RU2741303C1 - Катализатор глубокой гидроочистки нефтяных фракций и способ его приготовления - Google Patents

Катализатор глубокой гидроочистки нефтяных фракций и способ его приготовления Download PDF

Info

Publication number
RU2741303C1
RU2741303C1 RU2019144318A RU2019144318A RU2741303C1 RU 2741303 C1 RU2741303 C1 RU 2741303C1 RU 2019144318 A RU2019144318 A RU 2019144318A RU 2019144318 A RU2019144318 A RU 2019144318A RU 2741303 C1 RU2741303 C1 RU 2741303C1
Authority
RU
Russia
Prior art keywords
catalyst
calcined
moo
hours
nio
Prior art date
Application number
RU2019144318A
Other languages
English (en)
Inventor
Александр Владимирович Можаев
Александр Сергеевич Коклюхин
Мария Сергеевна Никульшина
Лансело Кристин
Бланшар Паскаль
Ламонье Кароль
Павел Анатольевич Никульшин
Original Assignee
федеральное государственное бюджетное образовательное учреждение высшего образования "Самарский государственный технический университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное бюджетное образовательное учреждение высшего образования "Самарский государственный технический университет" filed Critical федеральное государственное бюджетное образовательное учреждение высшего образования "Самарский государственный технический университет"
Priority to RU2019144318A priority Critical patent/RU2741303C1/ru
Application granted granted Critical
Publication of RU2741303C1 publication Critical patent/RU2741303C1/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/12Silica and alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • B01J23/8885Tungsten containing also molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0203Impregnation the impregnation liquid containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

Изобретение относится к области производства катализаторов гидроочистки. Описан катализатор гидроочистки нефтяных фракций, включающий в свой состав никель, молибден, вольфрам и носитель, отличающийся тем, что NiO, MoO3 и WO3 наносят на прокаленный носитель из совместного раствора, содержащего смешанные гетерополисоединения H4[SiMonW12-nO40] (n=1-6), карбонат никеля NiCO3×H2O и органическую добавку, с последующей активацией катализатора смесью диметилдисульфида и керосиновой фракции при 240°C в течение 10 ч и при 340°C в течение 10 ч. Содержание металлов в прокаленном катализаторе составляет: MoO3 - 1.0-9.0% мас., WO3 - 13.0-25.0% мас., NiO - 3.0-5.0% мас., остальное - пористый носитель с содержанием углерода 0-4% мас. Катализатор имеет удельную поверхность не менее 180 м2/г, удельный объем пор не менее 0.5 см3/г, эффективный диаметр пор не менее 6.0 нм. В качестве органической добавки используют как минимум одну из следующего ряда: лимонная кислота C6H8O7, винная кислота C4H6O6, этиленгликоль C2H6O2. Технический результат - получен катализатор, характеризующийся высокой активностью в процессе гидроочистки нефтяных фракций. 2 н. и 2 з.п. ф-лы, 2 табл., 10 пр.

Description

Изобретение относится к области нефтепереработки, а именно к катализаторам глубокой гидроочистки нефтяных фракции, которые могут быть получены с использованием смешанных MoW гетерополисоединений. В гидрокаталитических процессах применяются катализаторы на основе наноразмерных частиц MoS2 и/или WS2, промотированньтх никелем или кобальтом, нанесенные на γ-Al2O3 [Патент 2629358 от 09.11.2016, Патент 2534998 от 27.09.2013, Патент 2497586 от 21.02.2012, Патент 2555708 от 27.09.2013]. С целью повышения каталитической активности происходит постоянное совершенствование состава и строения предшественников активной фазы [Toulhoat H., Raybaud R // IFP Energies nouvelles. 2013. P. 832]. Наряду с традиционными оксидными прекурсорами активной фазы, такими как парамолибдат и метавольфрамат аммония, в последнее время все чаще используются гетерополисоединения [Nikulshin P., Mozhaev А., Lancelot C., Blanchard P., Payen Е., Lamonier С. // Comptes Rendus Chimie. 2016. №19. P. 1276, Патент 2414963 от 07.07.2008]. Наи5олее стабильными, доступными и приемлемыми для промышленного применения свойствами обладают молибденовые и вольфрамовые гетерополикислоты структуры Кеггина и их производные [Пимерзин А.А., Томина Н.Н., Никульшин П.А., Максимов H.M., Можаев А.В., Ишутенко Д.И., Вишневская Е.Е. // Катализ в промышленности. 2014. №5. С. 51-57, Томина П.П., Никульшин П.А., Пимерзин А.А. // Нефтехимия. 2008. Т. 48. 2008. №2. С. 92-99].
В настоящее время все большее распространение получают каталитические системы, в активной фазе которых присутствуют два активных металла - Мо и W [Thomazeau C., Geantet C., Lacroix M., Danot M., Harle V., Raybaud P. // Applied Catalysis A: General. 2007. V. 322. P. 92-97, Cervantcs-Gaxiola M.E., Arroyo-Albitcr M., Pérez-Larios A., Balbuena P.B., Espino-Valencia J. // Fuel. 2013. V. 113. P. 733-743]. Образующаяся MoWS2 активная фаза обладает более высокой каталитической активностью, по сравнению с традиционными монометаллическими сульфидами [Thomazeau С.. Geantet С., Lacroix М., Danot М., Harle V., Raybaud P. // Applied Catalysis A: General. 2007. V. 322. P. 92-97].
В работах многих авторов отмечается увеличение каталитической активности при использовании смешанных MoW каталитических систем [Патент 2700713 от 19.09.2019, Патент 2631424 от 30.11.2015, US 6635599 от 21.10.2003, Патент 2147255 от 17.03.1998, Патент 2566307 от 20.10.2015, Патент 2694370 от 06.12.2017]. Процесс гидроочистки нефтяных фракций на таких системах осуществляют при давлении водорода от 4,0 МПа, температуре 340-360°C, объемной скорости подачи сырья в интервале 1,0-2,0 ч-1, объемном соотношении водород/сырье - в диапазоне 350-500 нм33. Общим недостатком данных катализаторов является то, что в качестве оксидных предшественников активной фазы используются механические смеси гептамолибдата и метавольфрамата аммония или молибденовых и вольфрамовых гетерополисоединений структуры Кеггина. Использование механических смесей не обеспечивает необходимую пространственную близость атомов металлов Мо и W, что не способствует достижению высокой активности сульфидных катализаторов гидроочистки.
Наиболее близкими к предлагаемому решению является катализатор гидроочистки дизельных фракций и способ его получения, описанный в патенте RU 2566307 от 20.15.2015, B01J 23/88 (2006.01), B01J 21/04 (2006.01), B01J 37/02 (2006.01), C10G 45/08 (2006.01). Данная система содержит, мас. %: оксид никеля или кобальта - 3.0-7.0, оксид молибдена (MoO3) - 16.0-22.0, в том числе: в виде триоксида молибдена - 8-11, фосфорномолибденовой кислоты в пересчете на триоксид молибдена - 8-11, оксид вольфрама (WO3) - 12.0, фосфор - 0.37, оксид алюминия - остальное. Описанный выше способ синтеза катализа имеет ряд недостатков. Во-первых, внесение оксидов вольфрама и молибдена происходит на стадии пептизации гидроксида алюминия после чего производится формовка экструзией, сушка и прокаливание, в результате существенная часть активных металлов переходит в объем инертного в катализе оксида алюминия, что снижает вероятность образования смешанной MoWS2 активной фазы. Во-вторых - использование механических смесей не обеспечивает необходимую пространственную близость атомов металлов Мо и W на этапе формирования активной фазы катализатора, что снижает каталитическую активность в процессе гидроочистки нефтяных фракций.
Техническим результатом настоящего изобретения является повышение каталитической активности катализатора глубокой гидроочистки нефтяных фракций за счет использования смешанных гетерополисоединений H4[SiMonW12-nO40] (n=1-6), позволяющих сформировать более оптимальный состав активной фазы. Технический результат достигается за счет катализатора глубокой гидроочистки нефтяных фракций, содержащего в прокаленном при 550°C состоянии: МоО3 - 1.0-9.0% мас., WO3 - 13.0-25.0% мас., NiO - 3.0-5.0% мас., остальное - пористый носитель с содержанием углерода 0-4% мас.; катализатор имеет удельную поверхность не менее 180 м2/г, удельный объем пор не менее 0.5 см3/г, эффективный диаметр пор не менее 6.0 нм.
Способ приготовления катализатора глубокой гидроочистки нефтяных фракций включает однократную пропитку водным раствором предшественников активных компонентов, содержащим гетерополикислоту структуры Кеггина и комплексонат никеля, вакуумированного носителя по влагоемкости с последующей сушкой при температуре 80-150°C в потоке воздуха. В качестве гетерополикислоты используют H4[SiMonW12-nO40], где n=1-6, в качестве прекурсора никеля используется никель углекислый NiCO3×H2O, в качестве прекурсора комплексоната используют как минимум один из следующего ряда: лимонная кислота C6H8O7, винная кислота С4Н6О6, диэтиленгликоль C4H10O3. В качестве пористого носителя используют оксид алюминия, оксид кремния или их композиты с содержанием углерода 0-4 мас. %.
Исходные соединения для приготовления пропиточного раствора, свойства носителя и состав катализаторов приведены в табл. 1.
Figure 00000001
Сущность изобретения иллюстрируется следующими примерами.
Пример 1
Состав катализатора и способ его приготовления согласно известному техническому решению - прототипу.
76.9 г порошка гидроксида алюминия суспендируют в 150 мл воды в течение трех минут и приливают пептизирующий раствор, состоящий из 30 мл воды, 2.74 мл 65%-ной азотной и 13.3 г фосфорновольфрамовой кислот, и перемешивают до однородной массы. Параллельно в 96 мл горячей воды при интенсивном перемешивании растворяют 13.0 г парамолибдата аммония. Полученный раствор добавляют к пептизированной массе гидроксида алюминия, тщательно перемешивают и экструдируют на поршневом экструдере через фильеру диаметром 1.5 мм. Экструдаты выдерживают на воздухе в течение 6 ч. и помещают их в муфельную печь. Режим высушивания ступенчатый: 60°C - 2 ч, 80°C - 2 ч, 110°C - 2 ч. Далее температуру повышают со скоростью 2°C/мин до температуры 550°C. При температуре 550°C выдерживают 4 ч.
50 г прокаленного носителя погружают в 40 мл пропиточного раствора, содержащего 7.1 г фосфорномолибденовой кислоты и 10.4 г нитрата никеля. Пропитку носителя проводят в течение 1.5 ч при нагревании до температуры 60°C и перемешивании, остаток раствора декантируют. Катализатор сушат в токе воздуха. Режим высушивания ступенчатый: 60°C - 2 ч, 80°C - 2 ч, 110°C - 2 ч, после чего катализатор прокаливают при температуре 550°C.
Катализатор в прокаленном при 550°C состоянии содержит, мас. %: МоО3 - 22.0; МО - 7.0; WO3 - 12.0; Р - 0.37; носитель - остальное (табл. 1).
Примеры 2-10 иллюстрируют предлагаемое техническое решение.
Пример 2
Для приготовления пропиточного раствора 20.2 г H4[SiMo1W11O40], 3.7 г NiCO3⋅H2O и 5.9 г лимонной кислоты C6H8O7⋅последовательно растворяют в 60.0 см3 воды при 40-60°C и перемешивании. рН пропиточного раствора равен ~2.5-3.5. Носитель - зауглероженный оксид алюминия, содержащий γ-Al2O3 (98% мас.) и углерод (2% мас.) - массой 50 г выдерживают в вакууме не менее 30 мин, затем заливают пропиточным раствором. Далее носитель выдерживают в пропиточном растворе в течение 15 мин. Далее полученный катализатор подвергают термообработке при температуре не выше 80-150°C в течение 4 ч.
Катализатор в прокаленном при 550°C состоянии содержит, мас. %: MoO3 - 1.4; WO3 - 24.2; NiO - 3.3; носитель - остальное; имеет удельную поверхность 210 м2/г, объем пор 0.54 см3/г и эффективный диаметр пор 7.2 нм (табл. 1).
Пример 3
Для приготовления пропиточного раствора 19.2 г H4[SiMo3W9O40], 4.8 г NiCO3⋅H2O и 7.7 г лимонной кислоты C6H8O7⋅последовательно растворяют в 60.0 см3 воды при 40-60°C и перемешивании. рН пропиточного раствора равен ~2.5-3.5. Носитель - аморфный алюмосиликат, содержащий Al2O3 (90% мас.) и SiO2 (10% мас.) - массой 50 г выдерживают в вакууме не менее 30 мин, затем заливают пропиточным раствором. Далее носитель выдерживают в пропиточном растворе в течение 15 мин. Далее полученный катализатор подвергают термообработке при температуре не выше 80-150°C в течение 4 ч.
Катализатор в прокаленном при 550°C состоянии содержит, мас. %: MoO3 - 4.2; WO3 - 20.1; NiO - 4.3; носитель - остальное; имеет удельную поверхность 374 м2/г, объем пор 0.76 см3/г и эффективный диаметр пор 8.0 нм (табл. 1).
Пример 4
Для приготовления пропиточного раствора 16.7 г H4[SiMo6W6O40], 3.8 г NiCO3⋅H2O, 3.1 г лимонной кислоты C6H8O7 и 1.7 г диэтиленгликоля последовательно растворяют в 60.0 см3 воды при 40-60°C и перемешивании. рН пропиточного раствора равен ~2,5-3,5. Носитель - аморфный алюмосиликат, содержащий Al2O3 (95% мас.) и SiO2 (5% мас.) - массой 50 г выдерживают в вакууме не менее 30 мин, затем заливают пропиточным раствором. Далее носитель выдерживают в пропиточном растворе в течение 15 мин. Далее полученный катализатор подвергают термообработке при температуре не выше 80-150°C в течение 4 ч.
Катализатор в прокаленном при 550°C состоянии содержит, мас. %: MoO3 - 8.3; WO3 - 13.4; NiO - 3.6; носитель - остальное; имеет удельную поверхность 339 м2/г, объем пор 0.65 см3/г и эффективный диаметр пор 8.4 нм (табл. 1).
Пример 5
Для приготовления пропиточного раствора 20.3 г H4[SiMo1W11O40], 4.3 г NiCO3⋅H2O и 5.4 г винной кислоты С4Н6О6⋅последовательно растворяют в 60.0 см воды при 40-60°C и перемешивании. рН пропиточного раствора равен ~2.5-3.5. Носитель - оксид алюминия у-Al2O3 (100% мас.) - массой 50 г выдерживают в вакууме не менее 30 мин, затем заливают пропиточным раствором. Далее носитель выдерживают в пропиточном растворе в течение 15 мин. Далее полученный катализатор подвергают термообработке при температуре не выше 80-150°C в течение 4 ч.
Катализатор в прокаленном при 550°C состоянии содержит, мас. %: МоО3 - 1.4; WO3 - 24.2; NiO - 3.8; носитель - остальное; имеет удельную поверхность 206 м2/г, объем пор 0.52 см3/г и эффективный диаметр пор 8.2 нм (табл. 1).
Пример 6
Для приготовления пропиточного раствора 19.3 г H4[SiMo3W9O40], 5.1 г NiCO3⋅H2O и 6.5 г винной кислоты С4Н6О6⋅последовательно растворяют в 60.0 см3 воды при 40-60°C и перемешивании. рН пропиточного раствора равен ~2.5-3.5. Носитель - зауглероженный оксид алюминия, содержащий γ-Al2O3 (98% мас.) и углерод (2% мас.) - массой 50 г выдерживают в вакууме не менее 30 мин, затем заливают пропиточным раствором. Далее носитель выдерживают в пропиточном растворе в течение 15 мин. Далее полученный катализатор подвергают термообработке при температуре не выше 80-150°C в течение 4 ч.
Катализатор в прокаленном при 550°C состоянии содержит, мас. %: MoO3 - 4.2; WO3 - 20.1; NiO - 4.6; носитель - остальное; имеет удельную поверхность 222 м2/г, объем пор 0.51 см3/г и эффективный диаметр пор 7.2 нм (табл.1).
Пример 7
Для приготовления пропиточного раствора 16.8 г H4[SiMo6W6O40], 4.3 г NiCO3⋅H2O и 5.4 г винной кислоты C4H6O6⋅последовательно растворяют в 60.0 см3 воды при 40-60°C и перемешивании. рН пропиточного раствора равен ~2,5-3,5. Носитель - аморфный алюмосиликат, содержащий Al2O3 (95% мас.) и SiO2 (5% мас.) - массой 50 г выдерживают в вакууме не менее 30 мин, затем заливают пропиточным раствором. Далее носитель выдерживают в пропиточном растворе в течение 15 мин. Далее полученный катализатор подвергают термообработке при температуре не выше 80-150°C в течение 4 ч.
Катализатор в прокаленном при 550°C состоянии содержит, мас. %: MoO3 - 8.3; WO3 - 13.4; NiO - 4.0; носитель - остальное; имеет удельную поверхность 335 м2/г, объем пор 0.66 см3/г и эффективный диаметр пор 8.4 нм (табл. 1).
Пример 8
Для приготовления пропиточного раствора 20.5 г H4[SiMo1W11O40], 4.9 г NiCO3⋅H2O и 4.3 г диэтиленгликоля C4H10O3⋅последовательно растворяют в 60.0 см3 воды при 40-60°C и перемешивании. рН пропиточного раствора равен ~2.5-3.5. Носитель - аморфный алюмосиликат, содержащий Al2O3 (90% мас.) и SiO2 (10% мас.) - массой 50 г выдерживают в вакууме не менее 30 мин, затем заливают пропиточным раствором. Далее носитель выдерживают в пропиточном растворе в течение 15 мин. Далее полученный катализатор подвергают термообработке при температуре не выше 80-150°C в течение 4 ч.
Катализатор в прокаленном при 550°C состоянии содержит, мас. %: MoO3 - 1.4; WO3 - 24.2; NiO - 4.3; носитель - остальное; имеет удельную поверхность 370 м2/г, объем пор 0.72 см3/г и эффективный диаметр пор 8.0 нм (табл. 1).
Пример 9
Для приготовления пропиточного раствора 19.0 г H4[SiMo3W9O40], 3.7 г NiCO3⋅H2O и 3.3 г диэтиленгликоля С4Н10О3⋅последовательно растворяют в 60.0 см3 воды при 40-60°C и перемешивании. рН пропиточного раствора равен ~2.5-3.5. Носитель - оксид алюминия γ-Al2O3 (100% мас.) - массой 50 г выдерживают в вакууме не менее 30 мин, затем заливают пропиточным раствором. Далее носитель выдерживают в пропиточном растворе в течение 15 мин. Далее полученный катализатор подвергают термообработке при температуре не выше 80-150°C в течение 4 ч.
Катализатор в прокаленном при 550°C состоянии содержит, мас. %: MoO3 - 4.2; WO3 - 20.1; NiO - 3.4; носитель - остальное; имеет удельную поверхность 202 м2/г, объем пор 0.51 см3/г и эффективный диаметр пор 8.2 нм (табл. 1).
Пример 10
Для приготовления пропиточного раствора 16.7 г H4[SiMo6W6O40], 3.7 г NiCO3H2O и 3.3 г диэтиленгликоля С4Н10О3⋅последовательно растворяют в 60.0 см3 воды при 40-60°C и перемешивании. рН пропиточного раствора равен ~2,5-3,5. Носитель - зауглероженный оксид алюминия, содержащий γ-Al2O3 (98% мас.) и углерод (2% мас.) - массой 50 г выдерживают в вакууме не менее 30 мин, затем заливают пропиточным раствором. Далее носитель выдерживают в пропиточном растворе в течение 15 мин. Далее полученный катализатор подвергают термообработке при температуре не выше 80-150°C в течение 4 ч.
Катализатор в прокаленном при 550°C состоянии содержит, мас. %: MoO3 - 8.3; WO3 - 13.4; NiO - 3.5; носитель - остальное; имеет удельную поверхность 216 м2/г, объем пор 0.54 см3/г и эффективный диаметр пор 7.2 нм (табл. 1).
Испытания катализаторов проводили в процессе гидроочистки нефтяного углеводородного сырья в условиях проточной установки. Для исследования использовали прямогонную дизельную фракцию высокосернистой нефти, общее содержание серы сырье было 0.981% мас.
В трубчатый реактор загружали 15 см3 катализатора в виде частиц размером 0.25-0.50 мм, приготовленных путем измельчения и рассеивания исходных гранул катализатора, разбавленного SiC до общего объема 30 см3. Далее проводили активацию катализатора смесью диметилдисульфида и керосиновой фракции при 240°C в течение 10 ч и при 340°C в течение 10 ч.
Условия испытания: давление водорода 4.0 МПа, кратность циркуляции водорода 500 нл/л сырья, объемная скорость подачи сырья 1.0 ч-1, температура в реакторе 350°C.
Гидрогенизаты отделяли от водорода в сепараторах высокого и низкого давления, затем подвергали обработке 10%-ным раствором NaOH в течение 15 мин, отмывали дистиллированной водой до нейтральной реакции промывных вод, высушивали над прокаленным CaCl2.
Содержание серы в сырье и полученных гидрогенизатах определяли согласно ГОСТ Р 52660. Результаты испытаний катализаторов представлены в табл. 2.
Figure 00000002
Заявляемые катализаторы превосходят по активности прототип. Предлагаемые катализаторы позволяют получать гидрогенизат с содержанием серы менее 10 ppm при переработке прямогонной дизельной фракции высокосернистой нефти. Показатели процесса при гидроочистке прямогонной дизельной фракции высокосернистой нефти позволяют сделать вывод о высокой эффективности заявляемых катализаторов и способов их приготовления.

Claims (4)

1. Катализатор глубокой гидроочистки нефтяных фракций, включающий в свой состав NiO, MoO3, WO3 и пористый прокаленный носитель, отличающийся тем, что NiO, MoO3 и WO3 наносят на прокаленный пористый носитель из совместного раствора, содержащего смешанные гетерополисоединения H4[SiMonW12-nO40] (n=1-6), карбонат никеля NiCO3×H2O и органическую добавку, в качестве которой используют как минимум одну из следующего ряда: лимонная кислота C6H8O7, винная кислота C4H6O6, диэтиленгликоль С4Н10О3, с последующей активацией катализатора смесью диметилдисульфида и керосиновой фракции при 240°C в течение 10 ч и при 340°C в течение 10 ч; содержание металлов в прокаленном оксидном катализаторе составляет: MoO3 - 1.0-9.0% мас., WO3 - 13.0-25.0% мас., NiO - 3.0-5.0% мас., остальное - пористый носитель с содержанием углерода 0-4% мас.; прокаленный оксидный катализатор имеет удельную поверхность не менее 180 м2/г, удельный объем пор не менее 0.5 см3/г, эффективный диаметр пор не менее 6.0 нм.
2. Катализатор по п. 1, отличающийся тем, что в качестве пористого носителя используют оксид алюминия, оксид кремния или их композиты с содержанием углерода 0-4% мас.
3. Способ приготовления катализатора гидроочистки нефтяных фракций, включающий пропитку прокаленного носителя по влагоемкости водным раствором предшественников активных компонентов, содержащим смешанные гетерополисоединения H4[SiMonW12-nO40] (n=1-6), карбонат никеля NiCO3×Н2О и органическую добавку, в качестве которой используют как минимум одну из следующего ряда: лимонная кислота C6H8O7, винная кислота С4Н6О6, диэтиленгликоль С4Н10О3, последующую активацию катализатора смесью диметилдисульфида и керосиновой фракции при 240°C в течение 10 ч и при 340°C в течение 10 ч; содержание металлов в прокаленном оксидном катализаторе составляет: MoO3 - 1.0-9.0% мас., WO3 - 13.0-25.0% мас., NiO - 3.0-5.0% мас., остальное - пористый носитель с содержанием углерода 0-4% мас.; прокаленный оксидный катализатор имеет удельную поверхность не менее 180 м2/г, удельный объем пор не менее 0.5 см3/г, эффективный диаметр пор не менее 6.0 нм.
4. Способ приготовления катализатора по п. 3, отличающийся тем, что после пропитки катализатор сушат при температуре 80-150°C в потоке воздуха.
RU2019144318A 2019-12-27 2019-12-27 Катализатор глубокой гидроочистки нефтяных фракций и способ его приготовления RU2741303C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019144318A RU2741303C1 (ru) 2019-12-27 2019-12-27 Катализатор глубокой гидроочистки нефтяных фракций и способ его приготовления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019144318A RU2741303C1 (ru) 2019-12-27 2019-12-27 Катализатор глубокой гидроочистки нефтяных фракций и способ его приготовления

Publications (1)

Publication Number Publication Date
RU2741303C1 true RU2741303C1 (ru) 2021-01-25

Family

ID=74213394

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019144318A RU2741303C1 (ru) 2019-12-27 2019-12-27 Катализатор глубокой гидроочистки нефтяных фракций и способ его приготовления

Country Status (1)

Country Link
RU (1) RU2741303C1 (ru)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2573561C2 (ru) * 2014-01-29 2016-01-20 федеральное государственное бюджетное образовательное учреждение высшего образования "Самарский государственный технический университет" Катализатор гидрообессеривания, способ его приготовления и процесс глубокой гидроочистки углеводородного сырья
RU2676260C2 (ru) * 2016-12-28 2018-12-27 федеральное государственное бюджетное образовательное учреждение высшего образования "Самарский государственный технический университет" Катализатор селективной гидроочистки высокосернистого олефинсодержащего углеводородного сырья и способ его приготовления
RU2689116C2 (ru) * 2014-06-13 2019-05-24 Ифп Энержи Нувелль Способ гидрообработки газойлевых фракций с применением катализатора на основе аморфного мезопористого оксида алюминия, обладающего высокой связностью структуры
FR3074699A1 (fr) * 2017-12-13 2019-06-14 IFP Energies Nouvelles Procede d'hydroconversion de charge hydrocarbonee lourde en reacteur hybride
RU2694370C2 (ru) * 2017-12-06 2019-07-12 федеральное государственное бюджетное образовательное учреждение высшего образования "Самарский государственный технический университет" Катализатор глубокой гидроочистки вакуумного газойля и способ его приготовления
US10399070B2 (en) * 2015-04-30 2019-09-03 IFP Energies Nouvelles Catalyst containing γ-valerolactone and/or the hydrolysis products thereof, and use thereof in a hydroprocessing and/or hydrocracking method
US10464054B2 (en) * 2015-04-30 2019-11-05 IFP Energies Nouvelles Catalyst based on γ-ketovaleric acid and use thereof in a hydrotreatment and/or hydrocracking process
RU2707867C2 (ru) * 2017-12-28 2019-12-02 федеральное государственное бюджетное образовательное учреждение высшего образования "Самарский государственный технический университет" Катализатор совместной гидроочистки смеси растительного и нефтяного углеводородного сырья и способ его приготовления

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2573561C2 (ru) * 2014-01-29 2016-01-20 федеральное государственное бюджетное образовательное учреждение высшего образования "Самарский государственный технический университет" Катализатор гидрообессеривания, способ его приготовления и процесс глубокой гидроочистки углеводородного сырья
RU2689116C2 (ru) * 2014-06-13 2019-05-24 Ифп Энержи Нувелль Способ гидрообработки газойлевых фракций с применением катализатора на основе аморфного мезопористого оксида алюминия, обладающего высокой связностью структуры
US10399070B2 (en) * 2015-04-30 2019-09-03 IFP Energies Nouvelles Catalyst containing γ-valerolactone and/or the hydrolysis products thereof, and use thereof in a hydroprocessing and/or hydrocracking method
US10464054B2 (en) * 2015-04-30 2019-11-05 IFP Energies Nouvelles Catalyst based on γ-ketovaleric acid and use thereof in a hydrotreatment and/or hydrocracking process
RU2676260C2 (ru) * 2016-12-28 2018-12-27 федеральное государственное бюджетное образовательное учреждение высшего образования "Самарский государственный технический университет" Катализатор селективной гидроочистки высокосернистого олефинсодержащего углеводородного сырья и способ его приготовления
RU2694370C2 (ru) * 2017-12-06 2019-07-12 федеральное государственное бюджетное образовательное учреждение высшего образования "Самарский государственный технический университет" Катализатор глубокой гидроочистки вакуумного газойля и способ его приготовления
FR3074699A1 (fr) * 2017-12-13 2019-06-14 IFP Energies Nouvelles Procede d'hydroconversion de charge hydrocarbonee lourde en reacteur hybride
RU2707867C2 (ru) * 2017-12-28 2019-12-02 федеральное государственное бюджетное образовательное учреждение высшего образования "Самарский государственный технический университет" Катализатор совместной гидроочистки смеси растительного и нефтяного углеводородного сырья и способ его приготовления

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Kozhina L.F., Kosyreva I.V., Li E.P. " Maksimov N.M., Mozhaev A.V., Ishutenko D.I., Vishnevskaya E.E. "CATALYSTS OF HYDROTREATMENT OF OIL FRACTIONS BASED ON HETEROPOLYCONNECTIONS Mo AND W", Catalysis in Industry, 2014, 5, pp. 49-55. *
Nikulshin Pavel Anatolyevich "Molecular design of hydrotreating catalysts based on heteropoly compounds, chelates and carbonized carriers", Dissertation for the degree of Doctor of Chemical Sciences, Samara, 2015. *
Tomina NN, Pimerzin AA, Moiseev IK. "Sulfide catalysts for hydrotreating petroleum fractions", Russian Chemical Journal (Zh. Ros. Chem. Society named after DI Mendeleev), 2008, vol. LII, no. 4, pp. 41-52. *
Кожина Л.Ф., Косырева И.В., Ли Е.П. "Никель и его соединения: свойства и методы определения". Учебно-методическое пособие для студентов направления "Педагогическое образование", профиль "Химия". Саратов, 2017, с. 62. Пимерзин А.А., Томина Н.Н., Никульшин П.А., Максимов Н.М., Можаев А.В., Ишутенко Д.И., Вишневская Е.Е. "КАТАЛИЗАТОРЫ ГИДРООЧИСТКИ НЕФТЯНЫХ ФРАКЦИЙ НА ОСНОВЕ ГЕТЕРОПОЛИСОЕДИНЕНИЙ Mo И W", Катализ в промышленности, 2014, 5, стр. 49-55. *
Никульшин Павел Анатольевич "Молекулярный дизайн катализаторов гидроочистки на основе гетерополисоединений, хелатонов и зауглероженных носителей", Диссертация на соискание ученой степени доктора химических наук, Самара, 2015. Томина Н.Н., Пимерзин А.А., Моисеев И.К. "Сульфидные катализаторы гидроочистки нефтяных фракций", Российский химический журнал (Ж. Рос. Хим. об-ва им. Д.И. Менделеева), 2008, т.LII, номер 4, стр.41-52. *

Similar Documents

Publication Publication Date Title
KR101521313B1 (ko) 탄화수소 공급원료의 촉매적 수소화처리에 유용한 조성물, 이 촉매의 제조방법 및 이 촉매의 사용방법
KR101791835B1 (ko) 탄화수소의 촉매 수소화처리에 유용한 오일 및 극성 첨가제 함침된 조성물, 상기 촉매의 제조 방법 및 상기 촉매의 사용 방법
US5494568A (en) Hydrocarbon conversion process
JP5140817B2 (ja) 触媒を使用して炭化水素原料装入物の水素化精製および/または水素化転化の処理方法
JP4033249B2 (ja) 重質炭化水素油の水素化処理触媒及びそれを用いる水素化処理方法
JP2016016404A (ja) 高密度モリブデンを有する水素化処理触媒及びその調製方法
KR101795086B1 (ko) 탄화수소 공급원료의 수소화처리에 유용한 조성물
TW201501792A (zh) 包含雜環極性化合物之氫化處理觸媒組合物、製造該觸媒之方法及使用該觸媒之方法
RU2573561C2 (ru) Катализатор гидрообессеривания, способ его приготовления и процесс глубокой гидроочистки углеводородного сырья
JP4704334B2 (ja) オレフィン含有流中に含有されているジオレフィンの選択的水素化のための及びこれからのヒ素の除去のための方法及び触媒並びにこのような触媒の製造方法
RU2616601C1 (ru) Катализатор гидрооблагораживания вакуумного газойля и способы его приготовления (варианты)
RU2741303C1 (ru) Катализатор глубокой гидроочистки нефтяных фракций и способ его приготовления
RU2566307C1 (ru) Катализатор гидроочистки дизельных фракций и способ его получения
RU2620267C1 (ru) Катализатор гидрооблагораживания вакуумного газойля и способ его приготовления
RU2385764C2 (ru) Способ приготовления катализаторов для глубокой гидроочистки нефтяных фракций
JP2000117112A (ja) ガソリン留分の水素化脱硫触媒、その製造方法およびガソリン組成物
RU2708643C1 (ru) Катализатор гидроочистки бензина каталитического крекинга и способ его получения
RU2666733C1 (ru) Катализатор глубокого гидрообессеривания вакуумного газойля и способ его приготовления (варианты)
RU2677285C1 (ru) Способ приготовления катализатора гидроочистки нефтяных фракций в сульфидной форме (варианты)
RU2660904C1 (ru) Катализатор защитного слоя для процесса гидроочистки
RU2700685C2 (ru) Каталитическая композиция для гидроочистки, содержащая соединение ацетоуксусной кислоты, способ получения указанного катализатора и способ применения указанного катализатора
JP2794320B2 (ja) 炭化水素油用水素化処理触媒組成物の製造方法
RU2583788C1 (ru) Катализатор высокотемпературного гидрофинишинга гидроочищенных низкозастывающих дизельных фракций для получения дизельных топлив для холодного и арктического климата и способ его получения
JP2556343B2 (ja) ヒドロゲルからの水添処理触媒の製造方法
RU2581053C1 (ru) Катализатор предгидроочистки прямогонной бензиновой фракции в смеси с бензином вторичных термических процессов и способ его получения (варианты)

Legal Events

Date Code Title Description
QB4A Licence on use of patent

Free format text: LICENCE FORMERLY AGREED ON 20210616

Effective date: 20210616