷基)、-R3-NR4R5(其中,基团R3代表单键或者C1-10直链或支链亚烷基,优选代表C1-6直链或支链亚烷基,优选代表C1-3直链或支链亚烷基;基团R4和R5彼此相同或不同,各自独立地选自氢、C1-10直链或支链烷基和-R6-C(=O)OM,优选各自 独立地选自氢、C1-6直链或支链烷基和-R6-C(=O)OM,优选各自独立地选自C1-3直链或支链烷基和-R6-C(=O)OM,更优选各自独立地代表-R6-C(=O)OM;基团R6代表单键或者C1-10直链或支链亚烷基,优选代表C1-6直链或支链亚烷基,优选代表C1-3直链或支链亚烷基;M代表H、碱金属或碱土金属)和-R6-C(=O)OM(其中,基团R6代表单键或者C1-10直链或支链亚烷基,优选代表C1-6直链或支链亚烷基,优选代表C1-3直链或支链亚烷基;M代表H、碱金属或碱土金属)的取代基取代而获得的有机化合物B,
    前提是所述有机化合物A和所述有机化合物B在其分子结构中均不包含氧氧直接键合、氮氮直接键合和氮氧直接键合,
    (iii)烯化氧均聚物或共聚物,
    更优选所述第一有机络合剂和所述第二有机络合剂彼此相同或不同,各自独立地选自(i)任选带有一个或多个(比如1至5个、1至4个、1至3个、1至2个或者1个)-R2-OH(其中,基团R2代表单键或者C1-10直链或支链亚烷基,优选代表单键或者C1-6直链或支链亚烷基,优选代表单键或者C1-3直链或支链亚烷基)作为取代基的C1-20(优选C2-7)脂肪族或C5-10脂环族一元或多元羧酸或其盐(比如选自乙酸、马来酸、草酸、柠檬酸、酒石酸和苹果酸中的一种或多种)、(ii)任选带有一个或多个(比如1至5个、1至4个、1至3个、1至2个或者1个)选自-R2-OH(其中,基团R2代表单键或者C1-10直链或支链亚烷基,优选代表单键或者C1-6直链或支链亚烷基,优选代表单键或者C1-3直链或支链亚烷基)和-R6-C(=O)OM(其中,基团R6代表单键或者C1-10直链或支链亚烷基,优选代表C1-6直链或支链亚烷基,优选代表C1-3直链或支链亚烷基;M代表H、碱金属或碱土金属)的取代基的C1-20(优选C2-7)脂肪族或C5-10脂环族一元或多元胺(比如选自乙二胺、三乙胺、己二胺、乙醇胺、二乙醇胺、三乙醇胺、乙二胺四乙酸或其盐、氮川三乙酸或其盐和1,2-环己烷二胺四乙酸或其盐中的一种或多种)和(iii)C2-20(优选C2-6)脂肪族或C5-10脂环族多元醇、其低聚物或高聚物、或者其C1-6直链或支链烷基醚化物(比如选自乙二醇、丙三醇、聚乙二醇、二乙二醇、二乙二醇单甲基醚和丁二醇中的一种或多种)中的一种或多种,更优选各自独立地选自乙二醇、丙三醇、 聚乙二醇(分子量为从200至1500,优选从200至600)、二乙二醇、丁二醇、乙酸、马来酸、草酸、氮川三乙酸或其盐、1,2-环己烷二胺四乙酸或其盐、柠檬酸、酒石酸、苹果酸、乙二胺和乙二胺四乙酸或其盐中的一种或多种。
  11. 按照权利要求1所述的制造方法,其中所述第一活性金属组分和所述第二活性金属组分彼此相同或不同,各自独立地选自元素周期表第VIB族金属元素(优选选自钼和钨中的一种或多种)和元素周期表第VIII族金属元素(优选选自钴和镍中的一种或多种)中的一种或多种,优选各自独立地选自一种或多种所述元素周期表第VIB族金属元素与一种或多种所述元素周期表第VIII族金属元素的组合,更优选各自独立地选自钼和/钨与钴和/镍的组合。
  12. 按照权利要求1所述的制造方法,其中在所述步骤(3)之中或者之后,不包括焙烧步骤,和/或,在所述步骤(3)之中或者之后,不包括引入活性助剂和/或加氢活性金属元素的步骤。
  13. 根据按照权利要求1-12任一项所述的制造方法制造的加氢催化剂。
  14. 一种加氢催化剂组合物,包含加氢催化剂I和加氢催化剂II,其中所述加氢催化剂I与所述加氢催化剂II不同,以体积计并以所述加氢催化剂组合物的总体积为基准,所述加氢催化剂I的含量为5-95%,优选10-80%,更优选20-70%,并且所述加氢催化剂I是按照权利要求1所述的制造方法制造的加氢催化剂。
  15. 一种加氢处理方法,包括使原料油在氢气的存在下与权利要求13所述的加氢催化剂或者权利要求14所述的加氢催化剂组合物接触以进行加氢反应的步骤。
  16. 按照权利要求15所述的方法,其中使所述原料油(i)先与所述加氢催化剂I接触,然后再与所述加氢催化剂II接触,(ii)先与所述加氢催化剂II接触,然后再与所述加氢催化剂I接触,或者(iii)与多段所述加氢催化剂I和多段所述加氢催化剂II交替接触。
  17. 按照权利要求15所述的方法,其中所述加氢反应的条件包括:反应温度从300℃至400℃,优选从320℃至380℃,反应压力从1兆帕至10兆帕(表压),优选从1兆帕至8兆帕(表压),所述原料油的液时体积空速从0.5小时-1至3小时-1,优选从0.5小时-1至2.5小时-1, 氢油体积比从100至800,优选从100至700。
PCT/CN2017/000318 2016-09-12 2017-04-24 一种加氢催化剂、其制造方法及其应用 WO2018045693A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
RU2019106451A RU2745607C2 (ru) 2016-09-12 2017-04-24 Катализатор гидрирования, его получение и применение
JP2019513763A JP7074746B2 (ja) 2016-09-12 2017-04-24 水素化触媒、その製造およびその応用
MYPI2019001222A MY190669A (en) 2016-09-12 2017-04-24 Hydrogenation catalyst, its production and application thereof
US16/332,292 US11161105B2 (en) 2016-09-12 2017-04-24 Hydrogenation catalyst, its production and application thereof
EP17847869.9A EP3511074A4 (en) 2016-09-12 2017-04-24 HYDRATION CATALYST AND PRODUCTION METHOD AND APPLICATION THEREOF
SA519401259A SA519401259B1 (ar) 2016-09-12 2019-03-09 محفز هدرجة، وإنتاجه، واستخدامه

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201610818804.1 2016-09-12
CN201610819780.1A CN107812526B (zh) 2016-09-12 2016-09-12 一种加氢催化剂组合物和加氢处理的方法
CN201610819780.1 2016-09-12
CN201610817658.0 2016-09-12
CN201610817658.0A CN107812528B (zh) 2016-09-12 2016-09-12 一种加氢催化剂组合物和加氢处理的方法
CN201610818804.1A CN107812525B (zh) 2016-09-12 2016-09-12 一种加氢催化剂组合物和加氢处理的方法

Publications (1)

Publication Number Publication Date
WO2018045693A1 true WO2018045693A1 (zh) 2018-03-15

Family

ID=61562540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/000318 WO2018045693A1 (zh) 2016-09-12 2017-04-24 一种加氢催化剂、其制造方法及其应用

Country Status (8)

Country Link
US (1) US11161105B2 (zh)
EP (1) EP3511074A4 (zh)
JP (1) JP7074746B2 (zh)
MY (1) MY190669A (zh)
RU (1) RU2745607C2 (zh)
SA (1) SA519401259B1 (zh)
SG (1) SG10201912299WA (zh)
WO (1) WO2018045693A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113976106A (zh) * 2021-09-27 2022-01-28 达斯玛环境科技(北京)有限公司 一种铝基催化剂制备方法及系统
CN115475651A (zh) * 2021-06-16 2022-12-16 中国石油化工股份有限公司 一种用于脱氢反应的非贵金属催化剂以及低碳烷烃脱氢的方法
CN115672315A (zh) * 2021-07-29 2023-02-03 中国石油化工股份有限公司 一种加氢催化剂及其制备方法和应用

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110935460B (zh) * 2018-09-21 2023-02-28 中国石油天然气股份有限公司 一种高选择性加氢脱硫催化剂及其制备方法
CN111921535A (zh) * 2019-05-13 2020-11-13 中海石油炼化有限责任公司 一种加氢处理催化剂及其制备方法和应用
US11697105B2 (en) 2020-04-14 2023-07-11 Kellogg Brown & Root Llc Method for catalyst production for C5-C12 paraffins isomerization
CN112675828A (zh) * 2020-12-25 2021-04-20 中化泉州石化有限公司 一种加氢脱硫催化剂及其制备方法
CN112958159B (zh) * 2021-03-01 2023-06-13 安徽金轩科技有限公司 一种用于制备2-乙酰呋喃的催化剂及其制备方法
CN115518661B (zh) * 2021-06-25 2023-12-05 中国石油化工股份有限公司 耐硫变换催化剂及制备方法和应用
CN113398907A (zh) * 2021-07-06 2021-09-17 山东京博石油化工有限公司 一种加氢催化剂、其制备方法及在重整c5油脱除烯烃中的应用
CN115990487A (zh) * 2021-10-20 2023-04-21 中国石油化工股份有限公司 一种加氢催化剂及重油加氢处理方法
CN116037136B (zh) * 2021-10-28 2024-06-07 中国石油化工股份有限公司 一种含硼加氢脱氮催化剂及其制备方法
CN114100645A (zh) * 2021-11-24 2022-03-01 中化泉州能源科技有限责任公司 一种多通道且空心加氢活性支撑剂及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1853777A (zh) * 2005-04-21 2006-11-01 中国石油化工股份有限公司 一种加氢催化剂及其制备方法
CN102909027A (zh) * 2012-09-19 2013-02-06 中国海洋石油总公司 一种超低硫加氢精制催化剂的制备方法
CN102950012A (zh) * 2011-08-29 2013-03-06 中国石油化工股份有限公司 一种加氢催化剂的制备方法
CN103055956A (zh) * 2011-10-18 2013-04-24 中国石油化工股份有限公司 加氢催化剂的浸渍液及其制备方法和加氢催化剂及其制备方法
CN103551162A (zh) * 2013-10-30 2014-02-05 中国海洋石油总公司 一种柴油加氢脱硫脱氮催化剂及其制备方法
CN106607096A (zh) * 2015-10-26 2017-05-03 中国石油化工股份有限公司 一种加氢催化剂及其制备方法
CN106607039A (zh) * 2015-10-26 2017-05-03 中国石油化工股份有限公司 一种加氢催化剂及其制备方法
CN106607097A (zh) * 2015-10-26 2017-05-03 中国石油化工股份有限公司 一种加氢催化剂及其制备方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3547830A (en) * 1969-03-17 1970-12-15 Exxon Research Engineering Co High area catalyst preparation
JP3244692B2 (ja) * 1990-10-17 2002-01-07 住友金属鉱山株式会社 炭化水素油の水素化処理用触媒の製造方法
JP2900771B2 (ja) 1992-11-18 1999-06-02 住友金属鉱山株式会社 炭化水素油の水素化処理触媒の製造方法
CN1083742A (zh) * 1993-07-29 1994-03-16 周红星 双功能多金属氧化物催化剂
JP3391522B2 (ja) 1993-10-15 2003-03-31 出光興産株式会社 重質油の水素化処理方法
US6372868B1 (en) * 1999-12-07 2002-04-16 Univation Technologies, Llc Start up methods for multiple catalyst systems
JP4969754B2 (ja) 2000-03-30 2012-07-04 Jx日鉱日石エネルギー株式会社 軽油留分の水素化脱硫方法及び水素化脱硫用反応装置
JP2001300325A (ja) * 2000-04-19 2001-10-30 Sumitomo Metal Mining Co Ltd 炭化水素油の水素化脱硫脱窒素用触媒およびその製造方法
CN1101455C (zh) 2000-05-26 2003-02-12 中国石油化工集团公司 烃类加氢精制催化剂及其制备方法
TWI240750B (en) 2001-06-27 2005-10-01 Japan Energy Corp Method for manufacturing hydrorefining catalyst
CN1259395C (zh) 2003-10-24 2006-06-14 中国石油化工股份有限公司 一种加氢处理催化剂的装填方法
ES2300741T3 (es) * 2004-01-21 2008-06-16 Avantium International B.V. Catalizadores sin cromo de cu metalico y al menos un segundo metal.
US8697598B2 (en) 2005-04-21 2014-04-15 China Petroleum & Chemical Corporation Hydrogenation catalyst and use thereof
CN102166520B (zh) 2010-02-25 2013-03-27 中国石油天然气股份有限公司 加氢精制催化剂
JP5680373B2 (ja) * 2010-11-01 2015-03-04 日本化薬株式会社 触媒及びアクリル酸の製造方法
CN102600913B (zh) 2011-01-20 2014-06-04 中国石油天然气股份有限公司 一种钼、镍、磷浸渍水溶液的配制方法
JP5660957B2 (ja) * 2011-03-31 2015-01-28 独立行政法人石油天然ガス・金属鉱物資源機構 再生水素化分解触媒及び炭化水素油の製造方法
JP5690634B2 (ja) * 2011-03-31 2015-03-25 独立行政法人石油天然ガス・金属鉱物資源機構 水素化精製触媒及び炭化水素油の製造方法
CN102247864A (zh) 2011-05-26 2011-11-23 中国海洋石油总公司 一种轻质油加氢脱硫脱氮催化剂的制备方法
FR2984764B1 (fr) * 2011-12-22 2014-01-17 IFP Energies Nouvelles Procede de preparation d'un catalyseur utilisable en hydrotraitement et hydroconversion
JP5826936B2 (ja) * 2012-07-19 2015-12-02 千代田化工建設株式会社 使用済水素化処理用チタニア触媒の再賦活化方法
US9713806B2 (en) * 2012-11-08 2017-07-25 China Petroleum & Chemical Corporation Hydrotreating catalyst, production and use thereof
CN104998670B (zh) 2014-04-24 2018-07-31 中国石油化工股份有限公司 一种加氢催化剂及其应用
CN105435824B (zh) 2014-09-25 2018-05-18 中国石油化工股份有限公司 一种加氢催化剂组合物及其应用
CN104941654B (zh) 2015-05-21 2017-07-21 中国石油大学(北京) 一种氧化铝基加氢精制催化剂及其制备方法与应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1853777A (zh) * 2005-04-21 2006-11-01 中国石油化工股份有限公司 一种加氢催化剂及其制备方法
CN102950012A (zh) * 2011-08-29 2013-03-06 中国石油化工股份有限公司 一种加氢催化剂的制备方法
CN103055956A (zh) * 2011-10-18 2013-04-24 中国石油化工股份有限公司 加氢催化剂的浸渍液及其制备方法和加氢催化剂及其制备方法
CN102909027A (zh) * 2012-09-19 2013-02-06 中国海洋石油总公司 一种超低硫加氢精制催化剂的制备方法
CN103551162A (zh) * 2013-10-30 2014-02-05 中国海洋石油总公司 一种柴油加氢脱硫脱氮催化剂及其制备方法
CN106607096A (zh) * 2015-10-26 2017-05-03 中国石油化工股份有限公司 一种加氢催化剂及其制备方法
CN106607039A (zh) * 2015-10-26 2017-05-03 中国石油化工股份有限公司 一种加氢催化剂及其制备方法
CN106607097A (zh) * 2015-10-26 2017-05-03 中国石油化工股份有限公司 一种加氢催化剂及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3511074A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115475651A (zh) * 2021-06-16 2022-12-16 中国石油化工股份有限公司 一种用于脱氢反应的非贵金属催化剂以及低碳烷烃脱氢的方法
CN115475651B (zh) * 2021-06-16 2024-03-29 中国石油化工股份有限公司 一种用于脱氢反应的非贵金属催化剂以及低碳烷烃脱氢的方法
CN115672315A (zh) * 2021-07-29 2023-02-03 中国石油化工股份有限公司 一种加氢催化剂及其制备方法和应用
CN113976106A (zh) * 2021-09-27 2022-01-28 达斯玛环境科技(北京)有限公司 一种铝基催化剂制备方法及系统

Also Published As

Publication number Publication date
EP3511074A4 (en) 2020-05-20
JP2019532800A (ja) 2019-11-14
SG10201912299WA (en) 2020-02-27
JP7074746B2 (ja) 2022-05-24
RU2745607C2 (ru) 2021-03-29
US11161105B2 (en) 2021-11-02
US20190232269A1 (en) 2019-08-01
MY190669A (en) 2022-05-09
RU2019106451A (ru) 2020-10-12
EP3511074A1 (en) 2019-07-17
RU2019106451A3 (zh) 2020-10-12
SA519401259B1 (ar) 2023-01-29

Similar Documents

Publication Publication Date Title
WO2018045693A1 (zh) 一种加氢催化剂、其制造方法及其应用
TWI604040B (zh) Hydrotreating catalyst, its manufacturing method and application thereof
RU2377067C2 (ru) Высокоактивный катализатор гидрообессеривания, способ его изготовления и способ получения среднего топливного дистиллята с ультранизким содержанием серы
CA2360121C (en) Hydroprocessing catalyst and use thereof
KR20110138234A (ko) 인 및 붕소를 함유하는 수소처리 촉매
US20040163999A1 (en) HPC process using a mixture of catalysts
TWI611836B (zh) 觸媒支撐物及其製備方法
JP3838660B2 (ja) 低マクロ細孔率の残油転化触媒
PL196409B1 (pl) Sposób obróbki wodorem ciężkiego oleju węglowodorowego i kombinacja katalizatorów do obróbki wodorem ciężkiego oleju węglowodorowego
RU2557248C2 (ru) Катализатор, способ его приготовления и процесс селективного гидрообессеривания олефинсодержащего углеводородного сырья
US10118158B2 (en) Process and catalyst for the hydrotreatment of a heavy hydrocarbon feedstock
RU2691065C1 (ru) Катализатор гидроочистки бензина каталитического крекинга
CN107812528B (zh) 一种加氢催化剂组合物和加氢处理的方法
RU2688155C1 (ru) Способ гидроочистки бензина каталитического крекинга
RU2708643C1 (ru) Катализатор гидроочистки бензина каталитического крекинга и способ его получения
JP3106761B2 (ja) 炭化水素油の水素化脱硫脱窒素用触媒及びその製造方法
RU2811917C1 (ru) Носитель для катализатора гидроочистки дизельных фракций и способ его получения
JP4519379B2 (ja) 重質炭化水素油の水素化処理触媒
CN112742404A (zh) 汽油选择性加氢脱硫催化剂及其制备方法和应用以及汽油选择性加氢脱硫方法
RU2687734C1 (ru) Способ приготовления катализатора гидроочистки бензина каталитического крекинга
RU2741303C1 (ru) Катализатор глубокой гидроочистки нефтяных фракций и способ его приготовления
RU2575637C1 (ru) Катализатор гидроочистки бензина каталитического крекинга
RU2575639C1 (ru) Способ гидроочистки бензина каталитического крекинга
RU2575638C1 (ru) Способ приготовления катализатора гидроочистки бензина каталитического крекинга
CN114437765A (zh) 一种汽油加氢的开工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17847869

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019513763

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017847869

Country of ref document: EP