RU2676260C2 - Катализатор селективной гидроочистки высокосернистого олефинсодержащего углеводородного сырья и способ его приготовления - Google Patents

Катализатор селективной гидроочистки высокосернистого олефинсодержащего углеводородного сырья и способ его приготовления Download PDF

Info

Publication number
RU2676260C2
RU2676260C2 RU2016151815A RU2016151815A RU2676260C2 RU 2676260 C2 RU2676260 C2 RU 2676260C2 RU 2016151815 A RU2016151815 A RU 2016151815A RU 2016151815 A RU2016151815 A RU 2016151815A RU 2676260 C2 RU2676260 C2 RU 2676260C2
Authority
RU
Russia
Prior art keywords
catalyst
carrier
siw
iron
nickel
Prior art date
Application number
RU2016151815A
Other languages
English (en)
Other versions
RU2016151815A3 (ru
RU2016151815A (ru
Inventor
Павел Анатольевич Никульшин
Дарья Игоревна Ишутенко
Павел Петрович Минаев
Мария Сергеевна Никульшина
Александр Владимирович Можаев
Андрей Алексеевич Пимерзин
Original Assignee
федеральное государственное бюджетное образовательное учреждение высшего образования "Самарский государственный технический университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное бюджетное образовательное учреждение высшего образования "Самарский государственный технический университет" filed Critical федеральное государственное бюджетное образовательное учреждение высшего образования "Самарский государственный технический университет"
Priority to RU2016151815A priority Critical patent/RU2676260C2/ru
Publication of RU2016151815A3 publication Critical patent/RU2016151815A3/ru
Publication of RU2016151815A publication Critical patent/RU2016151815A/ru
Application granted granted Critical
Publication of RU2676260C2 publication Critical patent/RU2676260C2/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

Изобретение относится к катализатору селективного гидрообессеривания высокосернистого олефинсодержащего углеводородного сырья и способу его получения. Катализатор содержит как минимум один из следующих гетерополианионов [SiWO], [SiWO], [SiWO], [PWO], [PWO], [PWO], [Ni(OH)WO], [Fe(OH)WO]и комплексонат Ni и Fe, содержащий не менее двух карбоксильных групп и 2-10 атомов углерода, нанесенных на пористый носитель с содержанием углерода 0-10 мас. %, при этом содержание в прокаленном при 550°С катализаторе W составляет 9-19 мас. %, Ni - 0,4-4 мас. % и Fe - 0,2-3 мас. %. Катализатор имеет удельную поверхность 150-350 м/г, объем пор 0,3-1,0 см/г, средний диаметр пор 4,0-10,0 нм. Способ приготовления катализатора включает пропитку пористого носителя с содержанием углерода 0-10 мас. % по влагоемкости с последующей сушкой, при этом носитель вакуумируют и однократно пропитывают водным раствором предшественников активных компонентов. Предлагаемый катализатор позволяет проводить селективную гидроочистку высокосернистого олефинсодержащего углеводородного сырья при мягких условиях и сохранении октанового числа. 2 н. и 4 з.п. ф-лы, 2 табл., 10 пр.

Description

Изобретение относится к области химии, в частности к катализаторам для селективной гидроочистки олефинсодержащего углеводородного сырья, и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности.
Одним из основных крупнотоннажных вторичных процессов в современной нефтепереработке является каталитический крекинг, целевым продуктов которого наряду с углеводородными газами является высокооктановый бензин, характеризующийся значительным количеством высокореакционных олефиновых углеводородов. Кроме того, отличительной особенностью бензинов каталитического крекинга (БКК) является высокое содержание сернистых соединений, ограничивающих его использование в качестве компонента товарных бензинов класса 5 с содержанием серы менее 10 ppm. Надо отметить, что более 90% от всего количества общей серы в товарном бензине приходится на БКК. Существует два способа снижения содержания серы в БКК: предварительная гидроочистка вакуумного газойля - сырья процесса каталитического крекинга - и гидроочистка БКК. Основным недостатком первого способа являются крайне жесткие требования по остаточному содержанию серы в гидроочищенном вакуумном газойле - не более 200 ppm, что приводит к значительному ужесточению технологических параметров процесса и увеличению как эксплуатационных и капитальных затрат.Гидроочистка БКК (второй способ) на традиционных Ni(Co)-Mo(W)/Al2O3 катализаторах гидроочистки бензиновых фракций протекает не селективно, наряду с реакциями гидродесульфуризации происходит глубокое гидрирование олефиновых углеводородов, характеризующихся относительное высокими значениями октановых чисел. Как результат, уменьшается октановое число гидроочищенного БКК до 6 п. и выше. Разработка современных катализаторов селективной гидродесульфуризации серосодержащих соединений олефинсодержащего углеводородного сырья является наиболее эффективным решением данной проблемы.
Для создания катализаторов селективной гидроочистки БКК используют методы подавления гидрирующей функции сульфидного активного компонента. Известно модифицирование носителей и/или катализаторов щелочными и щелочноземельными металлами, снижающими кислотность активной фазы и, как результат, гидрирующую активность по отношению к олефинам (US 5348928, B01J 21/04, B01J 23/78, В01 23/88, B01J 37/04, 20.09.1994; US 5340466, C10G 45/60, C10G 45/08, 23.08.1994; US 5846406, C10G 45/04, 08.12.1998; US 5358633, C10G 45/08, 25.10.1994, US 5770046, C10G 45/04, 23.06.1998, US 5525211, C10G 45/08, B01J 23/24, 11.06.1996; US 5851382, C10G 45/04, 22.12.1998).
Общим недостатком таких катализаторов является низкая концентрация доступных активных центров гидрообессеривания ввиду снижения дисперсности частиц активной фазы, что не позволяет глубоко протекать реакциям гидрообессеривания для получения компонента товарного бензина с ультранизким содержанием серы, особенно при гидропереработке высокосернистого БКК. Техническим решением настоящего изобретения является создание частиц триметаллической активной фазы NiFeWS необходимой дисперсности и полным заполнением ребер WS2 атомами Ni и Fe за счет использования W-содержащих гетерополисоединений, склонных к глубокому сульфидированию и образованию частиц WS2, комплексонатов Ni и Fe, обеспечивающих оптимальную скорость сульфидирования Ni и Fe с образованием смешанных NiFeWS центров, а также зауглероженного носителя, снижающего взаимодействие с W частицами и улучшающими скорость их сульфидирования и дисперсность частиц активной фазы NiFeWS. Способ приготовления катализаторов однократной пропиткой всех элементов позволяет обеспечить молекулярный контакт, необходимый для формирования активной фазы оптимального состава и морфологии для проведения селективной гидроочистки олефинсодержащего углеводородного сырья, а также упрощает технологию производства катализаторов.
Наиболее близким по своей технической сущности и достигаемому эффекту к предлагаемому техническому решению является катализатор селективной гидроочистки углеводородного сырья, описанный в патенте US 5348928, B01J 21/04, B01J 23/78, В01 23/88, B01J 37/04, 20.09.1994. Катализатор включает гидрирующий компонент - металлы из группы VIB и VIII Периодической таблицы с содержанием 4-20% мас. и 0.5-10% мас. в пересчете на оксиды, соответственно. Носитель катализатора включает магний в количестве 0.5-50% мас. в пересчете на оксид, щелочной металл в количестве 0.02-10% мас.
Способ приготовления селективного катализатора гидроочистки БКК включает следующие операции: приготовление первого водного раствора, содержащего растворенные соединения металлов VIB и VIII групп; смешение первого раствора с неорганическим оксидом и образованием пасты, включающей металлы VIB и VIII групп; превращение пасты в композит, по меньшей мере, одной из форм, перечисленных из ряда: шарик, порошок, таблетки, экструдаты; приготовление второго водного раствора, включающего растворенные соединения магния и щелочного металла; смешение второго водного раствора с композитом и получением пропитанного композита; прокаливание полученного композита с получением катализатора селективной гидроочистки.
Недостатком данного способа приготовления катализатора является то, что используются предшественники металлов из группы VIB и VIII Периодической таблицы, не позволяющие сформировать активную фазу с высоким содержанием активных центров и заданного состава, а также многостадийность процесса приготовления. Недостатком такого катализатора также является высокое содержание серы в гидроочищенном БКК при типичных условиях проведения процесса и низкая селективность, проявляющаяся в потере октанового числа.
Техническим результатом настоящего изобретения является создание нового катализатора селективной гидроочистки высокосернистого олефинсодержащего углеводородного сырья и способа его приготовления. Технический результат достигается за счет катализатора селективной гидроочистки высокосернистого олефинсодержащего углеводородного сырья, состоящего из гетерополисоединения, содержащего как минимум один из следующих гетерополианионов [SiW12O40]4-, [SiW11O39]8-, [SiW9O34]10-, [PW12O4o]3-, [PW11O39]7-, [PW9O34]9-, [Ni(OH)6W6O18]4-, [Fe(OH)6W6O18]3-, и комплексоната Ni и Fe, содержащего не менее двух карбоксильных групп и 2-10 атомов углерода, нанесенных на пористый носитель с содержанием углерода 0-10% мае, при этом содержание в прокаленном при 550°С катализаторе W составляет 9-19 мас. %, Ni - 0,4-4 мас. % и Fe - 0,2-3 мас. %; катализатор имеет удельную поверхность 150-350 м2/г, объем пор 0,3-1,0 см3/г, средний диаметр пор 4,0-10,0 нм. В качестве пористого носителя катализатора используют оксид алюминия, оксид кремния или их композиты с содержанием углерода 0-10 мас. % [Никульшин, П.А. Молекулярный дизайн катализаторов гидроочистки на основе гетерополисоединений, хелатонов и зауглероженных носителей [Текст]: Дисс. докт. хим. Наук 02.00.15, 02.00.13 / Никульшин П.А. - Самара, 2015]. В качестве комплексоната Ni и Fe используют цитрат никеля (железа), тартрат никеля (железа), этилендиаминтетраацетат никеля (железа), нитрилотриацетат никеля (железа), диэтилентриаминпентаацетат никеля (железа), при этом атомное соотношение Ni/(Ni+Fe) составляет 0,1-1,0.
Способ приготовления катализатора селективной гидроочистки олефинсодержащего углеводородного сырья включает пропитку пористого носителя по влагоемкости с последующей сушкой, отличается тем, что носитель вакуумируют, однократно пропитывают водным раствором предшественников активных компонентов, содержащим как минимум один из гетерополианионов следующего ряда: [SiW12O40]4-, [SiW11O39]8-, [SiW9O34]10-, [PW12O4o]3-, [PW11O39]7-, [PW9O34]9-, [Ni(OH)6W6O18]4-, [Fe(OH)6W6O18]3-,,и комплексонат Ni и Fe, содержащий не менее двух карбоксильных групп и 2-10 атомов углерода; при этом содержание в прокаленном при 550°С катализаторе W составляет 9-19 мас. %, Ni - 0,4-4 мас. % и Fe - 0,2-3 мас. %; катализатор имеет удельную поверхность 150-350 м2/г, объем пор 0,3-1,0 см3/г, средний диаметр пор 4,0-10,0 нм. Предшественники активных компонентов вносят из избытка пропиточного раствора или путем пропитки носителя по влагоемкости. После пропитки катализатор сушат при температуре 110-250°С в потоке воздуха или азота.
Исходные соединения для приготовления совместного пропиточного раствора, состав и текстурные характеристики используемых носителей приведены в табл. 1.
Figure 00000001
Сущность изобретения иллюстрируется следующими примерами.
Пример 1
Состав катализатора и способ его приготовления согласно известному техническому решению - прототипу.
Катализатор готовят пропиткой 100 г γ-Al2O3 раствором 3,9 г нитрата кобальта Co(NO3)2⋅6H2O, 7,4 г молибдата аммония в 58,7 воды. Полученные образцы сушили при комнатной температуре, далее при 121°C в течение 12 ч и прокаливали при 538°C в течение 2 ч. Затем полученный образец (100 г) пропитывали 6,37 г Mg(NO3)26H2O в 58,7 г воды. Снова проводили сушку при комнатной температуре, далее при 121°C в течение 12 ч и прокаливали при 538°C в течение 2 ч.
Катализатор в прокаленном при 550°C состоянии содержит, мас. %: Мо - 4,0; Co - 0,9; Mg - 0,5; Na - 0,06; Al2O3 - остальное.
Примеры 2-10 иллюстрируют предлагаемое техническое решение.
Пример 2
Для приготовления пропиточного раствора 14,0 г 12-вольфрамокремниевой гетерополикислоты H4[SiW12O40], 0,9 г карбоната никеля NiCO3⋅H2O, 18,4 г нитрата железа (II) Fe(NO3)2⋅6H2O и 1,8 г моногидрата лимонной кислоты C6H8O7⋅H2O последовательно растворяют в 60 см3 воды при 40-60°C и перемешивании. После окончания выделения CO2 доводят объем пропиточного раствора водой до 81 см3. pH пропиточного раствора равен 2,5-3,5.
Носитель - смесь оксида алюминия γ-Al2O3 (95% мас.) и оксида кремния SiO2 (5% мас.) - массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 40°C. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат на воздухе при комнатной температуре, а далее при 160°C в течение 4 ч.
Катализатор в прокаленном при 550°C состоянии содержит, мас. %: W - 9,0; Ni - 0,4; Si - 0,1; Fe - 3,0; носитель - остальное; имеет удельную поверхность 272 м2/г, объем пор 0,62 см3/г и средний диаметр пор 6,0 нм (табл. 1).
Пример 3
Для приготовления пропиточного раствора 36,6 11-вольфрамокремниевой гетерополикислоты H8[SiW11O39], 7,8 г карбоната никеля NiCO3⋅H2O, 16,4 г сульфата железа (II) FeSO4⋅4H2O и 14,0 г нитрилотриуксусной кислоты C6H9NO6 последовательно растворяют в 70 см воды при 30-50°C и перемешивании. После окончания выделения CO2 доводят объем пропиточного раствора водой до 100 см3. pH пропиточного раствора равен 3,0-4,0.
Носитель - зауглероженный оксид алюминия γ-Al2O3, содержаний 2% мас. углерода - массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 45°C. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат в токе азота при комнатной температуре, а далее при 120°C в течение 4 ч.
Катализатор в прокаленном при 550°C состоянии содержит, мас. %: W - 18,5; Ni - 3,0; Si - 0,3; Fe - 2,8; Al2O3 - остальное; имеет удельную поверхность 207 м2/г, объем пор 0,53 см3/г и средний диаметр пор 4,8 нм (табл. 1).
Пример 4
Для приготовления пропиточного раствора 25,6 г 9-вольфрамокремниевой кислоты H10[SiW9O34], 3,2 г гидрокарбоната никеля NiCO3⋅Ni(OH)2⋅H2O, 10,3 г ацетата железа (II) г Fe(CH3COO)2 и 8,7 г этилендиаминтетрауксусной кислоты C10H16N2O8 последовательно растворяют в 60 см воды при 40-60°C и перемешивании. После окончания выделения CO2 доводят объем пропиточного раствора водой до 80 см3. pH пропиточного раствора равен 3,5-4,5.
Носитель - зауглероженная смесь оксида алюминия γ-А1203 (89,4% мас.) и оксида кремния SiO2 (5% мас.), содержащая углерод в количестве 5,6% мас. - массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 40°С. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат в токе азота при комнатной температуре, а далее при 150°С в течение 6 ч.
Катализатор в прокаленном при 550°С состоянии содержит, мас. %: W - 14,0; Ni - 1,3; Si - 0,2; Fe - 2,6; носитель - остальное; имеет удельную поверхность 258 м2/г, объем пор 0,5 см3/г и средний диаметр пор 6,0 нм (табл. 1).
Пример 5
Для приготовления пропиточного раствора 19,9 г 12-вольфрамофосфорной кислоты H3[PW12O40] растворяют в 50 см3 воды, добавляют 2,6 г карбоната никеля NiCO3⋅H2O, 8,5 г ацетата железа (II) Fe(CH3COO)2 и 5,1 г лимонной кислоты C6H8O7. После окончания выделения CO2 доводят объем пропиточного раствора водой до 85 см3. pH пропиточного раствора равен 3,0-4,0.
Носитель - зауглероженный оксид алюминия γ-Al2O3, содержащий 5,6% мас. углерода - массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 35°С. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат на воздухе при комнатной температуре, а далее при 110°С в течение 10 ч.
Катализатор в прокаленном при 550°С состоянии содержит, мас. %: W - 12,0; Ni - 1,2; Si - 0,2; Fe - 2,2; Al2O3 - остальное; имеет удельную поверхность 201 м2/г, объем пор 0,46 см3/г и средний диаметр пор 4,8 нм (табл. 1).
Пример 6
В раствор 25,0 г 11-вольфрамофосфорной кислоты H7[PW11O39] в 65 см3 воды добавляют 5,3 г гидрокарбоната никеля NiCO3⋅Ni(OH)2⋅H2O, 11,2 г сульфата железа (II) FeSO4⋅4H2O и 19,6 г диэтилентриаминпентауксусной кислоты C14H23N3O10. После окончания выделения CO2 доводят объем пропиточного раствора водой до 106 см3. рН пропиточного раствора равен 3,5-4,5.
Носитель - зауглероженная смесь оксида алюминия γ-Al2O3 (86,5% мас.) и оксида кремния SiO2 (5% мас.), содержащая углерод в количестве 8,5% мас. - массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 30°С. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат на воздухе при комнатной температуре, а далее при 120°С в течение 7 ч.
Катализатор в прокаленном при 550°С состоянии содержит, мас. %: W - 14,0; Ni - 2,2; P - 0,2; Fe - 2,1; носитель - остальное; имеет удельную поверхность 224 м2/г, объем пор 0,57 см3/г и средний диаметр пор 6,0 нм (табл. 1).
Пример 7
Для приготовления пропиточного раствора 21,2 г 9-вольфрамофосфорной кислоты H9[PW9O34], 4,4 г гидрокарбоната никеля NiCO3⋅Ni(OH)2⋅H2O, 11,8 г нитрата железа (II) Fe(NO3)2⋅6H2O и 6,1 г винной кислоты C4H6O6 последовательно растворяют в 55 см3 воды при 40-60°С и перемешивании. После окончания выделения CO2 доводят объем пропиточного раствора водой до 101,5 см3. pH пропиточного раствора равен 2,5-3,5.
Носитель - смесь оксида алюминия γ-Al2O3 (90% мас.) и оксида кремния SiO2 (10% мас.) - массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 35°C. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат в токе азота при комнатной температуре, а далее при 140°C в течение 4 ч.
Катализатор в прокаленном при 550°C состоянии содержит, мас. %: W - 12,0; Ni - 1,9; Р - 0,2; Fe - 1,8; носитель - остальное; имеет удельную поверхность 260 м2/г, объем пор 0,70 см3/г и средний диаметр пор 7,0 нм (табл. 1).
Пример 8
Для приготовления пропиточного раствора 39,2 г 6-вольфрамоникелевой гетерополикислоты H4[Ni(OH)6W6O18], 1,3 г карбоната никеля NiCO3⋅H2O, 12,3 г ацетата железа (II) Fe(CH3COO)2 и 2,2 г нитрилотриуксусной кислоты C6H9NO6 последовательно растворяют в 70 см3 воды при 40-60°C и перемешивании. После окончания выделения CO2 доводят объем пропиточного раствора водой до 102 см3. pH пропиточного раствора равен 3,0-4,0.
Носитель - зауглероженная смесь оксида алюминия γ-Al2O3 (93% мас.) и оксида кремния SiO2 (5% мас.), содержащая 2% мас. углерода - массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 35°C. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат в токе азота при комнатной температуре, а далее при 180°C в течение 8 ч.
Катализатор в прокаленном при 550°С состоянии содержит, мас. %: W - 18,5; Ni - 1,5; Fe - 2,8; носитель - остальное; имеет удельную поверхность 224 м2/г, объем пор 0,57 см3/г и средний диаметр пор 6,0 нм (табл. 1).
Пример 9
Для приготовления пропиточного раствора 22,6 г 6-вольфраможелезной гетерополикислоты H3[Fe(OH)6W6O18], 2,6 г гидрокарбоната никеля NiCO3⋅Ni(OH)2H2O, 6,1 г ацетата железа (II) Fe(CH3COO)2 и 3,6 г винной кислоты C4H6O6 последовательно растворяют в 65 см3 воды при 40-60°С и перемешивании. После окончания выделения CO2 доводят объем пропиточного раствора водой до 88 см3. pH пропиточного раствора равен 2,5-3,5.
Носитель - зауглероженная смесь γ-Al203 (81,5% мас.) и оксида кремния SiO2 (10% мас.), содержащая 8,5% мас. углерода - массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 40°C. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат на воздухе при комнатной температуре, а далее при 150°C в течение 6 ч.
Катализатор в прокаленном при 550°С состоянии содержит, мас. %: W - 12,0; Ni - 1,2; Fe - 2,2; носитель - остальное; имеет удельную поверхность 174 м2/г, объем пор 0,48 см3/г и средний диаметр пор 7,0 нм (табл. 1).
Пример 10
Для приготовления пропиточного раствора 13,8 г 12-вольфрамофосфорной гетерополикислоты H3[PW12O40], 3,0 г карбоната никеля NiCO3⋅H2O, 1,2 г нитрата железа (II) Fe(NO3)2⋅6H2O и 8,3 г этилендиаминтетрауксусной кислоты C10H16N2O8 последовательно растворяют в 90 см3 воды при 35-55°С и перемешивании. После окончания выделения CO2 доводят объем пропиточного раствора водой до 126 см3. pH пропиточного раствора равен 2,5-3,5.
Носитель - зауглероженный оксид кремния SiO2, содержащий 2% мас. углерода - массой 100 г выдерживают в вакууме 30 мин, затем заливают пропиточным раствором, имеющим температуру 40°C. Носитель выдерживают в пропиточном растворе в течение 15 мин. Полученный катализатор сушат на воздухе при комнатной температуре, а далее при 220°С в течение 2 ч.
Катализатор содержит, мас. %: W - 9,0; Ni - 1,4; Р - 0,1; SiO2 - остальное; имеет удельную поверхность 293 м2/г, объем пор 1,00 см3/г и средний диаметр пор 6,5 нм (табл. 1).
Катализаторы испытывали в процессе гидроочистки БКК, выкипающего в пределах 110-220°С, с содержанием серы 0.15% мас. и олефинов 9% мас и октановым числом 91.0 п. (по исследовательскому методу). В трубчатый реактор загружали 15 см катализатора в виде частиц размером 0,25-0,50 мм, приготовленных путем измельчения и рассеивания исходных гранул катализатора, разбавленного SiC до общего объема 30 см3. Далее катализатор сульфидируют путем нагрева до 400°С в течение 2 ч в токе смеси H2S и Н2 (5 об. % H2S) при объемном расходе смеси 500 ч-1.Условия испытания: давление водорода 1,5 МПа, кратность циркуляции водорода 300 нл/л сырья, объемная скорость подачи сырья 3,0 ч-1, температура в реакторе 300°С.
Гидрогенизаты отделяли от водорода в сепараторах высокого и низкого давления, затем подвергали обработке 10%-ным раствором NaOH в течение 15 мин, отмывали дистиллированной водой до нейтральной реакции промывных вод, высушивали над прокаленным CaCl2. Содержание серы в сырье и полученных гидрогенизатах определяли согласно ГОСТ Р 52660, содержание олефиновых углеводородов - по ГОСТ 2070, фракционный состав - по ГОСТ 2177-99, октановое число - исследовательским методом по ГОСТ 8226.
Селективность катализаторов в отношении реакций гидрообессеривания оценивался по селективному фактору, рассчитанному по формуле:
Figure 00000002
где xS и хОУ - конверсия серосодержащих соединений и олефинов, соответственно %.
Результаты испытаний катализаторов представлены в табл. 2.
Заявляемые катализаторы превосходят по активности и селективности прототип. Показатели процесса при гидроочистке БКК позволяют сделать вывод о высокой эффективности заявляемых катализаторов и способов их приготовления.
Figure 00000003

Claims (6)

1. Катализатор селективной гидроочистки олефинсодержащего углеводородного сырья, состоящий из гетерополисоединения, содержащего как минимум один из следующих гетерополианионов [SiW12O40]4-, [SiW11O39]8-, [SiW9O34]10-, [PW12O40]3-, [PW11O39]7-, [PW9O34]9-, [Ni(OH)6W6O18]4-, [Fe(OH)6W6O18]3-, и комплексоната Ni и Fe, содержащего не менее двух карбоксильных групп и 2-10 атомов углерода, нанесенных на пористый носитель с содержанием углерода 0-10 мас. %, при этом содержание в прокаленном при 550°С катализаторе W составляет 9-19 мас. %, Ni - 0,4-4 мас. % и Fe - 0,2-3 мас. %; катализатор имеет удельную поверхность 150-350 м2/г, объем пор 0,3-1,0 см2/г, средний диаметр пор 4,0-10,0 нм.
2. Катализатор по п. 1, отличающийся тем, что в качестве пористого носителя используют оксид алюминия, оксид кремния или их композиты с содержанием углерода 0-10 мас. %.
3. Катализатор по п. 1, отличающийся тем, что в качестве комплексоната Ni и Fe используют цитрат никеля (железа), тартрат никеля (железа), этилендиаминтетраацетат никеля (железа), нитрилотриацетат никеля (железа), диэтилентриаминпентаацетат никеля (железа), при этом атомное соотношение Ni/(Ni+Fe) составляет 0,1-1,0.
4. Способ приготовления катализатора селективной гидроочистки олефинсодержащего углеводородного сырья, включающий пропитку пористого носителя с содержанием углерода 0-10 мас. % по влагоемкости с последующей сушкой, отличающийся тем, что носитель вакуумируют, однократно пропитывают водным раствором предшественников активных компонентов, содержащим как минимум один из гетерополианионов следующего ряда: [SiW12O40]4-, [SiW11O39]8-, [SiW9O34]10-, [PW12O40]3-, [PW11O39]7-, [PW9O34]9-, [Ni(OH)6W6O18]4-, [Fe(OH)6W6O18]3-, и комплексонат Ni и Fe, содержащий не менее двух карбоксильных групп и 2-10 атомов углерода; при этом содержание в прокаленном при 550°С катализаторе W составляет 9-19 мас. %, Ni - 0,4-4 мас. % и Fe - 0,2-3 мас. %; катализатор имеет удельную поверхность 150-350 м2/г, объем пор 0,3-1,0 см3/г, средний диаметр пор 4,0-10,0 нм.
5. Способ приготовления катализатора по п. 4, отличающийся тем, что предшественники активных компонентов вносят из избытка пропиточного раствора или путем пропитки носителя по влагоемкости.
6. Способ приготовления катализатора по п. 4, отличающийся тем, что после пропитки катализатор сушат при температуре 110-220°С в потоке воздуха или азота.
RU2016151815A 2016-12-28 2016-12-28 Катализатор селективной гидроочистки высокосернистого олефинсодержащего углеводородного сырья и способ его приготовления RU2676260C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016151815A RU2676260C2 (ru) 2016-12-28 2016-12-28 Катализатор селективной гидроочистки высокосернистого олефинсодержащего углеводородного сырья и способ его приготовления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016151815A RU2676260C2 (ru) 2016-12-28 2016-12-28 Катализатор селективной гидроочистки высокосернистого олефинсодержащего углеводородного сырья и способ его приготовления

Publications (3)

Publication Number Publication Date
RU2016151815A3 RU2016151815A3 (ru) 2018-06-29
RU2016151815A RU2016151815A (ru) 2018-06-29
RU2676260C2 true RU2676260C2 (ru) 2018-12-27

Family

ID=62814097

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016151815A RU2676260C2 (ru) 2016-12-28 2016-12-28 Катализатор селективной гидроочистки высокосернистого олефинсодержащего углеводородного сырья и способ его приготовления

Country Status (1)

Country Link
RU (1) RU2676260C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2741303C1 (ru) * 2019-12-27 2021-01-25 федеральное государственное бюджетное образовательное учреждение высшего образования "Самарский государственный технический университет" Катализатор глубокой гидроочистки нефтяных фракций и способ его приготовления

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108314006B (zh) * 2018-04-23 2021-10-26 北方民族大学 一种有序介孔碳材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005023416A1 (en) * 2003-04-07 2005-03-17 Board Of Regents, The University Of Texas System Molybdenum sulfide/carbide catalysts
RU2415708C2 (ru) * 2005-12-14 2011-04-10 Эдванст Рифайнинг Текнолоджиз Ллс Способ получения катализатора гидрообработки
RU2478428C1 (ru) * 2011-12-09 2013-04-10 Учреждение Российской Академии наук Интитут катализа им. Г.К. Борескова Сибирского отделения РАН Катализатор гидроочистки углеводородного сырья, носитель для катализатора гидроочистки, способ приготовления носителя, способ приготовления катализатора и способ гидроочистки углеводородного сырья

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005023416A1 (en) * 2003-04-07 2005-03-17 Board Of Regents, The University Of Texas System Molybdenum sulfide/carbide catalysts
RU2415708C2 (ru) * 2005-12-14 2011-04-10 Эдванст Рифайнинг Текнолоджиз Ллс Способ получения катализатора гидрообработки
RU2478428C1 (ru) * 2011-12-09 2013-04-10 Учреждение Российской Академии наук Интитут катализа им. Г.К. Борескова Сибирского отделения РАН Катализатор гидроочистки углеводородного сырья, носитель для катализатора гидроочистки, способ приготовления носителя, способ приготовления катализатора и способ гидроочистки углеводородного сырья

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Никульшин П.А. Молекулярный дизайн катализаторов гидроочистки на основе гетерополисоединений, хелатонов и зауглероженных носителей, Диссертация на соискание ученой степени доктора химических наук, Самара, 2015. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2741303C1 (ru) * 2019-12-27 2021-01-25 федеральное государственное бюджетное образовательное учреждение высшего образования "Самарский государственный технический университет" Катализатор глубокой гидроочистки нефтяных фракций и способ его приготовления

Also Published As

Publication number Publication date
RU2016151815A3 (ru) 2018-06-29
RU2016151815A (ru) 2018-06-29

Similar Documents

Publication Publication Date Title
JP5392979B2 (ja) 硫化触媒を利用する選択的水素化法
RU2402380C1 (ru) Катализатор гидроочистки углеводородного сырья, способ его приготовления и процесс гидроочистки
JP5563259B2 (ja) 特定の組成を有する硫化触媒を用いる選択的水素化方法
RU2573561C2 (ru) Катализатор гидрообессеривания, способ его приготовления и процесс глубокой гидроочистки углеводородного сырья
JP2016502464A (ja) 超低硫黄燃料油製造用の担持触媒
RU2678456C2 (ru) Способ изготовления катализатора гидроочистки
RU2639159C2 (ru) Катализатор, способ приготовления носителя, способ приготовления катализатора и способ гидроочистки углеводородного сырья
CA2070249C (en) Borium-containing catalyst
JP4871717B2 (ja) 制御された多孔度を有する触媒を利用する選択的水素化法
RU2626397C1 (ru) Способ гидрокрекинга углеводородного сырья
JP6244094B2 (ja) ガソリンの選択的水素化方法
RU2629355C1 (ru) Способ получения малосернистого дизельного топлива
RU2676260C2 (ru) Катализатор селективной гидроочистки высокосернистого олефинсодержащего углеводородного сырья и способ его приготовления
RU2637808C2 (ru) Катализатор, способ его приготовления и процесс селективной гидроочистки бензина каталитического крекинга
RU2626400C1 (ru) Способ получения малосернистого сырья каталитического крекинга
RU2557248C2 (ru) Катализатор, способ его приготовления и процесс селективного гидрообессеривания олефинсодержащего углеводородного сырья
CN100478423C (zh) 催化裂化汽油选择性加氢脱硫催化剂及其制备方法
RU2662232C1 (ru) Способ гидрокрекинга углеводородного сырья
CN102049281A (zh) 一种超深度加氢脱硫催化剂及其制备方法
RU2649384C1 (ru) Способ гидроочистки сырья гидрокрекинга
RU2603776C1 (ru) Способ гидрокрекинга углеводородного сырья
KR101831474B1 (ko) 1 종 이상의 환형 올리고당을 이용하여 제조된 지지된 황화물 촉매의 존재 하에서의 가솔린 분획물의 수소화탈황 방법
RU2534999C1 (ru) Способ гидроочистки углеводородного сырья
Tu et al. Effects of sulfur compounds on the hydrogenation and isomerization of 1-hexene over a sulfided CoMo catalyst for hydrodesulfurization
CN102051219B (zh) 一种柴油馏分的加氢处理方法